Das Bornali
Biomathematics of Chlamydia.
Doktori értekezés, Szegedi Tudományegyetem (2000-).
(2024)
PDF
(disszertáció)
Download (6MB) |
|
PDF
(tézisfüzet)
Download (4MB) |
Absztrakt (kivonat) idegen nyelven
Chlamydia trachomatis (C. trachomatis) related sexually transmitted infections are a major global public health concern. C. trachomatis afflict millions of men, women, and children worldwide and frequently result in serious medical diseases. In this thesis, mathematical modeling is applied in order to comprehend the dynamics of Chlamydia pathogens within host, their interactions with the immune systems, behavior in the presence of other pathogens, transmission dynamics in a human population, and the efficacy of control measures. The thesis begins with a brief introduction of the bacteria Chlamydia in Chapter 1. In Chapter 2, we give a brief detail of the mathematical modeling of infectious diseases, and its specific application to study the pathogen. In Chapter 3, a linear delay differential compartmental model is developed, and its special application is shown for a laboratory experiment conducted to study the intracellular development cycle of Chlamydia. The delay accounts for the time spent by bacteria in their various forms and for the time taken to go through the replication cycle. The mathematical model tracks the number of Chlamydia infected cells at each stage of the cell division cycle. Moreover, the formula for the final size of each compartment is derived. With initial conditions taken from the experiment, the model is fitted to results from the laboratory data. This simple linear model is capable of reflecting the outcomes of the laboratory experiment. In Chapter 4, at a population level, a novel mathematical model is introduced to study the dynamics of the co-infection between C. trachomatis, and herpes simplex virus (HSV). The concept of the model is based on the observation that in an individual simultaneously infected with both pathogens, the presence of HSV will make the Chlamydia persistent. In its persistent phase, Chlamydia is not replicating and is non-infectious. Important threshold parameters are obtained for the persistence of both infections. We prove global stability results for the disease-free and the boundary equilibria by applying the theory of asymptotically autonomous systems. Further, the model is calibrated to disease parameters to determine the population prevalence of both diseases and compare it with epidemiological findings. In Chapter 5, a compartmental maturity structured model is developed to investigate an optimal control problem for the treatment of chronic Chlamydia infection. The model takes into account the interaction of the pathogens with the immune system and its effects on the formation of persistent Chlamydia particles. As the system takes the form of a mixed ODE-PDE system, the results of the conventional form of Pontryagin’s maximal principle for ordinary differential equations are not suitable. For our purpose, we construct an optimal control problem for a general maturity compartmental model, and hence it consists of ordinary and partial differential equations, moreover, the boundary conditions are also nonlinear. For a fixed control, we verify the existence, uniqueness, and boundedness of the solutions. The system is numerically simulated for a variety of cost functions in order to calculate the optimal treatment for curing Chlamyida infection. We believe that since our findings were validated for a general model with maturity structure, they may be applied to any specific compartmental model that is compatible with the established system.
Mű típusa: | Disszertáció (Doktori értekezés) |
---|---|
Publikációban használt név: | Das Bornali |
Témavezető(k): | Témavezető neve Beosztás, tudományos fokozat, intézmény MTMT szerző azonosító Röst Gergely Associate Professor, PhD, Bolyai Intézet (Matematikai Intézet) SZTE / TTIK 10000778 |
Szakterület: | 01. Természettudományok > 01.01. Matematika > 01.01.01. Elméleti és alkalmazott matematika > 01.01.01.11. Differenciálegyenletek és dinamikai rendszerek 01. Természettudományok > 01.01. Matematika > 01.01.01. Elméleti és alkalmazott matematika > 01.01.01.19. Szabályozáselmélet és optimalizálás 01. Természettudományok > 01.01. Matematika > 01.01.01. Elméleti és alkalmazott matematika > 01.01.01.20. Tudományos alkalmazott matematika |
Doktori iskola: | Matematika Doktori Iskola |
Tudományterület / tudományág: | Természettudományok > Matematika- és számítástudományok |
Nyelv: | angol |
Védés dátuma: | 2024. április 26. |
EPrint azonosító (ID): | 11981 |
doi: | https://doi.org/10.14232/phd.11981 |
A feltöltés ideje: | 2023. nov. 17. 12:49 |
Utolsó módosítás: | 2024. okt. 17. 15:16 |
Raktári szám: | B 7383 |
URI: | https://doktori.bibl.u-szeged.hu/id/eprint/11981 |
Védés állapota: | védett |
Actions (login required)
Tétel nézet |