Szarka Dóra
Adrenergic regulation of lacrimal gland ductal fluid secretion: role and intracellular mechanisms of adrenergic stimulation.
Doctoral thesis (PhD), University of Szeged.
(2023)
PDF
(thesis)
Download (3MB) |
|
PDF
(booklet)
Download (579kB) |
|
PDF
(booklet)
Download (498kB) |
Abstract in foreign language
Purpose: The role of adrenergic innervation in the regulation of lacrimal gland (LG) ductal fluid secretion is unknown. The Aim of the present study was to investigate the effect of adrenergic stimulation on fluid secretion in isolated LG duct segments and to study the underlying intracellular mechanisms. Methods: Fluid secretion of isolated mouse LG ducts was measured using video-microscopy. Effect of various adrenergic agonists (norepinephrine, phenylephrine, and isoproterenol) on fluid secretion as well as inhibitory effects of specific antagonists on adrenergic agonist-stimulated secretory response were analyzed. Changes in intracellular Ca2+ level [Ca2+i] were investigated with microfluorometry. Results: Both norepinephrine and phenylephrine initiated a rapid and robust fluid secretory response, whereas isoproterenol did not cause any secretion. Phenylephrine-induced secretion was completely blocked by α1D-adrenergic receptor blocker BMY-7378. The endothelial nitric oxide synthase (eNOS) inhibitor L-NAME or guanylyl cyclase inhibitor ODQ reduced but not completely abolished the phenylephrine-induced fluid secretion, whereas co-administration of Ca2+-chelator BAPTA-AM resulted in a complete blockade. Phenylephrine stimulation induced a small, but statistically significant elevation in [Ca2+]. Conclusions: Our results prove the direct role of α1-adrenergic stimulation on LG ductal fluid secretion. Lack of isoproterenol-induced fluid secretory response suggests the absence of β-receptor mediated pathway in mouse LG ducts. Complete blockade of phenylephrine-induced fluid secretion by BMY-7378 and predominant inhibition of the secretory response either by L-NAME or ODQ suggest that α-adrenergic agonists use the NO/cGMP pathway through α1D receptor. Ca2+ signaling independent from NO/cGMP pathway may also play an at least partial role in α-adrenergic induced ductal fluid secretion.
Item Type: | Thesis (Doctoral thesis (PhD)) |
---|---|
Creators: | Szarka Dóra |
Hungarian title: | Az adrenerg rendszer szerepe a könnymirigy vezetékrendszer folyadék szekréciójában |
Supervisor(s): | Supervisor Position, academic title, institution MTMT author ID Tóth-Molnár Edit M.D., Ph.D., Szemészeti Klinika SZTE / SZAOK 10035749 |
Subjects: | 03. Medical and health sciences > 03.02. Clinical medicine 03. Medical and health sciences > 03.02. Clinical medicine > 03.02.22. Ophthalmology |
Divisions: | Doctoral School of Clinical Medicine |
Discipline: | Medicine > Clinical Medicine |
Language: | English |
Date: | 2023. February 03. |
Uncontrolled Keywords: | könnymirigy, folyadékszekréció, duktusz, adrenerg, |
Item ID: | 11570 |
MTMT identifier of the thesis: | 34124434 |
doi: | https://doi.org/10.14232/phd.11570 |
Date Deposited: | 2023. Jan. 05. 17:16 |
Last Modified: | 2024. Jan. 25. 13:25 |
Depository no.: | B 7342 |
URI: | https://doktori.bibl.u-szeged.hu/id/eprint/11570 |
Defence/Citable status: | Defended. |
Actions (login required)
View Item |