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Chapter 1

| nt roducti on

Accelerometers, gyroscopasd magnetic sensasseused ina large variety of applications
Earlier, inertial sensorswere mainly usednly in aerospace and militargpplications
because of their higbost. With the advances in Mro-Electraviechanical Systems
(MEMS), the availability of smalllight, andlow-costsensorsvith low power consumption
haveopened new possibilities for their ugg. Although MEMS magnetic sensorsxist,
magnetometerbased orAnisotropic MagnetBesistive (AMR)technologyare more often
used.

Accelerometersre motion sensors, whicheasurdinear acceleration in one or more
axes.The velocity of an object can be calculated by integrating the object’s accelevation
time. By integrating again, the position can be determifiéése sensors can be agplied
to estimateorientationusing the fact that in stationary position the magnitude of the
acceleration vector should be (lgg & 9 dug forBarth's gravitwhich points to the
center of the Earti’his can be useith switch screen orientation in mobile phones or tablets,
or for flight stabilizationin the case of dronef2]. Another very important application of
accelerometers ishock andvibration analysiqd3-6], where the acceleration signals are
utilized.

Gyroscopes areotation sensorsised to measure anguleelocity andare sensitive
around a single axis or multiple axes (usually two or th@ggntation can be calculated by
integrating once the measuredgatar velocity. Angular ratesensors are mostly used
together with accelerometers, and together they compose Inertial Measurement Units (IMU).

Magnetometers are devices that measure madiedtis. Scalar magnetometers measure
only the magnitude of theector passing through the sensor regardless of the direction, while
vector magnetometers measure the flux density value in a specific direction in three
dimensional spacg’]. These ensors are usually used as compasses; thus, they are capable
of estimathg heading direction based on the Earth’s magnetic[Bgldhe changes in the
magnetic field can be utilized to detect metallic objects.

All three sensor types can be found in consumer electronics ssictfaggphonedablets,
or smartwatchesand are @o used inother commercial applicatiolike video game
controllers



CHAPTER 1INTRODUCTION

The most common applications of thesmsorsare Inertial Navigation Systems (INS)
where they are used to continuously calculate the position, the orientation, and the speed of
amoving objec{9-12].

Accelerometers, gyroscopes, and magnetomedegsalso widely used in pattern
recognition applications, suchlasman motion recognitiqgesture recognitiofi3-14], fall
detection and classificatiqd5-16], vibration analysisetc. Many of these applications use
these sensors in the form of Wireless Sensor Networks (WI3ig)necessary computation
for these applications can be done offline, where an external unit ifousesnputationor
online, where the algorithms are implemezhbn theappliedembedded systemEfficient
implementation of pattern recognition applications on embedded systems requires
appropriate usage of energy, memory, and processing. These systems must meet
computational and storage requirements. This is dleciging task, because these
applications usually require high sampling rates of the senaaidime data processing,
and high transmission capabilities.

1.1 Thesis outline and contributions

In this thesisresearch resulachievedn two pattern recognition applications of inertial and
magnetic sensoe presented’he developed algorithms for both applicati@ne online,
thus, theyare easily implementable on the used microcontrbliéesed embedded systems

The used dimensioreduction, classification, and optimization methods are desdrbed
Chapter 2

In Chapter 3, the first application is presented, which applies accelerometers, gyroscopes,
and magnetometets classify different arm and body movements. Two sensor boads ar
used, which arattachedo thewrists of the subjects. The proposed algorithms are based on
features extracted fronthe signals generated by the changes in the position and the
orientation of the sensors.

The second application is described in Chapter 4, which utdiz#sgle magnetometer
based system to classify vehicles into multiple classes. The semsatationary position,
and the distortions in the measured magnetic field caused by passirigs/areaused during
the extraction of features.

The two thesigroups and the corresponding publications can be seen in Table 1.1.

Table 1.1 Thesis groups and corresponding publications.
Thesis group Publication
Movement recognition using wearall [S3], [S4], [S5], [S6], [S7], [S8]
inerfial and magnetic sensors
Realtime vehicle classification using | [S1], [S2], [S9], [S10]
single magnetometer




Chapter 2

Used met hods

2.1 Linear Discriminant Analysis-based dimension reduction

TheLinear Discriminant Analysid(DA) methods a widelyused subspace learning method

in statistics, pattern recognition and machine learning. This method aims to seek a set of
optimal vectors, denoted by ~ © h> B h> N p | projecting thed-dimensional

input data into am-dimensional subspace, such that the Fisher criterion is maxifdized

18]. The Fisher criterion, given if2.1), aims at finding a feature representation, by which

the withinclass distance iminimized,and the betweenlass distance is maximized.

AJGAGOGE { v+ 17 (2.1)
whereS, and Sy are the betweenlass scatter matrix and the withilass scatter matrix
respectively, and are defined as

1 B B e H e H , (2.2)
{ B H HH H, (2.3)

wherec represents thieth sample of clags Q is the mean vector of clags is the number
of classes|; is the number of samples in clgsendOis the overall mean vector of all
classes. The mean vector of a class and the overall mean vector can be calculated as follows,

H —B e, (2.4)

H -B B . (2.5)

The solution to the problem of maximizing the Fisher criterion is obtained by an
eigenvalue decomposition df 4 , and taking the eigenvectors corresponding to the
highest eigenvalues. There aré generalized eigenvectors. If the number of featigré=ss
thanc-1, then the number of eigenvectors will be equal to the number of features.
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2.2 Classification methods

2.2.1 NearestCentroid Classifier

The Nearest Centroid ClassifieNCC) is usedin various areas of pattern recognition
because it is simple and fast. The method determines the Euclidean distance from an
unknown object to the centroid of eaclass andassigns the object to the class with the
shortest distance. The Euclidean distabetveen thew N P feature vector and the
dimensionalm; vector of mean values for classan be calculated as

Q Qieltn B o & . (2.6)

2.2.2 Multi -Layer Perceptron

Artificial Neural Networks (ANNSs) are inspired Hjological neurakystemsandare used

to approximate target functiof$9]. TheMulti-Layer PerceptrotMLP) is a feedforward

ANN, where neurons are organized into three or more layers (an input and an output layer
with one or more hidden layers), with each layer fullyr@mied to the next one using
weighted connection#n illustration of a thredayer MLP neural network can be seaen
Figure2.1

Input Hidden Output
Layer Layer Layer

Figure2.1: An example echitecture of alireelayer MLP network

A neuron has an activation function that maps the sum of its weighted inputs to the
output. Thep; output of one node can be defined as

€ Qo >» 0, (2.7)

wherex is the input vectony, is the vector containing the weighksis the bias value, arfd
is the applied activation functiomhe activation or transfer functions are usually sigmoid or
linear functionswhile the biasllows a shift in the transfer function
Most commonly MLP networks are trained using the backpraagalgorithm, which
is a supervised learning method. The algoritmploys gradient descent to attempt to

6



CHAPTER 2USED METHODS

minimize the squared error between target values and the network output Vaiges
achievedby updatingthe weightsand the biases thedirection of the negative gradient of
the performance function

A faster convergence is produced with the conjugate gradient algorithm, which performs
a search along conjugate directions. The Scaled Conjugate Gradient (SCG) backpropagation
algorithm,developed by Mollerg0], was designed to avoid the lisearch of the conjugate
gradient algorithms. The SCG algorithm requires more iterations to converge, but the
number of computations in each iteration is reduced because no line search is used.

The LevenbergMarquardt (LM) backpropagation algorithm is also widely u$ed
training, since it is one of the fastest methodsigtlates weight and bias values according
to LM optimization[21].

MLPs with different initial random weightsprovide different regits, because the
corresponding performance functgarenot the same. Thus, multiple traingaye required
for one configurationo achieve better results.

In the case of classification applications, the vector of extracted feature values forms the
input vector, while in the output layer a neuron is assigned to each class.

223Napuve Bayes classifier

TheNa pv e Bay eMNBC)slahighly prdctica Bayesian learning method. It is based
on the simplifying assumption that, given the target valuesoii$tance, the attribute values

are conditionally independent, and the probability of observing the conjunction for attributes
is just the product of the probabilities for the individual attrib{ii&}. The approach used

by the NBCis presented itf2.8).

t AGQCAZ 0+ B 0 ost (2.8)

whereg denotes the target value output of the classi¥ias, the finite set of target values,
a are the attribute values, aRd(j) @re the probabilities aj target values.

The NBCincludes first a learning step in which the vari®{g) andP(ai|b;) terms are
estimated. New instances are classified by applyinguilean (28).

2.2.4 Support Vector Machine

In Support Vector MachinesS{YM), a data point is viewed agpadimensionalector, and
the goal is to separate such points wti)-dimensional hyperplang¢22]. The hyperplane
can be defined as

e oD @ (2.9

wherex is the vector to be recognized,is the normal vector to the hyperplane, dnd
determines the offset from the origin along the normal ve¢®dt0) defines the normal
vector, and ishe subject to the condition expressedil).
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ot B ] Tde, (2.10)
whereU is thei-th Lagrange multipliero ¥ plp , andl is thenumber of support vectors.
| 0o’ e & p mH| 0w (2.12)

The function of the hyperplane is not suitable for solving linearly-geparable
problems odealing with more than two classes. To classify data into multiple classes, two
common met hods -w@suso rheed u(s@wOVyerfawsanlcel G oh@v A) .

2.2.5 k-Nearest Neighbor

Thek-Nearest Neighbor (RN) algorithm classifies the objects based on theest training
examples in the feature spgd28-24]. To classify a new observation, the method findkthe
nearest samples in the training data and assigns the new sample to the class which provides
the most neighbors. The Euclidean distaiscased tomeasurethe distance between two
instance$19], which can be giveas

QQiete B o o |, (2.1

wherex; andx; are the two instances, amd andx; denote theth values in the feature
vectos.

The selection of a prop&mparameter is very important, since it can affect the decision of
the kNN classifier. A predefined rule does not exist for the selection & va&ue.

2.2.6 Classification Tree

The Classification TregCT) is a rulebased algorithm, which uses a tide= setof nodes
for classifying inputg§23, 25] The tree has predefined conditions at each node of the tree,
and makes binary decisions based on these rules. The condition of the following node is
checked until a leaf is found that contains the classificaésult:

The conditions can be givea s xiQU?0 ,  whiw theefeature value aridis the
threshold valudor a givenith feature.

Learningof classification trees is usually done using algorithms that emplegidom,
greedy search through the space of possible tfié&psThe most widely known algorithms
are the ID3 and its successor C4.5.

2.3 Geneticalgorithm-based optimization

Evolutionary #&gorithms areoptimization techniquesispiredby biological evolutionTheir
basic principle is a search on a population of solutions, whicbngolledby the laws of
biology. They are an effective tool for solving nonlinear, multicriteria optimization tasks.
Genetic algorithra (GA) belong to evolutionary algorithms aade based on Darwin's
theory ofevolution[26]. According to this theorypopulationf living beingsare constantly

8
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evolving, they become more and more perfeoid better individuals developThe
development process is controlled by natural selecimgrding to whiclvetter individuals
survive, while weaker ones perish.

GAs use a pagation of artificial chromosome# chromosome represents a solution to
a problem and can be givemost commonlyas abinary stringor a vector ofreal values
which are also called as allele values or simply alldiash solution has a fithess value,
which is a real number thateasureow good a solution is to tlggven problemThe fitness
valueis determined using the fitness function.

By analogy with biology, the chromosome is referred to as the genotype,ashbees
solution it represents is known as the phenotype.

The algorithm starts wita randomly generateuitial population.The evolution in the
algorithm is an iterative process, with the population in each iteration called a genération.
fithnessbased slection and recombination madeto produce a successor population, the
next generation. During recombination, parentssalectedand their genetic material is
recombined to produce child chromosomes. This process is iterated until some stopping
criterion is reached. The algorithm this way finds a good solution, since during the iterations,
a sequence of successive generatevmves,and the average fithess tends to improve.

The generation of successors in a GA is determined by a set of genetiorsgés
27):

1  Selectioni during the selection process individuals are selected from the

population, which will be involved in the creation of successtetection is based

on fitness values. Individuals with higher fithess should have a greater chance of
selection than those with lower fitness. This creates a selective pressure towards
more highly fit solutions.

Many selection methods exist. The mksbwn is theroulettewheel methodin

this methodthe population is depicted as a roulette wheel, where the individuals
have a size proportional to their fitness value. The circumference of the circle is
equal to the sum of the chromosomes’ fithess values s€lection is done using
generated random numbaevgh uniform distribution which show which sector of

the circle (individual) should be selected. Thus, chromosomes with higher fitness
value have a higher probability to be selected.

Other popular methad include: stochastic universal samplingournament
selection,truncationselection, etc.

1  Crossoveri the selected individuals are sorted into pairs. The crossover operator
achieves the mixing of the genetic material from two selected parent chromosomes
to produce one or two child chromosomes.

A commonly used crossover operator is the-poiat crossover. This method uses
a generated random number with uniform distribution, which is the crossover point
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that splits the chromosomes of the parents into twis.gane part of the parents”
chromosomes is exchanged, whichdie#otwo new individuals.

Two- and multipoint crossovers also exist. The uniform crossover method is also
widely used, which constructs a child by selecting uniformly between parent allele
values at eacposition

Mutationi the mutation operator can change the allele values of an individual. A
random number with uniform distribution is generated for each position of the
chromosome, which is compared to a defined mutation rate. If the nisvieyer

than the mutation rate, no change will ocatithe given positionf the value is
smallerthanor equalto the mutation ratehen thevalue is flipped from 0 to 1 or
vice versa in the case of binary stringsjsareplaced with a random realmber

in the case of vectors of real values.

10



Chapter 3
Movement recognition

|l nerti al and magneti c

3.1 Introduction

The analysis and retime monitoring of human body motion is a widealyidied field of
industrial, entertainment, health, and medical applicafigfls Such systems can be used
for robot control, humagomputer interaction, assisted living, gaming, faditection,
epileptic seizure detection, telerehabilitation, analysis of daily activities, emergency
detection, health monitoring, or even human worker activity recognition in industrial
environments.

Human motion can be split into two basic categoriesivines and movements.
Movements typically last for several milliseconds or seconds, while an activity comprises of

different movements, and can last for even minutesortidgdfys For exampl e, a
activity contains several short physical leg mments. But more complex activities can also

be defined, such as Acookingodo, which is con
sequence, |ike Awalkingo, fAarm raisingo, fAs

Sensothased motion recognition integrates the emerging afesensor networks with
machine learningechniques. Inertial and magnetic sensors are widely used in wearable
devices for motion recognition, due to their small size, low cost, and small energy
consumption. These wearalgevices applied to human bodiesm Wireless Body Sensor
Networks (WBSN)[29]. Another option for human motion monitoring can be the use of
Personal Area Networks (PAN), which are composed of environmental sensors, like Radio
Frequency ldentification (RFID) readers, video cameraspond; pressure, temperature,
luminosity, and humidity sensors. The visibased activity recognition systems are the most
popular types of PANs. One of the main advantages of body sensor networks to systems
using cameras with fix places is that they suppersistent monitoring of a subject during
daily activities both in indoor and outdoor environments. The Wbased systems are also
influenced by environmental factors, such as lighting conditions, and they incur a significant
amount of computationabet.

11



CHAPTER 3MOVEMENT RECOGNITIONSSING WEARABLE INERAL AND
MAGNETIC SENSORS

Due to the difficult implementation of pattern recognition algorithms on resource
constrained wireless nodes, the design of WBfalsed applications is a very complex task
[30-31]. They should also be wearable, which affects the possible usadey size and
therefore its duration.

3.2 Related work and motivation

3.2.1 Related work

In the research of using inertial and magnetic sensors in human movement recognition
systems, various types and positions of the sensors, and methods for recognitiostecre te
for different application$32]. Classification is typically done in a twatage process. First,
features are derived from windows of sensor data. A classifier is then used to identify the
motion corresponding to each separate window of data.

Table 3.1 summarizes the applied activity classes, sensor types and their placements,
feature extraction modes, processing window widths, sampling frequencies, classification
methods, and achieved accuracies in relevant works. The used abbreviations are described
in the following sulbhapters

Table3.1: Summary of relevant works

Related | Activity classes | Sensors and| Feature Processing Classifiers Accuracy
work placement extraction | window width
| Sampling
frequency
[33 8 classes ACC: waist,| TDFs 2s / 64Hz k-NN 95%
(moving, thigh, ankle | FDFs
complex) Wavelets
[23] 21 classeg ACC, GYR,| TDFs 5s/25Hz PCA+BDM 99.1%
(stationary, MAG: knees,| FDFs PCA+SVM 98.6%
moving, wrists, chest PCA+DTW 98.5%
complex) PCA+k-NN 98.2%

PCA+ LSM 89.4%
PCA+MLP 86.9%
PCA+CT 81.0%
[34] 6 classeq ACC: chest | TDFs 10s / 20Hz LDA+MLP 94.43%
(stationary, FDFs
moving,
complex)
[39 8 classes ACC: right| TDFs 1s/20Hz MLP+HMM 80.88%
(stationary, thigh
transitional,
moving)
[36] 4 classes ACC: chest | TDFs 1s/100Hz SVM 94.73%

12
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(stationary,
transitional)

[22] 6 classeg ACC, GYR:| TDFs 1.6s/20Hz SVM 97.2%
(stationary, right  wrist,
moving, right foot
complex)

[25 6 classed ACC, GYR,| TDFs 3s [/ 6.25Hz| CT 97%
(stationary, MAG: FDFs (ACCQC), Decision table | 88%
moving, multiple 100Hz (GYR), | NBC 78%
complex) places 7.69Hz (MAG)

[37] 13 classeg ACC, GYR:| TDFs 3.88s/33Hz | SVM 97.2%
(moving, dominant FDFs MLP 96.73%
complex) wrist RBF 95.67%

[24] 6 classeg ACC: waist | TDFs 1s/10Hz MLP 98.3%
(stationary, k-NN 94.1%
moving,
complex)

[39] 12 classes ACC: chest,| TDFs 1s/25Hz k-NN 99.25%
(stationary, right  thigh, | FDFs Random forest| 98.95%
transitional, left ankle Wavelets SVM 95.55%
moving) SLGMM 85.05%

HMM 83.89%
GMM 75.60%
k-means 72.95%
method

[39 6 classe§ ACC, GYR:| TDFs 0.64s, 1.28s| Lazy learner 99%
(stationary, waist 2.56s/50Hz | CT 97%
moving) Rule-based 97%

classifier
NBC 84%

[40] 5 classeq ACC: right | TDFs 1s/100Hz CT 97.8%
(moving, wrist FDFs
complex)

Activity classes

In the related work, many activity classification approaches were used. The most widely
used activities were standing and walking, which can be found in almost all works. Besides
standing, other stationary activities can also be found in the literatwte asuying[34],
sitting[25, 41-42], or both[23, 35, 3839]. Different transitional movements were also parts

of the activity classes in some works, e.gi@istand and stantb-sit [35, 38, 41] lie-to-sit

and sitto-lie [35], lie-to-stand and stantb-lie [41], or stopping after walkind36].
Regarding the classification of longer motional activities, various speeds and types of
forward movements were also tested, such as slow, normal and rush ja#inggging

13
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[22, 33, 4243], and running23-25, 33, 40] Some works tried to differentiate different
directions of an activity type, like level walking, walking downstairs and upg28s33
34, 3839, 42] or walking backwardg43]. Yang et al.[42] recorded even continuous
rotational movements, si@s walking lefcircle or rightcircle, and turning left or right.
Special complex activities were also parts of the constructed databases, e.d2tlkg
jumping [23, 33, 42] writing [22], brushing teetH{40, 44] eating and drinkind44],
swe@ing the floor, lifting a box onto a table, bouncing a p&#, driving[34], cycling[23,
44], etc.

Sensors and placement

The accelerometer (ACC) is the most popular sensor for monitoring the motion of the human
body. This sensor measures acceleration in one or more axes. As seen B.I[abbny
researchers used only a single unit to achieve activity recognition, bulliffeeed in the
placement of the sensor. Others applied multiple sensors fixed to different parts of the body.
Beside the works listed in TalBel, a single accelerometer fixed to the chest applied in

[4]], the authors df45] utilizedtwo acceleromet-based data loggers, which were mounted

on each wrist, whilBao and Intill44a pp |l i ed fi ve biaxial sensor
right hip, dominant wrist, nedominant upper arm, dominant ankle, and -dominant
thigh.

Gyroscopes (GYR), which msare angular velocity around one or more axes, are less
popular in movement recognition applications, and are mostly used together with
accelerometers. None of the related researches used only gyroscopesialTri
accelerometers and gyroscopes used teggitovide six degrees of freedom (6DoF) sensor
units. Yang et al.[42] used measurement units containing a triaxial accelerometer and a
biaxial gyroscope, and placed them to eight places on the body: the wrists, the ankles, the
knees, the hip, and the teflbow.

The fusion of inertial sensors and magnetometers (MA@$ also reported in the
literature. The magnetic sensors measure the Earth’s magnetic field, and thus, they are able
to detect rotational movements compared to the magnetic north. Magnemrsseare
usually used together with the inertial sensors, which provides 9DoF measurement systems,
but [46] utilized only magnetometers for activity classification. The authors used sensor
gloves with 9 magnetic sensors on both hands, and tried to glsissle (walking, running)
and complex (shave, brush teeth, use electric toothbrush, etc.) activiteesensors of
mobile phones for activity recognitiomere utilized in[47], while Field et al.[43] utilized
an inertial motion caption system, compdf 17 inertial sensors attached to different parts
of the body. The 9DoF sensors were combined to get a global orientation through a Kalman
Filter.

14
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Feature extraction

As activity and movement recognition is a typical pattern recognition problem, feature
extraction plays a crucial role during the recognition process. Sbased features can be
classified into three categoriggme-domain feature¢TDFs), frequencydomain features
(FDFs), and features computed using tifreguency analysis.

Most of the related researches used TDFs and/or FDFs. The type of features and their
frequency of usage in references are shown in TaBldt can be concluded that the most
used TDFs are the mean and the standard deviation, and the most frequenteFDEs ar
spectral energy and the frequerdrymain entropy.

Table3.2: Used feature types in related warks

Feature type References
Time-domain features

standard deviation or variance [22-25, 3340, 4849]
mean [22-25, 3335, 3740, 44, 49]
root mearsquare [22, 24, 3738, 40]
correlation [22, 2425, 34, 44]
number of zero crossings [25, 38, 40, 48]
kurtosis [23, 3738, 49]
range [22, 24, 36, 38]
skewness [23, 3738, 49]
maximum [22, 37, 39]
minimum [37, 39]

number of rapid changes [48]

magnitude of the first peak of the autocorrelat| [48]
Frequencydomain features
frequencydomain entropy [25, 3334, 3738, 44]
spectral energy [24-25, 33, 38, 40, 46]
magnitude of the defined first few highest peq [33, 37, 46, 49]
frequency ofthe defined first few peaks wit| [23, 46, 49]

highest amplitude

correlation between axes [33, 37]
median frequency [25, 48]
DC component [38]
median power [48]
principal frequency [33

Using wavelet analysis, the signal is decomposed into a sdrasefficients, which
carry both spectral and temporal information about the original signal. Two ,y&8kand
[33], tested this feature extraction method for the classification of activitiesauthors of
[33] utilized the next features: the sum of the squared detail coefficients at different levels,
the sum of the squares of the detail and wavelet packet approximation coefficients across
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different levels, the standard deviations and root mean square (RMS$ wéldetail and
wavelet packet approximation coefficients at a few different levels, and the sum of the
absolute values of coefficients at different levéittal et al.[38] applied the following
features: the sum of detail coefficients of wavelets, time sf squared detail coefficients of
wavelets, the energy of detail wavelets coefficients, and the energy of approximation
wavelets coefficients.

Processing window width and sampling frequency

Windowing plays also a very important role during the extractid features. Usually
features are computed in fixatze windows, which are shifted also with a fixed time. In the
related work, the width of the applied processing windows is between 1s and 10s, and the
smallest size, 0.64s, was tested[BY]. The samling frequency is also a very important
factor in the processing phase. In relevant works, the applied frequencies were between 10Hz
and 100Hz.

Classifiers

The classification of the defined activities using the computed feature vectors can be done
using dfferent classification methods. As shown in TaBle, the most popular classifiers

in relevant works are: SV& the kNN method, decision trees or §NBCs, and MLP

neural networks. Some other methods were also testdgadial Basis Function (RBF)

neual networks, thd_eastSquaresMethod (LSM), Bayesiamecision Making (BDM),
Dynamic Time Warping (DTW), decision table, ruleased classifier, Gaussidixture
Modeling (GMM), SupervisedLearning GMMs (SLGMM), the fneans method, random
forest, lazy learner, artididden Markowodels (HMMSs). In some researches, the classifiers
were used together with some dimension reduction methods. The most common methods are
the Principal ComponentAnalyss (PCA) and the LDAThe authors of49] applied the
GeneralizedDiscriminant Analysis (GDA) method with the multiclass relevance vector
machine classifier. Some researchers even tested two different classification methods
together: neural networks and HiMd [35], hierarchical temporal memories and SVM§],

CTs and HMMd46], k-means clustering and HMM47].

3.2.2 Motivation

The goal of this research was to develop a wearable wireless system which does not disturb
the user in free movement, and which can ®ffity recognize basic body and arm
movements using an online classification algorithm. It was also important to explore
different setups to minimize the cost, the energy consumption, and the memory
requirements, besides maximizing the classificationieffiy.

In the proposed prototype syste@DoF sensor boards mounted on WSN motes were
used, which were attached to the wrists of the subjects. The developed system was used to
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record measurements for multiple activities. The proposed system doesgume any
additional server for the processing of the data, and it is also suitable for the logging of the
activities.

Related works mainly do not deal with the implementabdityhe algorithms on the
used hardware or use a centralized server to do the necessary computation. The use of
processing servers can cause several disadvantages. First, the communication in the network
is very costly due to the high sampling frequenciethe sensors, and secondly, since the
subjects are moving, they can get out of the range of the server if its place is fixed. Some
works implement their algorithm on a smartphone, but the performance of these systems can
be affected by the varying placent of the units, or their use during the operation of the
algorithm. Based on the above considerations, it was reasonable to develop an online
method, and to examine the hardware implementability of different classification algorithms.
Since related studs mainly consider complex activities or use more thanséconds of
data forthe classification of motions, it was necessary to investigate the barriers in the
performance when decreasing the processing window width. Related works which utilize
multiple sensor types also do not consider the effect of different sensor types on classification
efficiency.

In this work, two online movement classification approaches are proposed.

In the first approach, the classification is done on one of the wiitsh use features
extracted orboth units.This algorithm requires the transmission of the computed feature
vector from one of the motes to the mote computing the movementTaegsd the optimal
setup, multiple classification methods were investigated faowsirdatasets, which were
generated based on different sampling frequencies, processing window widths, feature
extraction modes, and used sensor typP# -based dimension reduction was also tested to
investigate its effect on the tested classificationhods$ in the meaning of recognition
efficiency, memory consumption, and training tifhibe extraction and reduction of feature
vectors were also tested in multiple ways. The features were computed utilizing the sensor
axes separately and using the magnitddereduce the required computation, only ime
domain analysis was performed during feature extraction. An aggregaised feature
reduction method is also proposed, which can help the system to be less sensitive to
differences in orientations of thens®rs on the arms.

The second approach is a hierarchtiatributed algorithmywhereboth units compute
their own movement class, and one of the uhigmcombines the two classes to determine
the class of the entire bodywo different movement hierardébs were examinedlhis
algorithm was also tested for datasets generated using different processing window widths,
feature extraction modes, and used sensor types.

Since the proposed algorithrapplyonly TDFs with low memory needs,camparison
of datasets based on oriyne- and only frequencgomain analysiss also presentewt
examine the performancen the collected measurement data.
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3.3 Experimental setup

The sensor devices used in body sensor networks must be designed withathgrainding
the highest degree of mobility for the patients. They must be smallyégittt and wireless
wearable units.

The used prototype system, which can be seen mrégyl consists of an IRIS WSN
mote, and a 9DoF digital sensor board connettdet The IRIS mote is equipped with an
Atmel ATmega 1281L &it microcontroller, and an RF231 IEEE 802.15.4 compatible radio
transceiver. The current draw of the microc
mode, while the radio transceivernspimes 17mA during transmission, and 16mA during
reception. The maximal data throughput of the radio transceiver is 250kbps, and its outdoor
range is over 300m. The connected 9DoF sensor board is made up of an ADX{=34& tri
MEMS accelerometer, an ITGGQ tri-axial MEMS gyroscope, and an HMC5883L-asiial
magnetoresistive technolodgpased magnetometer. The ADXL345 is a low power
accelerometer (the current draw is 400A in
whi ch can me as ubitesolutpn wito thefhiress sampling tag of 3.2kHz.
The gyroscope features a-bfi analogto-digital converter, and it can measure angular rate
in a range of N2000deg/s with 8kHz freque

gyroscope is 6.5mA, while¢gh sl eep mode current is 5O0A. T

magnetics e n s 8rl OimsI2-it resolution with 160Hz maximal sampling rate, and it

consumes 20A current draw in idle mode, whi
a) b)

Figure3.1: a) The prototype measement system,)bl'he unit attached to the wrist

A TinyOS-based driver was developed and implemented to configure the sensors and
cyclically read the measurement data. The data are read from the sensors %@ the |
interface, and sent via wireless communication to a BaseStation mote, which uses serial
communication to forward the data to a PC.

3.4 Data acquisitionfor movement classification

Eleven activities were defined in order to recognize specific arm movemesitdionary
positions and also during the movement of the body. The used activities are the following:
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1. istanding without movement of the ar mso

2. Aisitting with the arms resting on a tab

3. iwal ki ngo,

4. Aturning around in one placeo,

5. Aij oggi ngo,

6. iraising and | owering the | eft arm dur.i

7. Airaising and | owering the right arm dur

8. Airaising and |l owering both arms during

9. Araising and | owering the Il eft arm dur.i

10.Air ai sing and | owemwiahdgitnhge® ,ri ght arm dur
I

11.dir ai sing and owering both arms during
Data were collected with the help of nine male subjects (ages between 20 and 50, and
height between 165cm and 190cm) for all activities. The IRIS motes with the attached 9DoF
sensor motes were mated on each wrist of the subjects. The data were recorded in fixed
length sessions of 20s for all activities using 125Hz sampling frequency, which means 2500
measurements per sensor. The measurements were performed in a laboratory environment.

3.5 Online movement classificationalgorithm

In the proposed algorithmhe classification is performed in four main stages. The software
architecture with the four stages can be seéigare 3.2. In the first step, the measurement

data are preprocessed (Stage |.xhinsecond stage (Stage,lfgatures are extracted from

the signals on each unit. Possible aggregation of the extracted features is also done in this
stage. The proposed algorithm assumes the transmission of the vector of the extracted
features from onenote to the other, and the rest of the algorithm should be implemented in
the microcontroller of the receiving device. Dimension reduction is done in the third stage
(Stage llI.), while classification is performed in the fourth stage (Stage IV.). Twodtffe
algorithms were applied and tested. In the first type, the third stage is not performed, and the
classifiers receive the feature vectors directly, while in the second case the data sets are
dimensionally reduced, so the classifiers have less inpatneters. The advantage of the
dimension reduction method is that it removes the redundant information.
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Figure3.2: Software architecture

3.5.1 Error compensation

The applied sensor types suffer from various types of errors that can be classified as
deterministic or systematic errors and random or stochastic errors. Deterministic errors are

Mote #1
Feature extraction
Feature _
g & computation L T 1 g
= = . =l
= g z Aggregation  —= o | Dimensionallity > ;S
= 2 = > . L =
A fé_ ’% A reduction é
g i . . 3
g = Magnitude Feature 3
9DoF sensor computation computation ((( )))
board
I
Mote #2 :
L'eature extraction |
Feature -
8 ) ’( computation L - |
= = L
5 & g Aggregation  —» _ ((( ))) _|
- =}
= g— k= l ‘
S = L Magnitude Feature
9DoF sensor computation computation
board
Stage 1. Stage I1. Stage 111. Stage IV.

caused by manufacturing defects and can be compensated by sensor calibration. The
cal i brati
information to estimate these error coefficients, which form an exact relationship between
observed readings and expected outputs.

These errors have especially high effect in applications which utilize accelerometers and

gyroscopes to obtain position aodentation, since the measurements need to be integrated.

on

S

a

process

of compariedg

t he

Because of théntegration process, even very small errors at the output accumulate very

rapidly and the position error beconmmsiderably larggs0]. Although the measurements

in the proposedystemare not integrated during feature extraction, it is very important to

calibrate the sensors before use, since the errors canalfeitte movement classification

process.

Error models

Systematic errors include bias, scale factorsremmbrthogonality errorgs1].
The bias error is the deviation of the output from the zero level when the input to the
sensor is zero. The bias should be zero for all axes in an ideal sensor.
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U

, (3.1)

S a8

whereby, by, andb; in theb bias vector are the bias values on each axis.

Scale factors determine the sensoro6s sens
sensors which make up the triad should be identical, and for the same input they should give
the same output. TH&matix consisting the scale factors can be represented as:

Y m T
{ m v m, (3.2)
m 1Y

whereS,, S, and$; are the scale factors for each axis.

Nonorthogonality between axes is the inaccuracy resulting from the imperfection in
sensor mounting during its mafacturing. Misalignment errors are introduced due to
nonal i gnment of sensordé6s sensitive axi s ando
should be perfectly perpendicular.

I a pa (3.3)

wheremky, Mkz, Myx, Myz, Mzx, andmyin theM matrix are the misalignment error coefficients.
The relation between the measured and the real values can be given as:

¢ p a a Y 1 omoi ) -
¢ a4 p & mY mi & - (3.4)
€ G a pm m Y | &) -

where oy, 0y, and 0, are the measured sensor outputs, whijery, andr; are the real
measurement values on each axis. The teny, andd, assign the noise values that are
generally assumed to be white Gaussian.

Combining theM and S matrices into one matrix, a calibration model utilizing 12
parameters can be given as:

¢ G & G i )
¢ a a a i ) (3.5)
¢ a a a i &

A simplified relation, which applies 9 parameters, can be given using the model seen in
Figure3.3[52-53]. The misalignment error matrix in this case can be given as (3.6).
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Figure3.3: Used model fothe misalignment angles
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wh e nye x, U aypade the misalignment angles.

The real measurement values using the measured outputs and the calibration parameters
can be given as:

» 14 = 4, (3.7)
whereo € &€ € and» 1 1 1
In the case of magnetometers, beside the systematic errors, the measurements are also
affected byexternal magnetic influences, which can be classified as hard and soft iron effects
[53-54]. Hard iron errors are timrinvariant, undesired magnetic fields generated by
ferromagnetic materials with permanent magnetisvhich are additive to the Earth's
magnetic field Softiron distortion is the result of a material that influences, or distorts, a

magnetic field, but deenot necessarily generate a magnetic field itself, and is therefore not
additive.

The hard iron effect can be given as:

U

, (3.8)

Sa E2Ex

wherebnix, by, andbniz are the bias valuder of each sensor axis in the, bias vector.
The ft iron effect can be represented as

W O »
- & @ o, @9

22



CHAPTER 3MOVEMENT RECOGNITIONSSING WEARABLE INERAL AND
MAGNETIC SENSORS

wherea; are the coefficients of this) matrix.
The relation between the measured and real valube case of magnetometers can be
given as:

= Ad=» 4+ 1+ t (3.10
wheret - - -

Calibration principles

Calibration can be done with and without additional equipment.-piighision equipment

can be used in laboratory environment to generate known references which can be compared
with the s e n sonitpufssDue to the growing usagetoé utilized miniature sensqrand
unavailability and high cost of calibration equipment, in recent years, intensive research was
done to develop calibration methods which do not require additional equipment

Calibration without additional equipment can be also separated into two basic
approache$51]. The first one uses measurements acquired in specific stationary positions
or during specified movements, which are utilized to compute calibration parameters based
on different basic principles. The second is the Kalman tilgsedapproach50, 5557],
which is a widely known state estimation technique which tries to obtain the unknown
parameter based on the system model and observations accrued over a period bésiene.
techniques aim to estimate navigation states along with calibration parargetbeton one
framework.

The computation of the calibration parameters can be done onlafine. In thecase
of online calibration, the parameters are computed irtireal on the measurement device,
while in offline algorithms previously collected amirements angtilized.

In traditional accelerometer calibration methods, the sensor is positioned and held
stationary at various known reference orientations throughout tH&2gsthis is known as
the multiposition or the 1g test, since later thgaalthms use the fact that the magnitude of
the acceleration vector should be 1g when the sensor is not in ndoioto the Earth's
gravity. The known algorithms mainly apply a gmosition test, whereduring the
measurements the three axes of the seramersligned to be nearly +1g antly. The
reference orientations can be set using precise madfigeswvhich provide information
aboutthe exact orientations, or by hand, where the exact orientations are not [G8)wn
The alibration of accelerometetsing the multiposition approaclkean be reduced to 3D
ellipsoid fitting problemg60].

The calibration of gyroscopes depends on the quality grade of the sensor, siace high
precision gyroscopes are capabl e oehableseasur i
the use of multposition testd53]. Lower-grade MEMS gyroscopes are not capable of
sensingt he Eart hoés ,thustheylneed to beeelkposed to gifferent reference
angularrates This can be achieved byounting the sensor on a precrsg¢ation turntable
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(rate table)58]. If such reference angular rates are not available, calibration is commonly
performed by simply rotating the gyroscopeanually[57, 61] Calibrated accelerometers
and/or magnetometers embedded in the sensotogether with the gyroscoman also be
used toprovide reference informationBoth sensors can provide information about
orientation changes. the case of accelerometers, the Earth's gravity vector can be used in
stationary position§62], whilethe Ear h6 s magneti c f i ¢éhechsewvofect or
magnetometer3-64].

Magnetometers are also calibrated based on data acquired duringasiilon tests.
The basic concept of calibration is similar as in the case of accelerometers, but hard iron a

soft iron effectsnustbe also taken into considerati@b]. The r ef erence i nput
local magnetic field vector, which is constant in one pdint can largely differ in different
places on the EarthT he | oc al Ear t h 6 g cambegexteattadcfromf i el d

geomagnetic modelfs4]. The calibration parameters of the magnetometers should be
estimated for the platform on which they will be eventually used, since the material of the
platform can affect the magnetic field. If there is no relative motion between the platform
and the senspit can be modeled as a constant timeriant distortion[53]. External
magnetic sources may also affect the magnetometer measurements as additienal time
varying distortion components if the sensor and the platform are not isolated from the
environmen{54].

Used parameters

Due to high error rates caused by structural errors of the sensors, the raw measarements
compensated in the preprocessing phase. The calibration parameters were obtaired using
offline, evolutionary algorithabased method, whicapplies multiposition measurements
during the computation [9].

3.5.2 Windowing

The extraction of feature values is performed in fisegk segments, which are shifted with
constant sizes. To generate a high number of input vectors, small window shiftseatre u

For hardware implementation, the size of the shifts depends on the available resources and
the required response time, since the algorithm updates the movement classes after each
window shift, and the reduction of the size of the shifts increasest®ssary computation
performance.

Both the CPU computation performance and the power resources are limited in IRIS
WSN motes, so it is important to minimize the usage of these resources while maximizing
the recognitiorefficiency. The required computatigerformance and the current draw of
the sensors can be reduced if the sampling frequency is decreased.
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3.5.3 Feature extraction

Feature types

The used features were chosen by their memory usage, required computation, and possible
guantity of information. Due to easy implementation and low memory usage, only time
domain analysis was performed on the signals. Many of the chosen features weresfyrevi
used forelectromyography (EMGpattern recognitiof66], and most of them were not
applied previously for movement classification. The used TDFs require only one or two
previous measurements, so there is no need to store all the measurement data in the window
as it is required for frequency domain analysis &wen standard deviation, whichoise of
the most frequently used features, requires the storage of the measurement vector in the
window, since first the average needs to be calculated. The following TDFs were chosen for
this research:

1  Mean Absolute Vaki(MAV) The calculation of the MAV feature can be expressed

as follows,

16 -B s (3.11)

whereN is the number samples in the window, andre the signal amplitudes at
the given index.

1  Willison Amplitude (WAMP)The number of amplitude change$ incoming
signals within a window, which are higher than a given threshold level. The
computation of the WAMP can be expressed as

71-0B Qo & A ‘T)théEE%\QOx con (312
whereth is the threshold, which is the petikpeak nois level.

1 Number of Zero Crossings (NZO)e number of times when the amplitude values
cross the zeramplitude level, and the difference between the values with opposite
signs is larger than a defined threshold. The computation of the NZC feature can
be epresented agiven in (3.13).

, C e _ v 5 s phE dE Tt
. # B i Qs . W w S 6Qh Q& T[Fi'OEAO>(<3El%A

1 Number of Slope Sigghanges (NSSCYhe number of direction changes, where
among the three consecutive values the first or thehastges are larger than the
predefined limit. The computation of this feature can be represented as follows,

—_— . . . Ma pFE & 5Q
. 33#B Qw w Jw hQw nﬁ'OEAOXE%%)
1  Maximal (MAX) and Minimal (MIN) valud he highest and lowesteasured value
in the processing window.

25



CHAPTER 3MOVEMENT RECOGNITIONSSING WEARABLE INERAL AND
MAGNETIC SENSORS

1  RMS The calculation of the RMS in a processing segment can be done as
2-3 -B w. (3.15)

1  Waveform LengtfWL). The cumulative length of the waveform over the time
segment, which is calculated by the sum affsolute changes between two
measurements:

7, B w® WS (3.16)

Extraction modes
The used input vectors were generated and tested with the use of two TDF calculation modes:

1  Separately used ax¢SEP) The features are extracted separately foxthé and
Z axes of the sensors.

1  Vector magnituddased(VL): The changes in the vector length are used for the
computation of the TDFs. The advantages of this feature extraction mode are that
three times lesfeatures are generated than with the SEP mode, and that it should
be less sensitive to slight differences between movements of different subjects, or
small displacements of the sensor motes on the wrists. However, it should not be
able to recognize diffent poses in stationary positions. The magnoased
feature extraction cannot provide valuable informationthe case of the
magnetometer measurements, because the magnitude of the magnetic field is
constant in ideal situations, thus, any measuretbrtisns are caused by the
changes in the indoor environment. Using the other two sensor types, the
accelerometer and the gyroscope, this feature extraction mode can provide
important information for the classification process. Except the NZC featurdy whic
cannot give helpful information, since the magnitude cannot be negative, all other
of the previously described TDF types can be effective.

Feature aggregation

The usage of the separately extracted features for the three sensor axes can result in a very
high number of features, which can increase the complexity of the classification algorithm.
Also, it can have a negative effect on the recognition efficiency if the subjects do not fix the
units correctly to their wrists. A possible solution to both presiproblems can be the
aggregation (AGG) of the separately computed features. As exprag8etiri) this can be

done by calculating a linear combination of the feature values computed for each axis for a
specific feature type.

QOGO 0 IO U JAQGHOL IQQM O (3.17)

wherefeahccis the aggregated feature valtesi, feat, andfeat are the extracted features
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for each axis, and, wy, andwz are the corresponding weights.

3.5.4 Dimension reduction

The LDA method was used perform dimensionality reduction on the dataséke result

of this method is a matrix of parameters, which must be multiplied with the feature vector to
get the inputs of the classifier. Thus, it requires only multiplication and summatids for
implementation.

3.5.5 Classification

In this research seven possibly applicable classification methods were chosen and tested:
1T NCC,

MLP,

NBC,

OvO SVM,

OvVA SVM,

K-NN,

CT.

= =4 4 A A -2

3.5.6 Performance evaluation

Altogether 340 datasets were constructed using different combinatinoasdéensor types,
TDF calculation modes, processing window sizes, and sampling frequencies.

The cost of the system can be decreased by decreasing the number of used sensor types,
but in recognition efficiency their fusion can result in a drastic imprownénie order to
explore the effect of the used sensor types in the application, seven sensor combinations were
defined, since the three sensor types can be used alone, in pairs, and together. The SEP and
AGG feature extraction modes were tested for akksesensor combinations, while the VL
mode was used only for the accelerometer and the gyroscope alone, and their data used
together, since, as describedSnbchapte.5.3 the magnetometer data cannot provide
valuable information using this feature extian mode. Thus, 17 combinations were
constructed using the applied sensor types and feature extraction modes.

The use of large processing windows can increase the required computation, and it can
make harder the detection of transitions between activiBece one of the goals of this
research is to explore the recognition efficiency using processing windows in millisecond
range, the following window width and shift pairs were tested: 80ms width and 40ms shift;
200ms width and 40ms shift; 400ms widtld&@0ms shift; 800ms width and 80ms shift.

The necessary computation can be lowered by decreasing the sampling frequency, but it
can have a negative effect if any important spectral components disappear. The spectral
analysis of the obtained measurementsagh that inthe case of the accelerometer and the
gyroscope, the highest frequencies of the dominant spectral components are below 15Hz,
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while in the case of the magnetometer data, no higher components can be noticed above 5Hz.
To find the optimal setupyhere the chosen TDFs can be still effective, datasets were
generated using five sampling frequencies: 25Hz, 50Hz, 75Hz, 100Hz, and 125Hz. The data
for the four lower frequencies were obtained by downsampling the measurement data
collected with 125Hz samiplg frequency.

Data from five of the nine subjects were used for the training of the classifiers, while the
data from the remaining four subjects were tested as unknown inputs for the validation of
the trained classifiers. All six classification techniquese tested for all datasets with and
without dimension reduction. No results could be achieved using the NBGuitDA,
since some classes have features with zero variance.

In this study both the OvA and the OvO methods were tested and used for ¢eompar
in the case of the SVM classifier.

The kNN classification algorithm was tested with 1 to 10 neighbors. Analyzing the
efficiencies on validation data, without dimension reduction a convergence (97%) can be
noticed at 12 neighbors in almost 55% of tketups, while other setups mostly converge at
3-4 neighbors. With LDA # neighbors are needed to achieve convergence as well, but in
most cases 4 neighbors are necessary.

The training of the MLP was tested using 1 to 15 neurons in the hidden lay&t0%he
of the training data were used as training inputs, and 30% as validation inputs for the training
method. The validation datasets were used as unknown inputs for testing the efficiency of
the classifier. Hyperbolic tangent sigmoid transfer function wsesl in the hidden layer,
while the neurons in the output layer were created using the linear transfer fuDcgoio
its lower memory requirements and higher training spdexl,staled conjugate gradient
methodwas used for training. The results show that in both cases (with and without using
LDA), at least 9 hidden layer neurons are needed to achieve convergence (97%)2and
neurons were requirad more than 70% of the setups. It can be also noticed, tkadwyi
dimension reduction the distribution of the converge points is equal, while with LDA more
setups converge atM neurons.

In the further comparison, the setup with the highest recognition rate on unknown
samples for both the-MN and the MLP algothmswas used

Efficiency comparison of the classification methods

Table 33 summarizes the average rankings of the thirteen classification methods on training
and validation data, and on weighted overall efficiencies. Since it is important to classify

both the known and the unknown data correctly, the weighted efficiency was calculated

using the sum of the achieved recognition rates on known and unknown data, but the
efficiency on validation data was used with a double weight. The average ranking was

compued using the ranking order of the methods for each of the 340 setups. The average
efficiencies are also presented in Tablaé &omparing the rankings on validation data, it
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can be stated, that the MLP and the LDWP methods are the most powerful claess.

The MLP was the best in almost 48% of the datasets, and its average ranking is 2.85, while
the average ranking of the LDKWLP is 3.13. The NCC method achieved the worst results
with an average of 10.67, but the LBZT, CT and OvO SVM methods had ajsmwor results

with a ranking above 9. The results obtained only on training data show, that the CT and the
LDA-CT provide the highest results, with an average recognition rate of 96.58% and
94.46% respectively. They are followed by the LEX¥ANN (89.46%) ad the kNN
(86.09%) algorithms. These classification techniques are designed to best fit on training data,
but are not too efficient on unknown data. The MLP, which proved to be the best method in
thecase of validation data, provided 82.00% efficienckiown datasets, and was fifth in

the rankings. Analyzing the overall recognition, it can be seen, that thektl®D is the

best classifier with an average ranking of 2.89. This method is followed by the MLP (3.62)
and the LDAMLP (4.36).

Table 33: Average ranking and efficiency of different classification methods on different

data types

Method Average Average Average Average Average

ranking on | ranking on | ranking on | efficiency and | efficiency on and

training validation weighted standard standard

data data overall deviation on | deviation

efficiencies | training data validation data

CT 1.03 9.01 5.84 96.58% N 58.91% N
OVA SVM 11.22 9.86 10.61 44.97% N38.65% N
OvO SVM 8.79 8.37 8.45 70.36% N58.41% N
NCC 11.76 10.67 11.49 63.90% N56.46% N
k-NN 4.69 6.96 6.28 86.09% N 63.76% N
MLP 5.63 2.85 3.62 82.00% N 70. 45% N
LDA-CT 2.09 9.39 6.16 94. 46% N60. 33% N
LDA-OVA SVM 10.28 7.95 9.11 72.30% N62.47% N
LDA-OvO SVM 7.44 4.24 5.73 78.13% N67.05% N
LDA-NCC 10.15 6.87 8.37 72.15% N62.83% K
LDA-k-NN 3.32 4.46 2.89 89.46% N67.03% N
LDA-MLP 6.49 3.13 4.36 80.84% N 69.33% N
LDA-NBC 8.10 7.21 8.08 77.16% N64.03% N

Rates for the 340 datasets when the tested classification techniques performed better
without LDA, and the average rate of differences are tabulated in Bahldt can be
observed, that the LDAased dimension reduction has in overall a slight negafiect on
the efficiency of the MLP. It decreases the efficiency in around 70% of the datasets, but the
differences are not significant. Also, very small differences can be noticed for the CT, but
the dimension reduction decreases the ability to recedgmawn data for almost all setups,
while in around half of the datasets it increases the overall efficiency and the recognition rate
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on validation data. The LDA method has a very positive effect on the other classification
techniques. The most significamhprovement was achieved with the NCC method, for
which the application of dimension reduction increased the recognition rates in average by
10%. The obtained efficiencies were also higher in around 87% of the setups for all three
compared result types.oF the other three algorithms, higher classification rates were
achieved in around 600% of the datasets both on training and validation data. The highest
effect can be noticed on the OvA SVM, since without dimension reduction almost 37% lower
efficiencies were obtained for both known and unknown data.

Table3.4: Effect of LDA-based dimension reduction on the tested classification

techniques

Method Higher results | Higher Higher Average rate and| Average rate and

on training | efficiency on| weighted standard standard

data validation overall deviation on | deviation on

data efficiency training data validation data

CT 99.41% 50.88% 57.94% 2.29% NJ-1.31% N1
OvA SVM 40.00% 38.53% 40.59% 36.85% -36.45% N
OvO SVM 41.18% 25.29% 33.82% 8.81% N|[-11.83% K
NCC 13.24% 13.82% 12.35% -10. 44% N 9. 44% N1
k-NN 27.65% 30.29% 22.65% 3.59% N| 4.29% N
MLP 75.88% 64.71% 67.35% 1.54% N] 1.86% N4

Efficiency comparison of the tested sampling frequencies and processing window sizes
The further comparison of the results, achieved with different sampling frequencies and
window sizes, was done using the best achieved overall weighted efficiencies.

Theresults show, that using the five tested sampling frequencies, the average difference
bet ween the highest and | owest efficienci
N6.45% for validation data. The | mgsatlet of
same for the four different processing window sizes, but it has different effect on the 17
combinations of extraction modes and used sensors. Analyzing results on validation data,
larger differences can be noticed when the magnetometer is used lalthe case of the
SEP mode, the difference between the largest and smallest efficien€gbs @&d the
recognition rate is decreasing with the increasing of the sampling frequency. The other setups
provide almost constant efficiency or a rising tem@e by increasing the sampling
frequency. The AGG setup provides differences between 2.5% and 4.5% using only the
magnetometer data, and around 3% for the data of the angular velocity sensor. Higher
differences can be also observed when the SEP featuaetext is performed on the fused
data of the magnetic sensor and the gyroscofe/@), when the AGG features are applied
on the data of the magnetometer and the accelerometer togethg¥o)2 &nd when the data
of the accelerometer and gyroscope amdusgether and \Wbased feature extraction is
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done (3.26%). The other setups provided below 2% differences.

The size of the processing window width has a more significant effect on recognition
rates, since the larger windows always result in higherietfity. In overall, the highest
classification efficiencies are higher thai
dat a, and 28.1% N14.48% on validation dat a
different sampling frequencies, but they arerensignificant inthe case of the 17 different
combinations of sensors and feature extraction modes. Especially high differences on
validation data can be noticed for the three setups when tHea%éd feature computation
was used: gyroscope27.629.2%,accelerometeir 18.7-27%, and the gyroscope and the
accelerometer togethér26-28.6%. The lowest improvements can be observédenase
of the two setups when the three sensors were used togethér9SERL.1%, AGGI 7.1-

9.5%. The increasing of theindow size also has lower effecttime case of the gyroscope

when the features are computed using the SEP and AGG method42BP& and 6.4

12.5% respectively, and when the SEP technique is used on the fused data of the gyroscope
and the accelerometavhere the differences are between 10.4% and 12.8%.

Efficiency comparison of the tested feature extraction modes and sensor combinations

The best results for the 17 different combinations in the four different processing window
widths can be seen in kige 3.4. It can be observed, that using only the magnetic sensor
with the AGG feature extraction can provide the lowest recognition rates, since with the
smallest window size only 39.95% can be achieved, while with even the largest processing
window the efficency increases only to 60.05%. Using the SEP mode, the recognition rates
are much higher, 57.03% with the 80ms window and 67.18% with the 800ms window size.

Using only the angular rate sensor provides the highest results with the SEP method:
66.6-80.7%. Tle VL mode provides smaller classification rates, but the difference decreases
by increasing the size of the processing window, since with the smallest window size the
difference is 20%, while with the largest window a recognition rate of 78.33% can be
achieved, which is only 2.37% lower than with the SEP mode. The number of features was
48 for the SEP mode and 14 for the VL mode, which is a significant difference. Using the
AGG extraction mode, for which the size of the feature vector was 16, signifitfentidce
to the VL mode can be noticed for the smaller window sizes. The recognition efficiency was
8,5% higher for the 80ms window, and 10,18% for the 200ms window, but for the two larger
sizes the VL achieved better results, 2.55% and 9.57% respectively.

Using only the accelerometer, similar results can be achieved as with the gyroscope. For
the two smaller windows with the SEP and AGG modes the accelerometer performed lower
results, while with increasing the window size, the accelerometer provides higher
efficiencies than the gyroscope. For the SEP mode, the differences-8%ehut for the
two smaller windows with the AGG mode the recognition rates are lower%86,3and
higher for the two larger windows for 7%. With the Vhased feature vectors the
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accelerometer provides better results. Using the 80ms processing windawesiéference
was around 10%, but the difference decreases, and was only 1% for the 800ms window.
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Figure 3.4: Achieved classification efficiencies on training and validation data using
different processing window sizes. The horizontal axes show the feature extraction mode in
the first row, the required feature numbers in the second row, and the used sensor types i

the third row
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The usage of the magnetometer itself cannot provide usable results, but it can improve
the performance of the inertial sensors, since the largest classification rates are 85.03% and
87.2% respectively. Ithe case of the gyroscope, in asge, the results were improved for
3.26% N3.59% for the SEP mode, while with
of 5.11% N3.19% for the SEP, and 7.45% N7.
the data from the magnetometer and the gyroseogre fused, and the AGG feature
extraction mode was performed, in average the results were even slightly lower than when
the data from the gyroscope was used alone.

The highest recognition rate on validation data, 89.14% (99.48% on training data), was
readed using all three sensor types with the SEP feature extraction in the largest processing
window. This setup requires the usage of 144 features. With the same extraction mode, but
without using the magnetic sensor, 87.96% classification efficiency cattieved on
validation data, and 98.91% on training data, with a required feature number of 96. By
decreasing the size of the processing window, the classification rate significantly decreases,
but even with the smallest window, an efficiency of 77.32%besachieved with, and 76.5%
without the magnetometer. The difference between these two setups is a little above 1% in
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efficiency, but the number of features, the energy consumption, and the cost are all increased
if the magnetic sensor is added to thetesys Similar differences can be noticed with the
AGG extraction mode also.

The setup where the features were computed using tHegéd extraction, and the data
from the angular velocity sensor and the accelerometer were used together, also proved to
be \ery useful. The feature vectors consisted of 28 different features, and with the largest
processing window the recognition rate was 86.17%. This extraction mode fails when the
processing windows are small, since the efficiency with the 80ms size waH@#y, and
the AGGbased features provide higher efficiencies in these cases.

Training time comparison of the classification methods

Training time is not a crucial factor for the implementation of a classifier, but it can prove to
be very important, espetliawhen different combinations of features should be tested. To
generate comparable data, all trainings were done on the same PC with the next
characteristics: Intel core i7 3.5GHz processor, 16GB RAM, GeForce GTX 770 video card.

The computation of the LB matrices proves to be very fast, and even for the largest
setup, which contains 144 inputs, less than 1.8s is required.

The kNN method does not require any training, since it uses the entire dataset for the
classification. The shortest, longest, and m&aining times for the other classification
methods are summarized in TaBlé. It can be stated, that the most time consuming from
the tested classification methods is the OvA SVM algorithm, since the training of the larger
setups can last for more th@ hours, but even the shortest time was almost 1 minute. The
OvO SVM method proves to be much faster, but the longest time is still above 1 hour, while
the shortest is 17s. The dimension reduction has a significant impact on thd&¢i

methods,sincet decreases the training time by 93.

N10.79% for the OvO method. Beside the hi
LDA, the longest required intervals are still too high for both methods. The training of the
CT method requires between 0-33s, and the LDA method does not reduce the training
time for all setups, but the longest training was three times shorter than without the
dimension reduction. The computation of the parameters for the NCC classifiersl@wery

for low dimension setups, but for the largest setups it can last for even 25s. The effect of the
LDA can be noticed only at the larger setups, and it reduces the maximal time to 2s. The
training of the LDANBC classification method, similarly to thddIA-NCC, lasts between

a few hundredths and 2s. The training of the MLP classifiers is also vergdimseiming.

The longest interval using 10 hidden layer neurons was 1331.6s. Besides, that even the length
of only one training is long, to find the optimsdtup, multiple trainings are required with
different neuron numbers in the hidden layer. This significantly increases the required
training time. The LDAbased dimension reduction has a significant effect on this
classification method, since it reduces thngest training time to 97.83s, and in average it
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reduces the training time by 48.43% N34.929

Table3.5: Smallest, highest, and mean required training times of the tested classification

methods

Method Shortest training time | Longest training time | Mean training time
CT 0.37s 15.01s 3.41s
OvA SVM 57.64s 7415.20s 3352.70s
OvO SVM 16.99s 3791.40s 1414.70s
NCC ~0s 2.12s 0.24s
MLP 10.16s 1331.60s 84.81s
LDA-CT 0.59s 5.30s 1.86s
LDA-OVA SVM 8.28s 2576.20s 194.2s
LDA-OvO SVM 2.43s 860.70s 52.38s
LDA-NCC 0.03s 24.90s 1.64s
LDA-MLP 6.36s 97.83s 26.71s
LDA-NBC 0.06s 2.18s 0.34s

Memory requirement comparison of the classification methods

The required space for the implementation of a classifier is a very important factor, since
microcontrollerbased systems have limited amounts of memory.

The required number of parameters for the implementation of the NBC, the NCC, and
the MLP classifiergan be calculated using the number of features and classes. The number
of hidden layer neurons is also needethacase of the MLPbased methods. thecase of
the kNN, the number of samples in the classes is required, since the algorithm usesthe ent
feature set to determine the class. The required memory for the SVMs and the CTs cannot
be calculated as a function of the number of features and classes, because the number of
necessary support vectorghecase of SVMs and necessary nodabé@tase of CTs differs.

For comparison, the required memory spaces were calculated in bytes (1 Hfmating
number is equal with 4 bytes).

The LDA projection matrices have 10 rows, because 11 classes are used, and the number
of columns is equal to the numbefrfeatures. If the number of features is less than 10, the
number of rows will be equal to the number of features.

The training of the NCC was performed by calculating the mean values of different
features for each class, and the highest and smalléstdealues were also needed for
normalization when the dimension reduction was not used.

For the implementation of MLPs, input ranges, weights and biases are needed. The input
ranges consist of the highest and lowest values for all inputs, and areruseahfalization.

Two weight matrices are needed to connect the input layer with the hidden layer, and the
hidden layer with the output layer. The first consistSufiddenLayerNeuro@UMnputLayerNeurons
while the second afumbutputLayerNeuro@UMnputiayerneurondieights. Bias values are used in all
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neurons of the hidden and the output layer. For comparison, based on the convergence in
efficiency, 10 hidden layer neurons were used for the computation of the required memory.
The training of the NBC mailts in anuntiassefUnteaturessized array of parameter pairs,
where the first parameter is the mean deviation, and the second is the standard deviation.
The memory requirements of the five determinable methods can bie $egure3.5. It
can be observed that they do not differ significantly. Considerable differences can be noticed
only with a small number of features, e.g. with using 80 features, all methods require around
4kbytes of parameters, but with only 10 features the INDA? needs around 1.5kbytes,
while the NCC only 0.5kbytes, which is three times lower. Generally, the-ND& needs
the least memory space, only the NCC needs less when the number of features is smaller
than 40.

oo

LDA-MLP

LDA-NBC
NCC
MLP

~1
T

[=2)
T

Memory Requirement [kB]
(o) (98] e wn

4

0

0 50 100 150
Feature Number

Figure 3.5: Memory requirement of the classification methods with determinable memory
consumption

The kNN method is a very memory demanding method, since the entire database of
features is needed for its implementation. In this research, more than 13000 fecttane ve
were used even in the smallest setups, which would result in more 760kB memory space for
a feature number of 15.

The highest and lowest required memories for the CT and-B&¥éd methods can be
seen in Tabl& 6.

The implementation of the CTs requarthe number of nodes (bt integer), parents
(one 16bit integer per node), children (two -b& integers per node), cut points (one
floating-point number per node), cut types (one Boolean value per node), and cut predictors
(one 8bit number per nodefnalyzing the results, it can be stated, that the required number
of nodes and the classification efficiency are inversely proportional. As shown in Table 3.6,
the achieved smallest needed memory space is 2.03kB, but high deviations can be noticed,
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and for the setup with most required nodes more than 83kB of storage is needed. The LDA
has a negative effect on the CT for all setups, and even the lowest required memory is
6. 67kB. In average the LDA increases the re

Table3.6: Highest and lowest memories requiredtfe@implementation for the CT, OvA
SVM, and the OvO SVM, with and without LDBased dimension reduction

Method Lowest required | Highest required
memory memory

CT 2.03kB 83.45kB
LDA-CT 6.67kB 84.86kB
OvA SVM 652.36kB 27458.01kB
LDA-OvVA SVM 213.85kB 2358.40kB
OvO SVM 369.30kB 17913.09kB
LDA-OvO SVM 106.16kB 1176.95kB

In thecase of the SVMased methods, due to the used 11 classes, the OvA method needs
11 support vector sets, while nomseA ( roiskssal)/2 sets are needdar the OvQ what
means 55 sets for the used 11 classes. The support vector sets are made up of different
numbers of support vectors and a bias value. The dimension of each support vector is equal
to the number of features, and they also include an alpha valuebfieed results show
that both the OvA and OvO methods require a very high number of parameters for
implementation, and thus, are not suitable for application in the developed system. The
required memory space is less for the setups with higher efficiates; and it decreases by
increasing the size of the processing window, since the classification rates increase. The
lowest memory requirement, as shown in Téb& was 652.36kB for the OvA mode, and
369kB for the OvO mode. In some setups, it can ba eleve 20MB using the OvA mode.
The LDA has a very positive effect on the SVM classification algorithm, since it greatly
decreases the required number of support vectors. The tested dimension reduction method
decreases the number parameters for all sa@tupscase of the OvA SVM method, with an
average of 55.91% N27.03%, while for the O\
for 65.29% of the setups.

3.5.7 Comparison of selected TDFs with FDFs and TDFs with high

memory requirements
To explore the capabiliteeof the applied TDFs, it was reasonable to compare the achieved
results with recognition rates obtained with FDFs used in the literature. The following FDFs
were utilized in the feature sets: spectral entropy, spectral energy, magnitude of largest peak,
frequency of largest peak, median frequency, DC component, median power, and principal
frequency. Two TDFs, which require the storage of the measurement vectors for their
computation, were also added to the datasets: standard deviation and correlatien betwe
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axes. Feature extraction was performed on the sensor axes separately and on the magnitude,
and the aggregatidpased feature reduction was also applied. Classification was done using
the MLP classifier, which earlier proved to be the most powerful rdetho

The obtained results show, that the applied TDFs have better performance in around 60%
of the datasets ithe case of the training data, while the rates are nearly equal on validation
data. The rates, when the TDFs perform better on training datagang aqual for both
different sampling frequencies and different processing window widthbelcase of the
validation data, the rates show a rising tendency when the sampling frequency or the size of
the window is increased. With the smallest frequemicyindow size, TDFs give better
results in around 40% of the datasets, while this rate is almost 60% with the largest
frequencies or windows. Since the number of measurements in the processing window
increases both with increasing the sampling frequendlye size of the processing window,
this is a significant result, because the chosen TDFs do not require the storage of the
measurement values in the window.

Table3.7 summarizes the obtained results with MLPs using TDFs and FDFs when the
highest samplig frequency, 125Hz, was applied. The used abbreviations are the néxt: TR
training data, VA validation data, TD time-domain, FDi frequency domain.

Table3.7: Achieved classification efficienci€%o) applying extraction based on TDFs and
FDFs

@ (. Processing window width

o % [4)

% é = = Dataset

8 g o 3 2 80ms 200ms 400ms 800ms

Q = bS] C T

8 g eld g TR VA TR VA TR VA TR VA
MAG SEP TD-48 7454 | 52,43 | 85.76 | 59.95 | 91.27 | 63.23 | 96.36 | 69.97

FD-60 | 80.86 | 44.76 | 84.89 | 50.45 | 88.35 | 57.41 | 95.98 | 58.31
AGG | TD-16 | 67.38 | 48,50 | 73.14 | 55.40 | 74.15 | 55.25 | 77.37 | 58.50
FD-20 | 61.65 | 46.45 | 68.20 | 53.88 | 71.50 | 56.93 | 76.04 | 59.62
GYR | SEP | TD-48 | 69.93 | 62.47 | 84.09 | 70.90 | 84.25 | 72.86 | 94.05 | 76.39
FD-60 | 77.61 | 69.98 | 8252 | 76.29 | 91.14 | 78.76 | 90.14 | 82.83
AGG | TD-16 | 62.56 | 58.03 | 71.32 | 65.37 | 6851 | 63.86 | 74.71 | 69.21
FD-20 | 63.15 | 60.30 | 68.97 | 65.42 | 70.10 | 69.55 | 72.63 | 71.42
VL TD-14 | 56.82 | 52.60 | 62.19 | 58.89 | 74.81 | 68.35 | 84.61 | 79.39
FD-18 | 56.54 | 52.34 | 65.60 | 61.65 | 73.94 | 68.56 | 80.82 | 74.77
ACC | SEP | TD-48 | 7290 | 65.77 | 84.60 | 73.83 | 87.67 | 76.61 | 90.75 | 82.12
FD-60 | 76.07 | 65.08 | 83.00 | 72.55 | 88.17 | 76.90 | 94.30 | 83.11
AGG | TD-16 | 66.96 | 63.62 | 76.42 | 69.34 | 77.35 | 72.95 | 79.39 | 74.28
FD-20 | 57.74 | 52.48 | 67.04 | 58.94 | 68.84 | 66.83 | 72.34 | 70.96
VL TD-14 | 53.47 | 5351 | 64.08 | 62.78 | 77.60 | 73.50 | 82.46 | 79.47
FD-18 | 54.22 | 52.89 | 62.74 | 60.82 | 71.80 | 72.23 | 79.12 | 80.31
MAG | SEP | TD-96 | 89.80 | 67.53 | 94.06 | 70.71 | 96.70 | 72.92 | 83.85 | 74.25
GYR FD-120 | 92.08 | 64.55 | 93.92 | 70.78 | 95.98 | 74.81 | 99.57 | 79.06
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AGG | TD-32 | 79.68 | 61.44 | 83.05 | 6451 | 84.76 | 67.53 | 85.34 | 70.99
FD-40 | 80.01 | 68.63 | 83.79 | 72.38 | 84.97 | 7495 | 84.94 | 77.95
MAG | SEP | TD-96 | 84.35 | 68.32 | 86.41 | 74.34 | 96.20 | 77.25 | 98.43 | 83.98
ACC FD-120 | 88.11 | 58.10 | 92.41 | 64.63 | 95.67 | 69.38 | 98.87 | 73.36
AGG | TD-32 | 75.77 | 67.86 | 83.17 | 71.45 | 85.05 | 73.78 | 86.28 | 74.79
FD-40 | 72.68 | 56.81 | 77.01 | 66.84 | 80.64 | 66.48 | 83.88 | 70.73
GYR | SEP | TD-96 | 88.13 | 76.60 | 88.80 | 80.57 | 95.50 | 83.25 | 98.33 | 84.69
ACC FD-120 | 86.13 | 77.94 | 89.27 | 81.64 | 91.01 | 84.63 | 98.63 | 87.38
AGG | TD-32 | 74.77 | 68.64 | 80.80 | 74.99 | 81.24 | 76.29 | 81.67 | 78.00
FD-40 | 69.72 | 66.61 | 77.59 | 74.20 | 80.38 | 75.79 | 80.76 | 76.94
VL TD-28 | 67.46 | 61.31 | 76.17 | 71.07 | 84.08 | 78.45 | 91.51 | 85.61
FD-36 | 67.45 | 62.95 | 76.90 | 71.02 | 80.88 | 75.10 | 89.81 | 82.74
MAG | SEP | TD-144 | 93.98 | 74.23 | 93.98 | 79.11 | 97.16 | 81.91 | 98.70 | 84.22
GYR FD-180 | 93.34 | 68.63 | 95.73 | 74.75 | 98.30 | 80.71 | 98.98 | 82.51
ACC | AGG | TD-48 | 80.94 | 69.59 | 87.01 | 76.04 | 88.14 | 75.95 | 90.33 | 78.53
FD-60 | 82.32 | 70.27 | 84.63 | 74.83 | 86.63 | 75.85 | 87.42 | 77.65

The recognition rates achieved with FDFs, just like with TDFs, increase with the
increasing of the sampling frequency or the processing window width. The highest
classification efficiency on validation data, 87.38%, was achieved using the gyroscope and
theaccelerometer data together, and applying the SEP extraction mode. It should be noted,
that, as it can be seen in TaBl&, the number of applied features is considerably higher in
the datasets based on FDFs. The average difference between efficidsaiasdoon
validation data utilizing TDFs and FDFs is around 3%, while the highest differences, around
11%, can be noticed when features are extracted from the measurements of the
magnetometers.

Analyzing the classification efficiencies using differerdttee extraction modes, it can
be concluded, that the aggregatlmmsed feature reduction is also useful when FDFs are
applied. The features computed from the accelerometer measurements provide better
recognition rates using TDFs, but both the gyroscopdl@magnetometer give even better
results with FDFs ithecase of the AG&ased extraction. The magnitdbdased extraction
results in similar recognition efficiencies using TDFs and FDFs.

3.6 Hierarchical-distributed movement classification algorithm

Sincethe proposed algorithm BubchapteB.5, usesogether the features extractedbmih
sensor motesn the classification procesdgts implementation requires high energy
consuming radio communication for data transfer between the magagasonableat split
the classification algorithm into a hierarchical approach to get a distributed network, so the
motes can calculate their own movement classes.

The software architecture of the hierarchidaitributed algorithm can be seen in Uiig
3.6. Difference compared to the algorithm presentefuhchapter 3.6an be noticednly

38



CHAPTER 3MOVEMENT RECOGNITIONSSING WEARABLE INERAL AND
MAGNETIC SENSORS

after the preprocessing pasince error compensation, windowing, and feature extraction are
done identicallyClassification is performed on both motessed on the coputed feature
vectors. Wing the proposed hierarchiadistributed technique, only theomputed
movement class is neededd@transferred periodicalfyom one mote to the othéased on

the value of the window shift. The determined classes are contboilged the movement of

the entire body and arms. Besidbat, using the proposed algorithm less data transfer is
required via wireless communication, the classifiers have less input features and output
classesthus,it is more energefficient and easiego implement the algorithm dahemotes.
Adding new devices to the system would be also easier with this approach, since only the
class combinatioatage on the receivinguit need to be modified, and the size of the feature
vector could also become ttarge inthe case of the nodistributed(ND) approach.

Mote #1

Feature extraction

Feature
computation L

-

Agorepation  —] .

1
Classification

Error
compensation
Windowing

Magnitude Feature

9DoF sensor . computation computation ((( )))
board

Class combination

Feature extraction

Feature o

. -
computation L

Aggregation

Mote #2 |

i}

Error
compensation
Windowing
|
Classification

Magnitude Feature
9DoF sensor computation computation
board

Stage 1. Stage I1. Stage 111. Stage IV.

Figure 3.6: Software architecture of the hierarchdisiributed approach

3.6.1 Applied movement hierarchiesand classification

To develop a distributed algorithm in which the two motes can determine their own
movement type, some classes bemerged by the role of the arm in the given movement.

For exampleclasses 1 and 6 can be merged in the case of the right arm, because in both
cases the right arm is not moving during standing. This way the reduction of the classes can
be done in four cases, so the total number of classes can be reduced to seven for both arms.
Merging for the left arm can be done for the classes: 1 and 7; BGartdand 8; 9 and 11.

For the right arm these cases are: 1 and 6; 3 and 9; 7 and 8; 10 and 11.
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Two different approaches were tested for the classification hierarchy. In the first
approact{H1),the movements are equally distributed, all of them are osetine level. The
first hierarchy can be seen in Big3.7.

alking with
arm raising

standing with
arm raising

Turning
around

Figure3.7: The firstappliedmovement hierarchy

In the second hierarch{{#2), the movements are split into three levé&lse classification
algorithm useéive distributions to decide which element of the hierarchy matches the actual
movement. The second hierarchical approach can be seen ume H@, and the
corresponding distribution®] are:

il D1:1or2,

i D2:aorb,

1 D3:.cordoreg,
i D4:.lorll,

i D5: Il or V.

For examplethe first distribution D1 decides that the actual movement is stationary or not.
Through these distributions a hierarchical classification cardized

around
p % H I Wl‘[h'Ol.]t v Wlt'h'arm
g arm raising raising

Figure3.8: The second movement hierarchy approach
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For classification, only MLP neural networks were applied, which showed to be the most
powerful classifiers irSubchapter 3.5n the case of the first hierarchy, one network is
applied with seven outputs to determine the class of one Faven.MLPs onefor each
distribution,are requiredor the second hierarchical approathe network for D3 has three
outputs, while the rest have twidepending on the outputs of the distributions, two or three
networks have to be calculatiedget the movement cladshe entire feature vect®are used
as inputdor all networks

Class combination is done on the unit which receives the sthrevement clasghe
combination gives one of the eleven classes as the pbdut givesan unknown class if
theclasses armot a valid pair.

The effect othe LDA-based dimension reduction was testted, sincéhe dimension of
the output vectoin the case of this methaglless than the number of clasgbsis, using the
second approach, most networks would have onlyirgne.

3.6.2 Performance evaluation

To provide comparable results, all 17 combinations of used sensor types and feature
extraction modes were tested. Altogether 68 datasets were constructed to examine the effect
of the processing window size. The sighals meakusing the 125Hz sampling frequency
were utilized during feature extraction.

Identically as inSubchapter 3,5data from five of the nine subjects were used for the
training of the classifiers, while the data from the rest of the subjects were utilized fo
validation.During the construction of the training and validation datatietsjata from the
merged classes were used in equal quantirestrainingand the validatioof the classifiers
weredone using thdataset®f the two arms togethethus, he same classifier is later used
on botharms

The efficiency of the MLPs was also tested withl5l neurons, and the same
configurations were appliegks during the testing of the ndlistributed approactBased on
the obtained results, the required numloér hidden layer neurons to achieve 97%
convergencen efficiency on validation data can be seen in Tab& The first hierarchy
requires between 6 and 10 hidden layer neurons, while the distributions in H2 mostly need
1 to 4 neurons to achieve convergence.

Table3.8: Required number of hidden layer neurdmsconvergence

Network in the tested H1 D1 D2 D3 D4 D5
hierarchies

Required hidden layer | 6-10 1-3 1-2 2-4 1 1-3
neuron number
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In the further comparison, the setup with the highest classification efficiency on
validation data was used.

Efficiency comparison of the two movement hierarchies

The obtainedesults on training and validation dsg¢#susing the H1 and H2 approaches for
the different combinations and processing window widths can be seenuire Big and
Figure3.1Q respectively.

Analyzing the obtaineefficiencies the two hierarchies provideimilar results. The
second hierarchy is better in nearly 57% of the datasets in the case of training data, while in
around 67% of the datasets H1 gives higher rates for validationTdetaverage absolute
difference is 2.14% for training and 1.76% V@lidation data.

Comparingthe achieved classification efficienciegth results obtained with the nen
distributed approaght can be alsmbservedthat theND outperforms both hierarchical
approaches, sinde provides better results for all datasets hotlthe case ofraining and
validation data. The average difference is around 25% compared to both hierarchical

approaches for both data types, with a standaxiation ofN 1 0fés training and\7% for
validation data.
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Figure 3.9:Achieved classification efficiencies on training and validation data using
different processing window sizesth the H1 approachrhe horizontal axes show the
feature extraction mode in the first row, the required feature msnbéhe second row,
and the used sensor types in the third.row
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Figure 3.10:Achieved classification efficiencies on training and validation data using
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featureextraction mode in the first row, the required feature numbers in the second row,
and the used sensor types in the third.row
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Efficiency comparison of the tested processing window sizes

Theincreasing of the processing windavidth results in thencreasing of the recognition

rates. Similar improvements can be noticed in the case daWthéested hierarchies. The
average differences between recognition rates using the largest and smallest window widths
arethe following:18.4%6 NB.91%(H1) and18.54% NB.97%(H2) for training datal6.18%
N7.06%(H1) and17.46% N6.86%(H2) for validation data.

The most significant difference can be noticed for the configurations where the
magnitude signals of th&CC are utilized with or without thé&5YR data. For these
configurations higher than 25% increasing can be observed for both training and validation
data and for both approach@he smallest increase can be noticed in the configurations
where the MAG or the GYR features are applied, and the aggredpatseal exaction is
used. For these setups the increase is mostly below 10% for both dataset types.

Efficiency comparison of the tested feature extraction modes and sensor combinations
Analyzing the resulten validation datathe lowest efficiencies can be achiewesingonly

the MAG sensowith the AGG extraction mode. The recognition rates are around 30% with
the largest processing windows, and slightly above 20% with the smallest wiftddvash
hierarchiesThe inertial sensors alone provide the highest resitlisshe SEP modeyhich
arearound 55% using the YR and around 66% using the ACC in the case of the largest
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processing windowApplying the smallest windowonly the ACC with the SEP extraction
gives higher results than 40%, which is 46% for both ajge=

Adding the magnetic sensor to the inertial sensmrgaseshe efficiencies. The highest
improvementaround 10%gcan be noticetbr all window sizesn the case dboth hierarchies
when the ACC with AGG features are used, atilizing the GYR wih SEP featuresnly
in the case of HZor the othesetups between2% improvement can be noticed. Using the
two inertial sensors together provides almost identical results for the two hierarchical
approachedn the case of the smallest window size, &G and the VL modes give only
around 35%, while with the SEP mode the recognition rates are slightly under 55%.
Applying the largest tested processing windoWws,highest results, slightly above 70%, can
be achieved using the SEP mode, while\theandthe AGG modes providearound 62%
and 45%, respectively.

The highest classification efficiencies were obtained with the fusion of the three sensor
types.The SEP mode in the largest window provides the best results, 75.76% with H1 and
72.05% with H2. Usinghe smallest windows, the efficiencies are much lower, 58.43% with
H1 and 55.11% with H2. The AGG extraction mode, which applies three times less features,
provides only around 50% with the largest window size, and nearly 41% using the smallest
window. TheAGG-based resultare around 5% higher than when the ACC and the GYR
are used without the MAG.

Memory requirement comparison of the proposed hierarchies

The required memory for the implementatiohthe hierarchicadistributed and thédD
approache®n ore unit can be seen in kige 3.11 The number of hidden layereurons

during the computation were the following: HB, D11 2, D21 2, D31 3, D41 1, D571 2,

ND 1 10. The results show that for the implementation of H1 less memory is needed than in
the case of the ND approach, since the movements need to be classified into fewer classes,
which reduces the size of the ANN. It can be also noticed that H2 ismake memory
consuming of the three methodghich requires nearly the double size of memuegad

for H1.
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Figure 3.11Memory requirements for the implementatiorttod classifiers.

3.7 Comparison of time- and frequency-domain analysis

Since in the proposed algorithmenly TDFs with low memory and computation
requirements were applied, it is importanctmparethe capabilitie®f the two extraction
modeson the collected measurement data

3.7.1 Applied time-domain features

TDFs are computed using the measurement signals from th@sehiseir main advantage

is the easy implementation on embedded systems, since there is no need for any
transformation. Many features also do not require the storage of the measurement values in
the entire processing window. Their disadvantage is that tite not provide direct

information about frequency components in the signals. The applied WeFsthe
following:

1T MAV
MAX
MIN
NSSC
NzC
RMS

Standard deviation (STDYhe standard deviation in a processing window can be
defined as in3.18).

=4 =4 4 A4 A -2

34 2L (3.18)

whereddis the average amplitude value in the processing window.
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