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Introduction 

Accelerometers, gyroscopes and magnetic sensors are used in a large variety of applications. 

Earlier, inertial sensors were mainly used only in aerospace and military applications 

because of their high-cost. With the advances in Micro-ElectroMechanical Systems 

(MEMS), the availability of small, light, and low-cost sensors with low power consumption 

have opened new possibilities for their use [1]. Although MEMS magnetic sensors exist, 

magnetometers based on Anisotropic MagnetoResistive (AMR) technology are more often 

used. 

Accelerometers are motion sensors, which measure linear acceleration in one or more 

axes. The velocity of an object can be calculated by integrating the object`s acceleration over 

time. By integrating again, the position can be determined. These sensors can be also applied 

to estimate orientation using the fact that in stationary position the magnitude of the 

acceleration vector should be 1g (g å 9.81m/s2) due to Earth's gravity, which points to the 

center of the Earth. This can be used to switch screen orientation in mobile phones or tablets, 

or for flight stabilization in the case of drones [2]. Another very important application of 

accelerometers is shock and vibration analysis [3-6], where the acceleration signals are 

utilized. 

Gyroscopes are rotation sensors used to measure angular velocity and are sensitive 

around a single axis or multiple axes (usually two or three). Orientation can be calculated by 

integrating once the measured angular velocity. Angular rate sensors are mostly used 

together with accelerometers, and together they compose Inertial Measurement Units (IMU). 

Magnetometers are devices that measure magnetic fields. Scalar magnetometers measure 

only the magnitude of the vector passing through the sensor regardless of the direction, while 

vector magnetometers measure the flux density value in a specific direction in three-

dimensional space [7]. These sensors are usually used as compasses; thus, they are capable 

of estimating heading direction based on the Earth`s magnetic field [8]. The changes in the 

magnetic field can be utilized to detect metallic objects. 

All three sensor types can be found in consumer electronics such as smartphones, tablets, 

or smartwatches, and are also used in other commercial applications like video game 

controllers. 
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The most common applications of these sensors are Inertial Navigation Systems (INS), 

where they are used to continuously calculate the position, the orientation, and the speed of 

a moving object [9-12]. 

Accelerometers, gyroscopes, and magnetometers are also widely used in pattern 

recognition applications, such as human motion recognition, gesture recognition [13-14], fall 

detection and classification [15-16], vibration analysis, etc. Many of these applications use 

these sensors in the form of Wireless Sensor Networks (WSN). The necessary computation 

for these applications can be done offline, where an external unit is used for computation, or 

online, where the algorithms are implemented on the applied embedded systems. Efficient 

implementation of pattern recognition applications on embedded systems requires 

appropriate usage of energy, memory, and processing. These systems must meet 

computational and storage requirements. This is a challenging task, because these 

applications usually require high sampling rates of the sensors, real-time data processing, 

and high transmission capabilities. 

1.1 Thesis outline and contributions 

In this thesis, research results achieved in two pattern recognition applications of inertial and 

magnetic sensors are presented. The developed algorithms for both applications are online, 

thus, they are easily implementable on the used microcontroller-based embedded systems. 

The used dimension reduction, classification, and optimization methods are described in 

Chapter 2. 

In Chapter 3, the first application is presented, which applies accelerometers, gyroscopes, 

and magnetometers to classify different arm and body movements. Two sensor boards are 

used, which are attached to the wrists of the subjects. The proposed algorithms are based on 

features extracted from the signals generated by the changes in the position and the 

orientation of the sensors. 

The second application is described in Chapter 4, which utilizes a single magnetometer-

based system to classify vehicles into multiple classes. The sensor is in stationary position, 

and the distortions in the measured magnetic field caused by passing vehicles are used during 

the extraction of features. 

The two thesis groups and the corresponding publications can be seen in Table 1.1. 

 

Table 1.1: Thesis groups and corresponding publications. 

Thesis group Publication 

Movement recognition using wearable 

inertial and magnetic sensors 

[S3], [S4], [S5], [S6], [S7], [S8] 

Real-time vehicle classification using a 

single magnetometer 

[S1], [S2], [S9], [S10] 
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Used methods 

2.1 Linear Discriminant Analysis-based dimension reduction 

The Linear Discriminant Analysis (LDA) method is a widely-used subspace learning method 

in statistics, pattern recognition and machine learning. This method aims to seek a set of 

optimal vectors, denoted by ╦ ◌ȟ◌ȟȣȟ◌ ᶰᴘ , projecting the d-dimensional 

input data into an m-dimensional subspace, such that the Fisher criterion is maximized [17-

18]. The Fisher criterion, given in (2.1), aims at finding a feature representation, by which 

the within-class distance is minimized, and the between-class distance is maximized. 

 ÁÒÇÍÁØ╦ÔÒ╦ ╢╦ ╦ ╢╦  (2.1) 

where Sb and Sw are the between-class scatter matrix and the within-class scatter matrix, 

respectively, and are defined as   

 ╢ В В ● Ⱨ ● Ⱨ , (2.2) 

 ╢ В Ⱨ Ⱨ Ⱨ Ⱨ , (2.3) 

where ὼ represents the i-th sample of class j, Õj is the mean vector of class j, c is the number 

of classes, Nj is the number of samples in class j, and Õ is the overall mean vector of all 

classes. The mean vector of a class and the overall mean vector can be calculated as follows, 

 Ⱨ В ●, (2.4) 

 Ⱨ В В ●. (2.5) 

The solution to the problem of maximizing the Fisher criterion is obtained by an 

eigenvalue decomposition of ╢ ╢, and taking the eigenvectors corresponding to the 

highest eigenvalues. There are c-1 generalized eigenvectors. If the number of features is less 

than c-1, then the number of eigenvectors will be equal to the number of features. 



CHAPTER 2: USED METHODS 

6 

 

2.2 Classification methods 

2.2.1 Nearest Centroid Classifier 

The Nearest Centroid Classifier (NCC) is used in various areas of pattern recognition 

because it is simple and fast. The method determines the Euclidean distance from an 

unknown object to the centroid of each class and assigns the object to the class with the 

shortest distance. The Euclidean distance between the  ὼᶰᴘ  feature vector and the n-

dimensional mj vector of mean values for class j can be calculated as 

 ὨὭίὸ●ȟ□ В ὼ ά . (2.6) 

2.2.2 Multi -Layer Perceptron 

Artificial Neural Networks (ANNs) are inspired by biological neural systems and are used 

to approximate target functions [19]. The Multi-Layer Perceptron (MLP) is a feedforward 

ANN, where neurons are organized into three or more layers (an input and an output layer 

with one or more hidden layers), with each layer fully connected to the next one using 

weighted connections. An illustration of a three-layer MLP neural network can be seen in 

Figure 2.1. 

 

 

Figure 2.1: An example architecture of a three-layer MLP network. 

 

A neuron has an activation function that maps the sum of its weighted inputs to the 

output. The oj output of one node can be defined as 

 έ Ὢ◌ Ͻ● ὦ, (2.7) 

where x is the input vector, wj is the vector containing the weights, b is the bias value, and f 

is the applied activation function. The activation or transfer functions are usually sigmoid or 

linear functions, while the bias allows a shift in the transfer function. 

Most commonly MLP networks are trained using the backpropagation algorithm, which 

is a supervised learning method. The algorithm employs gradient descent to attempt to 
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minimize the squared error between target values and the network output values. This is 

achieved by updating the weights and the biases in the direction of the negative gradient of 

the performance function. 

A faster convergence is produced with the conjugate gradient algorithm, which performs 

a search along conjugate directions. The Scaled Conjugate Gradient (SCG) backpropagation 

algorithm, developed by Moller [20], was designed to avoid the line-search of the conjugate 

gradient algorithms. The SCG algorithm requires more iterations to converge, but the 

number of computations in each iteration is reduced because no line search is used. 

The Levenberg-Marquardt (LM) backpropagation algorithm is also widely used for 

training, since it is one of the fastest methods. It updates weight and bias values according 

to LM optimization [21]. 

MLPs with different initial random weights provide different results, because the 

corresponding performance functions are not the same. Thus, multiple trainings are required 

for one configuration to achieve better results. 

In the case of classification applications, the vector of extracted feature values forms the 

input vector, while in the output layer a neuron is assigned to each class. 

2.2.3 Naµve Bayes classifier 

The Naµve Bayes Classifier (NBC) is a highly practical Bayesian learning method. It is based 

on the simplifying assumption that, given the target value of the instance, the attribute values 

are conditionally independent, and the probability of observing the conjunction for attributes 

is just the product of the probabilities for the individual attributes [19]. The approach used 

by the NBC is presented in (2.8). 

 ‡ ÁÒÇÍÁØɴ ὖ‡ Бὖὥȿ‡  (2.8) 

where ɡj denotes the target value output of the classifier, V is the finite set of target values, 

ai are the attribute values, and P(ɡj) are the probabilities of ɡj target values. 

The NBC includes first a learning step in which the various P(vj) and P(ai|bj) terms are 

estimated. New instances are classified by applying the rule in (2.8). 

2.2.4 Support Vector Machine 

In Support Vector Machines (SVM), a data point is viewed as a p-dimensional vector, and 

the goal is to separate such points with (p-1)-dimensional hyperplanes [22]. The hyperplane 

can be defined as 

 Ὂ● ◌Ͻ● ὦ, (2.9) 

where x is the vector to be recognized, w is the normal vector to the hyperplane, and b 

determines the offset from the origin along the normal vector. (2.10) defines the normal 

vector, and is the subject to the condition expressed in (2.11). 
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 ◌ᶻ В ᶻϽώ●, (2.10) 

where Ŭi is the i-th Lagrange multiplier, ώᶰ ρȟρ, and l is the number of support vectors. 

 ᶻώ ◌ᶻ● ὦᶻ ρ πȟᶅ π (2.11) 

The function of the hyperplane is not suitable for solving linearly non-separable 

problems or dealing with more than two classes. To classify data into multiple classes, two 

common methods can be used: ñone-versus-oneò (OvO) and ñone-versus-allò (OvA). 

2.2.5 k-Nearest Neighbor 

The k-Nearest Neighbor (k-NN) algorithm classifies the objects based on the closest training 

examples in the feature space [23-24]. To classify a new observation, the method finds the k 

nearest samples in the training data and assigns the new sample to the class which provides 

the most neighbors. The Euclidean distance is used to measure the distance between two 

instances [19], which can be given as 

 ὨὭίὸ●░ȟ● В ὼ ὼ  , (2.12) 

where xi and xj are the two instances, and xir and xjr denote the rth values in the feature 

vectors. 

The selection of a proper k parameter is very important, since it can affect the decision of 

the k-NN classifier. A predefined rule does not exist for the selection of the k value. 

2.2.6 Classification Tree 

The Classification Tree (CT) is a rule-based algorithm, which uses a tree-like set of nodes 

for classifying inputs [23, 25]. The tree has predefined conditions at each node of the tree, 

and makes binary decisions based on these rules. The condition of the following node is 

checked until a leaf is found that contains the classification result. 

The conditions can be given as ñis xi Ò Űi ?ò, where xi is the feature value and Űi is the 

threshold value for a given ith feature. 

Learning of classification trees is usually done using algorithms that employ top-down, 

greedy search through the space of possible trees [19]. The most widely known algorithms 

are the ID3 and its successor C4.5. 

2.3 Genetic algorithm-based optimization 

Evolutionary algorithms are optimization techniques inspired by biological evolution. Their 

basic principle is a search on a population of solutions, which is controlled by the laws of 

biology. They are an effective tool for solving nonlinear, multicriteria optimization tasks. 

Genetic algorithms (GA) belong to evolutionary algorithms and are based on Darwin`s 

theory of evolution [26]. According to this theory, populations of living beings are constantly 
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evolving, they become more and more perfect, and better individuals develop. The 

development process is controlled by natural selection, according to which better individuals 

survive, while weaker ones perish. 

GAs use a population of artificial chromosomes. A chromosome represents a solution to 

a problem and can be given most commonly as a binary string or a vector of real values, 

which are also called as allele values or simply alleles. Each solution has a fitness value, 

which is a real number that measures how good a solution is to the given problem. The fitness 

value is determined using the fitness function. 

By analogy with biology, the chromosome is referred to as the genotype, whereas the 

solution it represents is known as the phenotype. 

The algorithm starts with a randomly generated initial population. The evolution in the 

algorithm is an iterative process, with the population in each iteration called a generation. A 

fitness-based selection and recombination is made to produce a successor population, the 

next generation. During recombination, parents are selected, and their genetic material is 

recombined to produce child chromosomes. This process is iterated until some stopping 

criterion is reached. The algorithm this way finds a good solution, since during the iterations, 

a sequence of successive generations evolves, and the average fitness tends to improve. 

The generation of successors in a GA is determined by a set of genetic operators [19, 

27]: 

¶ Selection ï during the selection process individuals are selected from the 

population, which will be involved in the creation of successors. Selection is based 

on fitness values. Individuals with higher fitness should have a greater chance of 

selection than those with lower fitness. This creates a selective pressure towards 

more highly fit solutions. 

Many selection methods exist. The most-known is the roulette wheel method. In 

this method, the population is depicted as a roulette wheel, where the individuals 

have a size proportional to their fitness value. The circumference of the circle is 

equal to the sum of the chromosomes` fitness values. The selection is done using 

generated random numbers with uniform distribution, which show which sector of 

the circle (individual) should be selected. Thus, chromosomes with higher fitness 

value have a higher probability to be selected. 

Other popular methods include: stochastic universal sampling, tournament 

selection, truncation selection, etc. 

¶ Crossover ï the selected individuals are sorted into pairs. The crossover operator 

achieves the mixing of the genetic material from two selected parent chromosomes 

to produce one or two child chromosomes. 

A commonly used crossover operator is the one-point crossover. This method uses 

a generated random number with uniform distribution, which is the crossover point 
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that splits the chromosomes of the parents into two parts. One part of the parents` 

chromosomes is exchanged, which leads to two new individuals. 

Two- and multi-point crossovers also exist. The uniform crossover method is also 

widely used, which constructs a child by selecting uniformly between parent allele 

values at each position. 

¶ Mutation ï the mutation operator can change the allele values of an individual. A 

random number with uniform distribution is generated for each position of the 

chromosome, which is compared to a defined mutation rate. If the number is larger 

than the mutation rate, no change will occur at the given position. If the value is 

smaller than or equal to the mutation rate, then the value is flipped from 0 to 1 or 

vice versa in the case of binary strings, or is replaced with a random real number 

in the case of vectors of real values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

11 

 

 

  

Movement recognition using wearable 

inertial and magnetic sensors 

3.1 Introduction  

The analysis and real-time monitoring of human body motion is a widely-studied field of 

industrial, entertainment, health, and medical applications [28]. Such systems can be used 

for robot control, human-computer interaction, assisted living, gaming, fall detection, 

epileptic seizure detection, telerehabilitation, analysis of daily activities, emergency 

detection, health monitoring, or even human worker activity recognition in industrial 

environments.  

Human motion can be split into two basic categories, activities and movements. 

Movements typically last for several milliseconds or seconds, while an activity comprises of 

different movements, and can last for even minutes or hours [22]. For example, a ñwalkingò 

activity contains several short physical leg movements. But more complex activities can also 

be defined, such as ñcookingò, which is composed of multiple shorter activities in a specific 

sequence, like ñwalkingò, ñarm raisingò, ñstandingò, etc. 

Sensor-based motion recognition integrates the emerging area of sensor networks with 

machine learning techniques. Inertial and magnetic sensors are widely used in wearable 

devices for motion recognition, due to their small size, low cost, and small energy 

consumption. These wearable devices applied to human bodies form Wireless Body Sensor 

Networks (WBSN) [29]. Another option for human motion monitoring can be the use of 

Personal Area Networks (PAN), which are composed of environmental sensors, like Radio-

Frequency Identification (RFID) readers, video cameras, or sound, pressure, temperature, 

luminosity, and humidity sensors. The vision-based activity recognition systems are the most 

popular types of PANs. One of the main advantages of body sensor networks to systems 

using cameras with fix places is that they support persistent monitoring of a subject during 

daily activities both in indoor and outdoor environments. The vision-based systems are also 

influenced by environmental factors, such as lighting conditions, and they incur a significant 

amount of computational cost.  
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Due to the difficult implementation of pattern recognition algorithms on resource 

constrained wireless nodes, the design of WBSN-based applications is a very complex task 

[30-31]. They should also be wearable, which affects the possible usable battery size and 

therefore its duration.  

3.2 Related work and motivation 

3.2.1 Related work 

In the research of using inertial and magnetic sensors in human movement recognition 

systems, various types and positions of the sensors, and methods for recognition were tested 

for different applications [32]. Classification is typically done in a two-stage process. First, 

features are derived from windows of sensor data. A classifier is then used to identify the 

motion corresponding to each separate window of data. 

Table 3.1 summarizes the applied activity classes, sensor types and their placements, 

feature extraction modes, processing window widths, sampling frequencies, classification 

methods, and achieved accuracies in relevant works. The used abbreviations are described 

in the following subchapters. 

 

Table 3.1: Summary of relevant works. 

Related 

work 

Activity classes Sensors and 

placement 

Feature 

extraction 

Processing 

window width 

/ Sampling 

frequency 

Classifiers Accuracy 

[33] 8 classes 

(moving, 

complex) 

ACC: waist, 

thigh, ankle 

TDFs 

FDFs 

Wavelets 

2s / 64Hz k-NN 95% 

[23] 21 classes 

(stationary, 

moving, 

complex) 

ACC, GYR, 

MAG: knees, 

wrists, chest 

TDFs 

FDFs 

5s / 25Hz PCA+BDM 99.1% 

PCA+SVM 98.6% 

PCA+DTW 98.5% 

PCA+k-NN 98.2% 

PCA+ LSM 89.4% 

PCA+MLP 86.9% 

PCA+CT 81.0% 

[34] 6 classes 

(stationary, 

moving, 

complex) 

ACC: chest TDFs 

FDFs 

10s / 20Hz LDA+MLP 94.43% 

[35] 8 classes 

(stationary, 

transitional, 

moving) 

ACC: right 

thigh 

TDFs 1s / 20Hz MLP+HMM 80.88% 

[36] 4 classes ACC: chest TDFs 1s / 100Hz SVM 94.73% 
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(stationary, 

transitional) 

[22] 6 classes 

(stationary, 

moving, 

complex) 

ACC, GYR: 

right wrist, 

right foot 

TDFs 1.6s / 20Hz SVM 97.2% 

[25] 6 classes 

(stationary, 

moving, 

complex) 

ACC, GYR, 

MAG: 

multiple 

places 

TDFs 

FDFs 

3s / 6.25Hz 

(ACC), 

100Hz (GYR), 

7.69Hz (MAG) 

CT 97% 

Decision table 88% 

NBC 78% 

[37] 13 classes 

(moving, 

complex) 

ACC, GYR: 

dominant 

wrist 

TDFs 

FDFs 

3.88s / 33Hz SVM 97.2% 

MLP 96.73% 

RBF 95.67% 

[24] 6 classes 

(stationary, 

moving, 

complex) 

ACC: waist TDFs 1s / 10Hz MLP 98.3% 

k-NN 94.1% 

[38] 12 classes 

(stationary, 

transitional, 

moving) 

ACC: chest, 

right thigh, 

left ankle 

TDFs 

FDFs 

Wavelets 

1s / 25Hz k-NN 99.25% 

Random forest 98.95% 

SVM 95.55% 

SLGMM 85.05% 

HMM 83.89% 

GMM 75.60% 

k-means 

method 

72.95% 

[39] 6 classes 

(stationary, 

moving) 

ACC, GYR: 

waist 

TDFs 0.64s, 1.28s, 

2.56s / 50Hz 

Lazy learner 99% 

CT 97% 

Rule-based 

classifier 

97% 

NBC 84% 

[40] 5 classes 

(moving, 

complex) 

ACC: right 

wrist 

TDFs 

FDFs 

1s / 100Hz CT 97.8% 

 

Activity classes 

In the related work, many activity classification approaches were used. The most widely 

used activities were standing and walking, which can be found in almost all works. Besides 

standing, other stationary activities can also be found in the literature, such as lying [34], 

sitting [25, 41-42], or both [23, 35, 38-39]. Different transitional movements were also parts 

of the activity classes in some works, e.g. sit-to-stand and stand-to-sit [35, 38, 41], lie-to-sit 

and sit-to-lie [35], lie-to-stand and stand-to-lie [41], or stopping after walking [36]. 

Regarding the classification of longer motional activities, various speeds and types of 

forward movements were also tested, such as slow, normal and rush walking [25], jogging 
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[22, 33, 42-43], and running [23-25, 33, 40]. Some works tried to differentiate different 

directions of an activity type, like level walking, walking downstairs and upstairs [23, 33-

34, 38-39, 42] or walking backwards [43]. Yang et al. [42] recorded even continuous 

rotational movements, such as walking left-circle or right-circle, and turning left or right. 

Special complex activities were also parts of the constructed databases, e.g. falling [24, 41], 

jumping [23, 33, 42], writing [22], brushing teeth [40, 44], eating and drinking [44], 

sweeping the floor, lifting a box onto a table, bouncing a ball [43], driving [34], cycling [23, 

44], etc. 

Sensors and placement 

The accelerometer (ACC) is the most popular sensor for monitoring the motion of the human 

body. This sensor measures acceleration in one or more axes. As seen in Table 3.1, many 

researchers used only a single unit to achieve activity recognition, but they differed in the 

placement of the sensor. Others applied multiple sensors fixed to different parts of the body. 

Beside the works listed in Table 3.1, a single accelerometer fixed to the chest was applied in 

[41], the authors of [45] utilized two accelerometer-based data loggers, which were mounted 

on each wrist, while Bao and Intille [44] applied five biaxial sensors placed on each subjectôs 

right hip, dominant wrist, non-dominant upper arm, dominant ankle, and non-dominant 

thigh. 

Gyroscopes (GYR), which measure angular velocity around one or more axes, are less 

popular in movement recognition applications, and are mostly used together with 

accelerometers. None of the related researches used only gyroscopes. Tri-axial 

accelerometers and gyroscopes used together provide six degrees of freedom (6DoF) sensor 

units. Yang et al. [42] used measurement units containing a triaxial accelerometer and a 

biaxial gyroscope, and placed them to eight places on the body: the wrists, the ankles, the 

knees, the hip, and the left elbow. 

The fusion of inertial sensors and magnetometers (MAG) was also reported in the 

literature. The magnetic sensors measure the Earth`s magnetic field, and thus, they are able 

to detect rotational movements compared to the magnetic north. Magnetic sensors are 

usually used together with the inertial sensors, which provides 9DoF measurement systems, 

but [46] utilized only magnetometers for activity classification. The authors used sensor 

gloves with 9 magnetic sensors on both hands, and tried to classify simple (walking, running) 

and complex (shave, brush teeth, use electric toothbrush, etc.) activities. The sensors of 

mobile phones for activity recognition were utilized in [47], while Field et al. [43] utilized 

an inertial motion caption system, comprised of 17 inertial sensors attached to different parts 

of the body. The 9DoF sensors were combined to get a global orientation through a Kalman 

Filter. 
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Feature extraction 

As activity and movement recognition is a typical pattern recognition problem, feature 

extraction plays a crucial role during the recognition process. Sensor-based features can be 

classified into three categories: time-domain features (TDFs), frequency-domain features 

(FDFs), and features computed using time-frequency analysis. 

Most of the related researches used TDFs and/or FDFs. The type of features and their 

frequency of usage in references are shown in Table 3.2. It can be concluded that the most 

used TDFs are the mean and the standard deviation, and the most frequent FDFs are the 

spectral energy and the frequency-domain entropy. 

 

Table 3.2: Used feature types in related works. 

Feature type References 

Time-domain features  

standard deviation or variance  [22-25, 33-40, 48-49] 

mean [22-25, 33-35, 37-40, 44, 49] 

root mean square [22, 24, 37-38, 40] 

correlation [22, 24-25, 34, 44] 

number of zero crossings [25, 38, 40, 48] 

kurtosis [23, 37-38, 49] 

range [22, 24, 36, 38] 

skewness [23, 37-38, 49] 

maximum [22, 37, 39] 

minimum [37, 39] 

number of rapid changes [48] 

magnitude of the first peak of the autocorrelation [48] 

Frequency-domain features  

frequency-domain entropy [25, 33-34, 37-38, 44] 

spectral energy [24-25, 33, 38, 40, 46] 

magnitude of the defined first few highest peaks [33, 37, 46, 49] 

frequency of the defined first few peaks with 

highest amplitude 

[23, 46, 49] 

correlation between axes [33, 37] 

median frequency [25, 48] 

DC component [38] 

median power [48] 

principal frequency [33] 

 

Using wavelet analysis, the signal is decomposed into a series of coefficients, which 

carry both spectral and temporal information about the original signal. Two works, [38] and 

[33], tested this feature extraction method for the classification of activities. The authors of 

[33] utilized the next features: the sum of the squared detail coefficients at different levels, 

the sum of the squares of the detail and wavelet packet approximation coefficients across 
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different levels, the standard deviations and root mean square (RMS) values of detail and 

wavelet packet approximation coefficients at a few different levels, and the sum of the 

absolute values of coefficients at different levels. Attal et al. [38] applied the following 

features: the sum of detail coefficients of wavelets, the sum of squared detail coefficients of 

wavelets, the energy of detail wavelets coefficients, and the energy of approximation 

wavelets coefficients. 

Processing window width and sampling frequency 

Windowing plays also a very important role during the extraction of features. Usually 

features are computed in fixed-size windows, which are shifted also with a fixed time. In the 

related work, the width of the applied processing windows is between 1s and 10s, and the 

smallest size, 0.64s, was tested by [39]. The sampling frequency is also a very important 

factor in the processing phase. In relevant works, the applied frequencies were between 10Hz 

and 100Hz. 

Classifiers 

The classification of the defined activities using the computed feature vectors can be done 

using different classification methods. As shown in Table 3.1, the most popular classifiers 

in relevant works are: SVMs, the k-NN method, decision trees or CTs, NBCs, and MLP 

neural networks. Some other methods were also tested, as Radial Basis Function (RBF) 

neural networks, the Least-Squares Method (LSM), Bayesian Decision Making (BDM), 

Dynamic Time Warping (DTW), decision table, rule-based classifier, Gaussian Mixture 

Modeling (GMM), Supervised Learning GMMs (SLGMM), the k-means method, random 

forest, lazy learner, and Hidden Markov Models (HMMs). In some researches, the classifiers 

were used together with some dimension reduction methods. The most common methods are 

the Principal Component Analysis (PCA) and the LDA. The authors of [49] applied the 

Generalized Discriminant Analysis (GDA) method with the multiclass relevance vector 

machine classifier. Some researchers even tested two different classification methods 

together: neural networks and HMMs [35], hierarchical temporal memories and SVMs [41], 

CTs and HMMs [46], k-means clustering and HMMs [47]. 

3.2.2 Motivation  

The goal of this research was to develop a wearable wireless system which does not disturb 

the user in free movement, and which can efficiently recognize basic body and arm 

movements using an online classification algorithm. It was also important to explore 

different setups to minimize the cost, the energy consumption, and the memory 

requirements, besides maximizing the classification efficiency.  

In the proposed prototype system, 9DoF sensor boards mounted on WSN motes were 

used, which were attached to the wrists of the subjects. The developed system was used to 
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record measurements for multiple activities. The proposed system does not require any 

additional server for the processing of the data, and it is also suitable for the logging of the 

activities. 

Related works mainly do not deal with the implementability of the algorithms on the 

used hardware or use a centralized server to do the necessary computation. The use of 

processing servers can cause several disadvantages. First, the communication in the network 

is very costly due to the high sampling frequencies of the sensors, and secondly, since the 

subjects are moving, they can get out of the range of the server if its place is fixed. Some 

works implement their algorithm on a smartphone, but the performance of these systems can 

be affected by the varying placement of the units, or their use during the operation of the 

algorithm. Based on the above considerations, it was reasonable to develop an online 

method, and to examine the hardware implementability of different classification algorithms. 

Since related studies mainly consider complex activities or use more than 1-2 seconds of 

data for the classification of motions, it was necessary to investigate the barriers in the 

performance when decreasing the processing window width. Related works which utilize 

multiple sensor types also do not consider the effect of different sensor types on classification 

efficiency.  

In this work, two online movement classification approaches are proposed. 

In the first approach, the classification is done on one of the units, which uses features 

extracted on both units. This algorithm requires the transmission of the computed feature 

vector from one of the motes to the mote computing the movement class. To find the optimal 

setup, multiple classification methods were investigated for various datasets, which were 

generated based on different sampling frequencies, processing window widths, feature 

extraction modes, and used sensor types. LDA-based dimension reduction was also tested to 

investigate its effect on the tested classification methods in the meaning of recognition 

efficiency, memory consumption, and training time. The extraction and reduction of feature 

vectors were also tested in multiple ways. The features were computed utilizing the sensor 

axes separately and using the magnitude. To reduce the required computation, only time-

domain analysis was performed during feature extraction. An aggregation-based feature 

reduction method is also proposed, which can help the system to be less sensitive to 

differences in orientations of the sensors on the arms. 

The second approach is a hierarchical-distributed algorithm, where both units compute 

their own movement class, and one of the units then combines the two classes to determine 

the class of the entire body. Two different movement hierarchies were examined. This 

algorithm was also tested for datasets generated using different processing window widths, 

feature extraction modes, and used sensor types. 

Since the proposed algorithms apply only TDFs with low memory needs, a comparison 

of datasets based on only time- and only frequency-domain analysis is also presented to 

examine their performance on the collected measurement data. 
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3.3 Experimental setup 

The sensor devices used in body sensor networks must be designed with the aim of providing 

the highest degree of mobility for the patients. They must be small, lightweight, and wireless 

wearable units. 

The used prototype system, which can be seen in Figure 3.1 consists of an IRIS WSN 

mote, and a 9DoF digital sensor board connected to it. The IRIS mote is equipped with an 

Atmel ATmega 1281L 8-bit microcontroller, and an RF231 IEEE 802.15.4 compatible radio 

transceiver. The current draw of the microcontroller is 8mA in active mode, and 8ÕA in sleep 

mode, while the radio transceiver consumes 17mA during transmission, and 16mA during 

reception. The maximal data throughput of the radio transceiver is 250kbps, and its outdoor 

range is over 300m. The connected 9DoF sensor board is made up of an ADXL345 tri-axial 

MEMS accelerometer, an ITG3200 tri-axial MEMS gyroscope, and an HMC5883L tri-axial 

magnetoresistive technology-based magnetometer. The ADXL345 is a low power 

accelerometer (the current draw is 40ÕA in measurement mode, and 0.1ÕA in sleep mode), 

which can measure up to Ñ16g in 13-bit resolution with the highest sampling rate of 3.2kHz. 

The gyroscope features a 16-bit analog-to-digital converter, and it can measure angular rate 

in a range of Ñ2000deg/s with 8kHz frequency. The normal operating current of the 

gyroscope is 6.5mA, while the sleep mode current is 5ÕA. The measurement range of the 

magnetic sensor is Ñ810ɛT in 12-bit resolution with 160Hz maximal sampling rate, and it 

consumes 2ÕA current draw in idle mode, while 100ÕA in measurement mode. 

 

 

Figure 3.1: a) The prototype measurement system, b) The unit attached to the wrist. 

 

A TinyOS-based driver was developed and implemented to configure the sensors and 

cyclically read the measurement data. The data are read from the sensors via the I2C 

interface, and sent via wireless communication to a BaseStation mote, which uses serial 

communication to forward the data to a PC. 

3.4 Data acquisition for movement classification 

Eleven activities were defined in order to recognize specific arm movements in stationary 

positions and also during the movement of the body. The used activities are the following: 
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1. ñstanding without movement of the armsò,  

2. ñsitting with the arms resting on a tableò,  

3. ñwalkingò,  

4. ñturning around in one placeò,  

5. ñjoggingò,  

6. ñraising and lowering the left arm during standingò,  

7. ñraising and lowering the right arm during standingò,  

8. ñraising and lowering both arms during standingò,  

9. ñraising and lowering the left arm during walkingò,  

10. ñraising and lowering the right arm during walkingò,  

11. ñraising and lowering both arms during walkingò. 

Data were collected with the help of nine male subjects (ages between 20 and 50, and 

height between 165cm and 190cm) for all activities. The IRIS motes with the attached 9DoF 

sensor motes were mounted on each wrist of the subjects. The data were recorded in fixed-

length sessions of 20s for all activities using 125Hz sampling frequency, which means 2500 

measurements per sensor. The measurements were performed in a laboratory environment. 

3.5 Online movement classification algorithm 

In the proposed algorithm, the classification is performed in four main stages. The software 

architecture with the four stages can be seen in Figure 3.2. In the first step, the measurement 

data are preprocessed (Stage I.). In the second stage (Stage II.), features are extracted from 

the signals on each unit. Possible aggregation of the extracted features is also done in this 

stage. The proposed algorithm assumes the transmission of the vector of the extracted 

features from one mote to the other, and the rest of the algorithm should be implemented in 

the microcontroller of the receiving device. Dimension reduction is done in the third stage 

(Stage III.), while classification is performed in the fourth stage (Stage IV.). Two different 

algorithms were applied and tested. In the first type, the third stage is not performed, and the 

classifiers receive the feature vectors directly, while in the second case the data sets are 

dimensionally reduced, so the classifiers have less input parameters. The advantage of the 

dimension reduction method is that it removes the redundant information.  
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Figure 3.2: Software architecture. 
 

3.5.1 Error compensation 

The applied sensor types suffer from various types of errors that can be classified as 

deterministic or systematic errors and random or stochastic errors. Deterministic errors are 

caused by manufacturing defects and can be compensated by sensor calibration. The 

calibration is a process of comparing the sensorôs output with the known reference 

information to estimate these error coefficients, which form an exact relationship between 

observed readings and expected outputs. 

These errors have especially high effect in applications which utilize accelerometers and 

gyroscopes to obtain position and orientation, since the measurements need to be integrated. 

Because of the integration process, even very small errors at the output accumulate very 

rapidly and the position error becomes considerably large [50]. Although the measurements 

in the proposed system are not integrated during feature extraction, it is very important to 

calibrate the sensors before use, since the errors can affect also the movement classification 

process. 

Error models 

Systematic errors include bias, scale factors and nonorthogonality errors [51]. 

The bias error is the deviation of the output from the zero level when the input to the 

sensor is zero. The bias should be zero for all axes in an ideal sensor. 
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 ╫

ὦ
ὦ

ὦ
, (3.1) 

where bx, by, and bz in the b bias vector are the bias values on each axis. 

Scale factors determine the sensorôs sensitivity at each axis. In an ideal situation, the 

sensors which make up the triad should be identical, and for the same input they should give 

the same output. The S matrix consisting the scale factors can be represented as: 

 ╢

Ὓ π π
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, (3.2) 

where Sx, Sy, and Sz are the scale factors for each axis. 

Nonorthogonality between axes is the inaccuracy resulting from the imperfection in 

sensor mounting during its manufacturing. Misalignment errors are introduced due to 

nonalignment of sensorôs sensitive axis and the mounting platform. Ideally, the sensor axes 

should be perfectly perpendicular. 
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where mxy, mxz, myx, myz, mzx, and mzy in the M matrix are the misalignment error coefficients. 

The relation between the measured and the real values can be given as: 
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where ox, oy, and oz are the measured sensor outputs, while rx, ry, and rz are the real 

measurement values on each axis. The terms ɖx, ɖy, and ɖz assign the noise values that are 

generally assumed to be white Gaussian. 

Combining the M and S matrices into one matrix, a calibration model utilizing 12 

parameters can be given as: 
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A simplified relation, which applies 9 parameters, can be given using the model seen in 

Figure 3.3 [52-53]. The misalignment error matrix in this case can be given as (3.6). 
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Figure 3.3: Used model for the misalignment angles. 

 

 ╜

ρ π π
ÓÉÎ  ÃÏÓ  π

ÓÉÎ  ÃÏÓ  ÓÉÎ  ÃÏÓ ÃÏÓ 
, (3.6) 

where Ŭzy, Ŭxz, and Ŭyz are the misalignment angles. 

The real measurement values using the measured outputs and the calibration parameters 

can be given as: 

 ► ╜╢ ▫ ╫, (3.7) 

where ▫ έ έ έ  and ► ὶ ὶ ὶ . 

In the case of magnetometers, beside the systematic errors, the measurements are also 

affected by external magnetic influences, which can be classified as hard and soft iron effects 

[53-54]. Hard iron errors are time-invariant, undesired magnetic fields generated by 

ferromagnetic materials with permanent magnetism, which are additive to the Earth`s 

magnetic field. Soft-iron distortion is the result of a material that influences, or distorts, a 

magnetic field, but does not necessarily generate a magnetic field itself, and is therefore not 

additive. 

The hard iron effect can be given as: 

 ╫

ὦ
ὦ

ὦ
, (3.8) 

where bHIx, bHIy, and bHIz are the bias values for of each sensor axis in the bHI bias vector. 

The soft iron effect can be represented as: 

 ═
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, (3.9) 
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where aij are the coefficients of the ASI matrix. 

The relation between the measured and real values in the case of magnetometers can be 

given as: 

 ▫ ╜╢═ ► ╫ ╫ Ɫ, (3.10) 

where Ɫ – – – . 

Calibration principles  

Calibration can be done with and without additional equipment. High-precision equipment 

can be used in laboratory environment to generate known references which can be compared 

with the sensorôs outputs. Due to the growing usage of the utilized miniature sensors, and 

unavailability and high cost of calibration equipment, in recent years, intensive research was 

done to develop calibration methods which do not require additional equipment. 

Calibration without additional equipment can be also separated into two basic 

approaches [51]. The first one uses measurements acquired in specific stationary positions 

or during specified movements, which are utilized to compute calibration parameters based 

on different basic principles. The second is the Kalman filter-based approach [50, 55-57], 

which is a widely known state estimation technique which tries to obtain the unknown 

parameter based on the system model and observations accrued over a period of time. These 

techniques aim to estimate navigation states along with calibration parameter together in one 

framework. 

The computation of the calibration parameters can be done online or offline. In the case 

of online calibration, the parameters are computed in real-time on the measurement device, 

while in offline algorithms previously collected measurements are utilized. 

In traditional accelerometer calibration methods, the sensor is positioned and held 

stationary at various known reference orientations throughout the test [52]. This is known as 

the multi-position or the 1g test, since later the algorithms use the fact that the magnitude of 

the acceleration vector should be 1g when the sensor is not in motion due to the Earth`s 

gravity. The known algorithms mainly apply a six-position test, where during the 

measurements the three axes of the sensors are aligned to be nearly +1g and -1g. The 

reference orientations can be set using precise machines [58], which provide information 

about the exact orientations, or by hand, where the exact orientations are not known [59]. 

The calibration of accelerometers using the multi-position approach can be reduced to 3D-

ellipsoid fitting problems [60]. 

The calibration of gyroscopes depends on the quality grade of the sensor, since high-

precision gyroscopes are capable of measuring the Earthôs angular velocity, which enables 

the use of multi-position tests [53]. Lower-grade MEMS gyroscopes are not capable of 

sensing the Earthôs angular velocity, thus, they need to be exposed to different reference 

angular rates. This can be achieved by mounting the sensor on a precise rotation turntable 
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(rate table) [58]. If such reference angular rates are not available, calibration is commonly 

performed by simply rotating the gyroscopes manually [57, 61]. Calibrated accelerometers 

and/or magnetometers embedded in the sensor unit together with the gyroscope can also be 

used to provide reference information. Both sensors can provide information about 

orientation changes. In the case of accelerometers, the Earth`s gravity vector can be used in 

stationary positions [62], while the Earthôs magnetic field vector is utilized in the case of 

magnetometers [63-64]. 

Magnetometers are also calibrated based on data acquired during multi-position tests. 

The basic concept of calibration is similar as in the case of accelerometers, but hard iron and 

soft iron effects must be also taken into consideration [65]. The reference input is the Earthôs 

local magnetic field vector, which is constant in one point, but can largely differ in different 

places on the Earth. The local Earthôs magnetic field vector can be extracted from 

geomagnetic models [54]. The calibration parameters of the magnetometers should be 

estimated for the platform on which they will be eventually used, since the material of the 

platform can affect the magnetic field. If there is no relative motion between the platform 

and the sensor, it can be modeled as a constant time-invariant distortion [53]. External 

magnetic sources may also affect the magnetometer measurements as additional time-

varying distortion components if the sensor and the platform are not isolated from the 

environment [54]. 

Used parameters 

Due to high error rates caused by structural errors of the sensors, the raw measurements are 

compensated in the preprocessing phase. The calibration parameters were obtained using an 

offline, evolutionary algorithm-based method, which applies multi-position measurements 

during the computation [S11]. 

3.5.2 Windowing 

The extraction of feature values is performed in fixed-size segments, which are shifted with 

constant sizes. To generate a high number of input vectors, small window shifts were used. 

For hardware implementation, the size of the shifts depends on the available resources and 

the required response time, since the algorithm updates the movement classes after each 

window shift, and the reduction of the size of the shifts increases the necessary computation 

performance. 

Both the CPU computation performance and the power resources are limited in IRIS 

WSN motes, so it is important to minimize the usage of these resources while maximizing 

the recognition efficiency. The required computation performance and the current draw of 

the sensors can be reduced if the sampling frequency is decreased. 
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3.5.3 Feature extraction 

Feature types 

The used features were chosen by their memory usage, required computation, and possible 

quantity of information. Due to easy implementation and low memory usage, only time-

domain analysis was performed on the signals. Many of the chosen features were previously 

used for electromyography (EMG) pattern recognition [66], and most of them were not 

applied previously for movement classification. The used TDFs require only one or two 

previous measurements, so there is no need to store all the measurement data in the window 

as it is required for frequency domain analysis. But even standard deviation, which is one of 

the most frequently used features, requires the storage of the measurement vector in the 

window, since first the average needs to be calculated. The following TDFs were chosen for 

this research: 

¶ Mean Absolute Value (MAV): The calculation of the MAV feature can be expressed 

as follows, 

 -!6 В ȿὼȿ, (3.11) 

where N is the number samples in the window, and xi are the signal amplitudes at 

the given index. 

¶ Willison Amplitude (WAMP): The number of amplitude changes of incoming 

signals within a window, which are higher than a given threshold level. The 

computation of the WAMP can be expressed as 

 7!-0В Ὢὼ ὼ ȟὪὼ
ρȟÉÆὼ ὸὬ
πȟÏÔÈÅÒ×ÉÓÅ

, (3.12) 

where th is the threshold, which is the peak-to-peak noise level. 

¶ Number of Zero Crossings (NZC): The number of times when the amplitude values 

cross the zero-amplitude level, and the difference between the values with opposite 

signs is larger than a defined threshold. The computation of the NZC feature can 

be represented as given in (3.13). 

 .:#В ίὫὲὼϽὼ ᷊ȿὼ ὼ ȿ ὸὬȟίὫὲὼ
ρȟÉÆὼ π
πȟÏÔÈÅÒ×ÉÓÅ

 (3.13) 

¶ Number of Slope Sign Changes (NSSC): The number of direction changes, where 

among the three consecutive values the first or the last changes are larger than the 

predefined limit. The computation of this feature can be represented as follows, 

 .33#В Ὢ ὼ ὼ Ͻὼ ὼ ȟὪὼ
ρȟÉÆὼ ὸὬ
πȟÏÔÈÅÒ×ÉÓÅ

. (3.14) 

¶ Maximal (MAX) and Minimal (MIN) value: The highest and lowest measured value 

in the processing window. 
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¶ RMS: The calculation of the RMS in a processing segment can be done as 

 2-3 В ὼ. (3.15) 

¶ Waveform Length (WL): The cumulative length of the waveform over the time 

segment, which is calculated by the sum of absolute changes between two 

measurements: 

 7, В ȿὼ ὼȿ. (3.16) 

Extraction modes 

The used input vectors were generated and tested with the use of two TDF calculation modes: 

¶ Separately used axes (SEP): The features are extracted separately for the X, Y, and 

Z axes of the sensors. 

¶ Vector magnitude-based (VL): The changes in the vector length are used for the 

computation of the TDFs. The advantages of this feature extraction mode are that 

three times less features are generated than with the SEP mode, and that it should 

be less sensitive to slight differences between movements of different subjects, or 

small displacements of the sensor motes on the wrists. However, it should not be 

able to recognize different poses in stationary positions. The magnitude-based 

feature extraction cannot provide valuable information in the case of the 

magnetometer measurements, because the magnitude of the magnetic field is 

constant in ideal situations, thus, any measured distortions are caused by the 

changes in the indoor environment. Using the other two sensor types, the 

accelerometer and the gyroscope, this feature extraction mode can provide 

important information for the classification process. Except the NZC feature, which 

cannot give helpful information, since the magnitude cannot be negative, all other 

of the previously described TDF types can be effective. 

Feature aggregation 

The usage of the separately extracted features for the three sensor axes can result in a very 

high number of features, which can increase the complexity of the classification algorithm. 

Also, it can have a negative effect on the recognition efficiency if the subjects do not fix the 

units correctly to their wrists. A possible solution to both previous problems can be the 

aggregation (AGG) of the separately computed features. As expressed in (3.17), this can be 

done by calculating a linear combination of the feature values computed for each axis for a 

specific feature type. 

 ὪὩὥὸ ύ ϽὪὩὥὸ ύ ϽὪὩὥὸύ ϽὪὩὥὸ, (3.17) 

where featAGG is the aggregated feature value, featX, featY, and featZ are the extracted features 
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for each axis, and wX, wY, and wZ are the corresponding weights.   

3.5.4 Dimension reduction 

The LDA method was used to perform dimensionality reduction on the datasets. The result 

of this method is a matrix of parameters, which must be multiplied with the feature vector to 

get the inputs of the classifier. Thus, it requires only multiplication and summation for its 

implementation. 

3.5.5 Classification 

In this research seven possibly applicable classification methods were chosen and tested:  

¶ NCC, 

¶ MLP, 

¶ NBC, 

¶ OvO SVM, 

¶ OvA SVM, 

¶ k-NN, 

¶ CT. 

3.5.6 Performance evaluation 

Altogether 340 datasets were constructed using different combinations of used sensor types, 

TDF calculation modes, processing window sizes, and sampling frequencies. 

The cost of the system can be decreased by decreasing the number of used sensor types, 

but in recognition efficiency their fusion can result in a drastic improvement. In order to 

explore the effect of the used sensor types in the application, seven sensor combinations were 

defined, since the three sensor types can be used alone, in pairs, and together. The SEP and 

AGG feature extraction modes were tested for all seven sensor combinations, while the VL 

mode was used only for the accelerometer and the gyroscope alone, and their data used 

together, since, as described in Subchapter 3.5.3, the magnetometer data cannot provide 

valuable information using this feature extraction mode. Thus, 17 combinations were 

constructed using the applied sensor types and feature extraction modes. 

The use of large processing windows can increase the required computation, and it can 

make harder the detection of transitions between activities. Since one of the goals of this 

research is to explore the recognition efficiency using processing windows in millisecond 

range, the following window width and shift pairs were tested: 80ms width and 40ms shift; 

200ms width and 40ms shift; 400ms width and 80ms shift; 800ms width and 80ms shift. 

The necessary computation can be lowered by decreasing the sampling frequency, but it 

can have a negative effect if any important spectral components disappear. The spectral 

analysis of the obtained measurements shows, that in the case of the accelerometer and the 

gyroscope, the highest frequencies of the dominant spectral components are below 15Hz, 
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while in the case of the magnetometer data, no higher components can be noticed above 5Hz. 

To find the optimal setup, where the chosen TDFs can be still effective, datasets were 

generated using five sampling frequencies: 25Hz, 50Hz, 75Hz, 100Hz, and 125Hz. The data 

for the four lower frequencies were obtained by downsampling the measurement data 

collected with 125Hz sampling frequency. 

Data from five of the nine subjects were used for the training of the classifiers, while the 

data from the remaining four subjects were tested as unknown inputs for the validation of 

the trained classifiers. All six classification techniques were tested for all datasets with and 

without dimension reduction. No results could be achieved using the NBC without LDA, 

since some classes have features with zero variance. 

In this study, both the OvA and the OvO methods were tested and used for comparison 

in the case of the SVM classifier. 

The k-NN classification algorithm was tested with 1 to 10 neighbors. Analyzing the 

efficiencies on validation data, without dimension reduction a convergence (97%) can be 

noticed at 1-2 neighbors in almost 55% of the setups, while other setups mostly converge at 

3-4 neighbors. With LDA 1-4 neighbors are needed to achieve convergence as well, but in 

most cases 4 neighbors are necessary.  

The training of the MLP was tested using 1 to 15 neurons in the hidden layer. The 70% 

of the training data were used as training inputs, and 30% as validation inputs for the training 

method. The validation datasets were used as unknown inputs for testing the efficiency of 

the classifier. Hyperbolic tangent sigmoid transfer function was used in the hidden layer, 

while the neurons in the output layer were created using the linear transfer function. Due to 

its lower memory requirements and higher training speed, the scaled conjugate gradient 

method was used for training. The results show that in both cases (with and without using 

LDA), at least 9 hidden layer neurons are needed to achieve convergence (97%), and 9-12 

neurons were required in more than 70% of the setups. It can be also noticed, that without 

dimension reduction the distribution of the converge points is equal, while with LDA more 

setups converge at 9-10 neurons.  

In the further comparison, the setup with the highest recognition rate on unknown 

samples for both the k-NN and the MLP algorithms was used. 

Efficiency comparison of the classification methods 

Table 3.3 summarizes the average rankings of the thirteen classification methods on training 

and validation data, and on weighted overall efficiencies. Since it is important to classify 

both the known and the unknown data correctly, the weighted efficiency was calculated 

using the sum of the achieved recognition rates on known and unknown data, but the 

efficiency on validation data was used with a double weight. The average ranking was 

computed using the ranking order of the methods for each of the 340 setups. The average 

efficiencies are also presented in Table 3.3. Comparing the rankings on validation data, it 
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can be stated, that the MLP and the LDA-MLP methods are the most powerful classifiers. 

The MLP was the best in almost 48% of the datasets, and its average ranking is 2.85, while 

the average ranking of the LDA-MLP is 3.13. The NCC method achieved the worst results 

with an average of 10.67, but the LDA-CT, CT and OvO SVM methods had also poor results 

with a ranking above 9. The results obtained only on training data show, that the CT and the 

LDA-CT provide the highest results, with an average recognition rate of 96.58% and 

94.46%, respectively. They are followed by the LDA-k-NN (89.46%) and the k-NN 

(86.09%) algorithms. These classification techniques are designed to best fit on training data, 

but are not too efficient on unknown data. The MLP, which proved to be the best method in 

the case of validation data, provided 82.00% efficiency on known datasets, and was fifth in 

the rankings. Analyzing the overall recognition, it can be seen, that the LDA-k-NN is the 

best classifier with an average ranking of 2.89. This method is followed by the MLP (3.62) 

and the LDA-MLP (4.36). 

 

Table 3.3: Average ranking and efficiency of different classification methods on different 

data types. 

Method Average 

ranking on 

training 

data 

Average 

ranking on 

validation 

data 

Average 

ranking on 

weighted 

overall 

efficiencies 

Average 

efficiency and 

standard 

deviation on 

training data 

Average 

efficiency on and 

standard 

deviation 

validation data 

CT 1.03 9.01 5.84 96.58% Ñ3.09% 58.91% Ñ8.53% 

OvA SVM 11.22 9.86 10.61 44.97% Ñ29.77% 38.65% Ñ24.17% 

OvO SVM 8.79 8.37 8.45 70.36% Ñ18.75% 58.41% Ñ14.19% 

NCC 11.76 10.67 11.49 63.90% Ñ13.71% 56.46% Ñ13.42% 

k-NN 4.69 6.96 6.28 86.09% Ñ7.81% 63.76% Ñ9.96% 

MLP 5.63 2.85 3.62 82.00% Ñ10.58% 70.45% Ñ8.82% 

LDA-CT 2.09 9.39 6.16 94.46% Ñ3.72% 60.33% Ñ10.62% 

LDA-OvA SVM 10.28 7.95 9.11 72.30% Ñ15.42% 62.47% Ñ13.80% 

LDA-OvO SVM 7.44 4.24 5.73 78.13% Ñ14.26% 67.05% Ñ12.49% 

LDA-NCC 10.15 6.87 8.37 72.15% Ñ15.87% 62.83% Ñ13.93% 

LDA-k-NN 3.32 4.46 2.89 89.46% Ñ8.08% 67.03% Ñ11.42% 

LDA-MLP 6.49 3.13 4.36 80.84% Ñ10.74% 69.33% Ñ9.53% 

LDA-NBC 8.10 7.21 8.08 77.16% Ñ13.66% 64.03% Ñ11.64% 

 

Rates for the 340 datasets when the tested classification techniques performed better 

without LDA, and the average rate of differences are tabulated in Table 3.4. It can be 

observed, that the LDA-based dimension reduction has in overall a slight negative effect on 

the efficiency of the MLP. It decreases the efficiency in around 70% of the datasets, but the 

differences are not significant. Also, very small differences can be noticed for the CT, but 

the dimension reduction decreases the ability to recognize known data for almost all setups, 

while in around half of the datasets it increases the overall efficiency and the recognition rate 
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on validation data. The LDA method has a very positive effect on the other classification 

techniques. The most significant improvement was achieved with the NCC method, for 

which the application of dimension reduction increased the recognition rates in average by 

10%. The obtained efficiencies were also higher in around 87% of the setups for all three 

compared result types. For the other three algorithms, higher classification rates were 

achieved in around 60-70% of the datasets both on training and validation data. The highest 

effect can be noticed on the OvA SVM, since without dimension reduction almost 37% lower 

efficiencies were obtained for both known and unknown data. 

 

Table 3.4: Effect of LDA-based dimension reduction on the tested classification 

techniques. 

Method Higher results 

on training 

data  

Higher 

efficiency on 

validation 

data 

Higher 

weighted 

overall 

efficiency 

Average rate and 

standard 

deviation on 

training data 

Average rate and 

standard 

deviation on 

validation data 

CT 99.41% 50.88% 57.94% 2.29% Ñ1.52% -1.31% Ñ10.54% 

OvA SVM 40.00% 38.53% 40.59% -36.85% Ñ42.1% -36.45% Ñ40.76% 

OvO SVM 41.18% 25.29% 33.82% -8.81% Ñ23.3% -11.83% Ñ18.98% 

NCC 13.24% 13.82% 12.35% -10.44% Ñ12.93% -9.44% Ñ12.18% 

k-NN 27.65% 30.29% 22.65% -3.59% Ñ5.51% -4.29% Ñ9.13% 

MLP 75.88% 64.71% 67.35% 1.54% Ñ3.67% 1.86% Ñ4.61% 

 

Efficiency comparison of the tested sampling frequencies and processing window sizes  

The further comparison of the results, achieved with different sampling frequencies and 

window sizes, was done using the best achieved overall weighted efficiencies. 

The results show, that using the five tested sampling frequencies, the average difference 

between the highest and lowest efficiencies is 6.74% Ñ8.47% for training data, and 6.83% 

Ñ6.45% for validation data. The impact of increasing the sampling frequency is almost the 

same for the four different processing window sizes, but it has different effect on the 17 

combinations of extraction modes and used sensors. Analyzing results on validation data, 

larger differences can be noticed when the magnetometer is used alone. In the case of the 

SEP mode, the difference between the largest and smallest efficiency is 3-7%, and the 

recognition rate is decreasing with the increasing of the sampling frequency. The other setups 

provide almost constant efficiency or a rising tendency by increasing the sampling 

frequency. The AGG setup provides differences between 2.5% and 4.5% using only the 

magnetometer data, and around 3% for the data of the angular velocity sensor. Higher 

differences can be also observed when the SEP feature extraction is performed on the fused 

data of the magnetic sensor and the gyroscope (3-5.7%), when the AGG features are applied 

on the data of the magnetometer and the accelerometer together (2.5-8%), and when the data 

of the accelerometer and gyroscope are used together and VL-based feature extraction is 
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done (3.2-6%). The other setups provided below 2% differences. 

The size of the processing window width has a more significant effect on recognition 

rates, since the larger windows always result in higher efficiency. In overall, the highest 

classification efficiencies are higher than the lowest rates for 13.24% Ñ6.34% on training 

data, and 28.1% Ñ14.48% on validation data. The improvements do not differ greatly for 

different sampling frequencies, but they are more significant in the case of the 17 different 

combinations of sensors and feature extraction modes. Especially high differences on 

validation data can be noticed for the three setups when the VL-based feature computation 

was used: gyroscope ï 27.6-29.2%, accelerometer ï 18.7-27%, and the gyroscope and the 

accelerometer together ï 26-28.6%. The lowest improvements can be observed in the case 

of the two setups when the three sensors were used together: SEP ï 9.7-11.1%, AGG ï 7.1-

9.5%. The increasing of the window size also has lower effect in the case of the gyroscope 

when the features are computed using the SEP and AGG methods, 11.5-12.5% and 6.4-

12.5% respectively, and when the SEP technique is used on the fused data of the gyroscope 

and the accelerometer, where the differences are between 10.4% and 12.8%. 

Efficiency comparison of the tested feature extraction modes and sensor combinations 

The best results for the 17 different combinations in the four different processing window 

widths can be seen in Figure 3.4. It can be observed, that using only the magnetic sensor 

with the AGG feature extraction can provide the lowest recognition rates, since with the 

smallest window size only 39.95% can be achieved, while with even the largest processing 

window the efficiency increases only to 60.05%. Using the SEP mode, the recognition rates 

are much higher, 57.03% with the 80ms window and 67.18% with the 800ms window size. 

Using only the angular rate sensor provides the highest results with the SEP method: 

66.6-80.7%. The VL mode provides smaller classification rates, but the difference decreases 

by increasing the size of the processing window, since with the smallest window size the 

difference is 20%, while with the largest window a recognition rate of 78.33% can be 

achieved, which is only 2.37% lower than with the SEP mode. The number of features was 

48 for the SEP mode and 14 for the VL mode, which is a significant difference. Using the 

AGG extraction mode, for which the size of the feature vector was 16, significant difference 

to the VL mode can be noticed for the smaller window sizes. The recognition efficiency was 

8,5% higher for the 80ms window, and 10,18% for the 200ms window, but for the two larger 

sizes the VL achieved better results, 2.55% and 9.57% respectively. 

Using only the accelerometer, similar results can be achieved as with the gyroscope. For 

the two smaller windows with the SEP and AGG modes the accelerometer performed lower 

results, while with increasing the window size, the accelerometer provides higher 

efficiencies than the gyroscope. For the SEP mode, the differences were 1-3%, but for the 

two smaller windows with the AGG mode the recognition rates are lower for 3-5%, and 

higher for the two larger windows for 7%. With the VL-based feature vectors the 
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accelerometer provides better results. Using the 80ms processing window size, the difference 

was around 10%, but the difference decreases, and was only 1% for the 800ms window. 

 

 

Figure 3.4: Achieved classification efficiencies on training and validation data using 

different processing window sizes. The horizontal axes show the feature extraction mode in 

the first row, the required feature numbers in the second row, and the used sensor types in 

the third row. 
 

The usage of the magnetometer itself cannot provide usable results, but it can improve 

the performance of the inertial sensors, since the largest classification rates are 85.03% and 

87.2% respectively. In the case of the gyroscope, in average, the results were improved for 

3.26% Ñ3.59% for the SEP mode, while with the accelerometer it provides an improvement 

of 5.11% Ñ3.19% for the SEP, and 7.45% Ñ7.44% for the AGG mode. For the setup where 

the data from the magnetometer and the gyroscope were fused, and the AGG feature 

extraction mode was performed, in average the results were even slightly lower than when 

the data from the gyroscope was used alone. 

The highest recognition rate on validation data, 89.14% (99.48% on training data), was 

reached using all three sensor types with the SEP feature extraction in the largest processing 

window. This setup requires the usage of 144 features. With the same extraction mode, but 

without using the magnetic sensor, 87.96% classification efficiency can be achieved on 

validation data, and 98.91% on training data, with a required feature number of 96. By 

decreasing the size of the processing window, the classification rate significantly decreases, 

but even with the smallest window, an efficiency of 77.32% can be achieved with, and 76.5% 

without the magnetometer. The difference between these two setups is a little above 1% in 
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efficiency, but the number of features, the energy consumption, and the cost are all increased 

if the magnetic sensor is added to the system. Similar differences can be noticed with the 

AGG extraction mode also. 

The setup where the features were computed using the VL-based extraction, and the data 

from the angular velocity sensor and the accelerometer were used together, also proved to 

be very useful. The feature vectors consisted of 28 different features, and with the largest 

processing window the recognition rate was 86.17%. This extraction mode fails when the 

processing windows are small, since the efficiency with the 80ms size was only 55.8%, and 

the AGG-based features provide higher efficiencies in these cases. 

Training time comparison of the classification methods 

Training time is not a crucial factor for the implementation of a classifier, but it can prove to 

be very important, especially when different combinations of features should be tested. To 

generate comparable data, all trainings were done on the same PC with the next 

characteristics: Intel core i7 3.5GHz processor, 16GB RAM, GeForce GTX 770 video card. 

The computation of the LDA matrices proves to be very fast, and even for the largest 

setup, which contains 144 inputs, less than 1.8s is required. 

The k-NN method does not require any training, since it uses the entire dataset for the 

classification. The shortest, longest, and mean training times for the other classification 

methods are summarized in Table 3.5. It can be stated, that the most time consuming from 

the tested classification methods is the OvA SVM algorithm, since the training of the larger 

setups can last for more than 2 hours, but even the shortest time was almost 1 minute. The 

OvO SVM method proves to be much faster, but the longest time is still above 1 hour, while 

the shortest is 17s. The dimension reduction has a significant impact on the SVM-based 

methods, since it decreases the training time by 93.51% Ñ11.4% for the OvA, and by 92.45% 

Ñ10.79% for the OvO method. Beside the high reduction in training time, caused by the 

LDA, the longest required intervals are still too high for both methods. The training of the 

CT method requires between 0.37-15s, and the LDA method does not reduce the training 

time for all setups, but the longest training was three times shorter than without the 

dimension reduction. The computation of the parameters for the NCC classifiers is very low 

for low dimension setups, but for the largest setups it can last for even 25s. The effect of the 

LDA can be noticed only at the larger setups, and it reduces the maximal time to 2s. The 

training of the LDA-NBC classification method, similarly to the LDA-NCC, lasts between 

a few hundredths and 2s. The training of the MLP classifiers is also very time-consuming. 

The longest interval using 10 hidden layer neurons was 1331.6s. Besides, that even the length 

of only one training is long, to find the optimal setup, multiple trainings are required with 

different neuron numbers in the hidden layer. This significantly increases the required 

training time. The LDA-based dimension reduction has a significant effect on this 

classification method, since it reduces the longest training time to 97.83s, and in average it 
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reduces the training time by 48.43% Ñ34.92%. 

 

Table 3.5: Smallest, highest, and mean required training times of the tested classification 

methods. 

Method Shortest training time Longest training time Mean training time  

CT 0.37s 15.01s 3.41s 

OvA SVM 57.64s 7415.20s 3352.70s 

OvO SVM 16.99s 3791.40s 1414.70s 

NCC ~0s 2.12s 0.24s 

MLP 10.16s 1331.60s 84.81s 

LDA-CT 0.59s 5.30s 1.86s 

LDA-OvA SVM 8.28s 2576.20s 194.2s 

LDA-OvO SVM 2.43s 860.70s 52.38s 

LDA-NCC 0.03s 24.90s 1.64s 

LDA-MLP 6.36s 97.83s 26.71s 

LDA-NBC 0.06s 2.18s 0.34s 

 

Memory requirement comparison of the classification methods 

The required space for the implementation of a classifier is a very important factor, since 

microcontroller-based systems have limited amounts of memory.  

The required number of parameters for the implementation of the NBC, the NCC, and 

the MLP classifiers can be calculated using the number of features and classes. The number 

of hidden layer neurons is also needed in the case of the MLP-based methods. In the case of 

the k-NN, the number of samples in the classes is required, since the algorithm uses the entire 

feature set to determine the class. The required memory for the SVMs and the CTs cannot 

be calculated as a function of the number of features and classes, because the number of 

necessary support vectors in the case of SVMs and necessary nodes in the case of CTs differs. 

For comparison, the required memory spaces were calculated in bytes (1 floating-point 

number is equal with 4 bytes).  

The LDA projection matrices have 10 rows, because 11 classes are used, and the number 

of columns is equal to the number of features. If the number of features is less than 10, the 

number of rows will be equal to the number of features. 

The training of the NCC was performed by calculating the mean values of different 

features for each class, and the highest and smallest feature values were also needed for 

normalization when the dimension reduction was not used. 

For the implementation of MLPs, input ranges, weights and biases are needed. The input 

ranges consist of the highest and lowest values for all inputs, and are used for normalization. 

Two weight matrices are needed to connect the input layer with the hidden layer, and the 

hidden layer with the output layer. The first consists of numHiddenLayerNeuronsĀnumInputLayerNeurons, 

while the second of numOutputLayerNeuronsĀnumInputLayerNeurons weights. Bias values are used in all 
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neurons of the hidden and the output layer. For comparison, based on the convergence in 

efficiency, 10 hidden layer neurons were used for the computation of the required memory. 

The training of the NBC results in a numClassesĀnumFeatures sized array of parameter pairs, 

where the first parameter is the mean deviation, and the second is the standard deviation. 

The memory requirements of the five determinable methods can be seen in Figure 3.5. It 

can be observed that they do not differ significantly. Considerable differences can be noticed 

only with a small number of features, e.g. with using 80 features, all methods require around 

4kbytes of parameters, but with only 10 features the LDA-MLP needs around 1.5kbytes, 

while the NCC only 0.5kbytes, which is three times lower. Generally, the LDA-NCC needs 

the least memory space, only the NCC needs less when the number of features is smaller 

than 40.  

 

 

Figure 3.5: Memory requirement of the classification methods with determinable memory 

consumption. 

 

The k-NN method is a very memory demanding method, since the entire database of 

features is needed for its implementation. In this research, more than 13000 feature vectors 

were used even in the smallest setups, which would result in more 760kB memory space for 

a feature number of 15. 

The highest and lowest required memories for the CT and SVM-based methods can be 

seen in Table 3.6. 

The implementation of the CTs requires the number of nodes (16-bit integer), parents 

(one 16-bit integer per node), children (two 16-bit integers per node), cut points (one 

floating-point number per node), cut types (one Boolean value per node), and cut predictors 

(one 8-bit number per node). Analyzing the results, it can be stated, that the required number 

of nodes and the classification efficiency are inversely proportional. As shown in Table 3.6, 

the achieved smallest needed memory space is 2.03kB, but high deviations can be noticed, 
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and for the setup with most required nodes more than 83kB of storage is needed. The LDA 

has a negative effect on the CT for all setups, and even the lowest required memory is 

6.67kB. In average the LDA increases the required memory space by 60.44% Ñ42.64%. 

 

Table 3.6: Highest and lowest memories required for the implementation for the CT, OvA 

SVM, and the OvO SVM, with and without LDA-based dimension reduction. 

Method Lowest required 

memory 

Highest required 

memory 

CT 2.03kB 83.45kB 

LDA-CT 6.67kB 84.86kB 

OvA SVM 652.36kB 27458.01kB 

LDA-OvA SVM 213.85kB 2358.40kB 

OvO SVM 369.30kB 17913.09kB 

LDA-OvO SVM 106.16kB 1176.95kB 

 

In the case of the SVM-based methods, due to the used 11 classes, the OvA method needs 

11 support vector sets, while numClassesĀ(numClasses-1)/2 sets are needed for the OvO, what 

means 55 sets for the used 11 classes. The support vector sets are made up of different 

numbers of support vectors and a bias value. The dimension of each support vector is equal 

to the number of features, and they also include an alpha value. The obtained results show 

that both the OvA and OvO methods require a very high number of parameters for 

implementation, and thus, are not suitable for application in the developed system. The 

required memory space is less for the setups with higher efficiency rates, and it decreases by 

increasing the size of the processing window, since the classification rates increase. The 

lowest memory requirement, as shown in Table 3.6, was 652.36kB for the OvA mode, and 

369kB for the OvO mode. In some setups, it can be even above 20MB using the OvA mode. 

The LDA has a very positive effect on the SVM classification algorithm, since it greatly 

decreases the required number of support vectors. The tested dimension reduction method 

decreases the number parameters for all setups in the case of the OvA SVM method, with an 

average of 55.91% Ñ27.03%, while for the OvO SVM it reduced the memory consumption 

for 65.29% of the setups. 

3.5.7 Comparison of selected TDFs with FDFs and TDFs with high 

memory requirements 

To explore the capabilities of the applied TDFs, it was reasonable to compare the achieved 

results with recognition rates obtained with FDFs used in the literature. The following FDFs 

were utilized in the feature sets: spectral entropy, spectral energy, magnitude of largest peak, 

frequency of largest peak, median frequency, DC component, median power, and principal 

frequency. Two TDFs, which require the storage of the measurement vectors for their 

computation, were also added to the datasets: standard deviation and correlation between 
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axes. Feature extraction was performed on the sensor axes separately and on the magnitude, 

and the aggregation-based feature reduction was also applied. Classification was done using 

the MLP classifier, which earlier proved to be the most powerful method. 

The obtained results show, that the applied TDFs have better performance in around 60% 

of the datasets in the case of the training data, while the rates are nearly equal on validation 

data. The rates, when the TDFs perform better on training data, are nearly equal for both 

different sampling frequencies and different processing window widths. In the case of the 

validation data, the rates show a rising tendency when the sampling frequency or the size of 

the window is increased. With the smallest frequency or window size, TDFs give better 

results in around 40% of the datasets, while this rate is almost 60% with the largest 

frequencies or windows. Since the number of measurements in the processing window 

increases both with increasing the sampling frequency or the size of the processing window, 

this is a significant result, because the chosen TDFs do not require the storage of the 

measurement values in the window. 

Table 3.7 summarizes the obtained results with MLPs using TDFs and FDFs when the 

highest sampling frequency, 125Hz, was applied. The used abbreviations are the next: TR ï 

training data, VA ï validation data, TD ï time-domain, FD ï frequency domain. 

 

Table 3.7: Achieved classification efficiencies (%) applying extraction based on TDFs and 

FDFs. 
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Dataset 

80ms 200ms 400ms 800ms 

TR VA TR VA TR VA TR VA 

MAG SEP TD-48 74.54 52.43 85.76 59.95 91.27 63.23 96.36 69.97 

FD-60 80.86 44.76 84.89 50.45 88.35 57.41 95.98 58.31 

AGG TD-16 67.38 48.50 73.14 55.40 74.15 55.25 77.37 58.50 

FD-20 61.65 46.45 68.20 53.88 71.50 56.93 76.04 59.62 

GYR SEP TD-48 69.93 62.47 84.09 70.90 84.25 72.86 94.05 76.39 

FD-60 77.61 69.98 82.52 76.29 91.14 78.76 90.14 82.83 

AGG TD-16 62.56 58.03 71.32 65.37 68.51 63.86 74.71 69.21 

FD-20 63.15 60.30 68.97 65.42 70.10 69.55 72.63 71.42 

VL TD-14 56.82 52.60 62.19 58.89 74.81 68.35 84.61 79.39 

FD-18 56.54 52.34 65.60 61.65 73.94 68.56 80.82 74.77 

ACC SEP TD-48 72.90 65.77 84.60 73.83 87.67 76.61 90.75 82.12 

FD-60 76.07 65.08 83.00 72.55 88.17 76.90 94.30 83.11 

AGG TD-16 66.96 63.62 76.42 69.34 77.35 72.95 79.39 74.28 

FD-20 57.74 52.48 67.04 58.94 68.84 66.83 72.34 70.96 

VL TD-14 53.47 53.51 64.08 62.78 77.60 73.50 82.46 79.47 

FD-18 54.22 52.89 62.74 60.82 71.80 72.23 79.12 80.31 

MAG 

GYR 

SEP TD-96 89.80 67.53 94.06 70.71 96.70 72.92 83.85 74.25 

FD-120 92.08 64.55 93.92 70.78 95.98 74.81 99.57 79.06 
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AGG TD-32 79.68 61.44 83.05 64.51 84.76 67.53 85.34 70.99 

FD-40 80.01 68.63 83.79 72.38 84.97 74.95 84.94 77.95 

MAG 

ACC 

SEP TD-96 84.35 68.32 86.41 74.34 96.20 77.25 98.43 83.98 

FD-120 88.11 58.10 92.41 64.63 95.67 69.38 98.87 73.36 

AGG TD-32 75.77 67.86 83.17 71.45 85.05 73.78 86.28 74.79 

FD-40 72.68 56.81 77.01 66.84 80.64 66.48 83.88 70.73 

GYR 

ACC 

SEP TD-96 88.13 76.60 88.80 80.57 95.50 83.25 98.33 84.69 

FD-120 86.13 77.94 89.27 81.64 91.01 84.63 98.63 87.38 

AGG TD-32 74.77 68.64 80.80 74.99 81.24 76.29 81.67 78.00 

FD-40 69.72 66.61 77.59 74.20 80.38 75.79 80.76 76.94 

VL TD-28 67.46 61.31 76.17 71.07 84.08 78.45 91.51 85.61 

FD-36 67.45 62.95 76.90 71.02 80.88 75.10 89.81 82.74 

MAG 

GYR 

ACC 

SEP TD-144 93.98 74.23 93.98 79.11 97.16 81.91 98.70 84.22 

FD-180 93.34 68.63 95.73 74.75 98.30 80.71 98.98 82.51 

AGG TD-48 80.94 69.59 87.01 76.04 88.14 75.95 90.33 78.53 

FD-60 82.32 70.27 84.63 74.83 86.63 75.85 87.42 77.65 

 

The recognition rates achieved with FDFs, just like with TDFs, increase with the 

increasing of the sampling frequency or the processing window width. The highest 

classification efficiency on validation data, 87.38%, was achieved using the gyroscope and 

the accelerometer data together, and applying the SEP extraction mode. It should be noted, 

that, as it can be seen in Table 3.7, the number of applied features is considerably higher in 

the datasets based on FDFs. The average difference between efficiencies obtained on 

validation data utilizing TDFs and FDFs is around 3%, while the highest differences, around 

11%, can be noticed when features are extracted from the measurements of the 

magnetometers.  

Analyzing the classification efficiencies using different feature extraction modes, it can 

be concluded, that the aggregation-based feature reduction is also useful when FDFs are 

applied. The features computed from the accelerometer measurements provide better 

recognition rates using TDFs, but both the gyroscope and the magnetometer give even better 

results with FDFs in the case of the AGG-based extraction. The magnitude-based extraction 

results in similar recognition efficiencies using TDFs and FDFs. 

3.6 Hierarchical -distributed movement classification algorithm 

Since the proposed algorithm in Subchapter 3.5, uses together the features extracted on both 

sensor motes in the classification process, its implementation requires high energy 

consuming radio communication for data transfer between the motes. It is reasonable to split 

the classification algorithm into a hierarchical approach to get a distributed network, so the 

motes can calculate their own movement classes. 

The software architecture of the hierarchical-distributed algorithm can be seen in Figure 

3.6. Difference compared to the algorithm presented in Subchapter 3.5 can be noticed only 
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after the preprocessing part, since error compensation, windowing, and feature extraction are 

done identically. Classification is performed on both motes based on the computed feature 

vectors. Using the proposed hierarchical-distributed technique, only the computed 

movement class is needed to be transferred periodically from one mote to the other based on 

the value of the window shift. The determined classes are combined to get the movement of 

the entire body and arms. Besides that, using the proposed algorithm less data transfer is 

required via wireless communication, the classifiers have less input features and output 

classes, thus, it is more energy-efficient and easier to implement the algorithm on the motes. 

Adding new devices to the system would be also easier with this approach, since only the 

class combination stage on the receiving unit needs to be modified, and the size of the feature 

vector could also become too large in the case of the non-distributed (ND) approach. 

 

Figure 3.6: Software architecture of the hierarchical-distributed approach. 

 

3.6.1 Applied movement hierarchies and classification 

To develop a distributed algorithm in which the two motes can determine their own 

movement type, some classes can be merged by the role of the arm in the given movement. 

For example, classes 1 and 6 can be merged in the case of the right arm, because in both 

cases the right arm is not moving during standing. This way the reduction of the classes can 

be done in four cases, so the total number of classes can be reduced to seven for both arms. 

Merging for the left arm can be done for the classes: 1 and 7; 3 and 10; 6 and 8; 9 and 11. 

For the right arm these cases are: 1 and 6; 3 and 9; 7 and 8; 10 and 11. 
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Two different approaches were tested for the classification hierarchy. In the first 

approach (H1), the movements are equally distributed, all of them are on the same level. The 

first hierarchy can be seen in Figure 3.7.  

 

 

Figure 3.7:  The first applied movement hierarchy. 

 

In the second hierarchy (H2), the movements are split into three levels. The classification 

algorithm uses five distributions to decide which element of the hierarchy matches the actual 

movement. The second hierarchical approach can be seen in Figure 3.8, and the 

corresponding distributions (D) are: 

¶ D1: 1 or 2, 

¶ D2: a or b, 

¶ D3: c or d or e, 

¶ D4: I or II , 

¶ D5: III  or IV. 

For example, the first distribution D1 decides that the actual movement is stationary or not. 

Through these distributions a hierarchical classification can be realized. 

 

 

Figure 3.8:  The second movement hierarchy approach. 

 



CHAPTER 3: MOVEMENT RECOGNITION USING WEARABLE INERTIAL AND 

MAGNETIC SENSORS 

41 

 

For classification, only MLP neural networks were applied, which showed to be the most 

powerful classifiers in Subchapter 3.5. In the case of the first hierarchy, one network is 

applied with seven outputs to determine the class of one arm. Five MLPs, one for each 

distribution, are required for the second hierarchical approach. The network for D3 has three 

outputs, while the rest have two. Depending on the outputs of the distributions, two or three 

networks have to be calculated to get the movement class. The entire feature vectors are used 

as inputs for all networks. 

Class combination is done on the unit which receives the other`s movement class. The 

combination gives one of the eleven classes as the output, but it gives an unknown class if 

the classes are not a valid pair. 

The effect of the LDA-based dimension reduction was not tested, since the dimension of 

the output vector in the case of this method is less than the number of classes, thus, using the 

second approach, most networks would have only one input. 

3.6.2 Performance evaluation 

To provide comparable results, all 17 combinations of used sensor types and feature 

extraction modes were tested. Altogether 68 datasets were constructed to examine the effect 

of the processing window size. The signals measured using the 125Hz sampling frequency 

were utilized during feature extraction. 

Identically as in Subchapter 3.5, data from five of the nine subjects were used for the 

training of the classifiers, while the data from the rest of the subjects were utilized for 

validation. During the construction of the training and validation datasets, the data from the 

merged classes were used in equal quantities. The training and the validation of the classifiers 

were done using the datasets of the two arms together, thus, the same classifier is later used 

on both arms. 

The efficiency of the MLPs was also tested with 1-15 neurons, and the same 

configurations were applied as during the testing of the non-distributed approach. Based on 

the obtained results, the required number of hidden layer neurons to achieve 97% 

convergence in efficiency on validation data can be seen in Table 3.8. The first hierarchy 

requires between 6 and 10 hidden layer neurons, while the distributions in H2 mostly need 

1 to 4 neurons to achieve convergence. 

 

Table 3.8: Required number of hidden layer neurons for convergence. 

Network in the tested 

hierarchies 

H1 D1 D2 D3 D4 D5 

Required hidden layer 

neuron number 

6-10 1-3 1-2 2-4 1 1-3 
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In the further comparison, the setup with the highest classification efficiency on 

validation data was used.   

Efficiency comparison of the two movement hierarchies 

The obtained results on training and validation datasets using the H1 and H2 approaches for 

the different combinations and processing window widths can be seen in Figure 3.9 and 

Figure 3.10, respectively. 

Analyzing the obtained efficiencies, the two hierarchies provide similar results. The 

second hierarchy is better in nearly 57% of the datasets in the case of training data, while in 

around 67% of the datasets H1 gives higher rates for validation data. The average absolute 

difference is 2.14% for training and 1.76% for validation data. 

Comparing the achieved classification efficiencies with results obtained with the non-

distributed approach, it can be also observed that the ND outperforms both hierarchical 

approaches, since it provides better results for all datasets both in the case of training and 

validation data. The average difference is around 25% compared to both hierarchical 

approaches for both data types, with a standard deviation of Ñ10% for training and Ñ7% for 

validation data. 

 

 

Figure 3.9: Achieved classification efficiencies on training and validation data using 

different processing window sizes with the H1 approach. The horizontal axes show the 

feature extraction mode in the first row, the required feature numbers in the second row, 

and the used sensor types in the third row. 
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Figure 3.10: Achieved classification efficiencies on training and validation data using 

different processing window sizes with the H2 approach. The horizontal axes show the 

feature extraction mode in the first row, the required feature numbers in the second row, 

and the used sensor types in the third row. 

 

Efficiency comparison of the tested processing window sizes 

The increasing of the processing window width results in the increasing of the recognition 

rates. Similar improvements can be noticed in the case of the two tested hierarchies. The 

average differences between recognition rates using the largest and smallest window widths 

are the following: 18.49% Ñ8.91% (H1) and 18.54% Ñ9.97% (H2) for training data, 16.18% 

Ñ7.06% (H1) and 17.46% Ñ6.86% (H2) for validation data. 

The most significant difference can be noticed for the configurations where the 

magnitude signals of the ACC are utilized with or without the GYR data. For these 

configurations higher than 25% increasing can be observed for both training and validation 

data and for both approaches. The smallest increase can be noticed in the configurations 

where the MAG or the GYR features are applied, and the aggregation-based extraction is 

used. For these setups the increase is mostly below 10% for both dataset types. 

Efficiency comparison of the tested feature extraction modes and sensor combinations 

Analyzing the results on validation data, the lowest efficiencies can be achieved using only 

the MAG sensor with the AGG extraction mode. The recognition rates are around 30% with 

the largest processing windows, and slightly above 20% with the smallest windows for both 

hierarchies. The inertial sensors alone provide the highest results with the SEP mode, which 

are around 55% using the GYR and around 66% using the ACC in the case of the largest 
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processing window. Applying the smallest window, only the ACC with the SEP extraction 

gives higher results than 40%, which is 46% for both approaches. 

Adding the magnetic sensor to the inertial sensors increases the efficiencies. The highest 

improvement, around 10%, can be noticed for all window sizes in the case of both hierarchies 

when the ACC with AGG features are used, and utilizing the GYR with SEP features only 

in the case of H2. For the other setups between 2-5% improvement can be noticed. Using the 

two inertial sensors together provides almost identical results for the two hierarchical 

approaches. In the case of the smallest window size, the AGG and the VL modes give only 

around 35%, while with the SEP mode the recognition rates are slightly under 55%. 

Applying the largest tested processing windows, the highest results, slightly above 70%, can 

be achieved using the SEP mode, while the VL and the AGG modes provide around 62% 

and 45%, respectively. 

The highest classification efficiencies were obtained with the fusion of the three sensor 

types. The SEP mode in the largest window provides the best results, 75.76% with H1 and 

72.05% with H2. Using the smallest windows, the efficiencies are much lower, 58.43% with 

H1 and 55.11% with H2. The AGG extraction mode, which applies three times less features, 

provides only around 50% with the largest window size, and nearly 41% using the smallest 

window. The AGG-based results are around 5% higher than when the ACC and the GYR 

are used without the MAG. 

Memory requirement comparison of the proposed hierarchies 

The required memory for the implementation of the hierarchical-distributed and the ND 

approaches on one unit can be seen in Figure 3.11. The number of hidden layer neurons 

during the computation were the following: H1 ï 8, D1 ï 2, D2 ï 2, D3 ï 3, D4 ï 1, D5 ï 2, 

ND ï 10. The results show that for the implementation of H1 less memory is needed than in 

the case of the ND approach, since the movements need to be classified into fewer classes, 

which reduces the size of the ANN. It can be also noticed that H2 is the most memory 

consuming of the three methods, which requires nearly the double size of memory needed 

for H1. 
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Figure 3.11: Memory requirements for the implementation of the classifiers. 

 

3.7 Comparison of time- and frequency-domain analysis 

Since in the proposed algorithms only TDFs with low memory and computation 

requirements were applied, it is important to compare the capabilities of the two extraction 

modes on the collected measurement data. 

3.7.1 Applied time-domain features 

TDFs are computed using the measurement signals from the sensors. Their main advantage 

is the easy implementation on embedded systems, since there is no need for any 

transformation. Many features also do not require the storage of the measurement values in 

the entire processing window. Their disadvantage is that they do not provide direct 

information about frequency components in the signals. The applied TDFs were the 

following: 

¶ MAV 

¶ MAX 

¶ MIN 

¶ NSSC 

¶ NZC 

¶ RMS 

¶ Standard deviation (STD): The standard deviation in a processing window can be 

defined as in (3.18). 

 34$
В Ӷ

, (3.18) 

where ὼӶ is the average amplitude value in the processing window. 




































































































