
University of Connecticut
DigitalCommons@UConn

Doctoral Dissertations University of Connecticut Graduate School

8-19-2013

Multi Scale Interactions in Biological Motion
Perception
Zsolt Palatinus
University of Connecticut - Storrs, zsolt.palatinus@uconn.edu

Follow this and additional works at: http://digitalcommons.uconn.edu/dissertations

Recommended Citation
Palatinus, Zsolt, "Multi Scale Interactions in Biological Motion Perception" (2013). Doctoral Dissertations. 228.
http://digitalcommons.uconn.edu/dissertations/228

http://lib.uconn.edu/?utm_source=digitalcommons.uconn.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.uconn.edu/?utm_source=digitalcommons.uconn.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu?utm_source=digitalcommons.uconn.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/dissertations?utm_source=digitalcommons.uconn.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/gs?utm_source=digitalcommons.uconn.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/dissertations?utm_source=digitalcommons.uconn.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.uconn.edu/dissertations/228?utm_source=digitalcommons.uconn.edu%2Fdissertations%2F228&utm_medium=PDF&utm_campaign=PDFCoverPages


Multi Scale Interactions in Biological Motion Perception

Zsolt Palatinus, M.A.

University of Connecticut, 2013

This dissertation investigates the potential contribution of fractal fluctuations of head 

sway in the time evolution of visual recognition in biological motion perception. The first 

experiment found no difference in recognition times when point light display (PLD) activities 

are shown either from a fixed or a moving point of observation. The second experiment, 

using head tracking, multifractal analyses, and geometrical manipulations in the PLDs found 

that (1) the multi-scale fractality of head sway is different before and after recognition, and 

(2) the time-evolution of the multifractal spectra predicts recognition. The third experiment 

manipulated both the geometrical qualities of PLDs and the context of the presentation (e.g., 

showing the PLDs multiple times, priming the PLDs with congruent or incongruent images 

of objects, and adding contextual changes). In all cases, the time-varying multifractal 

structure of head sway predicted changes in visual perception, in particular, the transition 

from exploration to recognition.  Event history analyses indicated a reliable contribution of 

the width of the multifractal spectrum width to the evolution of recognition. Despite a wide 

range of geometrical and contextual manipulations on the PLDs, multi-scale interactions 

remained a strong index of the self-organization of biological motion perception.
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Multi-scale Interactions 1

Information is shaped by the mutuality of perceiver and environment

Emission theory (Empedocles, Plato, Euclid, Ptolemy) proposed that visual perception is 

accomplished by rays of light emitted by the eyes. Intromission theory (Aristotle, Galen, 

Alhazen), in contrast, posited that visual perception comes from something representative of 

the object entering the eyes. These competing ancient ideas represent two ways of trying to 

understand vision. The former approach seeks an explanation in looking at processes 

generated by the organism, the latter suggests that visual perception is best explained by 

processes coming from the environment. A third perspective, pursuing an explanation in the 

interaction of processes generated by both sides was recognized early on in the history of 

studying perception (Reid, 1785; Mill, 1843; James, 1890) but it was taken into serious 

consideration by Gibson (1966, 1979). The interactive approach is grounded in the 

realization that there is very complex and rich structure in both the electromagnetic radiation 

reflected from surfaces and within the organism acting in order to detect meaningful and 

reliable patterns in the radiation. Rather than attributing the essence of visual perception to 

either side, this third approach seeks explanations in terms of the interaction of the complex 

patterns in the Organism-Environment system (Dixon, Holden, Mirman & Stephen, 2012; 

Stephen, Anastas & Dixon, 2012).

In ecological optics (Gibson, 1979), information is available in the optical distribution 

but it has to be attended and it can be clarified to various levels of detail. Attention and 

clarification are dependent on the observer's intentions, capacities and behavior.  What 

matters to the animal is not inferred from summing up local intensities, tracing contours or 

point trajectories, rather, it emerges from an unbroken chain of organism-environment 

interactions  (Reed, 1996; Turvey, Shaw, Reed, & Mace, 1981). Visual perception and 

perception in general are ways in which living systems situate themselves with respect to the 
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actualities of their surroundings. Albeit a rather special type of connection to the world, 

visual perception is interwoven within all other processes in which the organism continues to 

exchange matter and energy with its environment. This dissertation seeks to establish explicit 

connections between visually guided behavior and the multi-scale flux of energy patterns 

around and within the perceiver. 

The Gottliebian framework

Conceptual support for vision being interactive and nested within all other life processes 

comes from Gilbert Gottlieb's (1998, 2000) theory of probabilistic epigenesis. This theory 

describes the development of structures in a living system in terms of bidirectional 

relationships among four large scales of organization (genetic, neural, behavioral and 

environmental, see Figure 1). In the explanation of structural changes, the theory of 

probabilistic epigenesis shifts the focus from distinguished scales or localities to their inter-

level relations, from traditional causal explanations to the relationships between levels of 

organization both within the organism and at the borders of exchange with the environment 

(Valsiner, 2007). The parallel to be stressed here is that Gottlieb's theory denies that higher 

level behavioral and somatic traits can be traced back to either genes or nurture; it also 

implies that visual awareness is not a consequence of “processing in the brain” or “some 

geometrical property of the environment”.  Gottlieb's model deals with a much larger class of 

phenomena, the overall unfolding of living systems. Visual perception can be considered as a 

subset of the original model, nested within the totality of life-sustaining processes. This is not 

an extension or an addition to the original model; rather, it is an expansion that shifts the 

focus to the interacting levels that may play a role in the self-organization of visual 

awareness. Figure 2 depicts a subset that includes four levels of organization representing the 
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perceptual system of an organism surrounded by ambient optic flow (posture, head, eye and 

light). As in the original model, the arrows represent the flow of influences among the levels. 

The levels are characterized by fluctuations that take place in the perceptual system and in 

the optical distribution. Bi-directionality entails that all levels are reacting to and forcing all 

other levels above and below. Thus, fluctuations on any given level reflect multi-scale 

interactions among levels, participating parts and processes. When a rich enough 

measurement is taken somewhere in this system, the fluctuations of the values bear marks of 

the changes in participating levels. Depending on the frequency and length of observation, 

some interrelations may be captured and tested for their contribution to other relations. This 

is a massively inter-dependent system of impredicative relations in which salient, observable 

behaviors can often be the result of various non-obvious factors distributed throughout the 

contexts of the participating processes. Among the concepts that make this theory well-suited 

for the ecological approach is the emphasis on rejecting the idea of privileged scales. Any 

event within the organism-environment system is contingent upon both small constituent 

events acting “from below” and larger contextual events acting “from above”. Moreover, the 

interpretation of the organismic and environmental processes as connected by cascades of 

energy dissipating through the system offers alternative ways of studying perceptual and 

cognitive behavior. The foundation for this inquiry is the hypothesis that the metabolism of 

energy gradients patterned by structures and processes is the supportive basis for life and 

behavior, including perception and cognition (Turvey, Shaw, Reed, & Mace, 1981). The 

fluctuations, inhomogeneities of measured intensities, always reflect some sort of energy-

matter exchange regardless of whether they originated in the environment or within the 

organism. It is the seamless translation of diffusive energy flow from “outside-in” and 
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“inside-out” that feeds self-organizing non-linear processes. The last couple of decades in 

various fields of science concluded that the fluctuation of biological processes are often best 

characterized as fractals. For example, heartbeats (Peng, Havlin, Stanley, &  Goldberger, 

1995), posture (Duarte & Zatsiorsky, 2001), DNA (Peng, Buldyrev et al., 1994), finger 

tapping (Lemoine, Torre, & Delignières, 2006) and human gait (Hausdorff et al., 1996) were 

shown to exhibit fractal fluctuations.

Multifractality

Fractality essentially means a lack of a characteristic scale and a nesting of constituent 

processes. The abundance of 1/f noise and fractal scaling in measurements taken on natural 

systems indicate interdependencies analogous to the ones warranted by Gottlieb's model. 

Since the irregularities of natural system's fluctuations are the consequence of bidirectional 

influences on very many simultaneously running and interacting processes, traditional 

dynamical analyses that aim to reduce the dynamics onto a small number or governing 

functions or single exponents cannot capture the complexity at hand. It has been shown 

repeatedly, that the complex structure of fluctuations in natural systems is best characterized 

by multiplicative cascade dynamics (Ivanov et al., 2001; Ihlen & Vereijken, 2010, Stephen et 

al., 2012). Multifractality is a consequence of multiplicative cascade dynamics. Visual 

perception requires structured optical distribution paired with a structured neural and 

muscular behavior from the organism. In recent years, a growing body of research suggest 

that both the structure of the optical distribution and the structure of fluctuations of the visual 

perceptual systems are also best characterized as multifractal.  Let us review briefly the 

levels of Figure 2 focusing on recent findings emphasizing multifractal structure of each 

level. 
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In natural scenes the light coming from the sun or other light sources gets scattered by 

objects and surfaces of various size, ranging from particles much smaller than the wavelength 

of the light up to the size of mountains. The result of this scattering is a very rich and dense 

structure that “fills up” the illuminated environment to the degree that every point becomes 

an “intersection of rays coming from all directions” (Gibson, 1979, p.50). Scattering takes 

place when the electromagnetic wave (light ray) encounters an obstacle or non-homogeneity 

such as a surface, or a particle. The light wave perturbs the obstacle periodically by 

interacting with the electron orbits of its constituent molecules. The resultant oscillation is 

manifest as a source of electromagnetic radiation in its own right and it creates the scattered 

light. As has been shown recently (Hahn, 2009), scattering is much more than “bouncing off” 

the surface of obstacles; a rather complex interaction takes place on the atomic level between 

the light and the scattering particles. As a result of these interactions, scattered light is 

inhomogeneous in intensity over time and its fluctuations are non-Gaussian (Ding, Wang, 

Nguyen, Boppart, & Popescu (2008). Recent work has shown that the nature of this 

fluctuation is best interpreted using multiplicative cascade modeling (Shayeganfar, Jabbari-

Farouji, Movahed, Jafari & Tabar, 2009). These studies strongly suggest that the “dense 

structure” that fills up the optical distribution is characterized by multiplicative cascades. 

If we now step up to a higher level and investigate the properties of the “arrested” light in 

images that are captured by optical devices, we may see that natural images retain the 

complex multi-scale structure of the fluctuations that created them. This is evidenced by, for 

instance, the power-law behavior of the power spectrum (Field, 1987) that yields scale 

invariant two-point correlations in contrast. Various ways of approximating the multifractal 
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structure of images has been shown to provide a more complete description of visual scenes 

(Nevado, Turiel & Parga, 2000).

When engaged with patterns of the ambient optical distribution or with recorded images 

of it, eyes are never at rest. While scanning the optical patterns, eye movements include 

larger and smaller saccades, slow drifts, and a high frequency tremor with an amplitude 

smaller than 1' (Ratliff & Riggs, 1950; Steinman, Haddad, Skavenski, & Wyman, 1973). 

How much these nested movement scales contribute to visual awareness has been debated by 

researchers ever since the richness of fixation structure was discovered. One way to study the 

contribution of eye movements is to control for them by stabilizing the eyes during 

perceptual tasks. Early research in stabilized conditions (Ditchburn & Ginsborg, 1952; Riggs 

& Ratliff, 1952; Yarbus, 1967) showed that over a period of several seconds, images tend to 

fade away. In other words, with long stimulus presentations, contrast sensitivity seems to get 

reduced dramatically especially in low spatial frequencies (Koenderink, 1972). With brief 

presentations (500 – 1000 ms), researchers found no significant effect of image stabilization 

on either acuity or contrast sensitivity (Keesey, 1960; Tulunay-Keesey & Jones, 1976). In 

visual discrimination tasks, however, as it has been shown recently (Rucci & Desbordes, 

2003) percentage of correct responses are significantly lower in stabilized conditions than in 

the presence of natural eye movements even when the stimulus was presented for 500 ms. 

This suggests that in visual tasks, such as discrimination or recognition, eye movements 

contribute to visual experiences. In other words, activity on the scale of tremor might be just 

as necessary to visual recognition as large scale exploratory saccades and movements of the 

head, trunk and body.



Multi-scale Interactions 7

The nested fluctuations of smaller and larger saccades have been shown to exhibit 

multifractal structure in various visual tasks (Aks, Zelinsky & Sprott, 2002; Shelhammer & 

Joiner, 2003; Stephen, Boncoddo, et al., 2009). Moreover, vision related somatic fluctuations 

are not exclusive to eye movements. Gibson's (1966) suggestion to consider the senses as 

perceptual systems instead of as separate stimulation-specific mechanisms is now supported 

by a large body of research. Eye movements are nested within head sway, and head sway is 

nested within postural sway. Both head movements and postural sway (upright and seated) 

are affected by the visual environment and play their role in active exploration of the optical 

patterns. Both head sway and postural sway exhibit multifractal structure (Morales & 

Kolaczyk, 2002; Hermann, 2005; Palatinus, Kelty-Stephen & Dixon, 2013). Subtle 

fluctuations in either seated or standing posture and head sway may moderate the effects of 

optical energy arrays upon the perceptual system in various visual tasks (Paulus, Straube, & 

Brandt, 1984; Bronstein & Buckwell, 1997; Ehrrenfield, Guerraz, Thilo, Yardley, & Gresty, 

2003), even in visual search tasks (Stephen & Mirman, 2010; Stephen & Anastas, 2011).

Fractal fluctuations seem to characterize every aspect of visual perception from the 

scattering of light, the patterns in the optical field, through eye movements to the movements 

of the body supporting those eye movements. In other words, visual awareness entails a rich 

dynamics of interactions among the levels of organization of the living system and its 

environment. The flow of energy on all participating scales is reflected by fluctuations – 

seemingly random changes in intensities. Depending on the resolution of the measurement 

taken at any site of these interactions, many of the interconnected power-law relationships 

are present in the data. It is important to emphasize that individual readings represent arrested 

states of dynamical systems. However, submitting subsequent data series to fractal analyses 
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may open a window on transitions tied to observable changes in perception.  Recent findings 

support the hypothesis that time-dependent changes in the overall fractal scaling may reflect 

transitions in perception or cognition (Ihlen & Vereijken, 2010; Dixon, Holden, Mirman & 

Stephen, 2012). What visual search, recognition, cognitive problem solving, remembering, 

way-finding and judging properties of the environment have in common is that the resolution 

of these perceptual or cognitive problems is preceded by exploration. Exploration for a self-

selected or an instructed goal or solution has been connected to the concept of intermittency 

(Ihlen & Vereijken, 2010). Intermittency is a concept that captures the emergent change in 

behavior quantitatively, through the analysis of the inhomogeneously distributed variability 

within the recorded response series. In these analyses emergent change is often indexed by 

changes in the width of the estimated multifractal spectrum. These emergent changes are 

thought to signal wide range shifts in the nested perceptual or  cognitive system that is in the 

business of searching or exploring patterns in order to find solutions or “meaning” in its 

complex environment. This suggests that the amount of change can also predict the time of 

qualitative changes, such as the shift from exploration to recognition.

This dissertation aims to approach the problem of visual recognition in ways that are 

consistent with Gottlieb's requirements for bidirectional, across-level interactions and 

Gibson's requirements for organism-environment mutuality. The central hypothesis of this 

work is that the registration of specific patterns of energy distributions manifests in 

multifractal, scale-invariant fluctuations of exploratory movements during the time course of 

visual exploration and the changes in the quantitative structure of those fluctuations 

contribute significantly to recognition. In order to test this hypothesis, multifractal analysis 
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was applied to time series collected from head sway while participants tried to identify 

various human behaviors depicted in point-light displays. This experimental task, developed 

for studying biological motion perception, has several advantages for present purposes.

Biological motion perception

The term biological motion was introduced by Johansson (1973) to refer to visual motion 

patterns generated by moving terrestrial bipeds and quadrupeds. In order to demonstrate the 

sensitivity of human perceivers to biological motion patterns, Johansson developed a 

minimal information display, the point light display (PLD). PLDs are film, video or 

computerized 2D displays that reduce the recorded motion of an animal to the motion of 

small dots—typically indicating the major joints—against a homogeneous background. 

Human perceivers are relatively fast and reliable in identifying the animal being presented as 

well as providing correct descriptions of many aspects of the observed actions. For example, 

from human PLDs, observers can identify gender (Barclay et al., 1978), emotions (Dittrich et 

al., 1996), familiar individuals (Cutting & Kozlowski, 1977), their own motion patterns as 

distinct from someone else's (Beardsworth & Buckner, 1981). They can estimate the weight 

of lifted objects (Bingham, 1993) or whether the presented human was carrying a baby or 

groceries (Hodges & Lindheim, 2006).  However, perceivers’ performance is limited by the 

number of dots (Neri et al., 1998) and the orientation of the display. Upside-down 

presentation yields almost no recognition (Sumi, 1984; Shipley, 2003).

Despite these limitations, perception of biological motion remains remarkably robust 

even in severely impoverished or ambiguous conditions. For example, very short duration 
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presentation (Johansson, 1973), blurred dots (Ahlstr mő  et al., 1997) or embedding the PLD 

in an array of dynamic noise dots (Bertenthal & Pinto, 1994) still allows human observers to 

make correct judgments. Beintema and Lappe (2002) reported reliable performance even 

when the dots appeared randomly along the line of the limb segments in each frame of the 

animation. Moreover, newborns and infants show more interest in PLDs of humans than 

random dot motion (Bertenthal et al., 1984; Simion et al., 2007). Other species (e.g., cats, 

Blake, 1993; chicks, Vallortigara et al., 2005) have been reported to perceive biological 

motion. 

Traditionally, biological motion perception has been treated as a very complex mapping 

problem. A general assumption is that the visual system takes the individual moving dots of 

the 2D display as a starting point and integrates the dots into movement trajectories, then 

binds the trajectories to form body segments. The body segments finally get integrated into a 

single coherent percept of a moving animal. However, since there is no unique mapping from 

2D dot trajectories to a 3D model, biological-motion perception theories are forced to find 

ways to reduce the indefinitely many solutions to the correct ones in order to keep the 

assumption of integration intact. Candidate solutions for this reduction reflect the historical 

choices: Either mental processing (organism) or invariants of projective geometry 

(environment) are proposed. Reducing the number of possible 3D interpretations through 

mental processing is usually aided by positing some kind of preexisting knowledge. The 

required knowledge may include anatomical constraints (Hoffman & Flinchbaugh, 1982; 

Webb & Aggarwal, 1982) or a set of encoded patterns (sequences of snapshots of body 

movements) that some neural processes compare to the visually perceived patterns (Giese & 

Poggio, 2003). Others tried to decompose the PLD according to a set of rules that stem from 
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biomechanical and functional constraints that are stored in memory (Troje, 2002). Proposed 

solutions based on projective geometry looked for invariants in the geometry of the 

projections that may reduce the ambiguity. Example invariants of projective geometry that 

were hypothesized to reduce 3D to 2D ambiguity are the cross ratio and differential motion 

parallax (Cutting, 1986). A complete set of invariants that would disambiguate PLDs has not 

been suggested so far. 

Point-light displays were chosen as visual display for testing multifractal 

interdependencies as predictors for recognition for a number of reasons. First, recognizing 

biological motion within a PLD is a phenomenon equally challenging for both mentalistic 

and geometrical hypotheses. Most visual “cues” that are commonly suspected by cognitivist 

theories to provide a basis for visual processing are absent from PLDs. There are no depth 

cues, motion parallax is ambiguous, binocular disparity plays no role, there is no information 

about contrasts, edges, textures, surface gradients, supporting surface or horizon. Since 

pictorial information is not present, perceivers do not recognize PLDs when looking at single 

frames and their robust performance on the movies requires dynamical theories of biological 

motion perception where besides location and trajectories, time is accounted for. A further 

advantage of this particular stimulus paradigm is that it is relatively easy to manipulate 

geometrical qualities in order to create versions of the display that may provide additional 

hints and evaluation points for competing theories. In this dissertation, projection related 

manipulations included (1) orthographic projection, (2) projection to a plane that is parallel to 

the supporting surface (top view), (3) scrambling the points, and (4) introducing a moving 

point of observation.

Manipulations at the level of projective geometry
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(1) Orthographic projections are a subset of parallel projections where the projector lines 

intersect the projection plane at right angles. Because the projector lines are parallel there is 

no diminution of projected size with distance. Moreover, differential motion parallax, an 

important invariant of the optic flow is missing or rather creates ambiguity in parallel 

projections (Cutting, 1986, p.191). A careful comparison of polar projection vs parallel 

projection in biological motion perception remains to be done. Here, parallel projection was 

chosen to demonstrate the robustness of recognition even in the absence of the candidate 

invariants of projective geometry.

  (2) Another perspective-related manipulation was rendering PLDs from viewing angles 

intersecting the supporting surface at right angles, providing a top or bottom view of the actor 

(parallel projection does not discriminate between top/bottom or front/back). Pilot trials 

showed that PLDs observed from the top view were more difficult to recognize than from 

any other viewing angle. Perhaps this finding is related to the inversion effect (Sumi, 2000; 

Pavlova & Sokolov, 2000) insofar as being less frequently experienced in natural scenes. In 

Experiment 2b, PLDs starting from the top view and having the camera descend to a side 

view were used to create situations in which recognition gets delayed to a varying extent.

(3) In order to establish a baseline at which no recognition occurs, a set of PLDs with 

scrambled points were created. There are different methods to break the original 

configuration. For example, Hirai, Kaneoke, Nakata, & Ryusukekakigi. (2008) shuffled the 

dots in such a way that each dot retained its own trajectory but their initial positions were 

randomly switched. In the present work, each dot representing a joint was displaced from the 

corresponding joint by a random distance between zero and a leg-length in a random 

direction. In the resultant PLDs, the dots still trace the movements of the corresponding joints 
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but not at the location of the joint. In pilot work, this manipulation made recognition nearly 

impossible.

(4) Traditionally, PLDs are recorded/displayed according to a fixed point of observation. 

Orientation (Sumi, 1984; Pavlova & Sokolov, 2000) and viewing angle with respect to the 

observer (Cutting & Kozlowski, 1977) have been manipulated between trials but PLDs are 

usually presented from an unchanging perspective. In real-life situations, however, making 

sense of ongoing events in the environment is hardly any more difficult from a moving point 

of observation. Rather, a changing perspective may reveal more invariant structure in the 

optic array (Runeson, 1988). For obvious reasons, animals have to be aware of the presence 

and actions of other creatures even while moving about their goals. For example, part of 

playing a team sport successfully is being able to recognize the other players' actions, 

intentions and what the actual situation affords even while the point of observation is being 

altered by the perceiver's own movements. 

PLD presentations with changing perspective can be prepared by assigning the plane of 

projection to virtual camera movements. Obviously, this technique does not make the 

observer move with respect to the scene, rather, it is analogous to moving the camera in 

cinematography (tilting, panning, dollying or trucking). A comparison between stationary and 

moving points of observation in cinematography was pioneered by Hochberg (1986). In 

movies and animated movies various camera movements do not impair perception; rather, the 

technique can be used skillfully as a story-telling tool, enhancing the viewer's engagement in 

the scene in artistic ways (Mitry, 1990). The result is a projection that is observed from a 

more or less stationary observation point but the projection itself is a consequence of a 

changing perspective. However, superimposing another source of movement on top of the 
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joint movements is not without profound effects on the 2D projection. For example, camera 

movements in the same global direction as a marker’s movement may slow down, cancel or 

reverse the movement of the corresponding dot with respect to the plane of the projection. 

Camera movements in an opposing direction may accelerate the dots. Camera movements 

orthogonal to the movement of a marker may change both the speed and the direction of the 

corresponding dot. For theories that base the perception of biological motion on some version 

of 2D to 3D mapping, introducing a changing perspective makes the transformation more 

difficult. In order to subtract the changes that are due to the camera movement from the 

changes that are due to the motion of the PLD requires minimally that one is able to 

differentiate between them. Previous studies that applied projective geometry or trajectory 

analyses on the dot movements routinely use displays rendered from a fixed point of 

observation. One study that provided moving points of observation showing PLDs of humans 

performing gymnastic activities (Jarraya, Amorim & Bardy, 2005) found that, after the PLD 

disappeared abruptly, anticipation of the upcoming motion pattern was not affected by either 

panning or tracking movements of the virtual camera. Unlike the first experiment reported in 

the present work, the authors did not test for possible differences in recognition or response 

times on a variety of PLD animations. Experiment 1 began simply by testing whether a 

moving point of observation interferes with recognition or response time in biological motion 

perception using a relatively wide variety of human motions. There was no motion tracking 

and fractal analysis; Experiment 1 served as a demonstration that recognition of humans 

carrying out all sorts of activities in PLDs is fast and accurate even in the absence of most 

visual “cues” or candidate invariants of projective geometry, and that nesting the point-light 

trajectories within camera movement induced changes does not slow recognition. 
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Experiment 1

The first experiment was designed to test the hypothesis that nesting the original PLDs' 

motion trajectories within changes in velocity resulting from the camera's movements will 

not impair biological motion perception and, despite the nested structure of the trajectories, 

recognition will require the same average amount of time. This hypothesis is based on both 

real-life and cinematographic studies of motion perception. Even though the hypothesis may 

match a common sense expectation, it poses challenges to both visual processing (organism-

generated) and projective geometrical (environment-generated) theories of biological motion 

perception. The challenge to both types of theories lies in the superposition of another source 

of motion on the existing trajectories. Within the information processing framework, 

extracting biological motion from a more complex trajectory pattern requires more 

computation and resources that is expected to lead to more failures in recognition and longer 

response time. For the theories that work their way towards recognition from the invariants 

of projective geometry, the nested trajectories may not necessarily result in failures or longer 

response times but surely they may demand more undiscovered invariants in order to explain 

PLD recognition from a continuously changing perspective. 

Method

Twenty two students (14 females, 8 males) from the University of Connecticut 

participated in the study for partial credit in an introductory psychology course. Participants 

ranged in age from 18 to 22 years. Each of them had normal or corrected to normal vision.

Ten pairs of animations of PLDs of humans carrying out everyday actions (see Table 6 
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for details) were prepared.  Every action was rendered both from a fixed camera position and 

from a curvilinear moving trajectory orbiting around the target with the camera looking at the 

center of the action space. Distance from the target was kept the same in both conditions. 

Animations were randomly selected from a set of 10 with the constraint that each set 

contained five animations rendered from fixed and five animations rendered from moving 

point of observation. Animations were presented to the participants seated in front of a laptop 

computer (with an eye-to-screen distance roughly 60 cm). Observers were instructed to look 

at the animations and begin an oral description of what they saw on the screen as soon as 

they formed a stable impression. Regardless of the length of individual animations (mean 

length 10 s) they were looped so that each presentation lasted for 30 seconds for all 10 

animations. Time and fidelity of the responses were determined from audio recordings that 

were started and stopped in sync with the PLDs in each trial.

Results

Sound recordings were obtained from 220 trials. Only 8 answers were missing or wrong 

(all of them were first trials). All descriptions correctly identified a human moving on the 

screen, 201 were correct descriptions, and 11 were unusual but acceptable approximations of 

the action (e.g., “strange tribal dance” was considered acceptable for imitating an ape). An 

independent samples Welch t-test indicated no significant difference in response time (in 

seconds) between fixed perspective (M = 7.41, SD = 4.87) and moving perspective trials (M 

= 7.40, SD = 3.59), t(210) = 0.02, p = .98. There were differences in how fast a particular 

animation elicited a response, ranging from an average 4.5 s for the easiest to an average of 

12 s for the most difficult, averaged over all participants. Figure 3 shows the interaction of 
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PLDs and camera conditions. There were also differences in the average response time across 

participants, ranging from 4 s to 14 s.

Discussion of Experiment 1

Experiment 1 established that one type of continuously changing perspective (orbiting 

around the target in the horizontal plane) does not impair or slow down the perception of 

biological motion.  In 96% of the trials, participants recognized the PLDs. Correct responses 

were given in seven seconds on average. Response time differences were shaped by 

individual factors (how quickly a given person arrived at the recognition on average) and 

how difficult a given PLD activity was to perceive correctly. Experiment 1 also tested the 

viability of recorded oral responses in a recognition task. In most cases, the responses were 

precise, one or two word utterances, sometimes followed by the addition of more minor 

details. It became clear however, that it was worth emphasizing in the instructions to start 

speaking only after arriving at a confident judgment (if only to make the coding of the audio 

data less laborious).

Experiments With Motion Analysis

The second experiment investigates (1) if the multi-scale fractality of head sway 

undergoes a change that is related to recognition, and (2) if the time evolution of the 

multifractal spectra predicts recognition. Experiment 2a repeats Experiment 1 with head 

tracking and fractal analyses; Experiment 2b introduces disruptions of the PLDs (e.g., 

vertical camera movements starting from a top view, scrambled point trajectories). The third 

experiment applies manipulations to both the geometry of PLDs and to the perceiver's 

experience, such as showing the PLDs multiple times (a), priming the PLDs with congruent 

or incongruent images of objects (b), and adding contextual changes (c). In Experiments 2 
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and 3, fractal analysis serves as the method to investigate the underlying multi-scale  

processes.

General methods and analyses for Experiment 2 and 3.

All PLDs used in the experiments were prepared from motion capture data collected on 

human subjects performing various actions. The data files were obtained from the Carnegie 

Mellon University Motion Capture Database. The motion capture data for each PLD was 

animated and rendered using Blender Open Source 3D graphics application. Each display 

used 13 markers attached to the major joints (shoulders, elbows, wrists, hips, knees, and 

ankles) and the head. The 13 markers were represented as small (15 pixel diameter) black 

discs against a homogeneous white background, with no information about the supporting 

surface or the horizon. The discs were rendered in orthographic projection to eliminate 

differential motion parallax and size differences between the discs being closer or further 

away from the camera. Where not stated otherwise, the PLD animations were projected on a 

rear-projection screen (DA-LITE, Indiana) using MPlayer movie player application.  For 

each trial, sound recording was started and stopped simultaneously with the visual displays 

onset and offset times. The recordings were coded manually to determine both the time and 

content of the oral responses. If not stated otherwise, instructions were to give oral 

descriptions of the PLDs as soon as participants formed a clear impression. Participants were 

naïve to the content or the technology of the displays and they did not receive feedback on 

their performance during the presentation. While seated approximately 2.8 m from the 

screen, head movements were recorded with a wireless motion tracker (Polhemus, LIBERTY 

LATUS). The wireless marker was secured to the participant's occiput using an elastic 

headband. When not stated otherwise, for each trial, recording of head movements with a 
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frequency of 188 Hz started and ended simultaneously with the 30 s long animations, 

resulting in a time series of 5640 points.

Individual displacements in head sway were calculated by computing the Euclidean 

distance between each consecutively recorded position. In order to address the time evolution 

of the structure, the time series of distances were divided into overlapping epochs of 600 data 

points with a 300 point overlap. Where not stated otherwise this method yielded 17 epochs 

per trials. The epochs were submitted to Multifractal Detrended Fluctuation Analysis (MF-

DFA, Kantelhardt et al., 2002).

MF-DFA

Detrended fluctuation analysis (DFA) gives primary estimates of the fractality due to 

different long-range temporal correlations of the small and large fluctuations. To assess 

temporal correlations for different-sized fluctuations, multifractal DFA (MF-DFA) was used. 

MF-DFA is a generalization of DFA that uses a parameter q to selectively emphasize 

differently sized fluctuations, as 

F (q,s )=[ 1
N s

∑
v=1

N s

{1
s ∑i=1

s

y [ ( v−1 ) s+i ]− yv (i )2}
q /2

]
1/q

, (1) 

where y is the integration of the measured time series, yv is a series of linear fits to y/Ns non-

overlapping windows of size s and

 

F(q, s)  s∼ H(q) , (2)
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where H(q) reflects the temporal correlations. Standard DFA analyses test for monofractality, 

evaluating Eq. 2 for q = 2 only. H(q) reflects larger fluctuations when q > 2 and smaller 

fluctuations when q < 2. In contrast to monofractal processes that exhibit all H(q) equal to 

H(2), multifractal processes exhibit increasing q with non-increasing H(q). Legendre 

transformation of H(q) yields a range of Holder exponents α(q), whose range specifies the 

width of a multifractal spectrum. In the subsequent steps of the analyses, the width of the 

multifractal spectrum was treated as the main predictor for PLD recognition.

Event history analysis

The probability of recognizing and naming the activity in the PLDs was modeled using 

event history analysis (Allison, 1984; Singer & Willett, 2003). This statistical technique was 

developed for longitudinal data in which the probability of a discrete event occurring over 

time is modeled as a function of a set of predictors. In event history analysis both continuous 

and categorical predictors can be used to model the dependent measure. In this respect, the 

method is analogous to multiple regression with the exception that the dependent measure in 

event history analysis is a discrete event that may occur at any point during the observed 

period. Event history analysis allows both between- subject, time-invariant differences and 

within-subject, time-varying differences to be used as predictors. Both types of predictors are 

integrated into a regular, regression-type format. In event history analysis, contribution to 

model fit is quantified in terms of reductions in the maximum likelihood deviance statistic 

instead of ordinary least-squares. The first step of the analysis is to define the risk set. The 

risk set consists of data recorded before a participant experiences the event (recognition). The 

participant is “at risk” for the occurrence of recognition, regardless of whether it will actually 

be experienced or not. After experiencing the event (e.g., recognizing and naming the PLD 



Multi-scale Interactions 21

activity correctly), a participant is dropped from the risk set (and thereby, the analysis). As a 

result, the risk set may change from trial to trial. The changing risk set is usually depicted in 

risk or survival plots where the proportion of participants still in the risk set are plotted as a 

function of observation times. Only participants still within the risk set contribute to the 

analyses on a given trial. The second step estimates the hazard, the probability of the event 

occurring in any given trial. The hazard is estimated as the proportion of participants who 

experience the event on a particular trial relative to the number of participants at risk. In 

event history analysis participants who do not experience the event remain in the risk set and, 

therefore, in the denominator of the hazard. Therefore, event history requires that the 

predictors simultaneously explain both the timing of the observed events and the failure to 

observe the event in a single model. As an indicator of emergent changes in multi-scale 

dynamics, the main predictor in the current work is the width of the multifractal spectrum 

(the range of values α(q) in the f(α(q)) function). For each epoch of each trial, the width 

values were entered in the event history models as continuous predictors along with the non-

interactive predictors such as the particular PLD, subject, geometrical manipulations (camera 

movements, dot trajectories) and non-geometrical or contextual manipulations (exposure, 

priming or context). 

Experiment 2a

The second experiment repeats the design and analyses of Experiment 1 with the addition 

of motion tracking of the observer's head movements. It is expected that this replication of 

Experiment 1 will again yield result in support of hypothesis 1, namely speed and recognition 

of still and moving points of observation conditions are not expected to differ significantly. 

The additional dependent measure of head movements allows a test of the hypothesis that 
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recognition is indexed by multi-scale fluctuations.  First, movement data from all trials were 

divided into a pre- and post-recognition parts, and mean multifractal spectrum width was 

calculated based on MF-DFA estimations. This preliminary analysis tested whether there was 

a significant change in MF spectrum width after recognition. 

In particular, hypothesis 2 is that the long-range temporal structure of head sway will be 

less self-correlated before recognition, becoming more self-correlated when participants look 

at PLDs they have already identified. Wider multifractal spectrum curves are expected in the 

data recorded before recognition as an indication that the system was more open and 

exhibited less long range dependence (Ihlen & Vereijken, 2010) during exploration. The 

comparison of pre- and post-recognition informs about the existence of an event-related 

change in the multi-fractal spectrum. The second phase of analysis tested the possible 

contribution of this change in the occurrence of the event.  

A third hypothesis is inspired by the contribution of multifractal dynamics to the goal-

directed reorganization of systems for the self-organization of executive control (Stephen et 

al., 2012) and searching for puzzle solutions (Stephen & Dixon, 2009). Here, the width of the 

multi-fractal spectrum is expected to contribute significantly to recognition in successful 

trials.

Method

Twenty two students (12 females, 10 males) from the University of Connecticut 

participated in the study for partial credit in an introductory psychology course. Participants 

ranged in age from 18 to 22 years. Each participant had normal or corrected to normal vision. 

PLDs were presented on a back lit projector screen. Presentation and instructions were 

identical to the method used in Experiment 1.  In each trial, the time series of 5640 data 



Multi-scale Interactions 23

points was parsed into 600 data point long epochs. Each epoch overlapped with the previous 

by 300 data points, yielding 17 epochs per trials. Every epoch was submitted to MF-DFA 

individually. All analyses were conducted according to the general methods section.

Results

Testing Hypothesis 1: Comparison of response times by condition, PLD and participant.

Of the 220 trials, 15 were missed or wrong answers, and 15 were unusual but acceptable 

descriptions of the actions. Similarly to Experiment 1, there were no significant differences in 

response time between fixed perspective and moving perspective trials. An independent 

samples Welch t-test indicated no significant difference in response time (in seconds) 

between fixed perspective (M = 8.28, SD = 4.98) and moving perspective trials (M = 7.89, 

SD = 4.28), t<1. Individual animations differed in how quickly they elicited a response, 

ranging from M = 5.8 s for the easiest to M = 11.8 s for the most difficult, averaged over all 

participants. Figure 4 shows the interactions between PLDs and camera conditions. In 

addition, average response time differed across participants, ranging from M = 4.5 s to M = 

16.4 s.

Testing Hypothesis 2: width of the MF spectrum in pre- and post-recognition data

Analysis of the MF-DFA results showed significantly narrower multi-fractal spectra for 

the time series collected after recognition. During the process of recognition, mean width 

(min α – max α) was 1.35; after recognition mean width was 1.17. Welch t test indicated a 

significant drop t(2092) = 6.36, p < .0001. There was no significant difference in MF 

spectrum width between fixed vs. moving point of observations.

Testing Hypothesis 3: event history analysis of recognition
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The survival function (shown in Figure 5, for each condition separately) reveals that the 

proportion of participants still exploring the PLD, looking for an interpretation, decreased 

systematically as a function of time, similarly for fixed and moving points of observation. 

The hazard functions for the two conditions (Figure 6) reveal that the probability of 

recognition increased steadily in epochs 1 through 7 and decreased in epochs 8 – 17, showing 

that the majority of the events took place in the first half of the presentation.

The effect of MF spectrum width on the probability of PLD recognition was modeled 

using event history analysis. Besides MF spectrum width, the GLM model included time 

dependent variables (epoch, trial) and the two camera conditions as categorical predictors. 

Table 1 summarizes the coefficients for the model. The significant effects of epoch and trial 

simply indicates that recognition occurred with a higher probability as time progressed. Four 

PLDs contributed significantly to recognition; those were the PLDs that yielded recognition 

most frequently. Multifractal spectrum width contributed significantly (p < .0001) to event 

occurrence. 

Modeling the effect of the main predictor allows only for estimating the overall strength 

of its contribution to the event of recognition. In order to trace the effect in slightly more 

detail, the multifractal width of the data for each epoch was sorted into quartiles. The 

contribution of each quartile is depicted in a third dimension of a survival plot. Figure 7 

illustrates the effect by plotting the survival functions against the four quartiles of width. 

Regardless of when recognition occurred in time, it was preceded by a relatively large drop 

in width. 

Observation path had no significant effect (p = .49). Individual differences in mean 

response times among participants did not contribute significantly to the model. Time-
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dependent variables such as epoch and trial contributed significantly as expected from the 

survival and hazard plots. Most PLDs (except for PLD 5 and 6) contributed significantly 

showing that there were consistent differences in how difficult a particular PLD was to 

recognize. 

Experiment 2b

In Experiments 1 and 2a the presented PLDs were recognized in nearly every trial (97%). 

Most recognition took place in first third of the presentation (within about 10 secs). 

Experiment 2b was designed to challenge recognition by introducing geometrical 

manipulations in the PLDs to extend the time needed for recognition. This also allows a test 

of the contribution of MF spectrum width over longer searching times.

PLD recognition can be made more difficult by manipulating the point of observation and 

the spatial configuration of the dots. Previous work ( Sumi, 1984; Pavlova & Sokolov, 2000; 

Shipley, 2003) has shown that inverted PLDs are nearly impossible to recognize. Pilot work 

for this dissertation indicated that PLDs rendered according to a top view are difficult to 

recognize. In Experiment 2b three types of virtual camera positions were used. Each type 

started from a top view and either remained in that position throughout the entire presentation 

(top) or gradually approached a 90 degree, horizontal viewing angle on the target in 15 (fast) 

or in 30 seconds (slow) by moving on a vertical curvilinear path that kept the distance from 

the target constant. Three presentations out of the ten were scrambled PLDs, where the dots 

representing the movements of the joints were displaced from the location of the joints by an 

arbitrary distance (but no longer than one leg length) in a random direction. The three 

scrambled PLDs were presented randomly in either top, fast or slow types of camera paths. 

Hypothesis 1. Unlike virtual camera movements in the horizontal plane, vertical camera 
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movements starting from a top view are expected to affect the observer's response times. The 

top view is an observation point that is not commonly available in everyday situations. It is 

hypothesized that the faster the PLD departs from a top view the easier it will be recognized.

Hypothesis 2. Even though the dots removed from the joint locations still trace the 

movement of the individual joints, the resultant PLD fails to carry the global transformations 

of a human figure, making it extremely difficult to recognize. Scrambled PLDs were 

expected to yield no recognition regardless of the path of observation.

Hypothesis 3. Despite the applied geometrical difficulties, recognition should still be tied 

to the interaction of many participating scales. The width of the multi-fractal spectrum is 

expected to remain the main contributor to recognition in all successful trials.

Both response times and the transition to more long-range dependence (less intermittency) in 

head sway is expected to correlate with the departure from the “difficult” viewing angles. 

Methods

Seventeen students (12 females, 5 males) from the University of Connecticut participated 

in the study for partial credit in an introductory psychology course. Participants ranged in age 

from 18 to 22 years.  Each participant had normal or corrected to normal vision. Presentation 

and data analyses were conducted according to the general methods section. For every 

participant, ten PLD animations were presented. The three types observation paths (top, slow 

and fast) and the two types of PLD configurations (normal and scrambled) were presented in 

a random order. Throughout the experiment both manipulations were counterbalanced; all 

conditions were equally represented. Participants were asked to maintain a comfortable 

seated posture and identify the displays orally as soon as they arrived at a confident 

recognition.



Multi-scale Interactions 27

Results

In 55 trials out of the 170, participants were able to give a correct description. Scrambled 

PLDs included, participants achieved recognition in 32% of the trials. Excluding the nearly 

impossible scrambled trials, performance was successful in 43% of the trials.

Testing Hypothesis 1: Digression from top view enhances the probability of recognition

 Response times were not significantly longer for top view conditions (M = 21 s) than for 

either slow (M = 21.3 s) or fast descending views (M = 20.6 s). According to a within subject 

analysis of variance, the main effect of observation path on response times was non-

significant, F(2, 655) = 1.76, p = 0.34. It should be noted that response times can only be 

reported in successful trials; consequently this analysis excludes cases when there was no 

recognition. A better way of measuring performance, therefore, is to look at the percentage of 

correct responses. Top view PLDs were recognized on 22% of trials, slowly descending 

PLDs 45% and fast descending PLDs 45% of the times in the non-scrambled presentations. A 

within subject analysis of variance showed a significant main effect for observation path on 

the percentage of correct responses, F(2, 166) = 3.6, p < .023. Multiple comparisons showed 

that both slow and fast descending conditions yielded significantly higher portion of correct 

responses than the top view condition (p < .0001) but there was no significant difference 

between slow and fast conditions (p = .1, see figure 8).

Testing Hypothesis 2: Scrambled PLDs inhibit recognition

As expected, relocating the markers impaired PLD recognition severely.

Testing Hypothesis 3: Width of the multi-fractal spectrum predicts the event of recognition

Event history analyses confirmed some of the previous findings showing similar survival 

curves for the camera movement types and no event in the scrambled condition (Figure 9 a 
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and b). GLM modeling included MF spectrum width, time dependent factors (epoch, trial), 

PLDs, observation path types (top, slow, fast) and PLD configurations (normal, scrambled) 

as categorical predictors). Table 2 summarizes the coefficients for the model. The 

significance of epoch indicates that recognition became more likely as time progressed. 

Neither trials nor PLDs were significant predictors. Observation path types were moderate 

contributors for the occurrence of the event. The fact that observation types did not contribute 

to recognition was confirmed by a second model that included only successful trials. As 

expected, the effect of the three observation types disappeared from the second model. In 

both models, MF spectrum width was the strongest contributor (p < .0001). Similarly to 

Experiment 2a, a surface plot (see Figure 10) of the survival functions by MF width quartiles 

showed the largest drops in the fourth quartile, albeit for longer curves than the ones obtained 

in Experiment 2a. 

Discussion of Experiment 2a and 2b

Experiment 2a provided further support for the hypothesis that parallel projection of 

human biological motion according to fixed and horizontally moving points of observation 

are recognized and reported within the same mean response times. A coarse pre- and post 

recognition multifractal analysis of head sway showed a significant difference in the long-

range dependencies of different size movements, indicating less intermittency in the time-

series collected after recognition. Event history analysis on subsequent epochs of head 

movements confirmed the hypothesis that MF spectrum width plays contributes significantly 

to recognition. This latter finding indicates that visual recognition is contingent upon a 

specific evolution of interaction among fluctuations of different sizes. These fluctuations are 

considered as indexes of multiplicative multifractal cascade dynamics in between the 
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participating levels of organization both in the environment and in the organism.

Experiment 2b introduced two types of geometrical manipulations of the PLDs; vertical 

camera movements starting from a top view on the target, and scrambled point trajectories. 

Both manipulations affected the observers' performance in identifying PLD activities. 

Scrambled PLDs were nearly impossible to recognize, regardless of camera movements. For 

non-scrambled PLDs the number of correct responses was lowest for the fixed top view 

presentation and highest for quickly descending camera condition. Interestingly, this 

manipulation had no effect on average response times; however, the average response times 

were higher (20 s) than the response times in Experiment 1 and 2a (8 s). Regardless of how 

strong the effect of the projective manipulations was in Experiment 2b, MF spectrum width 

remained the strongest time varying predictor of the event of recognition.

In Experiment 3, various non-geometrical manipulations were tested in conjunction with 

the geometrical manipulations of Experiment 2. More specifically, in Experiment 3, besides 

shaping the geometry of the projections, the perceiver's experience will be manipulated by 

factors such as: (a) showing the PLDs multiple times, (b) priming the PLD recognition with 

congruent or incongruent images of objects, and (c) applying contextual changes in the order 

of the presentations. 

Experiment 3a

In Experiment 2, recognition of human biological motion was tested in conditions that 

differed only in terms of the use of projective geometry. The directions and velocities of a 

target-centered moving camera and the arbitrary displacement of the markers created an extra 

source of change in the dot trajectories over and above the changes due to the movement of 

the joints. Some of these changes impaired the observers' perception, others seemed to have 
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no effect on their performance. Despite the degree of imposed difficulties, however, 

whenever correct identification occurred it was best predicted by the width of the MF 

spectrum of head sway. According to the interactive approach to perception, the nested 

fluctuation of energy patterns in the optic flow is but one source of influence that feeds into 

the self-organization of recognition. Another equally important source is the organism being 

busy with scanning the optic flow. Perceptual systems are never at rest; tremor, jitter, eye 

movements, head turns, postural adjustments, involuntary and voluntary movements occur at 

all participating scales. Moreover, perceptual systems are nested within the rest of the 

biological “machinery” working at dissipating, storing and utilizing energy in all ongoing life 

sustaining processes. Some of these processes feed cognition, memories and other ways that 

help the organism to situate itself in the environment. Presumably, identification of a 

particular human activity through its PLD presentation is more difficult for observers who 

never experienced a certain activity by either seeing others engaged in it or carrying out the 

activity themselves. In these cases, the self-organization of recognition may miss something 

but that miss is not due to the geometry of the projection. Experiences, expertise, familiarity, 

education of attention, context and situation play key roles in perception.

There is indication that experience and feedback induce changes across perceptual 

systems (Michaels, Arzamarski, Isenhower & Jacobs, 2008 ; Withagen & Michaels, 2005 ). 

In perceptual learning, exploration and feedback are expected to drive observers across an 

information manifold towards loci that help them differentiate more precisely in the available 

energy patterns with respect to their goals (Jacobs & Michaels, 2007; Michaels et al., 2008). 

These factors are themselves tied to ongoing processes within the perceiver. The idea here is 

that factors usually attributed to cognitive processing are supported by and participate in the 
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same multiplicative cascade dynamics as, say, the movements of the eye or the head. Studied 

and conceptualized in seemingly distant spatial and temporal domains from one another, 

there is not a single process in and around the body that could run physically isolated from 

the scheme that Gottlieb (1998, 2000) envisioned. The general idea in Experiment 3a is to 

apply geometrical manipulations in conjunction with multiple exposures and to test if the 

contribution of change in the fractal scaling holds up when both geometrical and non-

geometrical factors shape the probability of perception.

Hypothesis 1. Digression from top view enhances the probability of recognition

Experiment 3a used PLDs from the same set of animations presented in Experiment 2b. It 

was hypothesized that even if multiple exposure enhance the probability of recognition, the 

overall effect of observation path should remain a contributor. PLDs providing a descending 

point of observation are expected to lead to the event of recognition more often than the ones 

fixed in the top view. 

Hypothesis 2. Previous exposure to the same PLD enhances the probability of 

recognition even in the absence of feedback

Previous exposure is expected to enhance performance in two ways. First, the second 

encounter may reveal more about the same activity in terms of providing more time to 

explore and providing a different path of observation. Second, if the previous encounter 

yields a correct identification, the physical similarities of the fluctuating pattern may enable 

participants to identify the action correctly form a point or path of observation that would 

have not led to recognition as a first encounter. Even though this second effect might not 

arise because the presentations become progressively more difficult (e.g. fast –> slow -> top), 

the overall effect of multiple exposure is expected to enhance performance.
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Hypothesis 3. Width of the multi-fractal spectrum predicts the event of recognition

Regardless of the origin or the time scale of the multifractal fluctuations that support it, 

recognition is supposed to be tied to the interaction of many participating scales. The width 

of the multi-fractal spectrum was expected to remain the main contributor to the event of 

recognition. Transitions to more long range dependence (less intermittency) in head sway is 

expected to positively correlate with the digression from top view and the number of 

exposures to the same PLD activities. 

Method

Eighteen students (10 females, 8 males) from the University of Connecticut participated 

in the study for partial credit in an introductory psychology course. Participants ranged in age 

from 18 to 22 years.  Each participant had normal or corrected to normal vision. Presentation 

and data analyses were conducted according to the general methods section. For every 

participant, fifteen animations were presented in random order from a set of five PLDs. There 

were three types observation paths: top view, descending to the side view slowly (in 30 

seconds), descending to side view fast (in 15 seconds). Each participant encountered every 

PLD three times, albeit in three different observation paths. The order of presentation was 1-

1-1-1-2-2-2-1-2-3-3-2-3-3-3, where the numbers represent the number of times the observers 

encountered a PLD presentation. The PLDs were randomly assigned to the fixed order of 

presentation. Participants were asked to maintain a comfortable seated posture and identify 

the displays orally as soon as they arrived at a stable, confident recognition. No feedback was 

provided in between the presentation of the same PLD.

Results
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Participants reported correct identifications of the perceived activities 43% of the trials. 

Similarly to Experiment 2b, reporting response times would have limited the analyses to 

successful trials only, therefore proportions of correct responses are reported. 

Testing Hypothesis 1: Digression from top view enhances the probability of recognition

Top view PLDs were recognized on 12% of the trials, slowly descending PLDs 35% and fast 

descending PLDs 52%. Figure 11 summarizes these findings. According to a within-subject 

analysis of variance, the main effect of observation path on the percentage of correct 

responses was significant, F(2, 267) = 19.72, p < .0001. Planned comparisons of the means 

revealed highly significant (p < .0001) differences between all three viewing conditions. 

Testing Hypothesis 2: Previous exposure enhances the probability of recognition

 Main effect of exposure was significant, F(2, 267) = 8.88, p < .001. First encounters yielded 

correct responses in 18% of the trials, while second and third encounters yielded 44% and 

34% of the trials (see Figure 12) respectively. Multiple comparisons revealed significant 

differences between the first and the other two levels of encounters (p < .001). Surprisingly, 

second encounters elicited a higher percentage of correct response than third encounters, 

however, the difference was not significant.

Testing Hypothesis 3: Width of the multi-fractal spectrum predicts the event of 

recognition

Event history analyses confirmed the findings reported in testing hypotheses 1 and 2, 

showing the earliest decline for the “fast”, moderate decline for the “slow” and latest decline 

for the survival curve of the “top view” condition (Figure 13a). The effect of exposure was 

also confirmed by the longest tail for the first encounter and progressively shorter tails for 

second and third encounters (Figure 13b).  GLM modeling included MF spectrum width, 
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time dependent factors (epoch, trial), PLDs, observation path types (top, slow, fast) and 

exposure (first, second, third) as categorical predictors. Table 3 summarizes the coefficients 

for the model. The contribution of epoch indicated time dependence. The two animations that 

were most difficult to recognize five predicted the probability of recognition significantly and 

negatively. Both observation path types and exposure had significant effects. MF spectrum 

width once again predicted the occurrence of the event  (p < .001). Path types, exposure and 

MF spectrum width showed no significant interaction, and including interaction terms did not 

improve the model fits (Chi square test of the residual variances was not significant). A 

surface plot (see Figure 14) of the survival functions by MS width quartiles showed the 

largest drops between the first and second quartile.

Discussion of Experiment 3a

In Experiment 3a five PLDs were presented according to three paths of observation (top, 

slow, fast). Every PLD action was presented three times during a session, albeit, according to 

different paths of observation. The results indicate that both geometrical and non-geometrical 

manipulations affected recognition. Both observation paths digressing from the top view and 

the number of encounters enhanced the probability of recognition. Despite the significant 

effects originating from radically different sources, the width of the MF spectrum of head 

sway remained a strong predictor of the event of recognition. These findings suggest that 

visual recognition is contingent upon the interaction of fluctuating scales originating both in 

the patterns of optic flow and within the perceptual system of the observer.

Experiment 3b

Recognizing an event under real life circumstances entails responding to the 
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contingencies that make up the event. In visual recognition, those contingencies include 

forms and transformations of various kinds reoccurring together under similar conditions. For 

example, recognizing an activity of a person may be helped by recognizing her outfit or the 

tools she uses besides identifying motion patterns. In PLD animations these kinds of 

contingencies are absent but, perhaps they can be added by “priming” the recognition with 

images of clothing or tools that are normally used in the presented activity. With this kind of 

manipulation, another level of optical information was supplied in conjunction with the 

geometrical manipulations in the PLDs.

In Experiment 3b, pairs of visual stimuli were created from a still image of an object and 

a PLD animation. The images were either strongly related or unrelated to the PLD activity in 

each pair. For example, if the PLD was a human figure sweeping the floor, either a broom 

was shown (congruent case) or a pair of scissors (incongruent case). 

Hypothesis 1: Digression from top view enhances the probability of recognition

Experiment 3b also used PLDs from the same set of animations presented in Experiment 2b. 

It was hypothesized that even if the congruency of priming images enhances the probability 

of recognition, the overall effect of observation path will remain a contributor. PLDs 

providing a descending point of observation are expected to lead to recognition more often 

than the ones fixed in top view. 

Hypothesis 2: Congruent images will enhance the probability of recognition

Photographs and images in general shape the fluctuation of light scattering as a result of the 

light interacting with the surface of the displays. The technique or mechanism used for 

creating the images results in fluctuating patterns that are more or less similar to the energy 

flow of the scene the photograph was taken from (Gibson, 1971). According to Gibson's 
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(1979) theory of affordances, objects are perceived in terms of action possibilities. In the 

PLDs, however, the tools themselves were not indicated by the points. Whether or not the fit 

between action and object influenced event recognition was addressed through a priming 

paradigm. In the congruent condition, images of tools were chosen to match the action 

presented in the upcoming PLD, in order to provide extra information on action possibilities. 

Therefore, congruent images were expected to enhance the probability of recognition.

Hypothesis 3: Width of the multi-fractal spectrum predicts the event of recognition 

Multifractal fluctuations in the optic flow originate in movement of many different scales 

from wavelength size light-surface interactions to large scale movements of objects, and from 

the small scale (e.g., ocular tremor) vibration to the large scale (locomotion) movements of 

the perceiver. Every participating scale “enters” into the self organization of recognition. 

Therefore, the width of the multi-fractal spectrum, indicating that recognition is a result of 

fluctuations originated in the presented images, the PLDs and the movements of the 

observers, is expected to remain the main contributor to the event of recognition in all 

successful trials. Transitions toward more long range dependence in head sway is expected to 

positively correlate with the digression from top view and the congruency of the priming 

images, therefore, with the event of recognition. 

Method

Twenty students (12 females, 8 males) from the University of Connecticut participated in 

the study for partial credit in an introductory psychology course. Participants ranged in age 

from 18 to 22 years.  Each participant had normal or corrected to normal vision. Presentation 

and data analyses were conducted according to the general methods section. Each participant 

observed ten PLD animations. There were two types observation paths: top view and 
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descending to side view fast (in 15 seconds). Before the onset of each PLD a still image of an 

object was presented for five seconds. The object was either strongly related or unrelated to 

the activity. Participants were asked to maintain a comfortable seated posture, observe the 

still images preceding the PLDs and identify the displays orally as soon as they arrived at a 

stable, confident recognition. To assure attention to the primes, they were told to scrutinize 

the images as if they had to draw a sketch of them later. 

Results

Participants correctly identified the perceived activities on 57% of the trials. As a 

measure of performance, percentages of correct responses are reported. 

Testing Hypothesis 1: Digression from top view enhances the probability of recognition

Top view PLDs were recognized 45%, fast descending PLDs 69% of the presentation times. 

Figure 15a summarizes these findings. According to a within subject analysis of variance, the 

effect of observation path on the percentage of correct responses was significant, F(1, 198) = 

12.36, p < .001. 

Testing Hypothesis 2: Congruent images will enhance the probability of recognition

Incongruent image-PLD pairs yielded correct responses in 49%, while congruent image-PLD 

pairs resulted in correct responses in 65% of the trials (see Figure 15b). The effect of 

congruency was significant, F(1, 198) = 5.5, p = .02. 

Testing Hypothesis 3: Width of the multi-fractal spectrum predicts the event of 

recognition

Event history analyses confirmed the differences reported above, showing the earlier 

decline for the “fast”, and later decline for “top view” condition (Figure 16a). The effect of 

congruency was also confirmed by the longer “survivals” for the incongruent pairs of 



Multi-scale Interactions 38

presentations (Figure 16b).  GLM modeling included MF spectrum width, time dependent 

factors (epoch, trial), PLDs, observation path types (top, fast) and congruency as categorical 

predictors. Table 4 summarizes the coefficients for the model. The significant contribution of 

epoch and trial indicated time dependence. PLDs that were recognized the most frequently 

contributed the significantly to the model. Observation path types made modestly significant 

contribution; congruency made significant contribution. MF spectrum width once again 

predicted the occurrence of the event  (p < .0001). A surface plot (see Figure 17) of the 

survival functions by MF width quartiles showed the largest drops between the second and 

third quartiles.

Discussion of Experiment 3b

In Experiment 3b ten PLDs were presented according to two paths of observation (top, 

fast). Every PLD animation was preceded by a brief presentation of a photograph of an object 

either congruent or incongruent with the human activity. The results indicate that both 

geometrical and priming manipulations affected recognition. Both observation paths 

digressing from the top view and the exposure of congruent priming images enhanced the 

probability of recognition. Despite the significant effects originating in radically different 

sources, the width of the MF spectrum of head sway remained a strong predictor of the event 

of recognition. The positive effect of images suggests that action possibilities perceived in 

the images of tools facilitated recognition of the action in the congruent condition. According 

to ecological accounts of perceptual learning and development (Gibson & Pick, 2000) being 

able to perceive action possibilities requires previous encounters with these activities in 

information rich, natural situations. The positive effect of priming opens the possibility that 

visual recognition is contingent upon the interaction of fluctuating scales originating both in 
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the patterns of optic flow and within the perceptual system of the observer even outside of 

the timescale of the presentation.

Experiment 3c

Experiment 3c tests the overall hypothesis that the perception of similar events, or events 

that belong to the same behavioral context do not require the same degree of reorganization 

in the interaction dynamics, therefore the recognition of such events may show higher 

probability than events that belong to a different context.  The guiding hypothesis of 

Experiment 3c is that the behavioral context of the presented PLDs plays a key role in their 

recognition. 

Hypothesis 1: The probability of recognition depends on the point of observation

Experiment 3c also used PLDs from Experiment 2a and Experiment 2b. There were two 

types of camera movements, one was orbiting around the target in the horizontal plane and 

the other was descending fast from the top view. In order to collect a sufficient number of 

animations that fit the two types of activities, PLDs with horizontal camera movement from 

Experiment 1 and 2 were included. It was hypothesized that even if the contextual effect in 

the order of presentation enhances the probability of recognition the overall effect of 

observation path remains a contributor. PLDs rendered according to a side view were 

expected to lead to the event of recognition more often than the ones descending from top 

view. 

Hypothesis 2: Less frequent contextual change enhances the probability of recognition

Subsequent presentations of PLDs that belonged to the same behavioral context will be 

recognized more often than the ones following a PLD of a different behavioral context.

Hypothesis 3: Width of the multi-fractal spectrum predicts the event of recognition
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If the recognition of events that belong to the same behavioral context requires less 

reorganization in the interaction dynamics, they may occur with a higher frequency. Once 

again, changes in the width of the MF spectrum are expected to contribute to recognition.

Method

Eighteen students (14 females, 4 males) were recruited from the University of 

Connecticut for partial credit in an introductory psychology course. Participants ranged in 

age from 18 to 22 years.  Each participant had normal or corrected to normal vision. Each 

participant observed ten PLD animations of humans engaging in either a “sporting” or a 

“working” activity. One PLD showed a human sitting down and standing up repeatedly, this 

one was a neutral activity. Three PLDs were rendered according to a side view, seven PLDs 

were rendered according to a quickly descending path of observation from the top view to the 

side. The order of the animations was manipulated to change the context from sporting to 

working with few or many switches ranging from three to eight times. The fewer times the 

context was changed, the longer the participants had to stay within the same category of 

activity. 

Results

Participants reported correct identifications of the perceived activities on 57% of the 

trials. As a measure of performance, percentages of correct responses are reported. 

Testing Hypothesis 1: Path of observation has an effect on the probability of recognition

Side view PLDs were recognized 94%, fast descending PLDs were recognized 43% of the 

presentation times. Figure 18a summarizes these findings. According to a within subject 

analysis of variance, the effect of observation path on the percentage of correct responses was 
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significant, F(1, 178) = 53.15, p < .0001. 

Testing Hypothesis 2: Less frequent contextual change enhances the probability of 

recognition

PLDs presented within the context of the previous PLD yielded correct responses in 45%, 

while changing the context with respect to the previous presentation resulted in correct 

responses in 39% of the trials (see Figure 18b). The effect of contextual change was 

significant, F(1, 178) = 3.52, p = .03. 

Testing Hypothesis 3: Width of the multi-fractal spectrum predicts the event of 

recognition

Event history analyses confirmed the differences reported above, showing a much earlier 

decline for the side view condition than the decline for the “fast” condition (Figure 19a). The 

effect of changing context was also confirmed by the longer “survivals” for PLDs belonging 

to a different context than the previous PLD (Figure 19b).  GLM modeling included MF 

spectrum width, time dependent factors (epoch, trial), PLDs, observation path types (side 

view, fast) and contextual change as categorical predictors. Table 5 summarizes the 

coefficients for the model. The significant effect of epoch indicated time dependence. The 

contribution of PLDs were highest for PLDs that were recognized most frequently. MF 

spectrum width once again predicted the occurrence of the event  (p < .0001). A surface plot 

(see Figure 20) of the survival functions by MS width quartiles showed the largest drops 

between the second and third quartiles.

Discussion of Experiments 3c

Experiment 3c investigated whether changing the behavioral context of subsequent PLD 

presentation has a negative effect on the efficacy of recognition.  In this experiment the 
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modest aim was to demonstrate that obvious contextual changes that are defined by the 

experimenter have an effect on the probability of recognition. The choice of behavioral 

contexts (sport, work) was pretty much dictated by the set of animations that were prepared 

for all the experiments. However, the result indicated that even these contextual categories 

that were assembled ad hoc from an existing set of PLDs had a significant effect on 

perception. One way of interpreting the results is that when the context changes, the 

dynamics of the interaction has to undergo a re-organization that takes a certain amount of 

time and it temporarily sets back perceptual performance.

General Discussion

The present dissertation sought ways of addressing the “work” that is being done in order 

to perceive the visual world. In a conceptual framework that is radically different from 

traditional accounts, it is argued that this work should be attributed to neither the organism 

nor to the environment alone. The approach pursued here seeks explanations in the 

interactions of environmental and organismic processes, processes and events that are spread 

out through a vast and barely known terrain of multiplicative cascade dynamics. The 

conceptual foundation of this work is a proposed union between the Ecological approach of 

the late James Gibson (1979) and the theory of Probabilistic Epigenesis of the late Gilbert 

Gottlieb (1998, 2000). According to Gibson, there is no organism without an environment, 

and there is no environment without an organism. They imply one another and the co-

implication is a result of billions of years of evolution. Perception is but one among various 

ways living systems sustain themselves by exchanging energy and matter with their 

environment. Perception is rooted in the exchange carried out on a massively distributed, 

nested network of nonlinear processes ranging from molecular scales to the ecosystem level. 
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In Gottlieb's model (Figure 1), every process is nested within larger and/or slower processes 

and made up of smaller and/or faster processes. Every relationship is bidirectional, processes 

are both forcing and reacting to other processes both horizontally and vertically in the 

model's plane. Mechanical, electrical, chemical, and other forms of energy are stored and 

dissipated through the network and the transports are indexed by fluctuations on all scales 

(Van Orden, Holden & Turvey, 2003, 2005; Stephen & Dixon, 2009).

From environmental gradients, such as electromagnetic radiation, energy flows into 

perceptual systems, building up and interacting with gradients that are sustained there. 

Depending on frequency and resolution, a measurement taken somewhere in the perceptual 

system captures more or fewer of the interactions. Just like the patterned energy that feeds 

into the perceptual system, the measurement has a nested multi-scale structure best 

characterized as multifractal. Multifractal structure is a result of the numerous scales of 

simultaneous activity that make up the system. Analyses of these measurements have been 

used profitably to predict changes in perceptual and cognitive behavior (Dixon, Holden, 

Mirman & Stephen, 2012). This dissertation applies this method to the problem of visual 

perception.

The task

The choice of visual task was biological motion perception. There are a number of factors 

that make point-light displays of humans carrying out common activities a suitable vehicle 

for present purposes. First, it is a display that is based on a measurement taken on the joints 

of a human actor. Even though much of the richness of human movements is bleached out for 

simplicity and ease of use for computer animation, it is still a pattern that originated on a 

biological system. Second, ever since they were first created, PLDs have resisted traditional 
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theories and explanations of visual perception. Theories that wish to use pictorial cues are left 

with almost none. Theories that wish to use integration of still images are left with 

incomprehensible frames to begin with. The proposed invariants of projective geometry can 

be weakened or eliminated without affecting the perception of PLDs. The third advantage is 

that PLDs are relatively easy to manipulate in order to target specific experimental questions 

and create the types of variations that were used throughout the experiments. Finally, PLDs 

can slow perception sufficiently so as to allow for application of the time series analyses 

relevant for assessing multi-scale dynamics. 

Experiment 1 

The first experiment established that PLD recognition remains robust and accurate even 

when the point-light trajectories due to the movement of the joints are embedded within the 

trajectories due to camera movements. The purpose of this demonstration was to raise 

awareness that after four decades of research, PLDs are still challenging to perceptual 

theories and they can be made more challenging for the theories without making perception 

any more challenging to observers. Therefore, Experiment 1 also served as a suitable entry 

point for the alternative framework considered in the present work.

Experiment 2

Experiment 2 introduced the methods and analyses used throughout the dissertation. 

Epochs of head sway data were submitted to multifractal analysis in order to estimate the 

width of the MF spectrum for each epoch. This measure, together with the levels of viewing 

conditions, were submitted to event history analysis to model the contribution of the 

predictors to recognition. Event history analysis revealed a highly significant contribution of 

MF spectral width. This finding is consistent with the hypothesis that the evolution of the MF 
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spectrum width indicate changes in the dynamics of exploration. Experiment 2 found that 

exploration, - a search for a solution or interpretation - exhibits more intermittency, openness 

or sensitivity to influences, as evidenced by less long-range dependency. But as soon as the 

system gets progressively closer to recognition, long-range dependency becomes stronger 

and the strength is indicated by the narrowing of the spectrum. One might imagine tracing the 

path of an animal, searching for resources and finally finding them. The path contains many 

turns, shorter and longer distances covered in many directions during the search, but 

eventually the path becomes more predictable as the animal makes a transition from 

exploration to homing on its target. The dynamics of search behavior has been shown to 

indicate multiplicative interactions, not only for foraging animals (Shlesinger, Zaslavsky & 

Klafter, 1993), but for eye-movements (Stephen & Mirman, 2010) and even memory search 

(Rhodes & Turvey, 2007). The present findings strongly suggest that success in search may 

be predicted from the changes in multi-scale dynamics.

Experiment 3

The third experiment kept the geometrical manipulations of the PLDs and introduced 

non-geometrical factors such as multiple exposure, priming with images, and switches of 

behavioral context. All three manipulations were meant to evoke changes that are usually 

conceptualized as higher-level data processing that is isolated, abstract and somewhat 

removed from the dynamics of ongoing life processes. For example, multiple exposure was 

meant to invoke the concept of memory. If an animal encounters event E at some point in 

time, then it encounters some events different from E, and at some point in time E is 

experienced again and the animal's response time or performance is better than it was at the 

first encounter, the concepts of learning or memory are typically called for. However, 
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experiencing the same event from different perspectives is the norm for all growing and 

locomoting life forms. Sometimes the continuous (static or changing) perspective on E may 

get interrupted by obstacles or detours resulting in shorter or longer periods of absence of E. 

There is no principled way of defining the demarcation line between perception and memory 

and perhaps there is no need to do so. From an interaction-dominant point of view, 

fluctuations are quasi-periodic changes in intensity and frequency with no built-in limits for 

either. The results of Experiment 3a indicated that a second exposure to the same pattern 

enhanced the probability of recognition.

In Experiments 3b and 3c, the effect of visual and behavioral context was tested. Relating 

events to their contexts is a central theme in the interactive approach. In ecological 

psychology, behavior arises from and is specific to the context in which it is nested (Gibson, 

1979). Context is a concept notoriously difficult to define. It usually gets described as a set of 

circumstances that are relevant to some actuality in behavior, but this description is vague, 

because relevance is also contingent upon the context. The idea of a change in the context, 

therefore, is no less ambiguous but perhaps, the concept still allows for more or less obvious 

cases for contextual changes. For example, in Experiment 3b, congruent images helped to set 

the stage for a higher number of correct responses than incongruent images. In Experiment 

3c, changing the context in a series of presentations resulted in fewer correct responses. 

Behavioral-, or environmental contexts, however, may not always line up very well with our 

expectations. What “matters” --what is relevant to a given situation-- is also influenced by 

contextual factors and it may change in non-obvious ways. 

Conclusions

This dissertation proposed multiplicative multifractal cascade dynamics as a general 
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framework for visual recognition. The act of exploration of a visual scene and the recognition 

of action or a change in action has been considered as part of an ongoing multi-scale 

interaction between the perceiver and the perceived. As such, this approach contributes to a 

prominent topic in cognitive science—what does it mean for perception and cognition to be 

embodied and embedded. Existing theories of vision tend to place emphasis on either 

processes within the organism (e.g., inferential processes in the visual cortex) or invariants 

on a specific scale in the visual environment (e.g., time-to-contact, cross-ratio). However, the 

choice of geometry is motivated by theoretical assumptions about the nature of the visual 

problem at hand and by the mathematical tools used to address them. As a result, there are 

many different types of geometries proposed for particular visual problems. Euclidean, 

algebraic, differential or projective geometries are routinely applied to address specific 

problems in vision such as figure-ground differentiation, object or face recognition, contour-

integration, or motion perception. The diversity of solutions hinders theoretical integration 

and generalization across species with comparable visually guided behavior but different 

perceptual and nervous systems. In contrast, the framework proposed here allows the 

geometry to be dictated by the natural structure and evolution of the participating processes. 

It offers a more task-general and less anatomically driven path to the problem of recognition 

that may generalize across species and across senses.

The proposed framework is compatible with and motivated by modern physical and 

biological descriptions of self-organizing natural systems. This compatibility permits and 

encourages seeking further theoretical connections with complex systems behavior. 

Multiplicative cascade dynamics are closely related to stochastic chaotic behavior of 

turbulent systems (Schertzer & Lovejoy, 2004). Turbulent systems exhibit transitions to 
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laminar flow when they lose kinetic energy due to molecular viscosity. Testing whether a 

transition from exploration to recognition reported in the present work is related to a 

transition from turbulent flow to laminar flow may provide further insights into the relation 

of cognitive behavior and cascade dynamics.

The Gottliebian, multi-scale framework is consistent with Gibson's ecological approach 

to visual perception in terms of emphasizing organism-environment mutuality; it considers 

the senses as perceptual systems and perception as inseparable from action. It offers physical 

underpinnings to direct perception by rejecting the idea of distinguished scales or loci of 

processing visual information, even in perceptual relations that were traditionally labeled as 

indirect. Although, Gibson's theory of affordances was not directly addressed by the present 

work, the method present allows future investigations in that domain. In particular, the 

recognition of action possibilities with respect to a given or freely chosen goal may also be 

indexed by changes of multifractal spectrum width in eye-movements, head sway or similar 

motion capture data.

The design and the analytical tools (MF-DFA and event history analysis) revealed 

surprisingly reliable and strong contributions of MF spectrum changes to recognition in a 

variety of circumstances. The robustness of the findings invite further investigations in 

various types of visual and non-visual recognition and search behavior in general.

The emphasis on multi-scale interactions in visual perception provides an alternative 

framework to visual perception and may lead to novel technologies in creating visual aids, 

artificial bionic or mechanical visual devices. Moreover, these experiments opened up new 

territories to explore: relating visual experience and behavior to measures in the interaction 

dynamics within an undivided organism-environment system.
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Table 1.

Coefficients for model 1: Prediction of the event of recognition

B SE z P

(Intercept) -3.7652 0.5974 -6.303 < .0001

epoch 0.2228 0.0277 8.035 < .0001

trial 0.1446 0.0334 4.328 < .0001

as.factor(camera) -0.1058 0.1704 -0.621 0.5348

as.factor(PLD)2 1.7687 0.4104 4.309 < .0001

as.factor(PLD)3 1.2561 0.3910 3.213 0.0013

as.factor(PLD)4 1.6343 0.4045 4.041 < .0001

as.factor(PLD)5 0.1666 0.3865 0.431 0.6664

as.factor(PLD)6 -0.3479 0.3881 -0.897 0.3699

as.factor(PLD)7 1.1436 0.3857 2.965 0.0030

as.factor(PLD)8 1.9829 0.4059 4.886 < .0001

as.factor(PLD)9 1.0659 0.3869 2.755 0.0059

as.factor(PLD)10 1.5244 0.3999 3.812 < .0001

MF spectrum width -0.7951 0.1457 -5.458 < .0001
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Table 2.

Coefficients for model 2: Prediction of the event of recognition

B SE z P

(Intercept) -4.8730 0.8616 -5.655 < .0001

epoch 0.1973 0.0352 5.612 < .0001

as.factor(trial)2 0.4795 0.8019 0.598 0.54983

as.factor(trial)3 -0.6710 0.9230 -0.727 0.46723

as.factor(trial)4 -1.1400 0.9679 -1.177 0.23908

as.factor(trial)5 -0.1260 0.9483 -0.133 0.89434

as.factor(trial)6 1.0020 0.8343 1.201 0.22984

as.factor(trial)7 0.0257 0.8577 0.03 0.97614

as.factor(trial)8 0.3692 0.8625 0.428 0.6686

as.factor(trial)9 -0.4621 0.9047 -0.511 0.60947

as.factor(trial)10 0.7955 0.7693 1.034 0.30107

as.factor(PLD)2 0.2975 0.6276 0.474 0.63547

as.factor(PLD)3 -0.3532 0.7502 -0.471 0.63773

as.factor(PLD)4 1.8050 0.6499 2.777 0.00548

as.factor(PLD)5 -1.0570 0.7340 -1.44 0.14995

as.factor(PLD)6 0.0023 0.6570 0.003 0.99722

as.factor(PLD)7 0.0431 0.7121 0.061 0.95173

as.factor(PLD)8 1.2910 0.1900 0.001 0.99946

as.factor(PLDtype)2 1.0860 0.4729 2.296 0.02167

as.factor(PLDtype)3 0.8740 0.4446 1.966 0.04934

as.factor(scrambled)1 -19.2400 1.0660 -0.018 0.9856

MF spectrum width -0.7461 0.1639 -4.551 < .0001
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Table 3.

Coefficients for model 3: Prediction of the event of recognition

B SE z P

(Intercept) -5.1596 0.4869 -10.597 < .0001

epoch 0.1355 0.0222 6.106 < .0001

trial -0.0789 0.0503 -1.569 0.1165

as.factor(PLD)2 0.2936 0.2627 1.118 0.2637

as.factor(PLD)3 -1.3551 0.3463 -3.913 < .0001

as.factor(PLD)4 -0.7244 0.3024 -2.396 0.0166

as.factor(PLD)5 -1.3232 0.3482 -3.8 < .0001

as.factor(PLDtype)2 1.0274 0.3029 3.392 < .0001

as.factor(PLDtype)3 1.6559 0.2936 5.64 < .0001

as.factor(exposure)2 1.3030 0.3748 3.477 < .0001

as.factor(exposure)3 1.8607 0.5870 3.17 0.0015

MF spectrum width -0.2825 0.0878 -3.217 0.0013

Table 4.

Coefficients for model 4: Prediction of the event of recognition

B SE z P

(Intercept) -6.4743 0.7758 -8.3460 < .0001

epoch 0.1721 0.0305 5.6480 < .0001

trial 0.2272 0.0642 3.5380 < .001

as.factor(PLD)2 0.4113 0.5981 0.6880 0.4916

as.factor(PLD)3 -1.5987 0.8230 -1.9430 0.0521

as.factor(PLD)4 3.1636 0.4895 6.4620 < .0001

as.factor(PLD)5 2.7464 0.4389 6.2570 < .0001

as.factor(PLD)6 3.3400 0.4435 7.5310 < .0001

as.factor(PLD)7 -1.0778 0.4707 -2.2900 0.0220

as.factor(PLD)8 -1.4356 0.5634 -2.5480 0.0108

as.factor(PLD)9 -1.3944 0.4879 -2.8580 0.0043

as.factor(PLDtype)2 0.5604 0.2311 2.4250 0.0153

as.factor(congruency)1 0.8102 0.2407 3.3660 < .001

MF spectrum width -0.4767 0.1036 -4.6020 < .0001
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Table 5.

Coefficients for model 5: Prediction of the event of recognition

B SE z P

(Intercept) -4.2667 0.5530 -7.7150 < .0001

epoch 0.1605 0.0275 5.8310 < .0001

trial 0.0542 0.0413 1.3130 0.1893

as.factor(PLD)2 0.6409 0.4499 1.4240 0.1543

as.factor(PLD)3 -16.3086 582.4260 -0.0280 0.9777

as.factor(PLD)4 1.5022 0.4439 3.3840 < .001

as.factor(PLD)5 3.0527 0.4820 6.3340 < .0001

as.factor(PLD)6 2.9747 0.4771 6.2360 < .0001

as.factor(PLD)7 -1.8416 0.7864 -2.3420 0.0192

as.factor(PLD)8 -2.5601 1.0578 -2.4200 0.0155

as.factor(PLD)9 -0.5428 0.5351 -1.0140 0.3104

as.factor(PLD)10 1.4725 0.4313 3.4140 < .001

as.factor(cam)1 NA NA NA NA

MF spectrum width -0.5226 0.1154 -4.5270 < .0001

Table 6.

PLD animations in Experiment 1 and 2a

code name action

a avoidance actor swatting at feet

b ballet ballerina twirl and leap

c catch ball catching and throwing a ball

d shoveling digging a hole in the ground

f fishing casting and reeling fishing line

g getting up standing up from the ground

k kick roundhouse kick

l limping walking with a limp

r imitate ape actor imitates the arm movements of an ape

s sweeping actor sweeps the floor with a broom
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Figure captions

Figure 1. Gottlieb's model of Probabilistic Epigenesis. Adopted from Gottlieb (2007).

Figure 2. Expansion of Gottlieb's model taylored to visual perception. The original levels are 

replaced by levels of the visual perceptual system and the visual environment.

Figure 3. Experiment 1, Interaction plot of mean response times by PLD animations and 

camera conditions. 

Figure 4. Experiment 2a,  Interaction plot of mean response times by PLD animations and 

camera conditions.

Figure 5. Experiment 2a, Survival functions for still and moving conditions. Proportion of 

participants still before recognition (y axis) is plotted against time, represented by epochs (x 

axis). The rate of dropping out from the risk set does not differ significantly in the two 

conditions.

Figure 6. Experiment 2a, Hazard functions (odds) for still and moving conditions.

Figure 7. Experiment 2a, Surface plot of survival functions and MF width quartiles. The y 

axis represents the proportion of participants at risk as a function of epochs (x axis) and MF 

width quartiles (z axis). Survival functions for the four width quartiles are represented by the 

lines (wider is further away from the origo), the effect size is indexed by the size of the 

segments connecting the lines. Color represents the proportion of participants at risk (before 

recognition).

Figure 8. Experiment 2b, Plot of proportion of correct responses by camera conditions.

Figure 9a. Experiment 2b, Survival functions for the three camera conditions.

Figure 9b. Experiment 2b, Survival functions for the normal and scrambled conditions.

Figure 10. Experiment 2b, Surface plot of survival functions and MF width quartiles.

Figure 11. Experiment 3a, Plot of proportion of correct responses by camera conditions.
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Figure 12. Experiment 3a, Plot of proportion of correct responses by exposure.

Figure 13a. Experiment 3a, Survival functions for the three camera conditions.

Figure 13b. Experiment 3a, Survival functions for the three exposure conditions.

Figure 14. Experiment 3a, Surface plot of survival functions and MF width quartiles.

Figure 15a. Experiment 3b, Plot of proportion of correct responses by camera conditions.

Figure 15b. Experiment 3b, Plot of proportion of correct responses by congruency.

Figure 16a. Experiment 3b, Survival functions for the three camera conditions.

Figure 16b. Experiment 3b, Survival functions for the congruency.

Figure 17. Experiment 3b, Surface plot of survival functions and MF width quartiles.

Figure 18a. Experiment 3c, Plot of percentage of correct responses by camera conditions.

Figure 18b. Experiment 3c, Plot of percentage of correct responses by switch in context.

Figure 19a. Experiment 3c, Survival functions for the two camera conditions.

Figure 19b. Experiment 3c, Survival functions for the switch in context.

Figure 20. Experiment 3c, Surface plot of survival functions and MF width quartiles.
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