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Introduction

Astrophysics based on gravitational waves is one of the new big scopes of general

relativity. With the measurement of gravitational waves one has the opportunity to

understand the formation of the universe. The existance of gravitational waves had

already been predicted in 1916 by Einstein, who, later in 1918, also computed the so-

called quadrupole formula which describes gravitational radiation [1]. Gravitational

waves are actually ”small ripples” forming in spacetime which propagate with the

speed of light. Formally, they occur at the order of O(1/c5), their amplitude is a

dimensionless quantity the magnitude of which is of order 10−21 for a source of one

solar mass at a distance of 300 billion light years. As general relativity is nonlinear

one may raise the question whether these kind of waves really exist or not. In 1937

even Einstein disputed their existance. Eventually, the discovery of the decreasing

orbital period of the B1913+16 binary pulsar by Hulse and Taylor [2] indirectly

proved the existance of gravitational waves, which ’transport’ energy and angular

momentum from binary systems [3, 4]. Hulse and Taylor received the Nobel prize

for the discovery of the B1913+16 system in 1993.

The direct detection of gravitational waves represents a great challenge for to-

day’s physicists. Detection is based on the fact that in the reference frame fixed to

the detector system the relative shifts may be measured. As this reference frame

is not inertial, it is sensitive to the Newtonian acceleration of the studied particles.

The gravitational wave induces acceleration of the particles, proportionally to their

shift. By the measurement of these shifts (or relative length variations) the polar-

ization states of gravitational waves can be obtained, which give the independent

components of the Riemann tensor. In the linearized vacuum equations there are

two independent polarization states, the ’+’ and ’×’ transverse states. Their name

results from the fact that in the plane of the wavefront the deformational lines of

force have a shape of + or 45 degree-rotated ×.

For the measurement of small relative length variations (10−21−10−22) the most

suitable solution is to use wave detectors which operate on the basis of the Michel-

son interferometer. The two largest detectors of today, which have the longest arm

length, are located in the USA (LIGO, 4km) [5] and in Italy (VIRGO, 3km) [6].

Their frequency domain is about 10-1000 Hz with a sensitivity of about 10−22. Cur-

rently, the next generation of LIGO (the Advanced LIGO) is under construction the

sensitivity of which will be one order of magnitude larger than that of its ancestors.

The LISA (Laser Interferometric Space Antenna) [7] detector is planned to be

put into orbit around the Sun after 2018, consisting of three identical spacecrafts
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whose positions mark the vertices of an equilateral triangle 5×106 km on a side. The

frequency domain of LISA will be (3× 10−5 − 0.1)Hz with a sensitivity of 10−22 [8].

Nowadays, the third generational detector, the Einstein detector (ET) is being

designed, which will have a similar equilateral triangle shape as the LISA detector,

with side-lengths of 10km under the ground. According to the estimations its sen-

sitivity may reach 10−24, therefore, it may have a chance to measure gravitational

waves, which are the results of the non-linearity of the Einstein equation.

Prefaces

One of the most important sources of gravitational waves are compact binaries,

which consist of black holes, neutron stars or white dwarfs. These are astrophysical

objects which have large ”mass density”, i.e., their physical dimensions are close to

the Schwarzschild radius.

The equations of motion in general relativity were first given by Einstein, Infeld

and Hoffmann in 1938, which meant the birth of the post-Newtonian (PN) approach

[9]. This method can be applied for weak gravitational fields and slow motions. The

definition of the PN parameter is ε = Gm/rc2 ≃ v2/c2 (where m is the total mass

of the two bodies, r = |r2 − r1| is their distance, and v = |v2 − v1| is the relative

velocity) with the powers of which the PN expansion can be quantified. As an

example one can mention the periastron advance, calculated for the first time by

Robertson in 1938, which is a first PN order effect [10]. Nowadays the equations of

motion are known up to the third PN order which can be solved by using elliptical

quasi-parametrization [11,12].

The orbital evolution of binaries can be influenced by many factors such as

the rotation (hereafter spin), the quadrupole moment, and the neutron-star-like

magnetic dipole moment of the bodies. The spin appears in the spin-orbit (SO) and

the spin-spin (SS) interactions which are 1.5 PN and 2 PN order effects [13,14]. The

leading order term for the quadrupole moment is when one constituent of the binary

is a monopole moving in the quadrupole field of the other. This is called the 2 PN

order QM interaction [15]. The magnetic dipole-magnetic dipole (DD) interaction

appears mostly in the case of pulsars having large magnetic fields (magnetars) [16].

This contribution can be 2 PN order at most if the magnetic fields of the dipoles

are at least 1016G.
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Motivations and goals

My main goal was to define how the contributions resulting from the finite size of

the bodies (SO, SS, QM, DD) affect the evolution of orbits, what kind of changes are

caused by the linear perturbations in the signs of the gravitational waves compared

to the Keplerian motion.

The equations of motion of binary systems can be decoupled into radial and

azimuthal motion, therefore I discussed the two cases separately.

My research was motivated by the effects which can be derived from the spin, the

quadrupole moment and the magnetic dipole moment of the bodies. It is interesting

to investigate how these linear perturbations modify the motion compared to the

orbits of order zero.

It is known that the rotation of the bodies is difficult to be defined according

to general relativity, since the Mathisson-Papapetrou equations of motion [17, 18]

pertaining to the rotating test particle are not closed. However, the equations of

motion can be made closed by using appropriate gauge conditions, the so-called spin

supplementary conditions (SSC) from which three are widely used in the literature

(SSC I [19–21]; SSC II [22, 23]; SSC III [24]). My aim was to analyze spin-orbit

interaction of compact binaries in these SSC gauges.

Instead of their usage for specific physical cases, the radial equations can be

generalized to Kepler motions containing linear perturbations. This formalism was

developed by Gergely, Perjés, and Vasúth in 2000 [25] for those cases when the linear

perturbations in the radial equations are constants. This formalism can be applied

for PN and SO contributions. It is an interesting question how this formalism can

be generalized for the SS, QM, and DD cases where the perturbation coefficients are

not constant.

As the angular motion of spin systems is considerably difficult, my goal was to

examine it for the SO and PN effects.

For the classical motions of the compact binary the loss of energy and angular

momentum can be computed with Einstein’s quadrupole formula. It is important to

determine how the finite-size contributions resulting from the SO, SS, QM, and DD

can affect the parameters of gravitational radiation, namely, the frequency and the

phase of the waves. It is known that by taking into account the spins, the so-called

spin precession equations couple to the angular motion [26]. Therefore I aimed to

determine the leading-order spin precession in the phase of the high-order (3 PN)

gravitational waves.
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New scientific results

I I have examined the linear perturbations of the two-body problem, namely, the

purely relativistic correction of first post-Newtonian order, the SO, SS, QM and

DD interactions. I described the radial equations with the help of the Lagrange

formalism of these contributions, then, using linear perturbation theory, I gave

the time development of the radial motion, that is, the generalization of Kepler’s

equation known from celestial mechanics. I was the first to determine the La-

grangian of the spin-orbit interaction in SSC II gauge, which has a substantially

simpler form, than in other gauges (SSC I, SSC III). I compared the resulting

dynamics with the SO results derived from the Hamilton formalism presented

in the literature, and I found the two to be identical. In addition, I determined

the transformation between the parametrization used in the Damour-Deruelle

formalism [27] and the generalized true anomaly parametrization.

II I have studied the generally perturbed radial Kepler motions in which instead

of the previously mentioned linear perturbations of constant factor I allowed

for the harmonic dependence of the corrections from the true anomaly. In

such radial perturbations one mostly obtains secular terms which can be given

by using the generalized true and eccentric anomaly. As a result of the inte-

gration of the radial equation, I(ω, n) =
∫
ω/r2+ndt shaped integrals appear.

Depending on the n integer number either the use of the true or the eccentric

anomaly parametrization was proved to be suitable. With the introduction of

this parametrization I found singular terms, for which I showed that they can

be eliminated if the conditions for the coefficients of my perturbation function

are fulfilled. By introducing complex variables the residue theorem could be

applied and the I(ω, n) integrals could easily be computed. For a wider class

of the perturbations in the radial equation I have proved that in case of n ≥ 0

the value of the I(ω, n) integral (where ω is an arbitrary function of the true

anomaly) would be equal to the residue in the origin, while in the case of n < 0,

the value of the I(ω, n) integral would be equal to the sum of the residue in the

origin and the residue in a second w1 pole. For the previously examined SO, SS,

QM and DD interactions I gave the described perturbational coefficients, and

showed that the formalism I developed is fullfilled for these physically relevant

cases [III].
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III I investigated the effect of the leading-order PN and SO terms on the angular

motion. Using the fact that the magnitude of the orbital angular momentum is

constant during the dynamics, I gave the time evolution equations of the Euler

angles by using the Lagrange formalism to determine the constants of motion,

and thereby, I determined the time evolution of spherical polar angles in the

inertial frame of the J = L + S total angular momentum. I gave the angular

motion in Euler angles and determined its (secular) changes averaged for the

orbital period [VI].

IV I investigated the shape of gravitational waves taking into account the contri-

butions resulting from finite size. I derived the losses of energy and angular

momentum averaged over one orbital period for a circular orbit. These were

identical to the expressions for the instantaneous energy and angular momen-

tum obtained for the Kidder type of circular orbit [14] used in the literature.

In the case of a circular orbit I determined the frequency and phase of gravi-

tational waves. I was the first to give the so-called self-spin interaction in the

phase function, which had previously been neglected. For known binary systems

(such as the Hulse-Taylor and the J0737-3039 binary) I applied the accumulated

number of gravitational wave cycles (N ) until the end of the inspiralling period.

Based on the Jenet-Ransom model [28] I showed that the term resulting from

the self-spin is greater than the one resulting from the spin-spin interaction in

a system with ’small’ and ’large’ spins [I].

V I investigated the high-order (3 PN) corrections to the phase of gravitational

waves, i.e., the N the accumulated number of gravitational wave cycles until

the end of the inspiralling period of a binary system modified by the equations

of spin precession. Based on the equations of spin precession, I was the first

to derive the equations describing the evolution of relative angles determining

the κi and γ spin vectors in the case of QM interaction (for SO and SS interac-

tions [29]). Based on my post-Newtonian estimations the leading order of the

equations of spin precession is the precession resulting from the SO interaction.

I showed that in the SS term in the phase of the gravitational wave the time-

dependent correction of SO origin develops at the third PN order, which does

not appear for binaries of equal mass. In the case of binaries of unequal mass

this term is periodic in T3PNSS, which is of order ε−1 greater than the period of

the gravitational wave (TGW ). For m2/m1 = 10−1 mass ratio I summed up the
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SS and QM terms in the N number of revolution and showed that the QM term

is larger than the SS term, and the SS term causes only a minor modulation.

I introduced the so-called renormalized SS spin parameter in 2 PN order, the

constant part of which causes a change in the 3 PN order on the time scale

T3PNSS = ε−1Twave, which is of a much more simple form, than the SS spin

parameter [IV],[V].
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generalized Kepler equation, Proceedings of the Eleventh Marcel Grossmann

Meeting 2006, Eds. H Kleinert, RT Jantzen and R Ruffini, World Scientific,

Singapore, p 2497-2499 (2008).
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