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Introduction and motivation

Pioneering experiments with attosecond light pulses [1-6], based on high-order harmonic gener-
ation (HHG) in noble gases [7-10], have been revolutionizing our view of fundamental atomic,
molecular and solid state processes in this time domain [11-16]. A key step in gas-HHG is the
tunnel ionization of a single atom and the return of the just liberated electron to its parent ion due
to the strong, linearly polarized femtosecond laser pulse driving this process [17-23]. Recent
developments in attosecond physics revealed that the accurate description of this single-atom
emission is more important than ever, e.g. for the correct interpretation of the data measured in
attosecond metrology experiments [13, 24].

Although an intuitive and very successful approximate analytical solution [19] and many
of its refinements exist [21], the most accurate description of the single-atom response is given
by the numerical solution of the time-dependent Schrodinger equation (TDSE). The peculiarity
of this problem is due to the electric field strength of the laser pulse, which has its maximum
typically in the range of 0.05-0.1 atomic units, i.e. it enables the tunneling of the electron
through the time-dependent potential barrier formed by strongly distorting the atomic potential,
but this effect is weak during the whole process. On the other hand, the small liberated part
of the wave function outside the barrier extends to large distances and in fact this is the main
contribution to the time-dependent dipole moment, which is the source of the emitted radiation.
Thus, a very weak effect needs to be computed very accurately, and these requirements get
even more severe, if the model goes beyond the usually employed single-active-electron and
dipole approximations. Regarding HHG, the fundamental importance of the singularity of the
Coulomb potential has been analysed and emphasized e.g. in [22]. As other kind of numerical
errors decrease, the artifacts caused by the smoothing of the singularity become more disturb-
ing. Therefore, a high precision numerical method has to handle the Coulomb singularity as
accurately and effectively as possible.

For linearly polarized pulses, the main dynamics happens along the electric field of the
laser pulse which underlies the success of some one-dimensional (1D) approximations [25—
35]. These typically use various 1D model potentials to account for the behavior of the atomic
system. However, the particular model potential chosen heavily influences the 1D results and
their comparison with the true three-dimensional (3D) results is usually nontrivial. One of these
important deviations is that the dipole moment, created by the same electric field, may have
much larger or much smaller values in the 1D than in the 3D simulation. Therefore, a more
elaborate connection between the 3D problem and its 1D model is necessary to allow the 1D
simulation of strong-field processes physically as correctly as possible.



INTRODUCTION AND MOTIVATION

Although strong-field ionization is widely used as a standard procedure to generate e.g.
high-order harmonic radiation, it is very little known that this process generates also quantum
entanglement between the liberated electron and its parent ion-core. Quantum entanglement is
a fundamental feature of quantum theory which enables strong correlations, without classical
counterpart, between the constituents of a quantum system. Despite the fact that the discussion
of quantum entanglement between two particles’ spatial motion dates back to the early days of
quantum mechanics [36, 37], the features of continuous variable quantum entanglement [38]
are still much less explored and utilized than those of discrete variables systems.

Most of the papers on quantum entanglement in light induced atomic processes study the
correlations between the emitted photon and the emitting atomic system [39—41]. Papers on
entanglement between a charged particle and a photon [42, 43], entanglement in two particles’
collision [44-49] give also valuable insight into the quantum features of problems related to
the present thesis. Entanglement between the fragments of an atomic system due to a light-
induced break-up process, like photoionization and photodissociation, was studied by Fedorov
and coworkers [50, 51] in the framework of Gaussian states. However, this latter approach is not
suitable to deal with the problem of quantum entanglement during the strong-field ionization of
an atom, which motivated us to perform an accurate numerical investigation of the problem.

This thesis is organized as follows: Part I covers the theoretical preliminaries in three chap-
ters. We give an overview of the quantum description of strong-field physics in Chapter 1.
In Chapter 2, we discuss standard numerical methods for the solution of the time-dependent
Schrodinger equation that are relevant for this thesis. We devote Chapter 3 to review the stan-
dard quantification methods of correlations in bipartite quantum systems in pure or mixed states.
Part II presents our new scientific results in three chapters. In Chapter 4, we introduce the ele-
ments and discuss the testing of our hybrid splitting algorithm that provides high-order accurate
solution for the Schrodinger equation with Coulomb singularities in real space cylindrical co-
ordinates. In Chapter 5, we present the results of our detailed investigations regarding the
emergence of quantum entanglement during strong-field ionization. In Chapter 6, we advance
the one-dimensional modeling of strong-field ionization by the development of density-based
model potentials. We complete this thesis with summaries in English and in Hungarian.



Part I

Preliminaries



CHAPTER1

Quantum description of strong-field phenomena

In this chapter we provide a short introduction to the quantum description of strong-field phe-
nomena. First, we briefly review the main developments of the past 30 years and highlight a
few selected experimental results in this area, which are also relevant to some of the current
problems of attosecond physics. Then we introduce the main model equation in this thesis,
the time-dependent Schrédinger equation in cylindrical coordinates for a single-electron atom
in an intense laser field of linear polarization. Next we refine this model equation of strong-
field ionization by describing the atomic system as the interacting electron — ion-core two-body
system. Finally, we summarize the several ionization types and regimes that might occur, and
time-dependent physical quantities that can characterize the strong-field process.

1.1 Establishment of attosecond physics

By the end of the 1980s, the development of femtosecond laser technology, primarily the
chirped pulse amplification, allowed to create laser pulses of such a high intensity that the
electric field strength of the pulse was already comparable to that of the Coulomb field felt by
an atomic electron. Strong-field physics experiments irradiating low density noble gas sam-
ples with these laser pulses discovered an unexpectedly intense high-order harmonic radiation
[7-10] emitted by the gas. Within a few years, theoretical explanations (based partly on pio-
neering earlier works [17, 52]) revealed the underlying physics of tunnel ionization [18, 19, 53],
and a very important idea emerged about the possibility of creating “light” pulses of attosec-
ond duration, utilizing the characteristic spectrum of high-order harmonic radiation [9]. In less
than a decade, attosecond XUV pulse-trains became reality in leading laser labs [2—-6] which
opened the possibility of experimenting with atomic, molecular and solid systems on truly
atomic timescales [11-16]. Within a few additional years, generation of isolated attosecond
pulses was also achieved [54, 55], allowing to measure processes well below 100 as.
Here we mention only a few of these ground-breaking experiments:

e The time needed for an atomic electron to tunnel through the barrier created by the laser
electric field by distorting the atomic binding potential is of fundamental importance to
strong-field and attosecond science. An experiment with Ne atoms used a 250 attosecond
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pulse, acting as the pump, to generate Ne ions in excited states, from which a time-
delayed linearly polarized waveform-controlled few-cycle laser pulse, acting as the probe,
liberates electrons to produce doubly charged Ne ions. The results revealed that tunneling
takes place within less than 400 attosecond after excitation, dominantly around the peaks
of the laser electric field [11].

e Another experiment with He atoms used elliptically polarized laser pulses to probe the
time delay between the instant of strong-field ionization (dominantly by tunneling) and
the peak of the laser pulse, measuring an upper limit of 34 attoseconds [16, 24]. A recent
experiment [56] using a similar method suggests also several tens of attoseconds for the
time spent under the barrier during tunnel ionization for Kr and Ar atoms.

e For more than a century, photoemission from atoms was considered to be an instantaneous
response to suitable radiation. Measurements based on attosecond pulses revealed that the
emission of electrons liberated from the 2p orbitals of neon atoms have a delay of ca. 21
attoseconds compared to those from the 2s orbital [13].

e As a first application of attosecond pulses to investigate a solid target, the time delay
between photoelectrons originating from the core and from the valence band of a tungsten
sample was measured to be ca. 110 attoseconds [12].

Most of the experiments in attosecond physics are pump-and-probe experiments, where typi-
cally light (in the broad sense, i.e. from infrared to XUV) and electrons or ions emitted by the
target are detected as the function of the time-delay between the pump and the probe pulse. The
typically near-infrared (NIR) few-cycle laser pulse, which created the isolated attosecond pulse,
is frequently employed also in the measurement, in combination with the attosecond pulse, in
order to utilize the “attosecond streaking”: the laser pulse shifts the momentum of the liberated
electron by the value proportional to its vector potential at the time instant when to electron was
set (approximately) free. This allows (based on certain important assumptions) to retrieve this
time instant from the measured data.

The experiments cited above are interesting not only for providing new information about
the particular process, but they also help to improve theoretical models, which in turn refine
the interpretation of data measured with attosecond metrology. Currently, fundamental open
problems are e.g. the setting of the zero of time with sufficient precision, and the question about
the momentum of the electron right after tunneling. For both of these problems, highly accurate
numerical solution of the Schrodinger equation is extremely important.

1.2 The time-dependent Schrodinger equation of an atomic
system in an intense laser field

In the following, we briefly overview the standard quantum theory of nonrelativistic laser-atom
interaction. In Section 1.2.1 we introduce the time-dependent Schrodinger equation of a bound
charged particle interacting with an electromagnetic field with suitable approximations. Next,

8
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in Section 1.2.1, we write out explicitly the form of the Schrodinger equation in cylindrical
coordinates. We also discuss the simplified one-dimensional modeling of the problem in Section
1.2.3.

1.2.1 The semiclassical description

We describe the interaction between a charged particle and an electromagnetic field semiclassi-
cally: this means that we treat the external field as a classical quantity, but we use the nonrel-
ativistic quantum mechanical description for the motion of the particle. Thus, we describe the
Hamiltonian of the particle with charge ¢ and mass m with the so-called minimal coupling [57]:

A1) = P—qA'(R,t))z—l—Vo(R)—%B(R,t)s, (1.1)

1
7
where and A’(R,7) denotes the vector potential of the external electromagnetic field, B(R,¢)
denotes its magnetic field, S denotes the spin angular momentum operator, and V(R) a static
scalar potential. The time-dependent Schrodinger equation then reads:

d .
ihE V(1)) =H'(1) |[¥' (1)) (1.2)
If we perform the gauge transformation
AR,) = A'(Ri1)+Vrx(Ry), and [®(1)= | (r))e #*RD (1.3)

with generating function y = —A(R, )R and assume an initial Coulomb gauge of VRA(R,?) =
0, the Schrodinger equation becomes

ihi |W(1)) = P—2 +Vo(R) —gE(R,1)R— gB(R 0S| |¥(1)) (1.4)

ot 2m ’ m ’ '

where E(R,7) denotes the electric component of the external field. This is called the length
gauge form of the Schrodinger equation because of the additional scalar potential —gE(R,7)R
in the Hamiltonian. Another simplification is that the canonical momentum P equals the kinetic
momentum in this gauge (since A(R,z) = 0).

In this thesis, we use the so-called dipole approximation of the electromagnetic field: since
the typical wavelengths that we employ are in the near-infrared range (e.g. around around
A = 800 nm), we can neglect the spatial variations of the electromagnetic field in the vicinity
of the atomic processes. In this approximation, we can neglect the contributions of the spin and
the magnetic fields.

From now on, we use atomic units. In this system of units, the reduced Plank’s constant 7,
the elementary charge e, the electron mass m,, and the electric constant 1 /47gy are chosen to be
of unity. Then, the usual form of the time-dependent Schrodinger equation (1.1) in coordinate
representation is

d 1
i ¥ (rr) = —ﬂvhvo(r) +E()r| ¥ (r,1), (1.5)
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where [ is the mass of the particle measured in electron mass, and we made the substitution
g = —1, that is by the electron’s charge. Then we choose the polarization and the form of E(r)
to complete the description.

The Hamiltonian of (1.5) is actually of the form that describes single-electron atoms or
ions, if Vj(r) set to be the —Z/|r| atomic binding Coulomb potential with core charge of Z. An
important approximation for the solution is the so-called strong-field approximation [19, 21,
58], where the atomic potential is treated as a perturbation, and the ionized wave packets are
taken into account as Volkov states in the continuum. For a more accurate description numerical
simulations are necessary, however.

1.2.2 Three-dimensional model equation in cylindrical coordinates

In typical strong-field applications one assumes a linearly polarized laser pulse, for which the
motion can be naturally treated in cylindrical coordinates. We choose the polarization axis as
the z-axis, and the electric field function as E(z) = &.(¢)€..

Let us consider the axially symmetric three-dimensional (3D) time-dependent Schrodinger
equation in the cylindrical coordinates p = /x2 + y? and z:

) 1[0 9> 19
zE‘P(z,p,t)——ﬂ 8_z2+8_p2+5% ¥ (z,p,t)+V(z,p,t)¥(z,p,1). (1.6)

The potential is the sum of an atomic binding potential (centered in the origin) and an interaction
energy term. For a single active electron and the linearly polarized laser pulse, this interaction
term in dipole approximation and in length gauge reads as:

V(z,p,t) =Vo(z,p) + Vext(z,2), and Vex(z,2) = &.(¢) - z. (1.7)

We also introduce the notation here for the kinetic energy operators:

2 2
1 d 1{8 18]. (18)

T, = _5872’ and Tp = _ﬂ a—pz—{—E%
Here, we also assume that if # <0 then &(¢) = 0. Thus, the system is initially only subject to
the binding potential, and the particle is in one of the bound states of the binding potential, which
forms the initial state for the partial differential equation (1.6). Then the problem is treated as
an initial value problem as ¥ (z,p,0) = y(z,p) is known. For this initial state and energy of a
single-electron model atom a natural choice is the ground state the Coulomb problem [57, 59]

y4 /.LZ2 [W373 _uz/o2s2

Regarding the boundary conditions, because of the singularity in the curvilinear coordinate
p, Neumann boundary condition is to be posed along the line p = 0 if V; (z,p) is smooth!. In

'In case of the Coulomb potential, we could assume the particular potential form of Vy(z,p) =

—Z (ZZ +p%+ a) -2 where a is a very large, but finite number.

10
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order to find this boundary condition, we multiply (1.6) by p and take the limit p — O:

v

=2p lim (pV (z,p,1) ¥ (z,p,1)) = 0. (1.10)
8p p—0

p=0

Then ¥(z,p,?) is continuous and continuously differentiable in the z — p plane and it has ex-
tremal value in p = 0. The symmetry condition ¥(z,p,t) = ¥(z, —p,t) also holds in this case.
In case of the singular Coulomb potential (1.9), however, along the line z = 0 a Robin type
boundary condition is to be posed which we derive in Section 4.1.1 in this thesis.

The atomic system that we use in most of the cases is the hydrogen atom, or the single-
active-electron approximation (SAE) of certain noble gas atoms. This is widely adopted in
strong-field models [19], where instead of multiple electrons we describe the motion with only
a single electron that is in an effective atomic potential. This means, for example, using the
properties of the Coulomb problem of (1.9) that one should change the core charge Z to set the
system’s ground state energy to be the same as the experimental ionization potential /p. For
neon atoms these effective parameters are

Z =125929 and  Efe ~ —0.792905. (1.11)

The most common application of this model is the calculation of the high-order harmonic spec-
tra.

1.2.3 One-dimensional modeling

Even though the full solution of (1.6) is preferable to deduce the physical properties, it is some-
times a valid choice to approximately model the strong-field phenomena in one dimension (1D)
when the external field is linearly polarized. Then the solution is obtained from the following
1D time-dependent Schrédinger equation

)

iE‘PID (z.t) = [HyP + Vext(z,1)] P (,1) (1.12)

where the form of the external potential Vex(z,7) is given in (1.7). Note that this one-dimensional
equation is completely analogous to Eq. (1.6), but without transverse degrees of freedom. Here,
it is customary to assume a 1D atomic Hamiltonian of the following form:

HIP =T, + V4P(2) (1.13)

where VP (z) is an atomic model potential of choice, which is traditionally chosen to qualita-
tively investigate specific features of the strong-field ionization.

There are a number of well-known 1D atomic model potentials in the literature [26, 29-31],
having their advantages and disadvantages. Here we summarize the basics of some of these,
which we think to be the most important for the modeling of strong-field phenomena.

11
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The soft-core Coulomb potential is defined as

Z

Vose() = ———=
V2 e

where the smoothing parameter O, is usually adjusted to fit the ground state energy to a selected

(1.14)

single-electron energy. For u =1,Z =1, and Oagc = 2, its ground state energy and ground state
can be used as a 1D model hydrogen atom:

1
Epsc = —3 Vo.sc(2) = Ase (1+\/z2+2) e~ V72 (1.15)

where .45 is the normalization factor. The most important features of this model potential are
that it is a smooth function, it has an asymptotic Coulomb form and positive energy Rydberg
continuum. We can regard the form of this potential a more physical one which arises natu-
rally from the Coulomb potential in cylindrical coordinates by replacing p? by o excluding
the point of the singularity. For completeness, the energy of its first excited state of (1.14) is
Eisc = —0.2329034. The main disadvantage of the soft-core Coulomb potential in a strong-
field simulation is that it binds the electron too weakly, compared to the real 3D case.
The next 1D model potential is the 1D Dirac-delta potential [32, 33]

VoBp(2) = —Z8(2), (1.16)

which has the following ground state energy and ground state:

2

Eopp = —%, Wo.0p(2) = v/ uZe H7H. (1.17)
The singularity of V(}BD(Z) at z = 0 is sometimes considered as a disadvantage, but this potential
has its ground state with the same exponential form and cusp, and ground state energy as that
of the 3D Coulomb problem which is intrinsically linked to the boundary condition at z =
0. A further advantage of this potential is that it makes certain analytical calculations easier
e.g. in connection with tunnel ionization. We also used this type of model potential in our
earlier publication [Al]. The main disadvantage of the 1D Dirac-delta potential in a strong-
field simulation is that it binds the electron too strongly, compared to the real 3D case.

An additional naive choice would be to use simply the 1D singular Coulomb —1/|z| po-
tential as a model potential, but unfortunately this system has a different behavior compared to
the 3D case [60], because we must use y(z = 0) = 0 (particle-in-a-box) boundary condition at
the point of the singularity, which also inhibits the wave function to cross the singularity. This
feature can be remedied if we use the 1D regularized Coulomb potential

D Z

VO,C(Z) = - ’Z| _I_aa (118)

where the Value of the parameter a is determined by requiring that the ground state energy is
Eyc = —— . This model was investigated by Loudon [61] in relation with a one-dimensional
hydrogen atom, the electron of which is bond by the singular 1D Coulomb potential. This

12
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regularized Coulomb potential in the singular limit of a — 0 has the same energy levels and
similar radial type eigenfunctions as the true 3D Coulomb problem.

Despite these positive features, the experience shows that (1.14) — (1.18) do not give strong-
field simulation results that would be quantitatively comparable to those of the reference 3D
system (cf. [31, 62]) therefore the model system parameters need to be manually adjusted, for
example by changing the strength of Vex(z,1).

1.3 Strong-field ionization of the interacting electron — ion-
core system

In this section we develop a more complete model of strong-field ionization of single-electron
atoms, which involves treating the atom as an interacting electron — ion-core system. This
formalism will introduce nonseparability between these two particles. This description does
not invalidate the models and equations in the preceding section: the respective form of the
time-dependent Schrodinger equation arise naturally.

The quantum mechanical description as an interacting two-body system of a hydrogen atom,
or any other atom in the single-active-electron approximation, driven by a strong laser pulse, is
naturally carried out as a two-body (or bipartite) problem consisting of the electron (e) — ion-
core (c) system. Using the length gauge and dipole approximation developed in Section 1.2.1,
we infer the following Hamiltonian for the composite system:

A P2 P?
Hee = Zn; - 2n;C +Vo(Re —R¢) +E(t)(R. —R.), (1.19)

where m,(= 1) and m, are the electron and the ion-core masses, respectively.
As it is well-known, this problem can be simplified by performing a coordinate transforma-
tion to the center-of-mass (Rg,Pg) and relative coordinates (R, P) as

Ry = aeRe+acRc> Py = P€+P67 (1.20)
R = R,—R, P = «P.—o,P,, '
where
O =me/M, Qe =me/M, M = m,+m,. (1.21)
Using also the reduced mass y = m,m./M, we obtain the Hamiltonian
. P3 P?
He=-2+_—+Vo(R)+E(1)R 1.22
ec 2M+2,u+ 0( )+ () ) ( )

which becomes separable in these coordinates. Thus, in coordinate representation, the total
wave function is given by
Yoo (re,re,t) = ¥(r,1)Wo(ro,1), (1.23)

where the coordinates of the two sides are connected via the transformation (1.20). The time
propagation can be performed in these coordinates independently, which we outline in the fol-

13
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lowing.
The center-of-mass part of the Hamiltonian describes a free-particle propagation via the
time-dependent Schrodinger equation

i%‘l’o(ro, 1) = —ﬁvg%(m, ). (1.24)
Any particular wave function that satisfies (1.24) can be chosen. For example, it can be a
localized wave packet or plane wave.

The time evolution of the relative part in coordinate representation is given by the time-
dependent Schrodinger equation (1.6), which describes the strong-field ionization of a fictitious
particle with mass u = m,m./M. If we choose a linearly polarized laser field in direction z, the
problem reduces to performing strong-field simulations in cylindrical coordinates with atomic
Coulomb potential or a one-dimensional simulation with a 1D model potential as was discussed
in Section 1.2.2 and 1.2.3. In order to address any possible ambiguity regarding the notation of
Y(r,t), we would like to clarify the following: this relative coordinate part always incorporates
all the strong-field ionization effects of a single-electron atom, that is acquired by numerical
simulations in this thesis. Since even for hydrogen atom u =~ 1, i.e. U is near the electron mass,
it is known that the probability density and probability current of this relative wave function
closely yield the physical quantities of the electrons’ motion by itself (relative to the center-of-
mass). However, it is not necessarily true that the relative wave function describes the actual
quantum mechanical state of the electron. Thus, if we just simply call it the wave function of
the electron, it is in always of the context of infinite nucleus mass of M = o, and = 1. This
means that the relative wave function can give only an incomplete description of the electron’s
quantum mechanical state.

To summarize this section, while it is true that this problem separates in the center-of-mass
reference frame and certain physical predictions of the relative wave function are close to that
of the electron’s, the electron and ion-core particles are linked through the nonseparable atomic
potential, which creates quantum entanglement between the individual particles of the system.

1.4 Characterization of the strong-field ionization

In this section, we briefly summarize certain aspects that allow us the characterization of the
strong-field process. Besides the intensity and the pulse shape of the laser field, the ionization
process can be characterized by ionization type. For the actual time-dependent motion itself,
we adopt the description by integrated time-dependent physical quantities and mean values.

1.4.1 Ionization types

Let us discuss the properties of the ionization process. We can categorize the ionization regard-
ing which types of ionization channels are available: vertical or horizontal ionization channels
[21]. First, we assume an external field of the form

E(t)=¢8,6,(t) with &, (t) =Ff(t)cos(wr), (1.25)
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where F is the parameter of the strength of the external electric field and f(¢) gives the pulse
shape which is scaled so that its minima are 0 and its maxima are 1.

The vertical ionization channel is also called multiphoton ionization. In the semiclassical
picture, this ionization is attributed to the periodic distortions of the binding potential caused by
the oscillating electric field. During each of these oscillations the bound electronic wave packet
is “shaken up”, absorbing energy, and gaining momentum up to the point in which it is collected
enough to be able to cross the potential barrier. The prevalence of this ionization channel is im-
portant when the laser’s period 7 = 27/ ® is not too large compared to the electronic response
time of 277 /Ey, when the electron cannot adiabatically adjust to the distorted potential. How-
ever, if the pulse shape f(¢) is too narrow, i.e. it contains few cycles, this ionization channel is
suppressed — the bound wave function has not enough time to absorb energy in this way. For
weaker fields the perturbative calculations were a great success, and they showed that in the
respective intensity regime the transition matrix elements from the ground state to continuum
states with well defined momentum depend explicitly on energy difference nficwo, where n is
larger than a threshold number ng. Thus, even in the semiclassical picture, we can identify i@
as the photon energy, n is the number of photons absorbed. Because of this nature of transition
lines, this ionization channel is called multiphoton ionization. It is relatively inefficient since
the transition matrix elements show ~ F" dependence, the exponent of which decreases at high
intensities [63].

The horizontal ionization channel can be categorized regarding the electric field strength
parameter F: there is a specific value Fy, that separates two regimes, in which the system has
distinct behavior. In the tunneling ionization regime F < Fy, there is always a potential barrier
V(F,t) > Ej in the vicinity of the atom, while in the over-the-barrier ionization regime F > Fy,
this barrier does vanish to a varying extent both in space and time, determined by F' and by the
shape of the laser pulse. By solving for z = z (Ep, Fyy) in

1
EOZ—E-FZ'Fm (1.26)

at cross section p = 0, a quick calculation reveals that this critical value is Fyy, = |Eg|?/4, i.e.
Fiy = 0.0624 atomic units for hydrogen. It is important that in the over-the-barrier regime
classical electron trajectories to the continuum are allowed at certain time instants, while in the
tunneling regime the motion under the potential barrier is a quantum mechanical phenomena.

Now, assume that the electric field strength F' < Fy, is low enough. It was Keldysh [17]
who first investigated the availability of the vertical and horizontal ionization channels (i.e. the
multiphoton and the tunnel ionization regimes) for plane waves (f(¢) = 1). He introduced the
famous parameter of

¥ = \/Ip/2Up, where Up=F?/4@?, (1.27)

which is now called the Keldysh parameter. Here, Ip denotes the ionization potential of the atom
and Up the average energy of the oscillating electrons (ponderomotive potential). According to
this parameter traditionally we speak of tunneling ionization when ¥k < 1 (i.e. a static field)
and multiphoton ionization when ¥k > 1. We note that this follows from that the Keldysh
parameter can be written as Yk = @7, where 7 is the Keldysh tunneling time [52, 64]. Thus, this
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parameter only characterizes the possible opportunities of electron tunneling during strong-field
phenomena.

In this thesis we employ an external field with parameters @ and F that yield vk ~ 1, so
various ionization channels will be present. In addition to this we employ only few-cycle near-
infrared laser pulses, neither the duration nor the angular frequency of which makes the multi-
photon ionization to a leading contribution. Therefore we investigate the horizontal channels of
1onization.

1.4.2 Physical quantities

Since the wave function W(r,7) (which is the wave function of the relative part) encompasses
all the effects of the external field, we can use certain physical quantities calculated only from
it to describe some general features of the dynamics and ionization. For completeness, we give
a limited list of the physical quantities here that can be used for characterizing this strong-field
process, both in 1D and 3D.

The first set of physical quantities calculated using the 1D reduced density from the 3D
wave function which is given by

03P (z,1) =27 / ¥(z,p,1)|* pdp. (1.28)
0
In the 1D model, this is simply

k (1.29)

0P (z,1) = [¥'P(z,1)

The first interesting quantity is the z component of the mean value (r) that is

(z) (1) = /_:ZQz(z,t)dz, (1.30)

and the mean velocity of this component

00 = 29— L eolae), (131)

which can be also given as the average of the probability current density. These two give
information about the kinematic properties of a “classical” particle that behaves according to
the Ehrenfest’s theorems. (We note that there can be no mean displacement in the transverse
directions x, y because of the dipole approximation we use.)

Another independent quantum mechanical marker is the standard root-mean-square devia-
tion of z as

6.(1) = \/(22) (1) — (22 (1), (132)

which gives information about the spatial extent of the ionized wave packets. Because the form
of the Coulomb potential is spherically symmetric, the form of o,(¢) follows that of o,(t).
An alternative descriptive time-dependent quantity we use is based on the projection onto
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the initial state as
g(t) =1—[(P(0)[ ()| (1.33)

which is actually the loss of the ground state population. This g(¢) is very close to the prob-
ability of leaving the vicinity of the center-of-mass (r = 0) in typical strong-field processes.
We have found that after the laser pulse it is a good indicator of the fraction of ionization and
the continuum wave packets. This has been verified numerically in our actual calculations, and
this feature of (1.33) was also utilized in other strong-field calculations like in the well-known
Lewenstein model [19].

Another important physical quantity that we list here is related to the high-order harmonic
generation [7, 10]. It is known that accelerating charges emit electromagnetic radiation, but
on a single-atom level the calculation of this is not trivial, since the quantum description of
the electron is neither a point charge, nor a charge distribution. However, if many similar
atomic processes occur, the total emitted radiation will given by the coherent part of single-
atom responses. Thus it is related to the average of the z component of the particle acceleration
which can be calculated simply as

(az) (1) = — (1.34)

Then the emitted spectrum is calculated from the dipole acceleration (a;), and the power spec-
trum of which is given by

p(f) =7 [(a)] (/) (1.35)

where .# denotes the Fourier transform and f is its frequency variable.

We can use the aforementioned physical quantities for the analysis of the strong-field dy-
namics, illustrating how much the atom was ionized and approximately in which direction the
particle moves, and we can investigate the HHG spectrum using the Fourier transform of the
dipole acceleration.
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CHAPTER?2

Standard methods for the numerical solution of the
time-dependent Schrodinger equation

In this chapter we overview the relevant standard numerical methods that can be used for the
real space numerical solution of the time-dependent Schrodinger equation (1.6). The numerical
methods discussed here are advanced: the computational efficiency of the proper numerical
solution of this particular partial differential equation is crucial in higher dimensions. In the
following, we introduce the general approximations from which temporally and spatially high-
order convergence of the solution can be achieved. We also discuss a particular high-order
discretization of (1.6) within the Crank-Nicolson scheme.

2.1 Crank-Nicolson method

The Crank-Nicolson method discussed here will form the basis of the numerical equations in
Chapter 4. In the following, we overview the relevant approximations of the time evolution
operator, introducing the Crank-Nicolson form of the short-time evolution operator, then we in-
troduce the finite difference discretizations applied to the cylindrical case, as mentioned earlier.
We also discuss the numerical integration formula and the unitarity in the cylindrical case.

2.1.1 Approximation of the time evolution operator

The formal solution of (1.5) or (1.6) in terms of the time evolution operator U (z,t’) is the
following

U(t,f') = T exp {—i /t tH(t”)dt"] @) = U, )¥(). 2.1)

Here, the exponential operator is to be understood as a time-ordered quantity, which is a very
difficult procedure if the Hamilton operators at different time instants do not commute. How-
ever, this is the case for the Hamiltonian we are considering.

To acquire suitable discretization in the time domain we have to approximate the U (¢,0) time
evolution operator directly. First, let us divide the time domain [0,¢], into N, equal subintervals
of size A, then by the group property of U(z,0) we get
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Ni—1

U(t,0) = [T U @ts1,0) (2.2)
k=0

where #; = kAt and Ar =¢/N;. In one interval, we can write the evolution operator with its

short-time form of
U(tig1,t) = e Ak (2.3)

where Hj, is an effective time-independent Hamiltonian at the kth step, which is related to the
original one H () by the Magnus expansion [65, 66]:

/
Te1 t

Tt 1
1 ]
H,=— | H{)d/' + — H({,H{)] de""dd + ... 2.4
(= [HEa o [ e e 4
I

Ie Ik

This includes infinitely many commutators of the Hamiltonians evaluated at different time
points, to be integrated with respect to more and more variables. This series have to be ap-
proximated by cutting of the terms and approximating the integrals.

Using only the first term of this series, one can directly acquire the well-known second-order
approximation of the Hamiltonian as

HY = H(, ) (2.5)

In order to have information about the next error term of the time evolution, we need to evaluate
the Magnus commutator series to the fourth order. According to Puzynin et. al. [65], this
improved approximation for a TDSE of the form (1.6) is

gy 1 AP 2 Ar?

H;E = (—lV+ EVV(ka/z)) +V(tky12) + ﬁv(tk—kl/z)- (2.6)
where the top dots are the short hand notation for d; time derivatives. This formula is important
even if we use only the second-order approximation, because the leading order of error depends
on characteristics of the first and second time derivatives of V(z, p,?).

For the exponential operators (2.3), first we consider the diagonal Padé-approximation of an

exponential function
ax_ 1FI(=M,—2M,A -x)

R (=M, -2M,—) -x)

where { F] is the confluent hypergeometric function, which in this case reduces to a polynomial

+o(A*MH (2.7)

of degree M with real coefficients. This expression can be used for the exponential operators
(2.3) with A = —iAt, and it can be shown that for self-adjoint operators the approximation is
unitary [22].

From this, a generalized operator approximation scheme that is Ar2M+1

accurate can be
obtained [67, 68] in a general form of

Ar O\ ! At
(1) (1-2n)
X3 X
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where x; for s = 1,...,M are the roots of the polynomial equation
1F1 (—M,—Z]W7 —x) =0. (29)

If we truncate both the Magnus-series at the first term in (2.4) and take a single coefficient of
the Padé-approximation (M = 1), then we arrive at the second-order accurate implicit Crank-
Nicolson scheme:

-1
\P(l‘k_H) = (1 + in%> <1 — in%> ‘P(tk), (2.10)

which is called the Crank-Nicolson method. One can straightforwardly construct higher-order
schemes using (2.8), yielding multiple implicit Crank-Nicolson substeps [67] in forms similar
to (2.10). For time-dependent Hamiltonians though, a high-order accurate scheme should use
the corresponding high-order effective Hamiltonian (2.4) for consistency.

2.1.2 The cylindrical finite difference scheme

The most widely employed approach to the solution of the time-dependent Schrédinger equa-
tion (1.5) for an atomic electron driven by a strong laser pulse is to use spherical polar coor-
dinates: then the hydrogen eigenfunctions are analytic and one expands the wave function in
Y; m(0,¢) spherical harmonics with expansion coefficients ¢; ,,(r,7) acting as radial or reduced
radial functions, for which the problem is solved directly [69-73]. The usual drawback is that
in order to calculate physical quantities either the real space reconstruction of the wave function
is necessary or every observable must be given in this harmonic expansion. Also, the spherical
grid of these methods is not well adapted to the electron’s motion which is mainly along the
polarization direction of the laser field. Therefore in some applications neither spherical co-
ordinates, nor special basis functions are optimal, and one has to use Cartesian or cylindrical
coordinate systems in numerical simulations.

The plan of using cylindrical coordinates demands an analytic boundary condition to be
incorporated into the numerical solution of TDSE. This will constrain the applicable propa-
gation methods: the singularity of the cylindrical radial coordinate at p = 0 will introduce
Neumann boundary conditions, overriding the Hamilton operator. As a consequence, typical
explicit methods, for example staggered leapfrog [74, 75], second-order symmetric difference
method [76, 77], any polynomial expansion method [76, 78] have been ruled out, leaving only
implicit methods.

In the following, we continue by discretizing (2.10) in cylindrical coordinates to arrive at
its discretized matrix form. For the actual simulations based on Eq. (1.6), it is necessary
choose a finite spatial domain which is large enough to be able to contain the time-dependent
wave function. Therefore, the wave function is defined within the interval z € [Zin, Zmax)> P €
[0, Pmax ], and additional boundary conditions are posed at three edges of the interval:

\P<Z > Zmampat) :\P(Z < Zmin7p7t) :T(Za‘p| > pmax;t> :07 (211)

which are the boundary conditions of particle in a box i.e. a particle in an infinite potential well.
In this region, we introduce the following particular form of the equidistant 2D spatial grid of

20



CHAPTER 2. STANDARD METHODS FOR THE NUMERICAL SOLUTION OF THE TDSE

the z, p cylindrical coordinates:
Zi = Zmin t1- Az, Az = (Zmax _Zmin)/Nz; RS [OaNz] ) (2.12)

Pj=J-Ap, AP = Pmax/Np, j € [0,Np] . (2.13)

Our next step is to discretize the effective Hamiltonian Hy, and to construct the Hamiltonian
matrix. Let us introduce the finite difference approximation of the Laplacian as V> ~ ZZ +Zp,
which we will incorporate into the discrete Hamiltonian Hy. Based on Appendix A, high-
order difference formulas can be calculated using one-dimensional Taylor-expansions centered
around the points z; or p;. Using the formulas (A.3) and (A.4) of this Appendix, the symmetric
fourth-order accurate forms of ZZ and Zp read as:

~ - Wi+ 16Wy = 30%; i+ 16t — Wit

LZ\PI'J(Z) = 12A72 (2.14)
~ (L)Y o+ (16 = 8/7) Wi j1 —30Wij + (16 +8/j) Wi j1 + (=1 = /i) Wi jso
LPlPl}jO) = 12Ap2 )

(2.15)

These fourth-order formulas are optimal in the sense that of using more than five points are
can problematic here, because the higher-order the finite difference formula is, the higher-order
derivatives of W¥(z,p, ) should be continuous.

Using the standard second-order accurate form (2.10) of the exponential operator with the
discretized Laplacian in the Hamilton matrix, we get the following implicit scheme for all i €
[0,N] and j € [1,N,]:

(1+@BLe+ aBLy + aVi;) Wijlni1) = (1 - @BLe— aBL, - avi;) is(w),  (2.16)

where o = iAt/2, B = —1/2u and the potential is evaluated at the temporal midpoint V; ; =
V(zi,pj,tk+1/2). The box boundary conditions ‘¥'; ; = 0 are applied if j > N, ori > N, ori <0.

Let us assume that the atomic potential Vy(z,p) is smooth. To discretize the resulting Neu-
mann boundary conditions (1.10) at p = 0, we need a one-sided finite difference formula for the
first derivative. Using the formula (A.9) of Appendix A, we introduce the following fourth-order
accurate forward difference operator:

—25%; j +48Y; j11 — 36, j12+16%; j13 —3¥; ji4

DpY¥, (1) = 2.17
Then this gives the following implicit equations at j = 0 for all i € [0, N,]:
Dp¥io(trs1) = 0. (2.18)

For simplicity, let us introduce the short hand notations X; j = W; ;(tx41), Wij = Wi (%),
then by substituting the finite difference Laplacians (2.14), (2.15) into (2.16), we arrive at the
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following final form of linear equations for all i € [0,N], j € [1,N,]:
(=1+1//)BpXi j—2+ (16 =8/ j)BpXi j—1 + (16 +8/ j) BpXi j1 + (=1 —1/j)BpXi j+2
—B:Xi2,j+16B:Xi—1 j+ (1 =308y —30B; + aVi j)Xi j + 16B:Xiy1,j — B-Xiv2,j
= (1=1/7)Bp¥ij2+ (=16 +8/j)Bp¥i -1+ (=16 =8/ j)BpWijr1+ (1 +1/)Bp¥i j12

+ B Wiz, —16B.Wi_1j+ (14+30B, +30B. — aV; j)¥; j — 16B.¥it1,j + B Wiy2j, (2.19)

where
o =iAt)2, B=—1/2u, B, = aB/(124p%), B, = aB/(12A7%). (2.20)

The equations forced by the Neumann conditions for all i € [0, N;] from (2.17), (2.18) are
—25X;0+48X;1 — 36Xi72 + 16X,'73 —3X;4=0. (2.21)

The spatial discretization in the cylindrical coordinate system and the Neumann boundary
conditions make the unitarity of the algorithm, and in a broader sense, the accuracy of spatial
integrations a more subtle issue than usual. One has to find an appropriate discrete inner product
formula that is conserved at least with the accuracy of the finite differences, and which can be
evaluated with sufficient accuracy using the cylindrical grid. We give a solution to this auxiliary
problem in the next section.

Although it corresponds to a 3D propagation, we call this scheme 2D Crank-Nicolson
method because it involves only two spatial coordinates. This is already a correct propaga-
tion algorithm by itself, however, it suffers from the numerically inefficient solution of the
resulting linear equations: if we combine the i, j indices into a single one (by flattening the
two-dimensional array) as / = i- (N, + 1) + j, we obtain a a block pentadiagonal matrix of size
(N4 1)*(N, + 1), with block size (N, + 1)?. Inverting this type of matrix is computationally
intense [79, 80] because the width of the diagonal is 4N, + 1: despite its apparent simplicity, the
numerical cost of this task is ~ NZNS’ which is prohibits performing actual strong-field simula-
tions. These facts inspired us to develop an improved algorithm which has almost all advantages
of this 2D Crank-Nicolson method but needs much less numerical effort.

For completeness, we note that one-dimensional Crank-Nicolson schemes where only the
z; grid is present do not suffer this prohibitive computational load, the computational cost of
a pentadiagonal scheme with the corresponding size is ~ N,;. The form of one-dimensional
equations follow straightforwardly from (2.19) with B, = 0.

2.1.3 Approximating the cylindrical inner product

In the following, we seek a discretized representation of the inner product formula in the cylin-
drical coordinate system as

~+oo oo
(DY) =27 / /0 p D (z,p)¥(z, p)dpdz = Y i j@F ;i ;. (2.22)
e =

The naive approach with coefficients ¢; ; = 2wp ;ApAz causes inaccuracy which originates
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solely from the p = 0 edge and its neighborhood, because the formula with this particular ¢; ;
has exponential convergence at the box boundaries [79].

Besides the accuracy, the conservation of a discretized scheme of form (2.22) is also an is-
sue: given a discrete Hamiltonian matrix H in the Padé-approximation then the time evolution
will be unitary with respect to the inner product }; ; ¢; ]CID* \V; j only if H is self-adjoint. Unfor-
tunately, because of the boundary conditions at p = 0 the Hamiltonian matrix H does not exist
on the p =0 line, therefore the standard norm of form }; i€, ]‘Pj‘ j‘Pi, j is not perfectly conserved
by the numerical Crank-Nicolson scheme.

Therefore, our aim is to approximate (2.22) with an order that is same or higher than the
order of the finite difference scheme. To achieve this goal, we use Lagrange [79] interpolating
polynomial p; j(p) defined on points (p;, Qi ;), (Pj+1,Qij+1)s (Pj+2:Qij+2)s (Pj+3:Qij+3),
(Pj+4,0Qij+4)s (Pj+s,Qij+5)s (Pj+6, Qi jr6) Tor a given z; line, where Q; ; is the integrand in
(®|¥) = [[ O(z,p)dpdz. We use an elementary integral formula between p; and pj:

19087 2713 15487 586 6737
/ Qlzp)dp _{60480Q”’ 252024741 20160 22 T 945 21i+3 T 50760 Qi+

263 863

"0 e 0. . . 8
7530 20+5 ~ goagp it | AP +0(40°). (2.23)

We sum up this for all , j points, and utilize the boundary conditions for j > N, then we arrive
at the following integral formula, which is our choice to approximate the scalar product (2.22):

19087 84199 18869 37621
o) = O} )P0+ = pr D O}, 5 O}, 5
(@1%) = X | GoagoPoPioio T GoagoP PinVin + 3504P2%i2 ¥z + 354605
N,
55031 61343 :
P4P; s+ ps®;s¥is+ ), piP; -‘Pi,j] -2mApAz. (2.24)
604307 60430 ];6 J

This achieves the high integration accuracy (it is exact for a polynomial of p up to degree 6),
which is needed: the computed norm variations become proportional to Ap?, which is consis-
tent with the accuracy of the spatial finite differences. This does not affect the stability of the
constructed Crank-Nicolson scheme.

For completeness, we note that in 1D the proper discrete inner product is simply

N,
(@'P|P!P) = )" @D wPA;, (2.25)

i=0

and pose no such difficulties! that exist in cylindrical coordinates.

! Assuming that ¥'P and ®'P are smooth enough.
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2.2 Operator splitting schemes

As we have seen in the previous section, the 2D Crank-Nicolson scheme with the boundary
condition (2.18) is a possible but ineffective way of solving the TDSE numerically. Now we are
going to discuss how to apply the well-known method of operator splitting in order to simplify
the related short-time exponential operators.

2.2.1 Operator splitting formulas

The approach of the operator splitting method is to factorize the exponential operator of form

e into multiple easy-to-solve parts. From the Taylor-expansion of the exponential operator

M _ y (A+B)

A" (2.26)
oy n!

follow the two main formulas [81] which form the basis of the operator splitting schemes,
namely the Baker-Campbell-Hausdorff formula:

elAe)uB — el(A-‘-B)-Flz%[B,A}-Fl:;llfz[A—B,[A,B” + 0(14), (227)

and the Zassenhaus formula

AATB) _ A B A H(AB] A GAT2BIAB] | o(A%). (2.28)

Both of these contain infinitely many commutators of A and B. Of course, if [A,B] = 0 then
MATB) — (AAAB exactly. As the above formulas suggest, the O(A*) terms can be further
factorized into the exponents. An extended analysis is available in Refs. [82, 83].

If one uses (2.27) and (2.28) to acquire a symmetric decomposition, only odd leading order
of A will appear in the formula as the error term. This is a requirement for quantum propagation
though, because the presence of even-order terms would destroy the unitary evolution of the
wave function. A well-known unitary example is the widely used standard symmetric second-

order accurate formula (or Strang splitting, after [84]):
el(A—FB) — eﬂ,A/ZelBeﬂ.A/Z_f_C:;A}_'_0(2’4), (229)

where C3 is a combination of commutators of A and B. A direct fourth-order splitting scheme
was derived by Chin and Suzuki [85, 86]:

MATB) — AGA LB AZATA A [BA]] A 5B A GA +CsA° +0<16). (2.30)

This splitting requires also the evaluation of the [A, [B,A]] commutator, which can rise additional
difficulties, depending on the particular form of A and B.

We proceed by introducing another kind of higher-order operator splitting, based on the
work of Bandrauk and Shen [87], who developed an iterative method to improve the accuracy of

the (2.29) scheme. Let us denote the second-order accurate form with Sp(4) = M/2AB A2
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then their iteration method reads forn = 4,6, ... as

Su(A) = 8p_2(sA)Sp_2((1 =25)A)Sp_2(sA) +Cp1 (25" '+ (1 —25)" Ha" L L o(A™ 1)
(2.31)
where the parameter s must be for each iteration step a real root of the corresponding polynomial
equation

25" T4 (1—25)" = 0. (2.32)

In (2.31) only the odd error terms appear, because of the unitarity and the symmetry of the
splitting scheme. So the S,,(A) requires 3"/2 evaluations of S, in the worst case.

This scheme was already generalized for time-dependent Hamiltonians of the form H(t) =
A(t)+ B(t) in [87, 88] as follows. Inserting the second-order effective Hamiltonian (2.5) into
the formula (2.29) with A = —iAt , the second-order accurate splitting of the evolution operator

becomes
U2(l+At, l.) — e—i%A(l+Al/2)e—iAtB(l+Al/2)e—i%A(l-FAI/Z). (233)

Then (2.31) will take the form for n =4,6...

Un(t+At, t) =U, ot +At, t+(1—5)At) U,_o(t+ (1 —5)Ar ,t +5At) Up_o(t+5At ,1)+O(A" )
(2.34)
and s being the same as in the time-independent case (2.32). We note here that interestingly, the
fourth-order approximation Uy in (2.34) decreases the error even if the time evolution governed
by a nonlinear time-dependent Schrodinger equation, if the nonlinear error term is corrected in
the formulation of the U, propagator [88, 89].
We can also write out an alternate form of iteration (2.34) for time-dependent Hamiltonians,
by using the same principles, for n = 6,10, ...

Un(t+At, 1) = Upg(t + At t+ (1 —5)At) Up—g(t + (1 —5)At, t 4+ (1 — 5 — p)Ar)
X Up—a(t+ (1 —s—p)At, t + (s+ p)At)
X Up_4(t+ (s+ p)At, t 4+ 5A1) U,_4(t + sAt, 1)+ O(A" 1), (2.35)

where s, p must be the simultaneous real roots of equations
25" 34 2p" 4 (1-25—2p)" 3 =0, and 25" ' 4+2p" L4 (1—25—2p)" ' =0. (2.36)

However, this formula for Sg requires five evaluations of S, compared to nine in the case of Eq.
(2.31).

Although the fourth-order formula (2.30) with the fourth-order effective Hamiltonian (2.6)
seems to be superior compared to the iterative propagation (2.34) (because of the extra informa-
tion given by the temporal and spatial commutators, and less evaluations), the schemes (2.34)
and (2.35) do not require the calculation of commutators, they decrease all the Ar-dependent
errors simultaneously and they are easy to implement. However, they involve backward time
steps, which means they do not work very well with nonunitary problems.
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Complete exponential Kinetic-potential operator splitting
Z e—zAtH o e—lAtV/Z e—lAlTp e—zAtTZ e—zAtV/Z
Sphttlng L] L] L] L] L] L] *-—o—o—0—o0—o L] L] L] L] L] L]
NZ L] L] L] L] L] L] ® *-—o—o—0—o0—o ® ® L] L] L] L] L] L]
error
~AP e o o o o o e S e e 3 e o o o o o
p .
N, Operations: ~N,N, ~N,N, ~N,N, ~N,N,

Figure 2.1: Sketch of the standard kinetic-potential splitting scheme (2.38). The solid lines
represent coupling between the gridpoints of the exponential operator evaluations: we see that
because of the kinetic energy operators T and T, has been moved to different exponentials, the
coupling has been split directionally. We also indicate the approximate operations count needed
to apply the particular exponential operator in a split-step finite difference scheme.

Another class of high-order split-operator methods for diffusive parabolic partial differential
equations was developed in [90], where the exponential operator is found by an ansatz of

n A n 2
Son(A) =Y iS4 (%) +OA ) withey = [ =2 (2.37)
k=1 J=1(k) Sk T 6

Here S, is the same second-order formula which is used in (2.31). The fourth-order formula
is simply given by S4(1) = —%Sz(l) + %S% <%> Thus, once S, is properly constructed, all
high-order formulas (2.34), (2.35), (2.37) can be utilized immediately. The (2.37) method is
suitable for the imaginary time propagation [70, 90, 91] with A — —At, i.e. for determination
of the lowest energy eigenstates of stationary potentials.

2.2.2 Directional splitting of the exponential operator

The most common way of factorizing the exponential operator ¢* s that the different spatial
coordinate derivatives decouple into different exponential operators, i.e. to use a directional
splitting. Then the propagation can be carried out by solving multiple one-dimensional TDSE-
s in succession. The most frequent realization of this is the so-called potential-kinetic term
splitting (see Fig. 2.1), which is mainly used in conjunction with the Fourier-transformation
methods in Cartesian coordinates [76, 92, 93]. However, if we apply the potential-kinetic term
splitting to the cylindrical problem of (1.6) then we have to write Hamiltonian as H = T, + T, +
V where V is the potential, T, and T; are the kinetic energy operators of (1.8). The [A,[B,A]]
commutator will take a rather simple form of [V, [T, + T3,V]] = |[VV|?>/u. Thus, the direct
second-order (2.29) and fourth-order (2.30) symmetric splitting schemes are written as

el(Tp-i-Tz-FV) — elV/zelTpelEelV/z +C3A«3 + 0(14)’ (238)

1 1 1 2 311 2 41 1 1
AT ATAY) = AgV AaTp ArTe AV A VI A3 Ty A3 Te gAY CsA°+0(1%),  (2.39)
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where A = —iAr. We also note that these split-operator formulas by themself will introduce
error, scaling as Ar> and Ar>, compared to the stationary states of the exact time-independent
Hamiltonian. In the case of a time-dependent Hamiltonian, the respective second-order (2.5)
or fourth-order (2.6) effective Hamiltonians should be used. These truncations of the Magnus-
series (2.4) will introduce additional A3~ and Ar-dependent errors in time evolution.

The magnitudes of the aforementioned numerical errors will depend on the derivatives of
V(z,p,t): in the case of external electric field the smoothness of V in time is a reasonable
assumption. On the other hand, the spatial dependence of the atomic potential should also
behave the same way if we wish to use operator splitting. As we suspect, it will not always
be the case, especially in atomic or molecular physics. We can deduce from (2.39) that the
leading order of error of the second-order scheme must have a dependence of Ar3|VV|?, e.g.
the error characteristics strongly depend on the magnitude of the spatial derivatives of V(z,p).
In the case of an atomic 1/r Coulomb potential this error term will be Ar3r~# which becomes
significant only in the region r < 1, where it is increasing rapidly with fourth power of 1/r, and
the split-operator scheme completely breaks down at r = 0. This also illustrates the fact that
nondifferentiability of either the potential or the wave function could potentially make operator
splitting like (2.38), (2.39) less-than-useful.

Up to now, we have seen that directional spitting related exponential operator factorizations
result drastic speed improvement for well-behaved potentials: we can directly apply the five-

AT: and e*p exponents for evaluation,

point finite difference Crank-Nicolson method to the e
thus we have to solve for locally decoupled one-dimensional wave functions. This is known
as the split-step finite difference method [94, 95]. Then, the approximate operations count of
evaluating the formula (2.38) is ~ N;N,, which is smaller by the factor of Ng compared to
the full Crank-Nicolson problem of the same size. On the other hand, the full Crank-Nicolson
scheme is able to incorporate the Neumann boundary conditions at p = 0 into the implicit linear
equations properly, and it does not suffer from the catastrophic error blow up while we approach

the origin in the case of the Coulomb potential.
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Theoretical description of entangled quantum systems

Quantum entanglement is probably the most fundamental of the quantum features and is a
purely nonclassical correlation: if the spatial motion of two particles, for example, the electron
and its parent ion-core is entangled (i.e. their positions or momenta), then any measurement
made on one of these particles will affect measurements on the other particle, even when the
interaction term in their Hamiltonian is negligible between them. In this chapter we overview
the standard approach of quantifying quantum entanglement between these two particles. We
will also introduce elements of quantum informational theory which can quantify the quantum
correlation information between two arbitrary systems generally.

3.1 Quantification of bipartite entanglement

In the following, we recall the standard theory of quantum entanglement for pure state bipar-
tite systems, emphasizing the features specific to the features of continuous variable quantum
entanglement [38], where the quantum states described by square-integrable coordinate wave-
functions of infinite-dimensional Hilbert spaces. We introduce the concept of density matrices
and quantum entropies, which quantify the quantum entanglement in the standard case.

3.1.1 Schmidt decomposition

Let us introduce two systems e and ¢, which are two distinguishable particles, for example, the
electron and its parent ion-core. We assume that the composite system ec is a closed quantum
system in a pure state represented by the wave function W, (r.,r.,7). The two subsystems e
and c are entangled if W, is not separable with respect to the coordinates of these subsystems:

lPec(revrat) #Te(reat)wc(rcﬁ)- (3.1)

It is well-known that then the result of the measurement of subsystem e affects the outcome
of measurements on subsystem ¢ and vice-versa. That is, performing measurement on either
particle changes the other particle’s quantum state in a nonlocal manner.

To quantify this entanglement, we need the relevant concept of density matrices: the quan-
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tum state of the composite system is described by the two-particle pure state density matrix:

Qec(rlwr&réurwt):‘y* (r r t)qlec<rear(:7t) (32)

erter

and the single-particle density matrices are obtained by tracing over the other particle’s degrees
of freedom. The reduced single-particle ion-core density matrix is

Qc(r/carc:t) =Tr, [@ec] = /Qec(l‘e,reyl'/c,l‘c,t)dl'g (3.3)

and the reduced single-particle electron density matrix is

Qe(r/eareut) = Tr, [@ec] = /Qec(rleareyrwrc;t)drg- (3.4)

These quantities contain every quantum information about the respective single-particle prop-
erties, and they are directly related to the entanglement information we need. To show this, we
refer to the Schmidt theorem [96, 97], which states that there exists a unique decomposition of
the entangled wave function ¥, of the bipartite system ec into a sum of the following form:

\Pec re7r(,7 Z \/ a‘k ¢k rc, Wk re? ) (35)

where ¢ (r.,t) and y(r,,t) are orthonormal basis functions in the respective spaces. They are
acquired after the diagonalization of the single-particle reduced density matrices (3.3) and (3.4)
as

r€7 Zﬂ‘k Wk(rev )a (36)

L Te,t) Zkk )05 (L, 1) i (xe 1), (3.7)

1.e the formula (3.5) contains the eigenvectors ¢, W as the Schmidt basis functions, and the
countably many common eigenvalues A;(7) of g, and . density matrices respectively. We
note that in this continuous variable case the diagonalization (3.6) or (3.7) actually involves the
solution of a homogenous Fredholm integral equation of the second kind. In addition — contrary
to discrete variable systems — these density matrices are usually highly singular, due to the
trace condition Trp, = Trpo. = 1 they contain infinitely many zero or close to zero eigenvalues.
Therefore, it is also necessary to introduce an ordering of the eigenvalues 4| > A, > A3 > ... and
then to use only a finite number of them which are greater than an adequately small threshold
number €.

3.1.2 Entanglement entropies

The eigenvalues A, (7) allow one to quantify the entanglement of the particles (subsystems) e
and ¢ by introducing quantum entropies [98, 99]. Most frequently we use in this thesis the von
Neumann entropy

Sn(t) = —Tr[pc(t)In p.(1) Zkk (1)InAg(2) (3.8)

29



CHAPTER 3. THEORETICAL DESCRIPTION OF ENTANGLED QUANTUM SYSTEMS

and in certain cases the linear entropy

SL(t)=1-Tr[3(t)] =1-Y AZ(1). (3.9)
k

The von Neumann entropy obeys some natural requirements, and it also has a quantum infor-
mation theoretic appeal [100] while the linear entropy (3.9) is easier to calculate, since diago-
nalization is not necessary. However, both of these entropies generally tend to behave the same
way in this simple bipartite configuration: if a subsystem is in a pure state they assume the value
0, and they increase as the “mixedness” of the subsystem’s state increases. It is important that
this quantification does not straightforwardly generalize to the case where the composite system
is divided into more than two subsystems [101].

For independent systems the total density operator is the tensor product of those of the
subsystems and then the Neumann entropy of the composite system is exactly the sum of the
Neumann entropies of the subsystems. In our case, however, when by the very nature of the
problem e and c¢ are not independent, only strong subadditivity holds [102], which gives an
upper bound of the composite system’s entropy as

SN(Qec) SSN(QE)+SN(QC)' (310)

A useful lower bound is given by the Araki-Lieb inequality as

‘SN(Qe) _SN(QC)| < SN(Qec)~ (3.11)

These two properties can be used to form analytical criteria that approximate entanglement
quantizations should meet.

3.2 Elements of quantum information theory

In this section, we quantify the quantum correlation information between two arbitrary systems
using elements of quantum informational theory. In this general case, the composite bipartite
system g, can be in a mixed state, for example, in the directionally reduced z.-z. bipartite
systems or in a thermodynamic equilibrium. The entangled pure state density matrix gﬁ‘;‘”‘")

defined in (3.2) is important special case of g.

3.2.1 Correlation types and quantum information

Quantum information theory, in parallel to the classical Shannon information theory [103],
succinctly associates information with randomness shared by two physical ensembles, but is
based entirely on density matrices (rather than probability distributions) for the description of
quantum ensembles. Its formalism also allows for a consistent description of the characteristics
of the correlation channel in a bipartite system ec. The central object of quantum information
theory is the entropy (3.8) introduced by Neumann.

In general, o, could involve both classical and quantum correlations. Then it is crucial to
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recognize the features of these, thus we recall their meaning first. If a bipartite system contains
only classical correlations between the two subsystems, then it has a density matrix of the
following form:

o =Y wi- o @ o, (3.12)
k

where wy satisfy Y, wi = 1 and w; > 0. We are dealing with some form of quantum entangle-
ment only if the density matrix of the system does not satisfy (3.12). We denote the correspond-
ing class of nonclassical density matrices generally as gé‘g“a“t).

In the following, we recall the properties of the quantum conditional and quantum mutual
entropies of quantum information theory that suit the task of determination and quantification of
entanglement. We will denote the composite system by EC, and its subsystems by E and C. We
also simplify the notation of the entropies as S(EC) = Sy(0ec), S(E) = Sn(0e), S(C) = Sn(0c)
where Sy is the Neumann entropy (3.8).

3.2.2 Quantum conditional entropy

The quantum conditional entropy corresponding to a subsystem can be introduced based on the
conditional density or amplitude operator [104, 105], but we consider the following formula for
the definition

S(C|E) =S(EC) —S(E) (3.13)

for the quantum conditional entropy of subsystem C, and S(E|C) is the quantum conditional
entropy of subsystem E. This characterizes the remaining entropy or information of C after
E has been measured completely. We illustrate the quantum entropies of EC in Fig. 3.1 (a)
including the conditional entropies.

We can interpret both of these quantum conditional entropies generally the same way as
the classical ones, but they can have negative values. They behave exactly the same way for
classical correlations as their classical counterparts: they are nonnegative

oY — S(C|E) > 0 and S(E|C) > 0. (3.14)
However, when either of them is negative,
S(C|E) <0 or S(E|C) < 0 = o{d"") (3.15)

then the composite system is entangled, which leads e.g. to a violation of the Bell inequalities.
Note that the converses of (3.14) and (3.15) are not true and also S(E) — S(EC) can be positive
in case of quantum entanglement. For example, in case of pure composite systems we have

o) — S(C|E) = —S(E) = —S(C) (3.16)

and S(C) = S(E) is positive. Because of this, quantum entanglement is sometimes called “super-
correlation” and introduces virtual information which describes that the measurement changes
the quantum state of the other subsystem.
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@ ®) S(E) S(C =
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(D) S(E) =S(C)

S(EC) @

Figure 3.1: (a) General entropy diagram for a quantum bipartite system EC. (b) Entropy
diagrams of special cases: (I) independent, (I) a classically correlated with S(EC) = S(E : C),
(IIT) purely quantum entangled subsystems. We can see in (III) that quantum entanglement
introduce virtual (negative) information.

3.2.3 Quantum mutual entropy

Quantum mutual entropy is the shared entropy or shared information between subsystems E
and C. It can be defined using the mutual density or amplitude operator [104], but we use the
definition

S(E:C)=S(E)+S(C)—-S(EC). (3.17)

It can be also interpreted as the decrease of entropy of subsystem C due to the knowledge of E
(and vice-versa). Because of this, we note that the conditional entropy and mutual entropy are
related in the respective subsystems as

S(E :C) = 8(C) — S(C|E). (3.18)

We also illustrate this entropy in Fig. 3.1 (a).
The quantum mutual entropy is by construction symmetric and its values are always non-
negative. For classical correlations the following relation holds:

o — S(E : C) < min[S(E), S(C)]. (3.19)

If the values of S(E : C) extend above this classical limit then there is quantum entanglement
between E and C:
min[S(E),S(C)] < S(E : C) = oldu™™. (3.20)

Unfortunately again, it is not true that below the classical limit (3.19) there could not be quantum
effects between the two subsystems. The upper limit of the quantum mutual entropy is

S(E :C) <2min[S(E),S(C)], (3.21)

which can be derived from the Araki-Lieb inequality (3.11).
It is instructive to observe that for pure state composite systems, like EPR pairs, S(E : C) is
at the upper limit:
o) — S(E: C) = S(E) +S(C) = 25(C). (3.22)
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We illustrate entropy diagrams for a few special systems in Fig. 3.1 (b) including the a special
classically correlated and purely quantum entangled cases. These are important in the sense that
they are at the upper bound in (3.19) and (3.20) respectively.

Based on this and using the exactness of (3.22), a unified entanglement or quantum nonsep-
arability measure can be defined which we denote as the average mutual entropy:

S(E:C) = %S(E .0) (3.23)

which is the same as (3.8) in pure bipartite quantum systems. We can also use this to deduce
whether we are dealing with entanglement: if we are near the limit (3.21), i.e. S is close to
min [S(E),S(C)], then entanglement is the major correlation. The formulas (3.17), (3.13), (3.23)
can be used for the analysis of the entanglement dynamics of the directional bipartite subsystems
of (3.2). But we have to be careful because (3.23) is a general measure of correlations and
entanglement e.g. nonseparability, and does not imply entanglement under general conditions.
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CHAPTERA4

The hybrid splitting algorithm

In the present chapter, we propose a novel method to accurately incorporate the effect of the
Coulomb singularity into the solution of a spinless, axially symmetric TDSE in cylindrical
coordinates. We account for the singular Coulomb potential through an analytic boundary con-
dition which resolves the problem of nondifferentiability of the hydrogen eigenfunctions in the
cylindrical coordinate system and yields high-order spatial accuracy. We also discuss the case
of different m quantum numbers. We published this method in [P1].

In Section 4.2, we introduce our hybrid splitting method, which retains the robustness of
the full Crank-Nicolson method (Section 2.1.2) and the speed of the directional split-operator
method (Section 2.2.2). Then we analyze the newly arisen coefficient matrix, we describe the
way how to take advantage of its structure, then we derive a special solver algorithm which is
necessary for the fast solution of the TDSE. In Section 4.3, we discuss the results of numerical
experiments we carried out with our hybrid splitting method: (i) for the accuracy of the spatial
discretization of the finite difference scheme, (ii) for the temporal accuracy of our split-step
finite difference scheme combined with high-order evolution operator factorizations, and (iii)
for final verification, we simulate the hydrogen atom in a time-dependent external electric field.

4.1 The Schrodinger equation and its boundary conditions

Our aim is to represent the singularity of the 3D Coulomb potential by implementing the correct
boundary condition at the origin. As other kind of numerical errors decrease, the artifacts caused
by the smoothing of the singularity become more disturbing. Therefore, the derivation of this
boundary condition is needed for the numerical method to handle it as accurately and effectively
as possible.

4.1.1 The boundary condition for the 3D singular Coulomb potential

In order to find this condition, it seems necessary to use spherical polar coordinates, since the
Coulomb problem is not separable in cylindrical coordinates. Let us first discuss the properties
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of the radial solutions ¢ (r) of the well-known radial equation [59, 106]:

> 29 _I(1+1) Z
— —— =E 4.1
LR =L BRI} @
where [ is the angular momentum quantum number and f = —1/2u. If we multiply both sides
with r then take the r — O limit, we can acquire Robin boundary condition for all of the / =0
States as 29
— =—uzo (0 4.2
o T H ¢ (0), (4.2)

but the bound states with higher angular momenta will have ¢ (0) = 0 boundary condition at
the origin, in accordance with the fact that for / > 0 the particle physically cannot penetrate to
r = 0, because of the singularity of /(14 1)/r>.

Since we need the boundary conditions in cylindrical coordinates independent of the / val-
ues, we turn to the nonseparated symmetric spherical Schrodinger equation for answers:

2> 2B 1 9 d 4
{ﬁar r Br +h r2sin6 96 <sm9—) B ?] P(r,0) = E¥(r,0). 4.3

which has also the term 1/7? and has singularity at » = 0 and at 8 = kx, k = 0,1,2.... To
acquire the boundary conditions for r = 0, we again multiply both sides with r and take the
r — 0 limit, yielding

cos® d B 9?2

rsmeae+_%_4 ¥(r,0) = 0. (4.4)

lim {2[3 +B

r—0

Now we transform equation (4.4) into cylindrical coordinates z = rcos 8 and p = rsin 0, using
following expressions of the partial derivatives:

9 9zd Ipd . .0 J
o droz T arap  Smog,teosba (*3)
d dzd Ipd

90 909z a0ap <05, 705, o

with cos 8 = z/+/z2+ p2 and sin @ = p /+/72 + p2. After writing back and taking the limit, the
formula (4.4) becomes

p d z d 7 d
Bt g g T _7lwre)| =0. @7
B\/z2+p239 B\/z2+p23Z Bp\/z2+p2f9P i

r=0

Then, by substituting z = 0 into (4.7), we obtain the Robin boundary condition for the 3D

Coulomb singularity:
¥

% p,z=0

This can be generalized to include multiple Coulomb-cores rather easily, we just need to impose

= —uz¥(0,0,1). (4.8)
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(4.8) at multiple z, p points along the p = 0 axis. It is interesting to note also that the Robin
boundary condition imposed by a 1D Dirac-delta potential (1.16) also has the form of (4.8) for
a symmetric wave function [59]. Additionally, any continuously differentiable potential added
to this configuration does not change this boundary condition.

4.1.2 The states with nonzero magnetic quantum numbers

Although we are mainly interested in the solution of the TDSE with an axially symmetric initial
state, i.e. an initial state of zero magnetic quantum number m, we briefly show in the following
that initial states with nonzero m also lead to a TDSE of the form (1.6), however with different
boundary conditions at p = 0.
Let us write out the full 3D time-dependent Schrodinger equation in cylindrical coordinates
with the same axially symmetric potential that we used previously:
2 2 2
i%i (z,p,p,1) = 98_z2 + aa—pz + g% + %;Tﬂ +V(z,p,t) | E(z,p,0,1). 4.9)
We can write the quantum state with a given magnetic quantum number m in the following form
for any ¢
E(z,p,0,1) = Wnlz,p,t)e™?, (4.10)

due to the fact that the Hamiltonian of (4.9) conserves the m quantum number. (We can also use
real angular basis functions like sin(mp) or cos(m¢) instead of ¥, as long as that they are the
eigenfunctions of 8;.)

After substituting (4.10) to (4.9) we perform projection in the form of fozn e~™%(.)dy. Then
we get the TDSE for our wave function ¥,,(z, p,) with the specified magnetic quantum number
m:

9 2 2 Bam
lEle(Zupat)_ ﬁa_zz+ﬁa_l)2+55_ﬁp+v(zup7t) qlm(z7p7t)7 (411)

Eq. (4.11) has the same form as the axially symmetric equation (1.6) but with a new m depen-
dent potential:

Vilz,p,1) =V (z,p,1) — Bm?*/p>. (4.12)

However, if m # 0 then the 1/ p? singularity of (4.12) alters the boundary condition (1.10) at
the p = 0 axis to the following:
Y, (z,0,1) =0, (4.13)

which can by derived by multiplying (4.11) with p? and taking the limit of p — 0. The Neu-
mann boundary condition (4.13) also works with Coulomb potential, and in every case where
p2V (z,p,t) = 0 in the limit of p — 0. It is also consistent with the boundary conditions for
Coulomb states with nonzero angular momenta (/ # 0) mentioned in the previous section.
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4.2 Hybrid splitting algorithm

Previously, in Section 2.1, we derived the suitable finite-difference scheme with high-order
spatial accuracy, using second-order Crank-Nicolson method and we saw that it is capable of
handling the boundary conditions at p = O properly. We also discussed the standard split-
operator methods for numerically solving the TDSE and we introduced the concept of split-
step finite difference methods. In that case, the approximate operations count of evaluating
the formula (2.38) scales linearly with the number of spatial gridpoints N;N,, but the method
suffers from error blow up near the atomic core. Now, we propose a merger of this split-operator
method with the cylindrical 2D Crank-Nicolson scheme in the form of “hybrid splitting” to get
the best of both worlds.

4.2.1 Hybrid splitting of the exponential operator

The key concept of our method is that we split the Hamiltonian both according to directions and
spatial domains in order to remove the problematic behavior of the split-operator method at the
p =0 edge.

Symmetric splitting scheme

First, we split the spatial domain of the simulations as G = G¢n + Gsplic Where

G= {Z,P S R7 Zmin < Z < Zmax, 0< p < Pmax}a (4.14)
GCNZ{Z,P ER, Zmin < 2 < Zmax, OSP SLAP}, (4.15)
GSplit = {va S R7 Zmin < Z < Zmax, LAP <p < pmax}a (4.16)

then we define the pieces of the Hamiltonian H = H; + H,, + Hcn as

H,=B3? if (z,p) € Gspii, (4.17)
Hy =Bo;+Pp "9 +V(z,p,1) if (z,p) € Gspii; (4.18)
Hen =Bo2+ By +Bp '0p+V(z,p,t) if (z,p) € Gen, (4.19)
where B = —1/2u. Then the original Hamiltonian can be reconstructed as

(4.20)

H— {HZ+HP if (Z7p) € GSpliU
Hen if (va) € Gen.

H will never get evaluated outside G, in accordance with the boundary conditions for the wave
function ¥(z,p,1).

Thus, we have partitioned the spatial domain into two regions: Gen where (based on the pre-
vious section) we do not use any split-operator approximation and propagate with Hamiltonian
Hcn, and region Ggpir where we do use operator splitting as H; + Hp.
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2D Crank-Nicolson Hybrid Crank-Nicolson based operator splitting
, e—lAtH ~ e—lAtH7/2 e -iIA(Hen+H,) e—zAtHZ/2
Splitting .
N, — ® .
error
~AP
P -~
N, N,-L L N,-L N -L
.o P 3 3 p
Operations: ~N,N, ~N,(N,-L)  ~N,L3 ~N,(N,-L) ~N,(N,-L)

Figure 4.1: Sketch of our hybrid splitting scheme. The costly 2D Crank-Nicolson scheme was
replaced with a special second-order symmetric split-operator formula except at the L nearest
gridpoints in the neighborhood of the p = 0 axis, in order to retain accuracy and stability. The
solid lines represent coupling between the gridpoints of the exponential operator evaluations.
We also indicate the approximate operations count needed to solve the respective systems of
linear equations.

In order to merge the directional operator splitting approach with the true 2D Crank-Nicolson
method, we introduce our second-order hybrid splitting scheme:

o~ (HAHp +Hen) _ il H /2 ,—iAt (Hp+HCN)e—iAtHZ/2+O(Al?)), (4.21)
where we keep Hen and Hp in the same exponent, in order that the wave function could “freely
flow” between the two regions Gen and Gspyie without introducing further artifacts. (Note that
the exponential operator e~/ (Hp+Hen) cannot be split further in this sense.) We use this scheme
as the second-order terms in the iterative formulas (2.31), (2.35), (2.37) to gain higher-order
accuracy in Ar. The e H,/2 part can be evaluated with any method of choice. We have
constructed a special Numerov-extended Crank-Nicolson line propagation algorithm for this,
which can be found in Appendix B. We illustrate the hybrid splitting formula (4.21) in Fig. 4.1.

The Crank-Nicolson form of the central exponential

—iAt (Hp+Hen)

In order to numerically evaluate the e operator, we apply the second-order Padé-

approximation (2.10) to arrive at a second-order Crank-Nicolson form of

W) = e N HAHN (1) = (14 a(H, +HCN))‘1 (1 —a(Hp +Hen)) P (t) + O(AF)
(4.22)
where o = iAt/2 and V (z,p,?) is evaluated at the midpoint 7 + Az /2. We introduce the spatial
grids (2.12), (2.13) and the discrete operators ZZ, Zp and 5p, then we get the following equations
for the two domains for all i € [0, N,]:

(1 +aBLy+aBL + OCVz;j) i j(ter1) = (1 —aBLy, —afL, — aVi,j) Wi j(t), if j € [1,L],

(4.23)
(1+ @BLp+ Vi) Wijltn) = (1= @By — aVi ) Wis(n), if j € [L+ 1N, (424)
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Using five-point finite differences, the first set of equations (4.23) can be expanded resulting in
the form of (2.19), and the expansion of the second set (4.24) gives the following result for all
S [OaNZ]’ ] < [L+ laNP]:

(=14+1/j)BpXij2+(16—=8/j)BpXij—1+(1—30B, +aV; ;)X
+(1648/7)BpXi jr1+(=1=1/j)BpXi jr2 = (1—=1/j)Bp¥i j—2+ (=16 4+8/j)Bp¥i j-1
+(1430Bp — Vi j)¥ij+ (=16 =8/ j) Bp Wi j+1 + (L + 1/ /) Bp¥i j12, (4.25)

where the symbols 8, and 3; are given in (2.20) with X; j =W, ;(tx+1) and W; ; =¥, j(%).

Assuming that the potential is smooth, the Neumann boundary condition (2.18) prescribes
the implicit equations at p = 0. However, if a Coulomb-core of strength Z is present at the origin
and m = 0, then according to (4.8), it will be replaced at z = 0. We can write all Neumann
and Robin boundary conditions at p = 0 for the m = 0 configuration for all i € [0,N,] as the
following:

<l§p + ‘LLZCSRJ) \P,'7j(lk_|_1) =0. (426)

Here we have assumed that the origin is included in the z; grid (2.12) with zg = 0, where R can
be anywhere in the interval [0, N;] if it is reasonably far from the box boundaries. This has the
expanded form of

(=254 12(uZ)Ap - Or i) Xi 0 +48X; 1 —36X;2+ 16X;3 —3X; 4 = 0. (4.27)

For the m # 0 states, instead of (4.27), we just use the Dirichlet-boundary condition (4.13) as
Xi = 0. (4.28)

The box boundary conditions also apply independent of the value of the m quantum number:
Xij="Yi;j=0,ifi ¢ [0,N], j & [-Np,Np]. (4.29)

From these, a mixed 2D - 1D Crank-Nicolson scheme can be constructed in the Gen + Gspit
domain depending on m, which is fourth-order accurate in space and second-order accurate in
time.

What are the advantages of this scheme? First, if L > 1/Ap the accuracy of the scheme
increases considerably in the presence of the Coulomb potential, because we removed direc-
tional splitting near its core (where its gradient is the largest). Second, if L > 5 (the “width”
of 5,;) then the (4.26) condition no longer affects into the split-operator zone: we can maintain
robustness. Third, the operation-count is approximately ~ L3N, plus ~ (Np — L)N, meaning if
L < N, then we can regain the speed of the directional splitting and large part of the algorithm,
corresponding to equations (4.24) can be parallelized for different j indices. So, if we set L to
the smallest value sufficient for accuracy then we can acquire a very efficient scheme. In order
to solve resulting linear equations effectively, we present our special algorithm, which we call
“hybrid splitting solver algorithm”.
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4.2.2 Hybrid splitting solver algorithm

In this section, we write out the matrix form of the linear equations resulting from the approx-

—iAt (Hp+Hen)

imation of the exponential operator e to familiarize ourselves with its structure,

which is required for developing an efficient propagation algorithm for our hybrid splitting
scheme. Then we outline the solution algorithm.

The matrix form of the linear equations

Let us construct the column vectors corresponding to the ith row of the 2D problem as

T T
\Pi = <1Pi,0 \Pi,l lPl'72 ‘Pi,Np) and Xi = (Xi.,O Xi,l X,"z Xi,Np> . (430)
Then, the joint problem (4.23), (4.24) will take the block pentadiagonal form of
By Co Foy 0 0 0 [ Xo ] [ yo ]
Al B1 C1 F1 0 e 0 X1 Y
E2 A2 B2 C2 F2 ce 0 X2 Y
. . B . . : . = E . (4.31)
0 ... Eyy2 Ay, 2 By, 2 Cn,2 En2f | XN, 2 YN.—2
0 ... 0 En-1 An-1 By-1 Cy1| |Xn-1 YN.—1
L 0 0 0 EN: AN: BNZ 1L XNZ ] L y]\/Z i
Here E;, A;,B;,C;,F; are (Np + 1) x (N, + 1) matrices. Particularly,
E; = {diag(O,eZ7i71,. cesins0,...,0)  ifie [2,Ny], (4.32)
Ci = {diag(0,ccin..ncoi,0.0..,0)  ifi€ [N, (4.33)
A = {diag(0,az1,....azi2.0....,0) ifi € [0,N,~ 1], (4.34)
Fi = {diag(0. foin,. . foi2.0.....0) if i€ [0.N:—2], (4.35)

are the diagonal matrices responsible for coupling the adjacent p-rows (with different values of
coordinate z), and B; is an almost pentadiagonal matrix in the form of

[do;i di;i  day d3; dy e 0
aio bi1  cii fi1 0 0
eip aip  bip Cip fia e 0
Bi=|: : . (4.36)
0 ... ein—2 aiN,—2 biNy—2 CiN,—2 [in,—2
0 .. 0 €iNy—1 GiN,—1 bin,—1 Cing—1
L 0 0 0 ei7Np a,}Np bz}Np i
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In the above matrices we have already taken into account the box, the Neumann and Robin
boundary conditions for the m = O configuration. The dy;,d; ;,d>;,d3;,ds; coefficients are
given by the expanded equation (4.27) as

do; = —25+12(UZ)Ap - 8, dy; =48, dy; = —36, d3; = 16, dy; = —3 (4.37)

for all i € [0, N;]. These coefficients take the diagonal form of d;; = §; o for the m # O states.
In the Crank-Nicolson region (j < L), the coefficients are given by equation (2.19):

biJ =1- 3OBP — 30ﬁz —+ a‘/iyj, Azij=Czij= 16[32 €zij = fZ,i,j — _Bb (438)
eij = (=1+1//)Bp, fij=(=1=1/))Bp, (4.39)
aij=(16—8/j)Bp, cij=(16+8/j)Bp. (4.40)

In the split region (j > L+ 1), we inspect the equation (4.25), and note that only b; ; get modified
as
bij=1-30By+aVy; if i€[L+1,Np],j€[0.N] (4.41)

and the a; ;, c; j, e; j, f; j coefficients are the same as in (4.39), (4.40).
The right hand sides are given by (2.19) and (4.25), which can be written in a somewhat
simpler matrix form which also takes into account the boundary conditions:

yi=2%¥—-EY¥Y;, » —AY¥Y; 1 —B¥, - C¥; ;1 —F;¥; > with y; o = 0. (4.42)

Reducing the number of the equations

One can see that the directional splitting introduced N, — L zeros at the end of the diagonal of
the matrices E;, A;, C;, F; which means that the corresponding p-lines are not directly coupled.
Taking advantage of this we significantly increase the computational efficiency by eliminating
the improper matrix elements to reduce the effective block size to (L -+ 1)2. We do this in the
following.

We take the equations corresponding to the ith block matrix row

E, A, B C F ...]-X=yl~ (4.43)

and write out their coefficient matrix from rows L — 1 to Np:

eir—1 air—1 bir—1 cir—1 fir-1 0 0 e 0
0 eir. a  bip CiL fiL 0 0
0 0 ery1 airy1 birv1 cipv1 firtt e 0
0 0 0 oo €iNy—2 GiN,—2 bin,—2 Cin,—2 fin,—2
0 0 0 ces 0  en—1 aiN,—1 biN,—1 CiNy-—1
i 0 0 0 e 0 0 eLNp ai,Np bi,Np

 (d44)
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Here we remind that rows j < L have extra nonzero entries far away from the diagonal, cf.
(4.32) — (4.35). These lines cannot be used during the row operations, but the rest of them, with
J > L can be used. To reduce Eq. (4.31) to a smaller block pentadiagonal problem, f;;_1, c¢ir,
fi. must be eliminated for all i € [0,N;]. Then, the solution in the 2D Crank-Nicolson region
Gen will no longer depend on the solution in the directionally split region Gspji. The structure
of the B; matrix makes it possible to use the following backward elimination process from the
Npth equation on, for all i € [0,N,]:

eir-1 a1 bir1 &r1 0 e 0 0 0
0 e L dir [;,'714 0 0 0 0
0 0  eir+1 dir+1 birn e 0 0 0
0 0 0 ... €i Ny—2 di7Np—2 Bi,Np—Z ) 0 0
0 0 0 ... 0 €iN,—1 di,Np—l bi,Np—l 0
L 0 0 0 A 0 0 €i7Np 5571\]’) bi,Np .
(4.45)
with right hand side of
N i o i ONT
yi = <yz‘,0 oo YiL-2 ViL—1 YiL YiL+1 --- ViN,—1 yi,Np> ; (4.46)
where
Cii if j=N,—1,
&= { b o ST (4.47)
ci,j= (fij/bij+2)ij2  if j=Np—2...L—1,
a; i if j =Ny,
di ;= { e ST (4.48)
ai,j_<ci.,j/bi,j+1)ei7j+l lf] :]\]p—l...L7
)
b; ; if j=Np,
- bi i — (& i/b; iv1)d; ; if j=N,—1,
bij=4 " (~ 7J/~l7/+1)‘jw+1 3 ‘ ] P (4.49)
bij— (Ci,j/bij1)aij1 — (fij/bijr2)eijr2  if j=Np—2...L,
\bi7j—(ﬁ7j/5i7j+2)€i7j+2 ifj:L— 1,
( e
Yi,j if ] = Np,
D P CHLT R ifj=Np—1, (4.50)
ij = . 7 s . . . :
Vi.j— (Cij/bij+1)9ij+1— (fij/bij+2)Vij+2 £ j=Np—2...L,
| Vij — (fi.j/bij+2)i,j+2 if j=L—1,

and the rest of the values remain unchanged. During the process, ¢; ; needs to be calculated
first, then &; j, l~9,-, j» ¥i,j can be evaluated. Additionally, the value of ¢; ; is needed only in one
step, then it can be discarded.

After the reduced equations are solved (cf. the next Section), we can solve for all variables
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with forward substitution:

if j<L,
if j=L+1...N,.

solution of the reduced block five diagonal part
ij= (4.51)

(i) — @i jXij1 —eijXij-2) /b

These formulas above can be obtained by disassembling existing pentadiagonal solvers (for
example [107]), however, care must be taken handling the boundary values at the j = L edge
and in the forward substitution afterwards.

Because of the special structure of the coefficient matrix in (4.31), this process of backward
elimination and forward substitution can be parallelized to N; 4+ 1 independent threads. They
are depending on a synchronization step though, which consists of the solution of the following
block pentadiagonal part.

The reduced system to solve

After we performed the above elimination procedure for every block B;, we obtain a block
pentadiagonal system just like (4.31) with a drastically reduced block size, in the following

form:
Bp Co Fo 0 0 017 X1 [7]
A B, C F 0O ... 0 X, Vi
E, A B, C, F, .. 0 X5 Y2
L. e . K . : : = : . (4.52)
0 ... Ev-2 Anw-2 By-2 Cy-2 Fn2f |Xy-2 YN, 2
o ... 0 ENZ—I Ayz_l B,{Yz_l C,{Yz_l X/}szfl ,)71\[2_1
L O PP O O ENZ ANZ BNZ i L XNZ i L S;NZ |
These block matrices read as:
Bi = {diag(0.eci1... o ecin)  ifi€ (2N, (4.53)
Ci= {dlag(O CoityersCorr) i€ [N, (4.54)
{dlag O,dzit, . aziy)  ifi€[0,N,—1], (4.55)
{dlag (0, foity.oos foir)  ifi€[0,N.—2], (4.56)
[do; di; dr; ds;  day 0 ]
aio bix  cip o fin 0 0
eir aip bip cin  fin 0
B, =1 : , 4.57)
0 ... er2 aiz—2 b2 cii—2 fir—o
0O ... 0 er1 a1 bir Cit—1
L 0 0 0 €iL di,L b,'JJ 1
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T
yi = (yi,o Vil oo YiL—2 YiL-1 )71'7L> 7 (4.58)
~ T
X, = (Xi,o Xio ... Xir—2 Xir— Xi,L) : (4.59)
The method of acquiring the solution to this system can be chosen freely. For example, it can
be solved by applying Gaussian elimination (with forward substitution) to the (L + 1)2 matrix
blocks or directly to the 2L 4 1 wide diagonal matrix. In either case, the time to obtain the
solution is drastically reduced (if L < Np). After acquiring the solution of (4.52) we complete
the hybrid splitting solver algorithm by formula (4.51), as indicated in the previous section.

4.3 Results and discussion

Now let us turn our attention to the numerical test results of the hybrid splitting method. First,
in Section 4.3.1, we investigate the errors related to the spatial discretization. Section 4.3.2
is devoted to the tests of the time propagation errors. In Section 4.3.3 we demonstrate the
performance of our algorithm through a real world example.

4.3.1 Spatial accuracy: stationary state energies

To investigate the errors related to the spatial discretization, we numerically compute the station-
ary states of selected test potentials. We calculate energy errors caused by the finite differences
by comparing the numerical and the exact energy eigenvalues for certain energy eigenstates.
We have also set Ap = Az.

In these tests we have used our implementation of the true singular Coulomb potential (C).
Another test case, called “Soft-Coulomb” potential (SC), differs from C only in that the bound-
ary condition (4.26) at the origin is replaced by (2.18) at the origin. The results of both the C
and the SC test cases are compared to the exact eigenenergies and eigenstates of 1s, 2s, 2p,. We
also compute the eigenenergy of the state 2p,, where C and SC are identical (see Section 4.1.2).
The energy errors of the 3D quantum harmonic oscillator (H) are also tested for the ground and
a first exited state. The most important features of our test potentials are summarized in Table
4.1.

We computed the eigenenergy values using imaginary time propagation method with our
second-order hybrid splitting scheme using 4th-order accurate split-operators of form (2.37),
where the parameter Ar was chosen suitably small to minimize the spatial errors related to the
operator splitting. These energy values were also verified with real time propagation, by com-
paring the time dependence of the phase factor of the eigenstates with the exact time dependence
of W,,(z,0,t) = Wy(z,p)e En': the first two significant digits of the energy error were equal. It
is worth noting that, although we used our hybrid splitting for calculations, these energy errors
are related only to the spatial finite differences (that is, the 2D Crank-Nicolson scheme). For
these results, it was sufficient to set the “Crank-Nicolson width” L just above ~ 1/Az, further
increase of L did not improve the results.

From Fig. 4.2 and Table 4.2 we can draw several conclusions. In the case of the 3D harmonic
oscillator (a reasonably smooth potential), the method is fourth-order accurate in Az, as expected
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Target stationary states

ID Potential Quantum numbers  Energy State Normalization Parameters
C-1s ~Z/r  n=1,1=0m=0 —Z?u/2 e Hzr n12(uz)3? u=1z=1
C-2s ~Z/r  n=21=0,m=0 —Z%u/4 [2—uZrle */2 2732g12(uz)3? pu=1,z=1
C2p, —Z/r n=2l=1m=0 -Z’p/4 ze 12 2732 2 (uz)y? p=1,2=1
C-2p, —Z/r n=2l=1lm=1 =Z*u/4 pe " 2cosp 27 x 12(uz®?> pn=12=1
H-000 ipw’r? ne=n,=0,n,=0 jo e hor/2 34 (pw)/ u=1lo=1
HO001 dpe?? ni=n=0n-=1 3o ze~Hor/2 2127734 (nw)* p=1,0=1

Table 4.1: Properties of the potentials and their bound states that we used for testing the errors
regarding the spatial discretization. Our main test potentials are the Coulomb potential (C) and
the 3D harmonic oscillator potential (H).
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Figure 4.2: Absolute energy errors of stationary states listed in Table 4.1, on a log-log scale.
The Coulomb eigenstates were tested with (C) and without (SC) applying the condition (4.26)
at the origin. (In the case of the 2p, the error curves are within line thickness.) Curves for 1s
and 2s show that our hybrid splitting algorithm decreases the errors with high-order even with
the singular Coulomb potential, in the range 0.05 < Az < 0.2.
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Absolute energy errors of selected stationary states

Az 0.4 0.2 0.1 0.05 0.025 Order  Energy,
SC-1s  3.71x1072  1.15x107%2 321x1073 844x107* 216x10~* 1.86  —0.500
SC-2s 477x1073  145x1073  4.15x107* 1.06x107*  2.71x107° 1.86  —0.125
SC-2p, 4.88x107° 6.57x10°% 625x1077 510x107%  3.68x 107 342 —0.125
C-1s 1.01 1073 2.11x107*  223x107°  4.53x1077 591x107’ 2.68 —0.500
C-2s 7.12%x107°  1.86x107  2.06x107® 191x107%  7.70x 1078 246  —0.125
C-2p. 488x107°  657x107% 625x1077  510x107%  3.68x107° 342 —0.125
C-2p, 264x107°  228x107° 1.80x1077 136x107% 9.93x10710 367  —0.125

H-000 579x 1073 242x107*  1.11x107°  6.11x1077 3.70 x 1078 431 +1.500
H-001 7.03x1073  340x10* 1.72x10° 9.75x1077  6.09x 1078 4.20 +2.500

Table 4.2: A detailed table of the energy errors at specific values of Az denoted by vertical
dashed lines in Fig. 4.2. The Order column gives the exponent of Az, i.e. the order of error
decrease, valid from step size Az = 0.4 to Az = 0.025, which characterizes the effective accuracy
of the method in the given case. The Coulomb 2p, state also has the same error data set to the
first 3 significant digits regardless whether or not the Robin boundary condition was used.

(the effective order is higher than 4 due to the fifth-order accurate second derivatives). For the
Coulomb potential, things get considerably more elaborate. In the soft-Coulomb case (SC), the
energies of the [ = 0 states converge with second-order (more precisely, with 1.86), meaning
the method will not be sufficiently accurate or fast. However, for the true singular Coulomb
case (C), the accuracy of the [ = 0 states drastically improve by two orders of magnitude around
Az = 0.1. On the other hand, the complicated step size dependence of the energy error, shown
by the corresponding lines in Fig. 4.2, does not allow for a true effective order valid in the
inspected range. However, our algorithm does decrease the error with high order (close to 4)
when 0.05 < Az < 0.2, which is anyhow that range where the computation runtime is reasonable.
The unusual step size dependence of the energy error below Az < 0.05 for data sets C-1s, C-2s
is due to finite differencing with high spatial accuracy applied to a nonanalytic problem (' is
not continuously differentiable in the origin), along with the artificially high-order boundary
condition.

The test cases with [ > 0 work reasonably well for the m = 0 configuration both with C and
SC: the SC-2p, or the C-2p, case has better (relative) accuracy than H-000 but its order is only
3.42 as shown in Fig. 4.2. A slightly higher-order of 3.67 is achieved for C-2p, (the only test
case with m # 0) which has the best accuracy of all computed eigenenergies in this section.

In summary, the numerical error of the hybrid splitting algorithm displays a high-order
scaling with the spatial step size for the stationary states of the 3D hydrogen problem.

4.3.2 Temporal accuracy: forced harmonic oscillator

In the previous section we focused on the spatial errors in conjunction with the singular Coulomb
potential, now we turn our attention to the total error of the hybrid splitting algorithm using a
smooth time-dependent potential. This total error is composed typically of several terms re-
lated to the finite differences, to the Padé-approximation, to the factorization of the exponential
operator, and to the short-time splitting of the evolution operator.
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Time dependent mean value &(t) = (z)

Phase factors of the analitical solution

[ — wy=10

1} — wo=1V2

— gwot
100, — kLot

— 10x&(t)

Spatial coordinate z [a.u]
Phase value

o 20 4 e 8 10 0 20 4 6 8 100
Time [a.u.] Time [a.u.]
Figure 4.3: Time evolution of the analytical solution of the forced harmonic oscillator (see

Appendix C): the expectation value of z versus time (left), time dependence of the phase con-
tributions (right). Parameters are the same as in Table 4.4, if not given explicitly.

’ ID ‘ Propagation method ‘ Evaluations of S, ‘
S2 Second-order operator hybrid splitting scheme (Section 4.2.1). 1
S4E3 | S2 based 4th-order iterative splitting scheme using eq. (2.34) with n = 4. 3
S6ES | S2 based 6th-order iterative splitting scheme using eq. (2.35) with n = 6. 5
S6E9 | S2 based 6th-order iterative splitting scheme using eq. (2.34) with n = 6. 9

Table 4.3: Test case definitions for comparison of the different high-order split-operator
schemes.

We use the so-called forced harmonic oscillator (FHO) problem as the test case, defined
by the potential V (z,p,t) = S (z% + p2) + zF sin wpt, having a known W2(z, p, ) analytical
solution, which we summarize in Appendix C. Here we only illustrate this time-dependent
analytical solution in Fig. 4.3.

For error calculations, we compare the analytical and time-dependent wave functions at a
fixed time instant by calculating the so-called mean-square error, which provides information
about both the total phase and the amplitude related errors. We define the mean-square error by

errj, =27 / / P\‘PA(Z7P>—‘P(Z7P>\2dpdz- (4.60)
—0J0

We choose the mean-square error as the reference error type because (according to our experi-
ence) it is the most reliable evolution error quantifier at a fixed time instant 7.

We tested our algorithm with different split-operators (listed in Table 4.3), and several Az
and Ar configurations to acquire a top-down view of the error properties of the hybrid splitting
method.

The mean-square error of the different high-order split-operators based on our Crank-Nicol-
son scheme (CN5) can be found in Table 4.4, and also in Fig. 4.4: the standard convergence
of the S2 scheme is very slow, and there is a drastic improvement using S4E3 on top of S2.
Using either S6E9 or S6ES does not yield much gain in accuracy compared to their higher
numerical costs. Based on these, we propose to use the fourth-order split-operator method
S4E3 in accordance with (2.34), along with our hybrid splitting scheme.

The lines corresponding to the different split-operators in Fig. 4.4 should exhibit the ex-
pected power scaling with Az, this is only approximately the case and only above a threshold
At. Below this threshold the total error is not reduced by decreasing A¢, because the evolution
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Calculated L? error values at Az = 0.2
At 0.5 0.2 0.1 0.05 0.02 0.01 0.005

S2 1.37 489x 107" 141x107" 480x1072 220x1072 1.83x1072 1.74x1072
S4E3 3.60x 107" 4.65x1072 1.89x1072 1.72x1072 1.71x1072 1.70x1072 1.70x 1072
S6E5 1.60x 107" 2.15x1072 1.71x1072 1.70x1072 1.70x1072 1.70x1072 1.70x 1072
S6E9  1.51x107" 210x1072 1.71x1072 1.70x1072 1.70x1072 1.70x1072 1.70x 1072

Calculated L? error values at Az = 0.1
At 0.5 0.2 0.1 0.05 0.02 0.01 0.005

S2 1.83 595x 107" 1.54x107! 3.95x1072 7.22x1073 261x1073 1.46x1073
S4E3 420x 107" 387x1072 3.72x1073 124x103 1.08x1073 1.08x1073 1.08x1073
S6E5 1.87x107' 1.02x1072 138x103 1.09x103 1.08x1073 1.08x103 1.08x 1073
S6E9  1.76x 1071 950x1072 136x1073 1.09x103 1.08x1073 1.08x103 1.08x 1073

Calculated L? error values at Az = 0.05
At 0.5 0.2 0.1 0.05 0.02 0.01 0.005

S2 2.38 721x 1071 1.84x107! 4.62x1072 7.46x103 193x1073 543x10°*
S4E3  4.95x 107" 435x1072 3.33x1073 3.11x10% 8.85x107° 826x107> 822x107
S6E5 221x107" 1.19x1072 6.71x107* 1.19x107* 830x 107> 822x107> 8.22x107
S6E9 2.07x107" 1.11x1072 637x107* 1.18x107* 829x 107 822x107> 8.22x107°

Table 4.4: Mean-square errors of the forced harmonic oscillator with different Az (= Ap), Az
and split-operator configurations. All calculations were carried out in a box of —10 <z <10
and 0 < p < 8 with propagation parameters wg = 27/100, F = 1, u = 1, @y = 1, launched from
the corresponding ground state (H-000). All error values are calculated at the time # = 100.
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Figure 4.4: Mean-square errors as the function of the time step, on a log-log scale, computed
with different split-operator methods and spatial discretization steps, corresponding to Table
4.4. These plots clearly show the existence of a threshold value of Az, below which the total
error is not reduced anymore.

Calculated L? error values of CN3 based S4E3 method
At 0.5 0.2 0.1 0.05 0.02 0.01 0.005
Az= 02 7.17x107" 433x107" 4.09x107" 4.07x10"! 4.07x10"! 4.07x107" 4.07x107!
Az= 0.1 564x107" 1.88x107" 156x107" 154x107! 1.54x107! 1.54x107" 1.54x107!
Az=005 547x1072 972x107%2 582x1072 554x10°2 5352x1072 552x10%2 552x102

Table 4.5: Mean-square errors of a commonly used propagation scheme, to be compared with
the data of Table 4.4. All the parameters are the same as in Table 4.4. Comparison of the
last columns shows one, two and three orders of magnitude accuracy increase in favor of the
five-point discretization, as Az is decreased.
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error is dominated by the finite differences: the error magnitudes can even be predicted as the
product of the stationary energy error (Table 4.2) and the propagation time interval.

One objective of our research was to design a real space finite difference algorithm that
achieves fourth-order accuracy in the spatial step size and, most importantly, that is capable to
include both the singular coordinate p = 0 and the singular Coulomb potential directly. There-
fore, it is interesting to globally benchmark the results against a second-order 3-point Crank-
Nicolson finite difference scheme (CN3), which means we degraded the core algorithm to use
three-point finite differences (A.2) of Appendix A in S2.

We repeated the main tests with this CN3 method combined with the split-operator configu-
ration S4E3 (discussed above). The CN3 results are shown in Table 4.5 and are to be compared
to the results with CN5 in Table 4.4. Both the CN3 and CNS5 schemes display the expected or-
der scaling of the error with Az. Comparing the L? error at Ar = 0.005 (which is already below
the threshold Ar), our fourth-order discretization has one, two and three orders of magnitudes
smaller errors at spatial step sizes Az = 0.2,0.1,0.05, respectively. Thus, one should always
use (at least) the CN5 scheme unless the exotic nature of the problem prevents high-order dis-
cretization.

In summary, our hybrid splitting propagation method is suitable for numerical simulations
with time-dependent Hamiltonians, and it is capable of high-order scaling with Af, once it is
incorporated into the proper high-order evolution operator formulas.

4.3.3 Hydrogen atom in an external field

Finally, we conducted a test similar to the real world applications by simulating the hydrogen
atom in an external laser field. Now, we compare our hybrid splitting based CN5 implemen-
tation, including Coulomb potential and the Coulomb boundary condition (CN5-C) against the
commonplace CN3 discretization with the best soft-Coulomb potential approximation allowed
by the spatial grid (CN3-SC), which is the same approximation that we tested in Section 4.3.1.
We did not use the full 2D CN3 method, but we applied the hybrid splitting scheme using the
CN3 equations just like the case of the FHO.

The external field was parametrized as &;(¢) = F sin @¢. The simulated time was 7 € [0, 100],
and it consisted of only one field cycle, by setting @ = 27/100 in atomic units. The field
amplitude was F' = 0.08, with simulation box size z € [—250,250], p € [0, 100] to contain the
escaping electron waves. The initial state was the 1s ground state, found by imaginary time
propagation method to remove spurious ionization components. We use the S4E3 high-order
split-operator formula as indicated in the last section.

We show the result of this simulation in Fig. 4.5 by a density plot of the logarithm of the
absolute square of the wave function, in a plane containing the z axis. The white waves on the
right of the spherical peak, bound by the Coulomb potential of the nucleus, are ca. 4-5 order
smaller in density. These waves have to be computed very accurately, since they contribute the
most to the time dependence of the dipole moment, which in turn is of fundamental importance
regarding the HHG and the creation of attosecond light pulses.

The tests to compare CN5-C with CN3-SC were run with Ap = Az and with time step
At = 0.01 if not indicated explicitly. We quantified the accuracy of the solutions with the error
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Figure 4.5: Density plot of the logarithm of the absolute square of the wave function, in a plane
containing the z axis, at the end of the simulation described in Section 4.3.3. Note that the white
waves are 4-5 orders of magnitude smaller than the spherical peak.

0.035F" '
— CN3-SC;

0.030 with Az = 0.05;

—— 100x; CN5-C;
with Az =0.2;

0.025

0.020

0.0151

0.010

Errors of the dipole moment [a.u.]

0.005

0000 £ I L L L I L L L I L L L I L L L I L L L
0 20 40 60 80 100

Time [a.u.]

Figure 4.6: Comparison of the errors of (z), during the time propagation described in Section
4.3.3, using the method CN5-C with Az = 0.2 a.u. (blue line) and using the method CN3-SC
with Az = 0.05 a.u. (purple line). Despite the larger spatial step used with CN5-C, its error is
two orders of magnitude smaller, therefore it is shown here with a 100 times magnification.

of the expectation value (z), i.e. the magnitude of the time-dependent dipole moment. Unlike
the FHO example, analytic solution is not available this time, so we use a converged solution to
determine numerical errors, that is we compare the results with a much more accurate numerical
solution obtained using smaller Az, Az discretization steps.

The results, shown in Fig. 4.6 are as expected: the error of the CN5-C scheme with Az =0.2
is smaller by two orders of magnitude than that of the CN3-SC scheme with Az =0.05. Based on
this, we estimate the performance difference as follows. Due to the second-order convergence of
the CN3-SC scheme, Az =~ 0.005 is needed to achieve the accuracy of the CN5-C with Az =0.2,
which means a factor of 1600 in the number of spatial gridpoints, implying a factor of 800 —
1600 in runtime. That is, the CN5-C scheme is ca. 1000 times more effective than the CN3-SC.
Regarding absolute accuracy, the magnitude of the error of (z) (¢) using CN5-C with Az = 0.2
is smaller than the L? error of the FHO at the time instant 7 = 100, as can be seen in Table 4.4.
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Figure 4.7: Probability density and phase (in the inset) along a z-line section at p = 1, at the
end of the time propagation described in Section 4.3.3, computed using the CN5-C method with
two different values of Az, as indicated in the figure. The excellent fit of the two curves shows
that the solution can be considered converged already at Az = 0.2.

Regarding the pointwise convergence of the solution with the CN5-C method, we compare
the density and the phase along a z-line section at p = 1, computed with two different values
of Az. These plots, shown in Fig. 4.7, convincingly show that a converged numerical solution
is obtained already at Az = 0.2. Note that the accurate calculation of the phase is important
in certain areas of strong-field physics, regarding e.g. exit momentum calculations [15, 108] in
optical tunneling or regarding phase space methods [31, 32, 109—111],where usually the Wigner
function is computed from the wave function and this is then further analysed for the physical
interpretation of the process.

4.4 Summary

In this chapter we presented an efficient algorithm capable of the direct numerical solution
of the three-dimensional time-dependent Schrédinger equation in strong-field circumstances,
assuming axial symmetry in cylindrical coordinates. We choose a high-order finite difference
representation in the spatial coordinate domain. The main feature of the algorithm is that it
is capable to accurately handle singular Coulomb potentials besides any smooth potential of
the form V (z,p), We implemented all singularities that can be reduced to the form 1/p or 1/r
via Neumann and Robin boundary conditions at the p = 0 axis. The axial symmetry and the
availability of the Cartesian z-axis makes it easy to investigate reduced electron dynamics in
contrast to spherical coordinate representations.

We based our algorithm on the a high-order finite difference representation in the spatial
derivatives and the split-operator approximation of the short-time evolution operator. Due to
the nonseparability of the Coulomb-problem in cylindrical coordinates, we constructed a special
second-order operator splitting scheme called hybrid splitting method. This splits the Hamil-
tonian matrix directionwise like the traditional methods, but the innermost region near p = 0
is excluded: here the full 2D Crank-Nicolson equations are used. This means that there are
many decoupled 1D Schrodinger equations in the z direction, and a 2D Schrodinger equation
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with a special block pentadiagonal pattern of the coefficient matrix, which has to be taken ad-
vantage of for maximum efficiency, like in our hybrid splitting solver algorithm. Thread based
parallelization is supported throughout, and we also gave a way to evaluate the decoupled 1D
Schrédinger equations with high spatial accuracy and efficiency.

We thoroughly investigated the spatial discretization related errors in an optimal discretiza-
tion parameter range, determining detailed accuracy characteristics with or without Coulomb
potential. We also verified the considerably increased accuracy for numerical simulations forced
oscillator. We concluded that high-order (meaning at least 4th-order) split-operator formula
should be used in practice, accompanying the hybrid splitting algorithm. In order to demon-
strate the fourth-order spatial accuracy and performance of our hybrid splitting algorithm also
in a simulation close to the planned applications, we computed the solution for a hydrogen atom
in a strong time-dependent electric field of one sine period. The important waves in the prob-
ability density, having an amplitude of 10~%- 107> relative to the peak value, were obtained
accurately and efficiently.
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Quantum entanglement in strong-field ionization

We have already discussed in Section 1.3 that the quantum state of the interacting two-body
system of an electron and its parent ion-core involves quantum entanglement between these
two particles. A straightforward question is, how strong-field ionization affects this electron
— ion-core entanglement in a real atom? In the present chapter, we report our new results on
this process: we investigate the hydrogen atom in 3 spatial dimensions, using the true Coulomb
potential by performing accurate numerical simulations. These results are based on our publi-
cation [P2].

In Section 5.2, we present the details of our entanglement calculations in 3 dimensions
which is based on the directionally reduced dynamics. Amongst others, we introduce the spatial
entropy of the wave function and the correlation entropies within the directional subspaces.
Using these directional entropies, we propose an approximate formula to quantify the total
electron — ion-core entanglement we actually seek for. In Section 5.3, we discuss the results of
our preliminary investigation based on our one-dimensional model corresponding to our earlier
publication [A1]: based on a simple one-dimensional model, we show that the time evolution of
this quantum entanglement shows interesting features. In Section 5.4 we present our numerical
results on the temporal evolution of quantum entanglement during the strong-field ionization
process in 3 dimensions. We show how do the specific quantities, including several different
entropies, reflect the system’s behavior, and we investigate in detail their dependence on the
intensity and the carrier-envelope phase difference (CEP) of the laser pulse.

5.1 Theoretical model

The theoretical model is entirely based on the equations of Section 1.3, in which we discussed
the two-body description of a single-electron atom. The solution of the problem is given in
relative (r) and center-of-mass (ry) coordinates as W(r,7)Wy(ro,¢) which equals the full wave
function of the system W,.(re,r.,?), where the electron (r,) and ion-core (r.) coordinates are
given by the coordinate transformation (1.20).

For the relative part, we solve the axially symmetric time-dependent Schrodinger equation
(1.6) in cylindrical coordinates to get the wave function W(z, p,7). We shall seek solutions that
start from the ground state of hydrogen atom (Z = 1) at t = 0 using singular Coulomb potential
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at the origin as in Eq. (1.9). This wave function does not depend on the azimuthal angle ¢
and this remains valid for the solution at any later time. For the solution in 3D, we used our
hybrid splitting method, discussed in Chapter 4. Using this method we can achieve reasonable
accuracy already at the uniform spatial discretization step size Az = Ap = 0.2, which may seem
to be rough at first sight, but it turns out to be sufficient in view of the large extension of the
1onized part of the relative wave function. For all the simulations presented in this chapter, the
initial state is the 1s ground state with energy Eg = —u /2 and g = 0.999456, corresponding to
the reduced mass of the proton-electron system.

For the center-of-mass part, we assume that ¥y is initially a localized Gaussian wave packet
at rest in coordinate space, which yields the solution of (1.24) as

3/2 2
Wo(ro,1) = < GO/ﬁ) exp <—2(—0> - (5.1)

2 .1 2 .t
Oy +i47 og +i1;)

We set the parameter oy = 1 based on the size of a hydrogen atom (i.e. a Bohr radius). This is a
well-known free wave packet, which is separable according to the directions xg, Yo, zo and has
root-mean-square deviations of the center-of-mass coordinates in each direction as

Oy, (1) = Oy, (1) = 04y (1) = \/ 03 +12/M? 6] (5.2)

which is to be evaluated in the time interval given by the duration T« of the exciting pulse.
The typical value of the latter in strong-field experiments is Tpax = 300 a.u. corresponding to
a few femtoseconds, used also in our simulations. Due to the large value of M ~ 1837, the
spreading during the interaction is negligible: around 1.3% of the original width, which will
help us to make the effect of the laser pulse on the quantum entropies more visible in Section
54.

5.2 Entanglement calculation

Now, if we try to apply the standard entanglement quantification procedure given by Egs. (3.2)
- (3.9) of Section 3.1 to the discrete function W,.(r,,r.,?) in 3D, we can quickly conclude
that the array size of the discretized density matrices involved will be prohibitively high. If
we try to perform the reduction to g.(r.,r.,7) and then to calculate the von Neumann entropy
Sn(t), we face effectively an ~ N° operations count per one value of Sy(t), where N is the
characteristic number of gridpoints of a spatial coordinate. Using a typical setup, we needed
at least N = 10> gridpoints to contain the ionized electron waves. So if we make an optimistic
guess that the execution takes about 1 second per 10° operations, then we obtain a runtime of
32 x 10° years. This makes the computation according to the standard approach of Section 3.1
practically impossible, thus we have to find a viable approximation.
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5.2.1 Directionally reduced dynamics

We propose to circumvent the prohibitively large numerical load of the problem by restricting
ourselves to only one coordinate direction (at a time), i.e. to utilize the directionally reduced
dynamics. Since the system is axially symmetric around the polarization direction of the laser
field (the axis p = 0 at all times), it seems to be plausible to assume that the interesting physics
happens in this direction. However, we are also going to use the information contained in the
perpendicular directions.

The directionally reduced density matrices of the relative part are the following

gx(x’,x):/ (X, y,2)¥(x,y,z)dzdy, (5.3)

0:(,2) =2m / ¥ (Z,p)¥(z,p)pdp (5.4)

and because of the axial symmetry we have for the y direction

Oy = Ox- (5.5)

The directionally reduced density matrix of the center-of-mass part is

00.2(20,20) = 27?/‘1’3(26,170)‘1’0(20,Po)PodP0~ (5.6)

Due to the assumed Gaussian form (5.1) it is a pure state density matrix which can be calculated
analytically. Again, because of symmetry we have in the other directions

00,z = 00,y = 90,x- (5.7)

In addition to this, only the density matrix of the relative part must be evaluated numerically.
After we have completed these, we will utilize that the separability is true in each direction:

Oecx = Ox @ 00,x and Oec,z = 07X 00,z- (5.8)

Finally, we apply the necessary coordinate transformation (1.20) to (5.8), then the x and z di-
rectional two-particle reduced density matrices are given by

/ / / ’ ’ /
Qec,x(xeaxeaxc;xc) = Qx(xe — Xy Xe — Xc)QO,x(aexe + OeX,y OeXe + acxc)a (5.9)

Qeqz(zley Ze, Zlmzc) =0z (Z/e - Z/m Ze — ZC)QO,Z(an/e + OCCZ,C: OeZe + aCZC)' (5.10)

Then, we calculate the subsystem density matrices as in Section 3.1. Therefore, the one-
dimensional reduced density matrices of the ion-core coordinates are

Qc,x(xlcaxc) =Tr, [@ec,x] = /Qec,x(xeaxwx/c,xc)dxea (5.11)
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Qc,z(ZZch) =Tr, [@ec,z] = /Qeqz(ze,ZeaZ/caZc)dZea (5.12)

and, similarly, we have for the electron coordinates

Q&x(xle,xe) = Tr, [@ec,x] = /Qeqx(x/eaxeaxc»xc)dx& (513)

Qe,z(zﬁnze) = Tr, [@ec,z] = /Qec,z(z/eaZ67Zc‘7ZC>dZC' (5.14)

In this way we have the building blocks of the two-body Coulomb system as six pieces of one-
dimensional reduced density matrices, which can already be computed in a reasonable amount
of time.

5.2.2 Correlation quantification per direction

From these reduced density matrices we can calculate several quantum entropies, and each has
a specific interesting aspect, we will list them in the following. For simplicity, we use mainly
formulas of the von Neumann entropy, and we usually drop its subscript N.

Spatial entropy: this can be calculated from the reduced density matrix of the relative part
as

S.(t) = Sn(o.(t ZA ln;t (1), (5.15)

where lk(z) (t) are the eigenvalues of o,(¢). We shall call (5.15) “spatial entanglement” measure,
because it quantifies the entanglement between the relative coordinates z, p (or the directional
nonseparability of the strong-field process) according to the theory of pure bipartite systems. It
is also the entropy of the two-dimensional subspace

Sec,z<t) :SN(Qz(t)®QO,z(t)) :Sz<t)> (5.16)

since Sy(00(t)) = 0. We also note that using

Su(t) = Sw(e(t)) = = LA () m a7 (o), (5.17)

k

where /l,fx) (t) are the eigenvalues of p,(7), is also an option as a “spatial entanglement” measure.
However, since the laser polarization coincides with the z axis, it is the most interesting to know
the nonseparability between the z and x ® y subspaces, therefore, we will prefer the use of S, (7).

Average mutual entropy per direction: as introduced by the formula (3.23), the (average)
quantum mutual entropy is a true nonseparability and correlation measure generally, which can
be used between the single-coordinate subsystems of the electron and the ion-core in a given
direction. They are written along the x and z direction as

S(xe : xey1) = = [Sex(t) + Sex(t) — Sx(1)], (5.18)

| =
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S(20 : 200) = = [Sua() + Sealt) = Su(2)] (5.19)

2
To remind, these are exact formulas for pure bipartite states. However, these measures combine
classical and entanglement related correlations otherwise, and in order to apply them as entan-
glement measures (per direction), we need to look at all of their constituent parts. It is also
interesting how the conditional entropies behave.

Core entropies per direction: as we will show below, the following quantum entropies

Sex(t) = Sn(0ex(t Z)L (1) InA M (1), (5.20)

Se(t) = Sn(0e(1) Z?LCZ () In A (1), (5.21)

where l,fc’x) (1), lk(c’z) (r) are the eigenvalues of o, .(¢) and g, .(¢) respectively, measure approx-
imately the particle-particle correlation directionwise. The reason is the following in case of
direction z: because of the orders of magnitude of mass difference present in the coordinate
transformation (5.10), the reduced density matrix g, , will be close to gg ;. This causes that only
a tiny fraction (m, /M) of the entropy S,(¢) of z, ® z. is transferred to subsystem z., because the
mass difference suppresses the eigenvalues and eigenvectors of o,. Knowing that g ; is a pure
state density matrix with zero entropy, we conclude that additional surplus values in entropy
Scz(t) quantify the particle-particle correlation along the z direction. In other words, it is the
nonseparability between z. and z,, which yet to be called entanglement. The same considera-
tions also apply to the x direction. Because these Neumann entropies are actually correlation
entropies in this case, we expect them look really similar to the respective quantum mutual
entropies. For sake of completeness, we note that the entropies (5.20) and (5.21) are also entan-
glement entropies of two special bipartitions of the six coordinate quantum system, namely x,
against all the other coordinates and z. against all the other coordinates, respectively.

Electron entropies per direction: these are also of importance related to the conditional
entropies, and the distinction of quantum versus classical correlations. Similarly, they are also
special entanglement entropies of two bipartitions of the six coordinate quantum system in a
similar manner as the core entropies per direction. They are calculated as

Se(t) = Sn(0ex(®)) = = Y AL ()AL 1), (5.22)
k

Se(t) = Sw(ez(t) = = LAY () A% 1), (5.23)
k

where kk(e"x) (1), QLIC(E’Z) (t) are the eigenvalues of o, .(t) and g, .(t) respectively. We note that
although o, and p. must have the same eigenvalues, this won’t be true for the reduced den-
sity matrices g, . and g . in direction z if the values of S.(¢) are not negligible. (Same goes
for the x direction.) Then the coordinate transformation (5.10) causes that the major fraction
(m¢/M) of the entropy S, () of z, ® z. is transferred to subsystem z,, because the reduced den-
sity matrix g, , will be close to p,. Based on the quantum information theoretic properties of the
Neumann entropies, this spurious eigenvalue contribution can be extracted, but not completely.
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This “eigenvalue extraction” we refer to can be realized by the S, ;(¢) — S;() entropy subtrac-
tion, which are the single-direction negative quantum conditional entropies of the core-x and
core-z reduced density matrices:

— S(xc|xe,t) = Sex(t) —Sx(2), (5.24)

_S<chzeat) :Saz(t)_Sz(t)' (5.25)

Since they are related to the correlation one way or the other, from the above reasoning it
follows that —S(x¢|x.,#) and —S(z¢|ze,?) should be positive and similar to S, () and S, ;(¢) and
therefore also to their mutual entropy, respectively. Based on this reasoning we will see that the
subsystems x, ® x. and z, ® z. are mainly subject to quantum entanglement (in accordance with
(3.15)), not classical correlation (also present), which we show in Section 5.4.3.

Upper bound of the core entropy: using the strong subadditivity of the Neumann entropy,
an upper bound can be given for the true 3D electron — ion-core entanglement as

Se(t) = Sc(t) < Sc,z(t) + 2Sc7x(t) = Sbound(t)a (5.26)

where the one-dimensional ion-core entropies were substituted into the subadditivity relation
(3.10), because they tend to be smaller than those of the electrons and because of the physical
reasons outlined above. The equation (5.26) serves also as a good analytical criteria that we
should fulfill with an approximate formula for electron — ion-core entanglement.

5.2.3 Approximation of the entanglement

Now we introduce our approximate entanglement measure, which is one of the main purposes
of this chapter.
We approximate the pure state of our six-dimensional quantum system by replacing it with

Qgi‘ep) (t) = Qec.,x(t) & Qec,y(l) & Qec.z (t)7 (5.27)

which is separable directionwise but it includes the ga.7x(x;,xe,xlc,xc), Oec.y (y;,ye,ylc,yc), and
Oec,z (Z;,Ze,Z/C,ZC) two-dimensional reduced density matrices which contain all the pair correla-
tions between the coordinates x.-x., ye-ye, Ze-Zc, respectively. (Because of the symmetry, the
physics in the subspaces x and y are identical, so (5.5) is true.) Then we obtain the entropy of
e

Sec,j(t) =8;(t) +S0,i(t), Occ,j = 0j® 00,j> ] = X,y,2 as

from the additivity of the Neumann entropy (valid for separable systems), and using that

Sec™ (1) = $2(0)+,(1) +S2(0): (5.28)
The single-particle ion-core and electron reduced density matrices read
08 1) = 0ex(t) @ ey (1) © (1), (5.29)

0P (1) = 0ex(t) ® 0ey(t) @ 0c2(1), (5.30)
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with the standard definitions (j = x,y, 2):
0c,j(t) = Trc [0ec,j(t)] and ¢ (1) = Tre [ec,j(1)] - (5.31)
For the entropies of these, the following hold:
(sep) ,y _
Se (1) = Sex(t) +Sey(t) +Se (1), (5.32)

SEP) (1) = S o(t) + Sey (1) + S (1). (5.33)

We propose to quantify the total entanglement between e and ¢ based on the average mutual
entropy (3.23) as

Secle:c,1) = % S5 0) + 8P 1) = &P (1) (5.34)

After rearranging the terms and using symmetry relations (5.5), (5.7) we obtain

Sec(e:c,t) = %[ZS(xe : X0, 1) +8(ze  ze,)] (5.35)

as the final form of our approximate formula for the total entanglement.

The introduction of the factor 1/2 in the above definition is useful in the case when each of
the two-dimensional subsystems are in a pure state, i.e. Sec x(f) = Sec,y(t) = Sec;(t) = 0. Then,
the bipartite Schmidt theorem holds in these subspaces as S, ;(t) =S¢ j(¢) (with j = x,y,z), and
we obtain

SPUeSe) (1) — S (t) + Sey () + Sex(t), (5.36)

which is by definition the exact entanglement measure.

5.3 Quantum entanglement in the one-dimensional model

Now, we discuss the results of our earlier one-dimensional simulations [A1]. This model was
built in complete analogy of Section 5.1, but we modeled the laser field induced entanglement
dynamics of the electron and the ion-core restricted to the z. ® z, subspace, described by a
pure state ‘Pé? (Ze,2¢,t) Where the z, and z, coordinates are given by the z component of the
coordinate transformation (1.20). A reason is, due to the large mass ratio in (5.1), we may
regard the motion of the perpendicular directions x and y order of magnitudes slower than in
the polarization direction, their contribution to the entanglement can be regarded as a constant
shift. We note here, that certain simple 3D model atoms can be treated with this 1D approach
also analytically: an example of these is the Moshinsky atom [112, 113] with a single electron
in an external laser field using dipole approximation.

Here, we model the hydrogen atom (Z = 1) using the 1D Dirac-delta potential (1.16) with
the initial state (1.17). We acquire the relative part W!P(z,¢) from the 1D time-dependent
Schrodinger equation (1.12) of Section 1.2.3. For the numerical solution of this relative wave
function we implemented the Dirac-delta potential using the respective boundary condition at
z = 0 within a Crank—Nicolson scheme. For the center-of-mass wave function ‘P(I)D (zo,t) we
use the form of a Gaussian wave packet just like (5.1), the time evolution of which is simple
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Figure 5.1: (a) Linear entropy (3.9) versus time and (b) Neumann entropy (3.8) versus time
in the one-dimensional model of Section 5.3 for increasing peak values of the electric field (in
atomic units). Black curves in the lower part: electric field —&(¢) (i.e. the electric force acting
on the electron, in atomic units) of a three-cycle pulse with a sine-squared envelope (5.38).
Colour curves in the upper part: Neumann entropy Sy/(t), for peak electric field F: 0.1 (blue),
0.15 (green), 0.2 (orange), 0.25 (red).

spreading.
In one dimension, we can use the standard bipartite entanglement quantification methods of
Section 3.1 since the whole system’s density matrix is pure and given by:

Qi]CD,Z(Z/wZé’Z/wZC?t) = Ti?(zlevZévt)*‘{]é]c)Q&ZCvt)' (537)

1D
(¥4

and calculate the Sy(¢) linear entropy and Sy(¢) von Neumann entropy from this density matrix

We calculate the reduced density matrix o, (2., z¢,t) by partial tracing over z, straightforwardly,
which quantify the quantum entanglement in 1D (numerically) exactly. In one dimension, the
entropies S. ;(¢) and S(z. : z,t) coincide with Sy(z), therefore they are also exact entanglement
measures.

The actual results using this model are presented in Fig. 5.1 (a) and (b) using a laser pulse
of the form (5.38). These show the emergence of oscillations in the linear entropy and in the
Neumann entropy, respectively, during the strong-field process. There is a strong correlation
between the shape of the laser pulse and the oscillations of the quantum entanglement, most
importantly, the local maxima of the quantum entanglement coincide with the zero crossings
of the laser electric field. The oscillations become more pronounced and the final degree of
entanglement also increases with higher peak values of the electric field. We also note the
similarity of the Sy(¢) and S.(¢) curves corresponding to the same case.

The results of the model discussed here also gain more relevance if we compare them to the
results of a 3D atom.
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5.4 Results and discussion

In the following, we present our results regarding the three-dimensional strong-field process.
First, in Section 5.4.2, we present the system’s dynamical properties using two time-dependent
integrated quantities. Then, in Section 4.3.2 we discuss the roles and time dependence of the
entropies we introduced in this chapter. In Section 5.4.4 and Section 5.4.5 we investigate the
dependence of system’s entanglement dynamics on the parameters of the external field.

5.4.1 Simulation parameters

In our simulations, we expose the hydrogen atom to a linearly polarized few-cycle laser pulse
with a sin-squared envelope function. The corresponding time-dependent electric field has
nonzero values only in the interval 0 < ¢ < 37T according to the formula:

&(t) = F - sin® (%) cos (%JrCEP.n), (5.38)
where T is the period of carrier wave, F is the strength of the electric field, CEP- 7« is the carrier-
envelope phase. We keep the wavelength of the laser field through parameter 7' the same in all
of the simulations: we set T = 100 which corresponds to a ~ 725nm near infrared carrier wave.
Varying the parameter F and separately the parameter CEP, we can investigate the dynamics of
the system with the emphasis on quantum entanglement. From Fig. 5.2 on, the vertical dashed
lines denote the zero crossings of the respective &(¢) electric field.

The simulation of the time evolution starts from the ground state of the relative Hamiltonian
which was found by imaginary time propagation [70, 90, 91] having the energy ¢y ~ —0.49972.
Other parameters used in the numerical simulations of the relative wave function are (i) dis-
cretization parameters Az = Ap = 0.2, and Ar = 0.01 for the fourth-order splitting formula of
(2.34), (ii) the total simulated time is 330 atomic time units, (iii) the simulation box size is var-
ied with parameter F'. The dimensions of the latter are zy,j, = —500, Zmax = 500, Pmax = 300 for
F =0.1. For the evaluation of the partial derivatives z,p we use fourth-order finite differences,
and for the evaluation of the integrals we also use a discrete sum approximation (2.24). After
this, we perform the reduced density matrix based calculations at each atomic time unit.

5.4.2 Dynamics

We begin our analysis of the dynamics discussing the time dependence of the g(¢) ground state
population loss (1.33) of the relative wave function, which is shown in Fig. 5.2 (a) for several
values of F'. We can see sudden increases of the ground state population loss that are happening
at the local extrema of the electric field, more and more clearly as F increases. As we have
already discussed in Section 1.4, we make distinction between the tunneling ionization regime
and the over-the-barrier ionization regime, regarding the dynamics dependent on F': starting
from the former, we see from Fig. 5.2 (a) that even for F = 0.06, (just below the over-the-
barrier threshold) the total ground state population loss is small (0.02) which implies small
amount of ionization in the tunneling regime. At F' = 0.10 we have already a significant total
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Figure 5.2: (a) Time dependence of the ground state population loss g(¢), and (b) time depen-
dence of the mean velocity (v,) (¢) for the indicated values of the parameter F, with CEP = 0.
The vertical dashed lines denote the zero crossings of the electric field. (They have the same
meaning on each of the figures.)

ground state population loss (0.33) with prominent over-the-barrier ionization. At the highest
F shown (F = 0.12), the electric field increasingly dominates the Coulomb force, and it almost
doubles the total ground state population loss (0.61) and ionization.

From Fig. 5.2 (b), we can inspect how the results translate to an averaged classical motion,
using the mean velocity component (v;) (¢) from the formula (1.31). In the tunneling regime
(with F = 0.06 or below), (v;) (¢) only slightly changes with time and has oscillating compo-
nent, which implies that the relative wave function is oscillating near the origin. For amplitudes
sufficiently above the over-the-barrier ionization threshold (F = 0.1), the velocity somewhat
correlates with the quiver motion of the classical free electron moving under the influence of
the oscillating electric field (5.38). For example, (v;) (#) has local extrema near the zero cross-
ings of the electric field like within this classical picture. With increasing F', the correlation of
(v;) (t) and this “free” classical motion becomes more clear, signaling the increase of impor-
tance of the ionized waves. After the laser pulse ends, the ground state population loss stops as
expected, and (v;) (¢) appears to oscillate near a constant mean value which is more remarkable
with higher F. (This latter value can be nonzero, which contradicts the mentioned classical
picture.)

5.4.3 Time dependence of quantum entropies

Now we start to analyze the time-dependent dynamics of the quantum entanglement of these
ionization processes.

We begin the discussion of the various quantum entropies in the direction parallel to the laser
polarization axis (z), then in the direction transverse to this polarization axis (x or y) and in the
last paragraphs in this section, we conclude with the discussion of the total electron — ion-core
entanglement approximated by our method. For this task, we set the electric field parameter to
be F = 0.1 which means an intermediate, over-the-barrier ionization range, and we choose the
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Figure 5.3: (a) Comparison of the time dependence of various linear entropies in direction z
using F = 0.1, CEP = 0. (b) Comparison of the time dependence of various Neumann entropies
in direction z using F = 0.1, CEP = 0. The synchronous changes in S. ;(), in S, - (t) — S;(¢), and
in S(z : z¢,t) signal that they are related to a common source of correlation, which is primarily
the quantum entanglement between z, and z., as evidenced by the high value of the negative
conditional entropy S, .(¢) —S;(¢) .

carrier-envelope phase to be CEP = 0.

First, we discuss the linear entropies of the reduced density matrices o;, 0. and g.,. We
use the notation Sz ;(¢), S.¢ (), Sr.ez(t) and we plot them in Fig. 5.3 (a) to provide them as
a comparison to the Neumann entropies S;(7), S¢ (), Se;(t), which are shown in Fig. 5.3 (b),
with the same parameters. Although these linear entropies compare fairly well to the respective
Neumann entropies, the orange line in Fig. 5.3 (a) shows that the quantity Sy . -(f) — S .(¢)
gives false prediction as a negative conditional entropy, therefore we use only the Neumann
entropies, as we have already stated earlier.

The time dependence of Neumann entropies corresponding to the direction z are shown in
Fig. 5.3 (b). We see that S;(¢) and S, .(¢) share the main features but S. () has a different
behavior. First, let us say some words about the time dependence of the Neumann entropy S ()
(plotted with red line). Overall, this spatial entropy of the “spatial entanglement” between z
and p has major increase during the process due to the ionization: it starts from a rather small
value of 0.07 and and has a large permanent increase during the process (to the value 1.11).
This entropy also continues to grow slowly but steadily after the laser pulse ended, i.e. due to
the mixing effect of the Coulomb potential only. It has sudden increases in time near the peaks
of the laser pulse, however, with about 10 atomic time units of delays, with the biggest jump
occurring near the central peak. If we compare this plot with the corresponding curve of Fig. 5.2
(b) we clearly see that the timings of these increases synchronize with the increases of |(v;) (¢)|.
Regarding the small starting value of S,(7), the initial state of exp(—ptr) is almost separable in z
and p, in accordance with the low value of this entropy: particularly, the dominating eigenvalue
of p;att =01s 7Ll(z) = 0.9872. This clearly shows that the Neumann entropies, in general, take
into account the other much smaller eigenvalues in a more pronounced way.

In Fig. 5.3 (b) we show the Neumann entropies S, ;(¢) and S. ;(¢), and the negative condi-
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tional entropy S, ;(¢) — S;(¢), with blue, green and orange lines, respectively, in order to attempt
to answer the question, how the ion-core — electron correlation works in the directional z sub-
system. We stated in Section 5.2, that the coordinate transformation (5.10) creates a special
type of correlation. Therefore, we should be able to acquire (at least partially) the correlation
information contained in S, .(¢) from the Neumann entropy S, .(z). As it is clearly shown by
Fig. 5.3 (b), the majority of the time-dependent features of S, ;(¢) seem to be inherited from the
Neumann entropy of the reduced density matrix o.(¢) (for example, the sudden increases related
to the ionization), they are only shifted to higher values. However, if we carefully inspect the
curve of S, ;(¢) — S;(t) in Fig. 5.3 (b) (in orange) we can easily observe that its main features
(like its correlation with the laser pulse) are very similar to those of S, ;(¢). Because these quan-
tities are close to each other, it means that in this subsystem the major correlation is quantum
entanglement, as we stated earlier. Therefore, S'(ZC ! Ze,1), defined in (5.19), can be used as an
approximate entanglement measure. We also make the observation that S,(¢) is always upper
bounded by S, ;(¢), and the respective z coordinate of the lighter electron contains more entropy
than that of the heavier ion-core, as expected.

Next, we discuss the time dependence of the resulting mutual entropy S(z. : ze,¢), which
is plotted in Fig. 5.3 (b) as a purple curve. This quantity inherits its features from S, .(¢) and
Sez(t) —S;(t) by construction: it starts from an intermediate value (0.23), rises and falls several
times during the process, contrary to S,(¢). It stays almost constant after the laser pulse, around a
value (0.25) that is only slightly higher than the initial value. The time dependence of S(z. : z¢,t)
correlates better with the shape of the laser pulse, and also has much smaller peak value in
the time window, than the aforementioned spatial entropy. Interestingly, the rapid changes in
ionization probability during the process are not reflected by this particle-particle entanglement
of the z directional subspace. The changes of this mutual entropy are more correlated with the
average velocity (v;) (¢), which we expand more in the next section.

The curves of Fig. 5.3 (b) clearly show that the classical correlations also change under the
effect of the laser pulse: the gap between S, .(¢) and S, . (f) — S;(¢) is dynamically increasing and
decreasing, synchronously with the electric field. Even though the respective mutual entropy
includes these classical effects, the also synchronous changes in S, (¢) and in S, .(¢) — S;(¢)
signal that the quantum entanglement behaves the same way, and the high value of the negative
conditional entropy causes it to be the major correlation.

Here we ought to note that the actual related values of S ;(t), S(z¢ : ze,), Sez(t) — S;(t) are
also influenced by W), that is by the adjustable parameter 0'02. According to our simulations, the
change of Gg does not affect the aforementioned observations of the time-dependent character-
istics of these entropies. The major difference between different values of Gg is that it results in
a shift of the values E(zc : Ze,t) and it affects the already slow dispersion rate of .

The time dependence of the same of quantum entropies which characterize the reduced dy-
namics along the x axis (same along y) can be seen in Fig. 5.4 (a). However, we limited the
range of the time axis (to 280 atomic time units) in this case, since one of this entropy calcula-
tions is done about O(N*) steps instead of O(N?), and it also involves that much interpolation
in order to do integration in Cartesian coordinates.

From Fig. 5.4 (a), we can see a familiar shape related to the spatial entropy in the form of
S«(t), because the values of the Neumann entropy S, (¢) mirrors that of S,(¢), but they are not
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Figure 5.4: (a) The time evolution of the various Neumann entropies based on the reduced
density matrices in direction x, using the parameters F = 0.1, CEP = 0. (b) The time evolution
of our electron — ion-core entanglement entropy Se. (e : ¢,t) and the upper bound of the analytic
entanglement entropy Spouna(?), along with time evolution of the directional entropies 2S5 (x, :
Xe,t) and S(z, : z¢,t) with parameters F = 0.1, CEP = 0. The time dependence of Spounq(f) and

Sec(e : ¢,t) follow each other with substantial, and slightly increasing gap which indicates the
actual importance of these curves.

the same. However, they are actually identical at # = O due to the spherical symmetry of 1s
Coulomb state, i.e. (a single index) tripartite Schmidt decomposition [114] of the initial relative
wave function exists. Then the laser pulse causes this wave function to slowly depart from this
tripartite Schmidt state as Sy(¢) and S,(¢) differ more. However, both Sy(¢) and S,(¢) depict the
time dependence of the spatial entropy adequately.

Now we turn our attention to the particle-particle correlation of the x, and x. coordinates.
First, this correlation is quantum entanglement because S. ,(¢) and its negative conditional en-
tropy i.e. S, .(t) —Sx(t) stay really close to each other which is only possible if x, and x. are
entangled, therefore S(x. : x.,?) is a good entanglement measure. Now, we can also see that the
entropy S(x, : x,t) shares some time-dependent features with S(z, : z.,t), for example, its max-
ima are near the zero crossings of the laser pulse. Note, however, that the changes in S(x, : xc,?)
are considerably smaller than those in S(z, : z.,¢). It is somewhat surprising that there is an
overall entanglement decrease in direction x, which we discuss in the next section in more de-
tail. This decrease could be an evidence of separation between the two subsystems x, and x., as
these coordinates become more uncorrelated during the physical process.

Finally, in Fig. 5.4 (b), we plot the result of our approximate formula S,.(e : c,t) of the
physical ion-core — electron entanglement using (5.35) with its analytic upper bound Spouna(?)
via (5.26). There, we also plot the function S(x, : x¢,t) +S(Ve : e, t) = 28(x : x¢,t) and S(z, :
Ze,t) for the x and z subsystems. We see that our approximate quantification formula S,.(e :
c,t) is clearly below Spound(f), with substantial, and slightly increasing gap. Also the time
dependence of these follow each other, which indicates the actual importance of Se (e : ¢,t). It
seems to be surprising that the total entanglement entropy shows a net decrease by the end of the
laser pulse, which we will revisit in the next section. This is especially interesting when we take
into account that other important features of the entropy S..(e : ¢,#) mimic those of the mutual
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Figure 5.5: (a) The time evolution of the Neumann entropy S,(¢) for the indicated values of the

parameter F', with CEP = 0. (b) The time evolution of the mutual entropy S(z. : z.,t) for the
indicated values of the parameter F, with CEP = 0. This plot is to be compared with the exact
quantum entanglement entropy curves in Fig. 5.1 (b) of our 1D model simulation.

entropy S(z. : z¢,¢). In this sense we could say that the part of the relevant physics happens
along the polarization axis (like the correlation with the external electric field, and the definite
positions of the maxima near the zero crossings of the laser field) but the perpendicular degrees
of freedom change the overall dynamics of the entanglement from increasing to decreasing.

We will further explore the dynamics of all types of entanglement presented so far in the
following, while also giving more insight into the physics, by changing the external field that
governs the process.

5.4.4 Dependence on the electric-field strength

In this section we discuss the dependence of the important entanglement entropies of Section
5.2 on the parameter F i.e. on the strength of the external electric field.

In Fig. 5.5 (a) we plot the spatial entropy S,(¢) for the relevant values of F. Comparing
these curves with the ground state population loss of Fig. 5.2 (a) it is easy to correlate the time
evolution of S,(¢) to the probability of ionization.

Note that below the value F = 0.04, we have only a marginal increase in S;(¢), i.e. the rel-
ative wave function stays nearly separable in z, p during the process. This separability quickly
breaks down with increasing F, which is an important information regarding the applicabil-
ity of the time-dependent multiconfigurational Hartree approaches [115] for the simulations of
strong-field processes. It is also interesting that we have not found any specific mark of the tun-
neling or the over-the-barrier ionization regimes. Between F' = 0.12 and F = 0.14, the entropy
increase already slows down as a function of F, and one can extrapolate that the spatial nonsep-
arability has a saturation point near F = 0.14. We verified the existence of this maximum value
with additional computations. Therefore, there is a limiting maximal value for S,(¢) in the given
time window, which already corresponds also to nearly complete ionization. The Neumann en-
tropy S;(¢) is not only the measure of “spatial entanglement”, but it is also the total entropy of
the z subsystem, which has consequences regarding the interpretation of the directional mutual
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entropies.

In Fig. 5.5 (b) we plot the average mutual entropy in the directional z subsystem, S(z, : zc,?),
for the relevant range of F. It is easy to see that the correlation of this entropy with the shape of
the laser pulse becomes more clear as we increase F. The values of the first minima decrease as
F increases, but this is reversed for the other local minima. Regarding the local maxima, they
all increase with increasing F', the largest change occurring at the main maximum (¢t = 175).
Positions of the local maxima are independent of F. We can observe a tunneling regime feature:
the value of this entropy returns to the baseline at the end of the laser pulse. As the over-the-
barrier ionization takes over (above F = 0.08) the final value of the entanglement between z,
and z. rises with increasing F'.

Comparing Fig. 5.5 (b) and Fig. 5.2 (b), it is easy to recognize that the mean relative veloc-
ities (v;) () (or alternatively, momenta) play a particularly important role regarding quantum
entanglement in this direction. During one half cycle of the laser pulse, as the ion-core and the
electron are moving apart, the entanglement of their respective coordinates z, and z. increases
proportionally to the magnitudes of their relative velocities. The value of their entanglement
decreases when deceleration occurs, and reaches its minimum value when the particles’ relative
motion stops. The final value of entanglement is also related to this velocity.

The results presented in Fig. 5.5 (b) are even more interesting if we compare them to the
exact quantum entanglement entropy curves in Fig. 5.1 of our former 1D model simulation.
Despite that the average mutual entropy S(z, : z,¢) includes an increasing “background” (since
the composite system is always in a mixed state in the 3D model), the main features of the tem-
poral dependence in Fig. 5.5 (b) and in Fig. 5.1 (b) exhibit a very good qualitative agreement:
the position of the local maxima coincide with the zeros of the laser pulse, the main maximum
of the entropy is roughly the double of its initial value, and the asymptotic value at the end of
the simulation time scales roughly the same way to the corresponding maximum values. This
agreement strongly supports our opinion that the average mutual entropy S(z, : z¢,t) is a useful
measure of quantum entanglement for the degrees of freedom along the direction of the laser
polarization in the 3D case. The agreement also justifies the use of the delta potential in the
1D simulation, because the resulting exact ion-core — electron quantum entanglement correctly
describes the corresponding entanglement dynamics of the 3D case.

Regarding the transverse direction x, first we note that the time dependence of S(¢) is very
similar to that of S;(¢) and it scales with F also in an analogous way, therefore we do not plot
S,(t). We plot S(x, : x.,t) in Fig. 5.6 (a) in analogy to Fig. 5.5 (b). This figure shows more
clearly the striking feature that was already present in Fig. 5.4 (a): the average mutual entropy in
the transverse direction decreases surprisingly strongly with increasing F in the over-the-barrier
ionization regime. This unexpected behavior is of purely quantum mechanical nature, contrary
to direction z: since (vy) (t) = 0, there is no “classical” explanation based on the Ehrenfest
kinematics. However, the positions of the local maxima S(x, : x,¢) are still tied to the zero
crossings of the laser field. There is an importance of the tunneling regime (F = 0.0624 and
below), where the average mutual entropies S(x, : x.,t) and S(z : z¢,t) have almost the same
overall behavior and show an entropy increase.

Finally, in Fig. 5.6 (b), we plot the approximate ion-core — electron entanglement S, (e :
c,t), defined in Eq. (5.35). Due to its construction, it inherits its features from g(ze D Zeot)
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Figure 5.6: (a) The time evolution of the mutual entropy g(xe : X, 1) for the indicated values of
the parameter F', with CEP = 0. (b) The time evolution of the approximate ion-core — electron
entropy Se.(e : c,t) for the indicated values of the parameter F, with CEP = 0. Surprisingly,
the entropy decrease of the transverse directions dominate the entropy increase in direction z,
therefore this approximate ion-core — electron entanglement decreases with increasing F in the
over-the-barrier ionization regime.

and E(xe : Xc,t) in the following way: if the value of F ensures pure tunnel ionization, then
Sec(e : c,t) gains a net increase by the end of the laser pulse, otherwise the ion-core — electron
entanglement decreases with increasing F', which is a rather surprising result. Other important
features of S(z, : z.,t) are preserved also for Se.(e : c,t): the presence of the local maxima at the
zero crossings of the laser field, the general nature of the correlations, and its link to the mean

velocity.

5.4.5 Dependence on the carrier-envelope phase

In this section we investigate the effects of the carrier-envelope phase (CEP) on the process.

In the upper panel of Fig. 5.7 we plot the electric field of the laser pulse for our selected
CEP values, with the strength of the electric field parameter set to /' = 0.1. For the sake of
better comparability, we apply the following CEP-dependent transformation in time: we shift
backwards the time domains in the case of nonzero CEP values such that the zero crossings of
the various laser pulses coincide, as shown in the lower panel of Fig. 5.7. We plot the time
dependence of some selected quantities in the following figures with this shift applied.

We plot the CEP dependence of the ground state population loss in Fig. 5.8 (a) and the mean
velocity (v;) (¢) in Fig. 5.8 (b) using the above mentioned transformation. For each CEP value,
the dynamical properties of the system stay synchronized to the local minima, maxima and zero
crossings of the laser pulses. The values of the ground state population loss at the end of the
laser pulse are nearly unaffected by the parameter CEP. The corresponding values of (v;) (¢)
are only slightly affected by the CEP change.

The entanglement properties of the system inherit the above CEP related features. To show
this, we plot the CEP dependence of the entropy of the “spatial entanglement” in Fig. 5.9 (a),
the entropies of nonseparability in direction z and in direction x in Fig. 5.9 (b) and Fig. 5.10 (a)
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« CEP=0.00 « CEP=0.25 - CEP=0.50 CEP =0.75

Figure 5.7: Plots of the laser pulses’ electric fields & () versus time with four selected values
of the parameter CEP, where the thick blue curves indicate the case of CEP =0. The vertical
axes range from —F to F and represent the strength of the electric field. Plots in the upper panel
are according to the formula (5.38) then we applied a CEP-dependent shift in time to make the
zero crossings coincide (lower panel). We plot the time dependence of some selected quantities
in Figs. 5.8 to 5.10 with this shift applied.
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Figure 5.8: (a) Plots of the ground state population loss of the relative wave function versus

time for the indicated CEP parameters, with F = 0.1. (b) Plots of the mean velocity (v,) (¢) of
the relative wave function versus time for the indicated CEP parameters, with F = 0.1.
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with F = 0.1. Note that the peak at t = 175 shrinks as the CEP increases while the peak at
t = 225 increases.
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Figure 5.10: (a) The plot of the mutual entropy S(x. : x.,t) for the indicated values of the
parameter for the indicated CEP parameters, with /' = 0.1. (b) The plot of the electron — ion-
core entropy S,.(e : c,t) for the indicated CEP parameters, with F = 0.1.

71



CHAPTER 5. QUANTUM ENTANGLEMENT IN STRONG-FIELD IONIZATION

respectively, and our approximated ion-core — electron entanglement entropy in Fig. 5.10 (b).
In Figs. 5.9 (b) and 5.10 (b), we can see that the local maxima still coincide with the zeros of
the electric fields, independently of the CEP values, and the CEP has barely any effect on the
final values. However, the actual values of the ionization, the velocities and all the entropies
change considerably with respect to each other between subsequent half cycles, depending on
the value of the CEP parameter. For example, in Fig. 5.9 (b) the peak at = 175 shrinks as CEP
increases and the peak value at t = 225 grows synchronously. We have found it interesting that
the latter entropy acquires its largest value near CEP = 0.75 and not CEP = 0.0, where we have
the largest value of &(¢). Thus, although the parameter CEP changes the subcycle dynamics
of both these entropies considerably, its value does not affect our main observations about the
overall time-dependent entropy dynamics.

5.5 Summary

In this chapter, we applied the theory of quantum entanglement and the concepts of quantum
information theory to describe the time-dependent correlation properties of an electron and its
parent ion-core under the influence of an external laser pulse which is strong enough to liberate
the electron by tunnel or by over-the-barrier ionization.

The computation of the standard entanglement measure i.e. the Neumann entropy of either
the electron or the core density matrix for this problem is numerically prohibitive in its full di-
mensionality, therefore we choose to partition the interacting system along the spatial directions
parallel and perpendicular to the laser polarization axis, denoted by z and x, respectively. These
directionwise reduced dynamics still retain all pair correlations in x and z. To analyze the cor-
responding pair correlations between the electron and the ion-core coordinates, we used several
kinds of Neumann entropies that can be calculated from the one-dimensional density matrices
of the system. Based on the concepts of quantum conditional entropy and quantum mutual en-
tropy, we introduced average mutual entropies between the electron’s and the ion-core’s spatial
position along the x and z directions as suitable and useful correlation measures. We constructed
an approximate formula, Eq. (5.35), to quantify the total particle-particle entanglement between
the electron and the ion-core, based on the directionwise mutual entropies.

We analyzed the nature of the correlations in each direction and we found that they are
based on the same fundamental features of this system. For example in direction z, the ion-core
entropy Sc;(¢) behaves like a correlation entropy, because the ion-core density matrix is close
to that of the center-of-mass which has zero entropy. The spatial entropy S,() is concentrated
in the directionwise electron entropy S, .(¢), which also incorporates a correlation part. The
resulting S, ;(¢) — S;(r), which is the negative conditional entropy of the ion-core, becomes
positive and has many features in common with S, -(f). In most of the simulations, these two
stay really close to each other, which means that the mixed state as the function of the z, and z.
coordinates shows dominantly quantum entanglement. The same is true with respect to the x,
and x, coordinates. This behavior is very different from pure state entanglement, because these
directional subsystems are in mixed states.

We analyzed the correlation entropy relations in each direction and we found that the zero
crossings of the electric field almost coincide with their local maxima. These results in direction
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z are also in a good agreement with our earlier one-dimensional simulations using the Dirac-
delta potential. The correlations along the x and z directions are very similar to each other if
the process stays in the tunnel ionization regime. In the over-the-barrier ionization regime, we
found entropy increase along z but a surprising entropy decrease in the transverse directions
which makes also the total core-electron entanglement entropy to decrease, contrary to what we
expected.

We investigated the dependence of these proposed measures of entanglement dynamics on
the strength and the carrier-envelope phase of the driving laser pulse. We found many fea-
tures of quantum entropies that do not depend on these parameters, like the electron — ion-core
entanglement has local maxima always near the zero crossings of the laser pulse. We found
that while the intensity of the field governs the strength of the oscillations, the carrier-envelope
phase changes the subcycle dynamics of the strong-field ionization.

Based on our simulations, we also calculated some relevant quantities that contribute to the
physical picture of strong-field ionization. We found that the ground state of the simulated rel-
ative wave function is almost separable, and it remains so if the field is weak. The loss of the
ground state population is a good measure of ionization, and that the net effect of the ionized
waves results in a mean velocity (v.) () which is more and more similar to the correspond-
ing motion of a classical electron as the laser intensity increases, apart from the nonzero final
velocity.
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One-dimensional density-based model potentials

In the present chapter, we introduce and test novel one-dimensional (1D) atomic model poten-
tials to be used in the simulations of strong-field ionization driven by a linearly polarized laser
pulse. We aim to introduce atomic model potentials that quantitatively correctly describe this
process, without actually performing 3D simulations. Our key idea is to require the ground
state density of the 1D model to be equal to the reduced 3D ground state density, obtained
by integrating over spatial coordinates perpendicular to the direction of the laser polarization.
According to density functional theory [116, 117], this 1D ground state density determines the
corresponding 1D model potential up to a constant, which we set by matching the ground state
energies. These results are based on our publication [P3].

In Section 6.1, we derive the analytic one-dimensional formula of this density-based model
potential, and we discuss any possible improvements that can be made to the 1D Coulomb-like
model potentials of Section 1.2.3. Then, in Section 6.2, we introduce a novel numerical method
that constructs 1D numerical model potentials through their analytical ground states, and we
verify the improved numerical accuracy of this method for nondifferentiable model potentials.
In Section 6.3, we compare our improved 1D model potentials and the corresponding 3D model
by applying them in careful numerical simulations of strong-field ionization by a few-cycle
laser pulse. Based on these results we make a conclusion about the best of these novel 1D
model potentials.

6.1 Theoretical model

We describe the strong-field process in one dimension within the framework of Section 1.2.3
by solving the 1D time-dependent Schrodinger equation (1.12). In the following, we are go-
ing to derive the density-based formula for the atomic model potential VolD(z) within the one-
dimensional atomic model Hamiltonian (1.13), and based on its peculiarities we will suggest
certain improvements in other known 1D model potentials.
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6.1.1 Derivation of the 1D analytical model potential

Our inspiration of deriving this new 1D model potential originated from the Kohn-Sham the-
ory [118] of multielectron atoms. More specifically, the following derivation is analogous to
the derivation of the Kohn-Sham potential of a helium atom with a single orbital: knowing the
correct reduced (single-particle) density [117] one can invert the Schrodinger equation to deter-
mine this potential. In this way one can model the ground state of the system as accurately as
possible with a single orbital. However, here we consider just single-active-electron atoms and
we make the analogous reduction from the 3D electron coordinates to the z coordinate of the
single electron.

For developing our 1D model potential, we need the 1D reduced density of the 3D Coulomb
ground state that is defined by

0:®()=2n /O w100z, p) > pdp. 6.1)

After the substitution of the ground state function (1.9) for the integrand, we can perform this
integral analytically which yields the closed form

010(z) = B2 (2Zpz| + 1) e 22HEL (6.2)

Now we require the 1D model system to have its ground state density identical with Q;oo (z). Ac-

cording to density functional theory, this 1D ground state density determines the corresponding
1D model potential VOHI\),[(z) up to a constant. We can calculate this potential straightforwardly:

we define the ground state of the 1D model atom obviously as yp(z) = /01%(z), i.e.

Wo(2) = \/ B2/ 2uZ]z] + 1 H2H] (6.3)

and then we invert the eigenvalue equation of H&D as

1 1 92

ol 2 92 V0 ©4

Vom(z) = Eom+

After performing the differentiation we get

2,LL3Z4|Z|2 o ,LLZZ

Vom(z) = Eom + (6.5)
’ (2uZ|z|+1)
In order to determine the ground state energy, we rewrite this potential as
7> 2uZlz|+1)(2uZzlz|—1)—1
Vo{{?a(z)on,m“ (2uZlz] +1) (2u I\z ) 7 6.6)
2 (2uZ|z|+1)
and then we impose the asymptotic value
lim Vop(z) =0, (6.7)

|z]—eo
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Figure 6.1: Plot of the analytic potential (6.9) (in purple) and its regularized Coulomb part
(second term of (6.9), in cyan), for Z =1, u = 1. We also plot the difference Volf,l(z) — V&BI (2),
(see the discussion in Section 6.2) calculated with for Az = 0.2, and magnified by a factor of 5
(in red). This is to illustrate the numerical correction to be introduced by Eq. (6.15).

which yields the ground state energy

E07M - EO - —T (68)
Using this value, after some algebraic manipulations we arrive at the following instructive form
of our new density-based 1D atomic model potential:
D 1 1 1z
Vom(@) = -7 5 — —. (6.9)
422 (1g)+515) It oz

Let us make a few important notes. It is the asymptotic tail of the reduced 1D ground state
100

density o,
is identical to the ground state energy of the 3D system, Ey. The asymptotic tail of QZIOO(Z)
also determines the regularized 1D Coulomb potential with effective charge %Z which is the

(z) that determines the ground state energy Ep in such a nontrivial way that it

second term in (6.9). This term is dominant over the short-range first term of (6.9) not only in
the asymptotic tail but also around the center at least by a factor of 2, see the corresponding
curves of Fig. 6.1. The minima of both of the two terms of VO{B[ (z) at z = 0 decrease with
increasing Z or it. For Z=1and u = 1, the energy of its first excited state is £ yy = —0.0904408
approximately.

6.1.2 Improved 1D model potentials

The results of previous section, especially the somewhat surprising value of an effective charge
of %Z, suggested by the second term of the analytical model potential (6.9), inspire us to use
the 1D soft-core Coulomb potential and a 1D regularized Coulomb potential with accordingly
modified values of their parameters. As we will see, these modifications lead indeed to improved
results in strong-field simulations.
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We use %Z in the nominator of the soft-core Coulomb potential (1.14), which then requires
to change also the parameter o in order to maintain that its ground state energy matches the
3D ground state energy. These lead us to the following formula of the improved 1D soft-core
Coulomb potential with yu = 1:

1z 72
Vorse(z) = ———=2— with Egmsc =

__7
2, 1 2
Z +422

(6.10)

that has the correct %Z /|z| asymptotic behavior when |z| — . The energy of its first excited
state is E1 m.sc = —0.1058670.
We also introduce the improved 1D regularized Coulomb potential from (1.18) as
1z

1D
Vomc(z) = — \Z|2+a’

6.11)

where the value of the parameter a is determined by requiring that the ground state energy is
Eomc = —”TZZ. For Z = 1 we set a ~ 0.32889 which yields Ey v c ~ —0.5000007 (for u = 1).
We note that this has been computed numerically with the spatial step size Az = 0.2.

The sophisticated numerical method to be outlined in the next section will enable us to make
additional refinements regarding the 1D density-based potential, as well as the 1D Dirac-delta
potential. These improvements will be explained below especially by the formulas given in Egs.
(6.15) and (6.16).

6.2 Numerical model

In the numerical model, we use the Crank-Nicolson method for the numerical solution of the
respective 1D time-dependent Schrédinger equation (1.12) which we discussed in Section 2.1.
In the following, we show that with the help of analytical eigenfunctions and by taking advan-
tage of the discretization of the kinetic energy operator, we can construct improved numerical
representations of the density-based potential (6.9) and the 1D Dirac-delta potential (1.16) us-
ing finite differences. In Sections 6.2.2 and 6.2.3 we present details about the accuracy of these
numerical model potentials.

6.2.1 Density-based numerical model potentials

Here, we introduce the particular form of the finite difference discretization that is used for
making the Hamiltonian matrix. To outline our method, we discretize the spatial coordinate with
uniform steps Az as z; = Zmin + iAz, where i € [0,N,] is an integer index. Then, the discretized
wave function is written as WP (z;,#,). We write the discretized form of the 1D atomic model
Hamiltonian as

Ho=T.+V{P(z), (6.12)
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where, based on our experiences detailed in Section 4.3.2, we use a very-high-order finite dif-
ference method [68] for the discretization of the kinetic energy operator 77:

(5)
= 1 ¢ s| @ID
TZ‘P(zi,tk):—ﬂs:dA—Zz‘P (zi+sAz,t;), where (6.13)
5269 5 5 5 5 1
O=71800 T T3 2T T2 P T 1260 YT T 1008 T 3105 (6.14)

(We also outline the general method of calculating finite difference coefficients in Appendix
A.) This formula is accurate up to Az!° for smooth functions (it is also limited by the Fourier
representation). Then, the discrete Hamiltonian becomes a banded 11-diagonal matrix which
operates on the column vector of the discretized wave function in coordinate representation.
Regarding the use of the atomic model potential in numerical simulations, this is the most
important step since it defines the numerical eigensystem of the atom.

When using the potential (6.10) the method described above can be applied without further
complications. In the case of our density-based model potential a refinement is necessary as
(6.9) is not differentiable in the origin, just as the true 3D Coulomb potential. Therefore the
ground state and energy of the discrete Hamiltonian (6.12) with VOIBI (z;) is accurate only up to
100(z;) accurately enough,
unless Az is extremely small. We propose to avoid this inaccuracy in the following way: instead

AZ>. This is the reason why its ground state density does not equal o
of V()“f,[(zi), we use its following discretized form in the computations:

Vom(zi) = Eo— @Tzvfo(a)- (6.15)
This definition of XN/&B[ (z;) ensures that the discretized ground state vector yy(z;) is the eigenvec-
tor of (6.12) with ‘701,]13/1 (zi) and the corresponding energy is EVOM = Ey, numerically exactly. The
energy of the corresponding first excited state (with Az = 0.2) is E, M = —0.0904385, which is
close enough to E; p. We have plotted the difference ‘7017113,[ (zi) — VO{BI (z;) in Fig. 6.1, magnified
by a factor of 5.
The discretized form of the analytical model potential, \70]_11\)/[ (z;) suggests also a modified
discretization of the 1D Dirac-delta potential that we introduce as

1
Voro (@) T:¥o,op(2i) (6.16)

Vo B (zi) = Eopp —
Y0o,DD

using the corresponding exact ground state Yy pp(z;) and energy Eopp. This is a finite dis-
cretized potential which eliminates any singular feature from the corresponding Hamiltonian
matrix.

As we will show it in the subsequent sections, such definitions enable consistent and accu-
rate simulations with high-order finite differences.
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Figure 6.2: (a) Time dependence of the numerical mean value errors |(z) () — (z),.¢(f)| and (b)
ground state population loss errors |g(¢) — gref(?)| using different realizations of the density-
based model potentials, under the influence of the same external field (6.17) with F = 0.1,
Ncycle = 3. We plotted in purple and orange the results using the potential VOI.B[ from numerical
inversion formula (6.15) with Az = 0.2, and Az = 0.4, respectively. Note that the values of these
two curves are magnified by a factor of 320 and 20 as indicated. For comparison, we plotted
in green the results directly using the analytic formula (6.9) as the atomic potential in an usual
Crank-Nicolson solution. The vertical dashed lines denote the zero crossings of the electric
field. (They have the same meaning on all the subsequent figures of this chapter.)

6.2.2 Test results: density-based 1D model potential

We stated previously that the numerical construction (6.15) yields the exact numerical eigensys-
tem of that potential, but that does not give us the whole picture about how numerically accurate
the construction really is. If we look at the eigenenergy of its respective first excited state cal-
culated with Az = 0.2 we see that it is 4-5 digit accurate, but that alone does not determine the
usefulness in strong-field simulations. To get the whole picture, we performed numerical simu-
lations using the atomic potential (6.15) and a 3-cycle laser pulse of form (6.17) with F = 0.1
with different Az parameters. We subtracted from them the results of a very accurate refer-
ence numerical solution using the analytical potential (6.9) with Az = 0.0001, which gave us
information about the (approximate) numerical errors of the construction.

The results can be seen on Fig. 6.2, where we plotted the errors of mean values (z) (¢)
and the ground state population losses g(#) compared to the reference versus time. We can see
that if we decrease the spatial step Az of the inversion (6.15) from 0.4 (orange) to 0.2 (purple)
the error decreases approximately by a factor of 16, in the case of both (z) (r) and g(). We
verified this using also other integrated quantities: we can clearly assert that the numerical
inversion (6.15) is around Az* accurate i.e. it shows high-order accuracy (required that the
kinetic energy operator is also at least Az* accurate). To illustrate what this means, we also
plotted the results obtained by the usual 3-point finite difference Crank-Nicolson method (CN3)
using the analytical potential (6.9) as the atomic potential, which are known to be Az> accurate.
We briefly note that we tested the direct use of (6.9) with our 11-point finite difference scheme
but it was not any better, also Az accurate (since the potential is not differentiable), so we only
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Figure 6.3: (a) Time dependence of the numerical mean value errors |(z) () — (z),.¢ ()| and (b)
ground state population loss errors |g(f) — gref(f)| using different implementations of the 1D
Dirac-delta model potential, under the influence of the same external field (6.17) with F = 0.1,
Ncycle = 3. We plotted in dark blue and orange the results using the potential \7017]8]) from
numerical inversion formula (6.16) with Az = 0.2, and Az = 0.4, respectively. For comparison,
we plotted in green the results using the implementation in [A1] that uses the proper Robin
boundary condition to represent the singularity of (1.16).

plotted the results of the CN3 scheme in Fig. 6.2 with green lines. The accuracy of this method
using Az = 0.2 is around 320 times better than the direct use of the analytical nondifferentiable
potential with Az = 0.05. So in other words it requires 2° more spatial gridpoints (Az ~ 0.003)
than the numerical inversion.

Therefore, using the formula (6.15) to numerically represent (nonsingular) model potentials
is very efficient and shows high-order convergence.

6.2.3 Test results: 1D Dirac-delta potential

In the following, we discuss the accuracy tests of the numerically constructed potential (6.16)
using strong-field simulations with the same 3-cycle laser pulse of form (6.17) with FF = 0.1
and different Az parameters. For comparison we use a properly implemented method from [A1]
that uses the proper Robin boundary condition at z = 0, which overrides the Crank-Nicolson
equations at that grid point. Its results are at least Az> accurate. We calculate the errors of the
mean values (z) (¢) and the ground state population losses g(#) compared to a very accurate
reference solution obtained by this correct method (using Az = 0.001).

We can see the results on Fig. 6.3. Surprisingly, we can observe that the errors of (6.16)
with Az = 0.2 are actually not far from the errors of results obtained by the Az> accurate proper
method at Az = 0.05. If we decrease the Az step from 0.4 (orange) to 0.2 (dark blue) we see
a factor 4 error decrease: we can conclude that the nonsingular construction (6.16) is actually
correct numerical representation, and converges with Az even for the singular delta potential. It
is also of importance because of the following: we can run simulations with singular potentials
using nonsingular Hamiltonians, and the point of singularity is not have to be on the spatial
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grid, it can even move. It has even more interesting consequences in 2D or more, since there is
no reason not to work with the true singular Coulomb potentials.

In conclusion, it is a valid choice to define potentials using numerical inversion from their
ground state. It provides a consistent and accurate method with high-order finite differences to
represent our (6.9) nonsingular and nondifferentiable atomic potential in 1D, and even achieve
Az* convergence. The method is robust enough to provide Az> convergence for the case of the
singular 1D delta potential using (6.16).

6.3 Results and comparison of the 1D and 3D calculations

In this section, we present the results of various strong-field simulations based on the 1D model
potentials introduced in Sections 1.2.3 and 6.1. We selected the mean value (z) (¢) and its stan-
dard deviation o,(¢), the mean velocity (v.)(¢), and the ground state population loss g(z) to
characterize the dynamics resulting from the solutions of the 1D time-dependent Schrodinger
equation (1.12) and the solutions of 3D Schrodinger equation (1.2.2) in cylindrical coordinates
as a reference. For this latter, we use our hybrid splitting method of Chapter 4. We also inves-
tigate the relation between the resulting various dipole power spectra p(f), which is one of the
most important quantities for high-order harmonic generation [7, 10] and attosecond pulses.

6.3.1 Simulation procedure

In these simulations, we also use a linearly polarized few-cycle laser pulse with a sine-squared
envelope function similar to (5.38). The corresponding time-dependent electric field has nonzero
values only in the interval 0 <7 < Ncyele T according to the formula:

& (1) = F -sin® ( il ) cos (@) : (6.17)

N CycleT T

where T is the period of the carrier wave, F is the peak electric field strength and Ncycle is the
number of cycles under the envelope function. Unless otherwise stated, we set Ncycle = 3 and
T = 100, the latter corresponds to a ca. 725nm near-infrared carrier wavelength. We use the
same function &(¢) both in the 1D and 3D simulations.

We consider hydrogen in most of the simulations, i.e. we use Z =1 and u =1 if not
otherwise stated explicitly. We set typically Az = 0.2 and Ar = 0.01 since these are sufficient
for the numerical errors to be within line thickness. We use box boundary conditions and we
set the size of the box to be sufficiently large so that the reflexions are kept below 108 atomic
units.

The 3D reference results (i.e. the simulation results of the true 3D Schrodinger equation
(1.6)) are plotted in Figs. 6.4 to 6.11 in blue and are labeled “3D-reference”. The 1D simulation
results and their respective colors are plotted as follows: our density-based model potential from
numerical inversion (6.15) in purple, our improved soft-core Coulomb potential (6.10) in gold,
our improved regularized Coulomb potential (6.11) in red, the conventional soft-core Coulomb
potential (1.14) in green and the discretized Dirac-delta potential (6.16) in dark blue.
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Figure 6.4: (a) Time dependence of the mean values (z) (¢) and (b) the standard deviations
0,(t) using different 1D model potentials, under the influence of the same external field with
F =0.1, Ncycle = 3 and T = 100. Results of the corresponding 3D simulation are plotted in
blue.

6.3.2 Low frequency response

First, we discuss the results of a moderately strong laser pulse having a peak electric field value
of F =0.1. We plot the corresponding time-dependent mean values (z) (¢) (the magnitude of
which equals the dipole moment in atomic units) and their standard deviations o;(¢) in Fig. 6.4,
the time-dependent mean velocities (v;) (¢) and the ground state population losses g(¢) in Fig.
6.5 for all the 1D model systems listed above. These curves justify that the simulation results
obtained with our density-based model potential and the improved model potentials are already
quantitatively comparable to the 3D results, i.e. these model potentials capture the essence of
the 3D process. This fact is in strong contrast with the poor results of the conventional 1D soft-
core and 1D Dirac-delta potentials, which is caused mainly by their too weak and too strong
binding force, respectively.

The graphs of the improved soft-core Coulomb potential are clearly at the closest to the 3D
reference in most of these cases, i.e. this potential provides the quantitatively best model of the
3D case, despite that its ground state density is not the exact reduced density of the 3D case.
The results of our numerical density-based model potential are somewhat less close to the 3D
reference. Although these simulations start from the exact reduced density of the 3D case, the
electron is somewhat stronger bound to the ion-core than optimal. The results obtained using
the improved regularized Coulomb potential are very close to those of the density-based model
potential, but the former potential is even somewhat stronger than needed.

In a typical strong-field simulation, the ground state population loss g(¢) is close to the
probability of ionization. Due to the presence of the transverse degrees of freedom in 3D, it is
then reasonable that the g(z) values are somewhat larger in a 3D simulation than in 1D. Note
that the g(¢) curves of the 1D simulations follow very well the 3D reference curve in accordance
with this.

The lack of the transverse degrees of freedom affects the (v;) (¢) curves of the 1D simula-
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Figure 6.5: (a) Time dependence of the ground state population loss g(7) and (b) the mean
velocities (v;) (f) using different 1D model potentials, under the influence of the same external
field with F = 0.1, Ncycle = 3 and T = 100.

tions in a different way: these exhibit the high-frequency oscillations with larger amplitude than
the 3D reference curve. This can be explained by taking into account that rescattering on the
ion-core is a much stronger factor in 1D, and that the integration over the transverse directions
decreases the effect of the 3D density oscillations on the reduced mean values. We will analyze
this in more detail in the next section.

In order to demonstrate the capabilities of these novel 1D model potentials, we selected the
time-dependent dipole moment (z) (¢) to present the results of 4 different scenarios in Fig. 6.6
and Fig. 6.7. Since the curves corresponding to the density-based model potential are very close
to those corresponding to the improved regularized 1D Coulomb potential, we do not plot the
(z) (t) of this latter potential in all of our figures.

In Fig. 6.6 (a) we plot our simulation results for hydrogen, now with a weaker field of
F = 0.05 which is in the tunnel ionization regime of hydrogen, while Fig. 6.6 (b) corresponds
to a stronger field of F' = 0.15. Both of these figures clearly show that the improved 1D soft-
core Coulomb potential provides the best results. Note that the change of F in the above range
results in more than 2 orders of magnitude change in the peak value of (z) (7).

Fig. 6.7 (a) shows the results for a Ne atom driven by a field of ' = 0.15. Here we model the
3D neon atom in the single-active-electron approximation [19] simply by setting the Coulomb-

charge Zl(\ISeAE) =1.25929 asin (1.11) in order to match the ionization potential to the experimen-
tal value. (For the improved regularized Coulomb potential Vol,ll\)/[,c we set aSeAE) ~ 0.26707525

which yields Eo v .c ~ —0.792905.)

The accuracy of these 1D results is somewhat lower around the peak and in the last half-
period of the laser pulse than in the case of hydrogen, and the improved soft-core Coulomb po-
tential performs considerably better in overall than the two other model potentials. By changing
the Coulomb charge Z within a reasonable range in order to model different noble gas atoms,
we have obtained similarly accurate results.

Fig. 6.7 (b) shows (z) () for a hydrogen atom, now driven by a longer laser pulse of shorter
carrier wavelength, corresponding to the parameters 7 = 80, F = 0.1, and Ncycle = 6. The 1D
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Figure 6.8: Panel (a): Logarithmic plot of the power spectra vs. the harmonic order, i.e.
p(nf1) (where fi = 1/T = 0.01 a.u. is the fundamental frequency). Panel (b): Phase of the
dipole acceleration spectra vs. the harmonic order (up shifted by 27 for the 3D case). We plot
the results for the density-based 1D model potential (purple) and for the improved soft-core
Coulomb potential (gold) in comparison with the 3D reference (blue). The parameters F' = 0.1,
Ncycle = 3, T =100 and Z = 1 are the same as for Figs. 6.4 and 6.5.

model potentials work similarly accurately for this longer laser pulse as in the case presented in
Fig. 6.4 (b), until the recollisions with the ion-core gradually decrease the match between the
1D and 3D cases in the last 2 periods of the pulse.

Our density-based 1D model potential and both of the improved 1D model potentials exhibit
an impressive improvement in the accuracy of the low-frequency response of typical strong-
field processes, in contrast to the two conventional model potentials. These results are even
more convincing if we take into account that (z) (¢), 6,(¢) and g(¢) are very sensitive to almost
any change in the physical parameter values.

6.3.3 High-order harmonic spectra

In strong-field physics, the accurate computation of the high-order harmonic spectrum is espe-
cially important, because this represents the highly nonlinear atomic response to the strong-field
excitation, with well-known characteristic features [6-8, 10].

In Fig. 6.8 (a), we plot the power spectrum p(f) of the dipole acceleration (see Eq. (1.35))
for the parameters corresponding to Figs. 6.4 and 6.5.

In agreement with the previous section, the power spectra obtained using the 1D model
potentials agree very well with the 3D reference simulation result up to the Sth harmonic. For
higher frequencies, the 1D spectra gradually deviate and give 1-2 orders of magnitude larger
values than the 3D reference values. The explanation given for the oscillations of the (v.) ()
curves in Fig. 6.5 (b) applies also here: 1D simulations exaggerate the effect of the ion-core,
mainly via rescattering, while the effect of the 3D density oscillations weakens in the reduced
mean values obtained from the 3D simulation.

However, the structure of the spectra in Fig. 6.8 (a) is remarkably similar and the match
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of the spectral phase, shown in Fig. 6.8 (b), is very good, especially in the higher frequency
range, which is of fundamental importance for isolated attosecond pulses. These inspired us
to create a scaling function which transforms the spectra obtained with the 1D simulation to
fit the 3D reference spectrum as correctly as possible. Since the improved soft-core Coulomb
potential (6.10) gives the best low-frequency results, we focus only on this model potential in
the following.

Examination of the ratio of the magnitudes of the 1D power spectrum to the 3D power
spectrum in our simulations with different parameters revealed that the scaling function

s(f):min<1+0.03(100f—l)z,l—HlOOf—l]) (6.18)

transforms the magnitude of the power spectra obtained using the improved 1D soft-core Coulomb
potential to properly fit the corresponding 3D power spectra. In Fig. 6.9 (a) we plot the scaled
1D power spectrum p(f)/s(f) which gives a very good match between the 3D and 1D results
in the case of the improved soft-core Coulomb potential. (Here and in the following figures we
plot the scaled power spectrum of the density-based 1D model potential for completeness only.)
In Fig. 6.9 (b) and Fig. 6.10 (a) and (b) we present this comparison for three other scenarios,
corresponding to the parameters of Fig. 6.6 (b) and Fig. 6.7 (a) and (b), respectively. These
plots clearly show that the scaling function (6.18) works very well also in these cases.

6.3.4 Electron - ion-core quantum entanglement along direction z

In the following, we would like to further demonstrate that our improved model potentials
quantitatively capture the dynamics of the reduced 3D strong-field process by calculating the
electron — ion-core entanglement of the strong-field process in direction z. The relevant equa-
tions of an interacting electron — ion-core system were introduced in Section 1.3, where the
wave function W!P(z,1) is actually the wave function of the relative part. Here we work in the
same theoretical model as in Chapter 5, particulary as in Section 5.3, where we introduced our
earlier one-dimensional results using the 1D Dirac-delta potential.

In Fig. 6.11, we plot the von Neumann entropy S, .(¢) of the density matrix g, ;(z..,z.) based
on Egs. (5.12) and (5.21), obtained using the indicated improved model potentials for the 1D
simulations, and in comparison with the 3D reference simulations. We do this for two different
values of the F electric field strength parameter in Fig. 6.11 (a) and (b), which correspond
to the tunnel ionization (F = 0.05) and to the over-the-barrier ionization regime (F' = 0.1),
respectively.

In Fig. 6.11 (a) we can see that the entropy curves based on our improved model potentials
follow the 3D reference results very closely. Here, our density-based model potential is some-
what better, by the virtue of having better representation of the reduced 3D ground state. The
offset of the initial entropy stems from the mixedness of the 3D relative density matrix o,(Z,z),
as we have seen it in Section 5.4.3, which is not present in 1D by construction. Despite this
offset of values, we can see a striking similarity between these curves, which indicates that the
induced entanglement dynamics are quantitatively very close in all of the cases. This is further
demonstrated in Fig. 6.11 (b) : we can see that even with stronger ionization, the 1D density-
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Figure 6.11: Time dependence of the von Neumann entropies S, ;(¢) using different 1D model
potentials, under the influence of the external field with F = 0.05 (a) and F = 0.10 (b), Ncycle =
3 and T = 100. Note that each Neumann entropy S..(f) quantifies the electron — ion-core
entanglement in the direction z reasonably well.

based potentials still give quantitatively correct results without an increase in deviations, where
the results of the density-based model potential is still slighly better. In 1D, we can also link
this entanglement entropy to the mean values (v;) (¢) of Fig. 6.5 (b), just like in the 3D case.

These results about deeply quantum mechanical features demonstrate that our novel model
potentials give reliable and physically correct results on the wave function level. The improved
soft-core Coulomb potential (6.10) still remains the optimal choice for 1D numerical simula-
tions.

6.4 Summary

The results presented in this chapter demonstrate that it is possible to quantitatively model the
true 3D quantum dynamics with the help of the density-based 1D model potential \7017]1\)/[ (zi)
and the accordingly improved soft-core Coulomb potential V()l,]134,5c(z)- The best results for the
time-dependent physical quantities are obtained with the improved soft-core Coulomb potential
(6.10) which is also very easy to use numerically. This means that we can perform quantum
simulations of a single-active-electron atom driven by a strong linearly polarized laser pulse
during a couple of minutes and obtain a fairly accurate low-frequency response in direction z
and a reliable HHG spectrum with the help of the scaling function (6.18). The simple form of
this scaling is based on the good agreement between the structure and phase of the 1D and the
3D HHG spectra.

In achieving these results, the physical requirement about the 1D and 3D ground state densi-
ties was the important starting idea. This led to the construction of the density-based 1D model
potential, which then inspired the improved parametrization of the 1D soft-core Coulomb po-
tential with effective charge %Z . Both of these have the same asymptotic tail which ensures that
their ground state energy is identical to that of the 3D system.

The discretization of the density-based 1D model potential gave important lessons also about
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the numerical aspects of nondifferentiable 1D Coulomb-like potentials and the 1D Dirac-delta
potential: our numerical construction methods yields Az* convergence for the former type of
model potentials, and Az> convergence for the delta potential. It is an important feature that the
Hamiltonian matrix of the latter is nonsingular.

Considering the obvious differences between the 1D and the 3D quantum dynamics and
their effects, discussed already in connection with Figs. 6.5 (b) and 6.8 (a), it is not surpris-
ing that the high-frequency response of these 1D simulations is much stronger than that of the
corresponding 3D case. The fact that the scaling function (6.18) has different frequency depen-
dence in the lower frequency domain than in the higher frequency domain, and that this seems
to be independent of the other physical parameters, may hint at a deeper connection between
the true 3D quantum dynamics and its best 1D model given by the improved soft-core Coulomb
potential (6.10).
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Introduction

Pioneering experiments with attosecond light pulses [1-6], based on high-order harmonic gen-
eration (HHG) in noble gases [7, 9], have been revolutionizing our view of fundamental atomic,
molecular and solid state processes in this time domain [11]. A key step in gas-HHG is the tun-
nel ionization of a single atom and the return of the just liberated electron to its parent ion due
to the strong, linearly polarized femtosecond laser pulse driving this process [17, 53]. Recent
developments in attosecond physics revealed that the accurate description of this single-atom
emission is more important than ever, especially for the correct interpretation of the experimen-
tal data obtained by attosecond metrology.

Although an intuitive and very successful approximate analytical solution [19] and many of
its refinements exist [21], the most accurate description of the single-atom response is given by
the numerical solution of the time-dependent Schrodinger equation (TDSE). The peculiarity of
this problem is due to the electric field strength of the laser pulse, which has its maximum typi-
cally in the range of 0.05-0.1 atomic units, i.e. it enables the tunneling of the electron through
the time-dependent potential barrier formed by strongly distorting the atomic potential, but this
effect is weak during the whole process. On the other hand, this small part of the wave function
outside the barrier extends to large distances and in fact this is the main contribution to the
time-dependent dipole moment, which is the source of the emitted radiation. Thus, a very weak
effect needs to be computed very accurately, and these requirements get even more severe, if
the model goes beyond the usually employed single-active-electron and dipole approximations.

For linearly polarized pulses, the main dynamics happens along the electric field of the
laser pulse which underlies the success of some one-dimensional (1D) approximations. These
typically use various 1D model potentials to account for the behavior of the atomic system.
However, the particular model potential chosen heavily influences the 1D results and their com-
parison with the true three-dimensional (3D) results is usually nontrivial. Therefore, a more
elaborate connection between the 3D problem and its 1D model is necessary to allow the 1D
simulation of strong-field processes physically as correctly as possible.

Although strong-field ionization is widely used as a standard procedure for high-order har-
monic generation, it is very little known that this process generates also quantum entanglement
between the liberated electron and its parent ion-core. Quantum entanglement is a fundamental
feature of quantum theory which enables strong correlations without classical counterpart be-
tween constituents of a quantum system. Despite the fact that its discussion dates back to the
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early days of quantum theory [36], the features of continuous variable quantum entanglement
[38] are still much less explored and utilized than those of discrete variables systems. Entan-
glement between the fragments of an atomic system due to a light-induced break-up process,
like photoionization and photodissociation, was studied by Fedorov and coworkers [50, 51] in
the framework of Gaussian states. However, this latter approach is not suitable to deal with the
problem of quantum entanglement during the strong-field ionization of an atom, which moti-
vated us to perform an accurate numerical investigation of the problem.

Objectives

We adopted the usual semiclassical description of the light-matter interaction for the modeling
of strong-field phenomena described in the Introduction, making also use of the dipole approx-
imation and choosing the length gauge [57]. In dipole approximation, the spatial variations of
the electromagnetic field are neglected in the spatial domain of the atomic processes which is
true in the frequency range relevant for the phenomena treated in this thesis. We aim to investi-
gate the effects of a linearly polarized few- or single-cycle femtosecond laser pulse, which has a
near-infrared carrier frequency. Our motivation is that this type of laser pulse is short enough to
give a more complex response than a simple plane wave. The form of the Hamiltonian suggests
the solution of the 3D time-dependent Schrodinger equation in cylindrical coordinates z and p,
where the z-axis coincides with the polarization of the laser pulse. The resulting time evolution
preserves the magnetic quantum number m and the initial axial symmetry of the wave function
if given.

Our first objective was to construct a novel numerical method that is capable to compute the
time propagation of the electron’s wave function by solving this cylindrical TDSE with high-
order accuracy, incorporating also the singularity of the atomic Coulomb potential. Our aim
was to construct an algorithm that scales approximately linearly with the total number of spatial
gridpoints and that supports parallelization, whenever its possible.

In our earlier work [A1], we modeled a single-active-electron atom as a two-body system
in one spatial dimension, using the Dirac-delta potential as the atomic model potential. We
verified a strong correlation between the shape of the laser pulse and the oscillations of the
quantum entanglement, most importantly, the local maxima of the quantum entanglement co-
incide with the zero crossings of the laser electric field. A straightforward question is, whether
such correlations are also present in the strong-field ionization of a real atom? In accordance
with this, our second objective was the analysis of the quantum entanglement properties of a
single-electron atom in 3D under strong-field ionization as also mentioned in the Introduction.
In this description we modeled a single-electron atom as an interacting two-body system of
the electron (e) and the ion-core (c¢) subsystems. Even though the numerical solution can be
carried out, the computational cost of calculating the true electron — ion-core entanglement is
prohibitive. We aimed to give an approximate solution for this problem by a directionally sep-
arable approximation, and this way to gain insight also into the intricacies and the structure of
the pair correlations between the electron’s and ion-core’s coordinates z, — z. and x, — x,.

Our third objective was to find a one-dimensional quantum mechanical model that is capable
of providing quantitatively good agreement with the true 3D solution of strong-field processes,
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reduced to the z axis. The one-dimensional description should use only the z Cartesian coor-
dinate, with the very same laser electric field term in the time-dependent Schrodinger equation
as in 3D, but the atomic potential should be replaced with a suitable time-independent V()'j\)/[(z)
atomic model potential. We aimed to derive an analytic form for this model potential based on
a clear physical principle, and to compare it to well-known existing model potentials like e.g.
the 1D soft-core Coulomb model potential VSI(P (z) = —1/Vz2+2 . We also aimed to test the
improved model potential rigorously, focusing especially on the particular system’s strong-field
ionization features.

Methods

For the numerical solution of the time-dependent Schrodinger equation, we use a combination of
various methods. For the spatial derivatives, we use the high-order finite difference formulation
[68] with equal grid spacing Az, Ap in cylindrical coordinates. For the time evolution algorithm,
we perform steps in small time intervals Ar using the short-time approximation of the time
evolution operator e~AHk with the second-order effective Hamiltonian H,Ez) at the kth time

- . . . . _ineg®@
step. We also utilize the second-order Padé-approximation of the exponential operator e A" |

which is the usual Crank-Nicolson method [67]. The latter is an implicit method, which means
that it involves the solution of a systems of linear equations at every time step, the coefficient
matrix of which includes the spatially discretized Hamiltonian matrix. The great advantage
of this method is that it also allows us to incorporate any boundary condition into the implicit
equations, thus allowing high-order spatial accuracy for a wide variety of problems. For gaining
the speed that we need, we also utilize the split-operator methods [89]: by splitting the effective
Hamiltonian as H, 122) = Hj + Hp , these methods factorize the above exponential operator into
parts that are easy to solve. The most famous of this formula is the second-order accurate

. LAt . .
—iAtHs p=i5'HB The main advantage is that we can

symmetric splitting U (¢t + At, t) ~ e i3 Hee
achieve linear scaling with the number of gridpoints (if we split kinetic energy terms in the
Hamiltonian directionwise). The disadvantage is that it is not possible to split the Hamiltonian
operator this way, if it is singular or “very sharp” at a gridpoint. The final relevant splitting
method is of Bandrauk and Shen [87], they give a formulation how it is possible to achieve
high-order At convergence by performing a series of back-and-forth substeps with any properly
constructed second-order accurate short-time evolution operator.

Deriving the formulas of the numerical method is hardly enough to determine its actual
accuracy, rigorous testing is necessary in most cases. Our method of testing the spatial dis-
cretization involves computing the eigenenergy of the ground state and at least one excited state
of known problems and comparing these values to other accurate numerical or analytical solu-
tions. By changing the discretization parameter Az (or Ap) we can determine the convergence
order of the discretization scheme. These are straightforward typically for systems that have
an analytic solution, like the harmonic oscillator and (most importantly) the Coulomb problem.
However, analytical solution is not available for most of the time-dependent problems, thus we
compare the results to a converged numerical solution that has orders of smaller numerical er-
rors than the setup that we are investigating. The most straightforward method is to compare
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time-dependent mean values of these two solutions, which is an efficient way of error determi-
nation dependent on At, but it can be also used to test the spatial accuracy with a given Az (and
Ap) in these situations.

The problem of the interacting two-body quantum system, consisting of the electron (e) and
the ion-core (c¢) as subsystems, is conventionally solved by transforming the system into the
center-of-mass reference frame, where the wave function becomes separable in center-of-mass
and relative coordinates. We describe the center-of-mass part as a free localized Gaussian wave
packet, and the relative part involves the strong-field simulations of the relative particle with
coordinates z, p. The form of governing Schrodinger equation is not changed, only the particle
mass is replaced by the reduced mass. During the calculations of physical quantities we also
also utilize axial symmetry around z axis, which means that dynamics is the same in the x and
y directions for each particle.

For the quantification of the quantum entanglement between the electron and ion-core mo-
tion, the usual way requires the density matrix of either the electron or the ion-core by perform-
ing partial trace of the other degrees of freedom, assuming the whole quantum system is in pure
state. Then the lack of purity of the density matrices is an indicator of quantum entanglement,
and can be quantified by calculating the Neumann entropy — amongst other types of quantum
entropies — of either subsystem’s density matrix. If we can perform this at every time instant we
can see the time-dependent entropy dynamics of two particles’ entanglement, which is unfortu-
nately a feasible computation in one dimension only. In three dimensions, this type of bipartite
approach can be applied to the cylindrical relative coordinates z, p, by performing the partial
trace on one of these coordinates, which gives interesting information about the directional non-
separability of the strong-field process. However, the composite system of these two particles
has six degrees of freedom in 3D, which implies a more complex correlation structure between
their individual coordinates z, — z. and x, — x.. We investigated the nature of these correlations
using recent results of quantum information theory [104]. One can quantify these directional
pair correlations generally using the so-called S(e : ¢,t) quantum mutual entropy, and investigate
the behavior using the S(e|c,t) or S(c|e,t) quantum conditional entropies, which latter charac-
terize the remaining entropy of one subsystem if the other one is measured. In the classical limit
these two satisfy the relations in classical information theory, however quantum entanglement
introduces nonclassical values to them.

For the low-dimensional modeling of an atom, we used the elements of the density func-
tional theory [118]. We derived our model potential in analogy with the the exact calculation
of the Kohn-Sham potential of a helium atom with a single Kohn-Sham orbital: knowing the
correct reduced (single-particle) density one can invert the Schrodinger equation to determine
the Kohn-Sham potential which ensures that the resulting Hamiltonian’s ground state has the
correct reduced density. In this way one can model the ground state of the system physically as
accurately as it is possible with a single orbital.

Scientific results

In the following, I present a brief summary of my new scientific results discussed in the thesis
which are collected in five thesis points. The publications connected to my statements are listed
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at the end of this thesis and cited in each title.

T1. The hybrid splitting algorithm for the solution of the three-dimensional
time-dependent Schrodinger equation with Coulomb singularities [P1]

To treat the Coulomb singularities in the 3D Schrodinger equation using cylindrical coordi-
nates, I derived the formula of the boundary condition of the Coulomb potential in the axially
symmetric case, which is a Robin type boundary condition at the p = 0 axis. I also gave the
discretized formulation of this boundary condition using one-sided finite difference formulas.

Based on the 4th-order finite difference discretization of the Hamiltonian in the Crank-
Nicolson method, I created the method of hybrid splitting. This uses partial directional splitting
of the short-time evolution operator based on the splitting of H,Ez) = Hy + Hp both according to
spatial directions and spatial domains: the Hy near p = 0 is left intact to retain spatial numerical
accuracy near the boundary, while in the outer domain (p 2 1) the z-component of the kinetic
energy is moved into Hp.

I created an optimized algorithm to solve the special block pentadiagonal system of linear
equations that is provided by the Crank-Nicolson approximation of the central exponential op-
erator e “A"HMa This algorithm reduces the computation costs by Ng where N, is the number of
the discretization points along the p direction.

I verified that the discretization scheme is 4th-order accurate in spatial steps Az and Ap by
computing the eigenvalues of the Coulomb and the harmonic oscillator Hamiltonians. Using
the time-dependent analytic solution of the forced harmonic oscillator, I verified that the hybrid
splitting method is Ar? accurate, and that it can be successfully combined with the 4th-order
approximation of the evolution operator to become Ar* accurate in temporal steps.

T2. Quantification of the electron — ion-core quantum entanglement during
strong-field ionization [P2]

I showed that the computation of the Neumann entropy in a 3D simulation of strong-field
ionization of the electron — ion-core system is not feasible due to the prohibitively large nu-
merical load of the problem. Therefore, I created the following procedure to characterize the
quantum entanglement of the electron — ion-core system in a 3D strong-field simulation.

First I reduced the 3D dynamics along spatial directions (parallel and perpendicular to the
polarization of the laser pulse) by partial tracing of the respective density matrices. Then I
performed the transformation in each direction to electron and ion-core coordinates and re-
duced these density matrices to single-particle density matrices by tracing over the respective
particle coordinates. Using known relations of quantum entropies, I showed that the type of
the correlation between the same coordinates of these two particles in each direction is dom-
inantly quantum entanglement. I quantified this directionwise quantum entanglement via the
average directional mutual entropy. I verified that the time evolution of the average mutual en-
tropy along the polarization direction is very similar to that of the exact quantum entanglement
entropy obtained by my former 1D model simulations.
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Using these density matrices as building blocks, I approximated the quantum state of the
3D electron — ion-core system by the product of the spatially reduced two-particle density ma-
trices, in accordance with my experience that the strong-field dynamics along the above spatial
directions is weakly coupled.

Based on this, I defined the approximate entanglement entropy of the 3D electron — ion-core
system by adding up the directional average mutual entropies individually, which thus can be
efficiently computed based on the entropies of the building block density matrices. I showed
via simulations that this approximated entanglement entropy satisfies the strong subadditivity
relation, which is an analytic property of the exact entanglement entropy.

T3. Features of the electron — ion-core quantum entanglement during
strong-field ionization [P2]

Since the spatially reduced subsystems described in T2 are in mixed states, their correla-
tions are more complicated than pure state entanglement, thus I identified the physical meaning
of the several kinds of entropies involved in the above procedure and I made the following
observations.

I analyzed the entanglement entropy relations in each of the directions specified in T2 and
I found that their local maxima almost coincide with the zero crossings of the electric field of
the laser pulse. The entanglement along the directions parallel and perpendicular to the laser
polarization are very similar to each other if the process stays in the tunnel ionization regime.
However, in the over-the-barrier ionization regime, I found entropy increase along the parallel
direction but a surprising entropy decrease in the perpendicular directions which causes also the
total electron — ion-core entanglement entropy to decrease.

I investigated the dependence of these proposed measures of entanglement dynamics on the
strength and the carrier-envelope phase of the driving laser pulse. I found many features of
quantum entropies that do not depend on these parameters, like the electron — ion-core entan-
glement has local maxima always near the zero crossings of the laser pulse. I found that while
the intensity of the field governs the dynamics as a whole, the carrier-envelope phase changes
the subcycle dynamics of the strong-field ionization.

T4. One-dimensional density-based model potentials: comparison of the
1D and 3D results [P3]

I derived the analytic formula of a 1D atomic model potential that by definition has the
same ground state probability density as the probability density of the 3D Coulomb problem
integrated over p. I determined that through asymptotics this 1D system preserves the 3D
ground state energy if the source 3D problem has a long-range Coulomb form. The density-
based potential consists of a 1D regularized Coulomb potential plus a kinetic energy correction.

I realized that the regularized Coulomb potential part of the density-based model potential
suggests the value of %Z for the effective ion-core charge in 1D. Based on this, I proposed
improved formulas of the 1D soft-core Coulomb potential and the 1D regularized Coulomb
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potential by applying the effective charge %Z while maintaining that their ground state energies
equal to that of the 3D Coulomb problem.

I showed by direct comparison of simulation results of typical time-dependent strong-field
processes, driven by a linearly polarized near-infrared laser pulse, that both these new and the
proposed improved 1D model potentials exhibit an impressive enhancement in the accuracy of
the low frequency response of typical strong-field processes by capturing the essence of the
real 3D dynamics. These tests also showed that the best model potential quantitatively is the
improved soft-core Coulomb potential.

I also computed the dipole power spectrum in a wide variety of cases and I observed that
the structure of the spectra based on the density-based and improved 1D model potentials is re-
markably similar to those based on the 3D simulations. The match of the corresponding spectral
phases is also very good, especially in the higher frequency range, which is of fundamental im-
portance for the generation of isolated attosecond pulses. I gave a simple frequency-dependent
scaling function that proved to be capable to convert the 1D spectra to the corresponding 3D
spectra in all of the tested cases, thus it enables to compute the dipole power spectra via 1D
simulations.

TS. Improved numerical method of constructing discrete model potentials
in one dimension: improved simulation accuracy [P3]

I suggested a formula to acquire an improved discretized representation of 1D model poten-
tials, based on the potential’s ground state and ground state energy, by inverting the discretized
time-independent Schrodinger equation. The resulting discretized potentials have the numer-
ically exact ground state and ground state energy. I showed that if the exact 1D potential is
not differentiable at some spatial point (e.g. like a regularized 1D Coulomb potential) then
the resulting discretized Hamiltonian is still Az* accurate, if the finite difference formulas of the
partial derivatives is also at least Az* accurate, even during simulations of strong-field ionization
phenomena.

I showed that the application of this method is possible also for the 1D Dirac-delta potential.
The same inversion formula as above gives a nonsingular discretized model potential. I tested
the results using convergence tests of strong-field simulations, the numerical errors at Az =
0.2 were comparable to the correct method used in [A1]. I came to the conclusion that this
nonsingular method of discretization converges to the true solution, and it shows Az? numerical
accuracy.
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Bevezetés

Az elmult mésfél évtizedben az attoszekundumos fényimpulzusokkal [1-6] elvégzett uittord ki-
sérletek forradalmasitottdk az ezen az id6skdlan lezajlé alapvetd atomi, molekuldris és szilard-
testfizikai folyamatokkal kapcsolatos tuddsunkat [11]. Ezen attoszekundumos fényimpulzusok
eldéllitdsanak alapja a nemesgédzokban fellépé magasrendi felharmonikus keltés (HHG) [7, 9],
aminek kulcslépései az atom alagutazasos ionizacidja majd az igy kiszabadult elektron visszaté-
rése az iontdrzshoz, amelyeket egy erds, linedrisan polarizalt femtoszekundumos 1ézerimpulzus
elektromos mezdje vezérel [17, 53]. A legdjabb fejlemények az attoszekundumos fizikdban ra-
mutatnak, hogy az egy atom altali emisszi6 pontos leirdsa fontosabb mint valaha, kiilonsen az
attoszekundumos méréstechnika altal nyujtott kisérleti adatok helyes értelmezéséhez.

Habdr 1étezik egy intuitiv és nagyon sikeres kozelitd analitikus megoldas [19] illetve en-
nek tovabbfejlesztései [21], az egyatom vdlasz legpontosabb leirdsat a megfeleld id6fiiggd
Schrodinger-egyenlet (TDSE) numerikus megolddsa adja meg. A probléma egyik sajdtossdga
a lézerimpulzus elektromos terének erdssége, amelynek maximuma tipikusan 0.05-0.1 atomi
egység tartomdnyban van: ez lehetdvé teszi az elektron alagutazdsat az erésen torzitott atomi
potencidl altal alkotott idofiiggd potencidlgéaton keresztiil, azonban ez a hatds gyenge az egész
folyamat alatt. Madsrészr6l viszont, a hullimfiiggvény ezen kis része a potencidlgaton kiviil
nagy tavolsagokra jut el, ezért ez adja a f6 hozzdjarulast a kibocsétott sugarzas forrdsdhoz, az
id6fiiggd dipélus momentumhoz. Igy egy nagyon gyenge hatdst sziikséges nagyon pontosan ki-
szadmitani, €és ezeket a kovetelményeket még fokozottabban kell figyelembe venni, ha a modell
tilmegy a szokdsosan haszndlt egy aktiv elektron és dipdl kozelitéseken.

Linedrisan polarizélt impulzusok esetén a f6 dinamika az elektromos tér polarizdcigjanak
irdnyaban torténik, ez alapozza meg néhdny egydimenzids (1D) kozelités sikerességét. Ezek
a modellek tipikusan kiilonféle 1D atomi modell potencidlok hasznalatdval probalnak szdmot
adni az atomi rendszer viselkedésér6l. Azonban a vdlasztott atomi modell potencidl nagyban
befolydsolja az 1D eredményeket, és azok kozvetlen dsszehasonlitdsa az igazi haromdimenzi-
6sakkal (3D) dltaldban nem trividlis. Ezért egy jobban megalapozott kapcsolat sziikkséges a 3D
probléma €s annak 1D modellje kozott annak érdekében, hogy az er6s teres folyamatok 1D
szimuldcioit fizikailag a leghelyesebben végezhessiik el.

Habdr az erds teres ionizacio egy széleskorlien hasznalt standard eljards a magasrendi fel-
harmonikusok el6allitdsdhoz, az kevéssé ismert, hogy ez a folyamat a kiszabaditott elektron és
az ion-torzs kozott kvantumos 6sszefonddottsagot hoz 1étre. A kvantumos 6sszefonddottsag egy
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alapvet6 jellegzetessége a kvantumelméletnek, amely erds korrelaciot képez a kvantumrendszer
alkotdi kozott és nincs klasszikus megfeleldje. Dacdra annak, hogy ennek fontossdgat mér a
kvantum elmélet korai id6szakaban is felismerték [36], a folytonos véltozdju kvantumrendsze-
rek osszefonddottsdgnak tulajdonsdgai [38] joval kevésbé felderitettek és felhaszndltak, mint
a diszkrét valtoz6ju rendszerek esetében. Fény hatdsara — pl. fotoionizdcié vagy fotodisszo-
cidci6 altal — szétesd atomi rendszer fragmentumai kozotti Osszefonddottsag is ilyen, amelyet
Fedorov €s munkatérsai [50, 51] vizsgéltdk Gauss allapotok segitségével. Azonban ez a meg-
kozelités nem megfelels az elektron-iontorzs dsszefonddottsag vizsgalatira erds teres ionizdcid
sordn, ami erds motivaciot adott szamunkra, hogy elvégezziik a probléma pontos numerikus
vizsgdlatat.

Célkituzések

A mar a Bevezetésben emlitett erds teres jelenségek targyaldsa sordn a fény éltal okozott ha-
tdsokat a szokdsos szemiklasszikus médon irjuk le, amelyben felhaszndljuk a dipdl kozelitést
és un. hossz-mértéket valasztunk [57]. Dip6lkozelitésben az elektromagneses mezd térbeli
valtozdsait elhanyagoljuk az atomi folyamatok kornyezetében, amely igaz abban a frekvencia
tartomdnyban amely lényeges ezen doktori disszertidcidban targyalt folyamatok szempontjabdl.
Célunk, hogy egy linedrisan polarizalt, kozeli infravoros vivéfrekvencidval rendelkezd, egy-
vagy néhdny ciklusi lézerimpulzus altal indukalt erés teres ioniz4cidt vizsgaljunk. Egy ilyen
lézerimpulzus rovid, de sokkal Osszetettebb valaszt generdl mint egy egyszer(i sikhullam. A
megfelel6 Hamilton operator alakja alapjan a 3D id6fiiggd Schrodinger-egyenletet a z és p hen-
gerkoordinédtdkban célszert felirni, ahol a z-tengely egybeesik a 1ézerimpulzus polarizaciéjanak
irdnyéaval. Az id6fejlodés megbrzi az m magneses kvantumszdmot és a hullamfiiggvény adott
kezdeti forgdsszimmetridjat.

Az els6 célkitiizésiink, hogy egy olyan 4j numerikus médszert alkossunk, amely képes az
elektron hullaimfiiggvényének id6fejlesztésére a hengerkoordindtdkban felirt id6fiiggd Schrodin-
ger-egyenlet nagy pontossagui megoldasaval, figyelembe véve az atomi Coulomb potenciél szin-
gularitdsanak hatdsat. Célunk tovdbbd, hogy a vazolt algoritmus szamitdsi igénye linedrisan
skalazodjon a térbeli rdcspontok szamdval, és legyen parhuzamos szdlakra bonthat6, amikor
csak lehetséges.

Korédbbi munkdnkban [A1] egy egyelektronos atomot modelleztiink kéttest rendszerként egy
dimenzidban a Dirac-delta potencidlt mint atomi modell potencialt felhasznalva. Erds korrela-
ciot taldltunk a 1ézerimpulzus iddbeli alakja és az ebben a rendszerben 1év6 kvantumos dsszefo-
noédottsdg oszcillacidi kozott, az dsszefonddottsag lokdlis maximumai egybeestek a 1ézerimpul-
zus elektromos terének zérohelyeivel. Logikus kérdés, hogy ilyen korreldciok jelen vannak-e
egy igazi atom erds teres ionizacidja esetében is? Ennek megfeleléen a masodik célkitlizésiink,
hogy elvégezziik az egyelektronos atomok kvantumos dsszefonddottsdgi tulajdonsagainak rész-
letes vizsgdlatat a Bevezetésben emlitett erSs teres koriilmények kozott. Ebben a leirdsban az
egyelektronos atomot elektron (e) €s iont6rzs (c) alrendszerekbdl all6 kéttest problémaként mo-
dellezziik. Habér ezen probléma esetén a numerikus id6fejlesztés elvégezhetd, az elektron —
iontorzs Osszefonddottsdg mértékének a szamitasi igénye olyan nagy, ami lehetetlenné teszi a
kiszamitasat értelmes 1d6 alatt. Ezért azt tiztiik ki célunkként, hogy adjunk egy kozelité megol-
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dést erre a problémara, az irdnyok mentén szeparalt kozelités éltal, és igy betekintést nyerjiink
a z, — Z¢ €s x, — x, elektron €s iontdrzs koordinétdk kozotti parkorrelaciok felépitésébe.

Harmadik célkitizésiink, hogy taldljunk egy olyan egydimenzids atomi modell potencidlt,
ami képes kvantitativan is j6 egyezést nyUjtani az igazi 3D erGs teres folyamat z-tengelyre redu-
kalt megoldasdval. Az egydimenzids leirds csak a z Descartes koordinatat tartalmazza, ugyanaz-
zal a 1ézer elektromos tere éltal adott taggal az id6fiiggé Schrodinger-egyenletben mint 3D ese-
tén, viszont a megfelelden vélasztott 4j, id6fiiggetlen V()l.ll\)/l (z) atomi modell potencidllal. Célunk
volt levezetni egy analitikus potencidl format tiszta fizikai elvekre alapozva, majd dsszehason-
litani ezt a mér j6l ismert modell potencidlokkal, pl.: az egydimenziés VP (z) = —1/vZ2+2
soft-core Coulomb modell potenciéllal. Célunk, hogy az igy kapott 1D-s modell potencidlok
eredményeit szigorian és részletekbe menden teszteljiik, kiillondsen az adott rendszer erds teres
ionizéacidjanak tulajdonsdgaira fokuszélva.

Modszerek

Az id6fiiggd Schrodinger-egyenlet numerikus megolddsdhoz tobb mddszer kombindcidjat hasz-
naltuk fel. A tér szerinti derivaltak diszkretizalasara magasrendd véges differencia formuldkat
[68] haszndlunk Az, Ap egyenkozii racsbeosztasokkal hengerkoordindtdkban. Az id6fejlesztd
algoritmust kis Az 1épésekben hajtjuk végre, felhaszndlva az evolicids operator e —*AHk kis id6-
intervallumra érvényes alakjat, itt H,Ez) a k-dik 1épés masodrendii effektiv Hamilton operdtora.

) L Ay
Felhasznaljuk tovadbb4 a e /A

exponencialis operator masodrendli Padé-kozelitését, amely a
szokdsos Crank-Nicolson mddszert adja [67]. Ez utébbi egy implicit médszer, amely azt jelenti,
hogy minden idSléptetés egy linedris egyenletrendszer megoldédsdval jér, és ezen egyenletrend-
szer egyiitthatomatrixa tartalmazza a térben diszkretizdlt Hamilton matrixot. Ennek a médszer-
nek nagy eldnye, hogy lehetévé teszi barmilyen peremfeltétel beépitését az implicit egyenle-
tekbe, amely magasrendd térbeli pontossdgot tesz lehetévé problémék széles kore esetében. A
futtatdsok sebességének javitdsa érdekében felhasznaljuk a split-operator modszert [89]: azzal,
hogy felbontjuk az effektiv Hamilton operatort mint H,Ez) = Hj + Hp, ez a médszer olyan szor-
zatté alakitja a fenti exponencidlis operdtort, amelynek tényezdit konnyd hattatni. A legismer-
tebb ilyen formula a masodrend( szimmetrikus felbontds U, (t + At, t) ~ ¢~ HpgmibtHy —i% Hp,
A {6 el6nye, hogy ezzel a mddszerrel elérhetjiik azt, hogy a miveleti igény a térbeli racspontok
szamdval linedrisan skdldzédjon (ha irdnyonként szétvalasztjuk a Hamilton operdtorban 1év6 ki-
netikus energia tagokat). A mddszer hatrdnya az, hogy nem felbonthat6 ilyen tton a Hamilton
operator, ha az szinguldris vagy ,,nagyon éles” egy adott racspontban. Az igazan relevans split-
operator mddszer Bandrauk és Shen [87] eredménye: az altaluk adott formuldk lehet6vé teszik
magasrendli Ar konvergencia elérését azdltal, hogy a megadott médon eldre-hatra idSléptetiink
a megfelelden konstrualt, masodrendben pontos kis id6lépéses evolicids operatorral.

A numerikus médszer formuldinak levezetése azonban dltalaban nem elégséges ahhoz, hogy
meghatdrozzuk a médszer valédi pontossagat, ezért szigoru tesztelés sziikséges a legtobb eset-
ben. A tér szerinti derivdltak pontossdgat teszteld egyik moédszeriinkben kiszamoljuk ismert
problémak alapéllapoti és legalabb egy gerjesztett dllapoti sajitenergidjat numerikusan, és dssze-
hasonlitjuk azokat ismert analitikus vagy mas nagyon pontos numerikus megolddsokkal. A Az
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(vagy Ap) diszkretizacidés paraméter véltoztatdsdval meg tudjuk hatdrozni a térbeli diszkreti-
zaciés modszer konvergencidjanak rendjét. Ez a megkozelités egyszerli olyan rendszerekre,
amelyek rendelkeznek analitikus megoldassal, példdul a kvantum harmonikus oszcillator és
a Coulomb probléma. Azonban analitikus megoldds nem ismert a legtobb id6fiiggdé probléma
esetében, ekkor az eredményeket egy mér konvergaltnak tekintheté numerikus megoldassal vet-
Jik Ossze, amely utobbinak numerikus hibai nagysagrendekkel kisebbek mint a beéllitds ame-
lyet vizsgalunk. Ennek legegyszer(ibb utja az, hogy 0sszehasonlitjuk a két megoldds id6fiiggd
varhato6 értékeit, amely a Ar fiiggé hibdk hatékony meghatarozasi médjat jelenti, de a térbeli
pontossagot is tesztelhetjiik vele a Az (vagy Ap) paraméter valtoztatasdval.

Az elektron (e) és az iontorzs (c) alrendszerekbdl allé kolesonhaté kéttest kvantumrendszer
problémadjat hagyomanyosan a tomegkozépponti vonatkoztatdsi rendszerben oldjuk meg, ahol
a hulldmfiiggvény szepardlhaté tomegkdzépponti €s relativ koordindtdk szerint. A tomegko-
zépponti részt egy szabad lokalizdlt Gauss hullimcsomagként irjuk le, és a relativ rész foglalja
magéban a z, p koordinatds relativ részecskének erds teres szimuldcidit. Az erds teres id6fiig-
g6 Schrodinger-egyenlet alakja véltozatlan, de az elektron tomegét helyettesitjiik a pu redukalt
tomeggel. Fizikai mennyiségek szdmoldsa sordn tovabba felhasznaljuk az éllapot kezdeti for-
gasszimmetridjat a z-tengely koriil, ami azt jelenti, hogy x és y irdnyokban a dinamika azonos
lesz.

A szokdsos mddszer az iontorzs €s elektron k6zotti kvantumos dsszefonddottsag mennyiségi
jellemzésére az elektron vagy az iontdrzs koordinatés egyrészecske stirliségmatrix kiszadmitisat
foglalja magédban, amelyet a tobbi szabadsédgi fokra vett parcidlis atlososszeg (vagyis ezen ko-
ordinatdk szerinti integralds) utdn kapunk meg, feltéve, hogy a teljes kvantumrendszer tiszta
allapotban van. Ekkor ezen részrendszerek stirliségmdtrixainak kevertsége egyértelmi jellem-
z06je az Osszefonddottsdgnak, amelyet kvantiative a Neumann entrépidval — dltalanosabban va-
lamilyen kvantum entrépidval — irunk le, ezt az egyik alrendszer stirliségmatrixabdl szamitjuk
ki. Ha minden egyes idOpontban végre tudjuk ezt hajtani, megkapjuk a két részecske Ossze-
fonddottsdgdnak 1d6fiiggd dinamikdjat, ez azonban sajnos csak egydimenziés modell esetén
keresztiilvihetd szamitds. Hirom dimenzidban ez a tipusu kétrészi megkozelités gyakorlati-
lag csak a z, p koordindtdkra kiszdmithatd, amely érdekes informécidkat adhat az erls teres
folyamatok irdnyonkénti nem-szepardlhatésdgarol. A kompozit rendszer azonban hat szabad-
sagi fokkal rendelkezik harom dimenzidban, amely egy sokkal bonyolultabb korrelacids struk-
tdrdt von maga utdn a z, — z. €s x, — x. koordinatak kozott. Ezen korreldcidk természetét a
kvantum-informdcidelmélet tijabb eredményei segitségével [104] vizsgdltuk meg. Ezen irdny
menti parkorreldciékat mennyiségileg az dgynevezett S(e : ¢,t) kvantum kolcsonds entrépidval
jellemezhetjiik, és ezek viselkedését a S(e|c,t) vagy S(c|e,t) kvantum feltételes entrépidkkal
tarhatjuk fel, utébbi az egyik részrendszer megmaradt entrépidjat jellemzi, amennyiben a mé-
sikon teljes mérést hajtottunk végre. Klasszikus hataresetben ez a két entropia a klasszikus
informdcidelmélet Osszefiiggéseit teljesiti, azonban a kvantumos 6sszefonddottsag nemklasszi-
kus szdmértékeket tesz lehetové szamukra.

Atomok alacsony dimenziés modellezéséhez a siiriségfunkciondl elmélet [118] elemeit
hasznaltuk fel. A modell potencidlunkat az egyetlen palydval leirt hélium atom egzakt Kohn-
Sham potencidljdnak analdgidja alapjan vezetjiik le: ismerve a helyes redukélt (egyrészecske)
siriséget, invertdlhatjuk a Schrodinger-egyenletet, ami meghatarozza ezt potencidlt. Ez az el6-
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allitas biztositja, hogy az igy kapott Hamilton operator alapallapota a helyes redukalt stirliséggel
rendelkezzen. Ily médon fizikailag modellezni tudjuk a rendszer alapéllapotat amennyire he-
lyesen csak lehet egyetlen hullamfiiggvény vagy palya segitségével.

Tudoméanyos eredmények

Az aldbbiakban roviden ismertetem a disszertdcioban bemutatott Gj tudomanyos eredményei-
met Ot tézispontban Osszefoglalva. A megallapitdsaimhoz kapcsolddo, a a disszertacié végén
taldlhat6 listaban 0sszegyjtott publikacidkra a tézispontok cimében hivatkozom.

T1. Hibrid split-operator algoritmus a Coulomb szingularitasokat tartal-
mazé haromdimenzios idofiiggé Schrodinger-egyenlet megoldasahoz [P1]

Abbdl a c€lbdl, hogy kezeljem a Coulomb szingularitdsokat a haromdimenziés hengerkoor-
dindtds Schrodinger-egyenletben, levezettem a Coulomb potencidl peremfeltételére vonatkozo
formulat forgdsszimmetrikus esetben, a p = 0 tengely mentén. Megadtam ennek a peremfelté-
telnek a diszkretizalt form4jat féloldali véges differencia formuldkat hasznélva.

A Hamilton operdtor negyedrendl véges differencia kozelitése alapjan felirtam a hibrid
splitting modszerét. Ez a split-operdtor mddszer a kis iddintervallumu evolicids operator részle-
ges irdny menti felbontdséan alapul. Ez azt jelenti, hogy a H ,Ez) = Hy + Hp operétor mind térbeli
irdnyok és térbeli tartomédnyok szerinti felbontdst is magéban foglal: a H4 operator a p =0
tengelyhez kozel megegyezik H,Ez) -vel azért, hogy ezen perem kornyékén a modszer megorizze
a numerikus pontossigot, és mindekdzben a kiils6 tartomanyban (p = 1) a kinetikus energia
z-komponense atkeriil a Hg operétorba.

Létrehoztam egy optimizalt algoritmust ami megoldja az e A4 kozponti exponenciélis
operator Crank-Nicolson kozelitése eredményeképpen el6alld specidlis blokk pentadiagondlis
linedris egyenletrendszert. Ez az algoritmus a szdmitdsi igényt Ng—el csokkenti, ahol N, a p
tengely mentén 1év6 a racspontok szama.

Szimulécidkkal igazoltam, hogy a fenti diszkretizacids séma Az és Ap térlépésekben ne-
gyedrendben pontos a hidrogén atom és a kvantum harmonikus oszcillator sajatenergidinak ki-
szamolasaval. Felhaszndlva a kényszeritett kvantum harmonikus oszcillator id6fiiggd analitikus
megoldésat igazoltam tovabba, hogy a hibrid splitting médszer Ar> pontos, és sikeresen kom-
binalhaté az evolicids operitor negyedrendii kozelitéseivel, hogy id6lépésben Ar* pontossagot
nyujtson.

T2. Az elektron — iontorzs kvantumos osszefonédottsaganak kvantitativ
jellemzése eros teres ionizacio soran [P2]

Megmutattam, hogy az iontdrzs — elektron rendszer haromdimenzids er6s teres szimulaci-
6iban a megfeleld Neumann entrépia numerikus kiszdmitdsa nem keresztiilvihetd a probléma

rendkiviil magas szdmitési igénye miatt. Ezért megalkottam a kovetkezd eljarast a iontorzs és
az elektron kvantumos 6sszefonddottsaganak jellemzésére erSs teres folyamatokban.
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El8szor redukaltam a 3D-s dinamikdt a 1ézerimpulzus polarizcidjara parhuzamos és merd-
leges térbeli irdnyokra ugy, hogy parcidlis 4tlososszegét vettem a megfeleld siirlis€égmatrixok-
nak. Ezutdn elvégeztem minden irdnyban az attérést elektron és iontdrzs koordinatdkra és to-
vabb redukdltam ezeket a stiriségmatrixokat a megfeleld részecskére vett parcidlis 4tl6sosszeg
végrehajtasdval. A kvantumentropidk ismert Osszefiiggéseit felhaszndlva megmutattam, hogy
a két részecske azonos irdnyu koordinatai kozotti korrelacié6 domindnsan kvantumos 0sszefo-
nddottsdg. Ennek az irdny menti kvantumos dsszefonddottsdgnak a mértékét az dtlagos irdny
menti kolcsonds entrdpidval jellemeztem. Megmutattam, hogy az atlagos kolcsonds entrdpia
1d6fejlodése a lézerimpulzus polarizacids irdnydban nagyon hasonld a kordbbi egydimenzids
szamolasaim soran kapott egzakt kvantumos 6sszefonddottsagi entrépidk id6fejlédéséhez.

Ezeket a stiriségmatrixokat felhaszndlva, a 3D-s iontorzs — elektron rendszer kvantumalla-
potat az irdnyokra redukalt kétrészecske strlis€égmatrixok szorzatdval kozelitettem, arra a szi-
mulécids tapasztalatomra alapozva, hogy az erds teres dinamika a fenti irdnyok mentén csak
gyengén csatolt.

Ezek alapjéan definidltam a 3D-s iontorzs — elektron rendszer kozelitd 0sszefonddottsagi ent-
ropidjat mint az atlagos irdny menti kdlcsonds entropidk dsszegét, amely hatékonyan szdmolha-
té a mar meghatdrozott irdny menti sliriségmatrixok segitségével. Megmutattam szimuldciok
segitségével, hogy ez a kozelitd dsszefonddottsagi entrdpia kielégiti az er6s szubadditivitds té-
telét, amely az egzakt Osszefonddottsdgi entropia fontos analitikus tulajdonsiga.

T3. Az elektron — iontorzs kvantumos osszefonédottsag tulajdonsagai eros
teres ionizacio soran [P2]

Mivel a T2 pontban bevezetett térben redukalt alrendszerek kevert dllapotban vannak, ezért a
korrelacids tulajdonsdgaik sokkal bonyolultabbak, mint tiszta dllapoti 6sszefonddottsag esetén,
ebbdl adéddan el6szor azonositottam a fenti eljardssal kapcsolatos kiillonféle entréopidk fizikai
jelentését. Ezek alapjdn a kovetkezd megallapitasokat tettem.

Részletesen elemeztem a Osszefonddottsagi entropidk Osszefiiggéseit minden egyes irdny-
ban a T2 tézispont szerint, és azt taldltam, hogy a lokdlis maximumaik szinte egybeesnek a
1ézerimpulzus elektromos terének zéréhelyeivel. A 1ézerimpulzus polarizicidjdval parhuzamos
és merdleges irdnyokban az 6sszefonddottsdg nagyon hasonlé egymdshoz, amennyiben a 1ézer-
tér er6ssége az alagutazdsos ionizdcidnak megfelel6 tartomanyban van. Azonban potencidlgat
feletti ionizacid esetén a polarizacidval parhuzamos irdnyban az dsszefonddottsagi entropia no-
vekedést, mig a merdleges irdnyokban ezen entrépia csokkenést mutat, amelyek Osszhatdsa
csokkenést eredményez a teljes iontorzs — elektron 0sszefondddsi entrépidnal.

Megvizsgaltam a fenti javasolt 6sszefonddasi dinamika mértékeinek fiiggését a vezérld 1é-
zerimpulzus erdsségétdl és vive-burkold fazisatol. A kvantumentropidk idéfejlédésében tobb
olyan tulajdonsdgot is taldltam, amelyek nem fiiggenek ezektdl a paraméterektdl, példdul az
iontorzs — elektron 6sszefonddottsdg mindig maximumot ér el a lézerimpulzus zéréhelyei koriil.
Azt is megfigyeltem, hogy mikdzben a kiilsd tér intenzitdsa az erds teres ionizacié dinamikdjé-
nak egészét irdnyitja, addig a vivs-burkolo fézis csak a ciklusokon beliili dinamikat valtoztatja
meg.
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T4. Egydimenzios siriiség alapi atomi modell potencialok: 1D és 3D ered-
mények osszehasonlitasa [P3]

Levezettem annak az egydimenzids atomi modell potencidlnak az analitikus formuldjét,
amely definicid szerint ugyanazzal az alapallapoti valdsziniiségi stirliséggel rendelkezik, mint a
haromdimenziés Coulomb probléma p viltozé szerint integralt valészintiségi stirlisége. Meg-
allapitottam, hogy az aszimptotikus viselkedése altal ez az 1D modell meg6rzi a 3D probléma
alapéllapoti energidjat, amennyiben a 3D problémahoz tart6z6 potencial aszimptotikusan Cou-
lomb alaku. Ez az 1j stirliség alapu 1D atomi modell potenciél egy regularizdlt 1D Coulomb
potencidlbdl és egy kinetikus energia korrekciébol 4ll.

Felismertem, hogy a stiriség alapti 1D atomi modell potencidl regularizalt Coulomb része
%Z effektiv magtoltést tartalmaz egyelektronos atomokra (ahol Z az eredeti magtoltés). Ez
alapjan tokéletesitettem az 1D soft-core Coulomb és a regularizalt 1D Coulomb potencidlra
vonatkoz6 formuldkat dgy, hogy %Z effektiv magtoltéssel rendelkezzenek és az alapallapoti
energidjuk maradjon egyenl6 a 3D Coulomb problémééval.

Linedrisan polarizalt kozeli infravorods 1ézerimpulzus altal vezérelt id6fiiggd erds teres szi-
muldcidk eredményeinek 0sszehasonlitdsaval megmutattam, hogy az 1j és a tokéletesitett mo-
dell potencialok az erds teres folyamatok alacsony frekvencids valaszainak tekintetében sokkal
pontosabb eredményeket adnak, mert kvantitative helyesen modellezik az igazi 3D dinamika
lényegi elemeit. Ezek a tesztek azt is megmutattdk, hogy ezen potencidlok koziil a tokéletesitett
soft-core Coulomb potencidl adja a legpontosabb kozelitést.

Az esetek széles korében kiszdmoltam a dipdl teljesitményspektrumot €s arra a kovetkez-
tetésre jutottam, hogy az 1D slriiség alapu és a tokéletesitett modell potencialok dltal nyujtott
spektrumok szerkezete nagyon hasonlé a 3D szimulacidkbol kapottakhoz. A megfelel6 spektra-
lis fazisok egyezése is nagyon j0, kiilondsen a magas frekvencids tartoméanyban, amely alapvetd
fontossagu az izoldlt attoszekundumos 1ézerimpulzusok elballitdsanak szempontjabol. Meg-
adtam egy egyszer( frekvenciafiiggd skalafiiggvényt, amely képesnek bizonyult a kapott 1D
spektrumokat a megfeleld 3D spektrumokka atalakitani a tesztelt esetekben, ami a valddi dipdl
teljesitményspektrum 1D szimuldcidkon alapulé mennyiségileg helyes szamitasét is lehetové

teszi.

T5. Javitott numerikus médszer diszkrét modell potencialok eldallitasara
egy dimenzioban: nagyobb szimulacios pontossag [P3]

Javasoltam egy formulat, amely 1D modell potencidlok jelent6sen pontosabb diszkretizalt
reprezentdcidjat adja meg, a potencidl egzakt alapéllapotan és alapallapoti energidjan alapulva,
a megfelel6 diszkretizalt id6fiiggetlen Schrodinger-egyenlet inverzidjdnak segitségével. Az igy
kapott diszkretizalt potencidlok numerikusan egzakt alapallapottal és energidval rendelkeznek.
Megmutattam, hogy ha az egzakt 1D potencidl nem differencidlhat6 egy térbeli rdcspontban
(pl. az 1D regularizdlt Coulomb potencidl), akkor az igy eldallitott diszkrét Hamilton métrix
AZ* pontossagi, amennyiben a benne 16v6 parcidlis derivaltak is legaldbb Az* pontossiggal
rendelkeznek, ami az erSs teres szimuldcidk sordn is igaznak bizonyult.

Megmutattam, hogy a fenti mddszer alkalmazhaté az 1D Dirac-delta potencidlra is. A fent
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emlitett inverziés formula ennek a modell potencidlnak egy nemszinguldris diszkretizalt rep-
rezentacidjat adja. Azt kaptam erds teres szimuldcidkon alapul6 konvergencia teszteket elvé-
gezve, hogy a mdédszer numerikus hibai Az = 0.2-nél hasonléak az [A1] cikkiinkben hasznalt
korrekt médszeréhez. Arra a kovetkeztetésre jutottam, hogy ez a nemszinguldris diszkretizalt
mddszer az igazi megolddshoz konvergal és Az> numerikus pontossagot mutat.
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APPENDIX A

High-order finite difference formulas

Let us denote our general function for the derivation of the finite difference formulas [79] by

y(x) and the uniformly discretized coordinate by x; = k- Ax, k € [0, Ny] , Ax = Xmax /Nx. We need

these formulas for the expressions of the spatial derivatives within the Crank-Nicolson schemes.
The usual starting point of the procedure is the Taylor expansion of y(x) around x; as

2 3 4 5
1 n 2 n 3 n 4 n 5
S | >Ax+_2! 3 >Ax2+—3! 3 )Ax3+—4! e )Ax4+—5! YOAS +0(Ax0), (A1)

where y,(cn) denotes the nth derivative of y(x) evaluated at point x;. Using only points yx_1, Vi, Vi1
we will arrive at the well-known three-point formulas of the first and the second derivatives, both

with second-order accuracy:

(1) _ k=11 Yt 1

_ Vk—1 = 2Vt Ykt
Yk 2Ax -

A2 +O(AP). (A.2)

+0(A?), 3

Using (A.1) at multiple gridpoints x;, with fixed k, and eliminating the unnecessary terms
according to desired order of Ax, we can get a generalized procedure to acquire high-order
finite difference formulas [68]. For example, using the five points y;_2, Yk—1, Yk» Ykt1> Vkr2 W€
can get the fourth-order approximations,

(1) _ Y2 = 8Vk1+8Vkt1 — Va2
Tk 12Ax

+0(AxY), (A.3)

@) —Yk—2+ 16y 1 — 30y + 16y5 41 — Y12 0
Ve = 12A2 +

The seven-point symmetric formulas can be acquired the same way using yr_3, Yc—2, Yk—1> Vi

(Ax™). (A.4)

Y415 Yi+25 Vi4-3+

(1) _ —3ye-3+27yk—2 — 135yk—1 + 135y41 — 27Tyks2 + 3yi42
Tk 180Ax

+0(Ax®), (A.5)

() _ 23— 27yk—2 +270yk 1 — 490yx +270yk 11 — 27yiy2 + 29142
Yk 180Ax
In general, the 2n-order finite difference formulas of the derivatives are expressed as the follow-

+0(A%).  (A6)
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APPENDIX A. HIGH-ORDER FINITE DIFFERENCE FORMULAS

ing linear combinations [68]:

s sgn(s)p” o)

1
y1(< = Y A—ZMYHH'O(AXM), and yk Z A| Yips + O(A"). (A7)
s=—n

However, the higher-order the difference formula is, the more analytic conditions y(x) should
satisfy.

For the Neumann boundary conditions, it is sometimes a necessity to use one-sided (forward
or backward) finite differences especially if the first derivative of the function is discontinuous.
The simplest of this is the first-order accurate forward difference formula, which we can get
directly using yi, yx41 points as y,(:) = (Ykr1—Yk)/Ax+ O(Ax). However, higher-order formulas
of this type can be derived straightforwardly using multiple points of Taylor-expansions on the

same side of x;. For the 3-, 5- and 7-point finite difference formulas we get the following results:

—=3yk +4Yk+1 — Y2

(1) 2
=4 A.
—25y; +48 —36 +16 -3
y1(<1) -+ Vi Vik+1 Vi+2 Vik+3 Vi+4 + 0(Ax4), (A.9)
12Ax
—147y, 4+ 360 —450 + 400 —225 —72 —10
yl(cl) — 4 Yk Vi+1 V42 Vi+3 Yi+4 Vk+5 Vi+6 + O(Ax(’).
60Ax
(A.10)

The negative signs apply for the backward difference formulas.
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APPENDIX B

The Numerov z-line propagator algorithm

In this appendix, we construct an efficient way of evaluating e~/

line-by-line accompany-
ing the hybrid splitting algorithm of Section 4.2 using cylindrical coordinates z, p. This is
based on the second-order Crank-Nicolson algorithm with Numerov-extension [119], which
also provides at least fourth-order accuracy in Az, and it reduces the numerical costs because
it uses three-point finite differences and tridiagonal equations instead of five-point differences
and pentadiagonal equations. We will also outline an optimization technique for 1D Crank-
Nicolson schemes which is makes the computations even more efficient when they are applied
to 2D problems.

Let us fix the value of coordinate p (i.e we choose j = const) and we denote ¥;(f;) =
W, j(t). Here we consider the Hamiltonian in the form of H, = 92 + V(z,t) along this line
since the procedure below allows to include a potential of this form, which is however not
present in our hybrid splitting scheme (4.21). Again, we start with the second-order approxi-
mation of the exponential operator e 4% as in (2.10)

(1+aBd?+aV)¥(ni1) = (1—afd?—aV)¥ () (B.1)

with @ = iAt/2, B = —1/2u,V =V (2,41 /2). We will use a discretized Laplacian L. based on
the standard three-point finite difference method (A.2), however, we will also need the leading
term of the error:

_AZ ot
12 9z

Zi

~ Wi —2¥i+ Wi 0?Y
qu,i: AZZ ~ azz

+0(AZY). (B.2)

Zi

To proceed, we introduce the auxiliary variable Y (1) = W(f; 1) + W(#;) and rewrite the equation
(B.1) as
(aBIZ)Y (tx) = 2% (1) — (1 +aV) Y (). (B.3)

Then, we discretize the equation (B.3) using (B.2):

AZ? 0%Y

(aﬁzz> Yi(ty) =2%i(ty) — (1 4+ aV;) Yi(ty) + aﬁﬁ Fr i (B.4)
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Now, we evaluate the error term with 9Y;(1) = L, (92Yi(1)) + O(Az?) also using the right hand
side of (B.3) to get to the result of the form

~ A2 - A7~
l+aV;+afL;, + T L (1+aVi) | Yi(t) = 2¥i(t) + ?Lz\yi(tk)~ (B.5)

Restoring the equations for W;(#;,1) we arrive at the Numerov-extended Crank-Nicolson algo-

rithm as
2

~ A~ ~ A
(1 +avi+apL+ L1 +aw>) Wi(teg1) = (1 —aV—apL+ =

L, (1 - OCV,)) \P,’(l‘k).
(B.6)
It is interesting to note that by reverse engineering from the Padé-form, we get a discrete Hamil-

tonian of the form
- ~ AP~ AP
Hei= Vit PLe — g0 Lt 7 LV

The extra terms in (B.7) improve the solution to the fifth order in Az, however, one should note
that (i) L, (V;¥;(1)) is part of H,¥ (1), requiring the potential to be continuously differentiable,

(B.7)

(i1) ﬁz 1s no longer strictly self-adjoint.
In (B.6) we have arrived at a tridiagonal system of linear equations of the form

by co O 0 “e 0 Wo(tks1) Yo

ap by ¢ 0 0 W1 (tks1) g
G B Bl I I ®3)
0 O an—1 bn—1 cn—1| |¥n—1(tes1) YN.—1

0 0 - 0 ay, by, | | Yn(s1) | [ YN ]

which after forward Gaussian-elimination reads

by co 0 0 - 0 [ Poltwrr) | [ 50 ]
0 by ¢4 0O - 0 W1 (tks1) 1
0 0 b ¢ - 0 W (t y
. .2 .2 . . 2<.k+1) _ y.2 . (B.9)
O O --- 0 BNZ*I CIYZ*I ‘Pszl (tk-l-l) }7sz1
0 0 0 0 by | | ¥n(tes1) | [ 3N |

In the coefficient matrix of (B.8) and (B.9) we denoted

ai={1+avi i+ 120/A2 ifi=1...N., (B.10)
ci:{1+a\/i+1+l2ocﬁ/m2 ifi=0,.. N,—1, (B.11)
(B.12)

bi= {10+ 100V, ~24ap /A2 ifi=0,....N.,
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- b; ifi=0,
b; = - (B.13)
bi—(ai/b,-_l)ci_l ifi=1,...,N,.

The right hand side and the solution of (B.9) are given by the following expressions:

(20 — bi)\Po + (2 — Cl')‘Pl ifi=0,
Vi=4 2—a)¥i1 +20—b)¥i+ (2 —c;)¥ir1 — (a;/bimy)Fi ifi=1,...,N,—1,
(2 — a,-)‘PNz_l + (20 — bi)‘PNZ — (ai/Bi—l)yNz—l ifi=N;,
(B.14)
. /b, ifi =N,
Pi(tip) =1 /b T (B.15)
(5i — c¥it1(tes1)) /i ifi=N—1,...,0.

This completes the 1D propagation method.

Now let us return to the 2D problem. Because the discrete Hamiltonian H, is independent
from the value of p, the corresponding coefficient matrix of (B.9) is the same for each j-line.
This means that we need to do the forward elimination (B.13) only once, then it is sufficient
to perform only the forward (B.14) and the backward substitution (B.15) steps for each j-line
in order to acquire the solution. This yields a factor of 2 speedup in the evaluation of e~/A/H:
with three-point finite differences, if we have many lines to propagate and cache the appropriate

variables. This latter can also be viewed as an LU decomposition based optimization [79].
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APPENDIX C

The forced harmonic oscillator

The TDSE for the axially symmetric (i.e. m = 0) 3D forced harmonic oscillator (FHO) in
cylindrical coordinates is the following:

zi‘P( t)= [38—24—[58—24—Ei+l 0)2(2+ 2)4—]’(t) W( t) (C.1)
ot Z,p,t)= 822 apz pap 2:““ 0 \< p K z,P, .
where B = —1/2u. Using the separability in z and p coordinates, we can reduce this problem

to a one-dimensional time-dependent one, which was solved by K. Husimi [120]. Then, the
analytical time-dependent wave function is of the form

A (z,p,1) = x(z—&(1),p,1)exp (iu(z—i(t))f(t) +i/oz$(t’)dt’) : (C2)

where x(z,p,t) is a solution of the 3D field-free quantum harmonic oscillator problem with
axial symmetry. We define it to be the ground state of the field-free problem (H-000):

X000(z,P,t) = [kg?g]3/4e_%”“b(zl+p2)e‘i%“b’. (C.3)

In formula (C.2) the symbol £ (¢) denotes the Lagrangian of the corresponding classical system:

1 . 1
2() = &)~ SHOFEW ~ FOEQD) )
and & (¢) is the solution of the initial value problem

E(t) = f(1) /1 — & (1), with {£(0) = 0,£(0) =0}. (C.5)

We set f(t) = F sin @gt, then the previous equation is that of the forced harmonic oscillator has
the solution:
F/u

g(t): a)l%_wg

These formulas define the analytical solution that we use in Section 4.3.2 as one of our test
cases. There, in Fig. 4.3, we also plot &(¢), which is actually the expectation value of the
coordinate z, and the different terms of the phase in (C.2).

. OF .
Sin Wpt — — sin Wyt | . (C.6)
W
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