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Introduction

This thesis is devoted to developing a toolkit for asymptotic study of es­
timators in 2-type critical Galton-Watson processes. We introduce the 
basic notations for our model. Define a criticality parameter, namely 
the spectral radius of the offspring mean matrix, and describe the clas­
sification of 2-type Galton-Watson processes into subcritical, critical 
and supercritical cases based on its value. Then we state a functional 
limit theorem for the process by Ispány and Pap [6]. This limit is cu­
rious, because it is degenerate in the sense that it is concentrated on a 
single line whose direction is determined by the right Perron vector of 
the offspring mean matrix.

Then we develop the toolkit. We define a decomposition of the 
process based on the phenomena observed at the end of the previous 
section. We want to use these random variables as building blocks of 
any estimator whose asymptotic properties we want to investigate. In 
order to do that we need a firm understanding of their behaviour, so we 
estimate their growth as the number of generations in the underlying 
process tends to infinity. Our first upper bounds are too big, so in few 
select cases we refine them. Then we state a joint limit theorem for our 
building blocks.

Finally we demonstrate the applicability of this method. We state 
results that can be proven using our toolkit. The results for the joint 
estimator of both the offspring mean matrix and the immigration mean 
is new. The other theorems have been published in the following papers.

Ispány, M., K örm endi, K. and P a p , G. (2014).
Asymptotic behavior of CLS estimators for 2-type doubly symmetric 
critical Galton-Watson processes with immigration.
Bernoulli 20(4) 2247-2277.

K örm endi, K. and P a p , G. (2018). Statistical inference of 2-type 
critical Galton-Watson processes with immigration.
Statistical Inference for Stochastic Processes 21(1) 169-190.
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1 Prelim inaries

For each k, j  G Z+ and i,£ G {1,2}, the number of individuals of 
type i in the kth generation will be denoted by X k ,i 5 the number
of type t  offsprings produced by the j th individual who is of type 
i belonging to the (k — 1)th generation will be denoted by £k,j,i/-, 
and the number of type i immigrants in the kth generation will be 
denoted by ek i - Then we have

X k  , i  

X k , 2

X k -  1,1

E
j = i

£k,j, 1,1 
£k,j,1,2

X k - 1,2

+  E
j = i

£k,j,2,1
£k,j,2,2 + £k,1

£k,2 k G N. (1)

Here {X 0, $k,j,i , e k : k, j  G N, i G {1,2}} are supposed to be inde­
pendent, where

X  k Xk,1 
Xk,2 , I k,j,i

Ck,j,i,1 
£k,j,i,2 ’ e k ek,1

£k,2

Moreover, {I k , j , 1 : k, j  G N}, {I k , j , 2 : k ,j  G N} mid {e k : k G N} 
are supposed to consist of identically distributed random vectors.

We suppose E(||£1,1,1||2) < to, E d l^ ^ H 2) < to and E(||e 1||2) < 
to. Introduce the notations

:=  E (£1, 1, i ) G m i  :=  [m C m «2] G
m £ := E(e 1) G R+,

and

V^. := V a r( |11, i ) G R2x2, V  := Var(e1) G R2x2, i G {1, 2}.

Note that many authors define the offspring mean matrix as m ^. For 
k G Z+, let Fk := <r(X  o, X 1, . . . ,  X  k). By (1),

E(X k | Fk-1) =  X k-1 +  m £.

Consequently,
k-1

E(X  k ) =  m k E(X  0) +  E  m |  m £, k G N.
j=o
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Hence, the asymptotic behaviour of the sequence (E (X k))keZ+ de­
pends on the asymptotic behaviour of the powers ( m |) keN of the off­
spring mean matrix, which is related to the spectral radius r(m ^) =: 
q G R+ of m.£. A 2-type Galton-Watson process (X k)keZ+ with 
immigration is referred to respectively as subcritical, critical or super­
critical if q < 1, q =  1 or q > 1. We will write the offspring 
mean matrix of a 2-type Galton-Watson process with immigration in 
the form

: a ft 
y  5 '

We will focus only on positively regular 2-type Galton-Watson processes 
with immigration, i.e., when there is a positive integer k G N such 
that the entries of m | are positive (see Kesten and Stigum [7]), which 
is equivalent to ft, y G (0, to), a, 5 G R+ with a + 5 > 0. Then the 
matrix m^ has eigenvalues

A+ : 

A_ :

a +  5 +  v^(a — 5)2 +  4fty 
2

a  +  5 — ^  (a — 5)2 +  4fty 
2

satisfying A+ > 0 and — A+ < A_ < A+, hence the spectral radius of 
m^ is q =  r(m ft) =  A+. By the Perron theorem,

a; ^  u r i g h t u le f t as k ^  to,

where u right is the unique right eigenvector of m^ (called the right 
Perron vector of m^) corresponding to the eigenvalue A+ such that 
the sum of its coordinates is 1, and u left is the unique left eigenvector 
of ra^ (called the left Perron vector of m^) corresponding to the 
eigenvalue A+ such that (uright, u left) =  1, hence we have

u r i g h t

u le f t

1
ft +  A+ 

1
A+—A -

— a
ft

A+ — a
y +  A+ — 5
ft +  A+ — a
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Using the so-called Putzer’s spectral formula [8], the powers of m ^  
can be written in the form

m £ A+ u r i g h tu l e f t  +  A_v r i g h tv l e f t , k €  N ,
where v r i g h t  mid v l e f t  are appropriate right and left eigenvectors of 
ra^, respectively, belonging to the eigenvalue A_, for instance,

V r i g h t

v le f t

1
A+ -  A_ 

1
ft +  A+ — a

—ft — A+ +  a  
Y +  A+ — 6
—A+ +  a

3 '
The process (X k)keZ+ is critical and positively regular if and only if 
a, 6 € [0,1) Mid 3, Y € (0, to) with a + 6  > 0 Mid 3 y =  (1 — a)(1 —6), 
and then the matrix m^ h ^  eigenvalues A+ =  1 and

A_ =  a  +  6 — 1 € ( —1,1).
Next we will recall a convergence result for critical and positively 

regular 2-type Galton-Watson processes with immigration. For each 
n € N, consider the random step process

X (n) := n -1X ]nt], t € R+.
The following theorem is a special case of the main result in Ispany and 
Pap [6, Theorem 3.1].
T h e o r e m .  1 . 1 .  Let (X k)kez +  be a 2-type Galton-Watson process 
with immigration such that a, 6 € [0,1) and, 3,Y € (0, to) with 
a  +  6 > 0 and, 3y =  (1 — a)(1 — 6) (hence it is critical and, posi­
tively regular), X 0 =  0  E ( ŷ 1 1 -Jl2) < to, E(y^ 1 1 2||2) < to and 
E (ye 1y2) < to. Then

v
t e R +

(X t) t e R + ( Y t U r i g h t ) t e R +

as n ^  to in D(R+, Rd), where (Yt )t£R+ is the pathwise unique 
strong solution of the SDE

dYt  =  (« l e f t , m e) dt + \J (V « l e f t , u i e f t)Y+  dW t , t € R+ , ^
Yo =  0,
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where (Wt)ter+ is a standard Brownian motion and

V  :— (e i> Uright) —
3V j1 + (1  -  a)Vi2

¡3 +  1 — a

is a mixed offspring variance matrix.
In fact, in Ispany and Pap [6, Theorem 3.1], the above result has 

been proved under the higher moment assumptions
E d i ^ j 4) < to, Edii ^ J i 4) < to, E(y£ l y4) < to,

which have been relaxed in Danka and Pap [3, Theorem 3.1].
In this section we have introduced a number of assumptions on the 

process (X k)fceZ+ For the sake of easier reference we collect those as­
sumptions here. First a condition that guarantees that our process 
is critical and positively regular. The process satisfies the criticality 
condition if

a ,S  e [0,1), e (0, to), a  +  S > 0, £7 =  (1 -  a)(1 -  S). (CPR)
Then we have condition that we start from an empty initial population, 
that is X 0 =  0  If we don’t want to be stuck in 0 we have to assume 
that the immigration distribution isn’t degenerate 0, it is sufficient to 
assume m £ =  0 for this. The process satisfies the zero start condition 
if

X  0 =  0, m £ =  0. (ZS)
Next we have a condition on the moments of the process, where we 
assume the finiteness of i th moments of the offspring and immigration 
distributions. This in terms implies the finiteness of the Ith moment of 
the process itself. The process satisfies the moment condition for some 
i  e N if

E ( | | i i , i , i f )  < to, E ( | | iM,2f )  < to, E ( | |e i f )  < to. (M)
Finally we have a condition that doesn’t appear in this section how­
ever it will be necessary later. The process satisfies the nondegeneracy
condition if _

(V£Vieft, «left) = 0 . (ND)
The reason for this condition can be understood if one looks at Lemma 
2.5, as that describes a relation between the two parts of the upcoming 
decomposition.

6



2 A toolkit for asym ptotic study o f estim ates

2.1 A decom position o f 2-type Galton—W atson processes
In the previous section we saw that the eigenvectors of the matrix 
m^ play an important role in the asymptotic behaviour of the process 
itself. It is curious in Theorem 1.1 that the limit of a 2-dimensional 
process is degenerate in the sense that it is concentrated on a single 
line whose direction is determined by u right. In this section we define 
a decomposition of the process based on the eigenvectors of m^. 

Applying (1), let us introduce the sequence

M k  := X k — E (X k | F k-i) = X k  — m ^ X k - i  — m e, k G N, (3)

of martingale differences with respect to the filtration (Fk)keZ+. By 
(3), the process (X k )keZ+ satisfies the recursion

Xk =  m ^X k -i +  m £ + M k, k G N. (4)

We derive a useful decomposition for X k, k G N. Let us introduce 
the sequence

U k :—  ^ l e f ^  X k )
(Y + 1  — ^)Xk,1 +  (fi + 1  — a)X k,2 

1 -  A_ k G Z+.

One can observe that Uk > 0 for al 1 k G Z+, and

Uk = Uk-1 + (u left, 'm £) + (u left, MM k K k G N.
Hence (Uk)kez+ is a nonnegative unstable AR(1) process with positive 
drift (uieft, m e) ^^d ^^^h heteroscedastic innovation ((uieft , M k))keN- 
Note that the solution of the recursion is

k
Uk =  ^  (̂u left? -M j + 'm £) , k G ^

j = 1
and applying the continuous mapping theorem to Theorem 1.1 yields

(n U[niJ)i£R+ =  ((uleft, X t ’'))i£R+ t ( (uleft, X i))i£R+ =  (Yt )teR+

as n t  <x, where (Yt)t£R+ is the pathwise unique strong solution 
of the SDE (2). We could think of the variables (Uk)keZ+ as the well
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behaved part of our decomposition, because they allow us to get the 
underlying 1-dimensional stochastic process in Theorem 1.1 . Moreover, 
let

Vk • (vleft7 X k)
-(1  -  a )X k,i +  ß X k,2 

ß + 1  — a k G Z+.

Note that we have
Vk — A— Vk- 1 +  (vleft? m,e) + (vleft? M-k ), k G N.

Thus (Vk)keN is a stable AR(1) process with drift (v left, m £) and with 
heteroscedastic innovation ( (v left, M k))keN. Note that the solution 
of the recursion is

k
Vk — ^  A--  (vleft, M j +  m e) , k G N,

j=i
and applying the continuous mapping theorem to Theorem 1.1 yields

(n lV\nt\ )t£R+ — ((vleft, X tK)))teR+ — ((vleft, X i))i£R+ — 0.
D

We could think of the variables (Vk )keZ+ as the problematic part of our 
decomposition, because the continuous mapping theorem does not find 
the nonzero limit of them. The recursion (4) has the solution

k
X k  — (m e +  M j ), k G N.

j=i
Consequently, using (1) yields

X  k Uk u right +  Vk v right
ß

ß+1-a 1 —a 
ß+1-a

Uk -
Uk +

ßt ——a  Vk 
Y —1—5 Vk

for all k G Z+.
We want to use this decomposition as a tool to investigate asymp­

totic properties of various estimators of the matrix m.£. Any estimator 
based on the sample X 1, X 2, . . . ,  X n can be rewritten in terms of the 
variables U1, .. .  ,Un ,V1, . . .  ,Vn, thus a good understanding of their be­
haviour can gain insight into the behaviour of the estimator itself. We 
note that this reformulation of an estimator is strictly a theoretical tool 
to prove theorems about it, as without knowing m £ we also don’t know 
u left and v left therefore we can’t calculate Uk mid Vk.
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2.2 A n estim ation  o f m om ents
We want to bound the growth of (M k)kez+, (X k)kez+, (Uk)fceZ+ 
and (Vk)keZ+ and some related expressions as k ^  <x. The reader will 
find statements in this section that allows us to identify negligible terms 
in an expression, that is terms that with the right scaling disappear in 
the limit. We will establish nonzero limits for some of these expression 
in the next section.

First note that, for all k G N, E (M k | F k-1) =  0 and thus 
E (M k) =  0, since M k =  Xk -  E(Xk | Fk -i).
Lem m a 2.1. Let (X k)keZ+ be a 2-type GaltonWatson process with 
immigration that satisfies conditions (CPR), (M) with some £ G N and 
X o =  0. Then E(||Xk ||‘) =  O(ki) and further

E (M  f )  =  O(kLi/2J), E(Uk) =  O(ki), E(Vk2j) =  O(kj )

for i , j  G Z + with i < £ wnd, 2j < £.

The next corollary can be derived exactly as Corollary 9.2 of Barczy 
et al. [2].
C orollary  2.2. Let (X k)keZ+ be a 2-type Galton Watson process 
with immigration that satisfies conditions (CPR), (M) with some £ G N 
and X 0 =  0. Then

(i) for all i , j  G Z + with m ax{i,j} < |_£/2J, and for all k > i+ 1+1, 
we have

E l  uk v j
k =  1

0 as n —> oo,

(ii) for all i , j  G Z + with max{i, j}  < £, for all T  > 0, and for all 
k  > i +  2 +  we have

n K sup 
t e [ o , T  ]

u i..jV n,j 0 as n —> oo,

n
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(iii) for all i , j  G Z + with maxj *, j } < \_t/4\ , for all T  > 0, and, 
for all k > i +  2 +  2, we have

n K sup 
t£[0,T ]

LniJ
E U  Vj -  E(Ui Vj I F  -1)]
k = 1

0 as n ^  oo.

Unfortunately the above corollary doesn’t always give good enough 
bounds. In a few a select cases we provide sharper bounds on the 
growth of these variables.
Remark 2.3. In the special case ( t , i , j )  =  (2,1,0), one can show

n K sup UL„tj — > 0 as n G  to for k > 1,
t£[0,T ]

see Barczy et al. [2].
Lemma 2.4. Let ( X k)keZ+ be a 2-type Galton Watson process with 
immigration that satisfies conditions (CPR), (ZS) and (M) with t  =  4. 
Then for each T  > 0,

0

as n  ^  to. If further the process satisfies the higher moment condition, 
(M) with t  =  8  then for each T  > 0,

LntJ LntJ
n 3/2 sup E  Vk-1 —-G 0, n 5/2 sup E  Uk-1Vk-1

t£[0,T ] k = 1 t£[0,T ] k = 1

n 7/2 sup 
t£[0,T ]

LntJ
E  Uk2-iVk -1
k=1

0 as n —> oo.

2.3 Limit theorems for building blocks
Up to this point we have defined a decomposition of the process and 
proven some zero limit theorems about a few expression related to it. 
We will use these results to find nonzero limits.

First we relate the sums of squares of the variables Vk to the well- 
behaved part of our decomposition, the variables Uk. If the process 
(X k)k£Z+ satisfies the condition (ND), then this can be used to find 
the nonzero limit of the aforementioned sum.
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Lem m a 2.5. Let ( X k)keZ+ be a 2-type GaltonWatson process with 
immigration that satisfies conditions (CPR), (ZS) and (M) with t  = 8. 
Then for each T  > 0, we have

_2n 2 sup
te[0,T ] k=1

{V£ v left? v left) LntJ
E U k - i 0 as n oo.

The following corollary is the essential piece of our toolkit. We will 
make heavy use of this statement in the following section.
C orollary  2.6. Let ( X k)keZ+ be a 2-type Galton Watson process 
with immigration that satisfies conditions (CPR), (ZS) and (M) with 
t  =  8. Then we have

n

E
■ n -3 Uk2-1 1

n - 2V2-i  

n 1M  k 

n - 2 M  k U k - i  

n - 3 / 2 M  k V k - i .

v

¡ I  Yt2 dt
(VsV1f -Vleft> ¡1 Yt dt 

M i

¡0 Y t  d M t

(V̂ Vleft ,Vleft>1/2 f 1 TT1/2
( i - A 2  ) 1/ 2

f i  YtVi / dW  t

as n oo.

3 E stim ates for the offspring m ean m atrix

Here is a showcase of the power of the toolkit developed in the previous 
section. We derive a limit theorem for the estimation of the offspring 
mean matrix, m £ in three different settings. The notations introduced 
in each subsection are unique to that subsection, for example the matrix 
A n has a different meaning in each of the following subsections.

3.1 T he doubly  sym m etric  process
The aim of this section is to reproduce the results of [4, Theorem 3.1.]. 
We call a 2-type Galton-Watson process doubly symmetric if its off­
spring mean matrix has the form

m£ a ft
ft a  .
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In this case y =  3, 5 = a and condition (CPR) takes the form
a  e (0,1), 3 =  1 -  a  e (0,1) (CPR*)

We have A+ =  1, A-  =  1 — 23, and
1 1 1' —1 1 — 1

u right =  2 1 , u left 1 , v right 1 , v left 2 1
The decomposition then simplifies to

1
Uk =  Xk,i  +  Xk,2,

Lem m a 3.1. The joint CLS estimator for a and, 3 has the form

Vk =  2 (X k ,2  — X k , i )

3n
A -1 BAn B n,

on the set Qn := jw e Q: det(An) > 0}, where

A n ( X  1 , . . . ,  X  n) =  ^  
k=1 
n

B n ( X  1 , . . . ,  X  n) =  ^

X k - 1 , 1 X k - 1,2

X k - 1 ,2 X k - 1 , 1

X k - 1 , 1 X k - 1,2

X k - 1 ,2 X k -  1 , 1
(X k — m e) .

n

2

k=1 L ' J
In the critical, doubly symmetric case the spectral radius of m £ is

q =  A+ =  a +  3,

so we can define a natural estimator for q by Qn := a n +  ¡3n.
T heorem . 3.2. Let (X k)keZ+ be a 2-type doubly symmetric Galton 
Watson process with immigration satisfying conditions (CPR*), (ZS) 
and (M) with t  =  8. I f the process satisfies (ND) as well, then the 
probability of the existence of the estimators an, 3n and, Qn tends to 1 
as n ^  <x, and further

n 1/2 an — a
fin — 3.

V Jo1 Yt dWt 

fa1 Yt d

1
-1

n (3n 1)
D Jo Yt d (Yt — (uieft, m s)t)

f 0 Yt2 dt
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as n ^  <x, where (Yt)teR+ is defined in (2).

3.2 The general process with known immigration mean

Lemma 3.3. The CLS estimator of m£ has the form  m £(n) =  B nA - 1 
on the set Qn := j w G Q: det (An) > 0}, where

n  n

A n  =  Y X k - i X  1 - i , B n  =  Y  (X k -  m )  X  1 - i .
k =  1 k = i

Theorem. 3.4. Let (X fc)fceZ+ be a 2-type Galton Watson process 
with immigration satisfying conditions (CPR), (ZS) and (M) with t  =  
8. I f the process satisfies (ND) as well, then the probability of the
existence of the estimators m £(n) and gn tends to 1 as n  ^  to, and 
further

n 1/2( mç (n) v

n(g'n

_(1 -  A -)1 / 2  V,1/2I01 Yt d W t  vT
(V v l e f t , v l e f t) 1 / 2  fol Yt dt 16

I p1 Yt  d(Yt  -  (« l e f t , m g)t)

fo1 Yt2 dt
as n with Y t  := («left, M t  +  t m £), t G R +  where ( M t )t er+
is the unique strong solution of the SDE

d M t  =  ((«left, M t  +  tm g) + )1/2 V 1/2 d W t, t G R+,
M o  =  0,

where (W t)teR+ and (W t)teR+ are independent 2-dimensional stan­
dard Wiener processes.

3.3 The general process with unknown immigration mean 
Lemma 3.5. The joint CLS estimator of m £ and m £ has the form

m,^ (n )
B  A - 1B n A n

m .dn) _  1- Y X  k -  m (n ) - y  Xn  f J  ”  n  f J k -1,
k=1 k = 1

13



on the set Q„ := jw G Q: det ( An) > 0}, where

A n (X  1, . . . ,  X  n ) = Y ] X  k - i X  T -  -  X  k -1 E  X T - 1,
k =1 n k = 1 k = 1n

n  n

B n ( X  1, . . . ,  X  n  ) =  £  X  kX l - i  -  X  k ^  X“k-1.
k = 1 k = 1  k = 1

T heorem . 3.6. Let ( X k)keZ+ be a 2-type Galton Watson process 
with immigration that satisfies conditions (CPR), (ZS) and (M) with 
t  =  8 . I f  the process also satisfies (ND), then the probability of the
existence of the estimators m ^ n\  m e(n) and gn tends to 1 as n ^  <x, 
and further

n 1/2(m k(n)
_ ( i  -  a- ) 1/2 v f i ' ß y , d w , vT
( V v left, v left) 1/ 2 j Q y ,  dt 161

-------( n )  D  KAm y  ’ — m £ — > M 1 ,

also

n(d'n 1) —̂  Jo1 y ,  d (y, (u i e f t , m g)t) -  (Y j  -  (u i e f t , m g)) / Q y , dt

J o1 y 2  dt -  ( £  y dt)

as n ^  <x, with Y t  := (« l e f t , M t +  t m e), t G R+  where (M i) tei +
is the unique strong solution of the SDE

d M t  =  ((« l e f t , M t  +  tm e )+  )1 / 2  V 1 / 2  d W t , t G R + ,
M o  =  0,

where (W t)teR+ and (W t)teR+ are independent 2-dimensional stan­
dard Wiener processes.
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