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1 Introduction

Branching processes have a number of applications in biology, finance, eco-
nomics, and queueing theory see Haccou et al. [7]. Many aspects of applica-
tions in epidemiology, genetics, and cell kinetics were presented at the 2009
Badajoz Workshop on Branching Processes, see Velasco et al. [23].

Statistical inference for Galton—Watson processes have an extensive liter-
ature in the single type case. The problem in its present form was described
by Heyde and Seneta [5], [6]. In a series of articles the authors Wei and
Winnicki (see [24], [25], [27]) described the asymptotic behaviour of the esti-
mates gained by the conditional least squares method introduced by Klimko
and Nelson [15] and its modification the weighted conditional least squares
method by Nelson [18]. For a more in-depth discussion of the history of pa-
rameter estimation for branching process see the excellent survey article by
Winnicki [26].

Multitype Galton-Watson processes are natural generalizations of the
single-type case. For a textbook introduction to multitype branching pro-
cesses one should check Athreya and Ney [1, Chapter V.| or Mode [17]. Sta-
tistical inference for these models are sparsely available. The asymptotic
behaviour of the process itself was described by Quine [20] in the subcritical,
by Ispany and Pap [12] in the critical and finally by Kesten and Stigum [14]
in the supercritical case. Quine and Durham [21] described a strongly con-
sistent and asymptotically normal estimator for the offspring mean matrix in
the subcritical case, while Shete and Sriram [22] established similar results in
the supercritical case, however in the supercritical case the estimator requires
more information than just the generation sizes of each type of individual.
Results in the critical case was first established by Ispany et al. [10] under
heavy restrictions on the structure of the offspring mean matrix, then later
Kormendi and Pap [16] lifted the restrictions and described the asymptotic
behaviour of an estimator in both the critical and subcritical cases.

This thesis is devoted to developing a toolkit for asymptotic study of
estimators in 2-type critical Galton—Watson processes. In Section 2 we in-
troduce the basic notations for our model. We define a criticality parameter,
namely the spectral radius of the offspring mean matrix, and describe the
classification of 2-type Galton—Watson processes into subcritical, critical and
supercritical cases based on its value. Then we state a functional limit theo-



rem for the process by Ispany and Pap [12]. This limit is curious, because it is
degenerate in the sense that it is concentrated on a single line whose direction
is determined by the right Perron vector of the offspring mean matrix.

Section 3 contains the development of the toolkit. We define a decom-
position of the process based on the phenomena observed at the end of the
previous section. We want to use these random variables as building blocks of
any estimator whose asymptotic properties we want to investigate. In order
to do that we need a firm understanding of their behaviour, so we estimate
their growth as the number of generations in the underlying process tends to
infinity. Our first upper bounds are too big, so in few select cases we refine
them. Then we use a theorem by Ispany and Pap [11] to prove a joint limit
theorem for these building blocks.

We demonstrate the applicability of this method in Section 4. First we
reproduce the results in the special doubly symmetric model described in
Ispany et al. [10, Theorem 3.1]. This was our first parameter estimation
result for 2-type Galton—Watson processes and as such we chose a special
model with heavy restrictions on the structure of the offspring mean matrix,
where everything is relatively easy to calculate. By developing a better un-
derstanding of the ideas related to this decomposition we managed to tackle
the general case, where we only assume that the offspring mean matrix is
positively regular. These results can be found in Koérmendi and Pap [16,
Theorem 3.1] and are also reproduced in Subsection 4.2. We finish this sec-
tion with a new result: We examine the asymptotic properties of a joint
estimator of both the offspring mean matrix and the immigration mean.

2 Preliminaries

Let Z,, N, R and R, denote the set of non-negative integers, positive
integers, real numbers and non-negative real numbers, respectively. Every
random variable will be defined on a fixed probability space (2, A,P).

For each k,j € Z, and i,¢ € {1,2}, the number of individuals of type
i in the k'™ generation will be denoted by Xj;, the number of type ¢
offsprings produced by the ;" individual who is of type i belonging to the
(k — 1) generation will be denoted by & j,¢ and the number of type i



immigrants in the & generation will be denoted by e5;. Then we have

be Xp—1,1 f Xp—1,2 f -
k1 k5,11 k.5.2.1 k1

= + + : k € N. 1
[Xm] ; [&wym] ; [&%272] [%2] g

Here {Xo, €€k kjeN,ic {1,2}} are supposed to be independent,

where
X1 &k 'il] [%1]
Xy = o o= | er:i=| 1.
" [Xm] S [€k7j7i72 " Ek2
Moreover, {&; ;1 : k,j € N}, {& 2k j € N} and {e,:k € N} are
supposed to consist of identically distributed random vectors.

We suppose E([[€;11]%) < 0o, E(][€;12]]*) < 0o and E(|ley*) < oc.
Introduce the notations

meg, == E(&LLz’) = Ri, Mg 1= [m& m£2:| c R?@,
m, = B(er) € .
and

Ve, i=Var(§, ;) € R”?,  V.:=Var(er) e R™? e {1,2}.

Note that many authors define the offspring mean matrix as mET

2.1 Eigenvectors of the offspring mean matrix

Our ultimate goal is to estimate the matrix mg. In order to emphasize its
importance we show how it plays a role in the asymptotic behaviour of the
process. For k€ Z,, let Fj,:=0(Xo,X1,...,Xs). By (1),

E(Xk ‘ fk—l) = X/f_Ll me, + X/f_LQ Mg, + M = Mg Xp_1 +me. (2)
Consequently,
E(Xk) :ng(Xk_1)+m€, k c N,

which implies

k—1
E(X)) =m{E(X)+ > mim.  keN (3)
=0

Hence, the asymptotic behaviour of the sequence (E(X}))rez, depends
on the asymptotic behaviour of the powers (m’g)keN of the offspring mean
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matrix, which is related to the spectral radius r(mg) =: o € Ry of me (see
the Frobenius—Perron theorem, e.g., Horn and Johnson [8, Theorems 8.2.11
and 8.5.1]). A 2-type Galton-Watson process (Xj)rez, with immigration
is referred to respectively as subcritical, critical or supercritical if o < 1,
0o=1 or p>1 (see, e.g., Athreya and Ney [1, V.3] or Quine [20]). We
will write the offspring mean matrix of a 2-type Galton-Watson process with
immigration in the form

me = [O‘ ?] (4)

Y

We will focus only on positively reqular 2-type Galton—Watson processes
with immigration, i.e., when there is a positive integer £ € N such that the
entries of myg are positive (see Kesten and Stigum [14]), which is equivalent
to 5,7 € (0,00), a,0 € Ry with o+ > 0. Then the matrix mg has
eigenvalues

o+ 0+ /(o —6)2+4By

)\+:: 2
\ '_oz+(5—\/(oz—5)2+467
= 5 :

satisfying Ay >0 and —A; < A_ < Ay, hence the spectral radius of 1,
is

g:r(mg):A+:O‘+5+V(O;_(S)ZHM %)

By the Frobenius—Perron theorem (see, e.g., Horn and Johnson [8, Theorems
8.2.11 and 8.5.1]),

ko k T
AT Mg = Unight Wiegg as k — oo,

where Upigne 1s the unique right eigenvector of mye (called the right Perron
vector of myg) corresponding to the eigenvalue Ay such that the sum of its
coordinates is 1, and ey is the unique left eigenvector of mye (called the
left Perron vector of myg) corresponding to the eigenvalue A such that
(Uright, Wierr) = 1, hence we have

1 s
Uright:m [)\+—Ck_ ’
Uleft = ! [fy—i_)ur_é_ .

N = B+ A —a
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Using the so-called Putzer’s spectral formula (see, e.g., Putzer [19]), the
powers of Mg can be written in the form

P A [A+—6 B

e [A+—4y —f
m
SN A

_|_ -
Y )\Jr — CY] )\Jr — )\_ - )\Jr — 6] (6)
= )\’iurightulzft + )\’ivrightvlzft, ke N,

where vyene and v, are appropriate right and left eigenvectors of Mg,
respectively, belonging to the eigenvalue A_, for instance,

Uright = ! [_ﬁ ; )Ur i &]
P Wl IRV W I
Vet = ! [_)\Jr i &] .
6 + )\Jr — 6

The process (Xy)rez, is critical and positively regular if and only if a6 €
[0,1) and f,v € (0,00) with a+06 >0 and fy= (1 —a)(1—4), then
the matrix myg has eigenvalues Ay =1 and

Ao=a+06—-1€(—1,1).

Now we explore the relations of the eigenvectors of m, with each other.
Our first result is also known as the principle of biorthogonality, we prove it
nonetheless to show its proof is different from that of Lemma 2.3.

Lemma 2.1. Suppose that the process (Xp)pez, s critical and positively
reqular, then we have (WUyight, Vierr) = (Vright, Wiett) = 0.

Proof. Using that w,ig and vy are eigenvectors of the matrix me we get
T
<uright7 vleft> — <m£uright7 vleft> — <uright7 mg vleft> = A_ <uright7 vleft> .

Since A_ # 1 this concludes (Uright, Vietr) = 0. The proof of (Vright, Uierr) = 0
can be carried out similarly. [l

Lemma 2.2. Suppose that the process (Xp)pez, s critical and positively
reqular, then we have

det ([uright 'Uright}) = 1.
Proof. We can calculate the determinant the following way

0 1
det ([uright fvright}) - ul—Ji—ght [_1 O] Uright = u;'j—ghtuleft =1.



Lemma 2.3. Suppose that the process (X )rez, i critical and positively
reqular, then we have (Uyight, Vierr) = 1.

Proof. Using that v = (1 — a)(1 — 9) we get

<’Uleftafvr1ght> - m v+ 1— ) 7m 6 ]>

_(B-1ta)(l+a)+(y+1-6)8
2—a—0)(f+1-q)
(B+1-—o)d—a)+py+(1—-0)p
2-—a—-0)(B+1—-0q)
B+l—a)l—a)+(1—-a)(1—=0)+(1—0)8

B 2—a—-0)(B+1—a) =L

2.2 A limit theorem for the process

Next we will recall a convergence result for critical and positively regular 2-
type Galton-Watson processes with immigration. A function f: R, — R?
is called cadlag if it is right continuous with left limits. Let D(R,,R9)
and C(R,,RY) denote the space of all R%valued cadlag and continuous
functions on R, respectively. Let Dy (R, ,R?) denote the Borel o-field in
D(R,,R%) for the metric characterized by Jacod and Shiryaev [13, VI.1.15|
(with this metric D(R,,RY) is a complete and separable metric space). For

Re%valued stochastic processes (Y;)icr . and (yi”))teR ., n €N, with
cadlag paths we write y<”> D, Y as n — oo if the distribution of y<”>
on the space (D(R,,R?), D (R, R?)) converges weakly to the distribution
of Y onthespace (D(R,,R?), Dy (R;,RY)) as n — oo. Concerning the
notation ——s we note that if ¢ and &,, n € N, are random elements with
values in a metric space (F,p), then we also denote by &, 2, £ the weak
convergence of the distributions of &, on the space (F,B(F)) towards
the distribution of £ on the space (F,B(F)) as n — oo, where B(F)
denotes the Borel o-algebra on I induced by the given metric p.
For each n € N, consider the random step process

X" ="' Xy, LER,.

The following theorem is a special case of the main result in Ispany and Pap
[12, Theorem 3.1].



Theorem. 2.4. Let (Xj)rez, be a 2-type Galton-Watson process with
immigration such that «,0 € [0,1) and S,v € (0,00) with o+ > 0
and By = (1—a)(1—-6) (hence it is critical and positively regular), X, = 0,
E([|1,,1]]%) < oo, E([€112]7) < oo and E(|les|*) < oc. Then

(n) D :
(X)L 7 R, = (itsan)cn. (7)

as n — oo in D(Ry,RY), where (Z)ier, is the pathwise unique strong
solution of the SDE

d2Z = (Wierr, me) dt + \/(Vguleft, uleft>Zt+ dW,, teR,,
Zoy =0,

(8)

where (Wy)ier, s a standard Brownian motion and

2
6‘/51 + (1 _ &)‘/52
V£ = Z(ei,uright>v& - b+1—«

=1

(9)

15 a mired offspring variance matrix.

In fact, in Ispany and Pap [12, Theorem 3.1], the above result has been
proved under the higher moment assumptions

E(€1101") <00, E(ll€10l1") <00, E(fled]’) < oc,
which have been relaxed in Danka and Pap [4, Theorem 3.1].

Remark 2.5. The SDE (8) has a unique strong solution (Zt(z))te]g+ for all
initial values Zéz) =z€R, andif z>0, then Zt(z) 1s nonnegative for
all t € Ry with probability one, hence Z," may be replaced by Z; under

the square root in (8), see, for example, Ikeda and Watanbe [9, Chapter IV,
Example 8.2].

In this section we have introduced a number of assumptions on the process
(X&) ez, For the sake of easier reference we collect those assumptions here.
First a condition that guarantees that our process is critical and positively
regular. The process satisties the criticality condition it

a,0 € [0,1), 8,7 €(0,00), a+6>0, By=(1-a)(l—-0). (CPR)

Then we have a condition that we start from an empty initial population,
that i1s Xo = 0. If we don’t want to be stuck in 0 we have to assume that the

10



immigration distribution isn’t degenerate 0, it is sufficient to assume m. # 0
for this. The process satisfies the zero start condition if

X() = O, me 7§ 0. (ZS)

Next we have a condition on the moments of the process, where we assume the
finiteness of /™" moments of both the offspring and immigration distributions.
This in terms implies the finiteness of the /" moment of the process itself.
The process satisfies the moment condition for some ¢ € N if

E (“517171 E) < o0, E (“517172 é) < 00, E (HelHé) < 0. (M)

Finally we have a condition that doesn’t appear in this section however it
will be necessary later. The process satisfies the non degeneracy condition if

(V ¢Vleft; Vsete) 7 0. (ND)

The reason for this condition can be understood if one looks at Lemma
3.11, as that describes a relation between the two parts of the upcoming
decomposition.

By the Frobenius-Perron theorem g is a vector whose coordinates are
all positive and add up to 1, hence V¢ defined in (9) is a convex combination
of the offspring covariance matrices and as such it is a positive semidefinite
matrix. Therefore

(V Vett; Vi) > 0,
so when (ND) doesn’t hold, we have

(V ¢Ulete, Vsete) = 0.

One can easily check the following

2
<V5'Uleft7 Viefr) = Z<€1, Uright) Var (<'Uleft7 51717i>) ’
i=1

consequently
(Veies, Vier) =0 = Var ((vie,&11,)) =0, i=1,2.

So when the non-degeneracy condition fails, then both offspring distributions
are degenerate. In this thesis we prove results under (ND), however we note,
that Kormendi and Pap [16] contains some results under the degenerate case
as well.

11



2.3 Insight from a failed attempt

With Theorem 2.4 in hand we will try to use the continuous mapping theorem
to analyse an estimator. This attempt will fail, but understanding why it
fails will give us clues to which direction should we continue our research.
As a method of estimation we are going to use the conditional least squares
method, however we will not go into much detail here, since Section 4.2
contains not only the construction of the estimator but also a successful
attempt at describing its limiting behaviour. The difference of the least
squares estimate and the real offspring mean matrix can be written as

’ﬁ’b\g(n) — Mg = CnAT_Ll,

where

A (X, X,) = Z XX/,
k=1

Co(X1,.... X)) =Y MX[ .
k=1

For a detailed proof see Lemma 4.5 and Corollary 4.6. We will focus on the
asymptotic behaviour of the matrix A,,. By Theorem 2.4 and the continuous
mapping theorem we have

1 - 1
nA, = / X E”) <X in)> dt 2 / Z2dt urightujight =: A.
0 0

Unfortunately the matrix A is non-invertible, since det(\4) = 0. So a
straight up application of the continuous mapping theorem fails to find the
non-zero limit that we are looking for. The correct way to look at this is
that Theorem 2.4 is incomplete, we need something more. In the following
section we are introducing a decomposition of the process and based on that,
we prove a limit theorem that is an extension of Theorem 2.4 allowing us to
examine the estimators successtully.

12



3 A toolkit for asymptotic study of estimates

3.1 A decomposition of 2-type Galton—Watson processes

In the previous section we saw that the eigenvectors of the matrixmy play an
important role in the asymptotic behaviour of the process itself. It is curious
in Theorem 2.4 that the limit of a 2-dimensional process is degenerate in the
sense that it is concentrated on a single line whose direction is determined
by Upighe- In this section we define a decomposition of the process based on
the eigenvectors of 1.

Applying (2), let us introduce the sequence

Mk::Xk—E(Xk\}"k_l):Xk—mng_l—ms, ]{EN, (10)

of martingale differences with respect to the filtration (Fi)rez,. By (10),
the process (X} )rez, satisfies the recursion

Xk:mng_lererMk, k € N. (11)

We derive a useful decomposition for Xji, k € N. Let us introduce the
sequence

(Y+1-0)Xm1+(f+1—a)Xps

Uk = (Wet, X'1;) = T ,  keZ,. (12)
One can observe that U, >0 forall k€ Z,, and
Up = Up—1 + (Wiets, Me) + (Wiere, M 1), k€ N, (13)

since <’u,1€ft, mng_Q = ulTeftmng_l = ’u,l—gftX/f_l = Uk—l; because U eft,
is a left eigenvector of the mean matrix mg belonging to the eigenvalue 1.
Hence (Uy)rez, is a nonnegative unstable AR(1) process with positive drift
(Wleg;, Me) and with heteroscedastic innovation ({(wjer, M) )reny. Note that
the solution of the recursion (13) is

!
Uy = Z(uleft,Mj + me), k€ N, (14)

g=1

and applying the continuous mapping theorem to Theorem 2.4 yields

(0 Ut e, = (e, X)) e, — (e, Xi))ier, = (Z0)ier,  (15)

as n — oo, where (Z;)icr, is the pathwise unique strong solution of the
SDE (8). We could think of the variables (U), oz as the well behaved part of

13



our decomposition, because they allow us to get the underlying 1-dimensional
stochastic process in Theorem 2.4 . Moreover, let

—(1— ) Xp1 + BXpo

Vi = (U, X 1) = , kel,. 1
= (Vtett, X 1) B+1—a < Ly (16)
Note that we have
Vi = A Vi1 + (Vtege, M) + (Vtege, M), k€ N, (17)

since  (Vgee, Mg Xg_1) = vl me X1 = A_v X1 = A_Vj_1, because
Viery 18 a left eigenvector of the mean matrix mg belonging to the eigenvalue
A_. Thus (Vi)rew is a stable AR(1) process with drift (vjer, me) and
with heteroscedastic innovation ({(Vief, M) )ren. Note that the solution of
the recursion (17) is

k
Vi = Z)\]i_j@)lefta M, +m.), k€ N, (18)

g=1

and applying the continuous mapping theorem to Theorem 2.4 yields

(0 Vit e, = ((Wiert, XN )ier. —= ((V1eit, X1) Jier, = 0.

We could think of the variables (Vi),cz as the problematic part of our
decomposition, because the continuous mapping theorem does not find the
nonzero limit of them, since the scaling is incorrect. By (1) and (10), we
obtain the decomposition

Xi-11 Xp—1,2
M, = Z (£k7j71_E(€k7j71))+ Z (€k7j72_E(€k7j72))+(€/€_E(€/€))v (19)
Jj=1 j=1

for all £ € N. The recursion (11) has the solution

k
Xk:Zmlg_j(merMj), k € N.
=1

14



Consequently, using (6),
k

T k—j T
X = E (Urightuleft + AZ ’Uright’vleft> (me + M)
7=1

k k

o T T k—j

= Uright Ujef § (X5 —me X 1) + Vright Vpegy § ANUX G —me X )
=1 =1
k k

T T k—j k—j+1

= UrightWjef; § (X5 — X 1) + VrightVjege § [A— X;— Al Xj—l}

=1 i1

T T
= UrightUefiX k T Vright VieiX & = UkWright + ViUright,

Uk =Ur — 555V
X = [X 7 ] - [uright ’Uright} [V] = ﬁt—a y+1=4
k2 k Ur+ 515V
forall k € Z,.

We want to use this decomposition as a tool to investigate asymptotic
properties of various estimators of the matrix mg. Any estimator based
on the sample X1, X, ..., X, can be rewritten in terms of the variables
Uy, ..., U, Vi,....V,, thus a good understanding of their behaviour can give
us insight into the behaviour of the estimator itself. We note that this re-
formulation of an estimator is strictly a theoretical tool to prove theorems
about it, as without knowing me we also don’t know wjer; and vjer;, therefore
we are unable to calculate U, and V.

B+Hl—a

3.2 An estimation of moments

We want to bound the growth of (M/f)kezw (Xk)keZ+; (Uk)keZ+ and
(Vi)rez, and some related expressions as k — oo. The reader will find
statements in this section like this:

[ nt]

_ P
n~""? sup E Uz \Viei| — 0 as n — o0.
te[0,7] | .

What these allows us to do is identity negligible terms in an expression, that
is terms that with the right scaling disappear in the limit. We will establish
nonzero limits for some of these expression in the next section.

First note that, for all k € N, E(M, | Fr_1) = 0 and thus E(M}) = 0,
since Mk = Xk — E(Xk ‘ fk—l)-

15



Lemma 3.1. Let (X})rez, be a 2-type Galton-Watson process with im-
migration satisfying (M) with £ =2 and Xo=0 . Then

Var(My, | Fr—1) = Xp—11 Ve, + Xp_12Ve, + Ve 1)
=Up 1 Ve + Vi Ve + V2

for all k € N, where
2

Ve =) (i) Ve, =
1=1

6‘/51 B (1 - 6)‘/52
f+1—-06

Proof. Using the decomposition (19), where, for all k£ € N, the random
vectors {&), 1 —E(& 1), €rjo—E(&L o), er—E(er) : j € N} are indepen-
dent of each other, also independent of Fi_;, and have zero mean vector,
we conclude (21). O

We will make good use of the following lemma on sums of i.i.d. random
variables and its generalization.

Lemma 3.2. Let ((i)ren be independent and identically distributed random
variables such that E(||(1||*) < oo with some k € N.

(1) Then there exists a polynomial @ : R — R, with degree at most k
such that
E((G+ -+ W) = Q(N), N eN.

(i) If E(¢) =0 then there exists a polynomial R : R — R, with degree
at most | k/2| such that

E((G 4+ +¢w)") = R(N), NeN.

The coefficients of the polynomials ) and R depend on the moments
E(Ci)? 7;6{17"'7]\[}'
Proof. (i) By the multinomial theorem we have

N k
k! i
R V) IR e |
- . - 1. INE S
1=1 01yt NELy J=
R
Taking expectation of both sides and using the independence of the variables

yields

() = M IEE)
(3¢) |

..ZN! .
ji



Since the variables are also identically distributed, we can regroup this sum
by introducing

ko= |{je{l,...,N}:i;=s}], se{l,... k},

leading to
k
al N N—]ﬁ— ks—l - iNT ki
s((xe) )= () (") =@
i=1 se{l,... .k} i=1
(K1, ks )EHs
where

Ho={(ki,...,ks) € Z: ks #£0, ky + 2ko + 3ks + - -- + sk, = k}.

N\ (N —k N—ki— - — ke,
) O )
N(N—l)“'(N—]ﬁ—]{2—"'—]{3+1)
kilko!- - k!

is a polynomial of the variable N having degree ki +---+k, < k, we have
shown the existence of ().

Since

(ii) Using the same decomposition, we have

() )= 2 () () mEar

sef{2,....k}, 2
(0,kg,....ks )EHs

N\ (N — ko N—ky—-— ke
(kz)( ks )( ks )
N(N—l)“'(N—]{Q—]{g—'“—ks—i-l)
kolks! - - k!

is a polynomial of the variable N having degree ko + --- + k,. Since

Here

k =2ky+3ks+ -+ sks > 2(ka + ks + - - + k),

we have ko + -+ + ks < k/2 yielding part (ii). ]
Lemma 3.2 can be generalized in the following way.

17



Lemma 3.3. Let ((;)ien be independent and identically distributed random
vectors with values in R? such that E (||¢]|*1) < oo with some k,{ € N.

(1) There exists a polynomial Q) : R — R, with degree at most k+{ such
that

E ((Cu + e+ CN71)I€(C172 + -+ CN72)€) = Q(N), N € N.

(ii) If E({;) = O then there exists a polynomial @ : R — R, with degree
at most | (k+£€)/2| such that

E ((Cu + e+ CN71)I€(C172 + -+ CN72)€) = R(N), N € N.

The coefficients of the polynomials ) and R depend on the moments

E(({J({Q), ie {1k}, jell,... 0.

We can use Lemma 3.3 to express the moments of M with the help of
Xp—11 and Xj_1 2.

Corollary 3.4. Let (Xp)rez, be a 2-type Galton-Watson process with
immigration that satisfies conditions (CPR), (M) with some { € N and
Xo = 0. Then for all s,t € Z,, s+ 1 < {, there exists a polynomial
Ret : R? — R having degree at most | (s +t)/2] such that

E (M Mo | Frr) = Rep (X101, Xim12) -
Proof. By (10) we have
Mpy=e My, = X1 —aXp_ 11— BXp 12— M1

Xi—11 Xp—1,2
j{: ki1 — +-j£: €21 — Bl + [exg — me 1]
1
Xjk,m Xp—1,2
= ) &riia —E G+ D [Grjon —E(€rjon)]
Jj=1 j=1
+ [er1 —E (era)]
and
Xi-11 Xp—1,2
My o = j{: k12 —E (Ekjn2)] + j{: (€22 —E (€ 22)]
—1 =1

+ [5&2 —E (5/€72)] .

18



Introduce the notations

Cj =& —E (€k7j71) , M=o —E (5/{73'72) , 0 =g —E(eyp),

then the random vectors {C M0 5 €N } are independent and have zero
mean vector. Using the multinomial theorem twice we get

E (M M5 | i)

N M S /N M t
(z@@@wel) (Z@»mew@z)

7=1 7=1 7=1 7=1 N=Xp_1,1
M=Xp_15

_ Z S't' E <98—i1—i29t_j1_j2>
iliol(s — i1 — ig)lj1ljal(t — j1 — Jjo)! ! ’

i1,12,71,J2€ 2L
11+19<s

N
5oy (),

=1

M
S0 ()

7=l M=X,

J1tja<t
By Lemma 3.3 there exist polynomials R; W and R : having degrees at

11,72

most | (i + i2)/2] and | (j1 + j2)/2] respectively such that
E (M M., | i)
dﬂE(ﬁ”““%ﬂfﬁ>RU(Xp_)RU(Xplg

21,22 J1,72

N inlial(s — i — o)1 ol (E — J1 — jo))!
i1,82,J1,52 €L+ 1:02 ( 1 2) J1:J2 ( il ]2)
11+19<s
Jit7a<t

= R37t (Xk—Ll) X/f—172)7

where R, is a polynomial with degree

+1
s )<t
deg(R ﬂf) =4 erﬁ%{€z+ <deg <R21 22> + deg < J1.J2 - 9
11+19<s
Jitje<t

[l
Let ® denote the Kronecker product of matrices, then we can state the
following.
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Lemma 3.5. Let (X} )rez. be a 2-type Galton-Watson process with immi-
gration that satisfies conditions (CPR), (M) with some { € N and X, = 0.
Then E(||X1||") = O(k") and further

E(Mj") = O(K2),  E(U}) = O(k), E(V¥) = O(K)
for i, €Zy with i </{ and 25 </{.

Proof. For the first statement it is sufficient to show, that for any polynomial
P :R? — R with degree ¢ there exists a constant cpye such that for all k € N

E (‘P(Xk71,Xk72)‘) S Cp7g]€£. (22)

We’ll show this by induction on /.
If £ =1, then

k
E(Xe1) =E(e] X;) =e/E(Xy)=e/ > m; 'm.
j=1

ko [1—¢6 p 1-X MM—a -5
T
similarly

B k [1—-6 B 1-X [1—a -8
B () =< (=5 | 1_&]+i(1_A_)2[_7 ) me

This proves the statement for £ = 1.

Now fix some ¢ € N and suppose, that (22) holds for any polynomial P
with degree at most ¢ — 1. Since every polynomial is a linear combination
of monomials all we have to prove is that for all s, € Z,, s +1 = { there
exists ¢4 € R such that for all K € N

E(X7i1 Xpo) < ok
By (11) we have

X/§71X/i72 = (€1T (meXjp_1 +me + Mk—l))s
x (ey (Me X1 +me + Mk_l))t
= (aXjo11 + X120+ Meq + Mi_11)°
X (6 X411+ 7YXk 12+ Moo+ My_15) .
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By Corollary 3.4 one can show, that there exists a polynomial (), having
degree at most s +t —1 = ¢ — 1 such that

E (X7 1 Xk | Fio1) = (@Xpo11 + BXio12)” (0Xpo1q + YXp12)
+ Qst (Xp—1.1, Xi—12) -

Using the binomial theorem we get

(X171 + BXp-12)° (60X 11 + 7 X 12)

s t
S\ pi s—iys—i v U\ Giotmjyt—i v
- (Z (z) a XkIJXkLz) (g (]) 53715 JXZJ171X/‘2172>
1=0 7=0

St () (o

1=0 7=0
s+t
- Z X/iﬁmX/?Qth?m
where
“ 0 —t t
h = O—t—i i t+i mém 1
=32 () i)
Consequently
[ £X1/§71 EX/f—m 1 1 Qro(Xk—11, Xi—12) |
Xpq X2 X 11X k12 Q11 (Xp—1,1, Xi—12)
E ; | Fie1 | = H,y : + :
XMX/?_QI Xe11 X1, Q1e—1(Xp—1,1, Xi—12)
Xk Xi s | Qoe(Xp—1,1, Xk—12) |

with H, = (h, m) _, € REPDXEHD  Tterating this recursion, taking expec-
tation of both 81des and applying the tower-rule yields

€X1/f71 E(Qeo(Xk—1-i1, Xp—1-i2)) |
Xp1 X2 . (Qr-11(Xp—1-i1, Xp—1-i2))
: = Z H, :
Xea X5 =0 E (Q1,—1(Xp—1-i1, Xic1-i2))
Xio E (Qoe(Xi-1-i1, Xp—1-i2)) |

We now show that the matrix H, has spectral radius 1, thus || H}|| = O(1).
Let us denote the coordinates of vector wign with u; and wus respectively,
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then introduce the vector

(£) _[é -1 qT'

-1
Ui = (U1 Uy Uz ... WUy Uy

Since Uyight 15 a right eigenvector of the matrix mg belonging to the eigenvalue
1 we get

l

S ulTm UG ho [ (ceuy + Bug)*

=0 -1
¢ . (cuy + Bus) ™ (yug + ouz) 0
Hg ul("ig)ht = : - . - uright'

' :

ST ulT S b (yuy + dus)"

m=0 | B -

Therefore uifg)ht is an eigenvector of the matrix H belonging to the eigenvalue

1 with all positive components, thus by the Perron-Frobenius theorem we
have that the spectral radius of Hy is 1. Consequently there exists hy € R
such that for all i € N we have || H,|| < h,. Then by the induction hypothesis
there exist constants cq, , ¢ such that for all k € N

E (‘Qs7t(Xk717Xk72)‘) < CQS@g]{é

Putting it all together we have
k—1
E (X1 X}0) < hemax{cg,,c: s+t =0} > (k—1—i)"" = O(k).
i=0
This concludes the statement for X, and by Corollary 3.4 for M. By (12)
we have

E(U,i) —E ((VJr 1 _6)Xk71 +(B+1 _C“)Xm)i

. — O (k).

Next, for j € Z, with 2j <{, we prove E(V;”’) = O(k7) using induction
in k. By the recursion Vi = (a+ 6 — 1)Vi 1 + Ve, M + me), k € N,
we have E(V;) = (a+0—1)E(Vi_1) + (Vier, Mme), k& € N, with initial value
E(Vo) =0, hence

el
—_

E(Vi) = (Ver,me) Y (a+0-1),  keN,

1

[
S
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which yields |E(V;)| = O(1). Indeed, for all k€ N,

k-1 .
§—1) < .
;O:(O‘+ I Py
The rest of the proof of E(V,”) = O(k/) can be carried out as in Corollary
9.1 of Barczy et al. [3]. [

The next corollary can be derived exactly as Corollary 9.2 of Barczy et
al. [3].

Corollary 3.6. Let (Xj)rez, be a 2-type Galton-Watson process with
immigration that satisfies conditions (CPR), (M) with some { € N and
Xo=0. Then

(i) for all i,j € Zy with max{i,j} < [{/2], and for all Kk > i+ % +1,
we have

250 as n — oo, (23)

n
Y ‘U,;v,j
k=1

(ii) for all i,j € Zy with max{i,j} < ¢, for all T >0, and for all
K>i+2+5 we have

250 as n — oo, (24)

n~" sup ‘Uin V{L
te[0,77] Lnt] " Lt

(iii) for all i,j € Zy with max{i,j} < [{/4], for all T >0, and for
all k>i+%+3, we have
[ nt]

n~" sup UV —B(UV] | Fioh)] 50 as n — oo. (25)
te[0,1] | .

Unfortunately the above corollary doesn’t always give good enough
bounds. In a few select cases we provide sharper bounds on the growth
of these variables.

Remark 3.7. In the special case (£,i,7) = (2,1,0), one can improve (24),
namely, one can show

K

n~" sup Uy LN} as n— oo for kK >1, (26)
10,7

see Barczy et al. [3].
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Lemma 3.8. Let (X})rez, be a 2-type Galton-Watson process with im-
migration that satisfies conditions (CPR), (ZS) and (M) with { = 4. Then
for each T >0,

P
sup g Vil — 0 as n — oo.
te[0,77]

Proof. In order to prove the statement we derive a decomposition of y ,Eﬂ Vi
as a martingale and some other terms. Using the recursion (17), we obtain

E(Vi | Fio1) = E(A_Vier + (Vters, My, + me) | Fro1)
- A—Vk—l + <vleft7 ms>

Thus
[ nt] [ nt] [ nt]
> Ve=) Vi —E(Vi| Fact)] + A2 Vier + O(n)
k=1 k=1 k=2
Consequently
[t ;L A\
Vi = Vi —E(V, )] ———Vju-1 + 0O
;k 1_)\_;[k (Vi | Fiem1)] = 37— Vi1 + O(n)
Using (25) with (¢,4,7) = (4,0,1) and (24) with (¢,i,7) = (2,0,1) we con-
clude the statement. []

Lemma 3.9. Let (Xp)rez, be a 2-type Galton—Watson process with im-
migration that satisfies conditions (CPR), (ZS) and (M) with { = 4. Then
for each T >0,

il
P

n=°/? sup E Up_1Vi_1] — 0 as n — oo.
t€]0,7

Proof. The aim of the following discussion is to decompose Z,Eg Up_1Vi_4
as a sum of a martingale and some other terms. Using the recursions (17),
(13) and Lemma 3.1, we obtain

E(Up-1Vi—1 | Fra) =
— E((Uk—2 + (e, My—1 +me)) (A_Vieo + (Viere, Mp—y + M) ‘ fk—2>
= A_Up—2Vi—a + (Ueft, Me) Up—2 + A (Wiefe, M) Vi—o

+ UM, Vit + U E(M 1 M| | Fi—2) et
= A_U,_5V._o + constant + linear combination of Uj_o and Vj_s.
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k=1
[t | [ nt]
= [UkaViet —E(UraVier | Frca)] + ) E(Uk-1Vier | Fioa)
k=2 k=2
[nt] [nt]
= [UkaViet —E(UpaVier | Froa)] +A2)  UkaVio
k=2 k=2

[t | [t |
+ O(n) + linear combination of Z Ui_s and Z Vi_a.
k=2 k=2

Consequently

1
Up—1Vi—1 = Up-1Vie1 — E(Ug-1 V- _
];MM 1_A_§Hj[k1k1 (Ur-1Vir | Fios)]

A
_ ﬁUL”tJ—lvmtJ_l +O(n)

&

[ nt] [t |
+ linear combination of Z Ui,_o and Z Vi_o.
k=2 k=2
Using (25) with (¢£,i,7) = (4,1,1) we have

]
P

2 sup Z Uk Wi — E(Up_1 Vi1 | }"k_g)} — 0 as m — oQ.
10,7 —9

Thus, in order to show the statement, it suffices to prove

[T [T
PN U 00 0 PY 0, (27)
— P
n 5/2 sup ‘ULntJVLntJ‘ — 0 (28)
tef0,7

as n — oo. Using (23) with (4,i,5) = (2,1,0) and (4,4,j) = (2,0,1)
we have (27), and by (24) with (¢4,4,7) = (3,1,1) we have (28), thus we
conclude the statement. []
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Lemma 3.10. Let (X})rez, be a 2-type Galton-Watson process with im-
migration that satisfies conditions (CPR), (ZS) and (M) with £ = 8. Then
for each T >0,

[nt]

_ P
n~""% sup E U? Viei| — 0 as n — Q.
tel0,1] | .

Proof. The aim of the following discussion is to decompose Z,Eg Uz Vi
as a sum of a martingale and some other terms. Using recursions (13), (17)
and Lemma 3.1, we obtain

E(Ui_ Vi1 | Fr—2)
=k <(Uk_2+<uleft’ My +me)) (A_Viea+ (Ve My_i +me)) ‘ fk_2>
- )‘—Ulg—2vk—2 + constant

+ linear combination of Uy_s, Vi_a, Uy, Vi2, and Up_sVi_s.

Thus

[nt] | nt ]
=Y (U \Vier —E(UF Vier | Frea)] + Y B(UR Vit | Fico)

k=2 k=2
[nt] Lnt]
= [ Vi —B(U; Vi | Froa)] 22> U Vi 2 +O(n)
k=2 k=2
[t | [t | [t | [t |
+ linear combination of Z U —2, Z Vi—a, Z Uz ,, Z Vi,
k=1 k=1 k=1 k=1

]

and Z U/{_Q‘/k_g.
k=1
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Consequently
[t

ZU/?—1V/€—1 = )\ kz; U Vioi —E(UZ_ Vi1 | fk—z)}
Ao, . o [nt]
- ﬁULmﬁJ_lentJ—l + O(n) + linear combination of Z Uk_o,
[t [t |t |t o
and Y Vieo, 3 Uiy Y Vig, Y UpaVio.
k=1 k=1 k=1 k—1

Using (25) with (£,i,7) = (8,2,1) we have

]

P
? sup Z (U Vet —E(Up_ Vi | Feea)] | — 0 as n — oo,
0T 1.5

Thus, in order to prove the lemma, it suffices to show that

| nT] | nT] | nT]
n_7/QZU/€i>O, n_7/ZZU,§LO, n_7/22\vk\ 50,
[T b [T b
nTPNYVE =50, 0T UV = 0,
k=1 k=1
n~"% sup \U Ving| 50
te[0,7]

as n — oo. These follow from a straightforward application of (23) and
(24).

3.3 Limit theorems for building blocks

Up to this point we have defined a decomposition of the process and proven
some zero limit theorems about a few expression related to it. We will use

these results to find nonzero limits.

First we relate the sums of squares of the variables V} to the well-behaved

part of our decomposition, the variables Uy. If the process (X)o7 satisfies

the condition (ND), then this can be used to find the nonzero limit of the

aforementioned sum.
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Lemma 3.11. Let (X})rez, be a 2-type Galton-Watson process with im-
migration that satisfies conditions (CPR), (ZS) and (M) with £ = 8. Then
for each T >0, we have

kg ~7
Ve Uttt Ve
n=? sup V,f — < 51 : ft)\Q eft) ZUk_l — 0 as n — oQ.
tel0,T] | — A

Proof. In order to prove the statement, we derive a decomposition of
Z,Eg V2 as a sum of a martingale and some other terms. Using recursion
(17) and Lemma 3.1, we obtain
E(V} | Fro1) =E [()\—Vk—l + (Vtete, My + me))’ ‘ fk—l}
- >\2_‘/]€2_1 + 2)\—<vleft7 ms>‘/k—1 + <vleft7 ms>2
+ O E(M M, | Fot)Vlest

= )\2_‘/,3_1 -+ ’vlzftvgvleftUk_l + constant + constant x Vj_;.

Thus
[ nt] [ mt] |nt]
SVE=D V=BV | Fea)] + ) BV | Fir)
k=1 k=1 —1
[ nt] [nt] | nt ]
= =BV | Frod)] + A2 V2 + 0 Veviern D Uk
k=1 k=1 k=1
[nt]
+ O(n) + constant x Z Vi_1.
k=1
Consequently,

Int) Int) =
1 2 (Ve Vleft; Vieft)
2 Vi = 1-\2 Vi~ E(VE | Fi)] + 1- )2 D Uit
1 1 1
[t ]
Vﬁzﬂ + O(n) + constant x Z Vi_1.
1

i

2
Y

Using (25) with (¢,i,7) = (8,0,2) we obtain

sup ZVk E(V? | Fiz1)] 250 as n— oo
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Using (24) with (¢,i,7) = (3,0,2) we obtain

? sup VL%%tJ 250 as 1 — 00.
te[0,7]
Moreover,
[nt] b
n_ZZVk_l—>O as n — oo.
k=1
follows by (23) with the choice (4,4,7) = (4,0,1). Consequently, we obtain
the statement. O]

We recall a result about convergence of random step processes towards a
diffusion process, see Ispany and Pap [11].

Theorem. 3.12. Let ~ : Ry x R? — R™"  be a continuous function.
Assume that uniqueness in the sense of probability law holds for the SDE

dut = fy(tvut) th7 le R+7 (29)

with initial value Uy = wy for all wy € R, where (Wt)te]& s an
r-dimensional standard Wiener process. Let (U;)icr. be a solution of (29)
with initial value Uy = 0 € RY.

For each n € N, let (U,(fn))keN be a sequence of d-dimensional mar-
tingale differences with respect to a filtration (f,in))kEL, i.e., E(U,gn) |
FMY=0, neN, keN. Let

U =N"U"., teR, neN

Suppose that E(HU H ?) < oo for all n,k € N.  Suppose that for each
T >0,

(i) sup ZVar( ,(fn)\f,gi)l) fo SU” )y (s Ugn))Tds i>0,

te[0,7

n P
(ii) 2 E([UL 21 gyoopagy | Fath) =0 for all 6> 0,

where —  denotes convergence in probability. Then uU” 2o u o as
n — Q.
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Note that in (i) of Theorem 3.12, || - || denotes a matrix norm, while in
(ii) it denotes a vector norm.

We will use the above theorem to prove limit theorems on our building
blocks. However this theorem only applies to martingale differences, so we
must restrict ourself to using those. Consider the sequence of stochastic
processes

T M, n!
Z,(fn) =1|n 2MkUk_1 =|n 2Uk—1 ® M,
=M Vi n=32V,_,

for te R, and k,n e N.

Theorem. 3.13. Let (Xy)iez, be a 2-type Galton-Watson process with
immigration that satisfies conditions (CPR), (ZS) and (M) with ¢ = 8. Then
we have

Z2m 2z s n— o, (30)

where the process (Zi)ier. with values in (R?)* s the unique strong
solution of the SDE

dW,

dZ; = fy(tvzt) [di\/\/) ] ) le RJM (31)
i

with initial value Zy = 0, where (Wh)er, and (VNVt)tE]Rg+ are inde-
pendent 2-dimensional standard Wiener processes, and v : R, x (R?)? —
(R2*2)3%2 s defined by

((Wief, T1 + tme)T)/2 0
) |Gzt 57
! %(Ulem x +tm,)

for te Ry and x = (1,22, 23) € (R?)3.

Proof. In order to show convergence 2 m P,z , we apply Theorem 3.12
with the special choices U = Z, U/(:) = Z,gn), n,k € N, (f,in))kEL =
(Fr)kez, and the function « which is defined in Theorem 3.13.
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We start by showing that the SDE (31) admits a unique strong solution
(Z7 )ier, for all initial values Z§ = z € (R?)%. The SDE (31) has the form

{th] ((Wies, My + tm€>+)1/2 751/2 dW,
dZ; = [dNtJ = ((’u,left, M, + tm€>+)3/2 751/2 AW, | (32)
_vleft7vleft 1/2 L N
dPt _% <uleft, Mt + tm€> ‘@1/2 th_

for all t € R;. One can prove that the first 2-dimensional equation of the

SDE (32) has a pathwise unique strong solution (MiyO))teR . with arbitrary

initial value M(()yO) =y, € R?. Indeed, it is equivalent to the existence of
a pathwise unique strong solution of the SDE

dS; = <uleft, m€> dt + (S;r)l/2 ulzftvglm th,

__ le RJM (33)
dQ, = —TIm, dt + (SH)V* (I, - NV, > dw,

with initial value (SéyO), (()yO)) = ((wieft, Yo)» (Io—ID)y,) € RxR?, where
I, denotes the 2-dimensional unit matrix and II := urightulTeft, since we
have the correspondences

S = g (MP +ime). QY = M — P g
MiyO) = QiyO) + St(yO)urighta

see the proof of Ispany and Pap [12, Theorem 3.1|. By Remark 2.5, ;" may
be replaced by &; for all ¢ € Ry in the first equation of (33) provided
that  (Uper, yo) € Ry, hence (Upg, M: + tme)" may be replaced by
(Wieft, My + tme) for all ¢t € Ry in (32). Thus the SDE (31) has a
pathwise unique strong solution with initial value Zy, = 0.

Now we show that conditions (i) and (ii) of Theorem 3.12 hold. The
conditional variance has the form

n—2 n_SUk—l n_5/2‘/k—1
Var(Z,(fn) ‘ fk—l) = n_SUk_l n‘4U,3_1 n_7/2U/€_1‘//€_1 &) VMk
n_5/2‘/k—1 n_7/2Uk—1‘/k—1 n—S‘/kZ_l

for n e N, ke {1,...,n}, with Vjy, = Var(M} | Fr_1), and
v(s, 2y (s, 2T has the form

|VRTL7S R%L7S O -|

Rie R, 0 % Ve
(VeVleft, Viett) o 2

\‘ 0 0 €ll_f)\%lf RnsJ
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for s € Ry, where R, = (uleft,Mg”) + sm.), and we used that
(uleft,Mg”) + sme)t = (uleft,Mg”) +sme), s € Ry, n € N. Indeed, by
(10), we get

1
Rips=— (Wef, X — Mg X1 — Me) + (Wer, SMe)
o
1 | 7]
E; uleftan_Xk 1 _m€> +S<uleft7m€> (34)
1 ns — |ns
E(ulefta X ns)) + #«Ufleft; me)
1 ns — |ns
= —Ulps| + #<Uleftyms> € Ry
n n

for s € Ry, n €N, since ul,me = ul, implies (Wer, meX) 1) =
uleme X1 = ulg X1 = (Wepe, X_1).

In order to check condition (i) of Theorem 3.12, we need to prove that for
each T >0,

sup Var, — / Ro.s Veds 0, 35
€[0T 7122 ’ ¢ (35)
1 K J t b
sup _SZU’f—lka_ R ngs — 0, (36)
tefo, 1) 111 53— 0
1 [t ] t o b
sup ||— Y UiV, RS Veds|| — 0, (37)
tefo,1) |7 1= o
sup i%w Vag, — (Velet Vin) / R Veds|| B0, (38)
rel0.7] n3 o k—1 k 1 — )\2_ 0 n,s V& )
[t] b
sup VioaVam, || — 0, 39
S n/Z k (39)
1 [t] b
sup ||—= Up_1Vi_1Var |l — 0 40
S n/Z k (40)
as n — 0.
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First we show (35). By (34),

|nt]—1

! 1 nt — |nt| [nt] + (nt — [nt])?
/() Rms ds = ﬁ kz; Uk + TULMJ + 2n2 <uleft7 m€>-

Using Lemma 3.1, we have Viy, = Uy Ve + ‘/If_lvg + V., thus, in order
to show (35), it suffices to prove

[nT
n=* Z V| 50, n=> sup Upy Lo, (41)
1 10,77
n~? sup [|nt] + (nt — [nt])*] =0 (42)
tef0,7

as n — oo. Using (23) with (¢,4,7) = (2,0,1) and (24) with (£,4,j) =
(2,1,0), we have (41). Clearly, (42) follows from |nt — [nt]| <1, n € N,
t € Ry, thus we conclude (35).

Next we turn to prove (36). By (34),

[nt]—1

L, R s 1 nt —|nt|
i R, ds= 3 Z Ui + ﬁ(ulefmmd Z Up + ——5—Ujny
k=1 k=1

nt — [ntl])?
+( ng ) (Wiete, Mg ) Uy

[nt] + (nt — |nt])?
_|_
3n?
Using Lemma 3.1, we obtain
[ nt] [t | [t |

[
> UiV, =) Ui Ve + Y U Viea Ve + > Upa Ve, (43)
k=1 k=1 k=1 k=1

<uleft 3 ms> 2 .

Thus, in order to show (36), it suffices to prove

[T [T
n=? Z | U Vi| F, 0, n° Z Uy LN 0, n>? sup U] LN 0, (44)
n~ sup [|nt]+ (nt — |nt])’] =0 (45)

te[0,7]

as n — oo. By (23) with (¢,4,7) =(2,1,1) and (¢,i,7) = (2,1,0), and
by (26), we have (44). Clearly, (45) follows from |nt — |nt]| <1, n € N,
t € Ry, thus we conclude (36).
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Now we turn to check (37). Again by (34), we have

| ot 5 [nt]—1 . [nt|—1
/ R Jds = — n4 Z Up + o 4<uleft7ms> Ul§+m<uleftams>2z U
_ k=1 k=1
nt — |nt] 3(nt — |nt])?
TUfntJ 2n4 <u1eft7 m€> U|_2ntJ
nt — |nt])? nt| + (nt — |nt])*
+( nt)) (Wiett, Me)” Uy + nt] + L)) (Wiefe, 7).

nt 4nA

Using Lemma 3.1, we obtain
[nt] | nt] | nt ]

NURL Vi, =Y UP Vet+d UR ViaVe+» Ui, Ve, (46)
= k=1 k=1 k=1

Thus, in order to show (37), it suffices to prove

[T | nT]
n TR =0, a0 0, (47)
k=1 k=1
n~t Z Uy LN 0, n~? sup U] LN 0, (48)
— te[0,77]
n~* sup [[nt]+ (nt — |nt])'] =0 (49)
tef0,7

as n — oo. By (23) with (£,i,j) = (4,2,1), ({,i,5) = (4,2,0), and
(¢,i,7) = (2,1,0), and by (26), we have (47) and (48). Clearly, (49) follows
again from |nt — [nt]| <1, ne N, ¢t € Ry, thus we conclude (37).

Next we turn to prove (38). First we show that

[nt]

V’Ulef,’vlef p
n™ sup |13V Var, — tZUk Ve| =0 (50)
< k=1

as n — oo forall T > 0. Using Lemma 3.1, we obtain
| et | [t | [t |

> VEVar =) UdViE Ve + > V8 Ve+ ) Vi Ve (51)
= k=1 k=1 k=1

Using (23) with (¢£,i,7) = (6,0,3) and (¢,4,7) = (4,0,2), we have

_ P _ P
ngg Vi|* — 0, ngg VZi—0 as n— oo,
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hence (50) will follow from

[nt]

(VeUiefs, Vsert) P
? sup EUlekI Ee’e gUk1—> as m — 0o
te[0,1 || .=

(52)

for all T > 0. The aim of the following discussion is to decompose

,Lz{ Up_1V72, as a sum of a martingale and some other terms. Using

recursions (13), (17) and formulas (21), we obtain

E(Up-1Viy | Fis)
= E((Uk—2+<uleft, M1+ me)) (A_Vioo+ (Vtere, My + m€>)2 ‘ fk—2>
= N Up—2Viiy + O BE(M oy My | Fioz) e Up—2

+ constant + linear combination of Up_oVj_o, V,f_Z, Up_s and Vj_s
= )\2_ Uk_gvk2_2 + <V£’U}eft, 'U]eft> U,?_Q + constant
+ linear combination of Up_sVj_o, V,f_Z, Ui_o and Vi_s.

Thus
| nt]
> UkaVid,
k=1
[t | | et |
= UV = E(Usa Vi | Fiea)] + Y E(Usoa Vi | Fiaca)
2 s
|t
= [UaVily —E(Upa Vil | Fio)]
k=2

|nt] nt]
+ A2 UkoViE sy + (Ve vier) Y Ui+ O(n
k=2 k=2
[t | [ nt] [t | [ nt]

+ linear combination of » Uk_oVio, » V0, Y Ura. Y Via.
k=2 k=2 k=2 k=2
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Consequently,

[t
ZUk Wi =1 Z Up-1 Vit = B(U Vi | Froa)]

(Vewye ,ve A2
+ E et Ve ZUk 2 _7ULntJ—1Vﬁth_1+O(”)

[ nt] [t | [ nt] [t |
+ linear combination of ZUk oVi_ Q,Z‘/k Q,ZUk 92, Vi_o.
k=2 k=2 k=2 k=2

Using (25) with (¢,i,7) = (8,1,2) we have

]

_ P
n? S}l[;] Z (U Vi, —E(Up1 Ve, | Fra)]| — 0 as n— .

Thus, in order to show (52), it suffices to prove

[nT]
YUV 0, Y VR0, (53)
[nT] b [nT] b
n=? Z U — 0, n=? Z Vi — 0, (54)
k=1 k=1
3 sup ULntJVLthJ F, 0, n=3% sup U] BN} (55)
te[0,7] te[0,7]
as n — oo. Using (23) with (¢,4,7) = (2,1,1); (£,i,7) = (4,0,2);
(¢,i,7) = (2,1,0), and (4,4,j) = (2,0,1), we have (53) and (54). By
(24) with (¢4,i,7) = (4,1,2), and by (26), we have (55). Thus we conclude
(52), and hence (50). By Lemma 3.1 and (23) with (¢,4,7) = (2,1,1) and
(€.1.7) = (2,1,0), we get
[ nt] [ nt] b
3 sup ZUk Vi, — ) U Vel — 0 (56)

t€]0,7 1
as n— oo forall T >0. As a last step, using (36), we obtain (38).
For (39), consider

[ nt] [ nt] | nt ]

> ViaVar, =3 UsaViaVe+ > V2 Ve+ Y ViaVe,  (57)
_ k=1 k=1 k=1
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where we used Lemma 3.1. Using (23) with (4,4,j) = (4,0,2), and
(¢,1,7) = (2,0,1), we have

| nT] [T
n_5/2zv,€2ﬂ>0, n_5/22\‘/k\i>0 as n — oo,
k=1 k=1

hence (39) follows from Lemma 3.9.
Convergence (40) can be handled in the same way as (39). For complete-
ness we present all of the details. By Lemma 3.1, we have

| nt] [t ] [nt]
Z Up1Viei Vi, = Z Up Vi1 Ve + Z Ur1Viy Ve

k=1 k=1 k=1
1] (58)

+Y U Vi Ve
k=1

Using (23) with (£,i,7) = (4,1,2), and (4,4,j) = (2,1,1), we have

|27 K/l
' Z U1 Vit =50, n~/? Z |Ur—1Vi—1] o0 as n— oo,
k=1 k=1

hence (40) follows from Lemma 3.10.
Finally, we check condition (ii) of Theorem 3.12, i.e., the conditional Lin-
deberg condition

[T

(n)(12 P
> E(1Z)"| L 20y | Fio1) = 0 (59)
k=1

forall 8 >0 and T > 0. We have

E (112”171 ooy | it ) < 07E (120711 Fi)

and
1Z7)F <3 (7 + 0 UL + 07V ) | M)
Hence
|27
ZE(HZ/(;L)H21“|Z<">||>9}) —0 as n—oo forall # >0 and T >0,
k
E—1
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since E(||Mg||*) = O(k?), and further

B(IM'ULy) < \E(IMSEUE ) = O(k) (60)

E(|M [ 'Viiy) < /E(| My[9E(VE,) = O(k)

by Corollary 3.5. This yields (59). []

We call the attention to the fact that our eighth order moment conditions
E([[€11.4]°) < oo, E(l€112]") < oo and E([le1]]*) < oo are used for
applying Corollary 3.5.

Remark 3.14. Let us introduce the process V; := (Wier, My + tme), t €

Ry, where (My)er, is the unique strong solution of the first 2-dimensional
equation of SDE (32). Then Yy = 0 and by Ité’s formula we obtain

dyt <'U,]eft, ms dt + y;ruleft th, t & R+. (61)
If (V ¢Upefe, Wiere) # 0, then the process
AT left‘/E Wt

t -

(V eUete, Wrerc) /2
is a (one-dimensional) standard Wiener process, hence (Vi)ier, satisfies
SDE (8). Consequently (Vi)icr, £ (Z)ier, and by Theorem 2.4,

(n) D D
<Xt )te& — (Xt)teR+ - (ytul"ight)te]R+
as n — 0.

The following corollary is the essential piece of our toolkit. We will make
heavy use of this statement in the following section.

Corollary 3.15. Let (Xy)pez, be a 2-type Galton-Watson process with
immigration that satisfies conditions (CPR), (ZS) and (M) with { =
Then we have

_ |
[ nUE, ] {7 b 7 dlt
n nVZE, : s?if;;lw Jo Yedt
S oM | M,
k=1 | nT MUy f01 Y, dM,
n=32 MLV T V2
EVE—1] _<V€(11€f3\2 lelf‘/cz f() yt / th

as n — oQ.
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Remark 3.16. If the process satisfies (ND), then the above Corollary
shows the nonzero limits of the "building blocks" used to construct our es-
timates. However if the process doesn’t satisfy the condition (ND) then
<V£'U]eft, Viet) = 0 and the second and fifth coordinates tend to 0.

Proof. We can write the solution for SDE (32) in the following way

|7Mt-| fg(uleft, M + 3m€>1/2 751/2 AW,
Zt: LNtJ — fg uleft;M —|—3m€> dM |
" % fo Uler, M + s) VE dW

for all t € R,. By the method of the proof of X P, X in Theorem
3.1 in Barczy et al. [2], applying the continuous mapping theorem, one can
easily derive

(n)
[;(n)] N [Z] as n — 00, (62)

where B
X}En) — n_lXLntjv Xt = <’U,]eft, Mt + tms>uright7

for all £ € R, and n € N. More precisely, using that
X@_§:m, (M; +m.), keN,

we have )
X n
[zw]:¢dzwh neN,

where the mapping ¢, : D(R,, (R2)3) — D(Ry, (R*)*) is given by
S (0 (2) = () )
wn(fhf%fi%)(t) = (t)




where the mapping ¢ : D(R, (R?)?) — D(R,, (R?)?) is given by

Ueft fl + tms>uright-|
Si(t) |
fa(t)
B

f1, f2, f3 € D(R;,R?) and ¢ € R,. By page 603 in Barczy et al.
[2], the mappings ,, n € N, and ¢ are measurable (the latter one is
continuous to0o), since the coordinate functions are measurable. Hence, by
(30) and the continuous mapping theorem, we have

Lol =z Dpz =2 e,

O (f1s f2n f3)( {

as desired. Next, by Lemma 3.11 we get

_ 1 -
_ ']’L_SU]?_I - . fo Ueft Xt>2 dt
" n—Z‘/kZ_l M fo et Xt> d
S| oniM, 2, M,
k=1 | nT2M U, fol YV, dM,
n=3 MLV —_—
EVE—1] _<‘/€tllef;\2 lelf‘/cz f() yt‘/E th

as n — oo. This limiting random vector can be written in the form as given
in the statement, since (U, X¢) =V, forall t € Ry, ]
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4 Estimates for the offspring mean matrix

Here is a showcase of the usefulness of the toolkit developed in the previous
section. We derive a limit theorem for the estimation of the offspring mean
matrix, me in three different settings. The notations introduced in each
subsection are unique to that subsection, for example the matrix A, has a
different meaning in each of the following subsections.

4.1 The doubly symmetric process

The aim of this section is to reproduce the results of [10, Theorem 3.1.]. We
call a 2-type Galton-Watson process doubly symmetric if its offspring mean
matrix has the form

o ﬁ]

me-[1 7]
In this case v = 3, 0 = « and condition (CPR) takes the form
a € (0,1), f=1—a€(0,1) (CPR*)
We have
A =1, A =1-28

11 1 —1 1[—1
uright:§ 1] Uleft = 1| Uright = 11 ’Uleft:§ 1]

1
Up = (Wiett, Xp) = Xp1 + Xp2, Vi = (Vterr, Xp) = B (X2 — Xp1)

Lemma 4.1. The joint CLS estimator for o and 3 has the form

[an] _A'B,

B
on the set Q, :={w € Q: det(A,) > 0}, where
n 12
Xi—11 Xp-12
A (X X,) = 7 7
(X ) ; | Xi—12 Xp_11)
—~ [ X171 Xj12)
B,(X.,....X,) = 7 21 (X — .
(X ) | Xe—12 Xp-11) (X )

i
I
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Proof. Define the function @, : (R2)n+1 — R as

Qn (mla-"awm [Z]) :zn: Ly — [a b] Lp—1 — Mg

b a
k—1

2

with the convention that @y = 0. A CLS estimator of mg is a measurable
function F,, : (RQ)TL — R? such that

Qn(x1,..., 2y, F, (1,...,2,)) = inf Q, (:1:1,...,:1:”, [Z])

abeR
for all ¢1,...,x, € R%. We need to show that
Foxy,...,x,) = A,(xq, ... ,:cn)_an(:cl, e X))
on the set
D(F,) = {z1,...z, € (R*)": det (Ay(z1,...,2,)) > 0}.

Fix xy,...,x, and find the critical points (where all partial derivatives van-
ishes). The function ), can be written in the form

n
a 2
Qn|x1,..., 2y, b = E (33/{71 — ATE—11 — bxk—m - m&l)

k=1

n

2
+ g (Tho — bTp_11 —amp_12 —Me2)".
b1

To find the critical points we have to solve

( n
g (Xp1 —axp_11 —bxp_19 —Me1) Tp—11
1
n
20— + g (Xpo —bTp_11 — axp_12 —Me2) Tp_12 =0
20 — —
%a :) < " ]f
w@n =0

(xp1 —axp_11 — bTp_12 —Me1) Tp—12

+ g (Xpo —bTp_11 —axp_19 —Me2) Tp_11 =0
S
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Rearranging gives us the equation
n 2 2 9
[%-171 T Th_12  2Tk-1,1Tk-12 ] [a]
§ 2 2
P 20p—11%k-12 T+ Ty b

_ zn: [(ﬂfm — Me1)Th11 + (T2 — mg72)$k—172]
(X1 —Me1)@p—12+ (Tpo — Me2)Tp_11
k=1

which can be rewritten as
n 2 n
Tk-11 Thk-1,2 al Tk-11 Thk-172
Tk Tk bl X X (T —me),
— ~1,2 ~1,1 — [Tk-12 Th-11
or using the notation for A, and B,

A (xy,. .., x,) [Z] = B,(x1,...,x,).

So F,,(x1,...,x,) is the only critical point if (1, ..., x,) € D(F,). However
we still have to prove that it is in fact a minimum, we will use the second
order derivatives. The Hessian matrix of (), is

n 2 9 9 n 2
H =9 E : xk—Ll + xk—172 Le-1,1Tk-1,2 | 9 Z Thk-11 Tk—12
no 2 2 — ;
| 22h-11%k-12 0 Tpop t T [ Th-12 Tp-11

as we can see it does not depend on the parameters a,b. We are going to
show that H, is positive definite, we are going to do this by the equivalent
condition that its leading principal minors are all positive. Remember we are
working on the set D(F},), thus

n 2
0 <det(A,(xy,...,x,)) = det (Z [l‘k—Ll x/f_172] )

Th_19 Th_
— [ Th-12 Tk-11

n 2 n 2
_ 2 2
= (Z Tho1g T ko] —4 (Z xk1711’k172>
k=1 k=1
. 2
< (Z Ti 1+ 1o
k=1

Consequently >/, x%_m + x%_m > 0, the matrix H, is positive definite,

and F,(x1,...,x,) is the minimum of ¢),,. This proves the formula for [%n] .
]
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We have the formula for the estimators, but in order to prove limit theo-
rems we also need a formula for the difference from the real parameters.

Corollary 4.2. The difference of the CLS estimator and the real parameter

values can be written as
O —
P — A;LlCn,
574

where

B n Xi—11 Xp—12
Cn(Xh T ’Xn) a kz; [Xk—LZ X/f—Ll] M

Proof. To get the formula for the difference, one can write

o:zn—oz__l el 4 B o
R R G )

n n 2
_ Xk-1.1 Xk—12] [Xk—ll Xk—12] [CV]
:A 1 ’ ’ X _ms . ’ ’
" (Z [Xk—LZ Xp-11 (X ) Z Xp—12 Xp—11] |B

k=1 k=1

_ [ X1 Xp1o]

— Al E: : (X — me X po1 — M
" (kl | Xp—12 Xp—11] (X EAk- )>
_ [ X1 Xp1o]

= A" 7 HI My .
" (kl | Xk—12 Xp—11] k)

[]

Theorem. 4.3. Let (Xp)rez, be a 2-type doubly symmetric Galton-
Watson process with immigration satisfying conditions (CPR*), (ZS) and
(M) with £ = 8. If the process satisfies (ND) as well, then the probability of
the existence of the estimators &, and B\n tends to 1 as n — oo, and further

~ 1 S A
n[fa 0] o, gk Y 1)
! lﬁn—ﬁ] Vel (63)

as n— oo, where (yt)te& is defined in Remark 3.14.

Proof. We start by finding the nonzero limit of det(A,). This will allow
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us to prove the asymptotic existence of the estimator. We have

o 2
det(A,) = det (Z §Zj; izjﬂ )

k=1

= det (i (X i+ Xie 2Xe11 Xk ])

2 2
| 2Xp0 X1 Xy T X

n 2 n 2
= (Z Xiiig+ X/3172> - (Z 2Xk171Xk172>
h—1 =1

= (i [ X1 + Xk172}2> (i [ Xpo11 — kaf) :

The decomposition (20) yields

det(A,) = 13U, YR (04
k=1 k=1
for all n € N. By Corollary 3.15 and the continuous mapping theorem we
have o X X
A(VeUlett, Ve
= det(A,) 25 A 51”1 “Afl ) / V2 dt / Y, dt (65)
—AZ 0 0

as n — oo. The process satisfies (ZS), therefore m. # 0, consequently by
the SDE (61), we have

P(Y, =0 forall ¢te]|0,1])=0.

1 1
IP(/ yfdt/ ytdt>0):1.
0 0

Consequently, the distribution function of fol 2 dt fol YV, dt is continuous at
0. Note that

P(Q2,) = P(det(A,) > 0) =P (n"det(A4,) > 0).
If the process satisfies (ND), then <V£'U]eft, Viefr) > 0, and by (65),

X/ 1 1
P(Qn) P (4(‘/51’01eft)z;)left> / th dt/ yt dt > O)
A 0 0

1 1
:IP(/ yfdt/ ytdt>0):1
0 0
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as n — oo. This proves the asymptotic existence of the estimators.

Next we turn to prove convergence (63). We do this by finding stochastic
expansions for the product A,C,. We will use Corollary 3.15 again, so in
fact we are proving a joint convergence of the sequence (det(A,), A,C,,)nen.

We have

A, — zn: [le—m + X7 10 —QXk—uXk_Lz]

2 2
[ 2K X2 Xy T X

LIS U -0
26~ [4ViT, Uy AViE, + U

Ie=,, [1 -1 o, 11
=52V [—1 1]*22‘/’%1 [1 1]’
k=1 k=1
and

[ Xj_11 Xk—12]
C, = 7 2l M
; [Xk—m Xk-11 g

- [Uk—l — 2V Up—r + 2‘/1@—1] M,
p Up—1 +2Vi_y U1 — 2V
111 -1 1] <

= 5 [1 1] ZMkUk—l + [ 1 _1] ZMka—l-

These reformulations in terms of Up_; and Vj_; along with Corollary 3.15

imply stochastic expansions
~ /2 —1/2 2 2

o 2

An—nAml [_1/2 1/2]+n14n72 [2 2]7

1/2 1/2

_ 2 —1 1 3/2
Cn — [1/2 1/2] n le + [ 1 1 n Cn727
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where

n 1
At =0 UR, 5 Ay = / VEdt,
k=1

e D (VeUlott, Vie
Apz=n ZZv,f_l—mlz: 511_321“ / Y dt,
kl

Cor =03 MU e —/ Y dM;,

k= 1

V elty Ve /2
Cn72:n_3/2ZMka—1i>C23 <5””t it /yt V.2 aw,

23\1/2
k=1 )\ /

jointly as n — oc. Multiplying these together we get
A,C, =n’D,, +n"?D, s +n'D,s+n"*D,,

where

N A I L

for all n € N and

12 —1/9] -1 1 p . [-1
D, s := A, 12 1)2 ] [ 1 _1] C,r»— A [

D, s:=A,» 2 21 1/2 1/2] C,a N B 3] Ci,

2 2| [1/2 1/2
2 2] [—-1 1
Dn74 — An72 9 9 i 1 _1] Cn72 =0

as n — oo. Putting it all together we get
n2A,C, 2 A [_1 _1] Cs

as n — 0o, where

1 —

(66)

—1 1 1 (VeOlett, Vietr) !/ V2
Al [ 1 _1] C2 :/ yt dt [ 1] )\2 1/2 / yt th

D Vg’vleft,’vleft
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_ T
e |2 (8 ) ]

L= Vet —1
D . <7 1/2 o
= 2 (VeUien, ’Uleft> Wi [_1] :

We have shown the joint convergence

WWevien,vien) (1452 34 (]
[n‘5 det(An)] D 1-2Z Jo Vidt [y Yedt

—9/2 A Vleft vet YA 1
n /CnAn ‘f ;\zf 1/12f fo Edt fol Vi th [_1]

as n — oo. Using the continuous mapping theorem on this result gives us
the desired convergence

12 qn — a] n=92C, A ﬁfo YV, dW, [ ]
! [ﬁn—ﬁ n=>det(A, fo Vodt 17

since 1 — A2 =1 — (1 —28)? = 4ap. ]
In the critical, doubly symmetric case the spectral radius of my is

0= )\+ =+ 67
so we can define a natural estimator for p by o, := @, + Bn

Theorem. 4.4. Let (X})iez, be a 2-type doubly symmetric Galton-
Watson process with immigration satisfying conditions (CPR*), (ZS) and
(M) with ¢ = 8. If the process satisfies (ND) as well, then the probability of
the existence of the estimator g, tends to 1 as n — oo, and further

D fo yt <uleft7m€>t)

ey fo 7 dt

(67)

as n — oQ.

Proof. Using Lemma 4.1 we can write

T o~ T ~
~ 1 o, — u,.. A, C
A~ - 1 — /\n - L — — /\n — left n TL'
ot = H lﬁn—ﬁ] det(A,)

By stochastic expansion (66) we get

T X 9/2 T AT
Ui A, Cn =n / Uper Do + 1 U Dy 3,
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where
1 1

U Dy = Apy [1 1] [_1 ] C,2=0,

for all n € N, and

2 2

’U,l—gftDmg = Amg [1 1} [2 9

] Cn 1, — 4An 2u1eftCn 1

A(Ve Vleft, Vie
Ly 44 Cr = j”f;;“ L / Y, dtu, / Y, dM,

as n — oo. By (65) we have
[ n=’ det(An) ] i) { ngvie—Wfol ytZ dtfol Yy dt -|
.l _vet7vet
ntulnAC] el 1y dral ) VM

as n — oo. Using the continuous mapping theorem on this result gives us
the desired convergence

n (6, —1) = n—4’u,]—£ftAnCn D, fo Vid — (Wiett, M )t)
noN) T -5
as n — 00, since UL Mi = Vi — (Uery, e ). -
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4.2 The general process with known immigration mean

Next up we reproduce the results in the general case [16, Theorem 3.1.].
There are two main differences. The first is the lighter assumptions on the
structure of the offspring mean matrix is, we only assume that the matrix is
positively regular. Second we needed a more convoluted approach in treating
the estimator for the criticality parameter as it is now a non-linear function
of the matrix elements.

We structured the proofs in a similar way to the previous section, the
reason for this is to show how the method can be applied in a streamlined
tashion.

For each n € N, a CLS estimator 77/1\5(”) of mg based on a sample
X1,..., X, can be obtained by minimizing the sum of squares

ST —EX | Fo)|| =D 11X — me X — me|?
k=1 k=1

with respect to mg over R**2.

Lemma 4.5. The CLS estimator of mg has the form @(n) = BnAT_L1 on
the set 2, :={w € Q: det (A,,) > 0}, where

A(Xy . X)) =) X X,
k=1

n

Bn(Xla-' . 7Xn) — Z(Xk _ms) X;——l'
k=1

Proof. Define the function @, : (R*)" x R?*? — R as

n
@n (T1,...,Tp, M) = Z |z) —mx)_ — m€H2
k=1

with the convention that @y = 0. A CLS estimator of mg is a measurable
function F,, : (R2)n — R?*? guch that

Qn(xy,...,2n, F,(x1,...,2,)) = inf Q,(x1,...,T,, M)
mERZXZ
for all &1, ..., x, € R>. We need to show that

F,(x1,...,x,) :Bn(CEl,...,CIJn)An(Cﬂl,...,CEn)_l
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on the set
D(F,) = {x1,... 2, € (R*)": det (A, (z1,...,z,)) >0}.

Fix xy,...,x, and find the critical points (where all partial derivatives van-
ishes). Let
m— |% b
e d|’
then
Qn (x1,...,Tp, M) = (xp1 —axp_11 — brp_129 — m£71)2
k=1
+ (2o — CTp_11 — dxp_10 —Men)”.
k=1

To find the critical points we have to solve

( n

—2 > (2p1 —axp—11 — brp_12 —Meq) Xp—11 =0

( =1

2Q,=0 n
9 —2>  (wp1 —axp—11 — brp_12 —Meq) Xp_12 =0

5@n =0 =1

VR, =k
%Q” - —2 > (wp2 —cxp—11 —dTp_12 —Meo) Xp—11 =0

L @Qn =0 kil
—2 > (wp2 —cxp—11 — dTp_12 — Meo) Tp—12 =0

L =1

Rearranging gives us the equation

a b - T - T
o] (St - e mo et
k=1 k=1
which using the notation for A, and B, can be written in the form

b
[CCL d] A, (xy,...,x,) =B, (x1,...,2,).

So F,,(x1,...,x,) is the only critical point if (1, ..., x,) € D(F,). However
we still have to prove that it is in fact a minimum, we will use the second
order derivatives. The Hessian matrix of (), is

2
Tho11 Th—11Tk—12 0 0
n 2
Z Lp—1,1Tk—1,2 Th 12 0 0
1 Lr_11 Tk—-11Tk—12
2
0 0 Th—11Tk—1.2 Th 19
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as we can see it does not depend on the parameters a, b, c,d. We are going
to show that H,, is positive definite. Note that for any vector v € R*

T n T n
T U1 T U1 U3 T U3
H,v=2 E _ 2 E _
v v () (kl Tk 1mk1> [1)2] + [1)4] (kl Tk 1mk1> [1)4]

— T
9 |" A, (xy,...,2,) [01] +2[03] A, (xy,...,2,) [03] .
_1}2_ (%) (o Ug
Therefore it is sufficient to show that the matrix A, (x1,...,®,) is positive

definite, we are going to do this by the equivalent condition that its leading
principal minors are all positive. Remember we are working on the set D(F},),
thus

0 <det (A, (x1,...,x,)) = det (Z mk1m21>
k=1

n n n 2
_ 2 9
= E Tk—-1,1 § Lp-1,2 — E Tk—1,1Tk—-1,2

k=1 k=1 k=1

n n

2 2

< Zxk—Ll § Lh—1,2-

k=1 k=1

Consequently 70" | o7_, | > 0, the matrices A, (x1,...,®,) and H, are
positive definite, and F,,(x1,...,x,) is the minimum of ),,. This proves the
formula for 77/1\5(”). O

We have the formula for the estimator. To prove limit theorems we have
to handle the difference between the estimator and the real parameter value.

Corollary 4.6. The difference of the CLS estimator and the real parameter
value can be expressed as

’ﬁ’b\g(n) — Mg = CnAT_Ll,
where

Co(X1.....X,) =) MX],.
k=1
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Proof. We can get the formula for the difference in the following way

e —me = B A" — me = (B, — meA,) A

n

= Z (X —me) X —mg ZXk1X21> A
k=1 k=1

— Z(Xk—mng_l —ms) XZI) 14;1
k=1

_ ZMkX21> Al
k=1

]
In the critical case, by (7) and the continuous mapping theorem, one can
derive

1
-3 D 2 T i
n A, — / Vi Al Uight Uy =: A
0

as n — oo. However, since det(.A) = 0, the continuous mapping theorem
can not be used for determining the weak limit of the sequence (n®A1),en.
We can write

" o me—C A - c A N 68
mye me nfl, det(An) n4in, n e N, ( )

on the set €,, where A, denotes the adjugate matrix of A, (i.e., the
matrix of cofactors) given by

Zn o zn: [ X/?—Lz —Xp—11Xp-1,2 neN.

= [ = X110 X 12 Xi1, ’
We can find the limit for the difference @(n) — myg¢ by describing the
asymptotic behaviour of the sequence (det(A,),C,A,)neN.

Theorem. 4.7. Let (Xy)iez, be a 2-type Galton-Watson process with
immigration satisfying conditions (CPR), (ZS) and (M) with ¢ = 8. If the
process satisfies (ND) as well, then the probability of the existence of the

estimator @(n) tends to 1 asn — oo, and further

D (1 —\2)1/2 V51/2 fol Vi dW, T

(n)

n1/2(’ﬁ’l,\5
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as n — 00, with Y, = (Wefe, My +tme), t € Ry, where (My)er, is
the unique strong solution of the SDE
_ 12 571/2
th = ((’U,]eft, Mt + tm€> ) ‘/5 th, (S R+7
My =0,
where (W )ier, and (VNVt)tE]Rg+ are independent 2-dimensional standard
Wiener processes.

Proof. We start by finding the nonzero limit of det(A,,). This will allow us
to prove the asymptotic existence of the estimator. The decomposition (20)
yields

det(A,) = det (Z Xk1X21>

k=1
n T
U_ U_
= det ([uright ,Uright} Z [V]l:—ll] [‘/]]:_i] [uright 'Uright} T)
k=1
n T
Us._ Us._ 2
= det (; [‘/]/:_11] [‘/]/:_11] ) [det ([uright 'Uright})} :

Using Lemma 2.2 we get

i) (Lot} () - (Sowi) - o

for all n € N. By Corollary 3.15, Lemma 3.9 and the continuous mapping
theorem we have

V . . 1 1
S det(A,) 2 i‘” f“;l ) / V2 dt / Y, dt (71)
I - 0 0

as n — oo. The process satisfies (ZS), therefore m. # 0, consequently by
the SDE (61), we have

P(Y, =0 forall ¢te|0,1])=0.

1 1
IP(/ yfdt/ ytdt>0):1.
0 0
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Consequently, the distribution function of fol VEdt fol YV, dt is continuous at
0. Note that

P(Q2,) = P(det(A,) > 0) =P (n"det(A4,) > 0).
If the process satisfies (ND), then (Vejes, Viere) > 0, and by (71),

V ety e
P(Qn)—ﬂP( i‘”_“;l f / V2 dt / ytdt>0)

:IP(/ yfdt/ ytdt>0):1
0 0

as n — oo. This proves the asymptotic existence of the estimator .
Next we turn to prove convergence (69). We do this by finding stochastic

expansions for the product C,A,. We will use Corollary 3.15 again, so in

fact we are proving a joint convergence of the sequence (det(A,,), ann)neN.
The adjugate A, can be written in the form

~ 0 1] < + [o -1
An:[_l O];XHXHL 0]’ n e N,

Using (20), we can write

Uk-1 ul—Ji—ght
sl 1

right
T n T
-1 0 rlght —1 W—l W—l vright 10

Similarly to Lemmas 2.2 and 2.3 one can show

-
I Y (8 -
vright 10 rlght —1 0}’ vright 10 Wy ’

therefore

- U170 1] = [Ury] [Uei] [—of
C,A, = M, | F! 5—1] [ 5—1] [_ left]'
LT I et o Y
Denote the standard base of R? by

ol e
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Corollary 3.15 implies stochastic expansions

n U 1T
Z Mk [‘/::11 = 7120”71 + 713/2Cn72, (72)
n U U 4T
[V“] [VH —nPA,, +n"* A, +12A, s, (73)
< [ Ve 01|
where
C 1 =n ZMkUk 181 —>C1 —/ ythtel,
fi— 1
C,o = n=>? Z MVi_1ey
=1
D ) <V£'Ulefta'vleft> /2 1/2 ! Ay T
— Cy 1= TS Ve i YVidW; ey,
and
" [U? D ! 10
-3 -1
Ay = n [O ]H /Oytdtlo O]
=1
52 U 1Ve |
Ang =11 5/2 [ ]
— U1 Vi
o]0 0 D (Vi Ulett, Vsett) /1 00
A, :=n"> = ’ dt .
3 n 2 [O VEQ_J—hAg 1- 2 oyt 0 1
jointly as n — oo. Consequently, we obtain an asymptotic expansion
N T
C,A, = (1D, +n’D, s+ n'D,s+n"°D,,) [ "I’Tlfft] . (74)
eflt
where
0 1
Dnl - le [_1 O] Aml
i n n , To0 111 0 (75)
=n o MkUk_lUg_lel [_1 O] [O O] - O
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for all n € N, and

0 1 [0 1] D, [0 1]
D, :=C,; 1 0 Ap2+Chp2 1 0 Ap1 — Cy 10 A,
[0 1] [0 1] D, [0 1]
D, ;:=C,, 10 Aps+Cp2 10 Ap2 —Cr| 0 As,
[0 1 D 0 1
D, ,=0C,» 10 A, 35— Cy [_1 O] As

as n — oo. Finally putting it all together we get

-
—9/2.v x D 0 Vet
oA e ][
as n — oo, where

0 1 —vl

c [_1 O] A [ ulth
<V£’Uleft,’01eft 71/2 o ot 0 111 0 —Ulzft
= )\2 1/2 / yt dtV yt th 82 _1 O O O uigft

V’l)e,’l)e —1/2 ~
— < € 111A21{j2 d/ﬁ )@ di-‘f / )%(1147tld£ﬁ.

We have shown the joint convergence
o) 5, [ SRR ]
—9/2 A — Vieft,V 1 2 O
G, A, L<V€(1lef;\—2blf;2 fo YVidtV, / 0 ViAW, vlTeftJ

as n — oo. Using the continuous mapping theorem on this result gives us
the desired convergence

. nPC,A, p (LX) VP [T vidw, o
_mE) - -5 d A i 1/2 vleft
n et( n) <Vg’01eft,’01eft> fo Ve di
[]

Theorem. 4.8. Let (Xy)iez, be a 2-type Galton-Watson process with
immigration satisfying conditions (CPR), (ZS) and (M) with ¢ = 8. If the
process satisfies (ND) as well, then the probability of the existence of the
estimator g, tends to 1 asn — oo, and further

D fo yt <u1eft7 m€>t)
fo 2 dt

711/2(17ié

n(@ﬁ'_'l)

(76)
asn — Q.

57



Proof. Using the estimates

(n)

A~ L T
O, =e mg e,

A

Ap = e;@(n)el,

we can write g, — 1 in the form

A~

Qn_len_Q

(@ — ) + (&—6) = \/(an—&)2+4mn— V(e =67 + 48y
2

(8. - Sn)Q (= 8)2 + 4B.F, — 4By

2 <\/(an

Cn

) <\/(an ) +4BA (1 A))

A~

6n>2 + 48,7, + \/(a 5’ + 4@)

)

where

+ (&—5)

\/(an—&)2+43ﬁn+(1—A_)+(an+a) - (

i

A~

a{n_

A~

On

)+ aBA (LA — @)+

A~

Op +0

A~

Op +0

)
)

+4<gn_ﬁ>;7\n+4(§n_7)ﬁ-

We handle ¢, by replacing some terms with their limits, then we prove that
the difference tends to 0 with the right scaling. Finally we show that the re-
sulting simpler expression has the right limit with the same scaling. Slutsky’s

lemma and (69) imply me"™ — me — 0, and hence Mg — me — 0
as n — oo. Thus 7, N v, and
(@ + 1) — (§n+5) o —4d),
~ 2N\E A P 2 2 2
(@0 = 00) +4BF0 > (=0 +4py = (2—a =) = (1 -2
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as n — oc. The aim of the following discussion is to show n(c, —d,) 250
as n — oo, where

dy = (@ — ) [2(1 ML)+ 2a— 25} + (Sn - 5) [2(1 A) —2a+ 25}
+4(Ba=B)y+4(. -8
= 4(1 = 0)(@n — ) + 4y(B, — B) + 4B, — ) + 4(1 — @) (3, — 0).
We have
n(cn—d,) = n [\/(an . &)2 CABA, — (1 — A)] [(an o)+ (Sn . 5)]

+n[(&n—oz)— (Sn—(s)r+4n(3n—ﬁ> (B — ).

N2 -
We can write the difference \/<an — (5n> + 48,79, — (1 —A_) as

(80 —5) — (0 =57 +4 (B 5)Fut 4G~ )P
\/(an —Sn)2 +4B,F, + (1= ) |

)2 2
while expanding <an — (5n> — (v — ¢)” yields

A~

(60— 5.) — (007 =@ )~ (5, 8)] @i+ o) (Gu+9)].

Hence n(c, —d,) L.0 as n— oo will follow from fn L0 oas n— 00,
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where
~\ 2 ~ ~
fo =0 (0, — a) [\/@n(sn) +4ﬁn%+1>\+an+a6n6]
+4n (@, — @) (B = B) A + 41 (@0 — 0) (G —7) B
“on (@, —a) (6, — o) [\/(an - &)2 4B, + 1 - A]
2= B) (50 = )3+ 4 (A = 7) (6, — 0)

~\ 2 ~ ~
+n (6, —0)° N(an(sn) +468, A+ 1= A —ap, —a+0,+9

as n — oo. By (69) we have

D

1/2 1/2 W
n1/2(,m\£(n) - mE) X )\_) fo Vs o

_( Ulet
<‘/Evleft7 vleft>1/2 fO Y, dt eft

as n — oo. Consequently,

PO (1—a)e]T
Tn = f+1l—a |—(1—a)e T
as n — oo, with
1 — A2
C .= ( )

~71/2
V, 7 =V / VAW
(VeVtett Uleft>1/2 fol Y, dt § t i
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By the continuous mapping theorem,

(ain _Q)2 [ (1—-a)’ZTee][T ]
(o — ) (B — B) —(1—a)BL'ee]T
(@ — ) (Y — ) (1—a)Z'ee]T
N (G —a)(0n —0) | D % —(1—a)BL'ee;T
(An—ﬁ)(:n—’Y) "BH1-a)2 |-(1—-a)pTeesT
(B — B)(0, — 6) 3T ee]T
(A — 7)(0n — 0) —(1 - )BT ese; T
(0, — 6)? | B Tere]T

as n — oo, and using the continuous mapping theorem, Slutsky’s lemma

(n)

o~ D
and e’ — me as n — oo, we get

fo =521 —a)* T ere] I[1 —A_ +a — 6] —4(1 — a)BT ere] Ty

+4(1 —a)’ T ejes I +4(1 — )BT eres (1 — )

—8(1—a)fZ eies (1 —X_)+43°T eje, I

—4(1 — )BT erses I8+ 28°T ' eses T[1 — A_ — a + 0]
=4 <f(1)elelT + fPeje; + f(3)8282T> Z=0,

since
fU=21-a)P1-A+a—4] —4(1—a)sy=0,
JE =401 —a)B+4(1—a)f(1—-A) =81 —a)f(1—A)+45% =0,
fO =41 —a)B* +28%[1 —A_ —a+ 4] =0.
Consequently, (76) will follow from
nd,, D, fol Vi d(Vr — t(Utert, Me))

L~y

as n — oo. We can write
d,=4(1—0)e <ﬁz\5(”) = m5> e; + dye <frﬁ£(”) — m5> e

+ 483ey (’ﬁz\g(”) - m,g) e +4(1—a)ey (’ﬁz\g(”) - m5> es
= 481— <’ﬁ’b\£(n) — m5> [(1 — 5) e + 782}

+ dey (’ﬁz\g(”) — m5> [Ber + (1 —a)es).
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Noticing
681 + (1 — @)82 = &] = (6 +1-— CV) Uyight

'1—6]_ v [6
7y | 1-al|l—a

(1—0)er +vex = ] = (741 —0) Usignt,

we get

dy=4[(v+1-0)e] +(B+1—a)e,] <’ﬁb\g(n) — mg) Uright

(77)
= 4(1 — A uly (@(”) — m5> Uright -
We use again the asymptotic expansion (74) of C,A,. We have
D,y =033 M (ViU = UsaUna Vi ol
k=1 (=1
implying D), sUyign; = 0 for all n € N. Therefore
nd. — 4 (1 — )\_) ul—gft (Dn73 + n_1/2Dn74) Uright
" n=>det(A4,) ’
where
_ D 0 1 —v!
Uphge <Dn73 +nY 2Dn74> Uright — Upge | C1 Az | 3 ) gigne
—1 0 Uy,
VeVlett, Vle ! !
— < 51 1_1%)\21 ft> /O yt dt ’Ll,l—gft/o yt th ’U,l—gfturight.
Putting it all together we have
4(1—MA_
( ) P
N2~
2 <\/<an — (5n> + 48,7, + (1 — A))
and
ul—gft (Dn73 + n_1/2Dn74) Uyight
n=° det(A,)
D <V5’01eft, ’Uleft> ! ’quft fol Vi dM,
> 5 yt dt N .
1—A2 0 Jo Yidt
Thus we can conclude (76). ]
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4.3 The general process with unknown immigration mean

In this section we offer a small extension on the previous results. So far
we always assumed the knowledge of the immigration mean vector, in what
follows we treat this parameter as unknown and prove results on the existence
and limit distribution of a joint estimator of the two means. Unfortunately
this does not offer a significant improvement as the results on the offspring
mean estimator are unsatisfactory.

For each n € N, a joint CLS estimator g of me and mz" of m.
based on a sample X,..., X, can be obtained by minimizing the sum of
squares

ST —EX | Fo)|| =D 11X — me X — me|?
k=1 k=1

with respect to mg, m. over R**? x R2,

Lemma 4.9. The joint CLS estimator of mg and me has the form

me" = B,A!
o _ Iy, =y
M, —nZXk Mg nZXk—h
k=1 k=1
on the set Q, :={w € Q: det (A,) > 0}, where

n 1 n n
An(Xla- . 7Xn) - ZX/{—IX;——I - EZX/{—IZX;——D
k=1 k=1 k=1

BXi. X)) =Y XX, - XX,
k=1 k=1 k=1

Proof. The proof uses the same ideas as in Lemma 4.5, but for the sake of

completeness we present it here. Define the function @, : (R?)" x R¥? x
R? - R as

Qn (T1,..., T, M, u) = Z |zr —maxy_1 — UH2
k=1
with the convention that £y = 0. A joint CLS estimator of m¢ and me. is a
measurable function F), : (R2)n — R?*2 x R? such that

Qn(x1,....xn, F,(T1,...,2,)) = meRQiX%fueRz Qn(x1,..., ¢, m,u)
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for all 1,...,x, € R%. We need to show that on the set

D(F,) ={m,...x, € (R2)n : det (A, (xy,....2,)) >0},

we have : )
F, Ty,..., T
F,(zy,...,2,) = | "™ R
(: ) [mes (T, ... ,azn)]
where
Fome (1. x,) = By (T1,...,T,) Ay (T, . ,:lzn)_1
1 o 1 «
Fom. (@1,...,@,) = - Za}k — Fome (x1,...,Tp) o Ziﬂk—L
k=1 k=1
Fix xy,...,x, and find the critical points (where all partial derivatives van-
ishes). Let
m a b u — Uy
e d]’ ue |
then
Qn (T1,..., Ty, M, u) = Z (Zr) —axp_11 — brp_12 — up )
k=1
+ (2po —cxp_11 —dop_19 — us)” .

k=1
To find the critical points we have to solve

’ n

—2> (a1 —axp_11 —bxp_12 —u1) Xp—11 =0
. i
5. 0n =10 —2> (Tp1 —axp_11 —bxp_12 —Ur) Tp_12 =0
5 =1
20, =0 —2>  (Tp2 — cxp_11 —drp_12 —U2) Tp—11 =0
n - _
< %c B O — < kgl
8_an - —2>  (Tp2 — cxp_11 —drp_12 — U2) Tp—12 =0
8—u1Q” =0 kil )
9o _ —2 Tp1 —aTp_11 —bxp_120—u) =0
ot |be-en
n
—2>  (Th2 —cxp_11 —drp_12 —u2) =0
\ k=1
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Rearranging gives us the equations

a b] < T Uy
o Sl

n n
T T
§ L1 = § LrLy_1;
k=1 k=1
- n n
U1 a b
n + E Tp_1 = E .
Uo c d
4 k=1 k=1

So F,,(x1,...,x,) is the only critical point if (1, ..., x,) € D(F,). However
we still have to prove that it is in fact a minimum, we will use the second
order derivatives. The Hessian matrix of ),,, H,, is

33%_171 Th—11Tk—12 0 0 Tp-11 0
Th—11Tk—1.2 33%_172 0 0 Tp—12 0
9 . 0 0 33%_171 Th-11Tk-12 0  @p_11
p 0 0 Th—11Tk—12 33%_172 0 @12
Th—11 Th—12 0 0 1 0
0 0 Tk—1,1 Tk—1,2 0 1

as we can see it does not depend on the parametersa, b, ¢, d, uy, us. Forgetting
about the positive constant multiplier 2, and exchanging the third and fifth
rows and the third and fifth columns (this does not change the positive
definite property of a matrix) we get a block diagonal matrix

33%_171 Th—11Tk-12 Th-1]1 0 0 0

Tho11Tk-12  Th_js  Tho12 0 0 0

zn: Th—11 Th—12 1 0 0 0
— 0 0 0 x%_m Tk-11Tk-12 Tk-11
0 0 0 Zp_1,1%k-12 33%_172 Th—12

0 0 0 Tp-11 Tk—12 1

To show that this matrix (and consequently H,,) is positive definite, it is
sufficient to show that the 3 x 3 matrix in the upper right corner

2
n { Lr_1,1 Tr—11Tk—1,2 96‘/{—171-|

x . 2
H, = g Th—11Tk—1.2 Tk 19 Tp—1.2
’flt Th—11 Th—12 1 J

is positive definite. We are going to do this by showing, that its leading
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principal minors are all positive, that is

0 < det(H}),

n 2
Ty _ Tk—-11Tk—12
0 < det g =11 5 ’ :
1 Tk—-11Tk—12 Li_12

n
2
0< g Th_11;
k=1

if (z1,...,x,) € D(F,). Surprisingly
det(H) =ndet(A,(x1,...,x,))

n n n
2 2
=n § Lk—1,1 § Lp—12 — 1 E Lk—1,1Tk~1,2
k—1 k-1 k—1
n n n
+ 2 g Th—11Tk—1.2 g Th—1.1 g Th—12
k-1 k-1 k-1

n n 2 n n
2 2
- Tk—1,1 Tr-12 ) — Lk—-1,2 Tk-1,1
k=1 k=1 k=1 k=1

n 2
Z Xy_ Lr-11Tk-12
— ndet [ ]f 171 E E ]

2

2

2
Th11Tk— x
1 k—1,14k—1,2 k—1,2
n n n 2
— g Tk—1,1 g Te—12+ Tr_12 g Te—1.1
=1 (=1 (=1
Therefore on the set D(F},) we have
1 *
0 <det(A,(x1,...,x,)) = —det(H})
n
i xs x x
_ k—1,10k—1,2
< det g k=1.1 5 ’
Lp-1,1Tk—12 Tr_19
=1 ;
2

n n n
_ 2 2
= E Tr_1,1 E Tp_12 — E Th11Tko12
k=1 k=1 k=1
n n
9 9
< E Tr-11 E Lh_192-
k=1 k=1
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Consequently > 7, x%_u > 0, the matrices H, and H, are positive defi-
nite, and F,(x1,...,x,) is the minimum of ¢),,. This proves the formula for
the joint estimator. []

We have the formula for the estimator, but in order to prove a limit
theorem we have to express the difference from the real parameter values in
a form that we can work with.

Corollary 4.10. The difference of the CLS estimates and the real parameter
values can be expressed as

fﬁ%“w——Tng (j fi 1

m." ZMk_< ) ZXk 1

(78)

where

Co(X1,.. ., X)) =) MX[ - %Z MY X[,
k=1 k=1 k=1

Proof. We can find the formula for the difference with a straightforward
calculation

me"” —me = B,A;' —me = (B, —mEA )A!
— (ZX/fX;—l ZXkZXk L —meA, ) Al
k=1 k 1
= (Z (Xt —meXy 1) X

k=1
1TL n
- X, —meX, X! . 1A

= ( (X —meX 1 —me) X,
k=1

1TL n
- X —meX, 1 —me X! 1At

= C,AL

n
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In the critical case, by (7) and the continuous mapping theorem, one can

derive
D ! : ]
n_gAn — (/ ytZ dt — (/ Vi dt) ) Urightul—"irght = A
0 0

as n — oo. However, since det(.A) = 0, the continuous mapping theorem
can not be used for determining the weak limit of the sequence (n®A;1),en.
We can write

1 ~

e — Al=——C,A
me =C, det(A )Cn " n €N, (79)

on the set €2,, where A, denotes the adjugate of A, (i.e., the matrix of
cofactors) given by

0 1] (% . . 0 —1
An = [—1 0] (;X“XL;XM;XZO [1 o]' (80)

We can find the limit for the difference @(n) — myg by describing the
asymptotic behaviour of the sequence (det(A,),C,A,)neN.

Theorem. 4.11. Let (Xj)rez, be a 2-type Galton—Watson process with
immigration that satisfies conditions (CPR), (ZS) and (M) with { = 8. If
the process also satisfies (ND), then the probability of the existence of the

(n) (n)

estimators Mg’ and mg"" tends to 1 asn — oo, and further

“me) 2 (1—X2)12 1/2 [, thvT s
‘ <V£vleft7 vleft>1/ 2 fo Y, dt left
" —me s M,y (82)

1/2(m£( n)

me

as n — 00, with Yy = (Wer, My +1me), t € Ry, where (My)cr, is
the unique strong solution of the SDE

AM; = (e, My + tm) )PV aw,, 1e Ry,
Mo =0,

where (W )ier, and (VNVt)tE]Rg+ are independent 2-dimensional standard
Wiener processes.
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Proof. We start by finding the nonzero limit of det(A,,). This will allow us
to prove the asymptotic existence of the estimators. By the decomposition
(20) and Lemma 2.2 we get

det(A,) = det (ZXk 1 X 1——2Xk IZXk 1)

(U U 1L 'Uk ” 'U,; T 2
— det, (; _‘/k_ _‘/k_ — E _‘/k_ kz; _‘/k_ ) det ([uright 'Uright})
n - 9 r B r A n r 4T
B U (U] 1[0 U,
= et (; Vi) Vil Z i) 2= )

for all n € N. By Corollary 3. 15 Lemmas 3.8 and 3.9 and the continuous
mapping theorem we have

7 1 1 1 2
n=0 det(A,) <V5fle“’;le“> / Y dt ( / V2dt — ( / ytdt)) (83)
A 0 0 0

as n — oo. The process satisfies (ZS), therefore m. # 0, consequently by
the SDE (61), we have

P(Y, =0 forall ¢te|0,1])=0.
This implies with the help of the Cauchy-Schwarz inequality, that

P(/Olytdt (/Olyfdt (/Olytdt)2> >0> = 1.

Consequently, the distribution function of

[l [ (f5))

1s continuous at 0. Note that
P(Q2,) = P(det(A,) > 0) =P (n"det(A4,) > 0).
If the process satisfies (ND), then (Vejes, viere) > 0, and by (83),

7 1 1 1 2
]P)(Qn) P <‘/Efvleft7 ,;Jleft> / yt dt / yt2 dt — (/ yt dt) >0
L—A2 0 0 0
1 1 1 2
IP(/ Y, dt (/ VZdt — (/ ytdt) ) >0> =1
0 0 0
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as n — oo. This proves the asymptotic existence of the estimators.

Next we turn to prove convergence (81). We do this by finding stochastic
expansions for the product C,A,. We will use Corollary 3.15 again, so in
fact we are proving a joint convergence of the sequence (det(A,), C,A,),eN.
Using (20), we can write

[ul—gght]
T )

. Uk—1 Uk—1
Cn= {2 M [v} "ZM’E [v ] Ol
a3 ] (Z BIEIEA )
to L O Lo = Vel nim Wl =
I
Vyight 1 0
Similarly to Lemmas 2.2 and 2.3 one can show

T
AR -[1 BEIR -
fvl—Ji—ght 10 rlght —1 0}’ fvl—"[ght I ul—gft ’

therefore
a (S fi] i [ [ )
(SR SRR )

k=1 k=1 k=1

Corollary 3.15 and Lemmas 3.8 and 3.9 implies stochastic expansions

n 4T
Up-1| 1 U] _ o 3/2
> My [V] szz | = v o,,
n T - T
Ue| U 1 Uk U| _ 3 5/2 2
ZM [v,J nzMz[Vk Ay 05 Ay 4 P A s,
k=1 k=1 k=1 -
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where
2 (ZMkUkl — lekZUk 1) e;
N
€,

NS :(/ ytht—le ytdt) ,
0

n2=n" (ZMM 1——ZMkZVk 1> e;

1

V e e /2
D (VeUlett, Vlett) V2 VAW, el
0

and
n 1 n 2 —1 0

e —3 § : 2 = § :
Aml =n Z/k—l n ( Z/k1> _O O]

= (/ V2t — ytdt)2 [(1) 8]

- 01
A= 5/2< Vs Vi 1——ZUk 12% )[ ] >4
_ 00
A,z i=n"> Vi =+ (Zv’f 1) [O 1]

k=

]
D _ <V£'Uleft7 Vleft) 00

jointly as n — oo. Consequently, we obtain an asymptotic expansion

. e
C,A, = (1D, +n’D,,+n'D,s+n"°D, ) [ "’Tleft] : (84)

left
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where

0 1
Dml = le [_1 O] Aml

n 1 n n
S OUESER 375 SRy
k=1 k=1 k=1
2
& 1 [ 0 1][1 0
> Ui =, (Z U’“) el [—1 0] [0 0] =0
k=1 k=1

for all n € N, and

[0 1] [0 1] D [0 1]
D, =C,, 1 0 Ao+ Cho 1 0 A, — C 10 A,
[0 1] [0 1] D [0 1]
D,s:=C,, 1 0] A,z3+Cp»o 1 0 A, — Cy 1 0] As,
0 1] D 0 1
D, ,=0C,» 10 A, 35— Cy [_1 O] As

as n — oo. Finally putting it all together we get

N el
W20 A g@[Ol (1)] A [ugeft]
T left

as n — oo, where
0 v,
C A [ left]
[ 1 0] | g
2
V Ve ) Vle
S ([ra ([ ) ) v
T 0 1 Vet
% €2 [ 1 O] [ ] [uleft
Ve Ulett, V1o 1/ 2
— < (5 lft)\; {32 (/ VZdt — (/ Vi dt) ) A ) yt AW, Vjor.-
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We have shown the joint convergence

n~>det(A,)
n=92C, A,
(VeVets, Viett) 1 21 1 d 2 1 d
D 12 foyt t_<foyt t) foyt t
7 (Vewiesi,v 1 2 20
g(llef;@ lelf;z (fo Yidt — <fo Vi dt) ) o Vi th Vyest

as n — oo. Using the continuous mapping theorem on this result gives us
the desired convergence

=920 A 1 — \2)1/2 1/2 dw
n 2w —mg) = = D Z, _( -) o % “og
n=>det(A,) (VeUlet, Vier) /2 fo Yy dt

To prove convergence (82) we use the same method. By Corollary 3.15 we
have

lzn:MkﬂMl.

k=1
Using (78), to finish the proof we have to show
- D
( —m5> Zxk = A)CA ;Xk_1—>0.

Using (20) we can write

T n

1 Uk—l]
= X right -
s> xen= o] D[

rlght

Corollary 3.15 and (84) 1mphes stochastic expansions

C,A, = <n9/ Do +n'D,s+n" 2Dn74> [ vleft] ,

uleft
.
— Z X1 = [ fﬁght] <nFn71 + nl/an72> :

rlght

where
n 1
-9 D
F,,=n g Up_1er — | Vidley,
0
k=1

n
_ D
F,o=n"?"? g Viciea — 0
1
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jointly as n — oo. By Lemmas 2.1 and 2.3 we have

T T
[_vl—';ft] [u;i—ght] _ [_<vleftauright> _<'Uleft7'Uright>] _ [O —1] .

d
Uy Vyight (Wieft; Uright)  (Wleft, Vright) 1 0

Consequently we obtain a stochastic expansion

~ 1
CoA,=> Xy =n"’G,1 +0°G,p + 0 Gy +0' Gy
n
k=1

where

0 —1
Gml - Dn72 [1 0 ] le

0 1 0 1 0 —1
= (le [_1 O] An72 + Cn72 [_1 O] Aml) [1 0 ] le = 07

for all n € N, since

0 1 0 —1
le [_1 O] An72 [1 0 ] le
n n 1 n n
o —13/2 =
Y 0 (z i - LS00 zv,“)
k=1 k=1 k=1 k=1
n 1 n n
SPOLTTNER) SIS0
k=1 k=1 k=1

0 1[0 170 -1
T —
e [—1 0] [1 0] [1 0]81_0’

Cn72 [ 0 1] Aml [O _1] le

and

-1 0 1 0
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The other terms in the expansion are

G2 = D, [(1) _01] F,o+D,; [(1) _01] F,,
25 ¢, [_01 (1)] A, [(1) _01] Olyt dt e,
Gn3=D,; [(1) _01] F,o+4 D, 4 [(1) 01] F,,
2 ¢ [_01 (1)] As [(1) _01] Olyt dt e,
Gno =D, [(1) _01] F.,-250

We have

e[ 'y ol V] [
Veier, Vien) VRS
= ff”t;?)ft}z /ytdt (/ yfdt—(/ ytdt)> v, ytdwt
A 0 0 0

0 1171 0]l [0 —1
T _
€2 [—1 0] [0 0] [1 0]81_0

Finally
+n V2G5 +n'Ghy D
. X _ n 2 n, n, . 0
( mf) Z ko1 n=5det(A,)
proves the statement. ]

Theorem. 4.12. Let (Xy)iez, be a 2-type Galton-Watson process with
immigration satisfying conditions (CPR), (ZS) and (M) with ¢ = 8. If the
process satisfies (ND) as well, then the probability of the existence of the
estimator 9, tends to 1 asn — oo, and further

D [V AV — (wien, me)t) — (V1 — (e, me)) [, Vi dt
2
oy VEdt — <f01 Vi dt)

n(on —1) (85)

as n — oQ.
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Proof. We can follow the proof of Theorem 4.8 up to the point of expressing
d, in (77). Then by stochastic expansion (84) we have D), sUyigh; = 0 for all
n € N.

Therefore

4 (1 — )\_) ul—gft (Dn73 + n_1/2Dn74) uright
n="det(A,) ’

nd,, =

where

o (D -1/2 DT (e 0 1 A —vlg |
left 7,3 +n 1,4 urlght — U oft 1 10 3 T urlght

Uyt

V Vlefts Ve 1 1 1
= < 51 ! ft)\21 ft> / yt dt u]—gft (/ yt th - Ml / yt dt) ul—gfturight
— M\ 0 0 0

Putting it all together we have
4(1—-X0) P

2 <\/(an - &)2 + 4B, + (1 - A))
and

ul—gft (Dn73 + n_1/2Dn74) Uright
n~>det(A,)

_ ) X

D <‘/Evleft7 vleft> L ul—gft <f0 yt th - Ml fO yt dt)

TN Vidt Lo LN
- 0 Jo Vi dt—(fo ytdt>

Using (Wieft, M) = Vi + (Wiesr, Me)t, we can conclude (85). ]
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5 A discussion of the results

In this section we discuss the results in Sections 3 and 4. We point out open
questions, possible avenues of improvements and investigations.

5.1 A discussion of the toolkit

In Section 3 we developed a toolkit for studying the asymptotic properties
of estimators of the offspring mean matrix in critical 2-type Galton—Watson
processes with immigration. We introduced a decomposition of the process
based on the eigenvalues and eigenvectors of the offspring mean matrix, then
we investigated the asymptotic behaviour of these building blocks. It was
a two step process, first we introduced zero limit theorems to understand
which terms will be negligible in an expression, then we proved a joint limit
theorem finding the non-zero limits of the building block. This limit was
described in Corollary 3.15.

One way these results could be improved is by relaxing the moment condi-
tions. While the question of estimating the offspring mean only requires the
existence of the first moment we require the existence of the 8th moments.
It is reasonable to expect that the moment condition (M) could be relaxed
to £ = 4. If someone sets out to achieve this, then there are two points in
the proof that needs improving. The first is checking condition (ii) of Theo-
rem 3.12, as expressed in formula (60), and then the multiple application of
convergence (25) of Corollary 3.6. Out of these two, the latter seems more
difficult to improve.

A possible direction of generalization could be to examine d-type Galton—
Watson processes, where d > 2. This dissertation deals with the 2-type case
inspired by the results available for the single-type case. The advantage of
working in 2-dimensions is that we can solve quadratic equations therefore
we can explicitly describe the eigenvalues and eigenvectors in terms of the
elements of the offspring mean matrix. This advantage is lost in higher
dimensions. One could possibly gain insight into the problem by first trying
to solve cases with heavy restrictions on the structure of the offspring main
matrix, this is what we did for the 2-type case[10]. To give an impression as to
what would be needed for the general case we point to the proofs of Lemmas
2.1 and 2.3. The first proof only uses general properties of eigenvectors,
while the next one requires us to write out the coordinates of the vectors in
question, for the general case all proofs would need to be carried out in the
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same manner as the first one.

5.2 A discussion of the estimates

In Section 4 we used our toolkit to examine the asymptotic behaviour of the
estimators for the offspring mean matrix under three set of assumptions. All
of these estimators were obtained by the conditional least squares method,
however we’d like to note, that the toolkit is not restricted to these types of
estimators. Any estimator obtained by any heuristics can be examined this
way as long as it can be written as a continuous function of our building
blocks.

Subsection 4.1 reproduces our first published results [10] on this subject.
It was proved using our toolkit, however in a more obscure form, not as
streamlined and clearly structured as it is presented here. Later we treated
the general case [16], those results are reproduced in Subsection 4.2. Finally
Subsection 4.3 offers a small extension in treating the immigration mean as
unknown parameter.

In all three cases the estimates for the offspring mean matrix and the
criticality parameter found to be weakly consistent and their limit behaviour
is described with n'/? and n scaling respectively. A next logical step would
be to use these limit distributions as a basis for constructing test, however
that is not feasible. The problem is that in all cases the limiting distributions
depend on the very parameters we are estimating in an intricate way, namely
the process Vi, t € R, introduced in Remark 3.14 that appears in our limits
depend on the eigenvectors of the offspring mean matrix, see SDE (61). At
this time we found no way to work around this problem. Nevertheless these
are the only consistent estimators available in the literature of critical 2-type
Galton—Watson processes.

We also note that Subsection 4.3 contains a joint estimator of both the
offspring and the immigration means. Unfortunately the estimator for the
immigration mean requires no scaling for a limit, therefore even weak con-
sistency cannot be established. The problem of estimating the immigration
mean in branching processes is a great deal harder than estimating the off-
spring mean, we didn’t expect strong results in this area.
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A Summary

In this section we summarize the results. For the sake of conserving space
we keep formulas and references to other parts of the thesis to a minimum.

As the title suggests the goal of this thesis is to estimate the offspring
mean matrix in critical 2-type Galton—-Watson processes with immigration.
After some preliminaries in Section 2 this is achieved in two large steps.
First, in Section 3 we establish a toolkit for asymptotic study of estimators,
then in Section 4 we introduce estimators and use those tools we developed
to examine their asymptotic properties. The core of the thesis ends with
Section 5 a discussion of the results as well as some open questions. Below
is a short summary of the ideas and key insights that went into these results
and some description of what was achieved.

We begin with introducing the process that we are working with, it is a
simple generalization of single-type Galton-Watson processes with immigra-
tion. Going from one dimension to two means that now we are dealing with
vectors and matrices and we have the tools of linear algebra at our disposal,
for example we make good use of the Frobenius—Perron theorem. Then we
define a classification of these processes, based on the spectral radius of the
offspring mean matrix, we distinguish 3 categories: subcritical, critical, and
supercritical, for this thesis we focus on the critical case. We spend some
time exploring the eigenvalues and eigenvectors of the offspring mean ma-
trix, as they are used to describe the limiting behaviour of the process and
will be instrumental in a decomposition introduced later. Theorem 2.4 by
Ispany and Pap [12] describes the aforementioned limiting behaviour of the
process. This limit is curious, because it is degenerate in the sense that it
is concentrated on a single line whose direction is determined by the right
Perron vector of the offspring mean matrix. Finally we introduce a set of
conditions that we will reference throughout the thesis.

Generally one would find an estimator and then apply Theorem 2.4 along-
side some form of the continuous mapping theorem to describe its limiting
behaviour. We do exactly that using the conditional least squares method,
and we find that Theorem 2.4 is insufficient for our purposes. The inverse
of some matrix A, appears in the formulation whose limit can be described
using the continuous mapping theorem, but whose limit is non-invertible and
our attempt fails here. We theorize that the problem is Theorem 2.4 being
incomplete and point to the curious phenomenon about the limit described in
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it as starting point for further investigation. This concludes the preliminaries.

Section 3 opens with a decomposition of the process based on the (left)
eigenvectors of the offspring mean matrix. We introduce the random variables
U in (12) as the well-behaved part of our decomposition, we know their
limiting behaviour, it coincides with the underlying 1-dimensional stochastic
process in Theorem 2.4. Then we introduce the random variables V, in (16)
as the problematic part of the decomposition.This part doesn’t contribute
to the limit of the process, but as we will see it later it does in case of the
estimator.

Any estimator based on observing the process can be rewritten in terms
of the variables U and Vi. This is purely a theoretical tool, if we only
observe the process then we don’t have information on the eigenvectors of the
offspring mean matrix, thus we cannot tell the values of Uy or V}, however
it we understand their limiting behaviour then we can use them to prove
theorems about the estimators. The rest of this section is devoted to the
asymptotic study of these variables and various expressions of them.

We prove some bounds on the growth of the moments in Lemma 3.5, then
we use those to establish a set of zero-limit theorems in Corollary 3.6. We
don’t have to prove this corollary as it can be done in exactly the same way
as in Barczy et al. [3, Corollary 9.2]. These lower bounds on the scaling
necessary to get a limit of 0 are not sharp, and more importantly not good
enough for our future proofs. Where we need it later we improve these
bounds, these results are expressed in Lemmas 3.8, 3.9, and 3.10. We use
Theorem 3.12 by Ispany and Pap [11] to prove our main result, it gives a
set of sufficient conditions under which random step processes formed from
martingale differences converge to a diffusion process. Our main results are
contained in Theorem 3.13, although they are easier to grasp in Corollary
3.15, where we formulated them in way that best suits our purpose.

The proot of Theorem 3.13 is just a careful checking of the conditions of
Theorem 3.12 using our set of supporting Lemmas built up in the beginning of
Section 3. We note that the difficulty of this part is in figuring out the correct
limit, that can be proven. This was done via an iterative process, we had an
educated guess on the limit, we tried to prove it, but failed repeatedly, each
failure giving us some insight and getting us closer to the correct formulation.

Briefly in Section 3 we identified a set of building blocks with known
limiting behaviour. Any estimator we can build (or reformulate) using these
building blocks can be examined using our toolkit.
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Section 4 contains 3 subsections, each dedicated to finding and analysing
the estimator under different assumptions. Finding the formula for the es-
timators is a simple minimization problem. Since we know from our earlier
observations that the estimator contains the inverse of a matrix whose limit
is not invertible we use the adjugate matrix to express the inverse before
trying to find the limit distribution.

We gain insight into why Theorem 2.4 was insufficient when we use
stochastic expansions. It is a method by which we write an expression as
a sum of parts where we now the right scaling and non-zero limit for each
part, see for example (73). When multiplying stochastic expansions together
sometimes the leading term vanishes, it is because in 2-dimension you can
multiply together 2 non-zero matrices with the result being a zero matrix,
to see an example of that look at formula (75). This enables the lower order
terms to dictate the limit behaviour, this the reason why we needed to work
on the problematic part of our decomposition.

We call the spectral radius of the offspring mean matrix the criticality
parameter and as it can be expressed as a function of the matrix elements
we can naturally define an estimator for it. In the doubly symmetric case
in subsection 4.1 with the restrictions on the matrix structure is is a linear
function of the matrix elements, therefore it is easy to handle. In the gen-
eral cases however the spectral radius is a non-linear function of the matrix
elements and require quite a bit of work to establish asymptotic results.

The last section, Section 5 contains a discussion on the results and some
open questions. It discusses how one could try to relax the rather high
moment conditions of our theorems and also sheds some light on the difficulty
of generalizing the results to an arbitrary number of types. We also discuss
there that while our theorems prove that the estimators for the offspring mean
matrix are weakly consistent and describe their limiting behaviour there is
rather big obstacle in their application. We cannot construct statistical tests
using these results as the limit distributions depend on the very things we aim
to estimate in an intricate way, namely they appear in the drift and volatility
term of the stochastic differential equation describing the underlying one-
dimensional process of Corollary 3.15, see SDE (61) for more details.

Apart from the results themselves the biggest takeaway is, that whenever
a standard method fails, it is worthwhile to understand why it did. Under-
standing the reason of failure often reveals other potential angles of attack
on the problem.
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B Osszefoglald

Ebben a fejezetben Osszefoglaljuk a dolgozat eredményeit. A hely-
takarékossag jegyében a formuldkat és a dolgozat tobbi részére valod hi-
vatkozést igyeksziink minimélis szinten tartani.

Mint az a cimbdl is kideriil a disszertacié célja az utodeloszlas varhato
érték matrixanak becslése kritikus, kéttipusos, bevandorlasos Galton—Watson
folyamatokban. Miutan bevezetjiik a sziikséges elGismereteket a 2. Fe-
jezetben, a tényleges becslés és annak aszimptotikus vizsgélata két nagy
részbol tevodik Ossze. ElGszor a 3. Fejezetben felépitiink egy eszkoztarat
ezen modellbeli becslések aszimptotikus vizsgélatara, majd a 4. Fejezetben
bevezetjiik a vizsgalni kivant becsléseket és az eszkoztarunk felhasznélasaval
hatareloszlas tételeket adunk rajuk. A disszertacid lényegi tartalma az 5.
Fejezettel zarul, mely az eredmények diszkussziojat tartalmazza. Az alabbi-
akban a kutatas soran felhasznalt kulcsfontossdgn otletek és észrevételek egy
rovid osszefoglalasa olvashato.

Ertelemszeriien a modell bemutatasival kezdiink, ami egyszerd al-
talanositdsa az egytipusos, bevandorlisos Galton-Watson folyamatoknak.
Mivel attériink egy dimenziorél kettére, itt mar vektorokkal és matrixokkal
dolgozunk, ez lehetévé teszi, hogy linearis algebrai tételeket alkalmazzunk,
példaul a Frobenius—Perron tétel kimondottan hasznunkra valik. Ezutan a
bevezetjiik a folyamatok klasszifikilasat, ez az utddeloszlas varhato érték
matrixanak spektrilsugara alapjan torténik, 3 csoportot kiilonboztetiink
meg, ezek a szubkritikus, a kritikus, és a szuperkritikus. Jelen disszerté-
cio a kritikus esetre fokuszal. Foglalkozunk még a varhatd érték métrix
sajatvektoraival, erre a folyamat aszimptotikus viselkedésének leirdsihoz van
sziikség, valamint ezen vektorok képezik az alapjat a késGbb bevezetett fel-
bontdsnak. A 2.4 Tétel leirja az el6bb emlitett aszimptotikus viselkedést. A
hatareloszlas kiilonos, ugyanis degenerdlt abban az értelemben, hogy a stk
egyetlen egyenesére van korlatozva, melynek iranyat a varhatoé érték matrix
jobb oldali Perron vektora hatarozza meg. Végezetiil az itt felhasznalt kritéri-
umoknak sajit nevet és jelolést adunk, mivel ezekre a késébbiekben tobbszor
hivatkozunk.

Altaldban ilyen problémakban kézenfekvé modszer a becslések vizs-
galatara a folytonos leképezések tételének alkalmazésa a 2.4 Tétellel karcltve.
Mi is ezt tessziik, becslési modszernek pedig a feltételes legkisebb négyzetek
modszerét alkalmazzuk, azonban azt talaljuk, hogy a 2.4 Tétel nem elégséges
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a céljainkhoz. A becslések vizsgalatakor megjelenik egy A, matrix inverze
¢és ugyan a folytonos leképezések tételével adhatunk hatareloszlas tételt a
matrixra, azonban a hatarértékben megjelend matrix nem invertélhato, igy
a modszerink itt megbukik. Azt sejtjiik, hogy a probléma abban all, hogy
a 2.4 Tétel nem ad elég atfogd képet a becslés épitGelemeinek aszimptotikus
viselkedésérdl, ezért az el6bb emlitett kiilonos jelenség nyomén kezdiink vizs-
galodni.

A 3. Fejezet elején bevezetjiik a folyamat felbontasat a varhatod érték
méatrix baloldali sajatvektorai alapjan. Elséként az Uy valtozokat vezetjiik
be a (12) képletben, ezeket nevezziik a felbontas jol viselkedd részének, mivel
hatareloszlasa egybeesik a 2.4 Tételben meghivé egydimenzids folyamattal.
A felbontéas masik tagjat, a problémds részt, a (16) formulaban bevezetett V;,
valtozok képezik. Ezen valtozok szerepe nem tiikrozodik a folyamat aszimp-
totikus viselkedésében, azonban mint késébb latni fogjuk a becslések aszimp-
totikdjahoz mar hozzéjarulnak.

Béarmely becslés amit a folyamat megfigyelésével felirhatunk atirhaté az
elébb bevezetett felbontéds szerint. Megjegyezziik, hogy ez pusztian elméleti
eszkoz, ha csak a folyamatot figyeljiik meg, akkor nem rendelkeziink informa-
cioval a varhato érték matrix sajatvektorairol és igy nem ismerjiik az Uy és
Vi értékeket. Azonban amennyiben megértjiik ezen valtozok aszimptotikus
viselkedését, akkor ezt felhasznalhatjuk a becslésekre vonatkozo hatareloszlas
tételek bizonyitdsahoz. A fejezet tovabbi részel ezen valtozok és kiilonbozo
kifejezéseik vizsgélatéval foglalkoznak.

A 3.5 Lemmaéaban a varhato értékek novekedési ratajara adunk felsé
korlatokat majd ezek segitségével a 3.6 Kovetkezményben nulldhoz tartod
hatarérték tételeket igazolunk. Ezt a kovetkezményt nem vezetjiik le, csupan
megadjuk a megtelels hivatkozast egy hasonlé kovetkezményhez, melynek bi-
zonyitasa lépésrdl lépésre atiiltethetd a mi modelliinkre. Az igy kapott also
becslések a 0 hatarértékhez sziikségez skaldzas nagysdgrendjére nem élesek,
s6t nem elegenddek a késébb bizonyitando tételeinkhez. Eppen ezért specialis
esetekben javitunk a becsléseinken, ezen eredményeket a 3.8, 3.9, és 3.10 Lem-
mak irjak le. A felbontasra vonatkoz6 nemnulla hatéareloszlas tételiinket a
3.12 Tétel segitségével bizonyitjuk. Ispany Mérton és Pap Gyula ezen ered-
ménye elégéseges feltételt ad martingalkiilonbségekbdl képzett lépesés tiig-
gvények diffazios folyamathoz valé konvergenciajara. A fejezet f6 eredménye
a 3.13 Tétel, melynek eredményeit a 3.15 Kovetkezményben oly médon fogal-
maztunk meg, mely a legcélszertibb a késébbi alkalmazdsuk szempontjabol.
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A 16 tétel bizonyitasa nem més mint a 3.12 Tétel feltételeinek ellenérzése
a korabban bevezetett segédlemmaink felhasznalasaval. A tétel kitaldlasdban
a hatéreloszléas lefrdsa jelentette a legnagyobb nehézséget, hogy pontosan mi-
hez is konvergal az altalunk vizsgélt folyamat. A helyes vélaszt egy iterativ
folyamat végeredményeként kaptuk, ahol a hatareloszlasra adott intuitiv tip-
plinkbdél indulva minden egyes sikertelen bizonyitési kisérlettel egyre kozelebb
keriiltiink a helyes eredményhez.

Roviden osszefoglalva a 3. Fejezetben azonositottunk néhény épitGelemet
melynek ismerjiik az aszimptotikus viselkedését. Az igy kapott eszkoztar
felhasznalhato ezen épitSelemek segitségével kifejezett becslések vizsgédlatéra.

A 4. Fejezet 3 alfejezetbdl éll, mindegyik az utédeloszlas varhato érték
matrixanak becslésével foglalkozik kiilonbozs feltételezések mellett. A becslés
meghatarozasa egy egyszerd minimalizalasi feladat. Mivel az el6z6 sikertelen
probalkozasunkbol tudjuk, hogy ahol megjelenik a matrix inverze ott az a
hatérérték nem invertalhato ezért eleve az adjungalt matrix segitségével frjuk
tel az inverzet.

Mikor sztochasztikus kifejtést hasznélunk, akkor értjiikk meg, hogy miért
nem elégséges a 2.4 Tétel. Ez egy olyan moddszer, ahol a vizsgalni kivant
kifejezést felirjuk olyan tagok oOsszegeként melynek ismerjik a megtelels
skalazasat és nemnulla hatarértékeét, ilyenre az olvaso a (73) képletben talal
példat. Mikor sztochasztikus kifejtéseket szorzunk Ossze, akkor a legma-
gasabb rangi tag eltinhet, ez azért van mert 2 dimenziéban 6ssze tudunk
szorozni nemnulla matrixokat Ggy, hogy az eredmény nullmatrix legyen. Erre
szolgaltat példat a (75) Osszefiigeés. Igy lehetséges, hogy kisebb rendii tagok
is szerepet jatsszanak a hatareloszlasban, emiatt volt sziikség a felbontasunk
problémds telének vizsgalatéra.

Az utodeloszlas varhato érték métrixdnak spektralsugarara kritikussagi
paraméterként is hivatkozhatunk. Mivel ez a mennyiség kifejezhets a matrix
elemeinek fiiggvényeként, ezért természetes modon kapjuk a becslését a
matrix becslésébdl. A duplan szimmetrikus esetben, a 4.1 Fejezetben a
matrix struktirdjara tett megszoritasaink miatt az Osszefiiggés a spektral-
sugar és a matrix elemel kozott linedris, kovetkezésképpen a kritikusségi
paraméter becslése konnyen kezelhets. Az altaldnos esetben sajnos ennél
bonyolultabb a helyzet, joval tébb munkéra van sziikség a hatareloszlas vizs-
galatahoz.

Az utolso, 5. Fejezet az eredmények és néhany nyitott kérdés diszkussz-
i6ja. Sz6 esik benne arrél, hogy milyen moédon lehetne a meglehetésen
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magas momentumfeltételek gyengiteni, valamint ravilagit, hogy milyen ne-
hézségekkel nézne szembe az, aki magasabb dimenziokra probalna dltalanosi-
tani az eredményeket. Arrél is itt esik emlités, hogy ugyan a hatareloszlas
tételeink lefrjak a becslések aszimptotikus viselkedését a statisztikai probék
konstrualdsanak van egy nagy akadélya, a hatareloszlas elég Osszetett mo-
don fiige a becsiilni kivant mennyiségt6l. Az utodeloszlas varhato érték
matrixanak sajatvektorai megjelennek a a hatareloszlas lefrdsahoz hasznalt
sztochasztikus folyamatot meghatarozé sztochasztikus differencidlegyenlet
egyiitthatoiban, mely a (61) képletben talalhato.

Az eredmények mellett ezen kutatas f6 tantsdgaként azt emelnénk ki, hogy
ahol a bevett modszerek cs6dot mondanak, ott érdemes alaposan megvizs-
galni, hogy mely ponton bukik meg a folyamat, ez ugyanis gyakran nyomként
szolgalhat arra nézve, hogy milyen irdnybol érdemes megkozeliteni a prob-
lémat.
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Below is a list of the author’s publications, and a short explanation on how
do these connect to the results of this thesis.

ISPANY, M., KORMENDI, K. and PAP, G. (2014). Asymptotic behavior
of CLS estimators for 2-type doubly symmetric critical Galton—Watson pro-
cesses with immigration. Bernoulli 20(4) 2247-2277.

This publication contains the first results we had about the core prob-
lem of this dissertation. We use heavy restrictions on the structure of the
offspring mean matrix to prove limit theorems. The main results are repro-
duced in Section 4.1 of this thesis.

KORMENDI, K. and PAP, G. (2018). Statistical inference of 2-type crit-

ical Galton-Watson processes with immigration. Statistical Inference for
Stochastic Processes 21(1) 169-190.

In this article we treat the general case, this work is the basis of the dis-
sertation. The main results are reproduced in Section 4.2. The publication
contains two limit theorems which are not included in this thesis: one in the
critical case if (ND) doesn’t hold, and another that describes the asymptotic
behaviour of the estimator in the subcritical case.

BArczy, M., KORMENDI, K. and PAP, G. (2015). Statistical inference
for 2-type doubly symmetric critical irreducible continuous state and con-

tinuous time branching processes with immigration. Journal of Multivariate
Analysis 139(2015) 92-123.

The method of this thesis has been adapted to continuous state and contin-
uous time branching processes, albeit with heavy restrictions on the structure
of these models. The results are in the above publication.

BArczy, M., KORMENDI, K. and PAP, G. (2016). Statistical inference

for critical continuous state and continuous time branching processes with
immigration. Metrika T9(7) 789-816.

During the study of 2-type models the authors realized that results are
not available even in for the single-type version of the problem, so they solved
and published it.
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