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Introduction

Scattering processes are of fundamental importance in several areas of

physics providing fundamental information, e.g., on the nature of the

relevant interaction. In general, scattering is a process when an ob-

ject (an elementary particle, light) interacts with an other object, then

moves towards a possibly different direction with respect to the orig-

inal trajectory. The interaction can be originated from a mechanical

collision or another acting force (e.g. Coulomb force) which can be usu-

ally derived from a potential. There is a special class of time-periodic

scattering processes when we assume that the time dependence of the

scattering potential contains a single frequency. Such excitation can

be a beam of light (e.g. laser) or a gate-voltage applied to a solid-state

device. For strong excitations, the highly inelastic photon-induced pro-

cesses that involve the absorption/emission of one or a few photons,

can be appropriately described by using classical, periodic fields. In

this intensity regime, Floquet’s theory [1, 2] is proved to be one of the

most efficient methods.

Quantum scattering by time-harmonic potentials is an important

and vivid research area. It provides deep understanding of a rich va-

riety of interesting phenomena in strongly driven quantum systems.

Optical control, laser assisted scattering or transport processes are re-

markable examples showing that the presence of an alternating field

can lead to strongly inelastic processes. The optical control of quan-

tum mechanical particles offers a wide variety of promising applications,

including ultrafast electronics [3, 4], imaging [5, 6], or quantum com-

putation [7, 8]. Recently, laser assisted scattering has received a grow-

ing importance in various branches of research aiming, for instance,

the generation of ultrashort (even attosecond) electron pulses [9, 10],

four-dimensional imaging and ultrafast electron microscopy [11, 12],
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or photon-induced near field electron microscopy [6, 13]. Much of the

theoretical works published so far studied also the electron transport

through time-dependent potentials. Developments in the experimen-

tal techniques during the last decades allow that the results have the

possibility of direct applications in the rapidly expanding field of meso-

and nanoscale quantum devices [14, 15].

Objectives

The objective of the thesis was to examine the role of the time-periodic

excitation in quantum mechanical scattering problems. If this exci-

tation can not be considered as a small perturbation, anharmonic re-

sponses are observable.

Beside exploring the fundamental effects, our aim was also to ex-

amine the specific properties of the quantum systems in question and

to seek possible applications. We studied two one-dimensional mod-

els in which we inquire the response of a de Broglie plane wave to a

time-periodic excitation. In the case of relativistic particles, based on

the linear dispersion relation of graphene, we can model the electron

transport in graphene with an applied periodic gate-voltage. Here, we

wanted to examine what kind of practical applications could there be

for a periodic excitation, which show the known relativistic effects, like

Klein paradox. As for nonrelativistic particles, the solid-state physical

analogy could be the dynamics of the electrons in the conduction band

with an applied optical field. Of course, the description of the dynamics

of a beam consisting of charged particles naturally arises in both cases.

After understanding the physical background, it was important ques-

tion how the filtering of the energy can be achieved for the outgoing

particles.

Additionally, our aim was to study a three-dimensional model, in
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which charged particles (e.g., electrons) are scattered on a nano-particle

which is modeled by a hard sphere. Beside the possibility of the optical

control, we intended to examine the dynamics in the presence of an

electromagnetic field. The main quantity to be calculated here was the

differential cross section, whose analysis could give us an insight into

the dynamics of the scattering process.

Methods

Periodic systems can be effectively described by Floquet’s theory [1, 2].

The mathematical foundations of this approach were originally devel-

oped in 1883 by G. Floquet to study ordinary differential equations with

periodic coefficients. Regarding quantum systems, Floquet’s theory was

first used in the context of laser-atom interaction by J. H. Shirley in

1965. He considered a quantum system with two discrete states in-

teracting with a semiclassically treated oscillating field with a single

frequency [2]. The advantage of this method is that the dynamical

equation can be reduced to an infinite-dimensional linear algebraic sys-

tem of equations, and the interaction is taken into account in a nonper-

turbative way. With this approach, the fundamental quantum effects

like the interference of matter waves in strong external fields can be

examined as well as the appearance of harmonics.

Time-periodic systems are described by a Hamiltonian H(t) = H(t+

T ), where the time period T = 2π/ω and ω is the angular frequency of

the excitation. Based on Floquet’s theorem, the wave function can be

written in the form |Ψ(t)〉 = exp (−iǫt/~)|Φ(t)〉, where |Φ(t)〉 is the so-

called Floquet state, whose periodicity is the same as the Hamiltonian,

i.e., |Φ(t)〉 = |Φ(t+T )〉. The Floquet quasienergy ǫ is a real parameter

and is defined up to the integer multiples of ~ω. In other words, it can

be reduced to a zone with a width of ~ω. As an analogy to solid-state
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physics, this zone and the quasienergy ǫ correspond to the first Brillouin

zone and to the quasi wave vector, respectively. Due to their periodic-

ity, the Floquet states can be expanded into Fourier series, which is the

reason why the eigenvalue equations can be transformed into an infinite

dimensional matrix equation. If the wave function have a Floquet form

and the boundary conditions are also taken into account, the system is

well-defined. Practically, the linear system of equations are solved by

including only a finite number of the Floquet channels.

Scientific results

In the following, I present a brief summary of the new scientific results

discussed in the thesis which are collected in five thesis points. The

publications connected to my statements are listed at the end of this

booklet and cited in each title.

T1. Scattering of charged particles in a Ramsey-like

setup: transmission resonances [P3]

— I constructed a quantum mechanical model in which charged par-

ticles (e.g. electrons) are scattered by a time-oscillating electric

field in a spatially separated (Ramsey-like) setup [16]. I analyzed

the cycle-averaged transmission probabilities as the function of

the energy of the incoming electrons E0, and identified transmis-

sion resonances in the spectrum.

— In order to interpret the results, I created a model, based on a

classical physical consideration, by replacing the oscillating elec-

tric fields with static potential barriers of heights equal to the

ponderomotive energy of the electron.

4



— I proved that the static double-barrier system is a proper first

approximation in finding the transmission resonances. For low

values of E0, the oscillating model has transmission resonances

around the energy eigenvalues of the static model. I concluded

that the localized states, which exist between the two potential

barriers, are the reason for the appearance of the resonances.

T2. Scattering of charged particles in a Ramsey-like

setup: phase dependence [P3]

— In the model examined in [P3], I also analyzed the dependence of

the cycle-averaged transmission probability 〈T 〉 on the separation

distance d and the phase difference ϕ0 between the two optical

fields. I found that 〈T 〉 is quasi-periodic in d, and the transmission

probability can change as much as 50% as a function of ϕ0.

— With the examination of the space- and time-dependent proba-

bility density and current, I analyzed the scattering process in the

case of low and high transmission probabilities, and I interpreted

the dynamics in these limiting cases using classical terms.

— I showed that in order to control the transmission by changing the

phase ϕ0, the parameters of the electric fields must correspond

to a ponderomotive potential close to the energy of the particle

beam.

T3. Describing laser-assisted electron scattering with

spherical Gordon-Volkov states [P2]

— Based on the work of Varró and Ehlotzky [17], I investigated the

electron scattering on a hard sphere in the presence of a laser field.
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I derived the spherical Gordon-Volkov states using the transla-

tional addition theorem of spherical harmonics [18, 19]. I reduced

the Fourier spectrum of these states to a series of hypergeometric

functions. The resulting analytic expression significantly simpli-

fies the calculation of the spectrum.

— I examined the differential cross sections for different Floquet

channels in the weak-field limit. I found that the Floquet channels

indexed by n 6= 0 get more populated for increasing electric field

strengths. For increasing electron energies, E0, new scattering

channels open up similarly to the model presented in [P3].

T4. Relativistic electron scattering on an oscillating

potential barrier: cycle-averaged transmission prob-

abilities [P1]

— I studied the scattering of relativistic electrons on an oscillat-

ing potential barrier in one dimension. By examining the cycle-

averaged transmission probabilities 〈T 〉, I observed that the Klein

paradox is also visible in the oscillating case similarly to the one-

dimensional relativistic static scattering. That is, the transmis-

sion probability approaches 1 for increasing potential heights V0.

— I also showed that when the barrier heights are within the band

gap of 2mc2, the cycle-averaged transmission probability can take

non-zero values, if the oscillation amplitude is large enough or the

oscillation is localized in a narrow region.
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T5. Relativistic electron scattering on an oscillating

potential barrier: wave-packet generation, Fano-type

resonances [P1]

— In the model studied in [P1], in order to understand the details

of the transmission spectrum, I examined the space- and time-

dependent probability density and current. I identified the effect

of "temporary trapping" inside the oscillating potential barrier.

— For a low incoming electron energy E0, I discovered Fano-type

resonances [20] in the transmission probability. Using the Dirac

equation, I calculated the bound states and the corresponding en-

ergies of the static relativistic potential barrier, which I identified

to be the reason for the appearance of these resonances.
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