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Introduction

Scattering processes are of fundamental importance in several areas of physics pro-

viding fundamental information, e.g., on the nature of the relevant interaction. In

general, scattering is a process when an object (an elementary particle, light) inter-

acts with an other object, then moves towards a possibly different direction respect

to the original trajectory. The interaction can be originated from a mechanical colli-

sion or another acting force (e.g. Coulomb force) which can be usually derived from

a potential. There is a special class of time-periodic scattering processes when we

assume that the time dependence of the scattering potential contains a single fre-

quency. Such excitation can be a beam of light (e.g. laser) or a gate-voltage applied

to a solid-state device.

The objective of the work presented in this PhD thesis is the examination of the

role of the time-periodic excitation in quantum mechanical scattering problems. If

this excitation can not be considered as a small perturbation, anharmonic effects

are observable. This complex dynamics can be described by Floquet’s theory [1–4]

which is the basis of the theoretical methods presented in this thesis. With this

approach, the fundamental quantum effects, like the interference of matter waves

in strong external fields, can be examined as well as the appearance of harmonics.

The advantage of this method is that the dynamical equations can be reduced to a

linear algebraic system of equations, and the interaction is taken into account in a

nonperturbative way.

Beside exploring the fundamental effects, our aim is also to examine the specific

properties of the quantum systems in question and to seek possible applications. We

would like to study two one-dimensional models in which we inquire the response

of a de Broglie plane wave to a time-periodic excitation. In the case of relativistic

particles, based on the linear dispersion relation of graphene, we can model the

electron transport in graphene with an applied periodic gate-voltage. Here, we

want to examine what kind of practical applications could there be for a periodic

excitation, which show the known relativistic effects, like Klein paradox. As for

nonrelativistic particles, the solid-state physical analogy could be the dynamics of

the electrons in the conduction band with an applied optical field. Of course, the

description of the dynamics of a beam consisting of charged particles naturally arises
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Introduction

in both cases. After understanding the physical background, it is an important

question how the filtering of the energy can be achieved for the outgoing particles.

Additionally, our aim is to study a three-dimensional model, in which charged

particles are scattered on a sphere. Considering the possibility of the optical control,

we intend to examine the dynamics in the presence of an electromagnetic field. The

main quantity to be calculated here will be the differential cross section, whose

analysis could give an insight into the dynamics of the scattering process.

The thesis is structured in such a way that the main content of the work is divided

into two parts. Part I contains three brief chapters in which theoretical preliminaries

are covered. Part II contains the main results of the thesis which are presented in

three chapters. In Chapter 4, we present a nonrelativistic one-dimensional model,

where charged particles are scattered in a Ramsey-like setup. Next, in Chapter 5,

a three-dimensional electron scattering is discussed in the presence of an external

electric field. The final Chapter 6 covers the one-dimensional relativistic model in

which Dirac particles are scattered by an oscillating potential barrier. As a final

summary, the motivational aspects and methods are followed by the new scientific

results to which the author has contributed.
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CHAPTER 1

Floquet’s theory

Quantum mechanical systems in external time-periodic fields allow a treatment using

Floquet’s theory, which is the analog of Bloch’s theorem in solid-state physics for

time periodicity instead of spatial periodicity. The mathematical foundations of

this approach were originally developed in 1883 by G. Floquet to study ordinary

differential equations with periodic coefficients, see Ref. [1]. Regarding quantum

systems, Floquet’s theory was first used in the context of laser-atom interaction by

J. H. Shirley in 1965. He considered a quantum system with two discrete states

interacting with a semiclassically treated oscillating field with a single frequency [2].

Later on, however, Floquet’s theory was reformulated to be applied to polychromatic

fields as well (such as multimode laser fields or several monochromatic fields with

different frequencies) [5–7].

The key feature of the application of Floquet’s theorem for the description of

light-matter interaction is that it permits the time-dependent Schrödinger equation1

of an atomic system interacting with a periodic laser field to be reduced to an

equivalent infinite-dimensional eigenvalue problem. Using this approach, the atom-

field coupling is treated in a completely nonperturbative way.

Let us consider a quantum system whose Hamiltonian H(t) is periodic in time,

i.e., H(t) = H(t + T ), where T = 2π/ω and ω is the angular frequency. The

field is assumed to be monochromatic and arbitrarily polarized. The corresponding

time-dependent Schrödinger equation can be written as

HF (t)|Ψ(t)〉 = 0, (1.1)

1In this chapter, we consider only a nonrelativistic framework for the sake of simplicity. However,
Floquet’s theory can be also applied to relativistic problems described by e.g. the Dirac equation
as presented in Chapter 6.
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Chapter 1 — Floquet’s theory

with the operator

HF (t) = H(t)− i~
∂

∂t
, (1.2)

which is called the Floquet Hamiltonian. As a consequence of Floquet’s original

theorem [1], the solution can be written as

|Ψ(t)〉 = exp (−iǫt/~)|Φ(t)〉, (1.3)

where |Φ(t)〉 is called the Floquet state which has the same time-periodicity as that

of the Hamiltonian, i.e., it satisfies |Φ(t)〉 = |Φ(t + T )〉. The quasienergy ǫ has to

be a real parameter and is only defined up to integer multiples of ~ω.

Since the Floquet states are time-periodic, it is convenient to introduce them

as vectors of the composite Hilbert space R ⊗ T made up of the Hilbert space R

of square integrable functions in configuration space and the space T of functions

which are periodic in time with period T = 2π/ω [9, 10]. For the spatial part R,

the inner product is defined by

〈ϕα|ϕβ〉 ≡
∫
ϕ∗
α(r)ϕβ(r) dr = δαβ , (1.4)

where the range of the integration is the entire configuration space and |ϕα〉, |ϕβ〉, . . .
are orthonormal basis vectors. The temporal part is a Hilbert space denoted by T

which is spanned by the complete orthonormal set of functions exp (inωt), with

n = 0,±1,±2, . . . being integer numbers. It consists of all periodic functions of time

t with the period of T . The inner product of the basis functions in T reads

(n,m) =
1

T

T∫

0

exp [i(m− n)ωt] dt = δnm. (1.5)

For the complete Hilbert space R ⊗T, we can finally introduce a suitably extended

inner product, which, for the states |ϕn
α〉 = |ϕα〉 exp (inωt) reads

〈〈ϕn
α|ϕm

β 〉〉 =
1

T

T∫

0

〈ϕn
α(t)|ϕm

β (t)〉 dt = δαβδnm, (1.6)

here, 〈ϕn
α(t)|ϕm

β (t)〉 denotes the usual inner product (1.4) between state vectors at

equal times.

Applying the Floquet Hamiltonian operator to the wave function (1.3), the ex-

ponential term cancels out, and one can observe that the Floquet states satisfy the

eigenvalue equation

HF (t)|Φα(t)〉 = ǫα|Φα(t)〉, (1.7)

5



Chapter 1 — Floquet’s theory

where each |Φα(t)〉 is a periodic function of period T , and the index α distinguishes

different eigenvalues/eigenstates. Moreover, at equal times the Floquet modes form

a complete set ∑

α

|Φα(t)〉〈Φα(t)| = 1, (1.8)

where 1 denotes the identity in the Hilbert space of R only, i.e., not including the

space of time-periodic functions. From Eq. (1.3) and from the periodicity of the

Floquet state |Φα(t)〉, it is clear that the same physical state is obtained from

|Ψα(t)〉 = exp [−i(ǫα + n~ω)t/~] exp (inωt)|Φα(t)〉 = exp (−iǫnαt/~)|Φn
α(t)〉, (1.9)

where the shifted states are defined as |Φn
α(t)〉 = exp (inωt)|Φn

α〉 with a quasienergy

ǫnα = ǫα + n~ω for any integer number n. These states are sometimes referred to as

sidebands. Therefore, any quasienergy ǫα can be reduced to a point in a "zone" such

as −~ω/2 ≤ ǫ ≤ +~ω/2. (Analogously, in solid-state physics, the quasimomentum

k is only defined up to the reciprocal lattice vector, and it is usually chosen to be

in the first Brillouin zone.) Note that the shifted Floquet states |Φn
α(t)〉 satisfy the

same eigenvalue equation with their corresponding shifted eigenvalues ǫnα.

Due to the time periodicity of the Floquet states, we can transform the eigen-

value equation given by Eq. (1.7) into an infinite-dimensional matrix equation by

expanding |Φα(t)〉 as a Fourier series

|Φα(t)〉 =
+∞∑

m=−∞

eimωt|Φ̃m
α 〉, (1.10)

where the expansion functions |Φ̃m
α 〉 are the harmonic components of the Floquet

state. Inserting Eq. (1.10) into Eq. (1.3), the wave function can be rewritten as the

Floquet-Fourier expansion

|Ψα(t)〉 = exp (−iǫt/~)
+∞∑

m=−∞

eimωt|Φ̃m
α 〉. (1.11)

The Hamiltonian H(t) can also be expanded as a Fourier series, and the eigenvalue

equation can be explicitly given as

(HF − 1ǫα)|Φα(t)〉 = 0, (1.12)

where the Floquet Hamiltonian matrix HF is infinite. Concretely, in the orthonor-

mal basis of the composite space R ⊗T, the matrix of HF is given by

〈〈ϕn
α|HF |ϕm

β 〉〉 = H̃n−m
αβ + n~ωδαβδnm, (1.13)

6



Chapter 1 — Floquet’s theory

where H̃n−m
αβ are the coefficients of the Fourier expansion of the semiclassical Hamil-

tonian H :

〈ϕα|H(t)|ϕβ〉 = Hαβ(t) =

∞∑

n=−∞

H̃n
αβe

inωt. (1.14)

The Greek letters denote the matrix elements corresponding to atomic or molecular

eigenstates, while Roman letters stand for Fourier components. If we assume that

the Hamiltonian consists of a static plus a time-periodic term, e.g., H(t) = A +

B cos (ωt), the structure of the Floquet Hamiltonian matrix reads as follows

HF =




. . .
...

...
...

...
... . .

.

. . . A− 2~ω1 B 0 0 0 . . .

. . . B A− ~ω1 B 0 0 . . .

. . . 0 B A B 0 . . .

. . . 0 0 B A+ ~ω1 B . . .

. . . 0 0 0 B A+ 2~ω1 . . .

. .
. ...

...
...

...
...

. . .




, (1.15)

where the static term A appears as diagonal blocks which are added to the integer

multiples of ~ω, and the term B is present as off-diagonal blocks which is the con-

sequence of the identity cosωt = (1/2)[exp (iωt) + exp (−iωt)]. Each block contains

components in the spatial wave basis |ϕα〉, |ϕβ〉, . . ., which are the eigenvectors of

the time-independent term A.

If the wave functions are written in Floquet form and the boundary conditions

are accounted for, the system is well-defined; an infinite system of linear equations

has to be solved which can be realized practically by keeping only a finite number

(2N +1) of the harmonic components. The integer number N is usually determined

by the prescribed precision of the calculation: it can be arbitrarily refined by taking

more harmonic components into account.

7



CHAPTER 2

Gordon-Volkov states

In this chapter, we review the semiclassical description of an electron interacting

with an external field [8]. We consider a field with a wavelength much larger than

an actual atomic system. Although, as we shall see, the time dependence of the

field can be arbitrary, in our results to be presented in Chapter 4 and 5, we restrict

ourselves to consider only sinusoidally oscillating light waves.

2.1 Electromagnetic gauges

As is known in classical electrodynamics [11], the Lorentz force acts on moving

charged particles. The Lagrangian of a particle with charge q moving with the

velocity of v = ṙ in an electromagnetic field described by the scalar and vector

potentials φ(r, t) and A(r, t) reads

L =
1

2
mṙ2 + qṙ ·A(r, t)− qφ(r, t), (2.1)

where the potentials have the usual connections to the field quantities, that is:

E = −∂A
∂t

−∇Φ, B = ∇×A. (2.2)

Introducing the canonical momentum p = ∂L/∂ṙ, the Hamiltonian function is con-

structed by the usual Legendre transformation which results in

H =
1

2m
[p− qA(r, t)]2 + qφ(r, t). (2.3)

For a quantum mechanical description, let us consider the Hamiltonian operator

as the quantized version of the classical Hamiltonian (2.3). That is,

Ĥ =
1

2m

[
P̂− qA(R̂, t)

]2
+ qφ(R̂, t). (2.4)

8



Chapter 2 — Gordon-Volkov states

Note that, unlike in the formalism of quantum electrodynamics, the field quantities

themselves are not operators. They are real, differentiable functions which can

depend on spatial coordinates and time. The framework with these assumptions is

said to be the semiclassical description of the light-matter interaction.

Let us assume that the wave function Ψ is the solution of the time-dependent

Schrödinger equation i~(∂Ψ/∂t) = ĤΨ with the Hamiltonian defined by Eq. (2.4).

We can also define another wave function Ψ′ with a gauge transformation of the first

kind1 as the following:

Ψ′ = exp

[
iq

~
χ(r, t)

]
Ψ, (2.5)

where the generating function χ(r, t) is a real, differentiable function of r and t.

We can rewrite the Schrödinger equation by expressing Ψ from Eq. (2.5), so the

"primed" Schrödinger equation is given by

i~
∂Ψ′

∂t
=

{
1

2m
[p− q(A +∇χ)]2 + q

(
φ− ∂χ

∂t

)}
Ψ′, (2.6)

where we can immediately see that if we introduce the "primed" electromagnetic

potentials2

A′ = A+∇χ, φ′ = φ− ∂χ

∂t
, (2.7)

the form of the Schrödinger equation is unchanged. [For comparison, see the original

Hamiltonian (2.4)]. The gauge transformation of the first kind [given by Eq. (2.5)] is

a particular case of a unitary transformation, thus, measurable quantities calculated

in different gauges must be the same. Of course, both the pairs (A, φ) and (A′, φ′)

lead exactly to the same electric and magnetic fields.

2.2 Gauges in dipole approximation

Now, more specifically, let us focus on the quantum mechanical formalism describing

light-matter interaction. First, let us expand the Hamiltonian operator (2.4) in

spatial coordinate basis as follows:

Ĥ = − ~
2

2m
∇2 + i~

q

2m
(A · ∇+∇ · A) +

q2

2m
A2 + qφ, (2.8)

where we used the momentum operator P̂ = −i~∇. Because of the gauge transfor-

mations (2.7), we can impose a special condition, the so-called Coulomb (or trans-

1Here, we use Pauli’s terminology of the gauge transformations, see Ref. [12].
2This is called the gauge transformation of the second kind.

9



Chapter 2 — Gordon-Volkov states

verse) gauge on the vector potential A, which reads

∇ · A = 0. (2.9)

It is convenient to use this condition in the absence of charges or currents as sources

of the electromagnetic field. Applying Eq. (2.9) to the Hamiltonian (2.8), it is readily

seen that the time-dependent Schrödinger equation reads

i~
∂Ψ(r, t)
∂t

=

(
− ~

2

2m
∇2 + i~

q

2m
A · ∇ +

q2

2m
A2 + qφ

)
Ψ(r, t). (2.10)

Note that for weak fields, the term proportional to A2 may be omitted since its

contribution to the exact solution is negligible.

Apart from the XUV domain and higher frequencies, the wavelength of the op-

tical fields is much larger than the typical size of an atom. That is, electromagnetic

radiation in the optical region (λ ∼ 1µm) can be considered homogeneous for an

atomic system, i.e., the spatial dependence of the field quantities can be omitted.

This reduction is called dipole approximation, because in this case, the light-induced

transitions can be simply characterized by the matrix elements of the transition

dipole moment. In the following, only individual elementary particles (such as elec-

trons) are considered instead of entire atomic systems in the presence of an external

field. Therefore, we continue our description considering the charged particle to be

a free electron of charge q = −e.
Using the dipole approximation in the Hamiltonian (2.10) can lead to an ad-

ditional simplification. Since the gradient of the scalar potential φ = φ(t) always

vanishes, we can choose its value to be zero. Additionally, let us perform a gauge

transformation of the first kind

Ψ = exp


− i

~

e2

2m

t∫

t0

A2(τ) dτ


Ψvg. (2.11)

The resulting time-dependent Schrödinger equation is in the so-called velocity gauge

i~
∂Ψvg

∂t
=

[
P̂

2

2m
+

e

m
A(t) · P̂

]
Ψvg. (2.12)

Here, the second term in the Hamiltonian couples the vector potential A(t) to the

velocity operator P̂/m. Note that Eq. (2.12) is valid no matter how intense the

external field is.

Another common form of the time-dependent Schrödinger equation in the dipole

approximation can be achieved using a gauge transformation of the first kind by

10



Chapter 2 — Gordon-Volkov states

taking the generating function χ(r, t) = −r · A(t), that is

Ψlg = exp

[
−ie
~

A(t) · r
]
Ψvg. (2.13)

From Eq. (2.7) we can immediately recognize that the vector potential A′ is elim-

inated in exchange for the appearance of a non-zero scalar potential φ′ = −E · r.
Therefore, the new time-dependent Schrödinger equation in the so-called length

gauge reads

i~
∂Ψlg

∂t
=

[
P̂

2

2m
+ eE(t) · R̂

]
Ψlg. (2.14)

Here, the electric field E(t) is coupled to the position operator R̂. The electric

dipole moment operator D̂ = −eR̂ appears in the second term of the Hamiltonian

[13]. This is the reason why the approximation, in which the electromagnetic field

is considered to be homogeneous, is called the dipole approximation.

Let us add a final remark in this section concerning the velocity and length

gauges. The Hamiltonian in the length gauge can also be obtained through classical

considerations. As is known, two Lagrangians describing the same system can differ

by the total derivative of an arbitrary differentiable function [14]. (It can be verified

that both Lagrangians will always lead to the exact same equations of motion.)

Subtracting the total derivative e [d (r ·A) /dt] = eṙ · A + r · (dA/dt) from the

Lagrangian (2.1) yields

L′ =
1

2
mṙ2 + er

dA
dt

+ eφ. (2.15)

Furthermore, the corresponding Hamiltonian reads

H̃ =
p̃2

2m
+ er ·E(t) + eφ, (2.16)

where we assumed that the total derivative of the vector potential can be replaced by

the partial derivative, i.e., dA/dt ≈ ∂A/∂t according to the dipole approximation.

The second term in (2.16) is the dipole energy, where the electric field E appears

in its usual form. However, we have already used dipole approximation, thus the

gradient of the scalar potential φ is zero. In the Hamiltonian (2.16), the canonical

momentum equals to the kinetic momentum of the particle unlike in Eq. (2.3),

where the canonical momentum p = mṙ + eA(t). Finally, let us emphasize that as

long as the physical system is treated exactly, both gauges are equivalent, otherwise

e.g., taking the external field into account as a perturbation, the final results using

different gauges could be entirely different [15, 16].

11



Chapter 2 — Gordon-Volkov states

2.3 Gordon-Volkov states in dipole approximation

In this section, we give an exact solution to the time-dependent Schrödinger equation

describing a free electron in an external field. Using dipole approximation, we recall

the time-dependent Schrödinger equation in the velocity gauge [Eq. (2.12)]:

i~
∂Ψvg

∂t
=

[
P̂

2

2m
+

e

m
A(t) · P̂

]
Ψvg. (2.17)

Since the external field depends only on time and exp [(i/~)p · r] is an eigenfunction

of the momentum operator P̂ corresponding to the eigenvalue p (where p is the

momentum of the de Broglie electron wave), we can seek the solution as a modulated

plane wave

ΨV
p (r, t) =

1

(2π~)3/2
exp

(
i

~
p · r

)
fp(t), (2.18)

where fp(t) is a function which depends only on time. Substituting Eq. (2.18) into

Eq. (2.17), we obtain the following first order differential equation for the function

fp(t)

i~
dfp(t)

dt
=

[
p2

2m
+

e

m
p · A(t)

]
fp(t), (2.19)

which is readily solved by integration:

fp(t) = exp


− i

~


 p2

2m
t+

e

m

t∫

t0

A(t′) dt′




. (2.20)

Substituting Eq. (2.20) into the ansatz (2.18), the so-called Gordon-Volkov [17, 18]

(or sometimes simply Volkov) wave function reads

ΨV
p (r, t) =

1

(2π~)3/2
exp

{
i

~
p · [r −α(t)]− i

~
Et

}
, (2.21)

where E = p2/(2m) is the electron energy, and we introduced

α(t) =
e

m

t∫

t0

A(t′) dt′, (2.22)

which is a vector corresponding to the displacement of a classical electron from its

oscillation center in the electric field.

It is also possible to apply the unitary transformation

ΨKH
p = exp

[
− i

~
α(t) · p

]
ΨV

p (2.23)

12



Chapter 2 — Gordon-Volkov states

to Eq. (2.17), which is called Kramers-Henneberger transformation [19, 20]. It cor-

responds to a spatial translation characterized by the vector α(t). The new frame

(Kramers-Henneberger frame) moves with respect to the laboratory frame in the

same way as a classical electron oscillates in the electric field. In the Kramers-

Henneberger frame, the Volkov wave function is a plane wave given by

ΨKH
p (r, t) =

1

(2π~)3/2
exp

[
i

~
(p · r − Et)

]
. (2.24)

Additionally, the Volkov solution of the original Schrödinger equation (2.10) can

be written by applying the unitary transformation (2.11) to the Volkov state (2.21)

as follows

ΨV
p (r, t) =

1

(2π~)3/2
exp




i

~
p · [r−α(t)]− i

~
Et− i

~

e2

2m

t∫

t0

A2(τ) dτ



. (2.25)

Sometimes only the compact form

ΨV
p (r, t) =

1

(2π~)3/2
exp

(
i

~
p · r

)
exp



− i

~

t∫

t0

1

2m

[
p+ eA2(τ)

]2
dτ



 (2.26)

is used in the literature for the sake of brevity, where the second exponential expres-

sion is the modulator function fp(t) appearing in Eq. (2.18), which is also called the

Volkov phase.

Finally, based on Refs. [17, 18, 21–23], we add a few remarks regarding the Volkov

states. They form a complete set and they are orthogonal, where the normalization

condition is similar to the case of plane waves, i.e., they are normalized to the Dirac

delta function: ∫
ΨV ∗

p′ (r, t)Ψ
V
p (r, t) d

3r = δ3(p− p′). (2.27)

Relativistic description of light-matter interaction can be obtained through a similar

procedure: Volkov solutions also exist for the Klein-Gordon or the Dirac equation

[17, 18]. Recently, after many decades, these relativistic Volkov states were proved

to be orthogonal and they form a complete set as well [21–23].
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CHAPTER 3

The Dirac equation

A wide range of phenomena in physics cannot be correctly and thoroughly accounted

for without connecting special relativity and quantum mechanics. The fine structure

of the spectral lines of a hydrogen atom is one of the remarkable examples, where

these two theories should proceed together since it could not be explained exactly

by solving the Schrödinger equation. Attempting to fit the relativistic covariance

into a correct quantum mechanical equation was one of the hot research topics in

theoretical physics during the 1920s.

The relativistic covariant wave equation describing an electron was found by

P. A. M. Dirac in 1928. He was not satisfied with the earlier attempts of Klein,

Gordon, Fock, and Kudar to construct a relativistic theory as it could result in a

negative probability density for the position of the electron. Dirac was also able

to reproduce the results of Pauli’s spin model by assuming that the electron is a

point charge which should be described by a relativistic wave equation. As we can

see it from a period of many decades, the Dirac equation has been proven to be

the proper single particle quantum mechanical wave equation of all spin-1
2

massive

particles such as electrons.

As an introduction to our results to be presented in Chapter 6, we briefly review

the solution of the Dirac equation for a free electron and for the case where the

electron is scattered on a constant potential barrier.

3.1 Dirac equation of a free particle

Neglecting any external potential, i.e., considering a free electron of mass m, the

time-dependent Dirac equation reads as follows [24]:

ĤDΨ(r, t) = i~
∂Ψ(r, t)
∂t

, (3.1)
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Chapter 3 — The Dirac equation

with the Dirac Hamiltonian

ĤD = c
3∑

k=1

αkp̂k + βmc2, (3.2)

where p̂k are the Cartesian components of the momentum operator. The Dirac

matrices αk and β are Hermitian and satisfy the following relations:

[αk, αl]
+ = 2δkl1, [αk, β]

+ = 0, α2
k = β2 = 1, (3.3)

where [., .]+ denotes the anticommutator. These conditions imply that the dimension

of these N ×N square matrices must be even [25]. Moreover, the possible smallest

value of N is 4. Therefore, the spinor valued wave function (also called Dirac spinor

or bispinor) Ψ must be a four-component vector as well.1 One of the possible explicit

representations for the matrices above is the standard (Dirac) representation, which

reads

αk =

(
0 σk

σk 0

)
, β =

(
1 0

0 −1

)
, (3.4)

where the usual Pauli matrices σk (k = 1, 2, 3) appear. Other representations

(e.g. Weyl or Majorana) of the algebra associated with the Dirac equation are uni-

tarily equivalent [26].

Now, let us focus on solving the free Dirac equation. We make a plane wave

ansatz

Ψ(r, t) = u exp [i(p · r −Et)], (3.5)

since the Dirac equation is a first order linear differential equation with only constant

coefficients. As it can be shown, the quantities

E± = ±
√

p2c2 +m2c4 (3.6)

are the two (doubly degenerated) energy eigenvalues of the Dirac Hamiltonian (3.2)

which appear in the time evolution. The four-component eigenspinors read

u+1 = N




χ↑

cσ · p
E+ +mc2

χ↑


 , u+2 = N




χ↓

cσ · p
E+ +mc2

χ↓


 (3.7)

and

u−1 = N


− cσ · p

−E− +mc2
χ↑

χ↑


 , u−2 = N


− cσ · p

−E− +mc2
χ↓

χ↓


 . (3.8)

1Note that this is not a four-vector in the relativistic sense.

15



Chapter 3 — The Dirac equation

E

+mc2

−mc2

p = 0

p = 0

0

Figure 3.1: Schematic layout of the eigenvalues of the free Dirac equation. The black
filled circles represent the occupied negative energy states with E < mc2 which form
the "Dirac sea". The hollow circles are states with positive energies.

Equations (3.7) and (3.8) are the eigenfunctions associated with the positive and

negative eigenenergies, respectively. χ↑ = (1, 0) and χ↓ = (0, 1) are the two basic

two-component spinors. The normalization constant N can be explicitly given by

N =

√
E+ +mc2

2E+
, (3.9)

with the condition u†u = 1, where the dagger denotes the conjugate transpose.

Beside the energy (E+) of a relativistic particle, the opposite of it (E−) also

becomes one of the eigenenergies. According to the usual interpretation, these nega-

tive energy states with E < mc2 are all occupied by electrons and form the so-called

Dirac sea, see Fig. 3.1. Because of the Pauli exclusion principle (stating that two

identical fermions cannot be in the same quantum state), this also prevents an elec-

tron losing energy and dropping into the negative energy states.

3.2 Solution for a constant potential barrier

In this section, we calculate the spectrum of eigenvalues for Dirac particles in a

one-dimensional potential barrier2 of height V0 and width a. For that purpose, we

divide e.g., the z axis into three domains I, II and III as sketched in Fig. 3.2, so that

the Dirac spinors depend only on z. The one-dimensional time-independent Dirac

equation in the three regions reads

(
cα3p̂3 + βmc2

)
ψ(z) = Eψ(z), for |z| ≥ a/2, (3.10a)

(
cα3p̂3 + βmc2 + V0

)
ψ(z) = Eψ(z), for |z| ≤ a/2. (3.10b)

2In his book [25], W. Greiner presented the solutions for a constant rectangular potential well
instead of a barrier.
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z−a/2 0 +a/2

I II III

V

V0

Figure 3.2: One-dimensional square potential barrier with constant height V = V0
localized between z = −a/2 and z = +a/2.

In region II, a constant potential of magnitude V0 is added to the free Hamiltonian

in Eq. (3.10b).

Since by assumption no spin-flip occurs at the boundary of the barrier, we can

restrict our discussion to solutions with e.g., spin up electrons. The energies of the

solutions can take all allowed values from −∞ up to +∞. We seek the solutions of

the Dirac equations (3.10a) and (3.10b) as right and left propagating plane waves.

Thus, they are given by

ψI(z) = Aeipz/~




1

0
pc

E +mc2

0




+ A′ e−ipz/~




1

0

−pc
E +mc2

0



, (3.11a)

ψII(z) = B eiqz/~




1

0
qc

E − V0 +mc2

0




+B′ e−iqz/~




1

0

−qc
E − V0 +mc2

0



, (3.11b)

ψIII(z) = C eipz/~




1

0
pc

E +mc2

0




+ C ′ e−ipz/~




1

0

−pc
E +mc2

0



, (3.11c)

with dispersion relations p2 = E2/c2 −m2c2 and q2 = (E − V0)
2/c2 −m2c2. At the

borders of the barrier, the wave functions must be continuous. This requirement

stems from the continuity equation. Therefore, we get the following condition at
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Chapter 3 — The Dirac equation

the two boundaries of the potential barrier:

ψI

(
−a
2

)
= ψII

(
−a
2

)
, ψII

(
+
a

2

)
= ψIII

(
+
a

2

)
. (3.12)

Defining the parameter

ξ =
pc

E +mc2
E − V0 +mc2

qc
=

√
(E −mc2)(E − V0 +mc2)

(E +mc2)(E − V0 −mc2)
, (3.13)

we can write the fitting equations in the following matrix form

(
A

A′

)
=

1

2




ξ + 1

ξ
ei(p−q)a/2~ ξ − 1

ξ
ei(p+q)a/2~

ξ − 1

ξ
e−i(p+q)a/2~ ξ + 1

ξ
ei(q−p)a/2~




(
B

B′

)
, (3.14a)

(
B

B′

)
=

1

2

(
(1 + ξ)ei(p−q)a/2~ (1− ξ)e−i(p+q)a/2~

(1− ξ)ei(p+q)a/2~ (1 + ξ)e−i(p−q)a/2~

)(
C

C ′

)
, (3.14b)

and by inserting Eq. (3.14b) into Eq. (3.14a) we can eliminate B and B′. Thus, we

have two equations with four unknown coefficients A,A′, C, C ′.

Depending on the value of E, we can distinguish two cases:

• |E| < mc2, i.e. p is imaginary, or

• |E| > mc2, i.e. p is real.

3.2.1 Bound states

First, we consider the case where p is imaginary and assume that Im p = κ > 0.

These solutions are generally called bound states. Equations (3.14a) and (3.14b)

are significantly simplified since the coefficients A and C ′ have to vanish, so that ψI

and ψIII do not increase exponentially; i.e., they have to be normalizable. Thus, the

fitting equation reduces to

0 =
1

4ξ
eipa/~C

[
(1 + ξ)2e−iqa/~ − (1− ξ)2eiqa/~

]
. (3.15)

Since C 6= 0 (otherwise the whole wave function will be zero), we obtain

1 + ξ

1− ξ
e−iqa/~ =

1− ξ

1 + ξ
eiqa/~. (3.16)
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−3 −2 −1 0 1 2 3 4 5 6
0
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E [mc2]

V
0
[m
c2
]

Figure 3.3: Representations of the wave numbers p and q in the E − V0 plane. The
white regions mean real values. The wave numbers p and q are purely imaginary for
values denoted by red and green colors, respectively. The yellow colored area means
that both wave numbers are purely imaginary.

As long as q is real, i.e., E < −mc2+V0, which is denoted by the red area in Fig. 3.3,

ξ is purely imaginary (since p is imaginary). Thus Eq. (3.16) means that

1 + ξ

1− ξ
e−iqa/~ =

(
1 + ξ

1− ξ
e−iqa/~

)∗

. (3.17)

This can also be expressed as

Im

(
1 + ξ

1− ξ
e−iqa/~

)
= 0. (3.18)

Introducing Γ as the imaginary part of ξ, i.e., ξ = iΓ and using Eqs. (3.13) and

(3.18), we finally have

cq cot
(qa
~

)
= −EV0

cκ
− κc. (3.19)

This equation determines the energy eigenvalues of the bound states. One can

solve Eq. (3.19) numerically and thus determine the energy spectrum of the bound

solutions for various parameters.

Note that Eq. (3.16) has no solution if q is imaginary, i.e., −mc2+V0 < E < mc2,

which is denoted by the yellow area in Fig. 3.3. As we can see from Eq. (3.13), in

this case ξ is real and
(1 + ξ)2

(1− ξ)2
e2ζa 6= 1, (3.20)

where q = iζ , with ζ > 0.
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3.2.2 Scattering states

Now, let us consider the scattering states, where the wave vector p is real. Again,

depending on the value of q, there are several domains:

• q and ξ are real, which can be in three cases: for E < −mc2, for E > mc2+V0

and for −mc2 + V0 < E < mc2 + V0, and they are represented by the white

regions in Fig. 3.3.

• q and ξ are purely imaginary for −mc2+V0 < E < mc2+V0. This is the green

area in Fig. 3.3.

We will discuss both cases successively. First, we choose one of the coefficients

A,A′, C, C ′ freely. We assume that from the right hand side no wave enters the

potential; thus, C ′ = 0. C is interpretable as the transmitted part of a wave which

arrives from the left with amplitude A. The term proportional to A′ stems from the

wave reflected by the potential. The amplitude of the incoming wave can be chosen

to be 1, and for real wave vector q, the transmission probability reads

T = |C|2 =
[
cos2

(qa
~

)
+

(
1 + ξ2

2ξ

)2

sin2
(qa
~

)]−1

. (3.21)

It can be rewritten in the form

T =

[
1 +

(
1− ξ2

2ξ

)2

sin2
(qa
~

)]−1

≤ 1. (3.22)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

V0

T

Figure 3.4: Transmission probability T as a function of the barrier height V0. For
increasing value of V0, the transmission probability surprisingly increases as well.
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On the other hand, when q is purely imaginary, the transmission probability is

given by

T =

[
1 +

(
1 + Γ2

2Γ

)2

sinh2

(
ζa

~

)]−1

≤ 1 (3.23)

Figure 3.4 shows the transmission probability as the function of V0. It clearly

shows that for increasing barrier heights the transmission probability increases. Fur-

thermore, in the case of the infinitely high barrier, i.e., V0 → ∞, the transmission

probability approaches unity. An extensive discussion of this counterintuitive phe-

nomenon (called Klein paradox [27]) can be found in Refs. [28, 29].
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Part II

Time-periodic scattering models
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CHAPTER 4

Charged particle scattering in a Ramsey-like setup

In this chapter, we present a scattering model, where a monoenergetic beam of mov-

ing charged particles interact with two separated oscillating fields. Time-periodic

linear potential is assumed to model the light-particle interaction using a nonrel-

ativistic, semiclassical description based on Gordon-Volkov states1. Applying Flo-

quet’s theory, we calculate transmission probabilities as a function of the laser field

parameters. The transmission resonances in this Ramsey-like setup are interpreted

as if they originated from a corresponding static double-potential barrier with heights

equal to the ponderomotive potential resulting from the oscillating field. Due to the

opening of new Floquet channels, the resonances are repeated at input energies

when the corresponding frequency is shifted by an integer multiple of the exiting

frequency. These narrow resonances can be used as precise energy filters. The fine

structure of the transmission spectra is determined by the phase difference between

the two oscillating light fields, allowing for the optical control of the transmission.

4.1 Introduction

Optical control of quantum mechanical particles offers a wide variety of promising

applications, including ultrafast electronics [32–34], imaging [35, 36], or quantum

computation [37, 38]. Among the first phenomena of describing the coupling of

free electrons to light was the Kapitza-Dirac effect in the 1930s [39]. In this elastic

process, diffraction of electrons is observed in a standing light wave which acts as

an effective diffraction grating [40, 41]. Beams of electrons can also be manipulated

by optical fields [42, 44–47], while the properties of oscillating plasmonic near-fields

can be probed by measuring electron spectra from nanostructures [48, 49]. Recently,

photon-induced near-field electron microscopy revealed that the initial kinetic energy

1See, e.g., Refs. [7, 30, 31], where the scattering of electrons in the presence of an external field
is described by Gordon-Volkov states.
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Chapter 4 — Charged particle scattering in a Ramsey-like setup

distribution of short electron pulses broadens through induced photon sidebands

[36, 50].

Interferometry induced by spatially separated electromagnetic fields is a very

important tool for the control of quantum mechanical particles (see, e.g., Ref. [51]).

Here, we present a theoretical description of a Ramsey-like setup [43], where, instead

of being bound to nuclei, free charged particles interact with two separated periodic

electric fields in a nonrelativistic framework. In more detail, similarly to Ref. [44],

we describe the scattering of a monoenergetic particle wave on two localized optical

fields. However, the main focus is on the calculated transmission spectra which

are thoroughly investigated. Resonant tunneling is observed which is also known in

static scattering problems in the context of nanostructures [52–54]. Let us recall that

in the vicinity of metallic nano-particles, the net electromagnetic field can become

localized (e.g., in Ref. [55] a diameter of ∼10 nm was reported for the case of a

nanoscale tip) and the space dependence of the field can be neglected. Motivated

by this, we use dipole approximation (see Chapter 2.2); i.e, we assume that the field

has only time dependence.

As a first approach, we create a static scattering model, where we consider a

rectangular potential barrier with the height of the ponderomotive potential Up. Its

transmission spectrum is a good approximation for the time-dependent problem. We

also investigate the induced photon sidebands and the space- and time-dependent

probability current density.

This chapter is organized as follows. In Secs. 4.2 and 4.3 we describe the theo-

retical framework with Gordon-Volkov states and derive the wave equations using

Floquet’s theory. In Sec. 4.4 we show that a static scattering model can be thought

as a good approximation for the time-dependent model regarding the transmission

spectra. Transmission resonances are analyzed through induced "photon" sidebands

and through space- and time-dependent probability current for various parameter

ranges. At the end of the chapter, we summarize our findings and draw conclusions.

4.2 Model

We consider a one-dimensional nonrelativistic scattering model, where a beam of

monoenergetic free charged particles is assumed to interact with two spatially sepa-

rated linearly polarized time-periodic electric fields (see Fig. 4.1). The direction of

the matter wave propagation is chosen to be the x axis, which, for the sake of sim-

plicity, is divided into five regions. In region 1, the potential is zero, the Hamiltonian

reads

H1 =
p2

2m
, (4.1)
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Figure 4.1: Schematic view of the setup we consider. In region 1, we have an
incident monoenergetic free particle wave propagating towards the oscillating time-
dependent potential localized in a finite region with length L, inducing reflected and
transmitted waves in regions 1 and 5, respectively. In the interaction regions (2 and
4), superpositions of Gordon-Volkov states [see Eq. (4.11)] are present.

where p = −i~ ∂/∂x is the x component of the canonical momentum operator.

We assume here an incident plane wave with energy E0 and the corresponding

momentum ~k0 =
√
2mE0:

ψin(x, t) = eik0x−(i/~)E0t, (4.2)

which is a particular solution of the time-dependent Schrödinger equation generated

by H1. The charged particles are assumed to interact with the laser field in regions 2

and 4, inducing free reflected and transmitted waves in regions 1 and 5, respectively,

and both left and right propagating waves in region 3. In more detail, using dipole

approximation and length gauge (see Eq. 2.14), in region 2 we have

H2(x, t) =
p2

2m
+ exF (t), (4.3)

where the external electric field is assumed to have oscillating time dependence:

F (t) = F0 cos (ωt). At the boundary of regions 2 and 3 (x = L), F (t) becomes zero,

25



Chapter 4 — Charged particle scattering in a Ramsey-like setup

and, correspondingly, the gradient of the potential also vanishes in region 3. Since

the potential has to be continuous, we can write

H3(t) =
p2

2m
+ eLF (t) = H2(L, t). (4.4)

Note that the time dependence of the spatially constant potential corresponds to an

overall, time-dependent phase factor for any wave function, and we still have free

propagation in region 3. In region 4, where the second interaction takes place, the

potential of the laser field is superimposed on the oscillation of H3:

H4(x, t) = H3(t) + ex̃F̃ (t), (4.5)

where x̃ = x−d−L, and the electric field has the same amplitude and frequency as

in region 2: F̃ (t) = F0 cos (ωt+ ϕ0). As we shall see later, the phase difference ϕ0

(which is zero for the example shown in Fig. 4.1) can be used to control the trans-

mission probability. Finally, the Hamiltonian in region 5 describes free propagation

again; H5 is spatially constant but oscillates in time, with its potential part being

equal to that of H4 evaluated at the boundary of regions 4 and 5.

4.3 Floquet solutions

Since we consider time-periodic Hamiltonians, it is plausible to use Floquet’s theory,

which was introduced in Chapter 1. That is, in all regions, we are seeking solutions

of the time-dependent Schrödinger equation in the form

ψj(x, t) = exp

(
−iEjt

~

)
Φj(x, t), (4.6)

where Ej is the Floquet quasienergy of "band" or "channel" j, where the index j is an

integer2. The Floquet state Φj(x, t) is a periodic function: Φj(x, t) = Φj(x, t + τ),

with a time period of τ = 2π/ω. Since the global Hamiltonian (which can be

obtained by applying H1, . . . , H5 in their respective domains, i.e., regions 1, . . . , 5)

is periodic in time, global Floquet-type solutions (that are defined on the whole x

axis) of the time-dependent Schrödinger equation exist. Additionally, we can express

Φj(x, t) as a Fourier series,

Φj(x, t) =
∞∑

n=−∞

χ(j)
n (x)e−inωt, (4.7)

where the expansion functions χ(j)
n (x) do not depend on time.

2In this context, the terms Floquet "channel", "mode", and "(side)band" are synonyms.
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Particularly, even in region 1, where the potential is zero, there exist solutions

of the Floquet form given by Eq. (4.6). We demonstrate this by taking into account

also the corresponding boundary condition for x < 0. For that region, the physical

situation requires one to have a superposition of the incident right propagating free

plane wave as given by Eq. (4.2) plus the reflected waves. As one can easily see, one

of the Floquet quasienergies Ej should be equal to E0, the energy of the incoming

wave, which is arbitrary. Therefore, the wave function can be written as

Ψ1(x, t) = ψin(x, t) +
∑

n

rne
−iknxe−iωnt, (4.8)

where the wave numbers corresponding to different Floquet quasienergies are defined

as follows,

kn =

√
2mEn

~2
, (4.9)

and En = E0 + n~ω, where n = (...,−2,−1, 0, 1, 2, ...). The frequencies appearing

in the time evolution are

ωn = En/~ = E0/~+ nω. (4.10)

We note here, that below a certain integer n, the wave number kn will be purely

imaginary, which describes evanescent waves, with decaying amplitude as x→ −∞.

The Floquet quasienergies (or frequencies) with different integers n serve as a plane

wave basis set of the wave functions. In the following, we construct the solutions of

all the other regions using this basis set.

The fundamental solutions of the time-dependent Schrödinger equation with the

Hamiltonian given by Eq. (4.3) are the previously introduced Gordon-Volkov states

in the length gauge3:

ψV
q,ϕ0

(x, t) = e−i[α sin 2(ωt+ϕ0)−β(q) cos (ωt+ϕ0)+γx sin (ωt+ϕ0)]ei[qx−E(q)t/~]. (4.11)

Here, we have used notations similar to those used in Ref. [31]:

E(q) =
~
2q2

2m
+ Up, Up =

e2F 2
0

4mω2
, (4.12)

and

α = − Up

2~ω
, β(q) = −eqF0

mω2
, γ =

eF0

~ω
. (4.13)

The ponderomotive potential Up is the classical cycle-averaged energy of the free

charged particle in a sinusoidal oscillating electric field. According to Eq. (4.12), the

3In order to obtain the Volkov state in the length gauge, one can apply the unitary transfor-
mation (2.13) to the expression of the Volkov state given by Eq. (2.26).
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wave number q is related to E(q) through the dispersion relation

q =

√
2m(E − Up)

~2
, (4.14)

and each E(q) is doubly degenerate due to the two possible propagation directions.

In region 2, the wave function for a given energy reads

ψ2(x, t) = aψV
q,0(x, t) + bψV

−q,0(x, t), (4.15)

where the initial phase ϕ0 is set to zero. More generally, we can write

Ψ2(x, t) =
∑

n

[
anψ

V
qn,0(x, t) + bnψ

V
−qn,0(x, t)

]
, (4.16)

where an and bn denote the coefficients of right (or decaying) and left propagating

(or rising) wave modes, respectively. The wave number qn is defined in the same

way as kn in Eq. (4.9). In order to achieve the Fourier series form (4.7), we use the

Jacobi-Anger identities

eix sin θ =
∞∑

s=−∞

Js(x)e
isθ, (4.17)

eix cos θ =

∞∑

s=−∞

isJs(x)e
isθ, (4.18)

where Js denotes the Bessel function of the first kind [56]. As a result, the wave

function in region 2 reads

Ψ2(x, t) =
∑

n,p,s

Js(α)i
2s−n+p{apJ2s−n+p[β(qp)]e

iqpx+

+ bpJ2s−n+p[β(−qp)]e−iqpx}e−iγx sinωte−inωt. (4.19)

We note that the factor exp [−iγx sin (ωt)] can also be expanded using the Jacobi-

Anger formulas leading to one more summation index in Eq. (4.19). However, since

in the fitting equations this factor is always 1 or canceled out, we omit the expansion

for the sake of brevity.

After the first interaction region, the particle is in region 3, outside the influence

of the laser field. It propagates further in this intermediate zone with an altered

energy due to the effect of the electric field in region 2. This corresponds to a time-

periodic oscillating rectangular potential (see, e.g. Ref. [57]). Since the commutator

[H3(t), H3(t
′)] = 0, the solution of the time-dependent Schrödinger equation with

the Hamiltonian (4.4) can be constructed by direct time-domain integration. Con-

sidering the double degeneracy of the wave numbers, as well as the desirable Floquet
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form, the total wave function in region 3 reads

Ψ3(x, t) =
∑

n

(une
iknx + vne

−iknx)e−iγL sinωte−inωt. (4.20)

Describing the second interaction of the particle wave with the electric field (in

region 4) is very similar to the first one in region 2. We obtain

Ψ4(x, t) =
∑

n

[
cnψ

V
qn,ϕ0

(x, t) + dnψ
V
−qn,ϕ0

(x, t)
]
e−iγL sinωt, (4.21)

where cn and dn correspond to right and left propagating modes, respectively. Using

the Jacobi-Anger identities again, we can transform the wave function into the

Floquet form

Ψ4(x, t) =
∑

n,p,s

Js(α)i
2s−n+p{cpJ2s−n+p[β(qp)]e

iqpx + dpJ2s−n+p[β(−qp)]e−iqpx}

× e−iγx sin (ωt+ϕ0)e−iγL sin (ωt)e−i(n−p)ϕ0e−inωt. (4.22)

Finally, the wave function in region 5 consists of free modes with two additional

oscillating phase factors:

Ψ5(x, t) =
∑

n

tne
iknxe−iγL sin (ωt+ϕ0)e−iγL sin (ωt)e−inωt. (4.23)

These are the transmitted waves which are propagating right (see Fig. 4.1).

We constructed wave functions with purely exponential time dependencies using

Floquet’s theory. For practical reasons, we use local space coordinates; i.e., the

origin is redefined in each region [e.g., see the introduction of x̃ in Eq. (4.5)]. The

origins of the first and the second regions coincide, which is the zero of the global

coordinate system (see Fig. 4.1). Therefore, the continuity boundary conditions for

the wave functions and for their derivatives read as follows

Ψ1(0, t) = Ψ2(0, t), Ψ2(L, t) = Ψ3(0, t),

Ψ3(d, t) = Ψ4(0, t), Ψ4(L, t) = Ψ5(0, t).
(4.24)

∂xΨ1(0, t) = ∂xΨ2(0, t), ∂xΨ2(L, t) = ∂xΨ3(0, t),

∂xΨ3(d, t) = ∂xΨ4(0, t), ∂xΨ4(L, t) = ∂xΨ5(0, t).
(4.25)

Considering these boundary conditions for each Floquet channel, we obtain an

infinite system of linear equations for the unknown coefficients. However, since the

Bessel functions (appearing in the expressions of the wave functions) decrease as a
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function of their index, it is sufficient to take only a finite number of frequencies

into account.

As an example, the equation describing the continuity of the wave function at

the boundary of the first and second region, for the nth Floquet channel reads

δn0 + rn =
∑

p,s

Js(α)i
2s−n+p{apJ2s−n+p[β(qp)] + bpJ2s−n+p[β(−qp)]}, (4.26)

where the factor exp[−iγx sin (ωt)] equals unity at x = 0. The fitting equation

originating from the continuity of the derivatives is a bit more complex. The wave

function Ψ2(x, t) has two coordinate-dependent factors. The derivatives read as

follows:

∂

∂x

{
e−iγx sin (ωt)e±iqpx

}
= e−iγx sin (ωt)e±iqpx [−iγ sin (ωt)± iqp] . (4.27)

At the boundary x = 0, the derivative is

− γ

2

(
eiωt − e−iωt

)
± iqp. (4.28)

Therefore, after shifting the summation indices, the fitting equation for the deriva-

tives reads

ik0δn0 + rn(−ikn) =
∑

p,s

Js(α)i
2s−n+p+1

{
apJ2s−n+p[β(qp)]

(
qp+

+
γ(2s− n+ p)

β(qp)

)
+ bpJ2s−n+p[β(−qp)]

(
− qp +

γ(2s− n+ p)

β(−qp)

)}
.

(4.29)

When fitting at the boundary of regions 2 and 3, exp [−iγL sin (ωt)] cancels out.

This factor and exp [−iγL sin (ωt+ ϕ0)] in regions 4 and 5 are also found to be

trivial in the corresponding equations.

4.4 Results and discussion

We investigate time-averaged transmission spectra for different field parameters.

As we shall see, the main features of the transmission probability as a function of

the energy of the incoming particles can be understood using an appropriate static

model. More details can be seen by exploring the role of the different scattering

channels. Besides the time-averaged quantities, we also study the dynamics of the

wave packets generated by the interaction of the particle wave with the optical fields.
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4.4.1 Cycle-averaged transmission probability

The usual nonrelativistic probability current density in one dimension is defined as

j(x, t) =
~

m
Im

[
Ψ∗(x, t)

∂Ψ(x, t)

∂x

]
. (4.30)

The time-dependent transmission (reflection) probability is given by the ratio of the

transmitted (reflected) current to the incoming one. By using Eqs. (4.2) and (4.23),

one can realize that the time dependence of the probability currents contain factors

exp[−i(n−m)ωt], i.e., the transmission probability is a periodic function of time.

As we noted before, integer indices n, which correspond to imaginary wave num-

bers kn, mean evanescent modes. It can be readily seen from Eq. (4.30), that these

waves do not carry probability currents, neither do they make any contributions to

the transmission probability. The cycle-averaged current components of reflection

and transmission (normalized to the incoming current) are given by

jRn =
kn
k0

|rn|2, jTn =
kn
k0

|tn|2, (4.31)

where wave numbers kn are defined in Eq. (4.9). Thus, the cycle-averaged reflection

and transmission probabilities read

〈R〉 =
∞∑

n=n0

jRn , 〈T 〉 =
∞∑

n=n0

jTn , (4.32)

where n0 is the lowest Floquet index, for which the wave number kn is real.

The total probability must be conserved, which is formulated in one dimension

as
∂ρ(x, t)

∂t
+
∂j(x, t)

∂x
= 0, (4.33)

where we define the probability density as ρ = Ψ∗Ψ. Accordingly,

〈R〉+ 〈T 〉 = 1 (4.34)

should always hold for any system parameters [58]. This condition also serves as

an accuracy indicator of our calculations. The infinite system of equations has to

be truncated in accord with an acceptable arbitrary limit of error. For the results

to be presented in the following, |1 − 〈T 〉 − 〈R〉 | ≤ 10−6 is chosen. This condition

can always be met by increasing the number of modes (Floquet channels) that are

taken into account. For the parameters we used, the highest-order Floquet index

was around 25.

In Fig. 4.2, the cycle-averaged transmission probability 〈T 〉 is plotted as a func-
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Figure 4.2: Cycle-averaged transmission probability 〈T 〉 as a function of the energy
of the incoming particle E0. Parameters in atomic units are F0 = 4.88 × 10−3,
L = 200, d = 400, ϕ0 = π, and ω = 0.05732, corresponding to a wavelength
of 800 nm. The inset shows the detailed transmission spectrum in the low-energy
domain.

tion of E0, which denotes the energy of the incoming particle. The parameters

correspond to localized optical fields (L ≈ 10nm, d ≈ 20nm) that can be real-

ized experimentally [55]. As we can see, in this case the transmission spectrum is

complex; there are numerous maxima and minima. The most important parame-

ter here is the ratio of the de Broglie wavelength, λdB = 2π/k0, of the incoming

particle and the separation of the interaction regions, d. When, e.g., d = n(λdB/2),

with a large integer n, increasing E0 by a few percent of its initial value can result

in a similar ratio of d and λdB, with n replaced by n + 1. Since the length of d

corresponds again to an integer multiple of λdB/2, the interference pattern will be

approximately the same. Therefore, for d ≫ λdB, whenever we see, e.g., a peak in

the transmission spectrum, it will be repeated multiple times within a short energy

interval. This is the case for the parameter range shown in Fig. 4.2. In order to

simplify the interpretation, in the following we consider the regime where d is not

too large in comparison to λdB, which leads to a less complex interference pattern,

the understanding of which can be straightforwardly transferred to different param-

eter regimes as well. Let us note that by increasing d, it is not only the number of

the peaks in the transmission spectra that is seen to increase, but the widths of the

individual peaks also change. Larger separation of the interaction regions results

in narrower peaks, which is general for Ramsey-like setups, and allows, e.g., precise

energy filtering. Besides these quantitative differences, according to our results, the

physical picture that explains the interference pattern for d ≥ λdB is still valid for

d≫ λdB, and all the results, including the ϕ0 dependence of the transmission, hold

also in this case.

Figure 4.3 shows the cycle-averaged transmission probability 〈T 〉 as a function
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Figure 4.3: Cycle-averaged transmission probability 〈T 〉 (red solid line) and trans-
mission probability for the corresponding static double barrier (blue dashed line, see
the main text for more details) as a function of the energy of the incoming parti-
cle E0 in atomic units. Parameters are F0 = 0.1, L = 10, d = 30, ω = 0.2 and
ϕ0 = π. For low energies, the cycle-averaged transmission probability has peaks at
the same input energies where transmission resonances occur in the static double
barrier model.

of the energy of the incoming particle. (This is denoted by the red solid line, while

the meaning of the dashed blue line is explained in the next subsection.) Increasing

this energy means that the transmission probability approaches unity as expected.

However, before the saturation happens, a system of transmission peaks and dips is

observed at particular values of E0. The details of the transmission spectrum are

explained in successive steps in the next subsections.

4.4.2 Scattering resonances

As we can see, in regions 2 and 4 of Fig. 4.1 (where the oscillating field is localized)

the wave numbers defined by Eq. (4.14) are exactly the same as in the case of a

static rectangular potential barrier with a height of the ponderomotive potential Up

defined in Eq. (4.12), where Up ≥ 0 holds for any charged particle. Along this line,

as a first approximation, we can replace the two oscillating linear potentials with a

static, symmetric rectangular double-barrier system [59, 60]. The first consequence

of this model is a correct prediction for the overall E0 dependence of the time-

averaged transmission probability: when E0 ≪ Up, 〈T 〉 is close to zero, while for

input energies considerably above Up, it is not far from unity. (See the dashed blue

line in Fig. 4.3.) Clearly, the transition between 〈T 〉 = 0 and 1 takes place around

Up.

Additional aspects of the transmission spectra can also be understood using the

static model described above. By determining the transmission probability of an

incoming particle of energy E0 for two rectangular barriers of height Up as a static
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scattering process, we obtain multiple sharp resonances at certain energies, as shown

in Fig. 4.3 by the blue dashed line.

Transmission resonances are generally related to the presence of bound states,

quasibound states, or other localized solutions. In order to understand the transmis-

sion spectra shown in Fig. 4.3, it is instructive to find the eigenstates and eigenen-

ergies of the static double-barrier system. To this end, we consider a discretized

version of the model, where the time-independent Schrödinger equation is solved

with two spatially separated potential barriers of height Up. A periodic boundary

condition is used: the Hamiltonian matrix is constructed in such a way that the

rightmost grid point is connected to the leftmost one.

Figure 4.4: Probability densities of the first three localized states in the double-
barrier system. Localized states with increasing eigenenergies are denoted by blue,
red, and green lines, respectively. As a reference, the potential barriers are drawn
by black dashed lines.

Figure 4.4 shows the probability densities calculated for three such eigenstates

which are found to be localized between the two potential barriers that are indicated

by black dashed lines in the figure. These states correspond to the same energies,

where the transmission spectrum (in Fig. 4.3) has pronounced peaks. In other words,

the reason for the transmission resonances observed for the static potential barriers

is the existence of these localized states.

Returning to Fig. 4.3, now it is clearly seen that the previously introduced scat-

tering problem with oscillating potential also has transmission resonances around

these particular energies. That is, the static model can be viewed as a first approx-

imation for low energies (below E0 = ~ω). However, as it is clear by comparing

the red and the blue curves in Fig. 4.3, for higher energies, the oscillation of the

potential results in a structured transmission spectrum that cannot be explained by

the static model. The physical processes determining this part of the spectra are

examined in the following subsection.
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4.4.3 Shifted, "multiphoton" resonances

Figure 4.5: Cycle-averaged transmission probabilities 〈T 〉 as a function of the in-
coming particle’s energy E0 in atomic units. Parameters: L = 10, d = 10, and
ϕ0 = π. The open circles and triangles correspond to the first and second scattering
resonances, respectively.

As a next step, we investigate the scattering process by varying the parameters so

that the pondoromotive energy Up defined by Eq. (4.12) is kept constant. In this way

the static model introduced in the previous subsection is unchanged (by definition),

and we can explore effects beyond this approximation. (In other words, we are to

explain the difference between the two curves in Fig. 4.3.) Figure 4.5 shows that for

different electric-field amplitudes and angular frequencies of oscillation, the locations

of the resonances (below E0 = ~ω) stay approximately the same. In more detail,

the parameters in this figure correspond to only two static scattering resonance

energies (at E0 = 0.0193 and 0.0643 a.u.), which are denoted by gray dashed lines

as references. As we can see, the static barriers indeed mean good approximation

for the expected resonance energies when E0 < ~ω.

For larger input energies, however, there are even more peaks and dips in the

transmission probability for the oscillating case. In Fig. 4.5, circles and triangles

correspond to the static scattering resonance energies shifted by n~ω. These res-

onances can be explained by noticing, that after losing an integer multiple of the

energy quanta ~ω, the energy of the scattered particle coincides with the energy

of one of the previously shown localized states. In this sense, the open circles and

triangles correspond to the first and second scattering resonance energies, respec-

tively. Note that this explains the energy value at which these resonances appear,

but the behavior of the transmission probabilities at these energies (e.g., whether

we experience a peak or a dip) needs a more detailed description (see the next

subsection).

As an additional interesting feature, Fig. 4.6 shows the transmission probability
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Figure 4.6: Cycle-averaged transmission probability 〈T 〉 as a function of incoming
particle’s energy E0 in atomic units. Parameters: F0 = 0.1, L = 10, d = 10,
ω = 0.3, and ϕ0 = π. All the insets show the individual current contributions jTn of
the Floquet channels to the transmission probability for different values of E0.

as well as the contributions of every single Floquet channel to it at different energies.

Although the transmission probability is almost unity at the three specified energies,

they correspond to entirely different probability current distributions as is shown by

the insets of Fig. 4.6. The blue dot in the insets marks the probability current of

the central Floquet channel (n = 0).

When the incoming energy E0 reaches ~ω, the scattering channel n = −1 opens

and can also contribute to the transmission probability. The same happens after

every single additional energy quantum ~ω: a previously evanescent wave mode

transforms into a propagating one. This phenomenon is due to the emission of

"photons", where the particle can transmit energy to its environment. Therefore,

the probability currents jTn can be also called the "multiphoton" components of

transmission.

4.4.4 Phase dependence of the transmission

So far, Figs. 4.3, 4.5, and 4.6 show transmission spectra when the two localized

electric fields have a phase difference ϕ0 of π, which corresponds to a symmetric

oscillating trapezoid potential. In the following, we inspect the phase difference

dependence of the scattering process.

Figure 4.7 shows the transmission probability as a function of ϕ0 for different

separation distances (denoted by d) of the optical fields. The quasiperiodicity of the

time-averaged transmission probability as a function of d (with a period of λdB/2)

clearly shows the fact that we have already mentioned earlier: for two values of d for

which 2d1/λdB and 2d2/λdB differs by only an integer, the interference pattern is very

similar, leading to similar transmission probabilities. According to our calculation,
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Figure 4.7: Transmission probabilities 〈T 〉 as a function of the phase difference ϕ0

for different lengths d of region 3. System parameters: E0 = 0.025, λdB = 28.0993,
F0 = 0.1, L = 10, and ω = 0.2.

when all other parameters are fixed, 〈T 〉 can change 50% as a function of ϕ0, and

this behavior is observable also for experimentally relevant parameter ranges.

In order to understand the detailed role of the phase difference in the scattering

process, we analyze the space and time dependence of the probability current den-

sity. Generally, due to the population of various Floquet channels, the solution will

obviously not be monoenergetic, propagating wave packets emerge. As a physical

picture, we may consider that the wave packets generated in region 2 approach the

second optical field, where, depending on the relative phase difference ϕ0, the slope

of the potential experienced by the wave-packets will be different. In other words,

the wave packets entering region 4 will either experience an "attractive" potential

that forces them to move towards region 5 (and consequently increase the trans-

mission probability), or a "repulsive" one leading to reflection. As a consequence,

focusing on transmission resonances, we can observe that transmission peaks can

transform into dips and vice versa as we sweep through ϕ0. Clearly, this is only a

first approach (since, e.g., oppositely moving wave-packets in region 3 can interfere),

but it can capture the essential mechanism beyond the ϕ0 dependence of 〈T 〉.
As an illustration, Figs. 4.8(a) and 4.8(b) show density plots of j(x, t) for two

different ϕ0 values (all other parameters are the same, see the caption). Figures

4.8(a) and 4.8(b) correspond to the maximum and minimum of 〈T 〉, respectively.

In both cases, the ripples in region 1 are related to the interference of the incoming

and reflected waves. Two optical cycles are shown, and the ± signs in the interac-

tion regions show the sign of the classical force that corresponds to the oscillating

37



Chapter 4 — Charged particle scattering in a Ramsey-like setup

Figure 4.8: Density plot of j(x, t) as a function of time and coordinate x. For
parameters E0 = 0.06, F0 = 0.1, L = 10, d = 10, and ω = 0.2, panels (a) and
(b) correspond to the maximal and minimal transmission probabilities, respectively.
Numerically: 〈T 〉 = 0.8941 at ϕ0 = 3.3772 in panel (a), and 〈T 〉 = 0.3920 at
ϕ0 = 0.7226 in panel (b). Horizontal dashed lines indicate the boundaries of the
different regions, and vertical ones correspond to the zeros of the classical force
exerted on the charged particle. The sign of this force is also shown in the various
space-time regions.

potential. As we can see, when the transmission probability is minimal, the most

pronounced wave packet reaches region 4 in a time interval when the oscillating

potential repels it. On the other hand, as is shown by Fig. 4.8(a), the maximum

of 〈T 〉 corresponds to the case when the wave packet in the second interaction re-

gion is pushed towards region 5. Note that for higher input energies and stronger

optical fields more structured wave packets are generated in the outermost region.

Additionally, when E0 ≫ Up (or E0 ≪ Up), 〈T 〉 is very close to unity (or zero) and

consequently cannot have strong ϕ0 dependence. Therefore, in order to control the
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Chapter 4 — Charged particle scattering in a Ramsey-like setup

transmission by changing ϕ0, the parameters of the electric fields must correspond

to a ponderomotive potential close to the characteristic kinetic energy, E0, of the

particle beam.

As a possible application, let us emphasize that the time-averaged transmission

probability can strongly depend on the phase difference ϕ0 also at the transmission

resonances. For large enough separation of the interaction regions, these resonance

peaks are narrow, and, consequently, for a realistic, nonmonoenergetic particle beam,

they can serve as narrow band energy filters. More interestingly, the properties of

these energy filters can be controlled by changing only ϕ0, without modifying any

other parameters of the experimental setup.

4.5 Summary and conclusions

We presented a nonrelativistic time-periodic scattering problem where a charged

particle, e.g., an electron was assumed to be scattered on two spatially localized

time-periodic optical fields. Considering dipole approximation and using Floquet’s

theory, the cycle-averaged transmission probabilities were calculated with different

system parameters. Results showed a very sophisticated spectrum, which was ex-

plained in successive steps. First, we recognized that a double-potential-barrier

system (with barrier heights being equal to the ponderomotive potentials) serves

as a fair approximation for low energies. We determined the energies of the scat-

tering resonances in the static model and identified them in the spectrum of the

time-dependent model. We also explained the additional resonances occurring at

higher energies through the behavior of the probability currents belonging to differ-

ent Floquet channels. Finally, we explained the phase difference dependence of the

transmission probability by inspecting the temporal behavior of the generated wave

packets.

The results presented here point out how optical fields can control moving

charged particles. Although we used the context of a beam propagating in free

space, understanding the basic phenomena that govern interferometric processes in-

duced by separated fields is crucial also from the viewpoint of ultrafast, light-induced

electronics, i.e., when the charged particles move in a solid. Although our model

focuses on the most important, qualitative aspects of the interaction, it can provide

an adequate first approach to more complex systems as well. With acceptable in-

crease of numerical costs, our method can also treat two-dimensional problems or

bichromatic excitation. As an important generalization, the spatial dependence of

the exciting fields can also be taken into account.

39



CHAPTER 5

Laser-assisted electron scattering on a hard sphere

In this chapter, we discuss a three-dimensional time-periodic model, where the scat-

tering of electrons is investigated on a hard sphere in the presence of a laser field

of arbitrary intensity. We use spherical Gordon-Volkov states, which have already

been introduced in Ref. [61]. However, we give an alternative derivation based on

the translational addition theorem of spherical waves [62–64]. Eventually, either

derivation requires the efficient computation of the same integral. The computa-

tional method presented here is based on an analytic integration which results in

summations of hypergeometric functions. In the case of the weak field limit, closed

form formulas can be obtained [61], which can be verified with the numerically exact

model. Additional results are analyzed through differential scattering cross sections.

5.1 Introduction

Laser-assisted electron scattering has been widely studied in the past, primarily

in the context of multiphoton Bremsstrahlung and plasma heating [65, 66]. Re-

cently, the application of this process has received a growing importance in various

branches of research aiming, for instance, the generation of ultrashort (even at-

tosecond) electron pulses [67–69], four-dimensional imaging and ultrafast electron

microscopy [70, 71], or photon-induced near field electron microscopy [36, 50, 72].

The theoretical description of laser-assisted scattering processes of charged parti-

cles relies on the nonperturbative treatment of the interaction with the laser field

[61, 73, 74], which is usually based on Volkov states (see Chapter 2).

The structure of this chapter is the following. In Sec. 5.2, we describe the setup

of the hard sphere scattering model, and in Sec. 5.3, we present an ansatz as the

solution of the Schrödinger equation following the work of Varró and Ehlotzky [61].

The expansion of the spherical waves is derived with the translational addition

theorem in Sec. 5.4. We show that the scattered wave function can be written in
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the Floquet form, and we present a novel efficient method of computing an integral

appearing in the Floquet wave function. Finally, we analyzed the numerical results

involving differential cross sections in the weak field limit in Sec. 5.5.

5.2 Model

z

x

e−,k0(ϑ0, ϕ0)

e−,kn(ϑ, ϕ)

e− detector

ϑR

laser beam
A = ezA0 cosωt

Figure 5.1: Schematic model of the electron scattering on a nano-particle in the
presence of a linearly polarized laser field. The electrons are modeled as a (de
Broglie) plane wave, and they are scattered by an impenetrable hard sphere of
radius R.

We consider electron scattering on a nano-particle in the presence of a low-

frequency1 laser field, modeled as a plane wave with linear polarization in the z

direction, see Figure 5.1. In this setup, the nano-particle is assumed to be a hard

sphere of radius R; i.e., the potential energy is infinitely large inside the sphere, while

it is zero everywhere else. This simplification rules out any kind of dielectric effects,

e.g., near-field enhancement or polarization, therefore, the sphere merely acts as an

obstacle in this model. The electrons are considered to be independent, and they are

described by the Schrödinger equation. We must emphasize that in contrast to the

scattering model presented in Chapter 4, the laser field is not assumed to be localized

in a finite area, that is, the incident electrons are effected in the entire domain. In

1This condition is required to allow the usage of the dipole approximation; thus, the field can
be considered homogeneous.
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other words, they are not free particles in the laboratory frame. Their interaction

with the laser field is taken into account by the usual minimal coupling. Choosing the

Coulomb gauge and using the dipole approximation, the vector potential depends

only on time and reads

A = (0, 0, A0 cosωt). (5.1)

The incident electrons of charge −e and mass2 M propagate towards an arbitrary

direction. Let us recall from Chapter 2 that by means of the unitary transforma-

tion [Eq. (2.11)], we can eliminate the interaction term proportional to A2 in the

Hamiltonian. The Schrödinger equation in velocity gauge reads

[
p2

2M
+

e

M
A · p

]
Ψ = i~

∂

∂t
Ψ. (5.2)

Next, the Kramers-Henneberger transformation can be applied (see Eq. (2.23)),

which results in a coordinate translation given by the vector

α(t) = ez
eA0

Mω
sinωt. (5.3)

Outside the sphere, this transforms Eq. (5.2) into the free-particle Schrödinger equa-

tion:

− ~
2

2M
∇2Φ = i~

∂Φ

∂t
, (5.4)

where the Volkov wave function is denoted by Φ in the Kramers-Henneberger frame.

The space-shifted solution of Eq. (5.4) given as

Ψ = Φ(x, y, z − a sinωt, t) (5.5)

yields the solution Ψ of Eq. (5.2) in the laboratory frame (see Fig. 5.1). Here,

a = eA0/Mω denotes the amplitude of the coordinate translation.

Since we consider an impenetrable sphere with a radius R, we specify the follow-

ing boundary condition:

Φ(x, y, z − a sinωt, t)|r=R = 0, (5.6)

which must hold for all values of t and for all polar angles ϑ and ϕ. That is, the

wave function must vanish at the surface of the hard sphere for every time instant.

2Since later we use the letter m as a summation index, the electron mass is denoted by M .
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5.3 Expansion in terms of spherical Volkov states

Because of the geometry of the scattering process, it is convenient to introduce

spherical polar coordinates (r, ϑ, ϕ) taking the z-axis as the polar axis, as shown in

Fig. 5.1. The boundary condition (5.6) can be also formulated in an easier way. If we

express the Schrödinger equation (5.2) in these coordinates, the term representing

the interaction with the radiation field is independent of the azimuth angle ϕ as

is the boundary condition (5.6). However, choosing the incoming electron wave

to depend on ϕ, the total scattering wave function must be ϕ dependent as well,

which means that there is no cylindrical symmetry with respect to the z-axis. If we

write r ≡ r (sinϑ cosϕ, sinϑ sinϕ, cosϑ), and similarly represent the wave vector of

the incoming free electron by k0 ≡ k0 [sin ϑ0 cosϕ0, sinϑ0 sinϕ0, cosϑ0) then we find

k0 · r = k0r [sinϑ0 sinϑ cos (ϕ− ϕ0) + cos ϑ cosϑ0].

Now, let us focus on finding the solution of the Schrödinger equation. In view

of the previous considerations, we attempt to solve Eq. (5.4) with the time-periodic

boundary condition (5.6) in Floquet form by the ansatz

Φ =exp [i (k0 · r − ω0t)] +
∞∑

n=−∞

∞∑

l=0

l∑

m=−l

A (n, l,m)

× h
(1)
l (knr)P

m
l (cosϑ) exp (imϕ) exp [−i (ω0 + nω) t],

(5.7)

where we have an incident free electron wave in the Kramers-Henneberger frame

with energy E0 = ~ω0 plus the sum of Fourier decomposed outgoing spherical waves

(or partial waves) given by h
(1)
l (knr)P

m
l (cosϑ) exp (imϕ) = fn,l,m(r, ϑ, ϕ) which

satisfy the Helmholtz equation

[
∇2 + k2n

]
fn,l,m(r, ϑ, ϕ) = 0. (5.8)

The spherical Hankel functions of the first kind are denoted by h
(1)
l (knr) and the

products Pm
l (cos ϑ) exp (imϕ) are the ordinary spherical harmonics Y m

l (ϑ, ϕ) (apart

from a normalization factor), where Pm
l (cos ϑ) is the associated Legendre polyno-

mial.

In the laser field, the wave numbers kn of the scattered electrons are given by

kn =

√
2M(E0 + n~ω)

~
= k0

√
1 + n

ω

ω0

, (5.9)

which can be real or purely imaginary, depending on the value of the integer n for

a given ratio ω/ω0, similarly to the one-dimensional model in Chapter 4. If the

wave numbers kn are purely imaginary, the spherical Hankel functions represent
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exponential decay of the partial waves. This means that the laser field can induce

evanescent partial electron waves bound to the outer surface of the sphere. At this

stage, the coefficients A(n, l,m) in Eq. (5.7) are unknown, and have to be determined

by means of the boundary condition (5.6).

Applying Eq. (5.5) to Eq. (5.7), the total wave function Ψ can be written in the

space-translated form

Ψ =exp {i [k0 · r − k0 cos (ϑ0)a sin (ωt)]}+
∞∑

n=−∞

∞∑

l=0

l∑

m=−l

A (n, l,m)

× h
(1)
l [knr(t)]P

m
l [cosϑ(t)] exp (imϕ) exp [−i (ω0 + nω) t],

(5.10)

where r(t) and ϑ(t) are the space-shifted spherical coordinates. Equation (5.10)

clearly shows that the wave function is a superposition of an incoming plane Gordon-

Volkov state and outgoing spherical Gordon-Volkov states with energies E0 + n~ω.

In other words, because of the Kramers-Henneberger transformation, the free plane

wave describing the incident electrons is transformed into a plane Gordon-Volkov

state [see Eq. (2.21) in Chapter 2] and the partial spherical waves become spherical

Gordon-Volkov states. In Eq. (5.10), the explicit expressions for r(t) and ϑ(t) are

given by

r(t) =
√
r2 − 2rα(t) cosϑ+ α(t)2, (5.11)

cosϑ(t) =
z − α(t)

r(t)
=

r cos ϑ− α(t)√
r2 − 2rα(t) cosϑ+ α(t)2

, (5.12)

where we recall that the magnitude of the space shift is given by

α(t) = a sinωt, a =
eA0

Mω
. (5.13)

5.4 Spherical Gordon-Volkov states

In order to be able to evaluate the coefficients A(n, l,m) from the boundary condition

Eq. (5.6), we first have to determine the explicit form of the spherical Gordon-

Volkov states h(1)l [knr(t)]P
m
l [cos ϑ(t)] exp (imϕ) in terms of the ordinary spherical

waves h(1)l [knr]P
m
l [cosϑ] exp (imϕ). This calculation was already carried out by

the authors of Ref. [61]. Here, we present an alternative approach based on the

expansion of the space-translated spherical Gordon-Volkov states without the need

of using subsidiary variables. For actual calculations, this method was found to be

more practical.

A few works about the translational (and rotational) addition theorems for spher-

ical waves have been published in the early 60s [62–64]. The authors of these papers
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showed3 how the spherical wave functions zν(kR)P µ
ν (cos θ) exp (iµϕ) with reference

to the origin O can be expanded in terms of spherical wave functions with reference

to the origin O′, where O′ has the coordinates (R0, θ0, φ0) with respect to O. The

notation zν(kR) stands for the spherical Bessel, Neumann, or Hankel function of

the first or second kind. Since the scattered wave function is described by outgoing

spherical waves, we focus on the spherical Hankel function of the first kind, i.e.,

zν(kR) = h
(1)
ν (kR). In the next subsection, we show the result of the expansion

following the works [62–64].

5.4.1 Translation addition theorem of spherical waves

O

x

y

z

R

φ

θ
R0

O′

φ0

θ0

x′

y′

z′

R′

φ′

θ′

Figure 5.2: The two reference frames we consider in the translational addition theo-
rem of spherical waves. O denotes the origin of a reference frame K with coordinates
(R, θ, φ). In this frame, O′ at (R0, θ0, φ0) denotes the origin of a second reference
frame K ′, which uses the coordinates (R′, θ′, φ′).

Let O denote the origin of a reference frame K with coordinates (R, θ, φ). In

this frame, let O′ at (R0, θ0, φ0) represent the origin of a second reference frame K ′

having coordinates (R′, θ′, φ′). The orientation of K ′ is such that a rigid translation

of K by the vector R0 = (R0, θ0, φ0) takes it into the frame K ′. In other words, the

corresponding axes of the two reference frames are parallel, see Fig. 5.2. For the

3Here and in Subsec. 5.4.1, we use a notation based on Stein’s work for the expansion of spherical
waves, see Ref. [63].

45



Chapter 5 — Laser-assisted electron scattering on a hard sphere

values −ν ≤ µ ≤ ν, where ν ≥ 0, the addition theorem reads

h(1)ν (kR)P µ
ν (cos θ) exp (iµϕ) =

∞∑

n=0

n∑

m=−n

n+ν∑

p=|n−ν|

(−1)min+p−ν(2n+ 1)am,µ
n,ν (p)

× h(1)p (kr>)jn(kr<)P
µ+m
p (cos θ>)P

−m
n (cos θ<) exp [i(µ+m)φ> − imφ<],

(5.14)

where 



r> = R′, r< = R0

θ> = θ′, θ< = θ0

φ> = φ′, φ< = φ0





if R′ ≥ R0, (5.15)

and 



r> = R0, r< = R′

θ> = θ0, θ< = θ′

φ> = φ0, φ< = φ′





if R′ ≤ R0. (5.16)

The symbols a
m,µ
n,ν (p) are the so-called Gaunt coefficients [75], which appear in the

linear expansion of the product of two associated Legendre polynomials:

Pm
n (cos θ)P µ

ν (cos θ) =

n+ν∑

p=|n−ν|

a
m,µ
n,ν (p)P

m+µ
p (cos θ). (5.17)

Their explicit form [64] can be expressed as

a
m,µ
n,ν (p) =(−1)m+µ(2p+ 1)

√
(n+m)!(ν + µ)!(p−m− µ)!

(n−m)!(ν − µ)!(p+m+ µ)!

×
[
n ν p

0 0 0

][
n ν p

m µ −m− µ

]
,

(5.18)

where the Wigner 3-j symbol appears, see, e.g., Ref. [76].

5.4.2 Applying the theorem to the spherical Volkov states

As we have seen earlier, the Kramers-Henneberger transformation shifts the coordi-

nate system into an accelerating frame with a time-periodic space translation with

respect to the laboratory frame. In the previous subsection, we showed that the

translation addition theorem allows to express a spherical wave in a reference frame

K in terms of spherical waves in an other one denoted by K ′.

We use the translation addition theorem (5.14) for the spherical Gordon-Volkov

states h(1)l [knr(t)]P
m
l [cos ϑ(t)] exp (imϕ), by identifying K ′ andK as the laboratory

frame and the Kramers-Henneberger frame, respectively. It can be easily seen that
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the translation vector with Cartesian coordinates reads

R0 = [0, 0,−a sin (ωt)]. (5.19)

We note that in Eq. (5.19), since the radius is a positive number, we must distinguish

two cases:

R0 = a sinωt, θ0 = π, if 0 ≤ t mod T ≤ T

2
,

R0 = −a sinωt, θ0 = 0, if
T

2
≤ t mod T ≤ T,

(5.20)

where T = 2π/ω is the time period of the oscillation. Substituting the spherical

coordinates of the vector (5.19) into Eq. (5.14), and rewriting the indices, we obtain

h
(1)
l [knr(t)]P

m
l [cosϑ(t)] exp (imϕ) =

∞∑

l′=0

l′∑

m′=−l′

l′+l∑

p=|l′−l|

(−1)m
′

il
′+p−l(2l′ + 1)am′,m

l′,l (p)

× h(1)p (knr)jl′[kna sin (ωt)]P
m+m′

p (cosϑ)P−m′

l′ (cosπ) exp [i(m+m′)ϕ],

(5.21)

where we assumed r > a according to the condition in Eq. (5.15). If we look

at the expansion (5.21), we can immediately notice that because of the equality

P−m′

l′ (cosπ) = (−1)l
′

δm′0, we can make a simplification by ignoring the summation

over m′ and taking only m′ = 0. On the other hand, if we take P−m′

l′ (cos 0) = δm′0,

because of the parity property of the spherical Bessel function jl′(x) = (−1)l
′

jl′(−x),
the two cases in Eq. (5.20) lead to the same result. Therefore, the simplified expan-

sion reads

h
(1)
l [knr(t)]P

m
l [cosϑ(t)] exp (imϕ) =

∞∑

l′=0

l′+l∑

p=|l′−l|

il
′+p−l(2l′ + 1)a0,m

l′,l (p)

× h(1)p (knr)jl′[−kna sin (ωt)]Pm
p (cosϑ) exp (imϕ).

(5.22)

Only the spherical Bessel function depends on time on the right-hand side of

Eq. (5.22). Multiplying both sides in the formula (8.534) of Gradshteyn and Ryzhik

[56] by a Legendre polynomial, we can express jl′ [−kna sin (ωt)] with a projection

as follows

jl′ [−kna sin (ωt)] =
1

2il′

1∫

−1

Pl′(x) exp [−ikna sin (ωt)x] dx, (5.23)

which is the integral representation of the spherical Bessel function. Using the

Jacobi-Anger identity in the exponential term, and substituting Eq. (5.23) into
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Eq. (5.22), the Fourier decomposed spherical Volkov state reads

h
(1)
l [knr(t)]P

m
l [cos ϑ(t)] exp (imϕ) =

∞∑

l′=0

l′+l∑

p=|l′−l|

∞∑

s=−∞

1

2
ip−l(2l′ + 1)a0,m

l′,l (p)

×




1∫

−1

Pl′(x)Js(−knax) dx


 h(1)p (knr)P

m
p (cosϑ) exp (imϕ) exp (isωt).

(5.24)

In order to avoid numerical integration in Eq. (5.24), we use the power series

expansion of the Legendre polynomial

Pl(x) = 2l
l∑

k=0

(
l

k

)( l+k−1
2

l

)
xk. (5.25)

The integral of a product of a power function and a Bessel function of the first kind

results in an expression involving Lommel functions [56], which can be rewritten as

1∫

−1

xkJs(−knax) dx = 2−1−s
[
(−1)k(kna)

s + (−kna)s
]

× Γ

(
k + s+ 1

2

)
1F̃2

[
k + s+ 1

2
;
k + s+ 3

2
, s+ 1;−(kna)

2

4

]
,

(5.26)

where 1F̃2 is the regularized hypergeometric function defined by

1F̃2 =
1F2(a1; b1, b2; z)

Γ(b1)Γ(b2)
, (5.27)

here, 1F2(a1; b1, b2; z) is a generalized hypergeometric function. Thus, the integral

in Eq. (5.24) can be computed with a finite sum of hypergeometric functions. We

note that a similar integral also appears in recent works on laser-assisted electron

scattering, see e.g., Refs. [73, 74]. Since the scattered wave function is built up by

sums of spherical Volkov states, using Eqs. (5.10) and (5.24), we can formulate it in

the Floquet form as

Ψscatt. =
∑

n,l,m

A (n, l,m)
∑

l′,p,s

1

2
ip−l(2l′ + 1)a0,m

l′,l (p)P(l′, s|kna)

× h(1)p (knr)P
m
p (cosϑ) exp (imϕ) exp {−i [ω0 + (n− s)ω] t},

(5.28)

where

P(l′, s|kna) =
1∫

−1

Pl′(x)Js(−knax) dx. (5.29)
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5.4.3 Matching equations

We can also rewrite the wave function of the incident electrons using the Jacobi-

Anger identity and the formula (8.534) of Gradshteyn and Ryzhik [56] as follows

Ψinc. =
∑

n,l,m

Jn(k0a cosϑ0)i
l(2l + 1)

(l −m)!

(l +m)!
jl(k0r)

× Pm
l (cos ϑ0)P

m
l (cos ϑ) exp [im(ϕ− ϕ0)] exp (−iωnt),

(5.30)

where the angular frequencies read ωn = ω0 + nω. Then, according to Eq. (5.10),

the total wave function can be written as an incoming wave Ψinc. plus a scattered

wave Ψscatt. in the laboratory frame.

Taking into account Eqs. (5.30) and (5.28), we can finally rewrite the boundary

condition (5.6) in the form

[Ψ(r, ϑ, ϕ, t) = Ψinc. +Ψscatt.]r=R = 0 (5.31)

for all values of ϑ, ϕ and t. Using the orthogonality of the associated Legendre

polynomials and the orthogonality of the different Fourier components in t, we obtain

the following matching equations

2Jn′′(k0a cosϑ0)i
p′jp′(k0R)P

m
p′ (cos ϑ0) exp (−imϕ0) +

∑

n,l,l′

A(n, l,m)ip
′−l

× 2l′ + 1

2p′ + 1
a
0,m
l′,l (p

′)P(l′, n− n′′|kna)h(1)p′ (knR)
(p′ +m)!

(p′ −m)!
= 0

(5.32)

for a fixed set of values n′′, p′, m. From this coupled system of linear equations, the

unknown coefficients A(n, l,m) can be evaluated with high precision, if we include

sufficient number of partial waves (indexed by p′, m) and Floquet channels (indexed

by n′′).

5.5 Results in the weak-field limit

In the following, we consider the low intensity limiting case where |kna| ≪ 1. It can

be easily shown [61] that the coefficients A(n, l,m) can be explicitly given by

A(n, l,m) = −il(2l + 1)
(l −m)!

(l +m)!

jl(k0R)

h
(1)
l (knR)

Pm
l (cosϑ0)e

−imϕ0Jn(k0a cosϑ0). (5.33)

In three-dimensional scattering problems, the process is often characterized by

differential cross sections. In some way, they can be considered as the three-

dimensional analogous quantities of the previously introduced one-dimensional trans-
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Figure 5.3: Density plots of the logarithm of the probability density in the x − z
plane in the absence and presence of the laser field shown in panel (a) and (b),
respectively. The incoming electron energy E0 = 0.5 eV and the hard sphere has a
radius of 5 nm.

mission probabilities. The total differential cross sections can be obtained through

the asymptotic form of the scattered wave function. Inserting Eq. (5.33) into the

expression of the scattered wave function and taking the limit r → ∞, the total

differential cross sections read

dσn
dΩ

=
kn
k0

∣∣∣∣∣
1

kn

∞∑

l=0

(2l + 1)
jl(k0R)

h
(1)
l (knR)

Pl(cos γ0)

∣∣∣∣∣

2

J2
n(k0a cosϑ0), (5.34)

where

cos γ0 = cosϑ cos ϑ0 + sinϑ sin ϑ0 cos (ϕ− ϕ0), (5.35)

and n denotes the index of each Floquet channel. Since the wave function (5.10)

is expressed in terms of a nested infinite series, it is obvious that the numerical

evaluation requires that only a finite number of terms should be taken into account.

The accuracy of the wave function and the total differential cross sections depends on

the truncation of the infinite series. In the following results, the boundary condition

(5.31) is accurately satisfied, i.e., the real and the imaginary parts of the wave

function on the boundary are less than 10−6, if we choose the upper limit of the

series to be N = 15− 20, depending on various parameters.

Figure 5.3 shows the logarithm of the probability densities of the total wave

function (5.10) for two cases: in the absence and presence of the laser field (in

the weak-field limit) in panel (a) and panel (b), respectively. In both cases, the

electron wave impinges the hard sphere with a diameter of 10 nm from a direction

with a polar angle ϑ0 = 0, which corresponds to a beam coming in along the vector

of linear polarization of the laser field. This is also a configuration for which a
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Figure 5.4: Polar plots of the total differential cross section as a function of the
polar angle, in relative units normalized to the maximum of the n = 0 case, for (a)
n = −2, (b) n = −1, (c) n = 0, (d) n = 1, (e) n = 2. Parameters: incoming electron
energy E0 = 4 eV, photon energy ~ω = 1.5 eV, field strength 2.5711× 107 V/m.

maximum of interaction between the electron and radiation field can be expected.

The probability densities, which are calculated in the x− z plane at y = 0, show an

interference pattern. Without the external field, the process can be viewed as the

Mie scattering of electrons, where the de Broglie wavelength is comparable with the

size of the nano-sphere. The electrons are scattered back to the opposite direction

of incidence, which causes the interference pattern in front of the sphere. However,

in the presence of the laser field, interference fringes appear also in the "shadow"

region behind the nano-sphere, due to the interaction between the laser field and the

electrons. Here, the collision of the electrons and the hard sphere induces reflected

waves causing the interference.

In order to gain more insight into the dynamics of the laser-assisted scattering

process, it is worth examining the angular distribution of the total differential cross

section. In Fig. 5.4, the total differential cross section of the nth scattering channel

is presented as a function of the polar angle ϑ in a polar plot. Since we chose ϑ0 = 0

for the incoming electrons, it is straightforward to study the directional dependence

in the x − z plane where the azimuth ϕ is zero. From panel (a) to (e), the total
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differential cross section for each Floquet channel from n = −2 to n = 2 is shown in

relative units normalized to the n = 0 case. It is clearly seen, that the more energy

is lost or gained by the electrons in the form of "photons", the wider (and in the

case of energy loss also the more complex) the angular dependence becomes, along

with increasing probability of backscattering.

Figure 5.5: Total differential cross section (in relative units) at the forward direction
(ϑ = 0) as a function of the scattered electron energy En in the weak-field limit.
The different colored lines mean different incident electron energies. The photon
energy ~ω = 1.5 eV.

In Fig. 5.5, we focus on forward scattering, where the scattering angle ϑ is chosen

to be zero and the field strength takes such a value that the weak field limit condition

can still be considered to be satisfied. The total differential cross section is plotted as

a function of the electron energy in the nth channel. The positive and the negative

values of n correspond to "photon" absorption and emission, respectively. It is

clearly shown by this plot that the sidebands corresponding to the indices n 6= 0 get

more populated with increasing incoming electron energy [36].

If the low intensity assumption is released, then the linear system of equations

becomes coupled, and, in order to ensure convergence, we can truncate the system

of equations only at much larger values of n, l,m. In this case, the calculations can

only be carried out with high-performance computation. At a qualitative level, we

expect that for higher intensities, the higher order sidebands get more populated

at the expense of the central (n = 0) band’s significant reduction, and that the

interference patterns in the electron probability density become more pronounced.

5.6 Summary

Based on the work [61], we have presented a three-dimensional model which de-

scribes the scattering of monoenergetic electrons on a hard sphere in the presence

of a linearly polarized laser field. We gave an alternative derivation of spherical
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Gordon-Volkov states using the translational addition theorem of spherical waves.

We also gave an analytic expression in order to allow the practical application of

this approach. We presented and analyzed the scattering process by inspecting the

total differential scattering cross sections. We concluded that the sidebands are

more populated for increasing electron energies, similarly to the one-dimensional

Ramsey-like model.
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CHAPTER 6

Relativistic scattering by an oscillating barrier

In this chapter, transport properties of massive Dirac particles are investigated

through an oscillating rectangular barrier. Like in the previous models, the Floquet

quasienergies appear both in transmission and reflection as sidebands around the

incoming electron’s energy. We take all relevant sidebands into account and present

time-averaged transmission probabilities in a wide energy range. Most qualitative

features of scattering on a static barrier – like Klein paradox – are still visible, but

the transmission probability in the evanescent regime observably increases due to

the oscillation of the potential. The strongly inelastic scattering process is shown to

lead to multiple Fano-type resonances and temporal trapping of the particles inside

the oscillating potential. We also present a detailed study of the time evolution of

the wave packets generated in the scattering process. The results can be relevant

for graphene with an induced energy gap.

6.1 Introduction

Photon-assisted tunneling [77, 78] is a remarkable example showing that the presence

of an alternating field can lead to strongly inelastic processes. Nonrelativistic quan-

tum mechanical scattering on barriers with oscillating height has been investigated

intensively, mainly in the context of traversal time and photon assisted transport,

see, e.g., Refs. [78–80]. It has also been proven that Floquet’s theory provides an

efficient tool for the investigation of various time-dependent scattering processes

[57, 81]. Fano-type resonances [82, 83] can appear in this context due to transitions

between sideband states and bound states. Developments in the experimental tech-

niques during the last decade enable that these results have the potential of direct

applications in the rapidly expanding field of meso- and nanoscale quantum devices

[3, 84].

Much of the theoretical works published so far studied transport through time-
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dependent potentials in a nonrelativistic framework [57, 78–81, 85, 86]. Transport

related problems with oscillating spin-orbit interaction have been studied, e.g., in

Refs. [87–89]. A few recent papers [90–92], treating massless Dirac particle scat-

tering on time-harmonic potentials, are inspired by the unique electronic dispersion

relation of graphene [93, 94]. In this single layer of hexagonal carbon atoms, as has

been demonstrated experimentally [95–97], the carriers exhibit striking relativistic

features like Zitterbewegung [98, 99], Klein paradox [27, 100–103], and Klein tun-

neling [104, 105].

The substrate-induced band gap in epitaxially grown graphene [106] opened the

way for its usage as an electronic material. This induced band gap leads to a

finite mass for its charge carriers which obey the massive Dirac equation, and the

energy dispersion relation is no longer linear in momentum. Based on this, Klein

tunneling of massive Dirac fermions through a static barrier [107], and massive Dirac

electron tunneling through a time-periodic potential in single layer graphene [108]

were studied.

This chapter is organized as follows. In Sec. 6.2, we define the model and derive

the equations for the amplitudes, to be solved numerically, from the one-dimensional

Dirac equation using Floquet’s theory. In Sec. 6.3, we present the physical contents

of the numerical solution (e.g., Klein tunneling) in terms of the cycle-averaged trans-

mission probabilities. We explore the details of the scattering with the help of space-

and time-dependent charge current and electron density. Finally, we analyze and

explain in detail the Fano-type resonances [82, 83] found in the transmission curves.

We close the chapter by summarizing the results and drawing conclusions in Sec. 6.4

.

6.2 Model

We consider a relativistic one-dimensional model where a constant plus a harmoni-

cally varying potential is applied:

V (t) = V0 + V1(t) = V0 + ~Ωcosωt. (6.1)

Outside the oscillation region the potential is zero, see Fig. 6.1. A monoenergetic

spin-polarized free electron wave is assumed to impinge the oscillating potential

barrier, i.e, in the standard representation (which was discussed earlier in Chapter
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z0 L

E
ne

rg
y

E0

−mc2

mc2

0
V0

~Ω

1 2 3

reflection

input

transmission

Figure 6.1: Schematic view of the one-dimensional scattering problem we consider.
The harmonic oscillation of the potential has an amplitude of ~Ω and angular fre-
quency of ω. That is, V (t) = V0+~Ωcosωt in region 2, while the potential is zero in
regions 1 and 3. A monoenergetic electron wave is assumed to impinge the oscillat-
ing barrier inducing reflected and transmitted waves in region 1 and 3, respectively.
The input energy E0 is always larger than mc2, but the magnitudes of E0, V0 and
~Ω relative to each other were varied in our calculations.

3), we have

ψin(z, t) = eik0z−iE0t/~




1

0

c~k0
E0 +mc2

0



, (6.2)

where the direction of propagation has been chosen to be the z axis. The spinor

above is a solution of the Dirac equation with ~k0 = ±
√
E2

0 −m2c4/c. According to

the geometry shown in Fig. 6.1, we choose the positive sign here.

Note that in one dimension, it is sufficient to consider two-component spinors

only, since two of the bispinor components are always zero. However, for the sake

of clarity, we continue with the full four-component bispinor form.

6.2.1 Solution of the Dirac equation with oscillating potential

Inside the region 0 < z < L the time-dependent Dirac equation reads

i~
∂

∂t
ψ(z, t) = H(t)ψ(z, t), (6.3)
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with the Hamiltonian

H(t) = H0 + V1(t) = cα3

(
−i~ ∂

∂z

)
+ βmc2 + V0 + V1(t), (6.4)

where the standard α3 and β matrices appear. Since the commutator [H(t), H(t′)] =

0 holds for any time instant, an eigenstate defined by

H0ϕ = Eϕ (6.5)

can be used to construct a solution to Eq. (6.3):

ϕ(t) = ϕ(0) exp


− i

~


Et+

t∫

0

V1(t
′) dt′




. (6.6)

For a fixed value of wave number k, (i.e., spatial dependence of eikz), we have

E
±(k) = ±

√
m2c4 + ~2k2c2 + V0, (6.7)

which are both doubly degenerate (due to the two possible spin directions). Since the

interaction is independent of spin [the terms V0 + V1(t) are proportional to the unit

matrix in Eq. (6.3)], the solutions of Eq. (6.3) that correspond to the monoenergetic

incoming spinor (6.2) as a boundary condition, have nonzero components at the

same positions as ψin. Therefore it is sufficient to consider only

ϕ±(z, t) = eikzu±(k) exp

[
−i
(
E
±t

~
+

Ω

ω
sinωt

)]
, (6.8)

u+(k) =




1

0

c~k

E+(k)− V0 +mc2

0



, (6.9)

u−(k) =




c~k

E−(k)− V0 +mc2

0

1

0




(6.10)

that clearly satisfy Eq. (6.3). Using Eq. (6.7), it is readily seen that the Dirac spinors

above do not depend on V0. Thus, e.g., the wave function of the incoming electron

described by Eq. (6.2) can be rewritten as ψin(z, t) = eik0z−iE0t/~u+(k0). [In this case
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E
+(k0) = E0.]

Note that the only restriction in Eqs. (6.7)–(6.10) concerning k is that ~
2k2 ≥

−m2c2 [ensuring that E
± are real, see Eq. (6.7)]. This means that evanescent solu-

tions with purely imaginary k are also allowed.

Using the Jacobi-Anger identity

exp

(
−iΩ
ω
sinωt

)
=

∞∑

n=−∞

Jn

(
Ω

ω

)
e−inωt, (6.11)

where Jn denote Bessel functions of the first kind, we see that the frequencies ap-

pearing in the time evolution are given by E
±(k)/~+ nω, with integer n. Note that

since the differential operator given by Eq. (6.4) is periodic in time (T = 2π/ω),

Floquet’s theory [1, 2] can be applied. The states (6.8) are orthogonal in the spinor

sense; they can be considered as elements of a time-dependent basis. Apart from the

factors exp(−iE±(k)t/~), these solutions are periodic, thus E
±(k) can be called the

(nonequivalent) Floquet quasienergies. The term nonequivalent means here that,

e.g., Ẽ−(k) = E
−(k) + n~ω can also play the role of a Floquet quasienergy (with n

being an integer), but states corresponding to Ẽ
− and E

− are dynamically equiva-

lent as was discussed in Chapter 1. On the other hand, E+(k) and E
−(k) correspond

to qualitatively different dynamical behaviors (unless their difference is an integer

multiple of ~ω).

6.2.2 Fitting the solutions

In the previous subsection plane wave solutions of the Dirac equation in periodic

external field were obtained. It was shown that for a given (real or purely imaginary)

value of k, Eq. (6.3) is satisfied by the spinors ϕ±(z, t) given by Eq. (6.8). However,

as we shall see, in order to obtain a solution to the problem over the whole z axis,

several (in principle an infinite number of) different wave vectors are needed.

According to the previous subsection, in region 2 (where the potential oscillates)

whenever a frequency E/~ appears in the time evolution, the harmonics E/~+nω are

also present (n = . . . ,−2,−1, 0, 1, 2, . . .). However, if we want to impose continuity

of the spinor valued wave function at the boundaries (z = 0 and z = L), the linear

algebraic equations have nontrivial solutions only if the input frequency equals to

one of the harmonics mentioned above. In other words, the frequencies we have to

take into account are

ωn = En/~ = E0/~+ nω, (6.12)

where E0 is the well-defined energy of the input spinor, see Eq. (6.2). In region 1,

the only right propagating spinor (see Fig. 6.1) is the input; a particular solution of

58



Chapter 6 — Relativistic scattering by an oscillating barrier

the Dirac equation corresponding to frequencies ωn is given by

Ψ1(z, t) = ψin(z, t) +
∑

ωn>0

rne
−iknzu+(−kn)e−iωnt +

∑

ωn<0

rne
−iknzu−(−kn)e−iωnt,

(6.13)

where

kn =





√
E2

n −m2c4

~2c2
, if E2

n > m2c4

i

√
m2c4 − E2

n

~2c2
, if E2

n < m2c4.

(6.14)

The signs here have been chosen such that the terms proportional to rn in Eq. (6.13)

describe either reflected or evanescent waves (with exponentially decaying amplitude

as z → −∞.) Analogously, in region 3:

Ψ3(z, t) =
∑

ωn>0

tne
iknzu+(kn)e

−iωnt +
∑

ωn<0

tne
iknzu−(kn)e

−iωnt. (6.15)

The problem is somewhat more complicated in region 2, where

k′n =





√
(En − V0)

2 −m2c4

~2c2
, if (En − V0)

2 > m2c4

i

√
m2c4 − (En − V0)

2

~2c2
, if (En − V0)

2 < m2c4

(6.16)

are the solutions of

E
±(kn) = En. (6.17)

Additionally, in this case, due to the oscillation of the potential, a given wave number

k′n corresponds to not only a single ωn. For the sake of simplicity, we collect the

coefficients of the two types of spinors given by Eqs. (6.9) and (6.10) separately, and

write

Ψ2(z, t) = Ψ+
2 (z, t) + Ψ−

2 (z, t). (6.18)

The first term here is given by

Ψ+
2 (z, t) =

∑

ωn>0

e−iωnt−i(Ω/ω) sinωt
[
ane

ik′
n
zu+(k′n) + bne

−ik′
n
zu+(−k′n)

]
, (6.19)

where, as we can see, both propagation directions appear. Additionally, due to the

finite size of the region, exponentially growing spatial dependence is also allowed.

Next we insert the Jacobi-Anger expansion (6.11) and obtain an equation where the

frequencies ωn appear explicitly. For the sake of brevity, we present this step only
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for the terms containing the spinor u−:

Ψ−
2 (z, t) =

∑

ωn<0

∑

m

Jm

(
Ω

ω

)
e−iωn+mt

[
ane

ik′
n
zu−(k′n) + bne

−ik′
n
zu−(−k′n)

]
. (6.20)

The condition of continuity at z = 0 (z = L) now can be formulated by evaluating

Ψ1(0, t) and Ψ2(0, t) [Ψ2(L, t) and Ψ3(L, t)]. Working in frequency domain, as an

example, the contribution of Ψ−
2 (z = 0) to the frequency component ωl is given by

∑

ωn<0

Jl−n

(
Ω

ω

)[
anu

−(k′n) + bnu
−(−k′n)

]
. (6.21)

By comparing these coefficients for each ωl at the boundaries and for each propa-

gating direction, we obtain an infinite system of linear equations for the unknown

coefficients {rn, tn, an, bn}. However, since the Bessel functions J for a given argu-

ment generally decrease as a function of their index, correct numerical solutions

could be obtained by taking only a finite number of frequencies into account. If we

consider a set {ωn : n = −N, . . . , 0, . . .N}, there will be 8N + 4 fitting equations

and the same number of unknowns. As we shall see in the next section, the time

averages of the transmission and reflection probabilities provide an efficient tool for

monitoring the accuracy of the numerical method: If their sum is not as close to

unity as we require, N has to be increased.

6.3 Results and discussion

In this section, the obtained results will be shown based on the model discussed in

the previous section. Note that the parameter ranges we use are ideal to see and

identify the physical processes that are responsible for the effects to be presented.

To this end, we use "natural units" (i.e., ~ = 1, m = 1, and c = 1) for the figures.

6.3.1 Cycle-averaged reflection and transmission probabilities

The time-dependent reflection and transmission probabilities are given by the ratio

of the transmitted and reflected currents to the incoming one:

R(t) =
jr(t)

jin
=
E0 +mc2

2c~k0
Ψ̃†

1α3Ψ̃1(0, t), (6.22a)

T (t) =
jt(t)

jin
=
E0 +mc2

2c~k0
Ψ†

3α3Ψ3(L, t), (6.22b)

where

Ψ̃1 = Ψ1 − ψin, (6.23)
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i.e., the reflected (or exponentially decaying) part of Ψ1. Since the time dependence

of both T and R contains factors exp[−i(ωn − ωm)t] = exp[−iω(n − m)t], these

functions are periodic, T (t + τ) = T (t), R(t + τ) = R(t), with τ = 2π/ω. First we

calculate the time average of the reflection and transmission probabilities,

〈T 〉 = 1

τ

τ∫

0

T (t) dt, 〈R〉 = 1

τ

τ∫

0

R(t) dt. (6.24)

Figure 6.2: 〈T 〉 as a function of barrier height V0 for the indicated values of the
oscillation amplitude Ω. Additional parameters: E0 = 1.1mc2, ω = 0.2, L = 10. The
physical meaning of the spikes will be discussed later in Subsec. 6.3.3.

Inserting Eqs. (6.13) and (6.15) into Eqs. (6.22a) and (6.22b) leads to products

of sums, which reduce to

〈T 〉 =
∑

ℑ(kn)=0

|tn|2
2c~kn

En +mc2
, (6.25a)

〈R〉 =
∑

ℑ(kn)=0

|rn|2
2c~kn

En +mc2
, (6.25b)

since the integral (1/τ)
∫ τ

0
exp (inωt) dt = δn0 for any integer values of n. Because

of the time-periodicity of the scattering problem, the cycle average of the incoming

current should be equal to 〈jt〉 − 〈jr〉 = |〈jt〉|+ |〈jr〉| . In other words,

〈T 〉+ 〈R〉 = 1 (6.26)

should hold for any system parameters similarly to Chapter 4. This requirement can

be used to monitor the accuracy of our calculations. Since we truncate the infinite

system of equations, it is not necessary that Eq. (6.26) is satisfied. However, if the

populations of the states that are neglected due to the truncation are negligible,
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the error can be kept below an acceptable limit. For the results to be presented in

the following, |1− 〈T 〉 − 〈R〉| ≤ 10−6, and to achieve this limit, it was sufficient to

truncate the system at N ≈ 25 depending on various parameters.

Figure 6.3: Panel (a): 〈T 〉 as a function of barrier height V0 for the indicated values
of the oscillation amplitude Ω. Additional parameters: E0 = 2mc2, ω = 0.2, L = 10.
Panel (b): Zoom into the interval E0 −mc2 < V0 < E0 +mc2 of panel (a).

Figures 6.2–6.4 show 〈T 〉 as a function of V0 for the weakly relativistic, rel-

ativistic, and ultrarelativistic cases (when E0 is close to mc2, E0 = 2mc2 and

E0 = 10mc2, respectively). The dashed black curve – as a reference – corre-

sponds to the case of Ω = 0 (nonoscillating barrier) in all figures1. The most

important point that Figs. 6.2–6.4 have in common is that for Ω = 0 (and oscil-

lations with small amplitude) 〈T 〉 is practically unity when V0 ≪ E0; it is almost

zero when E0 − mc2 < V0 < E0 + mc2 and converges (in an oscillating way) to

1 again, when V0 > E0 + mc2. This is a well-known behavior, that can be under-

stood readily by investigating Eq. (6.16): The solutions in region 2 (see Fig. 6.1)

are propagating waves in the first case, real exponentials in the evanescent domain

(E0 −mc2 < V0 < E0 +mc2) and propagating waves again when V0 > E0 +mc2. In

1This has already been discussed and shown at the end of Chapter 3.
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other words, 〈T 〉 reproduces the Klein paradox [27, 100–103] for small values of Ω.

Figure 6.4: 〈T 〉 as a function of barrier height V0 for the indicated values of the
oscillation amplitude Ω. Additional parameters in panel (a): E0 = 10mc2, ω =
0.2, L = 10, panel (b): E0 = 10mc2, ω = 0.2, L = 1.

The oscillations that can be seen in Figs. 6.2–6.4 are signatures of quantum

mechanical interference: There are maxima (minima) in 〈T 〉 when the spinor valued

waves interfere constructively (destructively) at z = L. When the ratio Ω/ω is small,

terms corresponding to wave numbers k0 and k′0 dominate the dynamics. For larger

values of Ω/ω, the expansion (6.11) in terms of Bessel functions contains numerous

frequency components resulting in more complex oscillation patterns in Figs. 6.2–6.4.

The figures show an additional, important effect, namely the gradual disappear-

ance of the pronounced flat minimum of 〈T 〉 (V0) as either L is decreased, or Ω

increased. The first case is related to the role of the evanescent solutions, since tun-

neling becomes increasingly efficient when the width of region 2 is decreased. When

the amplitude of the potential oscillations is increased, more and more frequency

components play a relevant role in the dynamics. Some of them corresponds to

(quasi)energies En that are higher than the oscillating barrier, and consequently the

related part of the spinor valued waves are transmitted with a high probability.
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This effect is still present in the case when the energy of the incoming spinor E0

is below the minimum of the oscillating potential:

E0 −mc2 < V0 − ~Ω. (6.27)

Without oscillations, 〈T 〉 = T would be practically zero in this case. Figure 6.5

corresponds to parameter values where Eq. (6.27) is satisfied and T < 10−7 when

Ω = 0. However, as we can see in the figure, orders of magnitude higher cycle-

averaged transmission probabilities arise when Ω = 0.3 (in natural units.) The

dependence of 〈T 〉 on the frequency ω shown in Fig. 6.5 tells us that although lower

values of ω with a fixed Ω means that more frequencies ωn should be taken into

account, this effect is weaker than the fact that higher values of ω corresponds to

larger steps in the ladder ωn = ω0 + nω. That is, as a tendency, 〈T 〉 (ω) is an

increasing function in the parameter range given by Eq. (6.27).

Figure 6.5: 〈T 〉 as a function of ω, for parameters E0 = 2.5mc2, V0 = 1.75, L =
10,Ω = 0.2. Note that the transmission probability in the static case for the same
parameters (evanescent solutions) has the order of magnitude of 10−6. Note that
the physical relevance of the abrupt changes seen in this figure will be analyzed in
detail in Subsec. 6.3.3.

6.3.2 Wave-packet generation and propagation

In this subsection, we examine the dynamics of the scattering. It is instructive to

investigate the space and time dependent quantities

ρ(z, t) = Ψ†(z, t)Ψ(z, t), j(z, t) = cΨ†(z, t)α3Ψ(z, t) (6.28)

that satisfy the one-dimensional continuity equation

∂

∂t
ρ(z, t) = − ∂

∂z
j(z, t). (6.29)
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The Dirac spinor Ψ in Eq. (6.28) above stands for Ψi, i = 1, 2, 3, depending on

whether the space coordinate z is in region 1, 2 or 3, respectively. Note that without

potential oscillation, i.e., for Ω = 0, ρ does not depend on time, and consequently j

is constant as a function of z. Considering an oscillating potential, the space-time

dependence of both quantities are considerably more interesting, and sheds light on

the cycle-averaged results presented in the previous subsection.

Figure 6.6: Density plot of ρ(z, t) in panel (a), and of j(z, t) in panel (b), and plot of
Ekin.−V (t) = E0−mc2−V (t) in panel (c), for the parameters L = 10, V0 = 1.95mc2,
E0 = 3mc2, and Ω = 0.2.

The physical phenomena being responsible for the results presented so far are

most visible by focusing on parameters yielding 〈T 〉 = 〈R〉 = 1/2. Figures 6.6 and

6.7 show ρ(z, t) and j(z, t) in this case, for different values of Ω. As previously, the

patterns that can be seen are more complex for a larger amplitude of the potential

oscillations, but the qualitative features of Figs. 6.6 and 6.7 are the same. Con-

sidering the probability density, it has certain pronounced maxima in region 2 (the

value of ρ at these points can be larger than anywhere else by a factor of two), i.e.,

we observe a kind of temporal "trapping" of the population inside the oscillating

barrier.
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Figure 6.7: Density plot of ρ(z, t) in panel (a), and of j(z, t) in panel (b), and plot of
Ekin.−V (t) = E0−mc2−V (t) in panel (c), for the parameters L = 10, V0 = 1.85mc2,
E0 = 3mc2, and Ω = 0.5.

We can also see structured wave-packets that propagate in the positive (negative)

z direction in region 3 (1) due to the "pumping" (see, e.g., Refs. [81, 88, 109, 110])

caused by the oscillating barrier. Considering the time intervals when these wave-

packets are released, it is instructive to see panel (c) in Figs. 6.6 and 6.7, where

E0 − mc2 − V (t) is plotted as a function of time. The difference of kinetic energy

Ekin. = E0 − mc2 and the time-dependent potential is shown. When Ekin. − V (t)

is positive, the potential barrier is lower than E0, and we see wave packets leaving

the central region in the forward direction (transmission). Oppositely, when Ekin.−
V (t) < 0, we have mainly reflection.

The space-time behavior of the current density resembles that of ρ, but in this

case the sign contains an additional information. In region 3, j is by construction

always positive, although its magnitude varies. In this region ρ and j have very sim-

ilar space-time dependence. For z < 0, however, both the incoming and the reflected

spinor valued wave functions contribute to the current density, and their interference

can result in negative or positive j (depending on whether Ψ̃1 or ψin is the domi-
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nant, respectively.) Note that when 〈R〉 ≈ 1, j(z, t) is practically zero except region

1, where it represents a truly alternating current, with max[j1(t)] ≈ −min[j1(t)].

Obviously, in this case the cycle average of the current is zero everywhere.

6.3.3 Fano-type resonances

As is known, whenever the energy of a scattering state coincides with that of a

bound state, or in other words, these two different kinds of eigenstates happen to

belong to the same degenerate energy level, then the transition probability between

the states becomes large and a resonance occurs in the transmission spectra. In

general, this effect is known as a Fano resonance [82, 83].

The role of Fano-type resonances has been discussed earlier in the context of the

model of gapless graphene [92], which has a different dispersion relation than the

one discussed here. Reference [92] presents a detailed analysis of these resonances

for the case of a potential well, in the context of a two-dimensional massless Dirac

equation. The way the plots of the transmission probability vs. incident energy in

Ref. [92] depend on the most important model parameters is a description of the

Fano-type resonances which is complementary to ours. By calculating the Wigner

delay time [111, 112], they also predict the temporal trapping that we are going to

show below explicitly.

In our present case a Fano-type resonance may occur if the energy of the scattered

electron, after losing a number of quanta n~ω, coincides with the bound state energy

ǫ of a Dirac particle in the time-independent potential, lying between −mc2 andmc2:

E0 + n~ω = ǫ, n = −1,−2, ... (6.30)

In the following we focus on positive values of V0, as is depicted in Fig. 6.1. For

L = 1, one usually finds a single bound state of the static potential barrier, which

simplifies the interpretation of the results. The energy eigenvalues ǫ corresponding

to these states are in the range of [−mc2, mc2] , thus they are evanescent in regions

1 and 3, where the potential is zero. Inspecting the positions of the resonances in

Fig. 6.8, we find that they appear when

E0 + n~ω ≈ ǫ, (6.31)

with n being integer. Note that we cannot expect exact equality in Eq. (6.31), since

AC Stark shift modifies the energy levels. In the investigated parameter ranges,

the relative difference of the left end right hand sides of Eq. (6.31) was around 5%

for low barriers (in the sense that V0 is not considerably larger than ~Ω), and it
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Figure 6.8: Panel (a): 〈T 〉 as a function of barrier height V0 for the indicated values
of the oscillation amplitude Ω. Additional parameters: E0 = 1.1mc2, ω = 0.2, L = 1.
Panel (b): Sideband transmission amplitudes tn as a function of barrier height V0, for
comparison with the Ω = 0.2 curve of panel (a). Note that the curves corresponding
to n = −1 and n = −2 have been rescaled (divided by a factor of 100).

decreased for larger values of V0.

As one can expect, resonances corresponding to increasing magnitudes of n are

weaker. According to the terminology that is often used, in spite of the fact that the

potential oscillations are not quantized, we may say that the probability of higher

order processes that involve 2, 3, etc. excitation quanta ("photons") are considerably

lower than that of "single photon" processes. However, when the amplitude of the

oscillation increases, higher order resonances get more pronounced.

Panel (b) of Fig. 6.8 shows a clear example that whenever there is a resonance in

〈T 〉, the transmitted amplitude t0 corresponding to the incoming electron’s energy

has a sharp minimum. At the same value of V0, one of the coefficients tn (that

belong to ωn = E0/~ + nω, with n < 0) has a peak. We can clearly identify the

peaks corresponding to n = −1 and −2 in Fig. 6.8 b).

As an example for a third order resonance, Fig. 6.9 shows ρ(z, t) for parameter

values where t−3 has the highest magnitude amongst all transmission coefficients.
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Figure 6.9: Density plot of ρ(z, t), for L = 1, V0 = 3.97mc2, E0 = 1.1mc2 and
Ω = 1.4.

As we can see, the fact that the incoming electron excites a localized bound state

appears in this figure as an increase of the electron density. Note that this temporal

trapping in region 2 is considerably more pronounced than in the cases seen in

Figs. 6.6 and 6.7; the maximal value of ρ(z, t) inside the oscillating potential is five

times larger than anywhere else.

Figures 6.8 and 6.9 demonstrate that the abrupt changes in the cycle averaged

transmission and reflection probabilities are due to Fano-type resonances as de-

scribed by Eq. (6.31). Note that this kind of behavior can appear in principle for

higher energies as well, but then the order of the process [the values of n in Eq. (6.31)]

is so high, that it means only a practically invisible correction for the transmission

probabilities.

Finally, let us analyze to what extent the effects presented so far are relevant

for graphene. According to Ref. [106] a band gap ∆ as large as 0.26 eV can appear

in epitaxially grown graphene on SiC substrate. The electronic structure of the

graphene layer has been modified and the degeneracy of the Dirac point at the

intersection of the valence and the conduction bands could be removed by growing

the sample on a SiC layer. As shown by the measurements, this band gap plays

the role of the energy difference of 2mc2 that separates positive and negative energy

eigenstates of the massive Dirac equation we considered. Our findings are relevant

when ~Ω, V0 and ~ω has the same order of magnitude as ∆. The characteristic

frequency ω/2π is in the THz regime (~ω ≈ ∆/2 gives ω = 25 THz), which is in the

experimentally achievable range. That is, generation of wave-packets, the existence

of alternating relativistic currents in the reflected region as well as the appearance

of Fano-type resonances, can be visible also in the case of the graphene. We also

note that the nonrelativistic version of a similar problem has been considered in

Refs. [113, 114] in the context of multiphoton ionization. Besides its relevance to
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graphene with a band gap, this work may also contribute to the manipulation of

relativistic charged particle beams by powerful laser pulses [115–117].

6.4 Summary

We presented a relativistic model of scattering of massive Dirac particles on a time-

periodic rectangular potential barrier, using Floquet’s theory. We used the de-

pendence of the cycle-averaged transmission probability on the barrier height to

describe the quasistationary behavior of the system, in the case of a weakly rela-

tivistic, relativistic and ultrarelativistic incident particle. We explored the details

of the transport with the help of space- and time-dependent currents and densities,

which show explicitly that the oscillating barrier generates wave packets from the

incident plane wave. We explained in detail the Fano-type resonances with the in-

terplay of the sideband states generated by the oscillating potential and the bound

states of the barrier, and showed the corresponding temporal population trapping

in the barrier region. Finally we discussed the relevance of our results to graphene

with an induced band gap.
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Introduction

Quantum scattering by time-harmonic potentials is an important and vivid research

area. It provides deep understanding of a rich variety of interesting and partly

unusual phenomena in strongly driven quantum systems. For strong excitations,

the highly inelastic photon-induced processes that involve the absorption/emission

of one or a few photons can be appropriately described by using classical, peri-

odic fields. In this intensity regime, Floquet’s theory is proved to be one of the

most efficient methods. Although in this case the exciting field that oscillates with

a frequency of ω is not quantized, the corresponding quasienergies are separated

by integer multiples of ~ω. This means that for an inelastic process, the material

response will contain frequency components that are integer multiples of ω, and,

e.g., in transport processes, the transmitted energy spectrum will contain sidebands

around the input energy.

Objectives

The objective of the work presented in this PhD thesis was to examine the role of the

time-periodic excitation in quantum mechanical scattering problems. If this excita-

tion can not be considered as a perturbation with a small amplitude, anharmonic

effects are observable. This complex dynamics can be described by Floquet’s theory

(see the next section) which is the basis of the theoretical methods presented in this

thesis. With this approach, the fundamental quantum effects like the interference

of matter waves in strong external fields can be examined as well as the appearance

of harmonics.

We investigated the general properties of quantum mechanical processes in the

presence of oscillating external fields via three examples. Besides exploring funda-

mental effects, a second, equally important aim of our research was to determine

properties that are specific to the physical systems that we consider, with the focus

being on the possible applications.
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We studied two one-dimensional models, where initially free particle waves were

excited by localized, periodic external fields. The simplest interpretation of these

models can be a beam of charged quantum mechanical particles that interacts with

an oscillating field in a finite domain. The one-dimensional approach is valid either

if the excitation induces changes in the dynamics along the propagation direction

(like in the case of an external field that is linearly polarized in this direction), or

if additional constraints (that are not taken into account in our model) ensure one-

dimensional propagation. Quantum wires provide a prominent example for the sec-

ond case. When e.g., these wires are fabricated using GaAs/GaInAs heterojunctions,

the framework of effective mass approximation allows us to consider the conduction

band electrons as free particles [118]. Our relativistic model, where the Dirac equa-

tion is considered, can be related to charge carrier propagation in graphene. The

usual analogy to which we can refer here is based on the linear dispersion relation of

the graphene. (More strictly, because the Dirac equation describes massive particles

and has a band gap of mc2, our model is applicable for the description of graphene

samples with an induced band gap.) In both cases, the physical systems that are

closely related to our model meant an additional motivation, since having under-

stood the fundamental mechanisms, we could also investigate what effects can be

used to control the electron dynamics in nanoscale electronic devices. Excitation by

light pulses is of outstanding importance from this viewpoint, because they mean a

very versatile control tool, their properties can be varied experimentally in a wide

parameter range. Therefore our plan was to explore what properties of the transport

(scattering) processes can be modified by changing the parameters of the excitation.

We also planned to investigate a three-dimensional example. Concretely, we

aimed to describe the scattering of electrons on a nano-particle, that is modeled by

a hard sphere (i.e, an impenetrable, sphere shaped obstacle.) Keeping in mind the

possibility of the optical control, we wanted to describe the process in the presence of

laser light. According to the traditional description of three-dimensional scattering,

we planned to calculate differential cross sections, and their dependence on the

various parameters. We wanted to analyze these results in order to gain an insight

into the dynamics of the process.

The results discussed in the thesis indicate that all the research objectives have

been accomplished. Moreover, we experienced additional effects that could not be

foreseen before the actual calculations. The physical background of these effects are

also explained in the thesis.

72



Summary of the thesis

Methods

We planned to use a method that is based on Floquet’s theory — an approach that

has many times been proven to fit problems with periodic excitations perfectly. The

method is not a perturbative one, the interaction with the oscillating fields can be

described "to all orders", numerically exactly. This allows the investigation of all

the nonlinear processes that appear in strongly driven systems.

Time-periodic systems are described by a Hamiltonian H(t) = H(t+ T ), where

the time period T = 2π/ω and ω is the angular frequency of the excitation. Based

on Floquet’s theorem, the wave function can be written in the form |Ψ(t)〉 =

exp (−iǫt/~)|Φ(t)〉, where |Φ(t)〉 is the so-called Floquet state, whose periodicity

is the same as that of the Hamiltonian, i.e., |Φ(t)〉 = |Φ(t + T )〉. The Floquet

quasienergy ǫ is a real parameter and is defined up to the integer multiples of ~ω.

In other words, it can be reduced to a zone with a width of ~ω. As an analogy to

solid-state physics, this zone and the quasienergy ǫ correspond to the first Brillouin

zone and to the quasi wave vector, respectively. Due to their periodicity, the Floquet

states can be expanded into Fourier series, which is the reason why the eigenvalue

equations can be transformed into an infinite dimensional matrix equation. Practi-

cally, the linear system of equations are solved by including only a finite number of

the Floquet channels.

Scientific results

In the following, I present a brief summary of the new scientific results discussed in

the thesis which are collected in five thesis points. The publications connected to

my statements are listed at the end of the dissertation and cited in each title.

T1. Scattering of charged particles in a Ramsey-like setup:

transmission resonances [P3]

— I constructed a quantum mechanical model in which charged particles (e.g. elec-

trons) are scattered by a time-oscillating electric field in a spatially separated

(Ramsey-like) setup [43]. I analyzed the cycle-averaged transmission probabil-

ities as the function of the energy of the incoming electrons E0, and identified

transmission resonances in the spectrum.

— In order to interpret the results, I created a model, based on a classical physical

consideration, by replacing the oscillating electric fields with static potential

barriers of heights equal to the ponderomotive energy of the electron.
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— I proved that the static double-barrier system is a proper first approximation

in finding the transmission resonances. For low values of E0, the oscillating

model has transmission resonances around the energy eigenvalues of the static

model. I concluded that the localized states, which exist between the two

potential barriers, are the reason for the appearance of the resonances.

T2. Scattering of charged particles in a Ramsey-like setup:

phase dependence [P3]

— In the model examined in [P3], I also analyzed the dependence of the cycle-

averaged transmission probability 〈T 〉 on the separation distance d and the

phase difference ϕ0 between the two optical fields. I found that 〈T 〉 is quasi-

periodic in d, and the transmission probability can change as much as 50% as

a function of ϕ0.

— With the examination of the space- and time-dependent probability density

and current, I analyzed the scattering process in the case of low and high

transmission probabilities, and I interpreted the dynamics in these limiting

cases using classical terms.

— I showed that in order to control the transmission by changing the phase

ϕ0, the parameters of the electric fields must correspond to a ponderomotive

potential close to the energy of the particle beam.

T3. Describing laser-assisted electron scattering with spheri-

cal Gordon-Volkov states [P2]

— Based on the work of Varró and Ehlotzky [61], I investigated the electron

scattering on a hard sphere in the presence of a laser field. I derived the

spherical Gordon-Volkov states using the translational addition theorem of

spherical harmonics [63, 64]. I reduced the Fourier spectrum of these states

to a series of hypergeometric functions. The resulting analytic expression

significantly simplifies the calculation of the spectrum.

— I examined the differential cross sections for different Floquet channels in the

weak-field limit. I found that the Floquet channels indexed by n 6= 0 get

more populated for increasing electric field strengths. For increasing electron

energies, E0, new scattering channels open up similarly to the model presented

in [P3].
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T4. Relativistic electron scattering on an oscillating potential

barrier: cycle-averaged transmission probabilities [P1]

— I studied the scattering of relativistic electrons on an oscillating potential

barrier in one dimension. By examining the cycle-averaged transmission prob-

abilities 〈T 〉, I observed that the Klein paradox is also visible in the oscillating

case similarly to the one-dimensional relativistic static scattering. That is, the

transmission probability approaches 1 for increasing potential heights V0.

— I also showed that when the barrier heights are within the band gap of 2mc2,

the cycle-averaged transmission probability can take non-zero values, if the

oscillation amplitude is large enough or the oscillation is localized in a narrow

region.

T5. Relativistic electron scattering on an oscillating potential

barrier: wave-packet generation, Fano-type resonances [P1]

— In the model studied in [P1], in order to understand the details of the transmis-

sion spectrum, I examined the space- and time-dependent probability density

and current. I identified the effect of "temporary trapping" inside the oscil-

lating potential barrier.

— For a low incoming electron energy E0, I discovered Fano-type resonances [82]

in the transmission probability. Using the Dirac equation, I calculated the

bound states and the corresponding energies of the static relativistic poten-

tial barrier, which I identified to be the reason for the appearance of these

resonances.
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Bevezetés

Az időben periodikus potenciálokon bekövetkező kvantummechanikai szórás egy len-

dületesen fejlődő, fontos kutatási terület. Segítségével számos érdekes jelenség érthe-

tő meg az erősen gerjesztett rendszerekben. Az optikai kontroll, a lézerfény által kí-

sért szórás vagy a transzportfolyamatok kiváló példák annak megmutatására, hogy a

váltakozó mező jelenléte erősen rugalmatlan folyamatot eredményezhet. A kvantum-

mechanikai részecskék optikai kontrollja ígéretes alkalmazások széles skáláját nyújtja

például az ultragyors elektronikában [33, 34], képalkotásban [35, 36] vagy a kvan-

tuminformatikában [37, 38]. Napjainkban a lézerfény által kísért szórás kiemelkedő

szerepet kapott többféle kutatási területen, mint például az ultrarövid (attoszekun-

dumos) elektron impulzusok létrehozásában [68, 69], a négydimenziós képalkotás-

ban és az ultragyors elektronmikroszkópiában [70, 71] vagy a fotonindukált közeltér

mikroszkópiában [36, 50]. Az időfüggő potenciálokon történő elektrontranszportot

kiemelkedő tudományos érdeklődés övezi, hiszen a kísérleti technikáknak az elmúlt

évtizedekben végbemenő fejlődése lehetővé tette az elméleti eredmények közvetlen

alkalmazását a mezo- és nanoszkopikus méretű eszközökben [3, 84].

Célkitűzések

A disszertációban bemutatott doktori munka célja az volt, hogy az időben perio-

dikus potenciálok szerepét vizsgáljuk különböző kvantummechanikai szórási prob-

lémákban. Ha ez a gerjesztést jelentő potenciál nem tekinthető kis amplitúdójú

perturbációnak, akkor jól megfigyelhető anharmonikus jelenségek lépnek fel.

Az alapvető effektusok feltérképezése mellett célunk volt a konkrétan vizsgált

esetekben az adott kvantumrendszer specifikus tulajdonságainak a vizsgálata, a le-

hetséges alkalmazások keresése. Két egydimenziós modellt tanulmányoztunk, ame-

lyek kapcsán a szabadon terjedő kvantummechanikai síkhullámok periodikus ger-

jesztésre adott válaszára voltunk kíváncsiak. Relativisztikus részecskék esetén, a

grafén ismert, lineáris diszperziós relációjára alapozva, ez a módszer a periodikus
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kapufeszültségekkel modulált grafénben lezajló elektrontranszport modellezésére is

alkalmas. Itt azt vizsgáltuk meg, hogy az ismert relativisztikus effektusok, mint

például a Klein-paradoxon, milyen gyakorlati alkalmazásokat is felvillantó módon

jelennek meg periodikus gerjesztés esetén. Nemrelativisztikus részecskék esetén a

szilárdtestfizikai analógia optikai terekkel befolyásolt vezetési sávbeli elektrondina-

mikát jelent. Természetesen a legkézenfekvőbb alkalmazás mindkét modell esetén a

töltött részecskékből álló nyaláb dinamikájának a leírása. A fizikai háttér megérté-

se után fontos kérdés volt, hogy a gerjesztés paramétereinek a megváltoztatásával

hogyan érhető el például a kimenő részecskék energiájának a szűrése.

Célul tűztük ki ezen felül egy háromdimenziós modell vizsgálatát is, amelyben

töltött részecskék (pl. elektronok) egy "kemény gömb"-bel modellezett nanorészecs-

kén szóródnak. A jelenség lehetséges optikai kontrollját is figyelembe véve a szórást

elektromágneses tér jelenlétében terveztük vizsgálni. A fő kiszámítandó mennyi-

ség itt a differenciális hatáskeresztmetszet, amelynek az elemzése módot adhat a

folyamat részleteinek tanulmányozására.

A dolgozatban tárgyalt eredmények fényében elmondható, hogy a fenti kutatási

elképzeléseket sikeresen valósítottuk meg. Emellett számításaink során olyan jelen-

ségeket is tapasztaltunk, amelyek a célok kitűzése idején nem voltak előreláthatóak.

Ezen jelenségek fizikai hátterének magyarázata szintén a dolgozattal kapcsolatos

kutatómunka eredményei közé tartozik.

Módszerek

Periodikus időfüggéssel bíró rendszereket például a Floquet-elméleten alapuló mód-

szerrel lehet hatékonyan leírni, amely a szilárdtestfizikában ismeretes Bloch-tétel

analógiája az időperiodicitásnak (a térperiodicitás helyett). G. Floquet 1883-ban írt

cikke alapozta meg ennek a megközelítésnek a matematikai alapjait [1]. A módszert

először 1965-ben J. Shirley alkalmazta kvantummechanikai rendszerekre: kétnívós

atom kölcsönhatását vizsgálta lézerfénnyel, amelyet egyetlen frekvenciával rendelke-

ző klasszikus mezőként vett figyelembe [2].

Az időben periodikus rendszerek kvantummechanikai leírása egy időben perio-

dikus H(t) = H(t + T ) Hamilton operátorral történik, ahol T = 2π/ω a periódus-

ideje, ω pedig a körfrekvenciája a gerjesztésnek. Floquet tétele alapján az időfüggő

Schrödinger egyenlet megoldását adó hullámfüggvény a |Ψ(t)〉 = exp (−iǫt/~)|Φ(t)〉
alakban írható fel, ahol |Φ(t)〉 az ún. Floquet állapot, amelynek periodicitása ugyan-

az mint a Hamilton operátornak, vagyis |Φ(t)〉 = |Φ(t + T )〉. Az ǫ az ún. Floquet

kvázienergia, amely egy valós paraméter és ~ω egész számú többszöröséig van egyér-

telműen meghatározva, vagyis egy ~ω széles "zónára" redukálható. Ez a kvázienergia
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a szilárdtestfizikában ismeretes kvázi-hullámszámnak, míg az előbb említett zóna az

első Brillouin-zónának felel meg analóg módon. A Floquet-állapotok periodicitásuk-

nak köszönhetően Fourier sorba fejhetők, emiatt lehetséges a sajátérték-egyenletek

egy végtelen dimenziós mátrix egyenletté alakítása. Ily módon a külső periodikus

gerjesztést nemperturbatív módon vesszük figyelembe.

Amennyiben a hullámfüggvényeket Floquet-féle alakra hozzuk és a peremfelté-

teleket is figyelembe vesszük, a rendszer egyértelműen definiált. A végtelen lineáris

algebrai egyenletrendszert úgy oldjuk meg a gyakorlatban, hogy csak egy véges,

2N + 1 harmonikus komponenst veszünk figyelembe. Az N egész számot az előírt

számolási pontosság határozza meg; még több harmonikus komponens belefoglalá-

sával tetszőlegesen lehet finomítani az eredmények pontosságát.

Tudományos eredmények

Az alábbiakban röviden ismertetem a disszertációban bemutatott új tudományos

eredményeket öt tézispontban összefoglalva. A megállapításaimhoz kapcsolódó pub-

likációkat a disszertáció végén található lista gyűjti össze, illetve a tézispontok cí-

mében hivatkozom.

T1. Töltött részecskék szóródása Ramsey-féle elrendezésben:

transzmissziós rezonanciák [P3]

— Töltött részecskék (pl. elektronok) időben oszcilláló elektromos mezőn va-

ló szóródásának kvantummechanikai modellezését végeztem térben szeparált,

ún. Ramsey-féle elrendezésben [43]. Az időátlagolt transzmissziós valószínű-

ségeknek az elektronok bejövő E0 energiájától való függését elemeztem, és

transzmissziós rezonanciákat azonosítottam a spektrumban.

— Az eredmények értelmezése céljából megvizsgáltam egy olyan, klasszikus meg-

fontolások alapján kidolgozott modellt, amelyben az időfüggő elektromos teret

helyettesítettem az elektron ponderomotoros energiájának megfelelő magassá-

gú sztatikus potenciálgáttal.

— Bebizonyítottam, hogy a transzmissziós rezonanciák megtalálásához jó első

közelítés a kettős sztatikus potenciálgát rendszer. Alacsony E0 értékek ese-

tén a rezgő modellnek transzmissziós rezonanciái vannak a sztatikus modell

energia sajátértékei körül. Azt a következtetést vontam le, hogy a rezonanciák

megjelenését a két potenciálgát között lokalizált állapotok okozzák.
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T2. Töltött részecskék szóródása Ramsey-féle elrendezésben:

fázisfüggés [P3]

— A [P3] munkában vizsgált modellben a periódusra átlagolt 〈T 〉 transzmissziós

valószínűség d szeparációs távolságtól és ϕ0 fáziskülönbségtől való függését is

elemeztem. Azt találtam, hogy 〈T 〉 kváziperiodikus d-ben, valamint akár 50%-

kal is megváltozhat a ϕ0 függvényében.

— A valószínűségi áram tér- és időfüggésének vizsgálatával elemeztem a szórást

kicsi és nagy transzmissziós valószínűség esetén, és ezekben a határesetekben

klasszikus gondolatmenet alapján értelmeztem a dinamikát.

— Megmutattam, hogy a transzmissziós valószínűség ϕ0 fázissal történő kontrol-

lálásához olyan külső elektromos teret érdemes alkalmazni, amely a részecske-

nyaláb energiájához közeli ponderomotoros potenciált jelent.

T3. Lézerfény által kísért elektronszórás leírása gömbi Gordon-

Volkov állapotokkal [P2]

— Egy kemény gömbbel modellezett nanorészecskén történő elektronszórást vizs-

gáltam lézertér jelenlétében Varró és Ehlotzky [61] munkája alapján. Szár-

maztattam a gömbi Gordon-Volkov állapotokat a gömbhullámok transzlációs

addíciós tétele segítségével [63, 64]. Ezek Fourier spektrumának kiszámítását

egy, a hipergeometrikus függvényekből álló sorra vezettem vissza. A kapott

analitikus kifejezés a spektrum kiszámítását jelentősen leegyszerűsíti.

— Megvizsgáltam a szórási hatáskeresztmetszeteket gyenge-tér határesetben a

különböző Floquet csatornák esetén. Megállapítottam, hogy az n 6= 0-val

jelölt Floquet csatornák növekvő térerősség értékek esetén jobban betöltődnek,

továbbá hogy növekvő E0 elektron energia esetén új szórási csatornák nyílnak

meg a [P3] munkában tárgyalt modellhez hasonlóan.

T4. Relativisztikus elektronszórás rezgő potenciálgáton: peri-

ódusra átlagolt transzmissziós valószínűségek [P1]

— Egydimenziós relativisztikus elektronok rezgő potenciálgáton történő szórását

tanulmányoztam. A 〈T 〉 időátlagolt transzmissziós valószínűségek vizsgálata

során kimutattam, hogy rezgő esetben is megfigyelhető a Klein paradoxon a

relativisztikus sztatikus szóráshoz hasonlóan. Ez azt jelenti, hogy növekvő V0
átlagos potenciálmagasság esetén a transzmissziós valószínűség 1-hez közelít.
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— Megmutattam azt is, hogy amikor V0 a 2mc2 nagyságú "tiltott sávban"-ban

van, akkor az időátlagolt transzmissziós valószínűség nem nulla értéket is fel-

vehet, ha az oszcilláció amplitúdója elegendően nagy, vagy ha az oszcilláció

elegendően keskeny tartományon lokalizálódik.

T5. Relativisztikus elektronszórás rezgő potenciálgáton: hul-

lámcsomag generálás és a Fano-típusú rezonanciák [P1]

— A [P1] munkában tanulmányozott modellben a transzmissziós spektrum rész-

leteinek megértése céljából megvizsgáltam a tér- és időfüggő valószínűségi sű-

rűséget és áramot, amelynek alapján az ideiglenes "csapdázódás" jelenségét

mutattam ki a rezgő potenciálgáton belül.

— Alacsony E0 bejövő elektron energia esetén a transzmissziós valószínűségben

Fano-típusú rezonanciákat [82] fedeztem fel. A Dirac egyenlet segítségével ki-

számoltam a relativisztikus potenciálgát kötött állapotait és a megfelelő energi-

ákat, amelyekkel megmagyaráztam a Fano-típusú rezonanciák megjelenésének

okát.
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