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Chapter 1

Introduction

This thesis is about trees and graph packing. In the hrst part, which is mainly based on [61], we deal with suffix trees. At this point, we present an overview of suffix trees, while at the beginning of Chapter 2, we will give the detailed definitions, A suffix tree is a powerful data structure which is used for a large number of combinatorial problems involving strings. Suffix tree is a structure for compact storage of the suffixes of a given string. The compact suffix tree is a modified version of the suffix tree, and it can be stored in linear space of the length of the string, while the non-eompaet suffix tree is quadratic (see [32, 51, 60, 64]),The notion of suffix trees was hrst introduced by Weiner [64], though he used the name compacted bi-tree, Grossi and Italiano mention that in the scientific literature, suffix trees have been rediscovered many times, sometimes under different names, like compacted bi-tree, prefix tree, PAT tree, position tree, repetition finder, subword tree etc, [31]Linear time and space algorithms for creating the compact suffix tree were given soon by Weiner [64], MeCreight [51], Ukkonen [60], Chen and Seiferas [13] and others.The statistical behavior of suffix trees has been also studied. Most of the studies consider improved versions of suffix trees. The average size of compact suffix trees
4



CHAPTER 1. INTRODUCTION 5was examined by Blumer, Ehrenfeueht and Haussler [6], They proved that the average number of nodes in the compact suffix tree is asymptotically the sum of an oscillating function and a small linear function.An important question is the height of suffix trees, which was answered by Devrove, Szpankowski and Rais [23], who proved that the expected height is logarithmic in the length of the string.The application of suffix trees is very wide. We mention but only a few examples. Apostólico et al, [4] mention that these structures are used in text searching, indexing, statistics, compression. In computational biology, several algorithms are based on suffix trees. Just to refer a few of them, we mention the works of Hohl et al, [36], Adebiyi et al, [1] and Kaderali et al, [37]Suffix trees are also used for detecting plagiarism [4], in cryptography [52, 54], in data compression [26, 28, 54] or in pattern recognition [59],For the interested readers further details on suffix trees, their history and their applications can be found in [4], in [31] and in [32], which sources we also used for the overview of the history of suffix trees.It is well-known that the non-eompaet suffix tree can be quadratic in space as we referred before. In Chapter 2 we are setting a lower bound on the average size, which is also quadratic.Now, we turn to the other main field of the thesis, which is graph packing.All graphs considered in this thesis are simple. We use standard graph theory notations (see for example [65]): d e g G (v) (or briefly, if G is understood from the context, deg(v)) is the degree of v in G, The number of edges between X  and Y  for X  C Y = 0 is denoted by e(X, Y ), The number of neighbors of x in a subset S C V (G) is denoted by degG(x, S), and 5 ( G )  and A(G) denote the minimum and maximum degree of G, respectively.



CHAPTER 1. INTRODUCTION 6For any function / on V  let / (X ) = ^  f  (v) for every X  C V, n(G) is the degree
v e xsequence of G. The number of vertices in G is denoted by v(G), while the number of its edges is denoted by e(G).Given a bipartite graph G ( A , B ) we call it balanced if |A| = |B|, This notion naturally generalizes for r-partite graphs with r G N, r > 2,The complete graph on n vertices is denoted by K n , the complete bipartite graph with vertex class sizes n and m is denoted by K n ,m .A Unite sequence of natural numbers n = ( d \ , . . . ,  dn ) is a g ra p h ic  .sequence or 

degree seq u en ce if there exists a graph G such that n is the (not necessarily) monotone degree sequence of G. Such a graph G realizes n . The largest value of n is denoted by A(n), We sometimes refer to the value of n at vertex v  as n ( v ) .  The degree sequence n =  ( a \ , . . .  , a k , b \ , . . . ,  hi) is a b ig ra p h ic sequence if there exists a simple bipartite graph G = G(A,B) with |A| = k , |B| = l realizing n such that the degrees of vertices in A are ai, . . . ,  ak, and the degrees of the vertices of B are bi, . . .  ,bi.Let G and H  be two graphs on n vertices. We sav that H is a subgraph of G, if we can delete edges from G so that we obtain an isomorphic copy of H, We denote this relation by H C G, In the literature the equivalent complementary formulation can be found as well: we sav that H and G p a c k  if there exist edge-disjoint copies of H and G in Kn. Here G denotes the co m p le m e n t of G.If S C V for some graph G = (V, E )  then the subgraph spanned by S  is denoted by G[S]. Moreover, let Q  C V so that S C Q  =  0, then G[S, Q ] denotes the bipartite subgraph of G on vertex classes S and Q, having every edge of G that connects a vertex of S with a vertex of Q,It is an old an well-understood problem in graph theory to tell whether a given sequence of natural numbers is a degree sequence or not. We consider a generalization of it, which is remotely related to the so-called discrete tomography (or degree sequence packing) problem (see e.g. [24]) as well. In the discrete tomography problem we are given two degree sequences of length n, n1 and n2, and



CHAPTER 1. INTRODUCTION 7the question is whether there exists a graph G on n vertices with a red-blue edge coloring so that the following holds: for every vertex v the red degree of v is ni(v) and the blue degree of v is n2(v).The question whether a sequence of n numbers n is a degree sequence can also be formulated as follows: Does Kn have a subgraph H such that the degree sequence of H is n? The question becomes more general if Kn is replaced by some (simple) graph G on n vertices. If the answer is yes, we sav that n ca n  be em bedded in to  G, or equivalently, n packs with G,The graph packing problem is the following. Let G and H be two graphs on n vertices. We sav that G and H p a c k  if and only if Kn contains edge-disjoint copies of G and H as subgraphs.The graph packing problem can be formulated as an embedding problem, too. G and H pack if and only if H is isomorphic to a subgraph of G (H C G),A classical result in this field is the following theorem of Sauer and Spencer.Theorem 1 (Sauer, Spencer [57]). L e t  G1 a n d  G2 be graphs o n  n v e r tic e s  w ith  
m a x im u m  degrees A 1 a n d  A 2, re sp e c tiv e ly . I f  A 1A2 < n, th e n  G1 a n d  G2 p a ck .Many seemingly unrelated problems can be translated to the language of embed- ding/paeking, for a (non-eomplete) list see for example [38], Therefore, it is not surprising that in general many embedding/paeking problems are open. In order to prove meaningful results one usually imposes condition on the graphs in question.In Chapter 3 we study the bipartite packing problem as it is formulated by Catlin [11], Hajnal and Szegedy [34] and was used by Hajnal for proving deep results in complexity theory of decision trees [33],Let G1 = (A, B ; E 1) and G2 = (S, T; E 2) be bipartite graphs with |A| = |S| = mand |B| = |T| = n. Sometimes, we use only G(A, B) if we want to sav that G is a bipartite graph with classes A and B, Let AA(G1) be the maximal degree of G1 in A. We use A B (G1) similarly.



CHAPTER 1. INTRODUCTION 8The bipartite graphs G1 and G2 pack in the bipartite sense (i.e. they have a 
b ip a rtite  p a c k in g ) if there are edge-disjoint copies of Gi and G2 in K m,n .The bipartite packing problem can be also formulated as a question of embedding. The bipartite graphs G1 = (A, B ; E ) and G2 pack if and only if G2 is isomorphic to a subgraph of G1; which is the bipartite eomplement of G1; i.e, G1 = (A, B; (A x B) -  E).Let us mention two classical results in extremal graph theory.Theorem 2 (Dirac, [25]). E v e r y  graph G  w ith  n  > 3 v e rtice s  a n d  m in im u m  degree 
5 ( G )  >  n h a s a H a m ilto n  cy c le .Theorem 3 (Corradi-Hajnal, [16]). L e t  k  >  1 n > 3 k , a n d  let H  be a n  n -v e r t e x  
graph, w ith  5 ( H ) > 2k . T h e n  H  c o n ta in s  k  v e r te x -d is jo in t  c y c le s .Observe, that Dirac’s theorem implies that given a constant 2 degree sequence n of length n and any graph G on n vertices having minimum degree 5(G) > n/2 , n can be embedded into G, One can interpret the Corradi-Hajnal theorem similarly, but here one may require more on the structure of the graph that realizes n and in exchange a larger minimum degree of G is needed.In Chapter 5 we extend the results of [18], We consider bounded degree bipartite graphs that have a small separator and large bandwidth, and prove that under reasonable conditions these are spanning subgraphs of n-vertex graphs that have minimum degree just slightly larger than n/2. We also show that using earlier methods such graphs cannot be embedded in general into host graphs with such small minimum degree.
Regularity LemmaAn important tool for our results is the Regularity Lemma, for which Endre Szemeredi received Abel Prize in 2 0 1 2 , At this point we give a short overview of it. For a more detailed discussion we refer to [44] and [45],



CHAPTER 1. INTRODUCTION 9The d e n s ity  between disjoint sets X  and Y  is defined as:
e ( X , Y )

d ( X , Y ) |X ||Y | (1.1)We will need the following definition to state the Regularity Lemma.Definition 4 (Regularity condition). Let e >  0. A pair ( A , B )  of disjoint vertexsets in G is e-regular if for every X  C A and Y C B, satisfying|X| >e|A|, |Y|>e|B| (1 .2)we have |d(X, Y ) -  d(A,B)| < e. (1.3)This definition implies that regular pairs are highly uniform bipartite graphs; namely, the density of any reasonably large subgraph is almost the same as the density of the regular pair.Definition 5. We sav that a partition {W0; W 1, . . . ,  W k } is e-regular if there is an m such that for all i >  0 |Wj| = m; for all but at most e k 2 pairs ( i , j ) the pair (Wj, W j ) is e -regular (i, j  > 0); and |W0 | < em2.The original form of Szemeredi’s Regularity Lemma is the following:Lemma 6 . [5 8 ] F o r  e v e r y  e a n d  t ,  th ere e x is t N  a n d  T  such, th a t f o r  each, n  > N 
e v e r y  n -v e r t e x  graph G  a d m its  a n  e -re g u la r  p a r tit io n  W0 U Wi U ■ ■ ■ U Wk s a tis fy in g  
t < k < T.We will also use the following form of the Regularity Lemma:Lemma 7 (Degree Form, [18]). F o r  e v e r y  e >  0 th ere is  an M  =  M (e) s u ch  th at i f  
G  =  (W , E ) is  a n y  graph a n d  d G [0,1] is  a n y  real n u m b er, th e n  th ere is  a p a r tit io n  
o f  th e v e r te x  se t V  in to  i  + 1 c lu s te rs  W0, W1, . . . ,  W e , a n d  th ere is  a subgraph, G '  
o f  G  w ith  th e fo llo w in g  p r o p e r tie s :• i  < M ,• |Wo| < e|W|,



CHAPTER 1, INTRODUCTION 10JWlt <£|W |,a ll c lu ste rs Wi; i >  l ,  are o f  th e s a m e  size  m  <

d e g c ( v )  >  d e g c ( v )  — (d + e ) [ W I  f o r  a ll v  G W ,

G '\ w i = 0 (W i is a n  in d e p e n d e n t se t in  G ' )  f o r  a ll i > l,
a ll p a irs  ( W i , W j ), l < i <  j  < t ,  are £ -re g u la r , each w ith  d e n s ity  e ith e r  0 
o r  g rea ter th a n  d  in  G .We call W0 the excep  tio n a l c lu s te r , Wi,. . .  , W t are the n o n -e x c e p tio n a l c lu ste rs .Definition 8  (Reduced graph, [18]). Apply Lemma 7 to the graph G  =  ( W , E ) with parameters £ and d,  and denote the clusters of the resulting partition by 

W 0, W 1, . . . ,  Wt, W 0 being the exceptional cluster. We construet a new graph G r , the reduced graph of G '  in the following wav: The non-exeeptional clusters of G' are the vertices of the reduced graph G r (hence v ( G r) = t). We connect two vertices of G r by an edge if the corresponding two clusters form an £-regular pair with density at least d.The following corollary is immediate:Corollary 9. [1 8 ] A p p ly  L e m m a  1 w ith  p a ra m e te rs  £ a n d  d  to  th e graph G  =  
( W , E ) s a tis fy in g  8 ( G )  >  j n  ( v ( G )  =  n)  f o r  s o m e  y  >  0. D e n o t e  G r th e reduced

graph o f  G . T h e n  8 ( G r) > (7  — 6)t ,  w here 9 = 2£ + d.The (fairly easy) proof of the lemma below can be found in [45].Lemma 10. L e t  ( A , B )  be a n  £ -r e g u la r -p a ir  w ith  d e n s ity  d  f o r  s o m e  £ >  0. L e t  
c  >  0 be a co n s ta n t s u c h  th a t £ ^  c. W e a rb itra rily  d iv id e  A  a n d  B  in to  tw o  
p a rts , o b ta in in g  th e n o n -e m p ty  su b sets  A ' ,  A "  a n d  B ' , B ' ' ,  re sp e ctiv e ly . A s s u m e  
th a t |A'|, |A''| > c|A\ a n d  \ B ' \, \B''\ >  c \ B |. T h e n  th e p a irs  ( A ' , B ' ) ,  ( A ' , B " ) ,  
( A ' ' , B ')  a n d  ( A ' ' ,B ' ' )  are a ll £ / c -r e g u la r  p a ir s  m t h  d e n s ity  at least d  — £ / c .



CHAPTER 1. INTRODUCTION 11

Blow-up LemmaLet H  and G  be two graphs on n  vertices. Assume that we want to find an isomorphic copy of H  in G .  In order to achieve this one can apply a very powerful tool, the Blow-up Lemma of Komlos, Sarkozy and Szemeredi [42, 40], For stating it we need a new notion, a stronger one-sided property of regular pairs.Definition 11 (Super-Regularity condition). Given a graph G  and two disjoint subsets of its vertices A and B, the pair (A , B ) is (e, 5)-super-regular, if it is 
e - regular and furthermore,

d e g ( a )  >  5 \B \, for all a E A , (1.4)
deg(b)  >  5|A\, for all b E B . (1.5)Theorem 12 (Blow-up Lemma [42, 40]). G iv e n  a graph R  o f  o rd e r r  a n d  p o s itiv e  

in teg ers 5, A ,  th ere e x is ts  a p o s it iv e  e =  e(8,  A ,  r)  such, th a t th e fo llo w in g  h o ld s: 
Led n \ , n 2, . . .  , n r be a rb itra ry  p o s it iv e  p a ra m e te rs  a n d  led us rep la ce  th e v e rtice s  
v \ , v 2, . . .  , v r o f  R  w ith  p a ir w is e  d is jo in t  sets  W \ , W 2, . . . ,  W r o f  s i z  es n \ , n 2, . . .  , n r 
(b lo w in g  up R ) .  W e c o n s tr u c t tw o graphs o n  th e s a m e  v e r te x  s e t V  =  UjWj. T h e  

f ir s t  graph, F  is o b ta in e d  by re p la cin g  each edge vpvj  E E ( R )  w ith  th e co m p le te  
b ip a rtite  graph betw een Wj a n d  W j . A  s p a rs e r  graph G  is  c o n s tr u c te d  by re p la cin g  
each edge vpvj  a rb itra rily  w ith  a n  (e , 5 )-su p e r-reg u la r p a ir  bedween Wj a n d  W j . I f

a graph, H  w ith  A ( H ) < A  is em beddable in to  F  th e n  it is a lread y em beddable in to  
G .



Chapter 2

Suffix trees

In this chapter, we will set up a lower bound on the average size of a suffix tree. Here, the results of [61] are presented. Before we give the exact definition of a suffix tree, we will need a few definitions.
Definition 13. An alphabet E is a set of different characters. The size  of an alphabet is the size of this set, which we denote by a(E), or more simply a, A string £ is over the alphabet E if each character of S  is in E, We will use $ as a character not in E,
Definition 14. Let S be a string, S[i] is its ith character, while S [ i , j ]  is a 
su b s trin g  of S, from S[i] to S[j], if j  > i, else S [ i , j ]  is the empty string. Usually 
n ( S ) (or n  if there is no danger of confusion) denotes the len gth of the string.Now, we are at defining the suffix trees.
Definition 15. The s u ffix  tree of the string S is a rooted directed tree with n leaves, where n is the length of S,Its structure is the following:Each edge e has a label i ( e ) ,  and the edges from a node v  have different labels (thus, the suffix tree of a string is unique). If we concatenate the edge labels along a path V, w e get the p a th  label L ( V ),

12



CHAPTER 2. SUFFIX TREES 13We denote the path from the root to the leaf j  by P(j), The edge labels are such that L ( j ) = L(P( j ) )  is S [ j , n ]  and a $ character (which is not in X) at the end. The definition becomes more clear if we cheek the example on Figure 2,1 and Algorithm 16,

Growth of the string

Figure 2,1: Suffix tree of string aabccbA naive algorithm for constructing the suffix tree is the following:
Algorithm 16. Let S be a string of length n. Let j  = 1 and T be a tree of one vertex r (the root of the suffix tree).

S te p  1 : Consider X  =  S [ j ,  n] + $, Set i =  0, and v  =  r.

S te p  2 : If there is an edge v u  labeled X  [i + 1], then set v = u and i = i + 1.
S te p  3 : Repeat Step 2 while it is possible.
S te p  4-' If there is no such an edge, add a path of n — j  — i + 2 edges from v, with labels corresponding to S [ j  + i, n] + $, consecutively on the edges. At the end of the path, number the leaf with j.
S te p  5 : Set j  = j  + 1, and if j  <  n, go to Step 1, o



CHAPTER 2. SUFFIX TREES 14Note that in Algorithm 16 a leaf always remain a leaf, as $ (which is the last edge label before a leaf) is not a character in S .

Definition 17. The co m p a ct s u ffix  tree is a modified version of the suffix tree. We get it from the suffix tree by compressing its long branches.The structure of the compact suffix tree is basically similar to that of the suffix tree, but an edge label can be longer than one character, and each internal node (i.e. not leaf) must have at least two children. For an example see Figure 2.2.

Figure 2 .2 : Compact tree of string aabccbWith a regard to suffix trees, we can define further notions for strings.Definition 18. Let S be a string, and T  be its (non-eompaet) suffix tree.A n a tu ra l d ir e c tio n  of T  is that all edges are directed from the root towards the leaves. If there is a directed path from u  to v , then v  is & d e s c e n d a n t of u  and u  is an a n c e s to r  of v .We sav that th e growth, o f  S  (denoted by 7 (S)) is one less than the shortest distance of leaf 1 from an internal node v  which has at least two children (including leaf 1), that is, we count the internal nodes on the path different from v . If leaf j  is a descendant of v, then the common prefix of S [ j ,  n] and S [ l , n ]  is the longest among all j ’s.If we consider the string S  =  a abccb, th e  g row th of S  is 5, as it can be seen on Figure 2.1.An important notion is the following one.



CHAPTER 2. SUFFIX TREES 15

Definition 19. Let Q ( n ,  k ,  a)  be the number of strings of length n with growth k  over an alphabet of size a.Observe that the connection between the growth and the number of nodes in a suffix tree is the following:
Observation 20. I f  w e c o n s tr u c t th e s u ffix  tree o f  S  by u s in g  A lg o r ith m  16, we 
g et th at th e s u m  o f  th e g row ths o f  S [ n  — 1, n], S[n — 2, n],. . . ,  S [1, n] is  a lo w e r  
bou n d  to  th e n u m b er o f  n o d e s in  th e f in a l s u ffix  tree. I n  fa c t ,  th ere are o n ly  tw o  
m o re  in te r n a l n o d e s, th e root v e r te x , th e o n ly  n o d e  o n  th e p a th  to le a f n ,  a n d  we 
h a v e  th e lea ves.In the proofs we will need the notion of period and of aperiodic strings.
Definition 21. Let S be a string of length n. We say that S is p e r io d ic  with period d, if there is a d|n for which S[i] = S [i + d] for all i <  n  — d. Otherwise, S is a p e rio d ic.The m in im a l p e r io d  of S is the smallest d with the property above.
Definition 22. p ( j ,  a) is the number of j-length aperiodic strings over an alphabet of size a.A few examples for the number of aperiodic strings are given in Table 2.1.

a h(1, a) M2 , a) h(3,a) h(4, a) h(5,a) h(6 ,a) h(7,a) h(8 ,a)2 2 6 12 30 54 126 240 5043 3 6 24 72 240 696 2184 6484 4 12 60 240 1020 4020 16380 652805 5 20 120 600 3120 15480 78120 390000Table 2.1: Number of aperiodic strings for small alphabets, a  is the size of the alphabet, and p ( j ,  a)  is the number of aperiodic strings of length jThe following three theorems are the main results of this chapter.
Theorem 23. F o r  a n y  k  E N, o n  a n y  alphabet o f  s iz e  a  f o r  a ll n  > 2 k ,

Q(n, k, a) < p(k, a) (2 . 1)



CHAPTER 2. SUFFIX TREES 16

f o r  -some fu n c t io n  <p.

Theorem 24. T h e re  is  a c >  0 a n d  a n  n 0 such, th a t f o r  a n y  n  >  n 0 th e fo llo w in g  
is  tru e . L e t  S '  he a s tr in g  o f  len gth n  — l ,  a n d  S  be a s tr in g  o b ta in e d  fr o m  S' by  
a d d in g  a ch a r a c te r  to its  b eg in n in g  c h o s e n  u n ifo r m ly  ra n d o m  fr o m  th e alphabet. 
T h e n  th e exp ected  grow th o f  S  is  at least c n .

Theorem 25. T h e re  is  a d  >  0 th a t f o r  a n y  n  >  n 0 (w here n 0 is  th e s a m e  as in  
T h e o re m  2 f )  th e fo llo w in g  h o ld s. O n  an alphabet o f  s ize  a  th e s im p le  s u ffix  tree o f  
a ra n d o m  s tr in g  S  o f  len g th  n  h a s at least d n 2 n o d e s in  e xp e cta tio n .The main goal is to prove Theorem 25. First, we show that Theorem 24 implies Theorem 25, then we show that Theorem 23 implies Theorem 24. Finally, we prove Theorem 23.
P r o o f. (Theorem 25)Considering Observation 20 we have that the expected size of the simple suffix tree of a random string S  is at least

n  nE y (S [ n  — m , n ] )  >  E(y(S [ n  — m ,  n])). (2.2)
m = 1 m = 1We can divide the sum into two parts:

n  no nE(y(S[n — m , n ] ) )  =  E(y(S[n — m , n ] ) )  + E(y(S[n — m , n ] ) ) .  (2.3)
m =  1 m =  1 m = n o + 1The first part of the sum is non-negative, while the second part can be estimated with Theorem 24:

n  nS  e (y (s [ n  -  m,nD) > ^  c n  = d n 2 . (2.4)
m = n o + 1  m = n o + 1This proves Theorem 25.

□



CHAPTER 2. SUFFIX TREES 17Before turning to the proof of Theorem 23, we show a few lemmas about the number of aperiodic strings. Lemma 26 can be found in [30] or in [15], but we give a short proof also here.Lemma 26. F o r  a ll j  >  0 in te g e r  a n d  f o r  a ll alphabets o f  s iz e  a  th e n u m b er o f  
a p e rio d ic  strin g s is

P ( j , a )  =  a  -  ^ P (d,a). (2-5)
d\j

d=j

P r o o f  p ( 1 ,  a) = a is trivial.There are a j  strings of length j. Suppose that a string is periodic with minimal period d. This implies that its first d characters form an aperiodic string of length d, and there are p ( d , a )  such strings. This finishes the proof, □Specially, if p is prime, then p ( p ,  a )  =  a p — a.Corollary 27. I f  p  is  p r im e  a n d  t E N, th en

p  (p*, a) = a p  — a pt 1 (2 ,6)
f o r  a ll alphabets o f  s iz e  a .

P r o o f. We count the aperiodic strings of length p*. There are a pt strings. Consider the minimal period of the string, i.e, the period which is aperiodic. If we exclude all minimal periods of length k, we exclude p ( k ,  a )  strings. This yields the following equality:
P  ( p f  a) = apt — ^  p  (ps, a). (2.7)1<s<tWith a few transformations and using Lemma 26, we have that (2,7) is equal to

o p‘ ß  (p‘ 1,o E  ß (P‘ ,o) = o ” ' -  o ” ‘ - ‘  +
1 < s < t - 1

ß  (p s , o )  -  ß  (p s , o ) ,1<s<t-1  1<s<t-1 (2. 8)
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a pt -  a pt 1 (2.9)

□Lemma 28. F o r  a ll j  >  1 a n d  f o r  a ll alphabets o f  s ize  a  w e h a ve

ß ( j , v )  < -  ^ (2 .1-0)
P r o o f. From Lemma 26 we have p ( j ,  a )  =  a j  — ^  h ( d ,  a ) .  Considering p ( d ,  a)  >  0

d\jand ^(1 ,a) = a, we get the claim of the lemma. □Lemma 29. F o r  a ll j  >  1 a n d  f o r  a ll alphabets o f  s iz e  a  w e h a ve

ß { . j , v )  >  o { a  -  l )j 1. (2 .1 1)
P r o o f. We prove by induction. For j  = 1 the claim is obvious, as ^(1,a) = a.Suppose we know the claim for j  — 1. Consider a  (a  — 1)j - 2  aperiodic strings of length j  — 1. Now, for any of these strings there is at most one character by appending that to the end of the string we receive a periodic string of length j. Therefore we can append at least a  — 1 characters to get an aperiodic string, which gives the desired result.

□Observation 30. O b s e r v e  th at i f  th e grow th o f  S  is  k , th e n  th ere is  a j  s u c h  that 
S  [ 1 , n —k] = S [j + 1,j+ n — k}.  F o r  e x a m p le , i f  th e s tr in g  is abedefabedab (n  =  12), 
o n e  ca n  ch eck  th a t th e grow th is  8  (th e n ew  branch in  th e s u ffix  tree w h ich  en d s in  
le a f 1 sta rts  a fte r abedj, a n d  with, j  =  6 w e h a v e  S [1, 4] = S[7,10] = abed.
T h e  re v e rse  o f  th is  o b s e r v a tio n  is  th at i f  th ere is  a j  <  n  s u c h  th a t S [1, n — k] = S[j + 1 , j  + n  — k ], th e n  th e grow th is  at m o s t k ,  as S [ j  + 1 , n] a n d  S [1 , n] sha res  
a c o m m o n  p r e fix  o f  len gth n  — k , th u s, the p a th s to  th e lea ves j  + 1 a n d  n  share  
n  — k  in te r n a l n o d e s, a n d  at m o s t k  n e w  in te r n a l n o d es are created.Now, we turn to the proof of Theorem 23.
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P r o o f. (Theorem 23) We count the number of strings with growth k for n >  2k,First, we hx j, and then count the number of possible strings where the growth occurs such that S[l,n — k] = S[j + 1, j  + n — k] for that fixed j, Note that by this wav, we only have an upper bound for this number, as we might found an t such that S [1,n — k + 1] = S [t +1,t + n — k + 1],We know that j  < k, otherwise S[j + 1, j  + n — k] does not exist.If j  = k, then we know S [1, n — k] = S[k + 1, n],S [1 , k] must be aperiodic. Suppose the opposite and let S [1 , k] = p .. .p, where p is the minimal period with length d, Then S[k + 1, n] = p .. .p. Obviously, in this case S[1,n — d] = S[d + 1,n], which by Observation 30 means that the growth would be at most d. See also Figure 2,3,Therefore this case gives us at most p(k) strings of growth k.
Figure 2,3: Proof of Theorem 23, case j  = kIf j  < k, then we have S[1, n — k] = S[j + 1, j  + n — k].First, we note that S [1, j ] must be aperiodic. Suppose the opposite and let S [1, j ] = p .. .p, where p is the minimal period, and its length is d. ThenS[j + 1 , 2j ] = S[2j  + 1 , 3j] = . . .  = p ...p , (2 .1 2)which means thatS 1, kj ■j S j  + 1,j  + kj ■j p .. .p. (2.13)

This implies that S[1, j  + n — k] = p .. .pp', where p' is a prefix of p. However, S [1, j  + n — k — d] = S[d, j  + n — k] is true, and using Observation 30, we have



CHAPTER 2. SUFFIX TREES 20that y(S) < n  — (j + n  — k) + d =  k  — j  + d <  k , which is a contradiction. See also Figure 2,4Further, S[j + n — k + 1] must not be the same as S[k + 1], which means that this character can be chosen a — 1Therefore this case gives us at most ^(j) ( a  — 1 )ak j  1 strings of growth k for eachj
nFigure 2,4: Proof of Theorem 23, case j  < k By summing up for each j, we havek—1U(k,a) = ^  Mj,a)(a — 1)ak—j —1 + Mk,a) (2-1-4)

j = 1This completes the proof, □Finally, we prove Theorem 24,
P r o o f. (Theorem 24)According to Lemma 28, ^(j, a ) <  a j  — a (if j  > 1),In the proof of Theorem 23 at (2,14) we saw for k > 1 and n > 2k — 1 thatk—1

P (k,  a) = d (k,  a) + ^  Mu a)(a — 1)ak—j—1. (2.15)
j =1We can bound the right hand side of (2,15) from above as it follows:k—1

Mk,a) + ^  Mj,a)(a — 1)ak—j—1 = ^(k,a) + M1,a)(a — 1)ak—2+
j =i

k - 1 -  1)ak j 1> (2-16) 
j = 2



CHAPTER 2. SUFFIX TREES 21which is by Lemma 28 at most
k - 1

a k — a  + a(a — 1)ak -2  + ^^(aj — a)(a — 1)ak - j - 1  A
j = 2

k - 1ak + ak + ^  ajaak - j - 1  < kak. (2.17)
j =2Thus, <p ( k , a )  <  k a k , which means

m  m<̂ (k, a )  <  kak < (m + 1)am +1 . (2.18)k=1 k=1The left hand side of (2.18) is an upper bound for the strings of growth at most m.Let m = [n J .As a n »  na T this implies that in most cases the sufhx tree of S has at least n more nodes than the suffix tree of S [1 , n  — 1].Thus, a lower bound on the expectation of the growth of S is
E(Y(S)) > j ”  d a n + (a” — 2 an) (= + l))' n

.2 + 1 "  'which is
an \ 2with some c, if n is large enough1 i n  + 2 n i n  n ( n  + 2) \ n

a  + ( 2  — 4 la n I = cn,
(2.19)
(2.20)

□With this, we have finished the proof and gave a quadratic lower bound on the average size of suffix trees.



Chapter 3

Bipartite packing problem

In this and the following chapters of the thesis we will deal with graph packing problems. This chapter presents the results of [62], First, we present a related result of Wojda and Vaderlind, For this, we need to introduce three families of graph pairs which they use in [66],Let ri be the family of pairs { G ( L ,  R ) , G ' ( L ' , R ' ) }  of bipartite graphs such that G contains a star (i.e, one vertex in L is connected to all vertices of R), and in 
S u  (G ') >  1.Let r 2 be the family of pairs { G ( L ,  R ) , G ' ( L ' , R ' ) }  of bipartite graphs such that 
L  =  { a i , a2}, and d e g G ( a i ) =  d eg G (a 2) =  2; and L' = {ai, a '2}, d eg G /(ai) =  |R| — 1, 
d eg G '(a'2) =  0, finally, A r ( G )  =  A r ( G ')  =  1.The family r 3 is the pair { G ,  G'}, where G  =  K 2,2 U and G' is a one-faetor.Theorem 31. [6 6 ] L e t  G  =  ( L ,  R ; E ) a n d  G '  =  ( L ' , R '; E ' )  be tw o b ip a rtite  graphs  
w ith |L| = |L'| = p  >  2 m id  |R| = |R'| = q >  2, s u c h  th at

e ( G )  +  e ( G ' )  <  p  +  q +  e ( G , G ' ) ,  (3.1)
w here e ( G ,  G ' )  =  min{p — A r ( G ) , p  — A & ( G ' ) , q  — A L ( G ) , q  — A L > ( G ' ) } .

T h e n  G  a n d  G '  p a c k  u n le ss  e ith e r

22
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1. e ( G ,  G ) = 0 and { G ,  G }  e  ri, or

2.  e ( G ,  G )  =  1 a n d  { G ,  G }  e  r 2 U ra.Another theorem in this held is by Wang,
Theorem 32. [6 3 ] L e t  G ( A , B )  a n d  H ( S , T ) be tw o C 4-free  b ip a rtite  graph s o f  
o rd e r n  w ith |A| = |B| = |S| = |T| = n , a n d  e ( G )  + e ( H )  <  2 n  — 2.  T h e n  there

is a p a c k in g  o f  G  a n d  H  in  K n+1,n+1 ( i .e . a n  e d g e -d is jo in t em b ed d in g  o f  G  a n d  H  
in to  K n+1,n+1) ,  u n le ss  o n e  is  a u n io n  o f  v e r te x -d is jo in t  c y c le s  a n d  th e o th e r  is  a 
u n io n  o f  tw o -d is jo in t  sta rs.For more results in this held, we refer the interested reader to the monograph on factor theory of Yu and Liu [67],Let us formulate the result of this chapter of the thesis in the following theorem as an embedding problem.
Theorem 33. F o r  e v e r y  e e  (0, |) th ere is  a n  n 0 =  n 0(e) s u c h  th a t i f  n  >  n 0, 
a n d  G ( A , B )  a n d  H (S , T ) are b ip a rtite  graph s w ith |A| = |B| = |S| = |T| = n  a n d  
th e fo llo w in g  c o n d itio n s  h o ld , th e n  H  C G .Condition 1: d e g G ( x)  >  (| + e) n  h o ld s f o r  a ll x  e  A  U BCondition 2: d eg H  (x ) <  10Oi0g1ra h o ld s f o r  a ll x  e  S ,Condition 3: d e g H (y) =  1 h o ld s f o r  a ll y  e  T .In the following remarks, we show eases in which our main theorem can guarantee packings that were beyond reach by the previous techniques.
Remark 34. There are graphs which can be packed using Theorem 33, though Theorem 31 does not imply that they pack.For instance, let G ( A , B ) and H ( S , T ) be bipartite graphs with |A| = |B| = |S| = |T| = n.  Choose H  to be a 1-factor, and G  to be a graph such that all vertices in A have degree (| + n.  This pair of graphs obviously satisfies the conditionsof Theorem 33, thus, H  can be embedded into G, which means that H  can be packed with the bipartite complement of G .



CHAPTER 3. BIPARTITE PACKING PROBLEM 24Now, we check the conditions of Theorem 31 for the graphs G and H, We know that e(H) = n, as H is a 1-factor. Furthermore, in G  each vertex in A has degree (| — yŷ ) n, which means that the number of edges is approximately ny. As e ( H ,  G )  <  n, the condition of Theorem 31 is obviously not satisfied.
Remark 35. There are graphs which can be packed using Theorem 33, though Theorem 32 does not imply that they pack. Let G be the union of n disjoint copies of CVs and H be a 1-factor. Obviously, H is C4-free, but the condition of Theorem 32 is not satisfied for G and H, as e(G) + e(H) = 3n.However, our theorem can give an embedding of H into G, as all conditions of Theorem 33 are satisfied with these graphs. This provides a packing of H and G,The following two examples show that it is necessary to make an assumption on 
5 ( G )  (see Condition 1) and on AS(H) (see Condition 2),First, let G = K n +y,n - y  U K n - y ,n +y. Clearly, G has no perfect matching. This shows that the bound in Condition 1 is close to being best possible.For the second example, we choose G = G(n, n, 0.6) to be a random bipartite graph. Standard probability reasoning shows that with high probability, G satisfies Condition 1, However, H cannot be embedded into G, where H(S, T) is the following bipartite graph: each vertex in T has degree 1. In S all vertices have degree 0 , except p— vertices with degree w^h a sufficiently large constant c. The graph H cannot be embedded into G, what follows from the example of Komlos et al, [41], The graph H is also shown on Figure 3,1

Figure 3,1: The graph H of the example for the necessity of Condition 2
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3.1 The proof of Theorem  33We will use the following lemma by Gale [29] and Ryser [55] in the form as discussed by Lovász [46],First, we need a definition. We say that a sequence n = ( a 1, . . .  , a k ; b1, . . . ,  bt) is 
b ig ra p h ic, if and only if there is a bipartite graph G ( A ,  B ) with |A| = k  and |B| = l realizing n  such that the degrees of vertices in A  are a 1, . . .  , a k , and the degrees of the vertices of B  are b̂  . . . ,  [65]. In this case, we sav that n  is a fixed orderrealization of the bipartite degree sequence d eg G . Note that this notion is different from the usual degree sequence notion, which contains only an ordered list of the degrees, which are not connected to specific vertices.Lemma 36. [2 9 , 5 5 ] L e t  G ( A , B ) be a b ip a rtite  graph a n d  n  a b ig ra p h ic .sequence  
o n  (A, B ). I f  f o r  a ll X  C A Y  C B

^ n ( x )  < e G ( X , Y ) + ^ ^ ( y ), (3-2)
X £ X  y£Y

th e n  n  ca n  be em bedded in to  G .We formulate the key technical result for the proof of Theorem 33 in the following lemma.Lemma 37. L e t  £ E (0, 0.5) and c  as -stated in  T h e o re m  33. L e t  G ( Z ,  W ) a n d  
H ( Z 1, W 1) be b ip a rtite  graph s w ith |Z| = \Z ' \ = z  a n d  |W| = |W'| = n , re sp e ctiv e ly , 
w ith z  > £

S u p p o s e  th atCondition la: d e g c ( x )  >  (| + e) n  f o r  a ll x  E  Z ,  Condition lb: d e g d y )  >  (| + f) z  f o r  a ll y  E  W ,Condition 2: T h e re  is  a n  M  E N a n d  a 0 <  ő < 10 < f0 such, that

M  < d eg H  (x )  < M (1 + ő) f o r  a ll x  E Z , (3,3)
a n d



CHAPTER 3. BIPARTITE PACKING PROBLEM 26Condition 3: degH (y) =  1 f o r  aH y  G W  
T h e n  th ere is a n  em b ed d in g  o f  H  in to  G .

P r o o f  We show that the conditions of Lemma 36 are satisfied.First, assign the vertices of Z and W to the vertices and Z' and W', respectively. Then, let 0 = X  C Z and 0 = Y C W. Let X  =  Z  — X  and Y  =  W -  Y .  We distinguish five eases depending on the sizes of X  and Y,In all eases we will use the obvious inequality M z  < n , a,s degH(Z) = degH(W), 
C a s e  (a) |X| < 2(i + 5) and |Y| < |- We have z "" z n

d e g H (X) < M(1 + 5)|X| < M(1 + 2 , (3.4)and 2  < |Y| = degH (Y) . (3.5)Therefore, degH(X) < degH(Y) + eG(X, Y ),
C a s e  (b) |X| < 2(i + s ) and |Y| > |-Let t i  so |Y| = (2 + t ) n . Obviously, 0 < t < 2,Therefore, degH(Y) = |Y| = (2 — n.We have degH(X) < as we have seen in C a s e  (a ).Using Condition la, we know that degG(X) > (2 + e) n|X|,As |Y | = (2 — T  n, we haveeG(X,Y) > degG(X) — |Y||X| > (  j

Thus, eG(X ,Y) > (e + T)n|X|> (e + <r)n, (3,7)
+ £ ) n|X 1 -  ( 2  -  H  (3-6)

we obtain degH (X) < degH (Y) + eG(X, Y ),
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C a s e  (c) f > IX| > Jd+j and |Y| < f.Let, V = 1X1 -  jfY+j^ice, |X 1 = (jjt+jj + V) z.Let Vo = 2(17+5) = f — fi+y, so V < Vo- This means that |X| =(f — Vo + V  zAs 0 <5 < H, we have V0 < f < fo-Let = f — -Ĵ 1, so |Y| = (f — n. As |Y| < n, this gives 0 < y  < f.We have the following bounds:(1) d e g u (Y )  = |Y| = n  (f + <+)(2) As above,
d eg u (X) < M(1 + 5)|X| = M z ( l  + 5) ^2(1+5) + V) <

n ( 1 + 5K2(r2r5y+ V) • (3'8)(3) We claim that eG(X, Y ) > |Y| (f — Vo + V )  z. Indeed, the number of neighbors of a vertex y  e Y in X  is at least (f + V — V0) z, considering the degree bounds of W in G .We have to show that d e g u (X) < eG(X, Y ) + d eg u ( Y ), We estimated each term, hence it is enough to prove the following:
n(1+ i^ 2(r1+7 + V £ n (2 -  V (2 -  v” + v) z+n ( 2  + P ) . (3.9)This is equivalent tov + ¿v < ^ 1 -  ^  (2 + v -  Vo) + P (3.10)

The left hand side of (3.10) is at most Vo + 5Vo < f + y  < 5, as5 < e < f.



CHAPTER 3. BIPARTITE PACKING PROBLEM 28If > 5, (3,10) holds, since | + *  — * 0 > 0, using * 0 A 2o- Otherwise, if  ̂< 5, the right hand side of (3,10) is
+ *  — * 0) > (1 — 5)( |  — 5 U (3.11)* 1 2  -  ^  V21 £

We can bound each factor: 2 — 5 > 2 - Using these bounds for (3,11), we have
2  -  * £ -  W >  ( i  -  L2 2 1 2 20

1 £    ̂ > £20 5 2 2 > 2 20, and * > 2 ,
£ £ \ 2 81 1------- ---  = —  > — > 8.2 2 0 / £ 200 20 (3.12)This completes the proof of this ease. 

C a s e  (d) |X| > | and |Y| < |- We have(1) degH(X) = d e g u (Z) — degu(X) = n — degu(X) < n — M |X|,(2) degH(Y) = n — |Y| and(3) eG(X, Y ) > |Y| (|X| — 2 + y), using the degree bound on Y,We have to show that degH(X) < eG(X, Y ) + degH(Y), Using the estimations of the terms, all we have to cheek is whethern — M|X| < n — |Y| + |Y| (|X| — 2 + ^ ) . (3.13)It is equivalent to
0 < |Y| (|X| — £ + f  — l) + M (z — |X|). (3.14)We know that |X| > |, and y  — l > 0, and z — |X| > 0, which gives that (36) is true. This ease is also finished.

C a s e  (e) |X| > 2(i+s) and |Y| > yLet *  = 1X1 — ^y^y, hence, |X| = z (^yyy + *) ■ Let * 0 = as itwas dehned in C a s e  (c ) . Again, * 0 < |, We have 0 < *  < 2 + * 0 < 1+,



CHAPTER 3. BIPARTITE PACKING PROBLEM 29Let p = +  — 2’ hence, |Y| = n (2 + p).We have(1) degH(X) < (1 + 5 ) (2(1+) + < n(1 + 5) (2(1+) + ,(2) degH ( Y ) =  n  (2 — p) and(3) eG(X  Y) > z (2(i+) + (P + s)nWe have to show again that d e g H (X) < e G ( X , Y ) + d e g H ( Y ). Using the estimation of the terms it is sufficient to show that
n(1 + 5) ( ^  < n ( 2  — p) +K2 (1 ++ J (p + sKIt is equivalent to

+ 1 + 5 ) < —p + z ^2(X + § ) +  ^  (P + s).
(3.15)
(3.16)

Using ^ < 2+̂  and 5 <  20, the left hand side of (3.16) is at most
1 + 4 (1 + S) <  1 + 202 2

, M  31 + 20 ) < 5 ■ (3.17)as e <  2 ,The right hand side of (3.16) isz -  2(1 + S)  ̂ 2(1 + S) + 2 + + i ) e + zV #  + e)
(3.18)

The first and the last term of (3.18) is always positive.The middle term can be easily bounded since zs > 2, and 2+  > 2+2720 =2021 ■This means that (3.18) is at least |2, which is more than |. This finishes the proof of this ease.
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□

P r o o f. (Theorem 33) First, form a partition C 0, C 1, For i >  0 let u e Cj if and only if Ck of S  in the graph H,
n 1 . , , N e4 n I' (I + S y - 1 -  e9H(U > I00 logn ' (I + S)100 logn (3.19)4e

lwith 5 = 10, Let C 0 be the class of the isolated points in S, Note that the number of partition classes, fc is log1+(5 n = log1 + n = = c  log n-Now, we embed the partition of S into A, Take a random ordering of the vertices of A. Say this is (v1, . . .  , v n ). The first |C1| vertices of A form A1; the vertices |C11 + 1s t , . . . ,  |C1| + |C2|th fem A2 etc., while C 0 maps to the last |C0 1 vertices. Obviously, C0 can be always embedded, as it contains only isolated vertices.We sav that a partition class C  is s m a ll if |Cj| < A 6 logn.We claim that the total size of the neighborhood in B  of small classes is at most
§n  
4 'The size of the neighborhood of C  is at most

£ 4 n  1 16100 log n (1 + 5) i - 1 £ 2 og n (3.20)If we sum up, we have that the total size of the neighborhood of small classes is at most
£i=1 n II00log n (I + S)1-1 e2I6 , 4 272 log n =77e n 2 ^

Il=04 2 < — e2n “  25 2_ I + S ^  4 _24< — e2n< 25 253/20 eneTfÖ < T ' (I + S)1 < (3.21)
4e

The vertices of the small classes can be dealt with using a greedy method: if v is in a small class, choose randomly d eg H (vj) of its neighbors, and hx these edges. After we finished fixing these edges, the degrees of the vertices of B are still larger than (4 + n.



CHAPTER 3. BIPARTITE PACKING PROBLEM 31Continue with the large classes C i l , . . . ,  Ci£ and form a random pa rtition E 1, . . .  , E e of the unused vertices in B  such that | E j  | = d eg H  (u).  We will consider the
uECijpairs ( C i . , Ej).We will show that the conditions of Lemma 37 are satisfied for (Cij , Ej), then we apply Lemma 37 with | instead of e, and we get an embedding in each pair (Cij , Ej ), which gives an embed ding of H  into G,Conditions 2 and 3 are immediate.For Conditions la and lb we have to show that for any j  every vertex y  G  Ej has at least (1 + |) z neighbors in D i and every vertex x G Cij  has at least (| + |) z in Ej.For this, we will use the martingale technique (see [3]),Let C  | = z, We know z > i f  log n, as C .  is large.Let y G Ej be fixed. Consider the random variable X  =  |N(y) n Cij  |,Define the following chain: Z0 = E X , Z 1 =  E[X|vi], Z2 = E[X|vi,v2]; in general, 

Z k =  E[X|v1, . . . ,  v k] for 1 < k  <  n. In other words, Z k is expectation of X with the condition that we already know v 1, . . .  , v k . This chain of random variables define a martingale (see Chapter 8,3 of the book of Matousek and Vondrâk [50]) with martingale differences Zk — Zk-1 < 1,According to the Azuma-Hoeffding inequality [5, 35] we have the following lemma:
Lemma 38 (Azuma [5]). I f  Z  is a m a r tin g a le  w ith  m a r tin g a le  d iffe re n c e s  at m o s t  
1, th e n  f o r  a n y  j  a n d  t  th e fo llo w in g  h o ld s:

t2P ( Z j  >  EZ j  — t) >  1 — e - 2 .  (3.22)The conditional expected value E(Zz|Z0) is EZz = (| + ^f )  z.Lemma 38 shows that
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p i > i  2 + 2 > 1 -  e- 1 -  e~£2z/s
£2z 2/4

2zz (3.23)We say that a vertex v G Ej is bad, if it has less than (| + |) z neighbors in C i j . Lemma 38 means that a vertex v is bad with probability at most e-£2z/s, As we have n vertices in B, the probability of the event that any vertex is bad is less than 2 , 1n ■ e - £ z / 8  <  - ,  (3.24)nas z > If log n.Then we have that with probability 1 — n no vertex in Ej is bad. Thus, Condition (ii) of Lemma 37 is satisfied with probability 1 for any pair ( C ij , E j ),Using Lemma 38, we can also show that each x G C ij has at least (| + |) |Ej | neighbors in Ej with probability 1 .Thus, the conditions of Lemma 37 are satisfied, and we can embed H  into G .  The proof of Theorem 33 is finished, □
RemarkIn the bipartite discrete tomography problem we are given two bigraphie sequences 
n 1 and n2 on the vertex set (A, B), where |A| = |B| = n. The goal is to color the edges of K (A, B) by red, blue and grey such that for each v G A U B the blue degree of v is n^v), its red degree is n2(v), and its grey degree is n — n1(v) — n2(v),A previous result in this held is the following theorem.
Theorem 39 (Diemunseh et al, [24]). L e t  n 1 a n d  n 2 be b ig ra p h ic seq u e n ces  w ith  
p a rts  o f  s iz e s  r  a n d  s ,  a n d  A i = A(ni) a n d  Si = i (ni) f o r  i = 1, 2 such, that 
A 1 < A 2 a n d  i 1 > — I f

A iA2 < h
r + s 8 : (3.25)
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then n1 and n2 pack.In Theorem 33, we study an “ordinary” packing problem. However, inspecting the proof one obtains the following result in discrete tomography.Assume the conditions of Theorem 33, Let n1 be the bipartite degree sequence of G, and n2 be the bipartite degree sequence of H, Consider a fixed order realization 
7T1 and T2 of them, where n1 is an arbitrary, and 7t2 is a random realization. Then, with probability tending to 1 , 7T1 and 7t2 pack.Hence, in certain eases for most orderings we can improve the bounds of Theorem 39,



Chapter 4

Embedding degree sequences

In this chapter, we deal with an embedding question of degree sequences and graphs, presenting the results of [21, 22], The main result is formulated in the following theorem.
Theorem 40. F o r  e v e r y  r  >  0 a n d  D  e N th ere e x is ts  a n  n 0 =  n 0( r , D )  su ch  
th a t f o r  a ll n  >  n 0 i f  G  is a graph, o n  n  v e rtice s  w ith  d ( G )  >  (1 + r) n a n d  n  is  a 
degree seq u en ce o f  length, n  w ith A(n) < D ,  th e n  n  is  em beddable in to  G .It is easy to see that Theorem 40 is sharp up to the r n  additive term. For that let n  be an even number, and suppose that every element of n  is 1, Then the only graph that realizes n  is the union of n / 2 vertex disjoint edges. Let G  =  Kn/2- i,n/2+i be the complete bipartite graph with vertex class sizes n / 2  — 1 and n/2 + 1, Clearly 
G  does not have n / 2  vertex disjoint edges.In order to state the other main result of this chapter we introduce a new notion.

Figure 4,1: A 2-unbalaneed bipartite graph
34



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 35Definition 41. Let q > 1 be an integer. A bipartite graph H  with vertex classes 
S  and T  is q-unbalaneed, if q|S| < |T|. See also Figure 4.1. The degree sequence n is q-unbalaneed, if it can be realized by a q-unbalaneed bipartite graph.Theorem 42. L e t  q >  1 be a n  in teg er. F o r  e v e r y  r  >  0 a n d  D  e N th ere e x is t an  
n 0 =  n 0( n ,q )  a n d  a n  M  =  M ( r ,  D ,  q) s u c h  th at i f  n  >  n 0, a n d  n  is  a q -u n b a la n ce d  
degree seq u en ce o f  length, n  — M  w ith A(n) < D ,  a n d  G  is  a graph, o n  n  v e rtice s  
w ith 8 ( G )  >  + r) n , th e n  n  ca n be em bedded in to  G .Hence, if n  is unbalanced, the minimum degree requirement of Theorem 40 can be substantially decreased. What we pay for this is that n  has to be slightly smaller than the number of vertices in the host graph.
4.1 Proof of Theorem  40

P r o o f  First, we find a suitable realization H  of n. Our H  will consist of components of bounded size. Second, we embed H  into G  using a theorem by Chvatal and Szemeredi and a result on embedding so-called well-separable graphs. The details are given in the following.We construct H  in several steps. At the beginning, let H  be the empty graph and let all degrees in n  be a ctiv e .While we can find 2 i active degrees of n  with value i (for some 1 < i <  A(n)),we realize them with a i.e, we add this complete bipartite graph to H, and
A(n)“inactivate” the 2i degrees. When we stop we have at most (2i — 1) active
i= 1degrees.This way we obtain several components, each being a balanced complete bipartite graph. These are the typ e 1 g ad g ets. Observe that if a vertex v  belongs to some type 1 gadget, then its degree is exactly n ( v ) . Observe further that if there are no active degrees in n  at this point then the graph H  we have just found is a realization of n .



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 36Assume that there are active degrees left in n. Let R  =  Rodd U Reven be the vertex set that is identified with the active vertices (v G Rodd if and only if the assigned active degree is odd). Since d(v) must be an even number we have that |Rodd|vGRis even. Add a perfect matching on Rodd to H .  With this we achieved that every vertex of R misses an even number of edges.Next, we construct the typ e 2  gad g ets using the following algorithm. In the beginning every type 1 gadget is u n m a rk ed .Suppose that v  G R is an active vertex. Take a type 1 gadget K ,  m a rk  it, and let Mk denote an arbitrarily chosen perfect matching in K (Mk exists since K is a balanced complete bipartite graph). Let x y  be an arbitrary edge in M k . Delete the xy edge and add the new edges vx and vy. While v is missing edges repeat the above procedure with edges of Mk , until Mk becomes emptv. If Mk becomes empty, take a new unmarked type 1 gadget L, and repeat the method with L, It is easy to see that in n(v)/ 2  steps v reaches its desired degree and gets inactivated. Clearly, the degrees of vertices in the marked type 1 gadgets have not changed.Figure 4,2 shows examples of type 2 gadgets. In the upper one, two vertices of Rodd were first connected by an edge and then two type 1 gadgets were used so that they could reach their desired degree, while in the lower one, we used three type 1 gadgets for a vertex of R, The numbers at the vertices indicate the colors in the 3-eoloring of H.Let F  C H denote the set of vertices containing the union of all type 2 gadgets. Observe that type 2 gadgets of F are 3-ehromatie, and all have less than 5A2(n) vertices.Let us summarize our knowledge about H for later reference.
Claim 43. (1) |F|< 5A3(n),

(2) th e co m p o n e n ts  o f  H [ V  — F] are balanced co m p le te  b ip a rtite  g ra p h s, each, 
h a v in g  size  at m o s t 2A(n),

(3) x(H[F]) < 3, a n d
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Figure 4,2: Type 2 gadgets of H with a 3-eoloring 
U )  e(H [F ,V  -  F]) = 0.We are going to show that H C G, For that we hrst embed the 3-ehromatie part H [F] using the following strengthening of the Erdos-Stone theorem proved by Chvatal and Szemeredi [14],



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 38Theorem 44. L e t  p  >  0 a n d  a ssu m e  th a t G  is  a graph o n  n  v e r tic e s  w here n  is  
s u ffic ie n tly  large. L e t  r  E N, r > 2. I fe(G) > r — 2

W - 1 )  +  p
n (4.1)

th e n  G  c o n ta in s  a K r ( t) , i .e .  
cla ss , s u ch  th at

a co m p le te  r -p a r tite  graph w ith t v e rtice s  in  each

t >
log n 500 log ±' (4.2)Since 8 ( G )  >  n/2 + nn, the conditions of Theorem 44 are satisfied with r = 3 and 

p  =  n/ 2 , hence, G contains a balanced complete tripartite subgraph T on Q(log n) vertices. Using Claim 43 and the 3-colorability of F this implies that H [ F ] C T.Observe that after embedding H[F] into G every uncovered vertex of G still has at least 8 (G) — v ( F ) > (1 + |) n uncovered neighbors. Denoting the subgraph of the uncovered vertices of G by G '  we obtain that 8 ( G ')  >  (1 + |) n.In order to prove that H [ V  — F] C G' we first need a definition.Definition 45. A graph L  on n vertices is w ell-.separable, if it has a subset S  C V(L) of size o(n) such that all components of L — S are of size o(n). See also Figure 4.3

Figure 4.3: Separator set in a well-separable graph We need the following theorem.Theorem 46. F o r  e v e r y  7  > 0 and positive in te g er D  th ere e x is ts  a n  n 0 such, that 
f o r  a ll n  >  n 0 i f  F  is  a b ip a rtite  w ell-sep a ra b le  graph o n  n  v e r tic e s , A(F) < D a n d  
8 ( G )  >  (2 + 7 ) n  f o r  a graph G  o f  o rd e r n ,  th e n  F  C G.



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 39Since H [ V  — F] has bounded size components by Claim 43, we can apply Theorem 46 for H[V — F] and G', with parameter 7  = r\/2. With this we finished proving what was desired, □
4.2 Proof of Theorem  42When proving Theorem 40, we used the Regularity Lemma of Szemeredi (see Page 9), but implicitly, via the result on embedding well-separable graphs. When proving Theorem 42, we will apply this very powerful result explicitly. Let us give a brief sketch first.Recall that « a  -̂unbalanced and bounded degree sequence with A(n) < D .  In the proof we first show that there exists a -̂unbalanced bipartite graph H realizing n such that H is the vertex disjoint union of the graphs Hi, . . . ,  H k, where each 
H i  graph is a bipartite q-unbalaneed graph having bounded size. We will apply the Regularity Lemma to G and find a special substructure (a decomposition into vertex-disjoint stars) in the reduced graph of G, This substructure can then be used to embed the union of the Hi graphs, for the majority of them we use the Blow-up Lemma,
4.2.1 Finding HThe goal of this subsection is to prove the lemma below.Lemma 47. L e t  n  be a q -u n b a la n ce d  b ip a rtite  degree .sequence o f  p o s itiv e  in teg ers  
w ith A ( n )  <  D .  T h e n  n  ca n be realized by a q -u n b a la n ce d  b ip a rtite  graph H  w h ich  
is  th e v e r te x  d is jo in t  u n io n  o f  th e grap h s H 1, . . . ,  H k, .such th at f o r  e v e r y  i w e h a ve  
th a t H i i.s q -u n b a la n ce d , m o re o v e r, v(Hi) < 4D2.Before starting the proof of Lemma 47, we list a few necessary notions and results.



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 40We call a finite sequence of integers a z e r o -s u m  seq u en ce if the sum of its elements is zero. The following result of Sahs, Sissokho and Torf plays an important role in the proof of Lemma 47,Proposition 48. [5 6 ] A s s u m e  th a t K  is  a p o s itiv e  in teg er. T h e n  a n y  z e r o -s u m  
■ sequence o n  { —K , . . .  , K } h a v in g  len g th  at least 2K c o n ta in s  a p r o p e r  n o n e m p ty  
z e r o -s u m  su b seq u en ce.The following result formulated by Gale [29] and Ryser [55] is a consequence of Lemma 36, We present it in the form as discussed by Lovasz [46],Lemma 49. [2 9 , 5 5 ] L e t  G  = (A , B ; E ( G ) )  be a b ip a rtite  graph a n d  f  be a n o n 

n e g a tiv e  in te g e r  fu n c t io n  on  A  U B  w ith  f  (A) = f  ( B ).  T h e n  G  ha s a subgraph  
F  =  ( A , B ; E ( F )) such th a t d eg F (x ) =  f  (x )  f o r  a ll x  E A  U B  i f  a n d  o n ly  i f

f  ( X ) < e ( X , Y ) +  f  ( Y ) (4.3)

f o r  a n y  X  C A  a n d  Y  C B ,  w here Y  =  B  — Y .We remark that such a subgraph F is also called an f-factor of G .Lemma 50. I f  f  =  ( a i , . . .  , a s ; bi , . . .  ,b t) is a seq u e n ce  o f  p o s itiv e  in teg ers w ith  
s , t  >  2A2, w here A is th e m a x im u m  o f  f ,  a n d  f  ( A )  =  f  ( B ) with A  =  {ai,. . . ,  as}
a n d  B  =  { b i , . . .  , b t }  th en f  is bigra p hic.

P r o o f. We only have to cheek whether the conditions of Lemma 49 are met if 
G  =  K s ,t .Suppose indirectly that there is an ( X , Y ) pair for which (4,3) does not hold. Choose such a pair with minimal |X| + |Y|, Then X  = 0 or Y  =  0 are impossible, as in those eases (4,3) trivially holds. Hence, |X|, |Y| > 1, Assuming that (4,3) does not hold, we have that

f  ( X )  > e ( X , Y ) + f  ( Y )  + 1 , (4.4)which is equivalent to
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f ( X ) >|X||Y| + f (Y) + 1, (4.5)as G  is a complete bipartite graph. Furthermore, using the minimality of |X| + |Y|, we know that
f(X  -  a) < |X  -  a||Y| + f(Y) (4.6)for any a G X , (4,6) is equivalent to

f  (X ) -  f  (a) < |X||Y| -  |Y| + f  (Y). (4.7)From (4,5) and (4,7) we have f  (a) -  1 > |Y | (4.8)for any a G X , which implies A > |Y|. (4.9)The same reasoning also implies that A > |X| whenever (X, Y ) is a counterexample, Therefore we only have to verify that (4,3) holds in ease |X| < A and |Y| < A, Recall that f  (B) > t, as all elements of f  are positive. Hence, f  (X) < A|X| < A2, and f  (Y) > f  (B) -  f  (Y) > t -  A2, and we get that
f  (X) < A2 < t -  A2 < f  (Y) < f  (Y) + eG(X, Y ) (4.10)holds, since t > 2A2, □

P r o o f. (Lemma 47) Assume that J  = (S, T; E (J)) is a q-unbalaneed bipartite graph realizing n  Hence, q|S| < |T̂  Moreover, |T| < D|S ,̂ since A(n) < D .  We form vertex disjoint tuples of the form (s; ti , . . . ,  tĥ , such that s G S  t  G T, q < h  < D  and collection of these tuples contains every vertex of S U T exactly once. We define the bias of the tuple asZ = n(ti) +------+ n(th) -  n(s). (4.11)



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 42Obviously, —D  <  (  <  D2, The conditions of Proposition 48 are clearly met with 
K  =  D2, Hence, we can form groups of size at most 2D2 in which the sums of biases are zero. This wav we obtain a partition of (S, T) into q-unbalaneed set pairs which have zero bias. While these sets may be small, we can combine them so that each combined set is of size at least 2D2 and has zero bias. By Lemma 50 these are bigraphie sequences. The realizations of these small sequences give the graphs H i , . . . ,  H k . It is easy to see that v ( H i )  <  4D2 for every 1 < i <  k.  Finally, we let H = UjHj. □
4.2.2 Decomposing GrLet us apply the Regularity Lemma (Lemma 7) with parameters 0 < e ^  d ^  g. By Corollary 9 we have that S ( G r) > i / ( q  + 1) + r\i/2.Let h  >  1 be an integer. An h-star is a K i ,h . The c e n te r  of an h-star is the vertex of degree h, the other vertices are the lea ves. In ease h = 1 we pick one of the vertices of the 1-star arbitrarily to be the center.Lemma 51. T h e  reduced graph, G r h a s a d e c o m p o sitio n  S  in to  v e r te x  d is jo in t sta rs  
such, th a t each, s ta r  ha s at m o s t q leaves.

P r o o f. Take a partial star-decomposition of Gr as large as possible. Assume that there are uncovered vertices in Gr, Let U  denote the set of covered vertices (we assume that U has maximal cardinality), and let v be an uncovered vertex. See Figure 4,4 for the possible neighbors of v. Observe that v has neighbors only in U, otherwise, if u v  G E (Gr) with u  G  U, then we can simply add u v  to the star-decomposition, contradicting to the maximalitv of U.a) If v is connected to a 1-star, then we can replace it with a 2-star,b) If v is connected to the center u of an h-star, where h < q, then we can replace this star with an h + 1-star by adding the edge uv to the h-star.



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 43c) If v is connected to a leaf u  of an h-star, where 2 < h  <  q, then replace the star with the edge u v  and an (h — 1)-star (i.e., delete u from it).We have not vet considered one remaining ease: when v is connected to the center of a q-star (case d)). However, simple calculation shows that for every vertex v at least one of the above three eases must hold, using the minimum degree condition of Gr, Hence we can increase the number of covered vertices. We arrived at a contradiction, Gr has the desired star-decomposition, □

Figure 4,4: An illustration for Lemma 51
4.2.3 Preparing G for the embeddingConsider the q-star-decomposition S of Gr as in Lemma 51, Let l i denote the number of (i — 1)-stars in the decomposition for every 2 < i <  q + 1. It is easy to see that

q+1^  ili =  l. (4.12)
i=2First we will make every e-regular pair in S super-regular by discarding a few vertices from the non-exeeptional clusters. Let for example C be a star in the decomposition of Gr with center cluster A and leaves B 1, . . . ,  Bfc, where 1 < k <  q. Recall that the (A,Bi ) pairs has density at least d. We repeat the following for every 1 < i < k: if v G A such that v has at most 2dm/3 neighbors in Bi then discard v from A, put it into Wo. Similarly, if w G Bi has at most 2dm/3 neighbors



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 44in A, then discard w from Bj; put it into W0, Repeat this process for every star in S, We have the following:
Claim 52. We do not discard more than qem vertices from any non-exceptional 
cluster.

Proof. Given a star C in the decomposition S assume that to center cluster is A and let B be one of its leaves. Since the pair (A, B) is e-regular with density at least d, neither A, nor B can have more than em vertices that have at most 2dm/3 neighbors in the opposite cluster. Hence, during the above process we may discard up to qem vertices from A. Next, we may discard vertices from the leaves, but since no leaf B had more than em vertices with less than (d — e)m neighbors in A, even after discarding at most qem vertices of A, there can be at most em vertices in B that have less than (d — (q + 1)e)m neighbors in A. Using that e ^  d, we have that (d — (q + 1)e) > 2d/3, We obtained what was desired. □By the above claim we can make every e-regular pair in S a (2e, 2d/3)-super- regular pair so that we discard only relatively few vertices. Notice that we only have an upper bound for the number of discarded vertices, there can be clusters from which we have not put any points into W0. We repeat the following for every non-exeeptional cluster: if s vertices were discarded from it with s < qem then we take qem — s arbitrary vertices of it, and place them into W0, This wav every non-exeeptional cluster will have the same number of points, precisely m — qem. For simpler notation, we will use the letter m for this new cluster size. Observe that W0 has increased by qem£ vertices, but we still have | W0 | < 3dn since e ^  d and £m < n . Since qem ^  d, in the resulting pairs the minimum degree will be at least dm/2 .Summarizing, we obtained the following:
Lemma 53. By discarding a total of at most qen vertices from the non-exceptional 
clusters we get that every edge in S  represents a (2e,d/2)-.super-regular pair, and
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a ll n o n -e x c e p tio n a l c lu s te rs  h a v e  th e s a m e  ca rd in a lity , w h ich  is  d en o te d  by m .  
M o r e o v e r , |W0| < 3 d n .

Since v ( G )  — v ( H ) is bounded above by a constant, when embedding H  we need 
almost every vertex of G, in particular those in the exceptional cluster W 0. For 
this reason we will assign the vertices of W 0 to the stars in S, This is not done in 
an arbitrary way.

Definition 54. Let v E W0 be a vertex and (Q ,T ) be an e-regular pair. We sav 
that v E T  h a s large degree to Q  if v has at least nlQ|/4 neighbors in Q. Let 
S  =  (A, B i , . . . ,  B k) be a star in S where A is the center of S  and B]_,. . .  , B k are 
the leaves, here 1 < k <  q. If v has large degree to any of B]_,. . . ,  Bk, then v ca n  
be a ssig n e d  to A. If k < q and v has large degree to A, then v ca n  be a ssig n e d  to  
any of the Bj leaves.

Observation 55. I f  w e a ssig n  n e w  v e rtice s  to a q -s ta r , th e n  w e n e c e s s a r ily  a s

sig n  th e m  to th e ce n te r. S in c e  before a ssig n in g , the n u m b er o f  v e rtice s  in  the  
le a f-c lu s te r s  is  e x a c tly  q tim e s  th e n u m b er o f  v e rtice s  in  th e ce n te r  c lu s te r , a f

te r  a ssig n in g  n e w  v e rtice s  to th e sta r, q tim e s  th e c a rd in a lity  o f  th e c e n te r  w ill be 
la rg er th a n  th e to ta l n u m b er o f  v e rtice s  in  th e le a f-c lu s te r s . I f  S  E S  is  a k -s t a r  w ith  
1 < k <  q, a n d  w e a ssig n  up to c m  v e rtice s  to a n y  o f  its  c lu s te rs , w here 0 <  c  ^  1, 
th e n  e v e n  a fte r  a ssig n in g  n ew  v e r tic e s  w e w ill h a ve th a t q tim e s  th e c a rd in a lity  o f  
th e c e n te r  is larger th a n  th e to ta l n u m b er o f  v e r tic e s  in  th e le a f-c lu s te r s .

The following lemma plays a crucial role in the embedding algorithm.

Lemma 56. E v e r y  v e r te x  o f  W 0 ca n  be a ssig n e d  to at least r ji/ 4  n o n -e x c e p tio n a l  
clu ste rs .

P r o o f. Suppose that there exists a vertex w  E W 0 that can be assigned to less than 
r ji/ 4  clusters. If w  cannot be assigned to any cluster of some k-star S k with k <  q, 
then the total degree of w  into the clusters of Sk is at most k̂ m/4. If w  cannot 
be assigned to any cluster of some q-star S q, then the total degree of w  into the 
clusters of Sq is at most m  + q g m / 4 , since every vertex of the center cluster could



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 46be adjacent to w . Considering that w  can be assigned to at most n£/4 — 1 clusters and that d e g (w , W  — W 0) > n / ( q  + 1) + rjn /2 , we obtain the following inequality:
n  g nq n  + T < d e g ( v ,  W  — W0) < n

£ m

~ T
+

q-1
k +  1)nk=l £ k + \ m  £ q + im+ q n —-A— + £ q + im .4 4 (4.13)

qUsing m£ < n and J 2 ( k + 1)̂ k+l = £, we getk=l

m £  
q + 1 nm£

~ Y ~

£ m

< n x + (£ — £q+l)nm
X

qn
£q+im

4
+ £q+im.Dividing both sides by m  and cancellations give

£

q + 1 < q
n£q+l

4
+ 1

4 £q+l.

(4.14)
(4.15)Noting that (q + 1)£q+l < £, one can easily see that we arrived at a contradiction. Hence every vertex of W 0 can be assigned to several non-exeeptional clusters. □Lemma 56 implies the following:Lemma 57. O n e  ca n  a ssig n  th e v e r tic e s  o f  W 0 so  th a t at m o s t V d m  v e rtice s  are 

a ssig n e d  to n o n -e x e e p tio n a l c lu ste rs .

P r o o f. Since we have at least n£/4 choices for every vertex, the bound follows from the inequality <  V d m ,  where we used that d ^  n and that |W0| < 3 d n . □Observation 58. A  k e y  f a c t  is  th at th e n u m b er o f  n e w ly  a ssig n e d  v e rtice s  to a 
c lu s te r  is  m u c h  s m a lle r  th a n  th e ir  degree in to  th e o p p o site  c lu s te r  o f  th e regular  
p a ir  s in c e  \^ d m  ^  g m / 4 .
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4.2.4 The embedding algorithmThe embedding is done in two phases. In the first phase we cover every vertex that belonged to W0, together with some other vertices of the non-exeeptional clusters. In the second phase we are left with super-regular pairs into which we embed what is left from H  using the Blow-up Lemma,
The first phaseLet ( A ,  B )  be an e-regular cluster-edge in the h-star C G  S .  We begin with partitioning A and B randomly, obtaining A = A 1 U A" and B = B' U B'' with 
A '  G A'' = B' G B'' = 0. For everv w  G  A (except those that came from W0) flip a coin. If it is heads, we put w into A', otherwise we put it into A'', Similarly, we flip a coin for every w G B (except those that came from W0) and depending on the outcome, we either put the vertex into B' or into B'', The proof of the following lemma is standard, uses Chernoff’s bound (see in [3]),Lemma 59. W ith  high p ro b a b ility , th at is , w ith  p ro b a b ility  at least 1 — 1 / n ,  w e  
h a v e  th e fo llo w in g :

•  11A'| — |A''|| = o (n ) a n d  ||B'| — |B''|| = o(n)• d e g ( w , A ' ) , d e g ( w , A ' ' )  >  d e g ( w ,  A)/3 f o r  e v e r y  w  G  B

•  d e g ( w , B  ' ) , d e g ( w , B '') >  d e g  ( w,  B ) / 3  f o r  eve r y  w  G  A

•  th e d e n s ity  d ( A ' , B ') >  d/ 2It is easy to see that Lemma 59 implies that ( A ' , B ') is a (5e, d/6 )-super-regular pair having density at least d / 2  with high probability.Assume that v  was an element of W 0 before we assigned it to the cluster A, and assume further that d e g ( v , B )  > g m / 4 . Since ( A , B )  is an edge of the star- decomposition, either A  or B  must be the center of C,



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 48Let H i be one of the -̂unbalanced bipartite subgraphs of H  that has not been embedded vet. We will use Hi to cover v, Denote S i and Ti the vertex classes of Hi, where |Si| > q|Ti|. Let Si = {xi, . . .  ,xs} and Ti = { y i , . . .  , y t} .If A is the center of C then the vertices of Ti will cover vertices of A', and the vertices of Si will cover vertices of B If B  is the center, Si and Ti will switch roles. The embedding of H i is essentially identical in both eases, so we will only discuss the ease when A is the center. (Recall that if h  <  q then we may assigned v to a leaf, so in such a ease B could be the center.)In order to cover v we will essentially use a well-known method called Key Lemma in [45], We will heavily use the fact that
0 < e ^  d ^  n. (4,16)The details are as follows. We construct an edge-preserving injective mapping : Si U Ti — > A' U B', In particular, we will have ^(Si) C B ' and ̂ (Ti) — v C A',First we let (̂y1) = v. Set N 1 =  N ( v )  n B ' .  Using Lemma 59, we have that |N1| > n m / 12 »  e m .Next we hnd ^(y2). Sinee |N1| »  e m , b y  5e-regularitv the majority of the vacant vertices of A' will have at 1 east d|N1|/3 neighbors in N1. Pick any of these, denote it by v2 and let <p(y2) =  v 2. Also, set N2 = N1 n N (v2),In general, assume that we have already found the vertices v2,v3, . . . ,v i; their common neighborhood in BAs Ni; andndi-1|Ni| > 3i- 2 _ 36m »  e m .  (4.17)By 5e-regularitv, this implies that the majority of the vacant vertices of A' has large degree into N  ̂ at least dlWl/3, and this, as above, can be used to hnd vi+1. Then we set <̂(yi+ 1) = vi+ 1 , Since n and d is large compared to e, even into the last set Nt-1  many vacant vertices will have large degrees.As soon as we have ^(y1), . . . ,  <̂(yt), it is easy to find the images for x1, . . .  ,xt. Since |Nt| »  em »  s = |Si ,̂ we can arbitrarily choose s vacant points from Nt for the ^(xj) images.



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 49Note that we use less than v (Hi) <  4D2 vertices from A' and B' during this process. We can repeat it for every vertex that were assigned to A, and still at most V d2D 2m vertices will be covered from A' and from B',Another observation is that every h-star in the decomposition before this embedding phase was h-unbalaneed, now, since we were careful, these have become h'-balaneed with h' < h.Of course, the above method will be repeated for every (A, B) edge of the decomposition to which we have assigned vertices of W0,
The second phaseIn the second phase we first unite all the randomly partitioned clusters. For example, assume that after covering the vertices coming from W0 the set of vacant vertices of A' is denoted by A ' v. Then we let A v =  Nv U A " ,  and using analogous notation, let Bv = B[v U B'',Claim 60. All the (A v, B v) pairs are (3e, d/6 ) -super-regular with density at least d/2 .
Proof. The 3e-regularity of these pairs is easy to see, like the lower bound for the density, since we have only covered relatively few vertices of the clusters. For the large minimum degrees note that by Lemma 59 every vertex of A had at least dm/ 6 neighbors in B " ,  hence, in Bv as well, and analogous bound holds for vertices of B. □At this point we want to apply the Blow-up Lemma for every star of S individually. For that, we first have to assign those subgraphs of H to stars that were not embedded yet. We need a lemma.
Lemma 61. Let K a,b he a complete bipartite graph with vertex classes A and B , 
where |A| = a and |B| = b. Assume that a <  b =  ha, where 1 < h < 5 . Lei H' be
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th e v e r te x  d is jo in t u n io n  o f  q -u n b a la n ce d  b ip a rtite  g ra p h s:

t

H ' =  |J H j , (4.18)
j = l

s u c h  t h a t v ( H j ) < 2D 2 f o r  e v e r y  j . I f  v ( H ' )  <  a + b — 4(2q + 1 ) D 2, th e n  H '  C K a,b.Observe that if we have Lemma 61, we can distribute the H i  subgraphs among the stars of S, and then apply the Blow-up Lemma, Hence, we are done with proving Theorem 42, if we prove Lemma 61 above.
P r o o f  The proof is an assigning algorithm and its analysis. We assign the vertex classes of the H j  subgraphs to A  and B ,  one-bv-one. Before assigning the jth subgraph H j ,  the number of vacant vertiees of A is denoted by a j and the number of vacant vertices of B is denoted by b j.Assume that we want to assign Hk, If h a k — bk >  0, then the larger vertex class of Hk is assigned to A, the smaller is assigned to B .  Otherwise, if h a k — bk <  0, then we assign the larger vertex class to B  and the smaller one to A .  Then we update the number of vacant vertices of A and B .  Observe that using this assigning method we always have a k <  bk .The question is whether we have enough room for H k . If h a  > 4hD2, then we must have enough room, since bk > a k and everv H j  has at most 2D2 vertices. Hence, if the algorithm stops, we must have a k <  4 D 2. Since bk — h a k <  2 D 2 must hold, we have bk <  (2 h  + 1)2D2 < (2q + 1)2D2, From this the lemma follows, □
4.3 RemarksOne can prove a very similar result to Theorem 42, in fact the result below follows easily from it. For stating it we need the notion of graph edit distance which is defined in [49] as it follows: the edit distance between two graphs on the same labeled vertex set is the size of the symmetric difference of the edge sets.



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 51Theorem 62. L e t  q > 1 be an in teg er. F o r  e v e r y  n >  0 a n d  D  e N th ere e x ist  
a n  n 0 =  n 0( n , q )  a n d  a K  =  K ( n ,  D ,  q) s u c h  th a t i f  n  >  n 0, n  is  a q -u n b a la n ce d  
degree seq u en ce o f  len g th  n  w ith A(n) < D , G  is a graph, o n  n  v e rtice s  w ith  
5 ( G )  > + n) n , th e n  th ere e x ists  a graph G  o n  n  v e rtice s  -such th at th e edit

d is ta n ce  o f  G  a n d  G  is  at m o.st K , a n d  n  ca n  be em bedded in to  G .Here is an example showing that Theorem 42 and 62 are essentially best possible.Example 63. A s s u m e  th a t n  ha s o n ly  odd n u m b ers a n d  G  has at least o n e  odd  
■ sized co m p o n e n t. T h e  em b ed d in g  is im p o ssib le . In d e e d , a n y  re a liza tio n  o f  n  has  
o n ly  e v en  -sized c o m p o n e n ts , h e n c e  G  ca n n o t c o n ta in  it as a s p a n n in g  subgraph.Note that this example does not work in ease G  is connected. In Theorem 40 the minimum degree 5 ( G )  >  n / 2  +  n n , h e n c e , G  is connected, and in this ease we can embed n  into G .



Chapter 5

On the relation of separability and 
bandwidth

In this chapter we consider a third embedding/packing problem, and we present the results of [2 0],The famous Bollobâs-Eldridge-Catlin (BEC) Conjecture [7, 12] below is among the most important conjectures in the area:Conjecture 64 (Bollobas, Eldridge; Catlin). I f G i a n d G 2 are graph s o n  n  v e rtice s  
w ith m a x im u m  degree A i a n d  A2, re sp e ctiv e ly , a n d(Ai + 1)(A2 + 1) A n + 1 ,
th e n  G i a n d  G 2 p a ck .Since the above conjecture is open in general, we impose further conditions for H and G in order to be able to solve special cases of the problem. One possibility is to consider only bounded degree H graphs to be embedded. The BEC Conjecture was solved in case A(H) = 2 [2], A(H) = 3 [19], and when A(H) is bounded and H is bipartite [17], There is an approximation result in which (Ai + 1)(A2 + 1) < 0.6n [38],

52



CHAPTER 5. SEPARABILITY AND BANDWIDTH 53One may impose other restrictions on H still obtaining hard (but somewhat easier) problems. For example one may upper bound the so-called bandwidth of H, this guarantees that H is “far from being an expander”.Definition 65. Let H (V, E ) be a graph. Let F  = {/ : V  ^  {1, . . . ,n}} be afamily of bijective functions on V . The ba nd w id th  of H isP(H) = min max m (Vi ) -  f  (Vj )|}.
f  eF vrvj e ESee also Figure 5,1,

Figure 5,1: Bandwidth, Figure based on |53|Note that a Hamilton path has bandwidth 1, a Hamilton cycle has bandwidth 2, Expander graphs have large, linear bandwidth, a star on n  vertices has bandwidth
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n / 2 ,  a complete graph has bandwidth n  — 1. One of the important open problems of the area was the following conjecture by Bollobäs and Komlos,
Conjecture 66 (Bollobäs, Komlos). F o r  e v e r y  D ,  k ,e  th ere e x is ts  ß  s u c h  th a t the  
fo llo w in g  h o ld s. E v e r y  n -v e r t e x  graph G  o f  m in im u m  degree at least (1 — 1/k + 
e ) n  c o n ta in s  a ll k -c h r o m a tic  n -v e r t e x  grap h s o f  m a x im u m  degree at m o s t D  a n d  
ba nd w id th at m o s t ß n  as subgraphs.This conjecture was proved by Böttcher, Schacht and Taraz [10] using deep tools, in particular the proof of the celebrated Posa-Seymour conjecture by Komlos, Särközy and Szemeredi [43],In [8] and [9] Böttcher and Böttcher et al. go further and explore relations of bandwidth with other notions, like separability. Separability plays an important role in this chapter.
Definition 67. We say that an n-vertex graph H  is y-separable if there exists a separator set S  C V ( H ) with |S| < j n  such that every component of H  — S  has at most o ( n)  vertices.Böttcher et al. [9] observed that bandwidth and separability are closely related: they proved the Sublinear Equivalence Theorem. This states that, roughly speaking, sublinear bandwidth implies the existence of a sublinear sized separating set and vice versa.One of our main results shows that when the separating set has linear (small, but not very small) size, the bandwidth can be very large even for bounded degree graphs.
Theorem 68. L e t  r  >  35 a n d  t >  2 be in teg ers a n d  se t y = y(r) =  1 / ( 8 r 2 r ).  
T h e n  th ere e x is ts  a n  in fin ite  cla ss o f  graph s H r,t s u c h  th a t e v e r y  e le m e n t H  o f  H r,t 
h a s a s ep a ra to r s e t  o f  s ize  at m o s t j v ( H ),  has bandw idth at least 0 . 3 v ( H ) / ( 2 t  + 4), 
m o re o v e r, A ( H ) = O( 1/y).It is easy to see that there are bounded degree graphs having linearly large bandwidth since it is well-known that a random /-regular graph with l >  3 has large



CHAPTER 5. SEPARABILITY AND BANDWIDTH 55bandwidth with positive probability. However, such random graphs do not have small separators,Knox and Treglown [39] embedded bounded degree graphs with sublinear bandwidth into so-called robust expanders.
Definition 69. Let 0 < v < y < 1. Assume that G is a graph of order n and S C V (G). The v-robust neighborhood R N V,G(S) of S is the set of vertices v G 
V (G ) such that |N(v) n S| > vn. We say that G is a robust (v, y ) -expander if |RNv,g(S )| > |S | + vn for every S C V (G) such th at yn <  |S| < (1 — y)n.See also Figure 5,2,

Figure 5,2: v-robust neighborhoodWe will also show that elements of H r,t cannot be embedded into arbitrary robust expanders. However, if an n-vertex graph G has minimum degree slightly larger than n/2, then it contains the elements of H r,t as spanning subgraphs. We will prove the following.
Theorem 70. Let r > 35 and t > 2 be integers and set 7  = 7 (r) = 1/(8r2r). Then 
there exists an n0 = n0(Y) such that the following holds. Assume that n > n0 and 
G  i-s an n-vertex graph having minimum degree 8(G ) > (1/2+ 2 7 1/3)n. J/H G H r,t 
is a graph on n vertices, then H  C G.The proof of Theorem 70 will rely heavily on the proof method of [18], Let us remark that in [18] the size of the separator set was o(n), and therefore the bandwidth was also o(n). This time the separator set is quite large compared to previous



CHAPTER 5. SEPARABILITY AND BANDWIDTH 56results. This is why the minimum degree bound for G contains 7 , unlike in the main result of [18], although we still need only slightly larger 8 ( G ) ,  than n/2 , The latter is the bound, for example, when we want to tile G with vertex disjoint copies of a fixed bipartite graph.
5.1 Construction of H r,t and proof of Theorem  68In order to exhibit the infinite family of graphs 'Hr,t we first need to construct certain kind of bipartite expander graphs. We begin with defining a bipartite graph F with vertex classes Vi and V2 such that |Vi| = |V2| = k and F  has relatively good expansion properties. Our construction of F relies on the existence of so-called Ramanujan graphs.Definition 71. An r-regular (nonbipartite) graph U is a Ramanujan graph if A < 2 yJr  — 1 , where A is the second largest in absolute value of the eigenvalues of U (since U is r-regular, the largest eigenvalue is r),Lubotzky, Phillips and Sarnak [47], and independently Margulis [48], constructed for every r = p + 1 where p  =  1 mod 4 infinite families of r-regular graphs with second largest eigenvalues at most 2Vr — 1. We need a fact about these graphs, a lower bound for the number of edges between subsets of U.
Lemma 72. L e t  U  he a graph as above. T h e n  f o r  e v e r y  tw o su b sets  A , B  C V(U) 
w here |A| = a k  a n d  |B| = bk w e h a ve|e(A,B) — a b r k l <  2 V r  — 1 V abk.The proof of Lemma 72 can be found for example in [3],
Corollary 73. L e t  U  be a n  r-r e g u la r  R a m a n u ja n  graph o n  k  v e rtice s  w ith  r > 35. 
L e i  us a ssu m e  th a t A , B  C V(U) w ith  |A| = |B| = k / 3  a n d  A  C B = 0. T h e n  
e ( A ,  B ) > 1.
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P r o o f. It is easy to see that the expression of Lemma 72 gives a lower bound for e(A, B ) which is monotone mereasing in r. Hence it is sufficient to apply Lemma 72 with r = 35 and a =  b =1/3. Straightforward computation gives what was desired, □We are ready to discuss the details of the construction of F .  Given an r-regular Ramanujan graph U  with r > 35, the vertex classes of F will be copies of V (U) : for every x  E V ( U ) we have two copies of it, x1 E Vi and x2 E V2. For every x y  E E ( U ) we include the edges x1y2 and x ^  in E(F). Finally, for every x E V(U) we will also have the edge x^ 2 in E(F). Observe that F is an (r + 1)-regular bipartite graph. The following claims are crucial for the construction of Hr,t.
Claim 74. L e t  A C V1 a n d  B C V2 be a rb itra ry  s u c h  th a t |A| = |B| = k/3. T h e n  e(A, B) > 1.
P r o o f. If there exists x E V(U) such that x1 E A and x2 E B, then we are done, since every x1x2 edge is present in F. If there is no such x E V(U), then we can apply Corollary 73 and obtain what is desired, □
Claim 75. F o r  e v e r y  A C V1 w e h a v e  |N(A)| > |A|. A n a lo g o u s  s ta te m e n t h o ld s  
f o r  a n y  su b set B C V2.
P r o o f. The claim easily follows from the fact that we included a perfect matching in F when we added every x1x2 edge to E(F). □Observe that we have a bipartite graph F with v(F) = 2 k whenever there exists a Ramanujan graph U with v(U) = k, for the latter we also assume that r > 35. Thus, there exists an infinite sequence of {Fi } ° = 1 graphs on increasing number of vertices, sav, F» has 2k» vertices.We are ready to define Hr,t. Each graph from this class is y-separable where 7  = Y(r) can be relatively small as we will see soon. Still, the bandwidth of each of them is very large. Hence, Hr,t demonstrates that in spite of sublinear equivalence of separability and bandwidth, there is no lin e a r equivalence.



CHAPTER 5. SEPARABILITY AND BANDWIDTH 58The construction of H r , t  is somewhat specific, we do it with foresight as our goal is not only to further explore the relation of separability and bandwidth but also to be able to embed the elements of Hr ,t later.
Definition 76. Let n , m  E N and set 7  = y(r) = 1/(8r2r ). Let F i  be the bipartite graph as above on 2ki vertices which is (r + 1)-regular such that ki is the largest for which yn > 2 k i . The elements of Hr ,t are constructed as follows, Given n we let H  =  ( A ,  B ;  E ) E Hr ,t to be the following bipartite graph,1- ||A| -  |B|| < 1, and |V| = |A U B| = n,

2 , let S  =  S A  U S B  such that |SA | = | S B | = ki ;3, H[S] = F and E(H[Sa]) = E(H[Sb ]) = 0,4, D  = A(H) = O ( r 2 r ),5, for every point x  E S  w e  have a unique path P x  of length t starting at x  and ending at z, and z has D neighbors such that each has degree 1 except one that precedes z in Px .See also Figure 5,3,

Figure 5,3: Sketch of an element of Hr,t



CHAPTER 5. SEPARABILITY AND BANDWIDTH 59Note that 5 is a separator set of H with |S| = 2k* & Yn, every component of H — S has less than t + D vertices, From this one can easily obtain the bound D < 3n/k*. The following lemma is crucial for bounding the bandwidth of H e Hr,t.
Lemma 77. Let H be an element of'H r,t on n vertices. Assume that X, Y  C V(H) 
with |X |, |Y | > 0.35 n mid X  C Y = 0. Then there exist an x  e X  and a y  e Y •such that the distance of x and y is at most 2t + 4.
Proof. Denote the vertices of H — S closer to SA by A*, and analogously, the vertices of H — S closer to SB by B*. By the construction of H we have |A* | = |B*| = (1 — y)n/2. Note that y < 0.01 since r > 35. Hence we have that |X — S| > 0.34n and |Y — S| > 0.34n. Thus, either |X C A*| > |A*|/3 or |X C B*| > |B*|/3. Without loss of generality, suppose the former. This also implies that at least 1/3 of the components of A* have vertices in X.It is useful to introduce the notations X A for NSa (X), YA for N Sa (Y) and YB  for 
N S b (Y). Using these notations we have that |XA| > k/3 and either |YA| > k/3, or |Yb | > k/3.If |Yb| > k/3 by ^̂ ^̂ m 74 there is an edge sg between X A Mid YB, andtherefore we have a path xvr . . .  visqui.. .  u ry of length 2t + 3, where x e X, y e Y, Vi e A*, s e X a, q e Yb, u* e B*.If Yb < |, then |Ya| > k/3. Let Y# = NSb (Ya). Claim 75 implies that |Y#| > |Ya| > k/3, so by Claim 74 H has an edge between Y# Mid X A. Thus, we have a path xvr . . .  v1s1qs2u1.. .  ury of length 2t + 4, where x e X, y e Y, v* e A*, u* e B*, si e X a  S2 e Mid q e YB . n
Corollary 78. Let H  he an element of Hr,t on n vertices. Then the bandwidth of 
H  is at least 20+4 •

Proof. Take an arbitrary ordering P of the vert ice s of H ^ it X  be the fi rst 0.35n vertices, while Y ê the last 0.35n vertices of P. Using Lemma 77 there is an x e X  and an y e Y such that the distance of x Mid y is at most 2t + 4. Their distance in P is at least 0.3n. Thus at least one of the edges of the shortest path



CHAPTER 5. SEPARABILITY AND BANDWIDTH 60between x and y must have “length” at least 0 + 4 , from which the bound for the bandwidth follows immediately. □With this we proved Theorem 6 8 . Note that choosing t = 2 results in graphs having bandwidth at least 3n/80 while being 7 -separable.As we mentioned in the introduction Knox and Treglown [39] embedded spanning subgraphs of sublinear bandwidth into robust expanders. Recall the notion of robust expanders. The following example shows that graphs of H r,t not only have very large bandwidth, these graphs are not necessarily subgraphs of robust expanders. Hence, in the theorem of Knox and Treglown one cannot replace small bandwidth by 7 -separability, unless 7  is very small.Let us construct a robust expander. Set a =  0 .0 0 2  (we remark that we did not look for optimal constants here) and let G  =  (V, E ) be the following graph on n vertices. The vertex set of G is V  =  A0UA1U ■ ■ ■ UA400, where |Aj| = (1 + a )1 i00o for every 0 < i <  400 and A400 contains the remainder of the vertices. The edges of G are defined as follows: E(G) contains the edges ^vi+1 for every vi G Ai and vi+1 G Ai+1 for 0 < i < 400, and G[A400] is the complete graph on |A400| vertices. It is easy to see that G is a (1/1000,1/1000)-robust expander. For the structure of G, see also Figure 5.4.
Lemma 79. Let H  be a graph, from H r,t on n vertices and let G  be as above. Then 
H  % G  if t <  47.
Proof First we give an upper bound for n — |A400|:n — | A400I 399U  A

i=0

399
X ^ (1 + a)

n n
i=0 1000 1000

1 .0 0  2400 — 1 0 .0 0 2 < 0.62n,
300so |A400| > 0.35^^et B  = [J We have |B| = 1000 ■n 1.00230̂  1
i=0 0.002 > 0.35n,The shortest path between B and A400 is of length 100. This means that H cannot be packed into G, as in H there is a path of length 2t + 4 < 98 between any two disjoint sets of size at least 0.35n, □

i
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/  \

Figure 5,4: The robust expander G

5.2 Proof of Theorem  70The proof of Theorem 70 is very similar to the proof of the main result of [18], Hence, we will first sketch the proof of the latter one in an itemized list, and then discuss the differences we will make when proving our main result. First let us state a special ease of the main theorem of [18] for embedding bipartite graphs with small separators.
Theorem 80. For every £ >  0 and positive integer D  there exists an n0 =  n0(£, D ) 
such, that the following holds. Assume that H  is a bipartite graph on n >  n0 vertices 
which has a separator set S  such, that |S| = o(n) , and every component of H  — S  
has o(n) vertices. Assume further that A(H) < D . Let G  be an n-vertex graph, 
■ such that S(G ) >  (1/2 + £)n. Then H  C G.



CHAPTER 5. SEPARABILITY AND BANDWIDTH 62One can observe the similarities with Theorem 70, The main difference is that in Theorem 70 the separator set can be very large compared to the separator set in the above result.Besides the Regularity Lemma (Lemma 7) and the Blow-Up Lemma (Theorem 12), another very important tool for us is the following result by Fox and Sudakov [27],Theorem 81. L e t  H  be a b ip a rtite  graph w ith  n  v e rtice s  a n d  m a x im u m  degree  A > 1. I f  p  >  0 a n d  G  is  a graph w ith  N  >  8 A p  A n  v e rtice s  a n d  at least p( 
edges, th e n  H  C G.We are going to apply Theorem 81 in the special ease p = 1/2.
5.2.1 Sketch of the proof of Theorem 80The Regularity Lemma of Szemeredi [58] and the Blow-up Lemma [42] plays a very important role in the proof. On these important tools we gave a short overview in the Introduction, The interested reader may consult with the survey paper by Komlos and Simonovits [40] also.

S te p  1 : Apply the Degree Form of the Regularity Lemma with parameters 0 < e ^  d ^  1 in order to obtain a partition of V (G) into the clusters W0, Wi, 
. . . ,  W e , where W0 is the exceptional cluster.

S te p  2 : Construct the reduced graph G r on the non-exeeptional clusters, in which two clusters are adjacent if and only if they form an e-regular pair with density at least d.
S te p  3 : Find a maximum matching M in Gr. Using the minimum degree condition, the vertex set of M may not contain at most one cluster -  its vertices are put into W0.
S te p  f :  Make the edges of M super-regular. At most 2en vertices are put into W0 at this point.
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S te p  5 : Distribute the vertices of W0 among the non-exceptional clusters while keeping super-regularity.
S te p  6 : Assign the vertices of H to clusters of Gr so that the following holds: whenever x y  E E (H) for x , y  E V (H), then C (x)C(y) E E (Gr), where 

C (x), (respectively, C(y)) denotes the cluster to which x (respectively, y) is assigned. This is done in two steps: first randomly distribute the components of H — S  and S ,  then in the second step a few vertices may get reassigned in order to satisfy the above requirement for every edge of H.
S te p  1: At this point it is possible that there are more (or less) vertices assigned to a cluster than its size, A procedure very similar to the one used in Step 5 helps in finding the balance.
S te p  8 : Applying the Blow-up Lemma finishes the proof.Readers familiar with the Regularity Lemma -  Blow-up Lemma method may observe that the first seven steps are essentially a preparation for being able to apply the Blow-up Lemma,

5.2.2 Proof of Theorem 70As we indicated above, the proof of Theorem 70 is very similar to the proof of Theorem 80, Hence, below we will concentrate on the differences of the two.Assume that H E Hr ,t has n vertices. Denote the separator set of H by S. Then we have |S| < yn. Observe that we can apply the deep result of Fox and Sudakov, Theorem 81 for finding a copy of H[S] in G, since 5(G ) >  n/2 . Let us denote the uncovered part of G by G  after embedding H [S]. Note that 5(G) > (1 /2 + y1/ 3)n.Next we apply the Degree Form of the Regularity Lemma for G  with parameters e and d = ^y. We form the reduced graph Gr , and then find an (almost) perfect matching M in Gr . Then we make the edges of M super-regular, and then distribute the vertices of W0 among the non-exeeptional clusters so that the pairs



CHAPTER 5. SEPARABILITY AND BANDWIDTH 64in M remain super-regular. These steps are in fact identical to the corresponding ones (Step 1 -  Step 5) in the proof of Theorem 80,Next we assign the components of H — S to the non-exeeptional clusters. We do it using a random procedure (randomness is not necessary here, but a simple choice), the components are assigned randomly to edges of M. This immediately implies that whenever x,y belong to the same component and are adjacent, then C(x)C(y) is an edge of M. Still, there could be vertices x,y G H such that xy G E(H), but C(x)C(y) G E(Gr). This can happen only in ease x G S and y G V(H) — S. In such a ease we repeat the procedure from the proof of Theorem 80 mentioned in Step 6 ,There is an important difference of the two proofs at this point, so we provide more details here. Assume that x G S is mapped onto v G V(G) in the beginning. Let L denote those dusters in which v has at least y jm  neighbors. Let C(y)Wj denote the edge of M to which the component of y was assigned. Then we locate a cluster Wj G L such that Wj is adjacent to Wj in Gr. Then we reassign y to Wj. This wav v will have many neighbors in the cluster of y and the cluster of y will be adjacent to the cluster of the neighbors of y in its component. Observe that if we locate the W? clusters as evenly as possible then we can achieve that at most about y2/3m vertices are reassigned to a particular cluster. Here we used that the set of vertices to be reassigned are neighbors of S, and there are less than n/D such vertices.Next we repeat the procedure of Step 7, The method we use for balancing is essentially the same we discussed above, Sav, that W s has more vertices assigned to it than |Ws|. Then there must be a cluster Wj to which we assigned less than |Wj| vertices of H. Let W? denote the neighbor of Ws in the matching M. If W?Wj is an edge in G r, then we pick a vertex x such that C(x) = W? and d(x) = D — 1 (using the random distribution there are many choices for x). We reassign some of the leaves that are adjacent to x, the right number will be assigned to Wj.If Wj Wj is not an edge, then there exists a cluster W q such that W qWj and WjWp are edges in Gr, and WpWq is an edge in M. Then the above procedure is



CHAPTER 5. SEPARABILITY AND BANDWIDTH 65done in two steps: first we reassign some vertices from Ws to W p and then from W p to Wj. Note that the same computation works as above: at most 7 2/3m vertices are reassigned at every cluster.Since the density of the e-regular pairs is at least ^ 7 , and at most Y2/3m vertices are reassigned at every cluster, we are able to apply the Blow-up Lemma, This finishes the proof of Theorem 70,



Summary

This thesis consists of four main parts. In Chapter 2 we deal with a lower estimation on the size of simple suffix trees. First, we present a simple algorithm for constructing the suffix tree of a string. Then, with the help of aperiodic strings and with some simple combinatorial reasoning, we give a quadratic lower bound on the size of the suffix tree of a random string. The main results are formulated in Theorem 23, Theorem 24 and Theorem 25,In Chapter 3 we consider bipartite graph packing and embedding problems. In Theorem 33 we give almost tight conditions on embedding of a bipartite graph into another, where the former has bounded degrees, while the latter has large degrees. For the proof, we use a well-known result of Lovász, Lemma 36, and with its help we prove the key technical lemma, and we also use martingales.In Chapter 4 we consider another embedding question, that of degree sequences and graphs. In Theorem 40 we prove that a degree sequence n bounded with a constant from above can be embedded into a graph G with sufficiently large degrees. For achieving the proof, we find a suitable realization of n, then we embed it into G, Through the proof, we use the Erdős-Stone theorem formulated in Theorem 44 [14] and a result on well-separable graphs, formulated in Theorem 46 [18], which is based on the Regularity Lemma of Szemerédi,In Theorem 42 we show that a g-unbalaneed degree sequence n can be embedded into a graph G with sufficiently large degrees and on slightly more vertices than the length of n . First, we find again a suitable realization of n, i.e, a union
66



CHAPTER 5. SEPARABILITY AND BANDWIDTH 67of smaller q-unbalaneed bipartite graphs, then with the help of the Regularity Lemma we find a a special substructure in G, and finally, we finish the embedding. In finding H, which is done in Subsection 4,2,1 we use a result from number theory, which is formulated in Proposition 48 [56], Using Lemma 49, which is a result of Lovâsz [46], we prove Lemma 50, which implies Lemma 47, The decomposition of G is done in Subsection 4,2,2, in Lemma 51, In Subsection 4,2,3 we prepare the graph for embedding by distributing the exceptional class of the reduced graph. Finally, we describe the embedding algorithm in Subsection 4,2,4,In Chapter 5, in Theorem 68 we show the existence of bounded degree bipartite graphs with a small separator and large bandwidth. For the construction we use Ramanujan graphs. Then in Theorem 70 we prove that under certain conditions these graphs can be embedded into graphs with minimum degree only slightly over n/2, This proof is similar to that of the main result of [18], thus we give a sketch for the latter, and note the differences.



Összefoglalás

Ez a disszertáció négy fő részből áll. A 2, fejezetben alsó becslést adunk az egyszerű szufíixfák méretére. Először bemutatunk egy egyszerű algoritmust, mellyel előállíthatjuk egy szöveg szuffixfáját. Ezután az aperiodikus szövegek segítségével és alapvető kombinatorikai gondolatokkal négyzetes alsó korlátot adunk egy véletlen szöveg szuííixfájának méretére. E rész fő eredményeit a 23., a 24. és a 25. tételekben mondjuk ki.A 3. fejezetben a páros gráfpakolást illetve beágyazási problémát vizsgáljuk. A 33. tételben majdnem pontos feltételeket adunk egy korlátos fokú páros gráf nagyfokú páros gráfba való beágyazására. A bizonyítás során használjuk Lovász jól ismert eredményét, a 36. lemmát. Ennek segítségével bizonyítjuk fő technikai lemmánkat. A bizonyítás során martingálokat is felhasználunk.A 4. fejezetben egy újabb beágyazási problémával foglalkozunk, mégpedig a fokszámsorozatok gráfokba való beágyazásával. A 40. tételben megmutatjuk, hogy egv konstans fokkal korlátozott n fokszámsorozat beágyazható egv elég nagy fokú G gráfba, Ehhez megkeressük a n egv alkalmas megvalósítását, amit beágyazunk G-be, A bizonyítás során használjuk az Erdős-Stone-tételt, amit a 44. tételben mondunk ki [14], valamint a 46. tétel eredményét aj ól-szeparálható gráfokról [18], Ebben a bizonyításban Szemerédi Eegularitási Lemmáját is használjuk.A 42. tételben bebizonyítjuk, hogy egv q-kiegyensúlvozatlan n fokszámsorozat beágyazható egv elég nagy fokú gráfba, amelynek kicsit több csúcsa van, mint n hossza. Először megint egv alkalmas H realizációt keresünk n-hez, több kisebb q-
68



CHAPTER 5. SEPARABILITY AND BANDWIDTH 69kiegyensúlyozatlan páros gráfból, majd a Regularitási Lemma segítségével találunk G-ben egy speciális struktúrát, végül befejezzük a beágyazást, A H gráf megtalálásában, amely a 4,2,1, szakaszban történik, egy számelméleti eredmény, a 48, lemma [56] segítségével és Lovász eredményével, a 49, lemmával [46] megmutatjuk az 50, lemmát, amelyből következik a 47, lemma, G felbontását a 4,2,2, szakaszban mutatjuk meg, az 51, lemmában, A 4,2,3, szakaszban a redukált gráf kivételes osztályának szétosztásával előkészítjük a G gráfot a beágyazásra, végül a 4,2,4, szakaszban befejezzük a beágyazást.Az 5, fejezetben, a 6 8 , tételben megmutatjuk, hogy léteznek olyan korlátos fokú páros gráfok, melyeknek szeparáló halmaza kiesi, miközben sávszélessége nagy. Ezek megkonstruálásához Ramanujan-gráfokat használunk, A 70, tételben megmutatjuk, hogy bizonyos feltételek mellett ezeket a gráfokat be lehet ágyazni olyan gráfokba, melyek minimális foka csak kicsit nagyobb n/2-nél. Ez a bizonyítás hasonló Csaba [18] fő eredményének bizonyításához, így az utóbbit vázoljuk, miközben kiemeljük az eltéréseket.
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