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Chapter 1

Introduction

This thesis is about trees and graph packing. In the first part, which is mainly
based on [61], we deal with suffix trees. At this point, we present an overview
of suffix trees, while at the beginning of Chapter 2, we will give the detailed
definitions. A suffix tree is a powerful data structure which is used for a large
number of combinatorial problems involving strings. Suffix tree is a structure
for compact storage of the suffixes of a given string. The compact suffix tree is a
modified version of the suffix tree, and it can be stored in linear space of the length

of the string, while the non-compact suffix tree is quadratic (see [32, 51, 60, 64]).

The notion of suffix trees was first introduced by Weiner [64], though he used
the name compacted bi-tree. Grossi and Italiano mention that in the scientific
literature, suffix trees have been rediscovered many times, sometimes under differ-
ent names, like compacted bi-tree, prefix tree, PAT tree, position tree, repetition
finder, subword tree etc. [31]

Linear time and space algorithms for creating the compact suffix tree were given
soon by Weiner [64], McCreight [51], Ukkonen [60], Chen and Sciferas [13] and

others.

The statistical behavior of suffix trees has been also studied. Most of the studies

consider improved versions of suffix trees. The average size of compact suffix trees
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was examined by Blumer, Ehrenfeucht and Haussler [6]. They proved that the
average number of nodes in the compact suffix tree is asymptotically the sum of

an oscillating function and a small linear function.

An important question is the height of suffix trees, which was answered by Devroye,
Szpankowski and Rais [23], who proved that the expected height is logarithmic in
the length of the string.

The application of suffix trees is very wide. We mention but only a few examples.
Apostolico et al. [4] mention that these structures are used in text searching,
indexing, statistics, compression. In computational biology, several algorithms are
based on suffix trees. Just to refer a few of them, we mention the works of Hohl
et al. [36], Adebiyi et al. [1] and Kaderali et al. [37]

Suffix trees are also used for detecting plagiarism [4], in cryptography [52, 54], in

data compression [26, 28, 54] or in pattern recognition [59].

For the interested readers further details on suffix trees, their history and their
applications can be found in [4], in [31] and in [32], which sources we also used for

the overview of the history of suffix trees.

It is well-known that the non-compact suffix tree can be quadratic in space as we
referred before. In Chapter 2 we are setting a lower bound on the average size,

which is also quadratic.
Now, we turn to the other main field of the thesis, which is graph packing.

All graphs considered in this thesis are simple. We use standard graph theory
notations (see for example [65]): dega(v) (or briefly, if G is understood from the
context, deg(v)) is the degree of v in G. The number of edges between X and Y
for X NY = 0 is denoted by e(X,Y’). The number of neighbors of x in a subset
S C V(@) is denoted by dega(x, S), and §(G) and A(G) denote the minimum and

maximum degree of G, respectively.
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For any function fon V let f(X) = > f(v) for every X C V. #n(G) is the degree
veX
sequence of G. The number of vertices in G is denoted by v(G), while the number

of its edges is denoted by e(G).

Given a bipartite graph G(A, B) we call it balanced if |A| = |B|. This notion

naturally generalizes for r-partite graphs with r € N, r > 2.

The complete graph on n vertices is denoted by K,,, the complete bipartite graph

with vertex class sizes n and m is denoted by K, ,.

A finite sequence of natural numbers © = (dy,...,d,) is a graphic sequence or
degree sequence if there exists a graph G such that 7 is the (not necessarily)
monotone degree sequence of G. Such a graph G realizes 7. The largest value of 7

is denoted by A(r). We sometimes refer to the value of 7 at vertex v as 7(v). The

degree sequence ™ = (ay, ..., ax, by, ..., b) is a bigraphic sequence if there exists a
simple bipartite graph G = G(A, B) with |A| = k, |B| = [ realizing 7 such that
the degrees of vertices in A are aq,. .., ag, and the degrees of the vertices of B are
bi,..., b.

Let G and H be two graphs on n vertices. We say that H is a subgraph of G, if we
can delete edges from G so that we obtain an isomorphic copy of H. We denote this
relation by H C G. In the literature the equivalent complementary formulation
can be found as well: we say that H and G pack if there exist edge-disjoint copies
of H and G in K,,. Here G denotes the complement of G.

If S C V for some graph G = (V, E) then the subgraph spanned by S is denoted by
G[S]. Moreover, let Q C V so that SN Q = (), then G[S, Q] denotes the bipartite
subgraph of G on vertex classes S and @), having every edge of G that connects a

vertex of S with a vertex of Q).

It is an old an well-understood problem in graph theory to tell whether a given
sequence of natural numbers is a degree sequence or not. We consider a gener-
alization of it, which is remotely related to the so-called discrete tomography (or
degree sequence packing) problem (see e.g. [24]) as well. In the discrete tomog-

raphy problem we are given two degree sequences of length n, m; and m,, and
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the question is whether there exists a graph G on n vertices with a red-blue edge
coloring so that the following holds: for every vertex v the red degree of v is w1 (v)

and the blue degree of v is 72 (v).

The question whether a sequence of n numbers 7 is a degree sequence can also be
formulated as follows: Does K, have a subgraph H such that the degree sequence
of H is 7?7 The question becomes more general if K, is replaced by some (simple)
graph G on n vertices. If the answer is ves, we say that m can be embedded into

G, or equivalently, 7 packs with G.

The graph packing problem is the following. Let G and H be two graphs on n
vertices. We say that G and H pack if and only if K, contains edge-disjoint copies

of G and H as subgraphs.

The graph packing problem can be formulated as an embedding problem, too. G
and H pack if and only if H is isomorphic to a subgraph of G (H C G).

A classical result in this field is the following theorem of Sauer and Spencer.

Theorem 1 (Sauer, Spencer [57]). Let Gy and Gy be graphs on n vertices with
mazimum degrees Ay and Aq, respectively. If ANy < 3, then Gy and Gy pack.

Many seemingly unrelated problems can be translated to the language of embed-
ding/packing, for a (non-complete) list see for example [38]. Therefore, it is not
surprising that in general many embedding/packing problems are open. In order to

prove meaningful results one usually imposes condition on the graphs in question.

In Chapter 3 we study the bipartite packing problem as it is formulated by
Catlin [11], Hajnal and Szegedy [34] and was used by Hajnal for proving deep

results in complexity theory of decision trees [33].

Let Gy = (A, B; Ey) and Gy = (S,T; Es) be bipartite graphs with |A| = |S| = m
and |B| = |T| = n. Sometimes, we use only G(A, B) if we want to say that G is a
bipartite graph with classes A and B. Let A4(G1) be the maximal degree of Gy
in A. We use Ag(G1) similarly.



CHAPTER 1. INTRODUCTION 8

The bipartite graphs G; and G5 pack in the bipartite sense (i.e. they have a
bipartite packing) if there are edge-disjoint copies of G and Gy in K, ,.

The bipartite packing problem can be also formulated as a question of embedding.
The bipartite graphs Gy = (A, B; E) and G5 pack if and only if G is isomorphic to
a subgraph of CTl, which is the bipartite complement of G, i.e. Gy = (A, B; (A x
B) - E).

Let us mention two classical results in extremal graph theory.

Theorem 2 (Dirac, [25]). Every graph G with n > 3 vertices and minimum degree
0(G) > % has a Hamilton cycle.

Theorem 3 (Corradi-Hajnal, [16]). Let k > 1, n > 3k, and let H be an n-vertex
graph with 6(H) > 2k. Then H contains k vertez-disjoint cycles.

Observe, that Dirac’s theorem implies that given a constant 2 degree sequence 7
of length n and any graph G on n vertices having minimum degree 6(G) > n/2, =
can be embedded into G. One can interpret the Corradi-Hajnal theorem similarly,
but here one may require more on the structure of the graph that realizes 7 and

in exchange a larger minimum degree of G is needed.

In Chapter 5 we extend the results of [18]. We consider bounded degree bipartite
graphs that have a small separator and large bandwidth, and prove that under
reasonable conditions these are spanning subgraphs of n-vertex graphs that have
minimum degree just slightly larger than n/2. We also show that using earlier
methods such graphs cannot be embedded in general into host graphs with such

small minimum degree.

Regularity Lemma

An important tool for our results is the Regularity Lemma, for which Endre Sze-
merédi received Abel Prize in 2012. At this point we give a short overview of it.

For a more detailed discussion we refer to [44] and [45].
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The density between disjoint sets X and Y is defined as:

e(X,Y)

dXY) = T (1.1)

We will need the following definition to state the Regularity Lemma.

Definition 4 (Regularity condition). Let ¢ > 0. A pair (A, B) of disjoint vertex-
sets in (G is e-regular if for every X C A and Y C B, satisfving

| X| > ¢|A], Y] > ¢|B] (1.2)

we have
|[d(X,Y) —d(A, B)| <e. (1.3)

This definition implies that regular pairs are highly uniform bipartite graphs;
namely, the density of any reasonably large subgraph is almost the same as the

density of the regular pair.

Definition 5. We say that a partition {Wy; Wy, ... Wi} is e-regular if there is
an m such that for all i > 0 |W;| = m; for all but at most ¢k? pairs (z,j) the pair
(Wi, W;) is e -regular (4,7 > 0); and |Wy| < em?.

The original form of Szemerédi’s Regularity Lemma is the following:

Lemma 6. [58] For every ¢ and t, there exist N and T such that for each n > N
every n-vertex graph G admits an e-reqular partition Wy UW U---U W), satisfying
t<k<T.

We will also use the following form of the Regularity Lemma:

Lemma 7 (Degree Form, [18]). For every ¢ > 0 there is an M = M () such that if
G = (W, E) is any graph and d € |0, 1] is any real number, then there is a partition
of the vertex set 'V into ¢ + 1 clusters Wy, W1, ..., We, and there is a subgraph G’
of G with the following properties:

« (<M,

o [Wol <elW],
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all clusters Wy, i > 1, are of the same size m < V—Z/'J < e|W|,

dege(v) > dega(v) — (d+&)|W| for all ve W,
G/

w, = 0 (W; is an independent set in G') for all i > 1,

all pairs (Wi, W;), 1 <1 < j < €, are s-regular, each with density either 0

or greater than d in G'.
We call Wy the exceptional cluster, Wi, ..., W, are the non-exceptional clusters.

Definition 8 (Reduced graph, [18]). Apply Lemma 7 to the graph G = (W, E)
with parameters ¢ and d, and denote the clusters of the resulting partition by
Wo, W1, ..., Wy, Wy being the exceptional cluster. We construct a new graph G,,
the reduced graph of G’ in the following way: The non-exceptional clusters of
G’ are the vertices of the reduced graph G, (hence v(G,) = £). We connect two
vertices of GG, by an edge if the corresponding two clusters form an s-regular pair

with density at least d.
The following corollary is immediate:

Corollary 9. [18] Apply Lemma 7 with parameters ¢ and d to the graph G =
(W, E) satisfying 6(G) > yn (v(G) = n) for some v > 0. Denote G, the reduced
graph of G'. Then §(G,) > (v — 0)¢, where 0 = 2¢ + d.

The (fairly easy) proof of the lemma below can be found in [45].

Lemma 10. Let (A, B) be an s-reqular—pair with density d for some ¢ > 0. Let
¢ > 0 be a constant such that ¢ < c. We arbitrarily divide A and B into two
parts, obtaining the non-empty subsets A, A" and B', B", respectively. Assume
that |A'|,|A”| > c|A| and |B'|,|B"| > c|B|. Then the pairs (A", B"), (A, B"),
(A", B") and (A", B") are all ¢ /c—regular pairs with density at least d — ¢ /c.
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Blow-up Lemma

Let H and G be two graphs on n vertices. Assume that we want to find an
isomorphic copy of H in G. In order to achieve this one can apply a very powerful
tool, the Blow-up Lemma of Komlos, Sarkozy and Szemerédi [42, 40]. For stating

it we need a new notion, a stronger one-sided property of regular pairs.

Definition 11 (Super-Regularity condition). Given a graph G and two disjoint
subsets of its vertices A and B, the pair (A, B) is (g, 0)-super-regular, if it is

e-regular and furthermore,
deg(a) > 6|B|, for all a € A, (1.4)

and
deg(b) > 6|A|, for all b € B. (1.5)

Theorem 12 (Blow-up Lemma [42, 40]). Given a graph R of order r and positive
integers 0,A, there exists a positive ¢ = (0, A,r) such that the following holds:
Let ny,no,...,n, be arbitrary positive parameters and let us replace the vertices
V1, V2, ..., U of R with pairwise disjoint sets Wi, Wy, ... W, of sizes ny,na, ..., ny,
(blowing up R). We construct two graphs on the same verter set V.= U;W;. The
first graph I’ is obtained by replacing each edge viv; € E(R) with the complete
bipartite graph between W, and W;. A sparser graph G is constructed by replacing
each edge vyv; arbitrarily with an (e, 0)-super-reqular pair between W, and W;. If
a graph H with A(H) < A is embeddable into F' then it is already embeddable into
G.



Chapter 2
Suffix trees

In this chapter, we will set up a lower bound on the average size of a suffix tree.
Here, the results of [61] are presented. Before we give the exact definition of a

suffix tree, we will need a few definitions.

Definition 13. An alphabet > is a set of different characters. The size of an
alphabet is the size of this set, which we denote by &(>), or more simply . A
string S is over the alphabet 3. if each character of S is in Y. We will use § as a

character not in 3.

Definition 14. Let S be a string. S[i] is its ith character, while S[i, j] is a
substring of S, from Sli| to S[j], if 7 > 4, else S|i, j| is the empty string. Usually

n(S) (or n if there is no danger of confusion) denotes the length of the string.
Now, we are at defining the suffix trees.

Definition 15. The suffix tree of the string S is a rooted directed tree with n

leaves, where n is the length of S.
Its structure is the following:

Each edge e has a label ¢(e), and the edges from a node v have different labels
(thus, the suffix tree of a string is unique). If we concatenate the edge labels
along a path P, we get the path label L(P).

12
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We denote the path from the root to the leaf j by P(j). The edge labels are
such that £(j) = L(P(j)) is S[j,n] and a $ character (which is not in ¥) at the
end. The definition becomes more clear if we check the example on Figure 2.1
and Algorithm 16.

Growth of the string

Figure 2.1: Suffix tree of string aabccb

A naive algorithm for constructing the suffix tree is the following:

Algorithm 16. Let S be a string of length n. Let j = 1 and T be a tree of one

vertex r (the root of the suffix tree).
Step 1: Consider X = S[j,n]+$. Set ¢ =0, and v = r.
Step 2: If there is an edge vu labeled X|[i + 1], then set v = v and ¢ = ¢ + 1.
Step 3: Repeat Step 2 while it is possible.

Step 4: If there is no such an edge, add a path of n — 57 — ¢ + 2 edges from v,
with labels corresponding to S[j + i,n] + 8, consecutively on the edges. At
the end of the path, number the leaf with j.

Step 5: Set j =7+ 1, and if 5 < n, go to Step 1. o
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Note that in Algorithm 16 a leaf always remain a leaf, as $ (which is the last edge

label before a leaf) is not a character in S.

Definition 17. The compact suffiz tree is a modified version of the suffix tree.

We get it from the suffix tree by compressing its long branches.

The structure of the compact suffix tree is basically similar to that of the suffix
tree, but an edge label can be longer than one character, and each internal node

(i.e. not leaf) must have at least two children. For an example see Figure 2.2.

Figure 2.2: Compact tree of string aabcch

With a regard to suffix trees, we can define further notions for strings.
Definition 18. Let S be a string, and T be its (non-compact) suffix tree.

A natural direction of T is that all edges are directed from the root towards the
leaves. If there is a directed path from u to v, then v is a descendant of v and

is an ancestor of v.

We say that the growth of S (denoted by v(S)) is one less than the shortest distance
of leaf 1 from an internal node v which has at least two children (including leaf
1), that is, we count the internal nodes on the path different from v. If leaf j is a
descendant of v, then the common prefix of S|j, n| and S[1, n] is the longest among

all 7’s.

If we consider the string S = aabceb, the growth of S is 5, as it can be seen on

Figure 2.1.

An important notion is the following one.
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Definition 19. Let Q(n, k, o) be the number of strings of length n with growth &

over an alphabet of size o.

Observe that the connection between the growth and the number of nodes in a

suffix tree is the following:

Observation 20. If we construct the suffix tree of S by using Algorithm 16, we
get that the sum of the growths of Sln — 1,n],S[n — 2,n],...,S[1,n] is a lower
bound to the number of nodes in the final suffix tree. In fact, there are only two
more internal nodes, the root vertex, the only node on the path to leaf n, and we

have the leaves.
In the proofs we will need the notion of period and of aperiodic strings.

Definition 21. Let S be a string of length n. We say that S is periodic with
period d, if there is a d|n for which S[i| = S[i + d] for all : < n — d. Otherwise, S

is aperiodic.
The minimal period of S is the smallest d with the property above.

Definition 22. ;(j, o) is the number of j-length aperiodic strings over an alphabet

of size o.

A few examples for the number of aperiodic strings are given in Table 2.1.

o| pwlo) w2o) pBo) pldo) wpb,o) wbé,o) wWi,0) ws, o)
2 2 6 12 30 54 126 240 504
3 3 6 24 72 240 696 2184 648
4 4 12 60 240 1020 4020 16380 65280
5 5 20 120 600 3120 15480 78120 390000

Table 2.1: Number of aperiodic strings for small alphabets. o is the size of the

alphabet, and u(j, o) is the number of aperiodic strings of length j

The following three theorems are the main results of this chapter.
Theorem 23. For any k € N, on any alphabet of size o for all n > 2k,

Qn, k, o) < pk,0) (2.1)
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for some function .

Theorem 24. There is a ¢ > 0 and an ng such that for any n > ng the following
is true. Let S" be a string of length n — 1, and S be a string obtained from S’ by
adding a character to its beginning chosen uniformly random from the alphabet.

Then the expected growth of S is at least cn.

Theorem 25. There is a d > 0 that for any n > ny (where ng is the same as in
Theorem 24) the following holds. On an alphabet of size o the simple suffix tree of

a random string S of length n has at least dn® nodes in expectation.

The main goal is to prove Theorem 25. First, we show that Theorem 24 implies
Theorem 25, then we show that Theorem 23 implies Theorem 24. Finally, we prove
Theorem 23.

Proof. (Theorem 25)

Considering Observation 20 we have that the expected size of the simple suffix tree

of a random string S is at least
EY (Sl —mon)) > S E(4(S[ - m, nl)). (22)
m=1 m=1

We can divide the sum into two parts:

Y E(y(Sln—mn))) = > E((Sh—mn))+ Y E(y(Sh—m,n])). (2.3)
m=1 m=1 m=ng+1

The first part of the sum is non-negative, while the second part can be estimated
with Theorem 24:

n

Z E(v(S[n—m,n])) > Z cn = dn?. (2.4)

m=ng+1 m—=—nog+1

This proves Theorem 25.
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Before turning to the proof of Theorem 23, we show a few lemmas about the
number of aperiodic strings. Lemma 26 can be found in [30] or in [15], but we give

a short proof also here.

Lemma 26. For all j > 0 integer and for all alphabets of size o the number of
aperiodic strings is

,u(j) U) — Uj - ZM(CZ) U)' (25)
dlj
d#£j

Proof. u(l,0) = o is trivial.

There are o7 strings of length j. Suppose that a string is periodic with minimal
period d. This implies that its first d characters form an aperiodic string of length

d, and there are p(d, o) such strings. This finishes the proof. O

Specially, if p is prime, then u(p, o) = o? — 0.

Corollary 27. If p is prime and t € N, then

t—1

1 (pt, U) S A (2.6)

for all alphabets of size o.

Proof. We count the aperiodic strings of length pf. There are 0" strings. Consider
the minimal period of the string, i.e. the period which is aperiodic. If we exclude all
minimal periods of length &, we exclude p(k, o) strings. This yields the following
equality:

p(pho) =" = > up'.o). (2.7)

1<s<t

With a few transformations and using Lemma 26, we have that (2.7) is equal to

o —p(pe) = D ulpte)=d" —o" 4

1<s<t—1

Yo oupho)— > ulp'o), (2.8)

1<s<t—1 1<s<t—1



CHAPTER 2. SUFFIX TREES 18

which is
o —of . (2.9)

Lemma 28. For all j > 1 and for all alphabets of size o we have
w(j, o) <ol —o. (2.10)

Proof. From Lemma 26 we have u(j,0) = 0/ — > u(d, o). Considering p(d, o) > 0
g
and p(1,0) = o, we get the claim of the lemma. O

Lemma 29. For all j > 1 and for all alphabets of size o we have
w(j, o) > oo — 1771 (2.11)

Proof. We prove by induction. For j = 1 the claim is obvious, as u(1,0) = o.

Suppose we know the claim for j — 1. Consider o{c — 1)~2 aperiodic strings of
length 5 — 1. Now, for any of these strings there is at most one character by
appending that to the end of the string we receive a periodic string of length 7.
Therefore we can append at least o — 1 characters to get an aperiodic string, which

gives the desired result.
]

Observation 30. Observe that if the growth of S s k, then there is a j such that
S[l,n—k|] = S[j+1,j+n—k|. For ezample, if the string is abcdefabedab (n = 12),
one can check that the growth is 8 (the new branch in the suffix tree which ends in
leaf 1 starts after abed), and with j = 6 we have S[1,4] = S[7,10] = abed.

The reverse of this observation is that if there is a j < n such that S[1,n — k| =
Slj+ 1,7+ n—k|, then the growth is at most k, as S|j + 1,n| and S[1,n| shares
a common prefix of length n — k, thus, the paths to the leaves j + 1 and n share

n — k internal nodes, and at most k new internal nodes are created.

Now, we turn to the proof of Theorem 23.
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Proof. (Theorem 23) We count the number of strings with growth & for n > 2k.

First, we fix j, and then count the number of possible strings where the growth
occurs such that S[l,n — k| = S[j + 1,7 + n — k] for that fixed j. Note that by
this way, we only have an upper bound for this number, as we might found an ¢
such that S[l,n —k+ 1] =S¢+ 1,0+ n—k+1].

We know that j <k, otherwise S[j + 1,7 + n — k| does not exist.
If j = k, then we know S[1,n — k] = S[k + 1, n].

S[1, k] must be aperiodic. Suppose the opposite and let S[1, k| = p...p, where p
is the minimal period with length d. Then S|k + 1,n] = p...p. Obviously, in this
case S[1,n —d| = S[d + 1,n|, which by Observation 30 means that the growth

would be at most d. See also Figure 2.3.

Therefore this case gives us at most u(k) strings of growth k.

Figure 2.3: Proof of Theorem 23, case j = k

If j < k, then we have S[1,n— k] =S[j+1,j +n — k]

First, we note that S[1, j| must be aperiodic. Suppose the opposite and let S[1, j] =
p...p, where p is the minimal period, and its length is d. Then

Slj+1,25] = S[2j+ 1,35 =...=p...p, (2.12)
which means that

e st o e

This implies that S[1,j +n — k] = p...pp/, where p’ is a prefix of p. However,
S[1,j+n—k—d = S|d,j+n— k| is true, and using Observation 30, we have
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that v(S) <n—(j+n—k)+d=*k—j+d <k, which is a contradiction. See
also Figure 2.4

Further, S[j +n — k + 1] must not be the same as S|k + 1], which means that this

character can be chosen ¢ — 1 ways.

k—j—1

Therefore this case gives us at most u(j)(c —1)o strings of growth k for each

Figure 2.4: Proof of Theorem 23, case j < k

By summing up for each j, we have

k—1
ok, o) = 3 G, o) (o = D" + ulk, o) (2.14)

j=1
This completes the proof. O

Finally, we prove Theorem 24.

Proof. (Theorem 24)
According to Lemma 28, pu(j,0) < o/ —o (if j > 1).

In the proof of Theorem 23 at (2.14) we saw for k > 1 and n > 2k — 1 that

olh,) = i) + Y o) o — Dot (2.15)

We can bound the right hand side of (2.15) from above as it follows:

(k) + 3 1G,0) o~ DA = ko) 1 (1) — 1)

ZM(J}U)(U o 1)Uk_j_17 (2'16)
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which is by Lemma 28 at most

k—1
of—oto(o—1) k2+ZU—U — 1)o7t <
=2
k—1
ak+ak+20jaak_j_l < ko*. (2.17)
=2

Thus, ¢(k, o) < ko*, which means

is@(l@ zm: F< (m o+ 1)o™t (2.18)

k=1 k=1

The left hand side of (2.18) is an upper bound for the strings of growth at most

m.
Let m = |%].

As o > %a%, this implies that in most cases the suffix tree of S has at least 3

more nodes than the suffix tree of S[1,n — 1].

Thus, a lower bound on the expectation of the growth of S is

I /n = n_ M=\ (N
E(+($)) > — (502 + (a -0 ) (5 + 1)) , (2.19)
which is
U—ln (” ; 2om 4 (g = W) a’é> — en, (2.20)

with some ¢, if n is large enough.

O

With this, we have finished the proof and gave a quadratic lower bound on the

average size of suffix trees.



Chapter 3
Bipartite packing problem

In this and the following chapters of the thesis we will deal with graph packing
problems. This chapter presents the results of [62]. First, we present a related
result of Wojda and Vaderlind. For this, we need to introduce three families of

graph pairs which they use in [66].

Let 'y be the family of pairs {G(L, R), G'(L', R")} of bipartite graphs such that
(i contains a star (i.e. one vertex in L is connected to all vertices of R), and in
o (G > 1.

Let 'y be the family of pairs {G(L, R), G'(L', R")} of bipartite graphs such that
L ={a1,as}, and degg(ar) = dega(az) = 2; and L' = {d}, ab}, dege(a)) = |R|—1,
dege(ah) = 0, finally, Agr(G) = Ar(G') = 1.

The family I's is the pair {G,G'}, where G = K32 U K51, and G’ is a one-factor.

Theorem 31. [66] Let G = (L, R; &) and G' = (L', R'; E') be two bipartite graphs
with |L| = |L'| =p>2 and |R| = |R'| = q > 2, such that

e(G) +e(G) <p+qte(Ga), (3.1)
where e(G,G") = min{p — Ar(G),p — Ar(G"), g — AL(G),q — AL (G")}.

Then G and G' pack unless either

22
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1. ¢(G,G")y =0 and {G,G'} € I'y, or
2. ¢(G,G"Y=1and {G,G'} e 'y UT};.
Another theorem in this field is by Wang.

Theorem 32. [63] Let G(A, B) and H(S,T) be two Cy-free bipartite graphs of
order n with |Al = |B| = |S| = |T| = n, and e(G) + e(H) < 2n — 2. Then there
is a packing of G and H in Kyi1n41 (i-e. an edge-disjoint embedding of G and H
into Kni1n41), unless one is a union of verter-disjoint cycles and the other is a

union of two-disjoint stars.

For more results in this field, we refer the interested reader to the monograph on
factor theory of Yu and Liu [67].

Let us formulate the result of this chapter of the thesis in the following theorem

as an embedding problem.

Theorem 33. For every ¢ € (O, %) there is an ny = no(e) such that if n > ny,

and G(A, B) and H(S,T) are bipartite graphs with |A| = |B| = |S| = |T'| = n and
the following conditions hold, then H C G.

Condition 1: dega(x) > (1 + &) n holds for allz € AUB

. holds for all x € S,

£
100 logn

Condition 2: degy(x) <
Condition 3: degy(y) = 1 holds for all y € T

In the following remarks, we show cases in which our main theorem can guarantee

packings that were beyond reach by the previous techniques.

Remark 34. There are graphs which can be packed using Theorem 33, though
Theorem 31 does not imply that they pack.

For instance, let G(A, B) and H(S,T) be bipartite graphs with |A| = |B| = |S| =
|T'| = n. Choose H to be a 1-factor, and G to be a graph such that all vertices in
A have degree (3 + 155) n. This pair of graphs obviously satisfies the conditions
of Theorem 33, thus, H can be embedded into G, which means that H can be

packed with the bipartite complement of G.
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Now, we check the conditions of Theorem 31 for the graphs G and H. We know

that e(H) = n, as H is a l-factor. Furthermore, in G each vertex in A has

1 1

degree (5 — ﬁ) n, which means that the number of edges is approximately

As £(H,G) < n, the condition of Theorem 31 is obviously not satisfied.

n?
-

Remark 35. There are graphs which can be packed using Theorem 33, though
Theorem 32 does not imply that they pack. Let G be the union of 2 disjoint
copies of Cg’s and H be a 1-factor. Obviously, H is C4-free, but the condition of
Theorem 32 is not satisfied for G and H, as e(G) + e(H) = 3n.

However, our theorem can give an embedding of H into é, as all conditions of

Theorem 33 are satisfied with these graphs. This provides a packing of H and G.

The following two examples show that it is necessary to make an assumption on
§(G) (see Condition 1) and on Ag(H) (see Condition 2).

First, let G = Kz g2y U Kz_ynyy. Clearly, GG has no perfect matching. This

shows that the bound in Condition 1 is close to being best possible.

For the second example, we choose G = G(n,n,0.6) to be a random bipartite
graph. Standard probability reasoning shows that with high probability, G satisfies
Condition 1. However, H cannot be embedded into G, where H(S,T) is the

following bipartite graph: each vertex in T has degree 1. In S all vertices have

logn cn

logn
c. The graph H cannot be embedded into G, what follows from the example of

degree 0, except vertices with degree with a sufficiently large constant

Komlos et al. [41]. The graph H is also shown on Figure 3.1

S (& o * ° ° ° . D)

T(éd v % S S e e )

Figure 3.1: The graph H of the example for the necessity of Condition 2
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3.1 The proof of Theorem 33

We will use the following lemma by Gale [29] and Ryser [55] in the form as discussed
by Lovéasz [46].

First, we need a definition. We say that a sequence © = (ay,...,ag;by,...,0) is
bigraphic, if and only if there is a bipartite graph G(A, B) with |A| =k and |B| =1
realizing 7 such that the degrees of vertices in A are ay,...,ag, and the degrees
of the vertices of B are by,...,b, [65]. In this case, we say that 7 is a fixed order
realization of the bipartite degree sequence degs. Note that this notion is different
from the usual degree sequence notion, which contains only an ordered list of the

degrees, which are not connected to specific vertices.
Lemma 36. [29, 55] Let G(A, B) be a bipartite graph and 7 a bigraphic sequence
n(AB). If foradl X CA Y CB

Y w@) Sea(X,Y)+ Y w(y). (32)

rze€X yey

then m can be embedded into G.

We formulate the key technical result for the proof of Theorem 33 in the following

lemma.

Lemma 37. Let ¢ € (0,0.5) and c as stated in Theorem 33. Let G(Z,W) and
H(Z', W) be bipartite graphs with | Z| = |Z'| = z and |W| = |W'| = n, respectively,

with z > %

Suppose that

Condition la: degg(x) > (3 +¢e)n for allx € Z,
Condition 1b: dega(y) > (5 +5) 2 for ally € W,

Condition 2: Thereisan M e N and a 0 <6 < 15 < 2—10 such that

M <degy(x) < M(1+9) for allx € 7, (3.3)

and
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Condition 3: degy(y) = 1 for ally € W'.

Then there is an embedding of H into G.

Proof. We show that the conditions of Lemma 36 are satisfied.

First, assign the vertices of 7 and W to the vertices and 7' and W', respectively.
Then,let ) #X C Zand ) £AY CW. Let X = Z—-XandY = W —Y. We

distinguish five cases depending on the sizes of X and Y.
In all cases we will use the obvious inequality Mz < n, as degy (%) = degy (W).

Case (a) |X| < s and [Y] < 3.

We have
degu(X) < M(1 1 5)|X| < M(1 4 6)———— ~ Mz 1 g4y
o) = = 20+0) 2 — 20 7
and
- _
5 SV =degu (V). (3.5)
Therefore, degy (X) < degu(Y) + eq(X,Y).
Case (b) |X| < s and [Y[ >3
Let p = |Z—| — 2,50 Y| = (% + <p) n. Obviously, 0 < ¢ < %

Therefore, degu(Y) = Y| = (3 — ¢) n.
We have degy(X) < 3, as we have seen in Case (a).
Using Condition la, we know that dege(X) > (3 +¢) n|X].

As [Y] = (3 — ¢) n, we have
_ 1 1
calX,Y) 2 dege(X) = [TIIX| > (5 + ) nl] = (5= o) n. )

Thus,
ea(X,Y) > (e + @)n|X] = (e + ¢)n, (3.7)

we obtain degy(X) < degy(Y) + ea(X,Y).
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Case (c) 2> |X| > 5 sy and Y] < 3.

1+ 2

Let@b:é— 1+6 hence, | X| = ( 59 +¢>

Let wo - 2( —
(5 —to+ w)

) 5
As 0 <0 < {5, we have ¢y < 5 < 5

%_ 1—+5 so ¥ < 1)p. This means that | X| =

Let ¢ =1 — D so [V = (2 —¢)n. As [Y| <2, this gives 0 < ¢ < L,

1
2

We have the following bounds:

(1) degu(Y) =Y]=n(5+¢)

(2) As above,

%mﬂX)SAﬂ1+6Nﬂ1%41+®<2u16)+¢>§

n(1+6)< (11”) +¢> (3.5)

(3) We claim that eq(X,Y) > |Y| (5 — ¢o + %) 2. Indeed, the number
of neighbors of a vertex y € Y in X is at least (5 +1 — )z
considering the degree bounds of W in G.

We have to show that degy(X) < eq(X,Y) + degry(Y). We estimated

each term, hence it is enough to prove the following:

M1+®< ﬂié) ¢> <%—¢><%—¢b+¢>zk

n <% + go) . (3.9)
This is equivalent to
¢+6¢§z<%—gp> (5+v—w)+e (3.10)

The left hand side of (3.10) is at most ¢y + d1fo < 3 R % < 4, as
§<e<5
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If » > 4, (3.10) holds, since 5 + 1) — 14y > 0, using 1 < &

Otherwise, if ¢ < ¢, the right hand side of (3.10) is

z(%—gp) (%+¢—¢0>2<5—6> <§—g>z. (3.11)

£ £
We can bound each factor: 5—6>——%,5—5>5—20,andz>—

Using these bounds for (3.11), we have

Loy (eo).o(to L (C-2)2-2ls Loy
2 2 2)°7\2720)\27 20/ 200 20 ”
(3.12)
This completes the proof of this case.
Case (d) |X|> % and |[YV] < 3.
We have
(1) degu(X) = degu(Z) — degu(X) = n — degu(X) < n— M|X],

(2) degy(Y) =n —|Y]| and
(3) ec(X,Y) > V] (|X]|— 2+ %), using the degree bound on Y.

We have to show that degy(X) < eq(X,Y) + deggy(Y). Using the

estimations of the terms, all we have to check is whether

— z g
n— M|X|<n—I[Y]+]V] (|X|—§+§). (3.13)

It is equivalent to

z ez
0<|y| (|X|—5+3—1)+M(z_|X|). (3.14)
We know that |[X| > Z, and 5 —1 > 0, and z — |X| > 0, which gives

that (36) is true. T his case 1s also finished.
Case (e) |X|> 5 sy and Y] >3

Let g = X 1 hence, |X| = (ﬁ n w) Let 4o = gy as it
was deﬁned in Case (¢). Again, ¢y < g We have 0 <) < 2+¢0 < %‘5
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Let ¢ = 21— 1 hence, [V =n (L + ).
We have
(1) degn(X) < 2M(1+8) (7t + ) < n1 1) (g + ).
(2) degu(Y) =n (3 —¢) and
(3) ealX,Y) > 2 (3h5 +9) (0 + .
We have to show again that degy(X) < eq(X,Y) + degu(Y). Using

the estimation of the terms it is sufficient to show that

40 (g ) <0 (59) ¢

1
It is equivalent to
1

Using ¢ < 12 and ¢ < £, the left hand side of (3.16) is at most

10’

146 1+ 5 1 3
1 20 (14 —)<Z 1
5 —(1+0)< 5 <+20><5, (3.17)
se<y
The right hand side of (3.16) is
—2(1 44
] Ul k) S SV R (3.18)

20+90) @ 20119)

The first and the last term of (3.18) is always positive.

1

> /o

The middle term can be easily bounded since ze > 2, and

20
21"

1+(5

This means that (3.18) is at least 22, which is more than 2. This finishes

the proof of this case.
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[l

Proof. (Theorem 33) First, form a partition Cy, C4,...,Ck of S in the graph H.
For ¢ > 0 let u € C; if and only if

et n 1 et n 1

) > = )
00Togn 1 a1 = 491 > {5 Togm T oy

(3.19)

with 6 = 5. Let Cg be the class of the isolated points in S. Note that the number
_ logn
log(1+f—0)

of partition classes, k is log;,sn = logH% n = clogn.

Now, we embed the partition of S into A. Take a random ordering of the vertices
of A. Say this is (v1,...,uv,). The first |Cy| vertices of A form A;, the vertices
|Cy| + 158 .| CL| + |Col™ form Ay ete., while Cp maps to the last |Cp| vertices.

Obviously, Cy can be always embedded, as it contains only isolated vertices.
We say that a partition class C; is small if |C;] < 2 logn.

We claim that the total size of the neighborhood in B of small classes is at most
=
The size of the neighborhood of C; is at most

et n 1 16
— : — - —1 . 3.20
100logn (1 +0)=1t g2 e (3:20)

If we sum up, we have that the total size of the neighborhood of small classes is

at most

e 1 16 1, &4
sn _ egn— —e2 S —— <
ZlOOlogn (1 oyt =2 8" 957 ”;(Hé)z =

i=1

1 4 2
<A, 1H0 4, 320 en (3.21)
25 ) 257 /10 — 4
The vertices of the small classes can be dealt with using a greedy method: if v;
is in a small class, choose randomly degpy (v;) of its neighbors, and fix these edges.
After we finished fixing these edges, the degrees of the vertices of B are still larger

than (% + %) n.
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Continue with the large classes C;, ..., C;, and form a random partition Fj, ..., I,
of the unused vertices in B such that |E;| = > degy(u). We will consider the
uECij

pairs (Cz] , E])

We will show that the conditions of Lemma 37 are satisfied for (Cy;, £;), then
we apply Lemma 37 with £ instead of ¢, and we get an embedding in each pair
(Ci;, ), which gives an embedding of H into G.

Conditions 2 and 3 are immediate.

For Conditions 1la and 1b we have to show that for any j every vertex y € E; has

at least (% + i) z neighbors in D; and every vertex x € Cy, has at least (% + %) z
in E]

For this, we will use the martingale technique (see [3]).

Let |Cy;| = z. We know z > L logn, as Cj is large.

Let y € Ej; be fixed. Consider the random variable X' = |N(y) N C;,|.

Define the following chain: Z, = EX, 2, = E[X|v1], Z2 = E|[X|v1, v2]; in general,
Zi = E|X|vy,...,v) for 1 <k < n. In other words, Z is the expectation of X
with the condition that we already know vy, ..., v,. This chain of random variables

define a martingale (see Chapter 8.3 of the book of MatouSek and Vondrak [50])

with martingale differences Z, — Z_ < 1.
According to the Azuma—Hoeflding inequality [5, 35] we have the following lemma:

Lemma 38 (Azuma [5]). If Z is a martingale with martingale differences at most
1, then for any j and t the following holds:

+2

The conditional expected value E(Z.|Zy) is EZ, = (3 + %) 2.

Lemma 38 shows that
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1 2.2
g <Z = <§ + %) Z) >l i e (3.23)

We say that a vertex v € Ej is bad, if it has less than (§ + £) z neighbors in Cj,.

—£22/8  Ag we

Lemma 38 means that a vertex v is bad with probability at most e
have n vertices in B, the probability of the event that any vertex is bad is less
than

1
n-e = < — (3.24)
n

as z > 1 logn.
Then we have that with probability 1 — % no vertex in % is bad. Thus, Condition

(ii) of Lemma 37 is satisfied with probability 1 for any pair (Cy;, ;).
Using Lemma 38, we can also show that each z € Cj, has at least (1 +2)|Ej]
neighbors in /; with probability 1.

Thus, the conditions of Lemma 37 are satisfied, and we can embed H into G. The
proof of Theorem 33 is finished. O

Remark

In the bipartite discrete tomography problem we are given two bigraphic sequences
71 and 7y on the vertex set (A, B), where |A| = |B| = n. The goal is to color the
edges of K(A, B) by red, blue and grey such that for each v € A U B the blue

degree of v is 71 (v), its red degree is m3(v), and its grey degree is n — w1 (v) — ma(v).
A previous result in this field is the following theorem.

Theorem 39 (Diemunsch et al. [24]). Let m and w3 be bigraphic sequences with
parts of sizes r and s, and A; = A(m;) and 0; = 0(n;) for i = 1,2 such that
Al S AQ and 61 Z 1. ]f

r+s
8 )

A1A, < 6 (3.25)
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then m and wy pack.

In Theorem 33, we study an “ordinary” packing problem. However, inspecting the

proof one obtains the following result in discrete tomography.

Assume the conditions of Theorem 33. Let m; be the bipartite degree sequence of
G , and 75 be the bipartite degree sequence of H. Consider a fixed order realization
71 and 7 of them, where 7 is an arbitrary, and 75 is a random realization. Then,

with probability tending to 1, 7, and 7, pack.

Hence, in certain cases for most orderings we can improve the bounds of Theo-

rem 39.



Chapter 4
Embedding degree sequences

In this chapter, we deal with an embedding question of degree sequences and
graphs, presenting the results of [21, 22]. The main result is formulated in the

following theorem.

Theorem 40. For every n > 0 and D € N there ezists an ny = no(n, D) such
that for all n > ng if G is a graph on n vertices with §(G) > (% + 77) n and 7 is a
degree sequence of length n with A(rw) < D, then 7 is embeddable into G.

It is easy to see that Theorem 40 is sharp up to the nn additive term. For that let n
be an even number, and suppose that every element of 7 is 1. Then the only graph
that realizes 7 is the union of n/2 vertex disjoint edges. Let G = Ky, /5_1,/241 be
the complete bipartite graph with vertex class sizes n/2 — 1 and n/2 + 1. Clearly

GG does not have n/2 vertex disjoint edges.

In order to state the other main result of this chapter we introduce a new notion.

7 |

NWW

Figure 4.1: A 2-unbalanced bipartite graph

34
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Definition 41. Let ¢ > 1 be an integer. A bipartite graph H with vertex classes
S and T is g-unbalanced, if ¢|S| < |T|. See also Figure 4.1. The degree sequence

7 is g-unbalanced, if it can be realized by a g-unbalanced bipartite graph.

Theorem 42. Let ¢ > 1 be an integer. For every n > 0 and D € N there exist an
no = no(n,q) and an M = M(n, D, q) such that if n > ng, and 7 is a g-unbalanced
degree sequence of length n — M with A(rw) < D, and G is a graph on n vertices
with §(G) > (q—}rl + 77) n, then © can be embedded into G.

Hence, if 7 is unbalanced, the minimum degree requirement of Theorem 40 can be
substantially decreased. What we pay for this is that 7 has to be slightly smaller

than the number of vertices in the host graph.

4.1 Proof of Theorem 40

Proof. First, we find a suitable realization H of 7. Our H will consist of compo-
nents of bounded size. Second, we embed H into G using a theorem by Chvétal
and Szemerédi and a result on embedding so-called well-separable graphs. The

details are given in the following.

We construct H in several steps. At the beginning, let H be the empty graph and

let all degrees in 7 be active.

While we can find 2¢ active degrees of © with value i (for some 1 < i < A(x)),

we realize them with a K;;, i.e. we add this complete bipartite graph to H, and
A(m)

“Inactivate” the 2¢ degrees. When we stop we have at most »_ (2¢ — 1) active
=1

degrees.

This way we obtain several components, each being a balanced complete bipartite

graph. These are the type 1 gadgets. Observe that if a vertex v belongs to some

type 1 gadget, then its degree is exactly 7 (v). Observe further that if there are

no active degrees in 7 at this point then the graph H we have just found is a

realization of .
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Assume that there are active degrees left in 7. Let R = R,qqU Repen be the vertex
set that is identified with the active vertices (v € R,qq if and only if the assigned

active degree is odd). Since Y d(v) must be an even number we have that | Ryl
vER
is even. Add a perfect matching on R,qq to H. With this we achieved that every

vertex of R misses an even number of edges.

Next, we construct the type 2 gadgets using the following algorithm. In the begin-

ning every type 1 gadget is unmarked.

Suppose that v € R is an active vertex. Take a type 1 gadget K, mark it, and let
My denote an arbitrarily chosen perfect matching in K (Mg exists since K is a
balanced complete bipartite graph). Let xy be an arbitrary edge in Mg. Delete
the zy edge and add the new edges vx and vy. While v is missing edges repeat
the above procedure with edges of My, until Mgk becomes empty. If Mk becomes
empty, take a new unmarked type 1 gadget L, and repeat the method with L. It is
easy to see that in 7(v)/2 steps v reaches its desired degree and gets inactivated.

Clearly, the degrees of vertices in the marked type 1 gadgets have not changed.

Figure 4.2 shows examples of type 2 gadgets. In the upper one, two vertices of
Roqq were first connected by an edge and then two type 1 gadgets were used so
that they could reach their desired degree, while in the lower one, we used three
type 1 gadgets for a vertex of K. The numbers at the vertices indicate the colors

in the 3-coloring of H.

Let I' C H denote the set of vertices containing the union of all type 2 gadgets.
Observe that type 2 gadgets of I are 3-chromatic, and all have less than 5A?(r)

vertices.
Let us summarize our knowledge about H for later reference.
Claim 43. (1) |F| < 5A%(7),

(2) the components of H|V — F| are balanced complete bipartite graphs, each

having size at most 2A(7),

(3) x(H[F]) <3, and



CHAPTER 4. EMBEDDING

DEGREE SEQUENCES

37

7/

"

“

AR
\\r\y\\m il ‘
§ 0000000
DIRBBIRN\
/»Q)?'M »’0’4?«»’&5&"%
P DROEFES
% 4TINS
V4 ’////' I ‘{\!// )

>

A

il

23
l/l

NN

\AV«?&\"»«'?@ { '
sl
k 1\

90NN
DI

(DTSRRI

\

)

Y
KSARLIRLLY
Srteteg

\\\\—/II

D

&=\

N\ ——==//

X% h

\

RS X S
v"" ‘\1 :’"
D D

\\\V \\

]

A
AR
N aaass

RO A TS
\ ww,gm/ |
X ‘
WM

N\

) OO P TRATRRCS )
AR
f/A‘\-r/"\\g,!’;\\x'," a\\

[y
[SN]

[7

S\
;;!,

-

«»’I
|

;
4
i

J

\
N

¥

)

Vl
"
f
A

;
I
f

)

e
A

LI ) \
QTS

2
X
t\,"\}‘vl“{

9

o,
ek
TN

\
3

7

1

2N

i
BN

/AN

S KON
A/A
A
3 2 2 2 2 2

Figure 4.2: Type 2 gadgets of H with a 3-coloring

(4) e(HIF.V = F]) = 0.

We are going to show that H C (. For that we first embed the 3-chromatic

part H|[F| using the following strengthening of the Erdés—Stone theorem proved

by Chvatal and Szemerédi [14].
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Theorem 44. Let ¢ > 0 and assume that G is a graph on n vertices where n is
sufficiently large. Let r € N, r > 2. If

r—2
G)> | —— 2 4.1
then G contains a K,(t), i.e. a complete r-partite graph with t vertices in each

class, such that
logn

2 4.2
5001og (4:2)

Since 6(G) > n/2+ nn, the conditions of Theorem 44 are satisfied with r = 3 and
© = n/2, hence, G contains a balanced complete tripartite subgraph 7" on Q(logn)
vertices. Using Claim 43 and the 3-colorability of F' this implies that H[F] C T.

Observe that after embedding H|[F| into G every uncovered vertex of G still has
at least 0(G) — v(F) > (4 + 1) n uncovered neighbors. Denoting the subgraph of

the uncovered vertices of G by G’ we obtain that 6(G’) > (1 + 1) n.

In order to prove that H[V — F|] C G’ we first need a definition.

Definition 45. A graph L on n vertices is well-separable, if it has a subset S C
V(L) of size o(n) such that all components of L — S are of size o(n). See also
Figure 4.3

Figure 4.3: Separator set in a well-separable graph

We need the following theorem.

Theorem 46. For every v > 0 and positive integer D there exists an ng such that
for all n > ng if F' is a bipartite well-separable graph on n vertices, A(F') < D and
NG > (% + 7) n for a graph G of order n, then FF C .
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Since H|V — F] has bounded size components by Claim 43, we can apply The-
orem 46 for H|V — F] and G’, with parameter v = n/2. With this we finished

proving what was desired. O

4.2 Proof of Theorem 42

When proving Theorem 40, we used the Regularity Lemma of Szemerédi (see
Page 9), but implicitly, via the result on embedding well-separable graphs. When
proving Theorem 42, we will apply this very powerful result explicitly. Let us give
a brief sketch first.

Recall that 7 is a g-unbalanced and bounded degree sequence with A(x) < D. In
the proof we first show that there exists a g-unbalanced bipartite graph H realizing
7 such that H is the vertex disjoint union of the graphs Hy, ..., Hy, where each
H; graph is a bipartite g-unbalanced graph having bounded size. We will apply
the Regularity Lemma to G and find a special substructure (a decomposition into
vertex-disjoint stars) in the reduced graph of G. This substructure can then be
used to embed the union of the H; graphs, for the majority of them we use the

Blow-up Lemma.

4.2.1 Finding H

The goal of this subsection is to prove the lemma below.

Lemma 47. Let © be a g-unbalanced bipartite degree sequence of positive integers
with A(nw) < D. Then 7 can be realized by a q-unbalanced bipartite graph H which
15 the vertex disjoint union of the graphs Hy, ..., Hy, such that for every ¢ we have
that H; is g-unbalanced, moreover, v(H;) < 4D?.

Before starting the proof of Lemma 47, we list a few necessary notions and results.
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We call a finite sequence of integers a zero-sum sequence if the sum of its elements
is zero. The following result of Sahs, Sissokho and Torf plays an important role in

the proof of Lemma 47.

Proposition 48. [56] Assume that K is a positive integer. Then any zero-sum
sequence on {—K, ..., K} having length at least 2K contains a proper nonempty

ZETO-SUM, SUJ)S@QU@’/&C@.

The following result formulated by Gale [29] and Ryser [55] is a consequence of

Lemma 36. We present it in the form as discussed by Lovész [46].

Lemma 49. [29, 55] Let G = (A, B; E(G)) be a bipartite graph and [ be a non-
negative integer function on AU B with f(A) = f(B). Then G has a subgraph
F = (A, B; E(FI)) such that degr(x) = f(x) for allx € AU B if and only if

FX) <e(X)Y) + f(Y) (4.3)
for any X C A andY C B, whereY = B —Y.

We remark that such a subgraph F is also called an f-factor of G.

Lemma 50. If f = (ay,...,asb1,...,b) is a sequence of positive integers with
s, t > 2A?, where A is the mazimum of f, and f(A) = f(B) with A = {ai,...,as}
and B = {by,... b} then [ is bigraphic.

Proof. We only have to check whether the conditions of Lemma 49 are met if
G — K&t.

Suppose indirectly that there is an (X,Y") pair for which (4.3) does not hold.
Choose such a pair with minimal | X|+ |Y]. Then X = @ or Y = ) are impossible,
as in those cases (4.3) trivially holds. Hence, | X]|,|Y| > 1. Assuming that (4.3)

does not hold, we have that

f(X)>e(X,)Y)+ f(Y) +1, (4.4)

which is equivalent to



CHAPTER 4. EMBEDDING DEGREE SEQUENCES 41

JX) > XY+ f(Y)+1, (4.5)

as (G is a complete bipartite graph. Furthermore, using the minimality of | X|+ Y],

we know that

J(X —a) <X —da||Y]+ f(Y) (4.6)
for any a € X. (4.6) is equivalent to
J(X) = fla) < [X|)Y] = [Y]+ f(Y). (4.7)
From (4.5) and (4.7) we have
fla) =1 =1Y] (4.8)

for any a € X, which implies
A> Y] (4.9)

The same reasoning also implies that A > | X| whenever (X,Y) is a counterexam-
ple. Therefore we only have to verify that (4.3) holds in case | X| < A and [Y| < A.
Recall that f(B) > t, as all elements of f are positive. Hence, f(X) < A|X| < A2,
and f(Y) > f(B) — f(Y) >t — A? and we get that

FX) S A2 <t A2 < (V) < (V) + ea(X,Y) (4.10)

holds, since ¢ > 2A2, O

Proof. (Lemma 47) Assume that J = (S,7; E(J)) is a g-unbalanced bipartite
graph realizing 7. Hence, ¢|S| < |T]. Moreover, |T| < DIS|, since A(n) < D.
We form vertex disjoint tuples of the form (s;¢y,...,{), such that s € S, t; € T,
g < h < D, and the collection of these tuples contains every vertex of SUT exactly

once. We define the bias of the tuple as

C=w(t) + -+ wlta) — 7(s). (1.11)
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Obviously, —D < ¢ < D?. The conditions of Proposition 48 are clearly met with
K — D% Hence, we can form groups of size at most 2D? in which the sums of
biases are zero. This way we obtain a partition of (S,7) into g-unbalanced set
pairs which have zero bias. While these sets may be small, we can combine them
so that each combined set is of size at least 2D? and has zero bias. By Lemma 50
these are bigraphic sequences. The realizations of these small sequences give the
graphs My, ..., Hg. Tt is easy to see that v(H;) < 4D? for every 1 < i < k. Finally,
we let H = U H,. O

4.2.2 Decomposing G,

Let us apply the Regularity Lemma (Lemma 7) with parameters 0 < ¢ < d < 7.
By Corollary 9 we have that §(G,) > ¢/(q+ 1) + nt/2.

Let h > 1 be an integer. An h-star is a K. The center of an h-star is the vertex
of degree h, the other vertices are the leaves. In case h = 1 we pick one of the

vertices of the 1-star arbitrarily to be the center.

Lemma 51. The reduced graph G, has a decomposition S into vertex disjoint stars

such that each star has at most q leaves.

Proof. Take a partial star-decomposition of G, as large as possible. Assume that
there are uncovered vertices in G,. Let U denote the set of covered vertices (we
assume that U has maximal cardinality), and let v be an uncovered vertex. See
Figure 4.4 for the possible neighbors of v. Observe that v has neighbors only
in U, otherwise, if wv € F(G,) with v ¢ U, then we can simply add uv to the

star-decomposition, contradicting to the maximality of U.
a) If v is connected to a 1-star, then we can replace it with a 2-star.

b) If v is connected to the center u of an h-star, where h < ¢, then we can

replace this star with an h 4 1-star by adding the edge uv to the h-star.
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¢) If v is connected to a leaf u of an h-star, where 2 < h < g, then replace the

star with the edge wv and an (h — 1)-star (i.e., delete u from it).

We have not yet considered one remaining case: when v is connected to the center
of a ¢g-star (case d)). However, simple calculation shows that for every vertex v at
least one of the above three cases must hold, using the minimum degree condition
of G,. Hence we can increase the number of covered vertices. We arrived at a

contradiction, (&, has the desired star-decomposition. O

Figure 4.4: An illustration for Lemma 51

4.2.3 Preparing G for the embedding

Consider the g-star-decomposition § of G, as in Lemma 51. Let ¢; denote the
number of (i — 1)-stars in the decomposition for every 2 < i < g+ 1. It is easy to

see that
g+1

> it =t (4.12)
=2

First we will make every e-regular pair in S super-regular by discarding a few
vertices from the non-exceptional clusters. Let for example C be a star in the
decomposition of GG, with center cluster A and leaves By, ..., By, where 1 < k <gq.
Recall that the (A, B;) pairs has density at least d. We repeat the following for
every 1 < i < k: if v € A such that v has at most 2dm/3 neighbors in B; then
discard v from A, put it into Wy. Similarly, if w € B; has at most 2dm /3 neighbors
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in A, then discard w from B;, put it into W,. Repeat this process for every star

in S. We have the following:

Claim 52. We do not discard more than gem vertices from any non-exceptional

cluster.

Proof. Given a star C in the decomposition S assume that its center cluster is A
and let B be one of its leaves. Since the pair (A, B) is e-regular with density at
least d, neither A, nor B can have more than em vertices that have at most 2dm/3
neighbors in the opposite cluster. Hence, during the above process we may discard
up to gem vertices from A. Next, we may discard vertices from the leaves, but
since no leaf B had more than em vertices with less than (d — £)m neighbors in A,
even after discarding at most gem vertices of A, there can be at most em vertices
in B that have less than (d — (¢ + 1)e)m neighbors in A. Using that ¢ < d, we
have that (d — (¢ + 1)) > 2d/3. We obtained what was desired. O

By the above claim we can make every e-regular pair in S a (2¢,2d/3)-super-
regular pair so that we discard only relatively few vertices. Notice that we only
have an upper bound for the number of discarded vertices, there can be clusters
from which we have not put any points into W,. We repeat the following for every
non-exceptional cluster: if s vertices were discarded from it with s < gem then
we take gem — s arbitrary vertices of it, and place them into W,. This way every
non-exceptional cluster will have the same number of points, precisely m — gem.
For simpler notation, we will use the letter m for this new cluster size. Observe
that Wy has increased by gemf vertices, but we still have |Wy| < 3dn since ¢ < d
and ém < n. Since gem < d, in the resulting pairs the minimum degree will be
at least dm/2.

Summarizing, we obtained the following:

Lemma 53. By discarding a total of at most gen vertices from the non-exceptional

clusters we get that every edge in S represents a (2¢,d/2)-super-reqular pair, and
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all non-exceptional clusters have the same cardinality, which is denoted by m.
Moreover, |Wy| < 3dn.

Since v(G) — v(H) is bounded above by a constant, when embedding H we need
almost every vertex of (7, in particular those in the exceptional cluster Wy. For
this reason we will assign the vertices of Wy to the stars in §. This is not done in

an arbitrary way.

Definition 54. Let v € W, be a vertex and (Q,7T) be an e-regular pair. We say
that v € T has large degree to @ if v has at least n|Q|/4 neighbors in Q. Let
S = (A, By,...,Bg) be astar in § where A is the center of S and By, ..., By are
the leaves, here 1 < k < ¢. If v has large degree to any of By, ..., B, then v can
be assigned to A. If k < ¢ and v has large degree to A, then v can be assigned to

any of the B; leaves.

Observation 55. If we assign new vertices to a g-star, then we necessarily as-
sign them to the center. Since before assigning, the number of vertices in the
leaf-clusters is exactly q times the number of vertices in the center cluster, af-
ter assigning new vertices to the star, q times the cardinality of the center will be
larger than the total number of vertices in the leaf-clusters. If S € S is a k-star with
1 <k < q, and we assign up to cm vertices to any of its clusters, where 0 < ¢ < 1,
then even after assigning new vertices we will have that g times the cardinality of

the center is larger than the total number of vertices in the leaf-clusters.
The following lemma plays a crucial role in the embedding algorithm.

Lemma 56. Every vertex of Wy can be assigned to at least nf/4 non-exceptional

clusters.

Proof. Suppose that there exists a vertex w € W, that can be assigned to less than
nt/4 clusters. If w cannot be assigned to any cluster of some k-star S, with k < ¢,
then the total degree of w into the clusters of Sy is at most knm/4. If w cannot
be assigned to any cluster of some g-star S;, then the total degree of w into the

clusters of S, is at most m + gnm/4, since every vertex of the center cluster could
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be adjacent to w. Considering that w can be assigned to at most n¢/4 — 1 clusters
and that deg(w, W — Wy) > n/(q+ 1) + nn/2, we obtain the following inequality:

n nn 12

g+1 2
g—1

¢ ¢
Skt D g g m,

4 4

k=1
q

Using m¢é < n and »_ (k+ 1)fq1 = ¢, we get

k=1
me nmé m nm
— b —<p— (b)) —
byr1m
qn qtf + lgram.

Dividing both sides by m and cancellations give

14 nly1 ( n
< Y
PR R 1) b1

+ — < deg(v,W — Wp) < nTer

(4.13)

(4.14)

(4.15)

Noting that (g + 1)¢,41 < ¢, one can easily see that we arrived at a contradiction.

Hence every vertex of W, can be assigned to several non-exceptional clusters. [

Lemma 56 implies the following:

Lemma 57. One can assign the vertices of Wy so that at most v/dm vertices are

assigned to non-exceptional clusters.

Proof. Since we have at least n¢/4 choices for every vertex, the bound follows from
the inequality % < V/dm, where we used that d < n and that |Wy| < 3dn. O

Observation 58. A key fact is that the number of newly assigned vertices to a

cluster 1s much smaller than their degree into the opposite cluster of the reqular

pair since \/dm < nm/4.
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4.2.4 The embedding algorithm

The embedding is done in two phases. In the first phase we cover every vertex that
belonged to Wy, together with some other vertices of the non-exceptional clusters.
In the second phase we are left with super-regular pairs into which we embed what

is left from H using the Blow-up Lemma.

The first phase

Let (A, B) be an e-regular cluster-edge in the h-star C € S. We begin with
partitioning A and B randomly, obtaining A = A’ U A” and B = B’ U B” with
ANA"= B NB"= . For every w € A (except those that came from W) flip
a coin. If it is heads, we put w into A’, otherwise we put it into A”. Similarly,
we flip a coin for every w € B (except those that came from W) and depending
on the outcome, we either put the vertex into B’ or into B”. The proof of the

following lemma is standard, uses Chernoff’s bound (see in [3]).

Lemma 59. With high probability, that is, with probability at least 1 — 1/n, we
have the following:

o [|A] = |A"][ = o(n) and || B| - |B"|| = o(n)

o deg(w, A'), deg(w, A”) > deg(w, A)/3 for every w € B
e deg(w, B'),deg(w, B") > deg(w, B)/3 for every w € A
e the density d(A', B') > d/2

It is easy to see that Lemma 59 implies that (A’, B’) is a (5e, d/6)-super-regular
pair having density at least d/2 with high probability.

Assume that v was an element of W, before we assigned it to the cluster A,
and assume further that deg(v, B) > nm/4. Since (A, B) is an edge of the star-

decomposition, either A or B must be the center of C.
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Let H; be one of the g-unbalanced bipartite subgraphs of H that has not been
embedded vet. We will use H; to cover v. Denote S; and T} the vertex classes of
H;, where |S;| > q|T;|. Let S; = {xy,...,xs} and T; = {y1, ...,y }-

If A is the center of C then the vertices of T; will cover vertices of A’, and the
vertices of S; will cover vertices of B’. If B is the center, S; and T; will switch
roles. The embedding of H; is essentially identical in both cases, so we will only
discuss the case when A is the center. (Recall that if A < ¢ then we may assigned

v to a leaf, so in such a case B could be the center.)

In order to cover v we will essentially use a well-known method called Key Lemma
in [45]. We will heavily use the fact that

D<ed<n. (4.16)

The details are as follows. We construct an edge-preserving injective mapping
w: S;UT; — A'U B'. In particular, we will have ¢(S;) C B" and ¢(T;) —v C A'.
First we let o(y;) = v. Set Ny = N(v) N B’. Using Lemma 59, we have that
|INi| > nm/12 > em.

Next we find ¢(y2). Since |Ni| > em, by be-regularity the majority of the vacant
vertices of A’ will have at least d|N;|/3 neighbors in N;. Pick any of these, denote
it by vy and let (y2) = vy. Also, set Ny = Ny N N(vy).

In general, assume that we have already found the vertices wvq,vs,...,v;, their

common neighborhood in B’ is N;, and

|N;| > W;lm > em. (4.17)

3-2.36
By 5e-regularity, this implies that the majority of the vacant vertices of A’ has
large degree into N;, at least d|V;|/3, and this, as above, can be used to find v; ;.
Then we set @(y;11) = vip1. Since n and d is large compared to ¢, even into the

last set N;_; many vacant vertices will have large degrees.

As soon as we have o(y1),...,0(y), it is easy to find the images for zq,..., z;.
Since |N¢| > em > s = |S;|, we can arbitrarily choose s vacant points from N for

the @(x;) images.
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Note that we use less than v(H;) < 4D? vertices from A’ and B’ during this
process. We can repeat it for every vertex that were assigned to A, and still at

most \/d2D?m vertices will be covered from A’ and from B'.

Another observation is that every h-star in the decomposition before this em-
bedding phase was h-unbalanced, now, since we were careful, these have become
h'-balanced with A’ < h.

Of course, the above method will be repeated for every (A, B) edge of the decom-

position to which we have assigned vertices of Wj.

The second phase

In the second phase we first unite all the randomly partitioned clusters. For
example, assume that after covering the vertices coming from W) the set of vacant
vertices of A’ is denoted by A!. Then we let A, = Al U A", and using analogous
notation, let B, = B U B”.

Claim 60. All the (A,, B,) pairs are (3¢,d/6)-super-regular with density at least
d/2.

Proof. The 3e-regularity of these pairs is easy to see, like the lower bound for the
density, since we have only covered relatively few vertices of the clusters. For the
large minimum degrees note that by Lemma 59 every vertex of A had at least dm/6
neighbors in B”, hence, in B, as well, and analogous bound holds for vertices of
B. 1

At this point we want to apply the Blow-up Lemma for every star of S individually.
For that, we first have to assign those subgraphs of H to stars that were not

embedded yet. We need a lemma.

Lemma 61. Let K, be a complete bipartite graph with vertez classes A and B,
where |A| = a and |B| = b. Assume that a < b= ha, where 1 < h < q. Let H' be
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the vertex disjoint union of q-unbalanced bipartite graphs:

t

H =] Hj, (4.18)

such that v(H;) < 2D? for every j. If v(H') < a+b—4(2q+1)D?, then H' C K.

Observe that if we have Lemma 61, we can distribute the H; subgraphs among the
stars of S, and then apply the Blow-up Lemma. Hence, we are done with proving

Theorem 42, if we prove Lemma 61 above.

Proof. The proof is an assigning algorithm and its analysis. We assign the vertex
classes of the H; subgraphs to A and B, one-by-one. Before assigning the jth
subgraph H;, the number of vacant vertices of A is denoted by a; and the number

of vacant vertices of B is denoted by b;.

Assume that we want to assign Hy. If ha, — b, > 0, then the larger vertex class of
H,. is assigned to A, the smaller is assigned to B. Otherwise, if ha, — by < 0, then
we assign the larger vertex class to B and the smaller one to A. Then we update the
number of vacant vertices of A and B. Observe that using this assigning method

we always have a; < by.

The question is whether we have enough room for Hj. If ha > 4hD?, then we
must have enough room, since by > a; and every H; has at most 2D? vertices.
Hence, if the algorithm stops, we must have a; < 4D?. Since by — hai, < 2D? must
hold, we have by < (2h + 1)2D? < (2¢ + 1)2D?. From this the lemma follows. [

4.3 Remarks

One can prove a very similar result to Theorem 42, in fact the result below follows
easily from it. For stating it we need the notion of graph edit distance which is
defined in [49] as it follows: the edit distance between two graphs on the same

labeled vertex set is the size of the symmetric difference of the edge sets.
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Theorem 62. Let ¢ > 1 be an wnteger. For every n > 0 and D € N there exist
an ng = no(n,q) and a K = K(n, D,q) such that if n > ng, 7 is a q-unbalanced
degree sequence of length n with A(r) < D, G is a graph on n vertices with
MNG) > (L + ?7) n, then there exists a graph G' on n vertices such that the edit

gt+1
distance of G and G’ is at most K, and © can be embedded into G'.

Here is an example showing that Theorem 42 and 62 are essentially best possible.

Example 63. Assume that © has only odd numbers and G has at least one odd
sized component. The embedding is impossible. Indeed, any realization of © has

only even sized components, hence G cannot contain it as a spanning subgraph.

Note that this example does not work in case G is connected. In Theorem 40 the
minimum degree 6(G) > n/2 -+ nn, hence, G is connected, and in this case we can

embed 7 into G.



Chapter 5

On the relation of separability and
bandwidth

In this chapter we consider a third embedding/packing problem, and we present
the results of [20].

The famous Bollobas-Eldridge-Catlin (BEC) Conjecture |7, 12| below is among

the most important conjectures in the area:

Conjecture 64 (Bollobés, Eldridge; Catlin). If Gy and Gy are graphs on n vertices

with mazximum degree Ay and Ay, respectively, and
(A1 + DAy + 1) <n+1,

then G and Gy pack.

Since the above conjecture is open in general, we impose further conditions for H
and G in order to be able to solve special cases of the problem. One possibility is
to consider only bounded degree H graphs to be embedded. The BEC Conjecture
was solved in case A(H) = 2 [2], A(H) = 3 [19], and when A(H) is bounded and
H is bipartite [17]. There is an approximation result in which (A; + 1)(Ag + 1) <
0.6n [38].

52
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One may impose other restrictions on H still obtaining hard (but somewhat easier)
problems. For example one may upper bound the so-called bandwidth of H, this

guarantees that H is “far from being an expander”.

Definition 65. Let [/(V,E) be a graph. Let F = {f : V — {1,...,n}} be a
family of bijective functions on V. The bandwidth of H is

p(H) = min max {[f(v;) — f(v;)[}.

feF viv]EE

See also Figure 5.1.

Figure 5.1: Bandwidth. Figure based on [53]

Note that a Hamilton path has bandwidth 1, a Hamilton cycle has bandwidth 2.

Expander graphs have large, linear bandwidth, a star on n vertices has bandwidth
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n/2, a complete graph has bandwidth n — 1. One of the important open problems

of the area was the following conjecture by Bollobas and Komlos.

Conjecture 66 (Bollobas, Komlos). For every D, k, e there exists 3 such that the
following holds. Every n-vertex graph G of minimum degree at least (1 — 1/k +
eyn contains all k-chromatic n-vertex graphs of maximum degree at most D and

bandwidth at most Bn as subgraphs.

This conjecture was proved by Bottcher, Schacht and Taraz [10] using deep tools,
in particular the proof of the celebrated Pésa-Seymour conjecture by Komlods,

Sarkozy and Szemerédi [43].

In [8] and [9] Bottcher and Bottcher et al. go further and explore relations of
bandwidth with other notions, like separability. Separability plays an important

role in this chapter.

Definition 67. We say that an n-vertex graph H is y-separable if there exists a
separator set S C V(H) with |S| < «n such that every component of H — S has

at most o(n) vertices.

Bottcher et al. [9] observed that bandwidth and separability are closely related:
they proved the Sublinear Equivalence Theorem. This states that, roughly speak-
ing, sublinear bandwidth implies the existence of a sublinear sized separating set

and vice versa.

One of our main results shows that when the separating set has linear (small, but
not very small) size, the bandwidth can be very large even for bounded degree

graphs.

Theorem 68. Let r > 35 and t > 2 be integers and set v = v(r) = 1/(8r2").
Then there ezists an infinite class of graphs H, such that every element H of H,,
has a separator set of size at most yv(H), has bandwidth at least 0.3v(H)/(2t +4),
moreover, A(H) = O(1/7).

It is easy to see that there are bounded degree graphs having linearly large band-

width since it is well-known that a random [-regular graph with [ > 3 has large
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bandwidth with positive probability. However, such random graphs do not have

small separators.

Knox and Treglown [39] embedded bounded degree graphs with sublinear band-

width into so-called robust expanders.

Definition 69. Let 0 < v < pu < 1. Assume that G is a graph of order n and
S C V(G). The v-robust neighborhood RN, (S) of S is the set of vertices v €
V(G) such that |N(v) NS| > vn. We say that G is a robust (v, u)-ezpander if
|RN, c(S)| > |S| 4+ vn for every S C V(G) such that un < |S| < (1 — p)n.

See also Figure 5.2.

Figure 5.2: v-robust neighborhood

We will also show that elements of H,, cannot be embedded into arbitrary robust
expanders. However, if an n-vertex graph G has minimum degree slightly larger
than n/2, then it contains the elements of H,; as spanning subgraphs. We will

prove the following.

Theorem 70. Let r > 35 and t > 2 be integers and set v = v(r) = 1/(8r2"). Then
there ezists an ng = no(7y) such that the following holds. Assume that n > ny and
G is an n-verter graph having minimum degree 0(G) > (1/2+2vY*)n. If H € H,,

15 a graph on n vertices, then H C G.

The proof of Theorem 70 will rely heavily on the proof method of [18]. Let us
remark that in [18] the size of the separator set was o(n), and therefore the band-

width was also o(n). This time the separator set is quite large compared to previous
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results. This is why the minimum degree bound for G contains v, unlike in the
main result of [18], although we still need only slightly larger 6(G), than n/2. The
latter is the bound, for example, when we want to tile ¢ with vertex disjoint copies

of a fixed bipartite graph.

5.1 Construction of H,; and proof of Theorem 68

In order to exhibit the infinite family of graphs H,, we first need to construct
certain kind of bipartite expander graphs. We begin with defining a bipartite
graph F' with vertex classes Vi and V5 such that |Vi| = |Vo| = k and F has
relatively good expansion properties. Our construction of F relies on the existence

of so-called Ramanujan graphs.

Definition 71. An r-regular (nonbipartite) graph U is a Ramanujan graph if
A < 2+y/r — 1, where X is the second largest in absolute value of the eigenvalues of

U (since U is r-regular, the largest eigenvalue is r).

Lubotzky, Phillips and Sarnak [47], and independently Margulis [48], constructed
for every r = p+ 1 where p =1 mod 4 infinite families of r-regular graphs with
second largest eigenvalues at most 2v/r — 1. We need a fact about these graphs, a

lower bound for the number of edges between subsets of U.

Lemma 72. Let U be a graph as above. Then for every two subsets A, B C V(U)
where |A| = ak and |B| = bk we have

le(A, B) — abrk| < 2v'r — 1V abk.

The proof of Lemma 72 can be found for example in [3].

Corollary 73. Let U be an r-reqular Ramanujan graph on k vertices with r > 35.
Let us assume that A, B C V(U) with |A| = |B] = k/3 and AN B = (). Then
e(A,B) > 1.
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Proof. 1t is easy to see that the expression of Lemma 72 gives a lower bound for
e(A, B) which is monotone increasing in r. Hence it is sufficient to apply Lemma 72
with r = 35 and ¢ = b = 1/3. Straightforward computation gives what was
desired. O

We are ready to discuss the details of the construction of F. Given an r-regular
Ramanujan graph U with r > 35, the vertex classes of F' will be copies of V(U) : for
every x € V(U) we have two copies of it, 1 € V) and x5 € V5. For every xy € E(U)
we include the edges x1y2 and xoy; in E(F). Finally, for every x € V(U) we will
also have the edge zyxy in E(F). Observe that F is an (r + 1)-regular bipartite

graph. The following claims are crucial for the construction of H, ;.

Claim 74. Let A C V) and B C V; be arbitrary such that |A| = |B| = k/3. Then
e(A,B) > 1.

Proof. 1If there exists x € V(U) such that x; € A and x5 € B, then we are done,
since every x1xy edge is present in . If there is no such x € V(U), then we can

apply Corollary 73 and obtain what is desired. O

Claim 75. For every A C Vi we have |N(A)| > |A|. Analogous statement holds
for any subset B C V5.

Proof. The claim easily follows from the fact that we included a perfect matching

in /" when we added every x5 edge to E(F). O

Observe that we have a bipartite graph F with v(F) = 2k whenever there exists
a Ramanujan graph U with v(U) = k, for the latter we also assume that r > 35.
Thus, there exists an infinite sequence of {F;}°, graphs on increasing number of

vertices, say, F; has 2k; vertices.

We are ready to define H, ;. Each graph from this class is -separable where v =
~v(r) can be relatively small as we will see soon. Still, the bandwidth of each of
them is very large. Hence, H,, demonstrates that in spite of sublinear equivalence

of separability and bandwidth, there is no linear equivalence.
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The construction of H,, is somewhat specific, we do it with foresight as our goal
is not only to further explore the relation of separability and bandwidth but also

to be able to embed the elements of H,; later.

Definition 76. Let n,m € N and set v = ~v(r) = 1/(8r2"). Let F; be the bipartite
graph as above on 2k; vertices which is (r + 1)-regular such that k; is the largest
for which yn > 2k,. The elements of H,, are constructed as follows. Given n we
let H= (A, B; E) € H,, to be the following bipartite graph.

L ||[A] = |Bl| < 1,and |V]| = |[AU B| =n,

2. let S = 54U Sp such that |Sa| = |SB| = ki,
3. H[S] = F and E(H[S4]) = E(H[SE]) =0,
4. D= A(H) = 0@2),

5. for every point x € S we have a unique path P, of length ¢ starting at x and
ending at z, and z has D neighbors such that each has degree 1 except one

that precedes z in P,.

See also Figure 5.3.
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Figure 5.3: Sketch of an element of H, ;
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Note that S is a separator set of H with |S| = 2k; ~ yn, every component of H— S
has less than ¢t 4 D vertices. From this one can easily obtain the bound D < 3n/k;.

The following lemma is crucial for bounding the bandwidth of H € H, ;.

Lemma 77. Let H be an element of H,, onn vertices. Assume that X,Y C V(H)
with | X|,[Y| > 0.35n and X NY = 0. Then there exist an x € X and ay € Y
such that the distance of x and y 1s at most 2t + 4.

Proof. Denote the vertices of H — S closer to S4 by A*, and analogously, the
vertices of H — S closer to Sg by B*. By the construction of H we have |A* =
|B*| = (1 —~)n/2. Note that v < 0.01 since r > 35. Hence we have that | X — S| >
0.34n and |Y — S| > 0.34n. Thus, either | X N A*| > |A*|/3 or | X N B*| > |B*|/3.
Without loss of generality, suppose the former. This also implies that at least 1/3

of the components of A* have vertices in X.

It is useful to introduce the notations X 4 for Ng,(X), Y4 for Ng, (V) and Yp for
Ng, (V). Using these notations we have that | X4| > k/3 and either |Y4| > k/3, or
YB| > k/3.

If |[Yg| > k/3, then by Claim 74 there is an edge sq between X4 and Yp, and
therefore we have a path xv,...visquy ... u,y of length 2t + 3, where z € X,y €
Yv, e A*, s€ X4, g€ Yp, u; € B*.

If Yp < %, then Y] > k/3. Let Y}, = Ng,(Y4). Claim 75 implies that [Y}| >
|Y4| > k/3, so by Claim 74 H has an edge between Y} and X,4. Thus, we have a
path zv, ... v181gsauy ... u,y of length 2t + 4, where x € X,y € Y,v; € A* u; €

B* 51 € X4, s5€ Yy and g € Y}, ]

Corollary 78. Let H be an element of H,, on n vertices. Then the bandwidth of

: 0.3n
H 1is at least s

Proof. Take an arbitrary ordering P of the vertices of H. Let X be the first 0.35n
vertices, while Y be the last 0.35n vertices of P. Using Lemma 77 there is an
x € X and an y € Y such that the distance of x and y is at most 2t + 4. Their
distance in P is at least 0.3n. Thus at least one of the edges of the shortest path
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between x and y must have “length” at least 2%, from which the bound for the

bandwidth follows immediately. O

With this we proved Theorem 68. Note that choosing ¢ = 2 results in graphs
having bandwidth at least 3n/80 while being y-separable.

As we mentioned in the introduction Knox and Treglown [39] embedded spanning
subgraphs of sublinear bandwidth into robust expanders. Recall the notion of
robust expanders. The following example shows that graphs of H,; not only
have very large bandwidth, these graphs are not necessarily subgraphs of robust
expanders. Hence, in the theorem of Knox and Treglown one cannot replace small

bandwidth by ~y-separability, unless ~ is very small.

Let us construct a robust expander. Set o = 0.002 (we remark that we did not
look for optimal constants here) and let G = (V, /) be the following graph on n
vertices. The vertex set of G is V = AgUA U - - UAygo, where |4A;] = (14 o)’
for every 0 <14 < 400 and Ayg contains the remainder of the vertices. The edges
of GG are defined as follows: F(G) contains the edges v;v;,1 for every v; € A; and
Vi1 € Ajqq for 0 <4 < 400, and G[Aygo| is the complete graph on |Aygp| vertices.
It is easy to see that G is a (1/1000, 1/1000)-robust expander. For the structure

of G, see also Figure 5.4,

Lemma 79. Let H be a graph from H,, on n vertices and let G be as above. Then
HZ G ift <47

Proof. First we give an upper bound for n — |Aygol:

399 399

. n n o 1.002%%° —1
— g0l = A =Y 0+ 0y = ——. < 0.62n,
= |Asol UO ZZ( 000~ 1000 0.002 "
300 301
80 [Agoo| > 0.35n. Let B = |J A;. We have |B| = & - X282=1 > (.35n.
=0

The shortest path between B and A,qq is of length 100. This means that H cannot
be packed into G, as in H there is a path of length 2t 4 4 < 98 between any two

disjoint sets of size at least 0.35n. O
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5.2 Proof of Theorem 70

The proof of Theorem 70 is very similar to the proof of the main result of [18].
Hence, we will first sketch the proof of the latter one in an itemized list, and then
discuss the differences we will make when proving our main result. First let us
state a special case of the main theorem of [18] for embedding bipartite graphs

with small separators.

Theorem 80. For every ¢ > 0 and positive integer D there exists an ng = no(e, D)
such that the following holds. Assume that H s a bipartite graph on n > ng vertices
which has a separator set S such that |S| = o(n), and every component of H — S
has o(n) vertices. Assume further that A(H) < D. Let G be an n-vertex graph
such that 5(G) > (1/2 + e)n. Then H C G.
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One can observe the similarities with Theorem 70. The main difference is that in
Theorem 70 the separator set can be very large compared to the separator set in

the above result.

Besides the Regularity Lemma (Lemma 7) and the Blow-Up Lemma (Theorem 12),

another very important tool for us is the following result by Fox and Sudakov [27].

Theorem 81. Let H be a bipartite graph with n vertices and mazimum degree
A>1.1If p>0and G is a graph with N > 8Ap~2n vertices and at least p(J;[)
edges, then H C G.

We are going to apply Theorem 81 in the special case p = 1/2.

5.2.1 Sketch of the proof of Theorem 80

The Regularity Lemma of Szemerédi [58] and the Blow-up Lemma [42] plays a very
important role in the proof. On these important tools we gave a short overview
in the Introduction. The interested reader may consult with the survey paper by

Komlos and Simonovits [40] also.

Step 1: Apply the Degree Form of the Regularity Lemma with parameters 0 <
£ € d < 1 in order to obtain a partition of V(G) into the clusters Wy, W,

..., Wy, where W, is the exceptional cluster.

Step 2: Construct the reduced graph G, on the non-exceptional clusters, in
which two clusters are adjacent if and only if they form an e-regular pair

with density at least d.

Step 3: Find a maximum matching M in G,. Using the minimum degree condi-
tion, the vertex set of M may not contain at most one cluster — its vertices

are put into Wj,.

Step 4: Make the edges of M super-regular. At most 2en vertices are put into
W,y at this point.



CHAPTER 5. SEPARABILITY AND BANDWIDTH 63

Step 5: Distribute the vertices of W, among the non-exceptional clusters while

keeping super-regularity.

Step 6: Assign the vertices of H to clusters of GG, so that the following holds:
whenever zy € E(H) for x,y € V(H), then C(x)C(y) € E(G,), where
C(x), (respectively, C(y)) denotes the cluster to which x (respectively, y) is
assigned. This is done in two steps: first randomly distribute the components
of H — S and S, then in the second step a few vertices may get reassigned

in order to satisfy the above requirement for every edge of H.

Step 7: At this point it is possible that there are more (or less) vertices assigned
to a cluster than its size. A procedure very similar to the one used in Step

5 helps in finding the balance.
Step 8: Applying the Blow-up Lemma finishes the proof.

Readers familiar with the Regularity Lemma — Blow-up Lemma method may
observe that the first seven steps are essentially a preparation for being able to

apply the Blow-up Lemma.

5.2.2 Proof of Theorem 70

As we indicated above, the proof of Theorem 70 is very similar to the proof of

Theorem 80. Hence, below we will concentrate on the differences of the two.

Assume that H € H,; has n vertices. Denote the separator set of H by
S. Then we have |S| < ~n. Observe that we can apply the deep result of Fox
and Sudakov, Theorem 81 for finding a copy of H[S] in G, since 6(G) > n/2.
Let us denote the uncovered part of G' by G after embedding H|[S]. Note that
§(G) > (1/2 +~+Y3)n.

Next we apply the Degree Form of the Regularity Lemma for G with param-
eters € and d = /7. We form the reduced graph G,, and then find an (almost)
perfect matching M in G,. Then we make the edges of M super-regular, and then

distribute the vertices of W, among the non-exceptional clusters so that the pairs
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in M remain super-regular. These steps are in fact identical to the corresponding

ones (Step 1 — Step 5) in the proof of Theorem 80.

Next we assign the components of H — S to the non-exceptional clusters. We
do it using a random procedure (randomness is not necessary here, but a simple
choice), the components are assigned randomly to edges of M. This immediately
implies that whenever x,y belong to the same component and are adjacent, then
C(x)C(y) is an edge of M. Still, there could be vertices x,y € H such that zy €
E(H), but C(z)C(y) ¢ E(G,). This can happen only in case x € S and y €
V(H) — S. In such a case we repeat the procedure from the proof of Theorem 80

mentioned in Step 6.

There is an important difference of the two proofs at this point, so we provide
more details here. Assume that x € S is mapped onto v € V(G) in the beginning.
Let L denote those clusters in which v has at least y/m neighbors. Let C(y)W;
denote the edge of M to which the component of y was assigned. Then we locate
a cluster W; € L such that W; is adjacent to W; in ér. Then we reassign y to W;.
This way v will have many neighbors in the cluster of y and the cluster of y will
be adjacent to the cluster of the neighbors of y in its component. Observe that if
we locate the W; clusters as evenly as possible then we can achieve that at most
about v%%m vertices are reassigned to a particular cluster. Here we used that the
set of vertices to be reassigned are neighbors of S| and there are less than n/D

such vertices.

Next we repeat the procedure of Step 7. The method we use for balancing is
essentially the same we discussed above. Say, that W, has more vertices assigned
to it than |W;|. Then there must be a cluster W; to which we assigned less than
|W;| vertices of H. Let W; denote the neighbor of W, in the matching M. If W, W,
is an edge in G,, then we pick a vertex x such that C'(x) = W, and d(z) = D — 1
(using the random distribution there are many choices for ). We reassign some

of the leaves that are adjacent to x, the right number will be assigned to W.

If W;W; is not an edge, then there exists a cluster W, such that W, W, and
W,;W, are edges in G,, and W, W, is an edge in M. Then the above procedure is
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done in two steps: first we reassign some vertices from W, to W, and then from W,
to W;. Note that the same computation works as above: at most v**m vertices

are reassigned at every cluster.

Since the density of the e-regular pairs is at least /7, and at most ¥*3m
vertices are reassigned at every cluster, we are able to apply the Blow-up Lemma.
This finishes the proof of Theorem 70.



Summary

This thesis consists of four main parts. In Chapter 2 we deal with a lower esti-
mation on the size of simple suffix trees. First, we present a simple algorithm for
constructing the suffix tree of a string. Then, with the help of aperiodic strings
and with some simple combinatorial reasoning, we give a quadratic lower bound
on the size of the suffix tree of a random string. The main results are formulated
in Theorem 23, Theorem 24 and Theorem 25.

In Chapter 3 we consider bipartite graph packing and embedding problems.
In Theorem 33 we give almost tight conditions on embedding of a bipartite graph
into another, where the former has bounded degrees, while the latter has large
degrees. For the proof, we use a well-known result of Lovész, Lemma 36, and with

its help we prove the key technical lemma, and we also use martingales.

In Chapter 4 we consider another embedding question, that of degree se-
quences and graphs. In Theorem 40 we prove that a degree sequence 7 bounded
with a constant from above can be embedded into a graph G with sufficiently large
degrees. For achieving the proof, we find a suitable realization of 7, then we em-
bed it into G. Through the proof, we use the Erdés-Stone theorem formulated in
Theorem 44 [14] and a result on well-separable graphs, formulated in Theorem 46

[18], which is based on the Regularity Lemma of Szemerédi.

In Theorem 42 we show that a g-unbalanced degree sequence 7 can be em-
bedded into a graph G with sufficiently large degrees and on slightly more vertices

than the length of 7. First, we find again a suitable realization of 7, i.e. a union
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of smaller g-unbalanced bipartite graphs, then with the help of the Regularity
Lemma we find a a special substructure in GG, and finally, we finish the embedding.
In finding H, which is done in Subsection 4.2.1 we use a result from number theory,
which is formulated in Proposition 48 [56]. Using Lemma 49, which is a result of
Lovész |46], we prove Lemma 50, which implies Lemma 47. The decomposition of
G is done in Subsection 4.2.2, in Lemma 51. In Subsection 4.2.3 we prepare the
graph for embedding by distributing the exceptional class of the reduced graph.

Finally, we describe the embedding algorithm in Subsection 4.2.4.

In Chapter 5, in Theorem 68 we show the existence of bounded degree bi-
partite graphs with a small separator and large bandwidth. For the construction
we use Ramanujan graphs. Then in Theorem 70 we prove that under certain
conditions these graphs can be embedded into graphs with minimum degree only
slightly over n/2. This proof is similar to that of the main result of [18], thus we

give a sketch for the latter, and note the differences.



Osszefoglalas

Ez a disszertacio négy {6 részbdl All. A 2. fejezetben alsod becslést adunk az egyszer
szuffixfadk méretére. ElGszor bemutatunk egy egyszerd algoritmust, mellyel elGal-
lithatjuk egy szoveg szuffixfajat. Ezutan az aperiodikus szdvegek segitségével és
alapvet6 kombinatorikai gondolatokkal négyzetes also korlatot adunk egy véletlen
szoveg szuffixfijanak méretére. E rész {6 eredményeit a 23., a 24. és a 25. tételek-

ben mondjuk ki.

A 3. fejezetben a paros grafpakolast illetve bedgyazasi probléméat vizsgaljuk.
A 33. tételben majdnem pontos feltételeket adunk egy korlatos foka paros graf
nagvfokt paros gratba valoé bedgvazasara. A bizonyit4s soran hasznaljuk Lovasz
jol ismert eredményét, a 36. lemmat. Ennek segitségével bizonyitjuk {6 technikai

lemménkat. A bizonyitas soran martingalokat is felhasznalunk.

A 4. fejezetben egy Gjabb bedgvazasi probléméaval foglalkozunk, mégpedig a
fokszamsorozatok grafokba vald bedgvazasaval. A 40. tételben megmutatjuk, hogy
egy konstans fokkal korlatozott 7w fokszdmsorozat bedgyazhato egy elég nagy foka
G grafba. Ehhez megkeressiik a 7 egy alkalmas megvalositasat, amit bedgvazunk
G-be. A bizonyitis soran hasznaljuk az Erdds—Stone-tételt, amit a 44. tételben
mondunk ki [14], valamint a 46. tétel eredményét a jol-szeparalhato grafokrol [18].

Ebben a bizonyitasban Szemerédi Regularitidsi Lemmajat is hasznaljuk.

A 42. tételben bebizonyitjuk, hogy egy g-kiegvensilyozatlan 7 fokszadmsorozat
bedgvazhato egy elég nagy foka grafba, amelynek kicsit tobb csiicsa van, mint 7

hossza. ElGszor megint egy alkalmas [ realizaciot keresiink w-hez, t6bb kisebb ¢-
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kiegvensilyozatlan paros gratbol, majd a Regularitisi Lemma segitségével talalunk
G-ben egy specidlis struktiurat, végiil befejezziik a bedgvazist. A H graf meg-
talalasaban, amely a 4.2.1. szakaszban torténik, egy szamelméleti eredmény, a 48.
lemma [56] segitségével és Lovasz eredményével, a 49. lemméval [46] megmutatjuk
az 50. lemmét, amelybdl kovetkezik a 47. lemma. G felbontasat a 4.2.2. sza-
kaszban mutatjuk meg, az 51. lemmaban. A 4.2.3. szakaszban a redukélt graf
kivételes osztalyanak szétosztasaval elGkészitjiik a G grafot a bedgvazasra, végiil

a 4.2.4. szakaszban befejezziik a bedgyazast.

Az 5. fejezetben, a 68. tételben megmutatjuk, hogy léteznek olyan korla-
tos foka paros grafok, melyeknek szeparalé halmaza kicsi, mikézben savszélessége
nagy. Ezek megkonstrualasdhoz Ramanujan-grafokat hasznalunk. A 70. tétel-
ben megmutatjuk, hogy bizonyvos feltételek mellett ezeket a grafokat be lehet
agyvazni olyan grafokba, melyek minimélis foka csak kicsit nagyobb n/2-nél. Ez
a bizonyitas hasonld Csaba [18] {6 eredményének bizonyitasdhoz, igy az utobbit

vazoljuk, mikdzben kiemeljiik az eltéréseket.
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