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1. Introduction

Modern algebra’s most essential concept is arguably the congru-
ence relation. The study of any algebraic structure having a non-
trivial congruence can be started by studying its typically simpler
factor. Moreover, for the classical algebraic structures the core of
the congruence is determined by a subalgebra, again, typically a
simpler structure. The natural structure formed by the congruences
of an algebra is a lattice (or rather, in the case of infinitely many
congruences, an algebraic lattice.

On the other hand, certain classes of structures–notably, lattices
themselves–have congruences that are not determined by subalge-
bras (or any particular congruence classes). Still, the congruences of
these structures are of great importance, but for lattices and semi-
lattices in particular, there is an other kind of binary relation that is
most closely associated with the structure: the so-called natural or-
der. There is no general definition for what makes an order natural
(except by untrustworthy ideologues), but a common requirement
seems to be that the order should be compatible with the opera-
tions of the algebra. A notable exception is the natural order on
regular semigroups (see Chapter 6 of [7]), where the relation is not
generally compatible with the semigroup multiplication.

The obvious common generalization of congruences (compatible,
reflexive, transitive, symmerical binary relations) and compatible
orders (the same, with antisymmetry instead of symmetry) are qua-
siorders (the same, without symmetry). The quasiorders of an al-
gebra A (unlike the compatible orders) form a lattice denoted by
Quo A, which contains the congruence lattice (denoted by Con A as
a sublattice.

The goal of the thesis is the study of quasiorder lattices, and
preeminently their connection to congruence lattices. Usually we
will work with finite algebras, or at least algebras in locally finite
varieties. The thesis is based on the papers [9, 10, 12] and the draft
[11], and uses the paper [13].



2

Quo A can be naturally considered as an involutive lattice with
the involution δ 7→ δ−1, where δ−1 is defined by

(a, b) ∈ δ−1 ⇔ (b, a) ∈ δ.

While this natural involution will be used numerously, it should be
noted that the thesis studies quasiorder lattices as lattices, not as
involutive lattices.

For any δ ∈ Quo A there correspond two equivalences: δ∗ :=
δ∧δ−1 and δ∨δ−1. There is also a poset that naturally corresponds
to δ: the factor of δ by δ∗. This is a poset with underlying set A/δ∗,
with (u, v) ∈ δ/δ∗ iff (a, b) ∈ δ for any–or equivalently, all–a and b
satisfying a/δ∗ = u and b/δ∗ = v.

2. Lower bounded lattices

For the purpose of this summary, we will only give one of the
equivalent definitions for lower boundedness of a lattice (see [4] for
more). An element l of a lattice L is join irreducible if there are
no elements l1, l2 < l such that l1 ∨ l2 = l. It is completely join
irreducible if either it is the smallest element of the lattice, or there
is a largest element l∗ among all the elements of the lattice smaller
then l. If an element is completely join irreducible, then it is also
join irreducible, and for finite lattices the converse is also true. The
element is join prime if for all l1, l2 satisfying l1 ∨ l2 ≥ l either l1 ≥ l
or l2 ≥ l. Join primes are join irreducibles. For distributive lattices,
the converse is also true.
D is a binary relation on the set of join irreducible elements of L.

It is defined by

aDb⇔ a 6= b, (∃c : a ≤ b ∨ c, ∀d < b : a 6≤ d ∨ c).

If b is completely join irreducible, this is simplified into

aDb⇔ a 6= b, (∃c : a ≤ b ∨ c, a 6≤ b∗ ∨ c).

A lattice is lower bounded if it is finitely generated and the graph
induced by the relation D does not contain an infinite (directed)
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path. It is upper bounded if its dual is lower bounden, and bounded
if it is both upper and lower bounded.

An important fact is that any lower bounded lattice is join semidis-
tributive, that is, it satisfies the quasi-identity

x ∨ y = x ∨ z → x ∨ y = x ∨ (y ∧ z).
Upper bounded lattices of course satisfy the dual condition, meet
semidistributivity.

3. Suborder lattices of DCC posets

As we have seen, a quasiorder can be factored into a symmetrical
and an antisymmetrical part (δ∗ and δ/δ∗). We will first study parts
of the quasiorder lattice that only contain compatible orders. These
are “lattices of posets”, i.e. they are sublattices of a suborder lattice
of a poset.

Achein in [1] proved that any lattice is isomorphic to a lattice of
posets. However, even if the lattice is finite, the underlying set of the
posets may need to be infinite. Sivak in [18] gave a characterization
for a lattice to be isomorphic to a lattice of posets on a finite set (in
other words, for a lattice to be embeddable into a suborder lattice
of a finite poset). In [2], the authors note that this characterization
precisely describe the class of finite lower bounded lattices.

Semenova in [17] proves something more general: any finite sub-
lattice of a suborder lattice of a poset containing no infinite chain
must be lower bounded. Therefore relaxing the finiteness condition
(from “the poset is finite” to “it contains no infinite chain”) does
not make more finite lattices embeddable. (Infinite lattices are an
other matter, of course: it is very easy to construct a poset without
infinite chain having an infinite suborder lattice: for example, take
the disjoint sum of infinitely many copies of the two-element chain).

On the other hand, if we further relax the finiteness condition,
from “the poset contains no infinite chain” to “the poset contains
no infinite descending chain” (in other words, to “the poset being a
DCC poset”), then more finite lattices will be embeddable. This is
a consequence of the following theorem:
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Figure 1. The lattices M3, D1, and D2

Theorem 1. Let L be a finite lattice. Denote with CL the set of
nontrivial join covers of join irreducibles, i.e. the set

{(l, l1, . . . , lk) ∈ J(L)k+1 : l ≤ l1 ∨ l2 ∨ · · · ∨ lk,
l 6≤ (l1)∗∨l2∨· · ·∨lk, l 6≤ l1∨(l2)∗∨· · ·∨lk, . . . , l 6≤ l1∨l2∨· · ·∨(lk)∗}.

L is embeddable into the suborder lattice of a DCC poset if and
only if there is a mapping s : CL 7→ L satisfying the following:

• for any (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) ∈ {l1, . . . , lk},
• s is symmetrical in all but the first variable, i.e. for any

permutation π ∈ Sk,

s(l, l1, . . . , lk) = s(l, lπ(1), . . . , lπ(k)),

• for the binary relations

TL := {(l, li) : (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) 6= li}
and

UL := Tr({(l, l) : l ∈ L}∪
{(l, li) : (l, l1, . . . , lk) ∈ CL, s(l, l1, . . . , lk) = li}),

the relation UL ◦ TL does not contain a circle.

This theorem gives an algorithm deciding whether a finite L is a
suborder lattice of a DCC poset. The algorithm is in EXPT IME .

For example, it is straightforward to check that M3 in not em-
beddable, but D1 and D2 are. While D1 is a lower bounded lattice,
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so it is embeddable even into the suborder lattice of a finite poset,
D2 is not even join semidistributive. This shows that the class of
lattices embeddable into suborder lattices of DCC posets is strictly
larger than the class of lattices embeddable into suborder lattices of
finite posets, but still it does not contain all finite lattices.

For a lattice L, denote with CYL the set of cycles of the D relation
restricted to the completely join irreducible elements of L. Introduce
a binary relation on CYL:

EL := {((β1, . . . , βl), (α1, . . . , αk)) :

∃i : ∃j : αj+1 ≤ βi ∨ αj , αj+1 6≤ βi ∨ α∗j , αj+1 6≤ β∗i ∨ αj},

with the index j meant as modulo k and the index i as modulo l.

Theorem 2. If L is embeddable into the suborder lattice of a DCC
poset, then EL does not contain a cycle.

4. Quasiorder lattices of semilattices

The class of congruence lattices of semilattices is quite rich, sat-
isfying no nontrivial lattice identities [6]. The class of quasiorder
lattices of semilattices is even richer: while the congruence lattices
are meet semidistributive, this is not the case for the quasiorder
lattices.

Theorem 3. The quasiorder lattice of FS(3) (the 3-generated free
semilattice) is not a meet semidistributive lattice.

A consequence of congruence meet semidistributivity is that the
congruence lattices of semilattices do not contain lattices isomorphic
to M3. Contrary to meet semidistributivity itself, this property
translates to quasiorder lattices of semilattices–with the condition
that the semilattice is finite.

Theorem 4. If the finite algebra A generates a congruence meet
semidistributive variety, and M is a simple sublattice of Quo A, then
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Figure 2. The quasiorders α, β, γ of FS(3) satis-
fying α ∧ γ = β ∧ γ < (α ∨ β) ∧ γ

M is either trivial, or it is the two-element lattice. Consequently,
if S is a finite semilattice, then Quo S does not contain a sublattice
isomorphic to M3.

Even the second statement of this theorem needs the finiteness
condition. To see this, first take a lattice of posets isomorphic to
M3. Figure 3 shows a way to do that (γ1, γ2, γ3 are the middle
elements of this lattice). If C is the underlying set of these posets,
take the free semilattice FS(C). Denote the quasiorders of FS(C)

generated by γi with γ
(0)
i .

The pairwise join of the γ
(0)
i coincide, but their pairwise meets

do not. So we set recursively for k > 0

γ
(k)
i = γ

(0)
i ∨ (γ

(k−1)
i−1 ∧ γ(k−1)i+1 ),

and take γi =
⋃
k γ

(k)
i . Effectively if an edge is in two of the qua-

siorders, then we put it in the third. Thus, the pairwise meet of the
γi will coincide. While we put in these new edges, the pairwise join
does not change, so those will also coincide.

It can be shown that γ1 6= γ2. This gives us the following theorem.

Theorem 5. Quo(FS(ω)) contains a sublattice isomorphic to M3.
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Figure 3. Three posets generating a lattice iso-
morphic to M3

5. Tame congruence theory

To establish connections between the congruence and quasiorder
lattices, we will mostly use tame congruence theory (see [15]). Many,
though not all, parts of it are applicable to quasiorders.

Let A be a finite algebra, and suppose that α ≺ β holds either
in Con A or Quo A. A is (α, β)-minimal if any non-bijective unary
polynomial of A maps any β-edge into an α-edge. Even if A is not
(α, β)-minimal, it has an (essentially) unique corresponding (α, β)-
minimal algebra.

In the congruence case, to each (α, β)-minimal algebra it corre-
sponds a minimal algebra, that is, an algebra whose non-bijective
polynomials are constants. By Pálfy’s theorem [16], the polynomial
clones of minimal algebras are isomorphic to the polynomial clone
of one of the following:
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(1) a unary algebra,
(2) a vector space,
(3) a two-element Boole-algebra,
(4) a two-element lattice,
(5) a two-element semilattice.

The type of (α, β) is a number between 1 and 5, depending on
which of the above categories the corresponding minimal algebra
falls into.

In the quasiorder case, there is no corresponding minimal algebra
for an (α, β)-minimal algebra, but it is still possible to define the
type of (α, β). We do this by reduction to congruence types.

Definition 6. Suppose that A is a finite (α, β)-minimal algebra,
with α ≺ β in Quo A.

• If α∗ ≺ β∗ in Con A, then the quasiorder type of (α, β) will
be the same as the congruence type of (α∗, β∗).

• If α∗ 6= β∗, but α∗ 6≺ β∗ in Con A, then the quasiorder type
of (α, β) will be 1.

• If α∗ = β∗, then we take the algebra

A+ := {(a, b, c) ∈ A3 : (a, b), (b, c) ∈ β},
and for an arbitrary δ ∈ Quo A, we define δ+ ∈ Con A+ by

δ+ := Tr({((a, b, c), (a, b′, c)) ∈ A2
+ : (b, b′) ∈ δ ∪ δ−1}).

Now we consider the types in the interval [α+, β+] of Con A+.
If there is a 4 among them, then the quasiorder type of (α, β)
will be 4, otherwise, if there is a 5 among them, then the
quasiorder type will be 5, and if not, then 1.

Quasiorder types have connections to the so-called pseudo-opera-
tions. We use a broader definition for these than usual for the sake of
simplicity. A binary polynomial p of an algebra A is a pseudo-meet
operation for the element a ∈ A if it satisfies p(a, x) = p(x, a) =
p(x, x) = x for all x ∈ A. It is a pseudo-meet operation for (α, β)
if there is an edge (a, b) ∈ (β\α) ∪ (β\α)−1 so that it is a pseudo-
meet operation for a. Finally, the binary polynomials p and q form
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a pseudo-meet–pseudo-join pair for (α, β) if there is an edge (a, b) ∈
β\α so that p is a pseudo-meet operation for a and q is a pseudo-meet
operation for b.

The following theorem shows the connections between quasiorder
types and pseudo-operations. It also suggests a way to define types
with the aid of pseudo-operations.

Theorem 7. If A is finite and minimal to (α, β), where α ≺ β in
Quo A, then the type of (α, β) is

• 3, iff β\α is a single double edge, and there is a pseudo-meet–
pseudo-join pair for it (this case is only possible if α∗ 6= β∗),

• 4, iff β\α is a single (directed) edge, and there is a pseudo-
meet–pseudo-join pair for it,

• 5, iff there is a pseudo-meet operation for it, but not a
pseudo-meet–pseudo-join pair (and in this case, the pseudo-
meet operation is for either the shared target or the shared
source of all the β\α-edges),

• 2, iff (α∗, β∗) is a prime congruence quotient of type 2,
• 1 in any other case.

There are two important conditions about the types of different
covering pairs (in other words, prime quotients) of congruence lat-
tices. The first is that if (α, β) and (γ, δ) are prime perspective, that
is, α ≺ β, γ ≺ δ, and α, β, γ, δ form a sublattice isomorphic to the
direct square of the two-element lattice, then the two quotients have
the same type. This is also true for quasiorders.

Theorem 8. Suppose that (α, β) and (γ, δ) are prime perspective
quotients of Quo A. Then the types of (α, β) and (γ, δ) coincide.

The second condition is that the solvability and strong solvability
relations on the congruence lattice of a finite algebra are congru-
ences. For congruences µ and ν, (µ, ν) is in the solvability relation
iff the interval [µ ∧ ν, µ ∨ ν] contains only types 1 and/or 2, it is in
the strong solvability relation if the interval only contains type 1.
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This is a condition that does not extend to quasiorder lattices
(solvability and strong solvability are defined there analogously).
Consider the semigroup S given by the following multiplication table:

0 1 2 3
0 0 0 0 0
1 1 1 1 1
2 0 1 2 2
3 0 1 2 3

Proposition 9. There are α, β, γ, δ ∈ Quo S such that α ≺ β, γ ≺
δ < β ∨ γ, but the type of (α, β) is 1 and the type of (γ, δ) is 5.
Thus neither solvability nor strong solvability is a congruence on
Quo S. Moreover, there is no congruence of Quo S whose restriction
to Con S is the solvability relation on the congruence lattice.

However, for a class of algebras the solvability relation is a con-
gruence on the quasiorder lattice of the algebra, and it behaves well.

Theorem 10. Suppose that A is a finite algebra in a congruence
modular variety. Then the solvability and strong solvability relations
on Quo A coincide, and they are the congruence of Quo A generated
by the congruence solvability relation. Moreover, the factor of Quo A
by the solvability relation is a distributive lattice.

6. Connections between congruence and quasiorder
lattices

Generally speaking, a condition for the congruence lattice of an
algebra does not give much information about the algebra, but if it
satisfied by all the algebras in the generated variety, it is an other
matter. Likewise, when studying connections between congruence
and quasiorder lattices, we will usually take a variety into account.
This is especially true if we use tame congruence theory, because of
the following theorem.

Theorem 11. For any i ∈ {1, 2, 3, 4, 5} and any variety V, V omits
i for congruences iff it omits i for quasiorders.
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It is a well-known fact that if an algebra is in a congruence per-
mutable variety, or equivalently, it has a Mal’tsev-term (a ternary
term satisfying the identities m(x, x, y) ≈ m(y, x, x) ≈ y), then all
its quasiorders are congruences. This condition is satisfied by all
the classical algebraic structures. Instead of a Mal’tsev-term, it is
actually enough for the algebra to have Hagemann-Mitchke terms
(see [14]).

Czédli and Szabó showed that for any lattice L, Quo L is iso-
morphic to (Con L)2 [3]. In [12], the author and his advisor show
that in a locally finite congruence distributive/modular variety, the
quasiorder lattices are all distributive/modular. In the distributive
case, this means that the quasiorder lattice is in the variety gener-
ated by the congruence lattice. According to Gumm [8], congruence
modularity is a “composition” of congruence permutability and con-
gruence distributivity. This suggests the following theorem:

Theorem 12. Suppose that A is a finite algebra in a congruence
modular variety. Then Con A and Quo A satisfy the same lattice
identities.

Corollary 13. Suppose that P is a lattice identity so that each
variety whose congruence lattices satisfy P is congruence modular.
Then if all congruence lattices of a locally finite variety satisfy P,
then so do all the quasiorder lattices of the variety.

A similar statement is true for join semidistributivity (which is
a lattice quasi-identity rather than an identity). Congruence join
semidistributivity is characterized for locally finite varieties by the
variety omitting 1, 2, and 5, that is, for any α ≺ β in the congruence
lattice of an algebra of the variety, the type of (α, β) is either 3 or 4
(Theorem 9.11 of [15]). Congruence join semidistributivity of a va-
riety implies that the finite algebras have lower bounded congruence
lattices [5].

Theorem 14. Suppose that A is a finite algebra in a congruence
join semidistributive variety. Then Quo A is a lower bounded lattice,
in particular, it is join semidistributive.
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As Theorem 3 shows, the analogous statement for meet semidis-
tributivity is not true. Theorem 4 shows that a weaker connection
exists for that case. Another such weak condition exists for the omit-
ting 1 case (this is equivalent to a congruence condition by Theorem
9.6 of [15]).

Theorem 15. Suppose that A is a finite algebra in a variety omit-
ting 1. Then Quo A contains no nonmodular simple sublattice.
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