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Chapter 1

Introduction

Public transportation networks are huge, complex systems, and companies that operate these face
a large number of difficult optimization problems every day. According to a study on the spatial
aspects of transportation by Rodrigue et al. [93], customer demands in public transportation are
changing, and as a result, companies have to re-evaluate transport services they provide, and rethink
the structure of their transportation networks. Meanwhile, the cost of building and operating public
transportation systems increases, making it harder for them to provide a relevant alternative to
urban mobility, while also remaining profitable businesses.

Besides the area of network planning and design, a large portion of the expenses comes from
the operating costs of the company: these mainly include standing and running costs connected
to the vehicles, and salaries of the drivers they employ. The efficient solution of problems arising
in these areas can decrease the overall expenses of a company significantly, allowing them to stay
competitive. To optimize their planning processes, most companies use computer aided decision
support systems (see [77] for an example). These systems usually optimize problems connected to
vehicles and drivers separately, and they also have to be able to create daily schedules and long-term
plans as well. Naturally, they can also consider other problem types as well, like providing real-time
solutions for unforeseen events (disruptions) happening to a daily schedule during its execution.

In this dissertation, we examine several optimization problems connected to vehicles in the fleet of
a public bus transportation company. These cover a wide range of different problem types, including
the creation of daily schedules, long-term planning, real-time management of unforeseen events, and
generation of test instances. The topics are not only studied from a theoretical point of view, but
their applicability in real life is also considered.

First, we discuss the optimization problems of transportation in Chapter 2, and introduce the
basic concepts and notations of vehicle scheduling in Section 2.2. We also present the most important
mathematical models from the literature that we will be referring to in future chapters. Our thesis
topics are then discussed in the following chapters.
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2 CHAPTER 1. INTRODUCTION

In Chapter 3, we introduce the concept of application-oriented vehicle scheduling, which aims to
provide good quality solutions that also have an acceptable structure from a practical point of view.
First, we give a series of variable fixing heuristics for creating vehicle schedules in a short time, then
introduce an iterative algorithm that constructs schedules satisfying the basic rules of driver shifts
as well. The list of our publications connected to this topic include [32, 34, 9].

Chapter 4 presents the integrated vehicle scheduling and assignment problem, which creates
vehicle schedules that also consider vehicle-specific activities like refueling or parking. We give a
set partitioning model for the problem, and a column generation framework for its solution. Our
research connected to this chapter can be seen in [16].

Chapter 5 deals with addressing unforeseen events happening to pre-planned schedules of a
transportation company. The problem is examined from two perspectives: first, we introduce a
model and two heuristic solution methods for the multi-depot vehicle rescheduling problem. Then,
we propose the concept of dynamic vehicle rescheduling, which evaluates the efficiency of solutions
for a series of disruptions by considering their effects at the end of the day instead of treating them
as separate problems. Our publications connected to these topics include [35, 37].

In Chapter 6, we introduce the schedule assignment problem for the long-term planning of bus
transportation, where vehicles are assigned to daily schedules over a longer horizon. This assignment
has to consider vehicle-specific tasks, such as parking at the end of every day, or regular preventive
maintenance activities. We studied this problem in the following publications: [33, 38].

Chapter 7 contains three topics connected to rarely studied parts of an optimization system.
First, we give the concept for a decision support framework for vehicle rescheduling that functions
regardless of its implemented solutions methods. Then, we present a new modeling approach for
problems in transportation scheduling: we give a timed automata-based model for the schedule as-
signment problem, which can be used for validating queries about certain scenarios, or for visualizing
steps of the solution process. The last topic is an algorithm that generates random instances for
vehicle scheduling problems that consider multiple depots, vehicle types, and activities connected to
these types. These are studied in our following three publications: [12, 39, 34].

The dissertation is concluded with Chapter 8, where we also present our future research plans
regarding transportation scheduling. The theses of this dissertation are collected into five groups
defined by Chapters 3-7. Table 1.1 shows the connections between these groups and the key publi-
cations of the author.

Table 1.1: Relation between the thesis groups and the corresponding publications

[32] [9] [34] [16] [35] [37] [33] [38] [12] [39]
I. • • •
II. •
III. • •
IV. • •
V. • • •



Chapter 2

Optimization problems in public
transportation

Optimization problems arising in public transportation can be of many different types: from line
planning to scheduling the tasks of vehicles and drivers, they form a large, interconnected system.
Efficient solutions methods for these problems are extremely important, as they influence the effec-
tiveness of a company, which also has a large impact on its expenses. Transportation networks can
be of several types, all designed for different vehicles. As the dissertation is covering optimization
problems connected to public bus transportation, this chapter will also review models and meth-
ods connected to a bus transportation system. Whenever the word vehicle is used throughout the
dissertation, we will be referring to buses in the fleet of a public transportation company.

Depending on their nature, these arising problems can be categorized into three main phases:

• strategic planning, where the most important task is the design of the transportation network
and the creation of its bus lines,

• tactical planning, with the aim of developing the underlying timetable of the system,

• and operational planning, that creates the schedules of vehicles and drivers, and defines driver
rosters.

Naturally, different approaches also exist to these main topics. For example, Borndörfer [24]
combines the first two phases into a single service design step, where they consider fare planning as
well. They also present a fourth phase called operations control, which deals with the dispatching of
vehicles and crew. While such differences might exist for other categorizations as well, the step of
operational planning is always present, and includes the above mentioned problems for both vehicles
and drivers. As we intend to study vehicle scheduling problems only, the others steps will not be

3



4 CHAPTER 2. OPTIMIZATION PROBLEMS IN PUBLIC TRANSPORTATION

reviewed in this chapter. A comprehensive overview of the problems connected to transportation
systems is given by Desaulniers and Hickman in [41], or in a more recent and exhaustive review by
Ibarra-Rojas et al. [63].

2.1 Operational planning of public transportation

In this section, we briefly overview operational planning, The subproblems of operational planning
are not independent of each other: their relations can be seen in Figure 2.1:

Vehicle Scheduling

Driver Scheduling

Driver Rostering

Figure 2.1: Subproblems of operational planning

Vehicle Scheduling gives a feasible daily schedule for a set of daily timetabled trips, considering
the fleet of a transportation company. The resulting schedule has to service every input trip exactly
once, and trips executed by the same vehicles cannot overlap in time. The goal of the problem is to
minimize the number of vehicles in service, or the operating costs of these vehicles. It is important
to note, however, that these vehicle schedules only determine the types of vehicle that should service
certain groups of trips, but does not assign specific vehicles to these groups.

Driver Scheduling creates the daily shifts for the employees, satisfying all regulations connected
to the daily working time of an employee. The most important such rules are the minimum and
maximum working time limit on the length of the shifts, and the assignment of breaks in certain
intervals where drivers can rest. This phase usually tries to minimize the number of drivers, or the
total working time during the daily schedule.

These daily shifts are then used by Driver Rostering to create rosters over a longer planning
period. The aim of this phase is to assign daily shifts to specific over a horizon of several weeks or
months. Different driver rules considering a longer period also apply to this problem, like regulations
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on when drivers have to take a day off, or the minimum length of time that has to pass between two
consecutive shifts of a driver. This phase usually tries to minimize the average under- and over-time
of employees over the planning horizon.

An overview of the most important vehicle scheduling models is given by Bunte and Kliewer [25],
while driver scheduling and rostering is reviewed by Ernst et al.[46].

It can be seen, that—while the above steps can be considered as independent, stand-alone tasks—
these subproblems are connected, and all of their requirements should be considered when optimizing
a transportation system. This can traditionally be done in two separate ways: with the sequential
solution of the phases, or by integrating the different arising problems.

While integrating the entire process seems a natural approach for the solution of the subproblems,
it often results in an intractable problem: as the subproblems are all NP-hard, their combined
system of constraints is especially difficult to define and solve. However, the integration of smaller
parts of this system has been extensively studied in the literature, combining different pairs of the
subproblems introduced in this chapter. The most well researched such field is Vehicle and Driver
Scheduling, which aims to create daily schedules by taking both vehicle and driver constraints into
consideration.

A good example for this approach is presented by Steinzen et al. [96], but a detailed overview
can also be seen of this field in [63], which presents both the most popular exact and heuristic
methods for the problem. Other integration strategies also exist in the literature, although they are
not as well studied as vehicle and crew scheduling. Ibarra-Rojas [63] gives a good overview of these
approaches as well.

We presented a sequential solution framework in [7], and showed its effectiveness with a case-
study using real-life data from the transportation company of the city of Szeged, Hungary. The
major difference of our system from the general sequence of operational planning seen in Figure 2.1
is that we added the additional phase of Vehicle Assignment between vehicle and driver scheduling.

As it was mentioned before, vehicle scheduling only provides a theoretical solution, as the real-
life vehicle in service are not specified in the resulting schedule. The aim of the vehicle assignment
subproblem is to create vehicle schedules that also include the vehicle-specific tasks (such as parking
and refueling) of buses executing the trips, which makes the practical application of these results
possible.

This dissertation will present our work connected to both the vehicle scheduling and assignment
phases of this system. For some of our early results studying the subproblems of driver scheduling
and rostering, please refer to [8].

As this dissertation studies different problems connected to vehicle scheduling, the presented
results can also be fit into a sequential solution framework. Such a system takes the subproblems
introduced in Figure 2.1, and solves them in the given order, with the output of a problem being the
input of the next step. This process provides great flexibility, as partial results can easily be obtained
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for the subproblems, and different solution approaches for certain steps can easily be integrated due
to the modularity of the system. However, this might come at the price of efficiency: as subproblems
do not consider constraints of other steps, their results will most likely require certain transformation
steps to meet requirements of other subproblems.

In the following sections, we introduce the first subproblem of this sequential framework, and
the main research topic of this dissertation, the vehicle scheduling problem.

2.2 The vehicle scheduling problem

In this section, we formally introduce the vehicle scheduling problem. While Section 2.2.1 gives the
basic concepts of the problem, Sections 2.2.2 and 2.2.3 present its main variations, and introduce its
important state-of-the-art models. The outline of this section and the notations follow our review
paper [10].

2.2.1 The basic concept of vehicle scheduling

The input of the vehicle scheduling problem (VSP) is the fleet of vehicles of a transportation
company, and the set of timetabled trips for a single day. Let these be represented by sets V =
{v1, v2, . . . , vm} and T = {t1, t2, . . . , tn} respectively. Vehicles belonging to a set V are completely
homogeneous, meaning that they are similar in every aspect and feature. If a fleet contains vehicles
of several different types, set V is partitioned into disjoint subsets Vi (i = 1, . . . , k). Furthermore, let
ci,j give the cost of vehicle i executing any task j. The goal of the problem is to assign the vehicles
of set V to every timetabled trip in T such that the arising costs are minimal. Not every vehicle has
to be assigned to a trip, and multiple trips can be assigned to a single vehicle. However, this must
fulfill certain constraints: a vehicle has to be able to service all its assigned trips, and trips assigned
to the same vehicle have to be compatible with each other.

Every trip t ∈ T has a dt(t) departure time and at(t) arrival time, and also has a sl(t) starting
location and el(t) ending location. Trips t and t′ are compatible, if they can be serviced by the
same vehicle without any conflicts. This basically requires at(t) ≤ dt(t′), and dt(t′) − at(t) ≤
time(el(t), sl(t′)), where time(el(t), sl(t′)) gives the time needed for a vehicle to travel between el(t)
and sl(t′).

Figure 2.2 presents and illustrative example for the problem. The colored boxes in the figure
represent trips, while dashed lines connect compatible pairs of trips. The right side of the figure
shows a possible solution, where the trips are executed by three vehicles.

Vehicles start the scheduling period in depots, and return there at the end of the period. A
vehicle can enter these depots any time during this period, when it has no assigned trips for a longer
time. Depots represent garages, parking places, and similar locations, where vehicles can stay until
the beginning of the next scheduling period.
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Figure 2.2: Simple example for the VSP

If the VSP has only one depot, it is called a Single Depot Vehicle Scheduling Problem (SDVSP).
In the case of two or more depots, the problem is referred to as a Multi-Depot Vehicle Scheduling
Problem (MDVSP). The MDVSP can also have an additional constraint for the execution of the
trips called depot-compatibility: a subset of the depots is given for every trip t, and only vehicles
belonging to this set are able to service t.

Vehicles can also travel between geographical locations without servicing a timetabled trip. Such
activities are called deadhead trips (or deadheads in short), and usually take place between the
ending location of a trip and the starting location of another one. Special cases of a deadhead
trip include the pull-out and pull-in trips, which represent traveling activities from a depot to the
starting location of a trip, or from the ending location of a trip to the depot.

A vehicle block is a series of pairwise compatible traveling activities. A vehicle block usually
represents the set of daily tasks of a single vehicle, which is referred to as the vehicle duty. A feasible
vehicle block always begins with a pull-out trip, and ends with a pull-in trip. The set of these blocks
is called the vehicle schedule. Another solution of the above example extended with a single depot
can be seen in Figure 2.3, where the dashed line represent the and appropriate travel activities
(deadhead or pull-out/pull-in trips).

The basic task of the VSP is to give a vehicle schedule where every trip is executed exactly once
by a vehicle satisfying its depot-compatibility constraint. The problem can either simply minimize
the number of vehicles in service, or the costs of traveling can also be taken into account. If the
objective function is the combination of the previous two terms, then the cost of a vehicle v belonging
to depot d is dc(d) + tc(d) · dist(v), where dc(d) is a one-time daily cost of a vehicle belonging to
depot d, tc(d) is the travel cost of the same vehicle to cover a unit distance (usually 1 km), and
dist(v) is the distance traveled by v.
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Figure 2.3: Example for a vehicle schedule

There is a large number of different mathematical models for the solution of the VSP in the
literature. In the following sections, we will present some of the most important ones both for the
SDVSP and MDVSP. A comprehensive review of this field is given by Bunte and Kliewer [25].

2.2.2 Single depot vehicle scheduling

The first solution method for the SDVSP was published by Saha [94]. He defined a partial ordering
for the trips of T , and introduced an α ordering relationship. This relationship ensured that trip t′

could only be serviced after t if an only if el(t) = sl(t′), and at(t) ≤ dt(t′). It can be seen from the
constraint that this model does not allow deadheads between two consecutive trips, which makes α
weaker than the compatibility defined in the previous section.

There have been several bipartite graph-based models published for the SDVSP (see [25]). In the
following, we will present the model and solution algorithm of Bertossi et al. [18], who considered
the SDVSP as a matching problem. Let G = (N1, N2, E) be a complete bipartite graph, where
nodes i ∈ N1 and j ∈ N2 represent the arrivals of trip i and departures of trip j respectively. Let
E be the set of edges, |N1| = |N2| = |T | = n and |E| = n2. Assume that E can be partitioned into
subsets E1 and E2, where:

E1 = {(i, j) | ti and tj are compatible trips,

E2 = E \ E1.

Edges (i, j) ∈ E1 represent the possible deadhead trips between the arrival time of ti and depar-
ture time of tj , while all (i, j) ∈ E2 edges correspond to two consecutive deadhead trips: one of these
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is a pull-in from the ending location of ti to the depot while the other is the pull-out from the depot
to the starting location of tj . Using these concepts, it can be seen that the M perfect matching of
graph G results in a possible vehicle schedule, where the number of required vehicles is |M ∩ E2|

Figure 2.4 presents the above defined bipartite graph for the simple problem introduced in Figure
2.2. The solid lines represent edges of set E1, while dashed lines give edges of E2.

’

’

’

’

’

’

Figure 2.4: Bipartite graph for the SDVSP

In the case where every (i, j) edge is assigned a ci,j cost, the SDVSP can be solved by finding
a minimum cost perfect matching in G. Depending on the costs of the edges, differently structured
results can be achieved for the problem:

• If ci,j = 1 for all (i, j) ∈ E2, and ci,j = 0 otherwise, then the objective value will give the
minimum number of vehicles needed for the solution.

• If values of ci,j are chosen as the costs needed to perform the corresponding deadhead trips,
then the solution will give the minimal travel costs.

Naturally, any combination of the above costs can be applied for the problem.
A limit k can also be introduced for the number of available vehicles. This results in a capacitated

matching problem, the aim of which is to find a minimum cost matching in G that also satisfies
|M ∩ E2| ≤ k. The problem can be formally defined the following way: let x be a binary vector,
where xi,j = 1 if edge (i, j) is in matching M , and xi,j = 0 otherwise. Consider a cost vector c, and
the set X of feasible solutions. Given an objective

min(i,j){cx | x ∈ X, xi,j ∈ {0, 1}}, (2.1)
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the problem is defined by the following constrains:

∑
j

xi,j = 1, i = 1, 2, . . . , n (2.2)

∑
i

xi,j = 1, j = 1, 2, . . . , n (2.3)

∑
(i,j)∈E2

xi,j ≤ k. (2.4)

The above problem can be transformed into a minimum-cost network flow. For this, simple
modifications have to be carried out to the graph.

Additional edges have to be introduced for every trip ti: the (i1, i2) edge has to be inserted
between the departure node i1 ∈ N1 and arrival node i2 ∈ N2 belonging to ti. Both upper and lower
bounds of these edges have to be set to 1, ensuring that every trip is executed exactly once. As
the additional costs belonging to these edges will only contribute a constant value to the objective
function, this will not influence the result of the problem.

Similarly to the trips, departure d1 and arrival d2 nodes representing the depot also have to
be added. These are connected by a circulation edge (d2, d1) of cost 0. If the number of available
vehicles is limited for the problem, then the upper bound of this edge has to be set to k. Edges
(d1, i1) and (i2, d2) also have to be introduced for every trip ti, representing pull-out to and pull-in
from the trip. These will replace the edges of E2 in the network.

Because of these transformation steps, the result of the above network will be equivalent to that
of the matching problem. As shown by Ahuja et al. [3], such a problem is solvable in polynomial
time.

2.2.3 Multi-depot vehicle scheduling

The MDVSP was first proposed by Bodin et al. [19], and its NP-hardness was proven by Bertossi et
al. [18]. The main advantage of the MDVSP over the SDVSP is that its constraints are much closer
to the requirements of real-life problems. As it was mentioned in Section 2.2.1, depots traditionally
represent garages or parking places, where vehicles start and end their daily blocks. This would
suggest a homogeneous fleet with different starting locations, but the concept of the depots can
be extended to include vehicle types as well. In real-life, restricting the types of vehicles that can
service a trips is quite a common requirement: trips in some time intervals might always require
larger buses because of a daily peak in passenger transportation, or trips belonging to some lines
might only be serviced by smaller vehicles, because larger ones cannot navigate the narrow streets
of that line.

We will be using the concept of depots to reference both the starting locations and the types of
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the vehicles: whenever we talk about vehicles belonging to the same depot, we will be referring to a
set of vehicles that share the same type, and start the schedule at the same geographical location.

When the concept of a heterogeneous vehicle fleet has to be emphasized, a multi-vehicle-type
scheduling problem (MVTSP) can also be considered. This problem is frequently treated as an
alternative version of the MDVSP, as we introduced before. However, several papers have studied
problems with multiple vehicle types in the past years. While Laurent and Hao [68] study the problem
as a variant of the MDVSP, and give a powerful iterated local search method for its solution, Ceder
[27] emphasizes the concept of multiple vehicle types, and uses a so-called deficit function (DF)
approach to visualize the number of particular vehicles at each location in the system. A column
generation-based solution framework was proposed for the MVTSP by Guedes and Borenstein [53].
As mentioned before, however, we will not be dealing with the dedicated MVTSP, rather incorporate
the concept of vehicle types into our definition of depots.

In the following sections, we will present important modeling and solutions techniques for the
MDVSP. Some of these reduce the problem to a multi-commodity network flow, and solve it as an
integer programming problem (IP). Other approaches represent the MDVSP as a set partitioning,
or set covering problem, studied for example by Ribeiro and Sumois [92] and Hadjar et al. [56]. Our
notations and model formulations in the upcoming sections will be similar to that of Löbel [75].

Connection-based network

The main advantage of the connection-based multi-commodity network flow problem is that it clearly
represents every possible connection between the trips of the MDVSP. In order to present the model,
we have to introduce additional notations to the ones given in Section 2.2.1. Let D represent the set
of depots, and Dt ⊆ D give the depots compatible with trip t ∈ T . Furthermore, let Td ⊂ T denote
the set of trips that can be services by vehicles from depot d. Let sl(d) and el(d) be the starting
and ending node of every depot d ∈ D respectively. Using the notations above, the set of nodes of
our network can be defined by

N = {dt(t) ∪ at(t) ∪ sl(d) ∪ el(d)|t ∈ T, d ∈ D}.

Let

Ed = {(dt(t), at(t))|t ∈ Td}, ∀d ∈ D

give the set of trip edges that can be serviced by depot d, and let

Bd = {(at(t), dt(t′))|t, t′ ∈ Td are compatible}

be the possible deadhead edges of depot d.
Moreover, let
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P d = {(sl(d), dt(t)), (at(t), el(d))|t ∈ Td}, ∀d ∈ D

give all the pull-in and pull-out edges of depot d. The circulation edge of depot d is given by

Kd = {(el(d), sl(d))}, ∀d ∈ D

Based on the above sets, we can define the set of all edges belonging to depot d

Ad = Ed ∪Bd ∪ Pd ∪Kd, ∀d ∈ D,

and the set of all edges of the network

E = ∪d∈DAd.

An example for the above connection based network with two depots (represented by solid and
dashed edges) can be seen in Figure 2.5.

’

’

’

’

’

’

d2d2

d1d1

Figure 2.5: Structure of the connection-based network

Based on the sets introduced above, a solution can be determined for the MDVSP by using the
network G = (N,E). We define an integer vector x. The dimension of x will be equal to the
number of edges in the network. A vector component associated with edge e ∈ E is denoted by
xde , if e belongs to depot d (e ∈ Ad). The value of xde will be 1, if the edge is part of the solution
schedule, 0 otherwise. The only exceptions to this are the depot circulation edges, as they can be
included in a schedule multiple times.

The mathematical model of the problem can be formalized in the following way:

minimize
∑
e∈E

cexe,
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s.t.

∑
d∈Dt,e=(dt(t),at(t))

xde = 1, ∀t ∈ T (2.5)

∑
e∈δ+(n)

xde −
∑

e∈δ−(n)

xde = 0, ∀d ∈ D,∀n ∈ N (2.6)

xdat(d),dt(d) ≤ kd, ∀d ∈ D (2.7)

xde ∈ 0, 1, (el(d), sl(d)) integer, ∀d ∈ D (2.8)

where δ+(n) is the set of outgoing, and δ−(n) is the set of incoming edges of node n. The cost
of edge e is given by ce. Constraint (2.5) guarantees that each trip is serviced exactly once, while
(2.6) satisfies flow conservation for all edges. The limit on the number of vehicles in each depot in
enforced by Constraint (2.7).

The main drawback of the connection based model comes from its size. The number of compatible
trips is high, even for a problem representing the transportation of a middle-sized city, and this
results in a large number of possible deadhead trips. While the final solution will contain only a
small percent of them, they cannot be omitted from the model, as that could lead to losing the
optimal solution. This makes the model ineffective on real-life data, especially middle-sized or larger
cities, where several thousand trips have to be scheduled together usually.

Time-space network

Decreasing the number of edges in our network can only be done by the modification of the underlying
structure, and the time-space network does this effectively. Originally developed for aircraft fleet
assignment [58], the time-space network was introduced to vehicle scheduling by Kliewer et al. [65].
It eliminates the drawback that comes from the size of the connection-based network, making it
possible to solve larger-sized real-time MDVSP instances efficiently. As it was noted earlier, the
number of edges connecting compatible trips in the connection-based model is high, but only a few
of these are actually used in a feasible solution. However, if any of these connections were deleted
from the model, the optimal solution might be lost in the process.

The model arranges problem data in two dimensions: time and space. The dimension of space
corresponds to the set of geographical locations, and time-lines are introduced at each location that
represent a sequence of events. The arrival and departure times of the trips are denoted on their
corresponding time-lines. These give the N set of nodes for the model, which can be defined the
exact same way as in the previous section. If there are nodes on a time-line that correspond to the
same point in time, they can be merged together, decreasing the number of nodes. Edge sets Ed
and Pd for every d ∈ D are also defined similarly to Section 2.2.3.

The main innovation of the model is the way connections between the trips are modeled. While
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the connection-based network represents each compatible pair of trips with a dedicated edge, the
time-lines of the time-space network can be used to aggregate a large number of these connections.
This is done by the introduction of waiting edges. Let Wd be the set of these for every depot
d ∈ D. Waiting edges follow the time-lines, and connect every subsequent pair of nodes. These
edges will basically allow vehicles to wait at a location for the perfect connection, instead of leaving
immediately with the first possible one.

The number of deadhead edges can be reduced because of the waiting edges introduced above.
This is done by a two-phase aggregation process:

• Finding first matches: for every arrival node at(t), t ∈ T on a time-line k, the first compatible
departure node dt(t′), t′ ∈ T has to be determined at every other station l 6= k. Only the
(at(t), dt(t′)) deadhead edges are introduced when connecting the nodes of time-lines k and l.

• Finding latest first matches: after the first aggregation phase, incoming deadhead edges have
to be determined for every departure node dt(t), t ∈ T on a time-line k. Out of all the incoming
deadhead edges from nodes at(t′) on a station l, only the one with the latest time is retained
between k and l for each dt(t), the others are discarded.

The deadhead edges remaining in the network after the above process provide the new set Bd
of deadhead edges. The set Kd of circulation edges also remains the same. Once all the above
modifications have been introduced, we can give the set of edges belonging to commodity d ∈ D of
he time-space network by

Ad = Ed ∪Bd ∪ Pd ∪Kd ∪Wd, ∀d ∈ D.

and the set of all edges of the network is once again

E = ∪d∈DAd.

Figure 2.6 (taken from [15]) provides an example for such a network.
Using the above edges, the IP model of the time-space network can be given:

minimize
∑
e∈E

cexe,

s.t.

∑
d∈Dt,e=(dt(t),at(t))

xde = 1, ∀t ∈ T (2.9)

∑
e∈δ+(n)

xde −
∑

e∈δ−(n)

xde = 0, ∀d ∈ D,∀n ∈ N (2.10)

xdat(d),dt(d) ≤ kd, ∀d ∈ D (2.11)
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dDepot
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Trip Pull-in/out Waiting

Deadhead

Figure 2.6: Structure of the time-space network (from [15])

xde ≥ 0, xde integer, ∀d ∈ D (2.12)

The above model is basically the same as the one presented in Section 2.2.3. The only difference
is Constraint (2.12) that replaces Constraint (2.8).

A set partitioning model

This section introduces a set partitioning formalization of the problem based on Ribeiro and Soumis
[92]. The MDVSP given for graph G in Section 2.2.3 can be reformulated using the circulation edges.
Let Hd for all d ∈ D be the set of p paths in G that start from sl(d) and also return there. Let

H =
⋃
d∈D

Hd

be the set of all such paths in G. We introduce a binary variable ydp for all p ∈ Hd, such that

ydp =

1, if p ∈ Hd path is part of the solution

0, otherwise.

Furthermore, let

ade,p =

1, if p ∈ Hd path contains edge e

0, otherwise

Let cp denote the cost of path p ∈ Hd. Then the model can be formalized the following way:

minimize
∑
d∈D

∑
p∈Hd

cpy
d
p , (2.13)
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s.t.

∑
d∈D

∑
p∈Hd,e=(dt(t),at(t))∈Ed

ade,py
d
p = 1, ∀t ∈ T (2.14)

∑
p∈Hd

ydp ≤ kd, ∀d ∈ D (2.15)

ydp ∈ {0, 1},∀d ∈ D, ∀p ∈ Hd (2.16)

Constraint (2.14) ensures that each trip edge is part of exactly one path in the solution, and
Constraint (2.15) gives an upper bound on the number of vehicles in each depot.



Chapter 3

Heuristics for application-oriented
vehicle scheduling

In Chapter 2, we discussed the most important models and algorithms for the solution of the MDVSP.
These methods usually study the problem in a classical theoretical way, and then either solve it
directly by mathematical programming methods, or by the use of different combinatorial heuristics.
The main issue with this approach is that these methods usually do not consider the problems and
their models as part of a transportation system, and are not interested in the structure of their
solution, only their quality. Because of this, such approaches are not valid from an operational
management point of view: in a transportation system, solutions for individual problems are only
part of a more complex process, and they are often used to aid experts in making decisions.

We presented the subproblems of operational planning in Chapter 2, and showed that solving a
VSP is the first phase of this area. In this Chapter, we present two application-oriented heuristic
approaches connected to the VSP. We call these methods application-oriented, because they consider
both problem structure (for easy application in real-life) and running time (to be suitable for decision
support) besides the quality of the solutions.

First, we review the literature of MDVSP heuristic methods in Section 3.1, then present our
proposed algorithms for the solution of the problem.

The first method in Section 3.2 uses the concept of variable fixing to solve the VSP: it tries
to reduce its problem size by finding trips that are likely to be in the same sequence in the final
solution, and combines such groups into single, long trips. The resulting smaller problem is solved
using the classical IP modeling approach, and solutions are obtained with a greatly reduced running
time. This method is studied in our following publications: [32, 34].

The second method in Section 3.3 is an iterative algorithm that produces vehicle schedules with
a structure that also satisfies basic driver scheduling constraints. First, a classical VSP is solved,

17
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and the result is modified with a cut-and-join heuristic. This process iterates until all trips of the
input are part of a feasible a vehicle block. We introduced this method in [9].

3.1 An overview of selected MDVSP heuristics

In this section, we review different heuristic approaches developed for the MDVSP.
An early review by Daduna and Paixão [31] describe a process called ’interactive alterations’ of

a raw vehicle schedule created as a working basis.
Gintner et al. [51] proposed a two-phase heuristic for solving large instances of the MDVSP

by decreasing its model size. Their main idea was to solve simplified SDVSP problems, and use
their results to fix variables representing sequences of trips in the mathematical model. This smaller
problem is then solved to optimality. Details of this approach will be introduced in Section 3.2.

Suhl et al. applied a rounding algorithm for the problem in [98], which they call relaxation-based
search space heuristic. Their main idea is to solve an LP relaxation of the problem, and round
variables that have ’quasi-integer’ value. Multiple rounding iterations can be performed after each
other, as long as they yield a feasible LP solution.

Pepin et al. [84] compare five different approaches: truncated branch-and-cut—which they
achieve using the CPLEX solver on the time-space model of the problem—, a Lagrangian heuristic,
truncated column generation, a large neighborhood search, and a tabu search algorithm.

Laurent and Hao [68] give an iterated local search that constructs its initial solution using an
auction algorithm, then selects neighbors using ’block-moves’.

Otsuki and Aihara [82] propose a local search algorithm that utilizes a variable depth search
framework, speeding up its solution with pruning and deepening techniques.

A two-stage heuristics is presented by Guedes et al. [55]. They reduce the problem size by solving
either a series of SDVSP problem, or a relaxed MDVSP, and truncated column generation is used
for the resulting model.

3.2 Heuristic size reduction with variable fixing

In this section, we present several variable fixing heuristic for the MDVSP that take both operational
costs and the application-oriented structure of the vehicle schedules into consideration. Development
of these methods was also done with an interactive decision support system in mind, where a short
running time and well structured schedules are both important factors for a solution.

Variable fixing is a well known technique for speeding up the solution of MIP problems, and has
two major variations. The first approach is more commonly known as a rounding heuristic. It uses
the iterative solution of the relaxed mathematical model, with a fixing phase at the end of each
solution step: the values of certain ’quasi integral’ (but still fractional) variables are rounded to the
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nearest integer. The other approach fixes the values of certain variables based on some structural
property of the problem.

A two-phase heuristic proposed by Gintner et al. [51] uses variable fixing for the solution of large
MDVSP instances by decreasing the model size. This is done by fixing variables representing trip
sequences in the mathematical model, and then solving the resulting new problem to optimality.
Because of the two-step solution process, they call this approach fix-and-optimize. The variables to
be fixed are selected by analyzing the solutions of several simplified models of the original problem.
This is done by finding series of trips that appear in all the simplified solutions. If such trips exist, it
is presumed that they are likely to appear in the global optimum in the same way. Such a sequence
of trips is referred as a ’stable chains’, and is used as a single trip in the model of the MDVSP.

Simplified subproblems are obtained by decomposing the original MDVSP into an SDVSP for
every depot. An SDVSP for a single depot d is constructed and solved in the following way:

• The total vehicle capacity of the SDVSP is equal to the sum of all depot-capacities of the
MDVSP.

• Only those trips are considered that can be executed from depot d.

After all SDVSP sub-problems are solved, their solutions are used to create the ’stable chains’. If
the same sequence of trips can be found in all solutions, then it is considered as such a chain. Using
these ’stable chains’ as single trips, a new, smaller MDVSP model is built that has the following
properties:

• The number and capacity of the depots are the same as in the original problem.

• The set of trips of the new problem consists of the trips that are not included in any of the
stable chains, and a newly created trip for each ’stable chain’. The cost of such a new trip is
the sum of the costs of all the trips that its chain represents. The departure time and starting
location of the first trip of the chain, and the arrival time and ending location of the last trip
of the chain are used as as the starting and ending data of this new trip. These new trips can
be executed from any depot.

After this new MDVSP is solved, the trips in the ’stable chains’ have to be substituted back
instead of the new trips to acquire the final solution.

We chose to develop several heuristics based on the above idea of variable fixing, because it
models the application oriented aspect of the problem: fixing trips ’that should belong together in
the final solution’ in the same chain. During the creation of these chains, we also have control over
several real-world constraints, like limiting the amount of time between two consecutive trips of a
chain by not adding a possible trip to a chain if that would leave too little, or too much gap in
between.
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In [34], we proposed the solution of a simplified model of the problem that we call a ’quasi-
multiple depot’ model. Though this model uses only a single depot, two trips are connected only if
they would be connected in the multiple depot case as well. This means that the trips have to be
compatible, and they must also share a common depot from which they can be served. The cost
of the arc between these two trips in our model is calculated using the cheapest possible cost of all
their common depots. The capacity of the depot is the sum of the capacities of all depots in the
original problem. Pull-out and pull-in arcs of the depot have the weight of the minimal deadhead
trip from and to any of the depot locations of the original problem. Once this ’quasi-multiple depot’
model is constructed, it is solved by an MILP solver.

We experimented with three different approaches for finding stable chains in the solution of the
above problem:

• building chains with regards to depot costs,

• fixing trips with the same depot-compatibility, and

• assigning trips of the same bus-line to a chain.

A preliminary version of the first approach was also studied in [32], where we showed its efficiency
by comparing its results to other MDVSP heuristics.

The above methods are be presented in the following sections, and the difference of their resulting
’stable chains’ is also illustrated on a small example. Their results are then compared to each other
on real-life and random test instances.

Common notations for all three approaches include:

• C is the set of fixed chains.

• F is the set of fixed trips that will not be considered in future chains.

• L is the set of trips that represents the chain that is currently being built.

• the function nextTrip(t) will return the trip that follows t in the solution of the ’quasi-MDVSP’
problem.

3.2.1 A greedy approach using depot costs

The first variable fixing approach we developed aims to create ’stable chains’ based on the cost of
servicing their included trips. Depots are sorted in ascending order based on the following cost:

1
ε · cost(daily) + cost(km)

where cost(daily) is the daily cost of a single vehicle from the depot, cost(km) is the cost of that
vehicle to travel 1 km, and ε > 0 is a parameter.
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For every depot in this order, the algorithm examines all the vehicle schedules in the solution of
the ’quasi-MDVSP’ problem. If subsequent trips are found that can be executed from the current
depot, they are considered to be in the same ’stable chain’. These trips are flagged, and cannot be
the part of other ’stable chains’. The description of this algorithm can be seen in Algorithm 1.

Algorithm 1 Variable fixing using depot costs.
1: Determine the order D of depots
2: C ← ∅, F ← ∅, L← ∅
3: for each d ∈ D do
4: for all trips j /∈ F in the solution do
5: while j can be executed from d do
6: L← j
7: F ← j
8: j = nextTrip(j)
9: end while

10: if |L| > 1 then
11: C ← L
12: end if
13: L← ∅
14: end for
15: end for
16: return C

This algorithm is only the basic outline of finding the chains, further constraints can also be
introduced:

• The number of trips in a chain can be limited.

• A maximum duration in time can be set for a chain.

• The minimum/maximum gap in time between two consecutive trips of the chain can be given.

Experience shows that limiting the maximum duration of these ’stable chains’ results in a solution
with better cost, but has an increased running time. The running time of the heuristic was very
fast, even when additional constraints are introduced, but the quality of the solutions was far from
what we have expected. Because of this, further changes have been experimented with to improve
the solution at the expanse of a minimal increase in the running time.

3.2.2 A greedy approach using depot compatibility

The approach in Section 3.2.1 showed that greedily choosing the chains with the lowest cost does
not yield good quality solutions. Because of this, we experimented with fixing trips that have some
property in common instead of using a cost function.
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The aim of our second approach is to construct ’stable chains’ based on similar depot-compatibilities
of the trips. We first examine those trips from the solution of the ’quasi-MDVSP’ that can be exe-
cuted from all d depots, then all that are compatible with d− 1 depots, and so on. Two subsequent
trips are assigned to the same chain if they have exactly the same depot-compatibility in the solution.
This algorithm is described in Algorithm 2.

Algorithm 2 Variable fixing based on depot-compatibilities.
1: C ← ∅, F ← ∅, L← ∅
2: for d = numOfDepots downto 1 do
3: for all j /∈ F trips compatible with exactly d depots do
4: L← j
5: F ← j
6: k = nextTrip(j)
7: while depots(j) = depots(k) do
8: L← k
9: F ← k

10: j = k
11: k = nextTrip(j)
12: end while
13: if |L| > 1 then
14: C ← L
15: end if
16: L← ∅
17: end for
18: end for
19: return C

The value numOfDepots represents the number of depots of the problem, and depots(t) gives
the set of depots that are able to serve trip t. The main difference of this algorithm from the previous
one is the flexibility of its chains. While a chain that was fixed based on a cost function will only
be compatible with depots in the intersection of the depot sets of all its trips (which usually means
only 1 or 2 depots), most of the chains fixed with this approach will be compatible with a large
number of depots, which leaves more options for the solver to work with. This can be seen on the
quality of the test results as well.

The additional constraints that we proposed for Algorithm 1 can also be introduced here.

3.2.3 Exploiting the structure of real-world problems

Our third approach applies a method for constructing its ’stable chains’ that is similar to the real-
world schedule building practice of transportation companies. A driver usually uses the same vehicle
during a shift, and consequent trips of the same bus-line are assigned to the same shift. Some line
changes might occur during the day, but their number remains low. In contrast, the solution of any
classical MDVSP mathematical model results in vehicle schedules that have a high number of line
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changes. Applying such a schedule in practice is not efficient: though it cannot be modeled directly
in operational costs, the frequent line changes put a big pressure on the drivers.

We developed an algorithm that builds ’stable chains’ using the above observation: only those
trips are fixed in a chain that belong to the same bus-line. A limit is also given for the maximum
idle time between such trips. If two subsequent trips belong to the same bus-line, but are far from
each other in time, then they are not fixed in the same chain. The description of this method can
be seen in Algorithm 3.

Algorithm 3 Variable fixing based on same bus-lines.
1: C ← ∅, F ← ∅, L← ∅
2: for all j /∈ F trips do
3: L← j
4: F ← j
5: k = nextTrip(j)
6: while line(j) = line(k) and depots(j) ∩ depots(k) 6= ∅ and dt(k)− at(j) < limit do
7: L← k
8: V ← k
9: j = k

10: k = nextTrip(j)
11: end while
12: if |L| > 1 then
13: C ← L
14: end if
15: L← ∅
16: end for
17: return C

The departure and arrival time of a trip t are represented by dt(t) and at(t) respectively, the set
of depots that can service t is defined by depots(t), and line(t) gives the bus-line of t. The value of
limit is the maximum time limit between two trips of a chain.

The resulting chains will contain trips that are close to each other in time, and the compatible
depots of such chains will also be similar to the depots of the trips that construct them; in a
real-world case, trips of the same line usually have the same depot-compatibilities.

3.2.4 An illustrative example

In this section, we show the difference between the three variable fixing approaches presented above.
As a simple example, let us consider a vehicle scheduling problem with 3 depots, 8 trips and 4
geographical locations (A,B,C,D).

Table 3.1 gives every detail of the trips, including their starting and ending geographical locations
(From, To), departure and arrival times, and the depots that they are compatible with. Furthermore,
suppose that trips between the same pairs of geographical locations belong to the same bus-line.
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Table 3.1: Details of trips illustrating variable fixing.

Trip From To Departure Arrival Depots
1 C B 10 12 1,2,3
2 B A 12 14 1,2,3
3 B C 12 14 2,3
4 A B 14 16 1,2,3
5 B A 16 18 1,2
6 A B 18 20 1,2
7 C D 22 24 2,3
8 D C 24 26 2

This gives us the following three lines:

• Line A-B: trips 2,4,5,6;

• Line B-C: trips 1,3;

• Line C-D: trips 7,8.

Let the deadhead distance between any pair of geographical locations, and the pull-in and pull-
out distance for all depots be 2 minutes. The depot costs of the problem are the following:

• Depot 1: 100 daily cost and 10/minute distance cost;

• Depot 2: 200 daily cost and 20/minute distance cost;

• Depot 3: 300 daily cost and 30/minute distance cost.

The structure of the above problem can be seen on Figure 3.1. The horizontal lines represent the
geographical locations, while the arrows between them correspond to the trips. The solution of the
’quasi-multiple depot’ problem for all three approaches results in the following two vehicle blocks:

• Blocks 1 executes trips 1,2,4,5, and 6.

• Blocks 2 executes trips 3,7, and 8.

All approaches construct their ’stable chains’ based on these blocks. Applying the method based
on depot costs, the cost function will give the depot order 1,2,3 for an arbitrary ε > 0. Using this
order, the following chains are constructed:

• Chain 1: trips 1,2,4,5,6;

• Chain 2: trips 3,7,8.
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Figure 3.1: Structure of the problem illustrating variable fixing

If chains are built with regards to depot-compatibility, the first trips to be examined are the ones
that are compatible with all 3 depots, then the trips that are compatible with 2 depots, and finally
the trips that are compatible with 1 depot only. This results in the following chains:

• Chain 1: trips 1,2,4;

• Chain 2: trips 5,6;

• Chain 3: trips 3,7;

• Chain 4: trip 8.

If bus-lines are considered during the creation of the chains, the following trips are fixed together
by the approach:

• Chain 1: trips 2,4,5,6;

• Chain 2: trip 1;

• Chain 3: trip 3;

• Chain 4: trips 7,8.

It can be seen from the above examples that the first approach creates two chains, which limits
the results model to a single feasible solution, with these chains acting as the two blocks of its
schedule. Contrary to this, the other two approaches have four chains, which gives more solution
options for the resulting model. While the size of these resulting problems is the same, the chains
given by the third approach are more flexible, as almost all solutions that can be achieved by the
second approach can also be produced by the third one as well.
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3.2.5 Test results

The different variable fixing approaches discussed earlier were tested on real-life data provided by the
bus transportation company of the city of Szeged, Hungary, as well as on random input generated
by the method that will be described in Section 7.4.2. This section presents the results of these
instances.

Real-life instances

The real-life instances provided by the transportation company use 11 different day-types, and
solutions are presented for all of these. Along with the day-types of the instances and their number
of trips, the most important properties of their optimal solutions is also presented in Table 3.2: the
number of vehicles and the running time in seconds. The optimal solutions were achieved by solving
the time-space networks of the problems with the SYMPHONY solver. The problems include several
different workday-types (called Weekday), Saturdays, a Sunday, and a holiday.

Table 3.2: Optimal VSP solutions of the real-life instances.

Instance Day-type Trips Running time(s) Vehicles
szeged1 Weekday 2724 872 96
szeged2 Sunday 1768 431 44
szeged3 Weekday 2724 1053 97
szeged4 Saturday 1981 276 55
szeged5 Saturday 1984 250 55
szeged6 Weekday 2723 1381 96
szeged7 Weekday 2690 1297 95
szeged8 Weekday 2724 860 97
szeged9 Weekday 2720 869 97
szeged10 Weekday 2723 1179 96
szeged11 Holiday 1646 180 43

As it can be seen from the table, the running times of the weekday instances can reach 20-30
minutes, and solving all the 11 day-types of the company to optimality would take about 8500
seconds. The 2-2.5 hours of running time for calculating the vehicle schedules is not a problem
when creating plans for a longer horizon, but might be too long when considering a decision support
system, where quick solutions are needed to test different input configurations, or the effects of
structural changes to the resulting schedules. We will examine the following aspects of the results
given by the heuristic approaches:

• The optimality gap between the results of the heuristics and the respective optimal solutions
given by the MDVSP for the same problem.

• The ratio of the running time of the heuristics compared to the running time of the IP solutions.
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The results of the variable fixing heuristic of Gintner et al. can be seen in Table 3.3. Every
solution shows a decrease in running time compared to the optimal solutions: the average running
time of the instances is about 40% of the original, which would mean a running time of 3000-3500
seconds (almost 1 hour) for all the vehicle schedules. The gap from the optimum varies between
0.25%-0.40%, with an average of 0.33%.

Table 3.3: Variable fixing results using Gintner et al.

Instance Gap Running time ratio Vehicles
szeged1 0.27% 57.45% 96
szeged2 0.41% 31.55% 44
szeged3 0.33% 47.67% 96
szeged4 0.35% 36.59% 55
szeged5 0.37% 42.80% 56
szeged6 0.27% 28.10% 96
szeged7 0.35% 51.50% 96
szeged8 0.33% 52.56% 96
szeged9 0.33% 50.75% 96
szeged10 0.25% 34.69% 96
szeged11 0.34% 34.44% 44

If chains are built based on the proposed cost function, the average running time decreases below
10% of the time needed for the optimal solution; this means that most results can be obtained
in several minutes (in case of our test cases, it is at most 4-5). The combined running time of
all 11 day-types is between 10-15 minutes, which is really fast. However, the gap from the optimal
solution has risen significantly: it was greater than 2.5% in some cases, with an average of 1.83%. As
opposed to the method of Gintner et al., the greedy approach fixes significantly more trips (∼ 66%
in comparison to ∼ 33%) into ’stable chains’. This greatly reduces the size of the problem, and is
the main reason behind the fast running time. However, the method is also less precise because of
the fact that more trips are fixed in chains. If the construction of these chains is limited by some
of the above mentioned alternative constraints (e.g. limit on the size/length of the chains, or the
types of chosen trips), will lead to a solution with a better cost. On the other hand, less fixed trips
also mean a greater problem size, which results in an increase in running time. The results of this
method are presented in Table 3.4.

Building the chains based on depot-compatibility results in solutions with a more ordered struc-
ture than the previous two methods. Although more trips remain single, which comes with a slight
increase in running time (in average 11.63% of the IP solution, which is about 15 minutes for all
day-types), solutions are still achieved quite fast. In addition to this, the gap is also significantly
smaller: it is at most 1.26%, with an 0.86% average. Including additional constraints also result in
a better solution at the expense of an increase in running time, however, the quality improvement
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Table 3.4: Variable fixing results based on depot costs.

Instance Gap Running time ratio Vehicles
szeged1 2.63% 9.29% 100
szeged2 1.20% 3.71% 46
szeged3 2.15% 5.22% 99
szeged4 1.01% 10.14% 57
szeged5 1.12% 10.40% 57
szeged6 2.30% 6.08% 99
szeged7 2.20% 6.17% 97
szeged8 2.03% 10.70% 98
szeged9 2.35% 11.85% 99
szeged10 2.32% 8.40% 98
szeged11 1.04% 14.44% 46

is not significant enough to justify this. The results of this approach can be seen in Table 3.5.

Table 3.5: Variable fixing results based on depot-compatibility.

Instance Gap Running time ratio Vehicles
szeged1 1.14% 12.84% 97
szeged2 0.34% 6.50% 44
szeged3 1.19% 8.74% 98
szeged4 0.43% 15.58% 56
szeged5 0.38% 16.00% 56
szeged6 1.14% 6.95% 97
szeged7 1.06% 6.63% 96
szeged8 1.11% 13.95% 97
szeged9 1.14% 10.24% 98
szeged10 1.26% 19.42% 97
szeged11 0.29% 11.11% 43

Using trips of the same bus-line for building chains will result in an overall lower number of fixed
trips, which leads to a decreased running time of 21.78% of the original. Solving all day-types with
this approach requires about 25 minutes. Gaps from the optimum are more favorable than the ones
of our previous two approaches, with an average of 0.60%. The results of this method are found in
Table 3.6.

The analysis of the above results reveals an interesting property: the approaches that build
their chains using the structure of the problem (either the depot-compatibilities or the bus-lines)
perform much better on the weekend/holiday day-types than the weekday ones. While the heuristic
of Gintner et al. gives solutions with a better gap on average, considering even such a simple real-
life property as the bus-lines of the trips will result in solutions with a significantly better gap and
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Table 3.6: Variable fixing results based on bus-lines.

Instance Gap Running time ratio Vehicles
szeged1 0.58% 16.28% 97
szeged2 0.03% 21.35% 44
szeged3 0.83% 19.66% 97
szeged4 0.23% 22.46% 55
szeged5 0.22% 28.00% 55
szeged6 0.83% 9.56% 96
szeged7 1.06% 12.80% 96
szeged8 1.10% 17.91% 96
szeged9 0.77% 15.19% 97
szeged10 0.59% 10.86% 97
szeged11 0.18% 65.56% 44

running time, if the input is structured that way.
We provided several different variations for the variable fixing heuristic, which can all be easily

included in a decision support system. Depending on the requirements (quality versus a quick
solution) of the problem that has to be solved, the most adequate approach can be chosen for it.

Solutions on random data input

As we mentioned earlier, the approaches were also tested on random data instances generated by
the method in Section 7.4.2. We used several instance sets in different problem sizes of 50, 250, 500
and 1000 trips, each set containing 10 randomly generated input in the given size. Out of the 4
methods presented above, both the heuristic of Gintner et al. and our approach of using bus-lines
rarely fixed any trips, and even when they did, they only found one or two small chains. This means
that both methods ended up solving the original (or almost exactly the same) MDVSP, thus the
quality of their results cannot be assessed properly.

However, we further analyzed the connection between the quality of the approaches and the
structure of the problem, and came to the following conclusions: the heuristic of Gintner et al.
needs a large number of trips in the input that can be executed from any of the depots. Besides this,
these trips also have to be close enough to one another in time so that every SDVSP sub-problem
schedules them in the same sequence. If the trips that are compatible with every depot are scattered
on the time-line of the problem, then it is likely that none, or only a small number of them will
be fixed in chains. This scenario is likely to happen in the case of the proposed random instances,
which explains the failure of the heuristic in finding chains.

The method based on bus-lines has the same problem on this randomly generated input. Real-life
instances always have different bus-lines, which are represented by given pairs of p and q geographical
locations that have trips occurring back and forth between them with a given frequency. Randomly
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generated instances will not have this kind of order in their timetable, thus this heuristic is very
likely to fail too.

The results of the other two heuristics can be seen in Table 3.7. The column marked with (cost)
represent the heuristic that uses a cost function, while the column marked with (depot) give results
for the heuristic based on depot-compatibility. Each row of the table gives the average results of
the 10 problems in that instance set. The heuristic using a cost function provides approximately
the same results as on the real-life instances, while the heuristic based on depot-compatibility fixed
fewer trips than usual. As this method also uses a structural property of the input, it also has a more
difficult time with finding chains. Running times were close to that of the solution of the original IP
model, and they are not included in the table because of this. The poor running time comes from
the fact that the methods could fix only a small number of trips into ’stable chains’, and ended up
solving an MDVSP similar in size to the original one.

Table 3.7: Variable fixing solutions on random instances.

Instance Gap (cost) Gap (depot)
random_50 0% 0%
random_100 0% 0%
random_500 1.57% 9 ∗ 10−6%
random_1000 1.54% 0.02%

Test experience on these random instances shows that the data generated by our method is still
different from real-life instances in many structural aspects. Heuristics that are based on structural
properties appearing in real-life problems cannot be applied effectively to most of the generated
input. This means that while the instance generating methods found in the literature might work
well when looking for the optimal solutions of a theoretical mathematical model, they still fail to
create problems that closely resemble real-life instances in structure.

3.3 ’Driver-friendly’ vehicle scheduling

As it was mentioned earlier, the solution of the classical vehicle scheduling problem can only be
considered as a theoretical schedule from a practical point of view. The blocks of the solutions are
usually too dense for a single person to execute them, and because of this, drivers have to change
their assigned buses several times a day. This procedure is a demanding task for the drivers, and
also requires the introduction of certain driver events (e.g. administration). Because of this, we
presented an approach in [9] that is closer to the practice used by public transportation companies:
drivers are assigned a single bus to use during their shift.

The method is an iterative heuristic that is composed of multiple phases. The first step is the
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solution of the classical VSP for the trips of the input timetable, which can be done by any of the
before mentioned methods. The second phase uses the blocks of this schedule as an input, and
modifies them to satisfy some of the most basic driver constraints: the assignment of breaks during
the day, and the maximal driver shift length. The blocks of the schedule are sorted into different
classes according to their length, and blocks belonging to certain classes are cut into two parts.
Matching parts are then joined together to form feasible shifts with regards to their length. Finally,
a transformation step is executed, where the intervals of the driver breaks are determined for every
block. The insertion of these breaks might require the deletion of assigned trips from the blocks;
these deleted trips become the input of a new VSP, and the process is iterated until all blocks satisfy
the above mentioned driver rules, and there are no deleted trips.

To evaluate the efficiency of this approach, we also introduce a method that provides a lower
bound on the working time of the drivers and driver activities for a given timetable of trips.

3.3.1 The ’driver-friendly’ algorithm

There are two main differences between vehicle blocks and driver shifts: while a block has no
constraint on its length or structure, a shift has to fulfill certain regulations, such as not exceeding
a maximum working time, or providing fixed time intervals for drivers to take a break. The aim of
our algorithm is to construct vehicle blocks that comply with the above mentioned rules, which are
two of the most important driver shift regulations. This enables drivers to execute the whole vehicle
block during their shift, meaning that they will stay on the same vehicle during the day.

The process iterates over several steps: each iteration creates a vehicle schedule first and then
transforms its blocks to satisfy the given driver rules. Maximum working time is managed by a cut
and join method: the blocks are classified, then different cuts are executed on them based on their
class, and finally the parts are joined together to form feasible blocks once again. Driver breaks
are inserted into the blocks through a transformation step that creates intervals where they can be
assigned. The outline of this algorithm is shown in Figure 3.2, while the details of every step are
presented in the following subsections.

Classification, cut, and join

The main idea behind the algorithm is the classification of vehicle blocks based on the EU regulation
that maximizes the working time of a driver on a given day. For this, we examine the length of the
blocks, and determine the theoretical number of drivers needed to execute them. The definition of
these classes is based on the two shift-types that are usually used by transportation companies: the
continuous full-time shift that contains short breaks only, and the split shift that consists of two
separate duties that are divided by a long break. According to the above aspects, we introduce the
following three classes:
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Figure 3.2: Outline of the ’driver-friendly’ algorithm

C1 = {b ∈ B|l(b) ≤M},

C2 = {b ∈ B|M < l(b) ≤ 1.5M},

C3 = {b ∈ B|1.5M < l(b)},

where b is a block, B is the set of blocks, M is the maximum working time of a driver shift, and l(b)
gives the length of block b.

Class C1 contains blocks that can be executed by a single driver. Blocks in class C2 require
two drivers (one full-time and one part-time), so these have to be divided into two parts. Dividing
points are alternated between 1/3 and 2/3 of the length of the blocks. The resulting larger half will
correspond to a full-time driver shift, while the smaller half is only considered as a part-time shift.
The alternation of the dividing points is needed so that the part-time shifts could later be joined
together to form so-called split shifts. These part-time shifts will be referred to as work-pieces in
the future. Class C3 contains blocks that also require two drivers, but as opposed to schedules in
class C2, these drivers both have to work full-time.

The above division of the blocks is not a trivial task, as it may require the introduction of special
driver activities to the shifts. Examples for these are getting off and on the vehicles, which usually
count as a separate driver tasks. The algorithm also has to consider this when dividing the blocks
into work-pieces with different length.

As it was mentioned before, there are also regulations regarding the minimum resting time and
breaks of a shift. The algorithm will consider the following rules:

1. If the shift is composed of two work-pieces, there must be enough time between them for a
long break.

2. The total length of the resting times and the long break must reach the minimum daily resting
time.
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Further rules can also be introduced if it is required by the country or the transportation company.
Based on the above regulations, a graph can be built using the work-pieces as nodes. Two work-
pieces are connected by and edge if they can be part of the same driver shift. Performing a maximal
matching on this graph results in work-piece pairs that can be joined together as a split shift, and
work-pieces that are not part of this matching can be treated as single, full-time shifts, or broken
down into trips, and considered for rescheduling in the next iteration.

Transformation

While the previous step ensures the proper length of the shifts and also places long breaks into split
shifts, it does not consider other daily resting activities of the drivers. The aim of this step is to
modify the shifts in such a way that short breaks can also be inserted into them. The algorithm will
apply the following regulations in this step:

1. Short breaks have a minimum and maximum length.

2. Short breaks can only be executed in given time-windows.

3. Depending on the length of the shift, there can be multiple time-windows where it is mandatory
to execute a short break.

4. Short breaks can only be carried out at given geographical locations.

If there are free time intervals in a shift that satisfy all the above rules, then short breaks can be
inserted into them. Otherwise, trips have to be removed from the shift to create suitable intervals
for these breaks.

The algorithm examines the trips in the time-windows corresponding to the breaks, and deter-
mines the best sequence of trips that can be removed to produce the required time interval. Removed
trips are either inserted into other shifts, or moved to a so-called ’free-list’. An example for these
transformation step can be seen in Figure 3.3, where two trips are removed from a shift to make
room for a short break; the first trip is inserted into another shift, while the second trip is moved to
the ’free-list’.

These trips are chosen based on the following properties:

• Trips that can be inserted into other shifts without any conflicts are prioritized.

• Otherwise, if trips have to be moved to the ’free-list’, then those are chosen that have a minimal
overlap in time with trips already on the list.

After these intervals have been created, short breaks are inserted into them with the appropriate
deadhead trips to and from the locations where these breaks can be carried out. If all shifts contain
the required amount of short breaks after the transformation step, and there are no trips on the
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Figure 3.3: Example for a transformation step of the ’driver-friendly’ algorithm

’free-list’, then the current state of the schedule will provide the solution for the problem. Otherwise,
the algorithm moves on to the next step.

Rearranging the ’free-list’

The ’free-list’ is basically a set of trips that have to be rescheduled after the transformation step
was executed for all shifts. This is done by starting a new iteration with the solution of the VSP,
but this time, the input only consists of the trips that are on the ’free-list’, the shifts modified in
the previous steps remain unchanged.

It can be seen that the number of trips on this list is strictly decreasing with each iteration: some
of the trips are always fixed as part of a driver shift, and only conflicting trips will be carried over
to the next iteration, which were deleted from these shifts to create an interval for a short break,
or part of a work-piece that was broken into trips. Because of this, the algorithm will terminate in
finite steps (our test results show that it only needs one extra iteration step).

As mentioned before, the algorithm will terminate if there are no trips on the ’free-list’, and the
resulting shifts will be the solution of our problem; they form the ’driver-friendly’ vehicle schedule
together.

3.3.2 Lower bounds for evaluation

To evaluate the quality of our ’driver-friendly’ algorithm, we will examine its results for real-life
instances and compare them to the actual solutions of the transportation company, measuring the
total working time of all the drivers who are needed to execute the resulting shifts. To make this
comparison more meaningful, we also developed a method that gives a theoretical lower bound on
this working time.

In this subsection, we present our method for generating this lower bound, which is done in two
phases: the first phase determines the minimal working time connected to the number of drivers,
while the second phase gives a bound on the working time of all activities that are included in a
driver shift.
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Lower bound for the number of vehicles and drivers

As it was shown by the different classes of blocks in the previous section, the execution of a given
daily vehicle schedule requires at least one driver for every block. Because of this, the minimum
number of vehicles needed for a given day also gives a lower bound on the minimum number of
drivers. This value can be determined by examining the daily timetable. This is done by using an
approach similar to [11].

Let T be the set of trips, every t ∈ T represented by its dt(t) departure and at(t) arrival time,
sl(t) starting and el(t) ending location, and l(t) driving time. The day will be divided into smaller
(several-minute long) subintervals, and each of these has to be examined independently. First, we
determine the minimum number of vehicles needed to execute trips in every subinterval, and then a
theoretical lower bound on the working time is calculated based on this and additional driver rules
regarding driving time. The outline of this process is described in Algorithm 4.

Let lmin denote the length of the shortest trip in T , and let dtmin be the earliest departure, and
atmax be the latest arrival time. Consider the following subintervals: I1 = [dtmin, dtmin + lI), I2 =
[dtmin + 2lI , dtmin + 2lI), . . . , In = [dtmin + (n − 1)lI , dtmin + nlI), where lI is a fixed width such
that lI ≤ lmin. The value of n is chosen so that the last subinterval contains atmax.

For each subinterval Ik(k = 1, . . . , n), consider every trip t for which either dt(t) or at(t) is inside
Ik. There are four possible types of trips based on their relation:

T1: only dt(t) falls inside Ik;

T2: only at(t) falls inside Ik;

T3: both dt(t) and at(t) fall outside Ik, and the driving period of t does not intersect Ik (dt(t) ≥
dmin + klI or at(t) < dmin + (k − 1)lI);

T4: both dt(t) and at(t) fall outside Ik, and the driving period of the trip contains the entire
subinterval Ik (dt(t) ≤ dmin + (k − 1)lI and at(t) ≥ dmin + klI).

It is important to note that there is no option where both dt(t) and at(t) fall inside Ik. This is
prevented by the value lI(≤ lmin) chosen as the width of the subintervals.

As presented in Step 6 of Algorithm 4, a bipartite graph Gk is created for each subinterval Ik.
The nodes of this graph are the dt(t) departure and at(t) arrival times that fall inside Ik. The edges
of the graph connect arrival and departure nodes: edge (at(t′), dt(t′′)) exists, if the corresponding
trips t′ and t′′ are compatible (not considering depots, only the deadhead time needed for a vehicle
to travel from the ending location of t′ to the starting location of t′′).

A maximum matching is calculated for every Gk(k = 1, . . . , n) (see Step 7 of Algorithm 4), and
the minimum number of vehicles needed to execute the trips of a subinterval Ik is given by the sum
of three terms:

• the number of edges in the maximum matching of Gk,
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Algorithm 4 MinimumBusNumbers/Intervals

Input:

- set G of geographical locations (the starting and ending locations of each timetabled trip
t ∈ T , sl(t) ∈ G and el(t) ∈ G),

- set T of timetabled trips of the given day, dt(t), at(t), sl(t), el(t), and l(t) for every t ∈ T ,

- for each pair f, h ∈ G, the driving time of the deadhead trip between f and h, l(f, h).

Initialization phase

1. dtmin = earliest departure time in the timetable (mint∈T dt(t))

2. lmin driving time of the shortest trip of the day (mint∈Tat(t)− dt(t))

3. A width lI of the subintervals, such that lI ≤ lmin

4. The day is divided into subintervals I1, . . . , In with length lI .

5. For each subinterval Ik = [dtmin + (n − 1)lI , dtmin + nlI), determine the ck number
of trips that cover the entire interval (all t ∈ T , for which dt(t) ≤ dtmin + (k − 1)lI , and
at(t) ≥ dtmin + klI)

6. For each subinterval Ik, create a bipartite graph Gk. The nodes of the graph are those dt(t)
departure and at(t) arrival times that are inside Ik. Nodes at(t′) and an dt(t′′) are connected,
if trips t′ and t′′ are compatible.

Determining the minimum number of buses for each subinterval

7. Solve the maximum matching problem of each Gk bipartite graph. Let mk be the given
solution (the number of edges in the maximum matching), and vk be the number of nodes that
are not covered by the edges of the maximum matching of Gk)

8. bk = ck +mk + vk, k = 1, . . . , l, the minimum number of buses used in Ik (Output)

• the number of nodes not present in this maximum matching,

• and the number of trips of type T4 presented above.

the number
Let the above sum be bk. An example for this process is presented in Figure 3.4, where the 8

trips in relation with a subinterval Ik result in bk = 5 vehicles: one vehicle given by a trip of type
T4, three vehicles provided by three pairs of matched trips, and one vehicle given by a trip that is
not in the maximum matching.

A lower bound on the number of drivers can be calculated using all bk values, and considering
the rule of maximum daily driving time. For this, let lmaxwork denote the maximum length of a
driver shift (meaning that the difference of the ending and starting time of any driver shift cannot
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IkI
k

matching

Figure 3.4: Example for a maximum matching of trips in a subinterval Ik

be greater than lmaxwork). We have to determine the be + bm sums for all pairs of subintervals Ie
and Im for which the difference between the last minute of Ie and the first minute of Im is greater
than lmaxwork. Because of this property, there can be no overlap between the driver shifts of the
vehicles in Ie and Im. The maximum of these be + bm sums will provide the minimum number of
drivers for the given day.

While the minimum number of drivers is important, it can only be used to give a lower bound on
the working time for activities that are mandatory for every driver who executes a shift. Examples
for such activities are signing on for duty, or administration before and after the shift. For a lower
bound on the total working time of different activities inside a driver shift, we present a method in
Section 3.3.2.

Lower bound for total daily working time

As it was mentioned in the previous section, the number of drivers can only be used to calculate
the working time of the mandatory activities that have to be performed by every driver in service.
However, activities inside the shifts provide the major part of the working time: the driving time
of the timetabled and deadhead trips, and the different additional activities connected to executing
these trips, or waiting in the vehicle between two trips.

To give a lower bound on the working time of such activities, we build a connection-based
network similar to the one presented in Section 2.2.3. However, this network uses only a single
depot, regardless of the characteristics of the input set T of trips. The network has a separate node
for every t ∈ T trip, as well as a depot starting d0 and depot ending d1 node, resulting in the node
set

N = {(t|∀t ∈ T ) ∪ d0 ∪ d1}.

Similarly to the connection based network, there are depot starting and depot ending edges for
every trip, given by

Ed = {(d0, t), (t, d1)|∀t ∈ T}.
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The cost ce of edges e ∈ Ed will correspond to the working time needed to perform the pull-in or
pull-out activities represented by the edge: this comes from the travel time between the geographical
locations (if there are multiple depots in the original problem, we consider the minimum of the
possible travel times), and any extra time connected to starting or finishing trip t.

Other edges are given by the compatibility between pairs of (t′, t′′) trips: t′ and t′′ are connected
by an edge only if they compatible regarding both travel distances and depots (meaning that they
would be connected in the multi-depot case of the problem as well). This results in the edge set

Et = {(t′, t′′)|t′ and t′′ are compatible,∀t′, t′′ ∈ T}.

The cost ce of edges e ∈ Et will correspond to the working time needed to travel between trips
t′ and t′′, as well as any additional activities needed after the end of t′, before the beginning of t′′,
and because of waiting between the two trips. The total working time of the timetabled trips in T
is constant for the problem, so it will not be included in this model, but added to the solution value
afterwards.

We call the resulting G = (N,Ed ∪ Et) network a ’quasi-multi depot’ connection-based network
model, as the connections are portrayed taking depot-compatibilities into account, but the network
has only a single commodity. The capacity of this single depot is the sum of all depot capacities
of the original problem. A connection based mathematical model is built for this ’quasi-multi
depot’ network, and its optimal solution gives a lower bound on the total working time of activities
connected to driver shifts.

Using this result, the lower bound on the total working time for a daily schedule is determined
by the sum of three terms: the estimated working time based on the number of drivers, the working
time given by the ’quasi-multi depot’ model, and the working time of the timetabled trips in the
input.

3.3.3 Test results

Similarly to Section 3.2.5, we will present the efficiency of the ’driver-friendly’ algorithm on real-life
input. We use the same instances that were introduced in Table 3.2. To show that the methods
presented in Section 3.3 and Section 3.2 can be part of the same sequential solution process in a
decision support system, the ’driver-friendly’ method will use the variable fixing based on depot
costs (Section 3.2.1) to solve the VSP. The results of these instances are presented in Table 3.8.

The above table gives four important details of the problem: the number of buses, number of
drivers, running time of the entire process, and the gap from the estimated lower bound. Three
different values are given for the number of buses: the result given by the ’driver-friendly’ algorithm
(column DF), the value of the lower bound produced by Algorithm 4 (column Bound), and the
number of buses used by the company for the same input. The same three values are also presented
for the number of drivers. The solution time of the algorithm is given in seconds, and the gap in



3.4. SUMMARY AND REMARKS 39

Table 3.8: Results of the ’driver-friendly’ algorithm

Number of buses Number of drivers DF
Time (s)

Gap (%)
Instance DF Bound Company DF Bound Company DF Company
szeged1 104 95 107 162 132 165 123 8.07 11.77
szeged2 63 42 52 111 78 106 39 9.21 11.62
szeged3 104 95 109 166 132 165 101 8.86 11.67
szeged4 80 55 66 127 88 120 51 9.33 11.01
szeged5 79 54 67 127 89 119 48 9.45 10.36
szeged6 106 95 109 163 132 165 114 8.03 11.62
szeged7 103 94 107 162 130 163 98 9.01 11.83
szeged8 109 95 111 168 132 165 143 8.15 11.65
szeged9 105 95 110 167 132 165 96 8.52 11.96
szeged10 109 95 110 167 131 165 256 8.19 11.49
szeged11 57 41 52 102 72 110 27 9.37 13.64

working time from the theoretical lower bound is shown for both the ’driver-friendly’ algorithm, and
the original solution of the company. As the result of the ’driver-friendly’ algorithm does not provide
feasible driver shifts, it had to be modified by a simple process: the shits were examined sequentially,
and the missing driver activities were included where they were necessary. This process considered
the activities that were required by the driver rules of the transportation company (naturally, the
same activities were also present in the original shifts of the company).

As it can be seen from Table 3.8, the solutions of the company were slightly 10% above the given
theoretical lower bound. As we do not know the tightness of this bound, their results might even be
closer to the optimum than this. In comparison, our proposed algorithm gave a ∼ 3% improvement
on average for the instances, which we believe to be quite significant, especially when we also take
into consideration that these results can be achieved in a couple of minutes.

The ’driver-friendly’ algorithm was developed with the aim of creating vehicle schedules that are
not only good from a theoretical point of view, but also have a good structure regarding the driver
rules of a transportation company. We managed to introduce a flexible solution process for this
problem that gives good quality solutions with a short running time.

3.4 Summary and remarks

In this Chapter, we introduced the concept of application-oriented vehicle scheduling, which aims
to create vehicle schedules that are not only good from a theoretical point of view, but can also be
applied in a real-life decision support system because of their structure and quick solution time.

In Section 3.2, we presented several different heuristic approaches for solving the MDVSP. These
methods were developed to provide good quality solutions with a short running time, which is
achieved by decreasing the problem size through the idea of variable fixing. The heuristics try to
reduce the size of the mathematical model by finding series of trips (called ’stable chains’) that
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are likely to belong to the same sequence in the final solution, and fix them together as single
trips. We showed three different approaches to find such sequences: the first one is based on a
cost function, while the second considers the flexibility of the chosen trips through their depot-
compatibility. The third approach utilizes a real-life characteristic of the input: it creates chains
using only trips that belong to the same bus-line. All three methods result in good quality solutions
with short running times. Extensive testing on real-life and randomly generated instances revealed
the following property: while general methods (eg. using a cost function) perform similarly for any
instance type, exploiting the structure of real-life instances gives even better solutions in practice
at the price of performing badly for any instance set without this structure. While generally good
methods might be more appealing from a theoretical point of view, the approach based on bus-lines
results in solutions with a far better quality and structure when considering a practical application.

In Section 3.3, we introduced an algorithm that creates vehicle schedules with a structure similar
to driver shifts. This is done with the help of an iterative process, where a VSP is solved for the
input trips of the problem, and then the resulting blocks are modified and transformed through
different steps. First, blocks are modified so that they satisfy the rules regarding maximum driver
shift length. Then, they are further transformed so that driver breaks can also be inserted into them.
If any trips are still not fixed after this step, a new iteration starts with the same steps. To present
the quality of the resulting schedules, we also developed a method that gives a lower bound on the
total working time of a schedule based on a timetable of trips. Solutions on real-life instances show
that, based on the gap from this lower bound, a significant improvement can be achieved compared
to the original schedules of the transportation company. The process is flexible enough so that it
can be used in the case of different driver regulations, and it can also apply any kind of VSP solution
method. Moreover, we achieved good quality solutions in several minutes for these instances.



Chapter 4

Integrated vehicle scheduling and
assignment

In this chapter, we introduce the integrated vehicle scheduling and assignment problem, which aims
to give feasible vehicle schedules that also include tasks specific to the requirements of the executing
vehicle. Vehicle schedules of a transportation company are not only virtual sets of tasks that have to
be executed in the given sequence, but they also have a real vehicle (or at least a vehicle brand/type)
assigned to the schedule as well. Knowing the vehicle responsible for the execution of the trips also
means that there are special needs that have to be taken into account while the vehicle is in service:
for example, it can run out of fuel (and has to be refueled), or spends too much time in service
(and has to be sent to short maintenance during the day). Constraints such as these are not widely
studied. We will refer to these as vehicle-specific activities.

Approaches that consider vehicle-specific characteristics in the VSP started appearing recently
with the rise of electric and alternative-fuel vehicles, as these are both cheap and environmentally
friendly to operate. However, their major drawback is that they can only run a limited distance, so
refueling events are a crucial part of such schedules [71]. While refueling is an important constraint
to include in a VSP model, other vehicle-specific activities should also be considered, such as parking,
maintenance [57, 23], etc. Constraints like these get significantly less attention than refueling.

We present a set partitioning model for the integrated vehicle scheduling and assignment problem
with vehicle-specific activities. If such activities are considered for a vehicle schedule, they also
determine certain extra tasks that the vehicle has to execute besides its timetable trips. This results
in a vehicle assignment combined with scheduling. Our goal is to give a general framework that can
integrate most vehicle-specific activities, and also to provide a flexible model where many of these
application-oriented constraints can be included easily. While there may exist other models and
methods dealing with these problems separately, such activities have not been considered together

41
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in the same problem before to our knowledge. We give a column generation-based solution method
for this model, and show its efficiency on randomly generated test instances. To showcase the model,
refueling is considered for these instances as the vehicle-specific activity, and the concept of multiple
fuel-types is also studied, which is also rarely studied property. We introduced the integrated vehicle
scheduling and assignment problem in [16].

4.1 Vehicle scheduling with vehicle-specific activities

Solutions based on the basic concepts of the SDVSP and MDVSP cannot be applied directly in
practice, as they only deal with covering all timetabled trips. In real-life, however, vehicles have to
execute several types of activities during the day. These come from different vehicle-specific needs
(parking, refueling, maintenance, etc.), and usually have to be executed after a vehicle has covered a
certain distance (refueling, maintenance), or spent a certain amount of time without performing any
activities (parking). In all of these cases, the total length of some consecutive activities is limited,
and vehicle-specific events have to be scheduled after such work-pieces.

In general, extensions of the VSP that have either a time or distance constraint on the length of
the vehicle blocks belong to the group of Vehicle Scheduling Problems with Time/Route Constraints
[48, 25]. These alone cannot satisfy the constraints for vehicle-specific activities, as they limit the
total length of the flow representing a block, while activities only need a limit only certain parts of
this flow. However, most problems considering the above vehicle-specific activities are special cases
of this group.

In this chapter, we introduce a set partitioning-based model for the integrated vehicle scheduling
problem with vehicle-specific activities. The aim of this model is to provide a general framework
that is capable of producing vehicle schedules that can be used in practice. Most papers dealing
with the VSP do not consider vehicle-specific activities, although they are really important real-life
constraints for vehicles. The most studied such activity that has an increasing popularity in recent
years is the scheduling of alternative fuel (natural gas, hybrid) or electric vehicles.

Vehicle scheduling for alternative fuel vehicles (AF-VSP) is hard because of the limited distance
they can cover. Vehicles have to be refueled during their daily blocks, and there are usually very
few special refueling stations, with a limited number of refueling pumps. Because of this, location
problems for refueling stations are also important [66]. Li presented a flow network based model
for both alternative fuel and electric vehicles in [70]. Here, a single depot VSP is considered with
a single fuel type, and a single refueling station at the depot. Several column generation-based
solution techniques are presented on instances with up to 947 trips. Adler considers the problem
with multiple depots in [1, 2]. He uses a set partitioning model for alternative fuel vehicle scheduling,
and also uses column generation to solve instances with up to 50 trips. Larger instances are solved
with the use of heuristic methods.
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Electric vehicle scheduling (E-VSP) has also been getting a lot of attention lately. Both the
previously mentioned paper by Li [70] and the dissertation of Adler [1] present models and solution
methods for the E-VSP as well. Their solution approaches are similar to the ones they use for the
AF-VSP. They mainly deal with battery swapping, and are also based on column generation. A
time-space network-based model that allows charging of the vehicles is given in Reuer et al. [91].
In [102], van Kooten et al. present multiple models for the E-VSP considering battery charge. The
solution is once again obtained using a column generation approach.

Another important vehicle-specific activity is the assignment of small maintenance tasks to ve-
hicles during their daily blocks. According to [57], they can be of three types: daily, preventive, and
emergency maintenance. Daily inspections can be built into a vehicle schedule at the beginning or
the end of the blocks, while emergency maintenances are only issued as part of a disruption manage-
ment process when something unexpected happens to a vehicle. However, preventive maintenance
has to be executed by vehicles after a set distance or time interval. Such maintenance activities are
considered for rolling stock rotations by Borndörfer et al. in [23], while Haghani et al. also give a
model for inserting preventive maintenance for existing bus schedules in [57].

As it can be seen from the above, none of the presented papers deal with multiple vehicle-
specific activities at once. Moreover, the vehicle-specific activities that they study usually consider
a single vehicle characteristic (eg. vehicles will all have the same fuel-type, or need the same type
of maintenance). The next sections introduce the multiple depot integrated vehicle scheduling and
assignment problem with vehicles specific tasks, and present a mathematical model for it. This
model acts as a general framework, where multiple activities with time or distance constraints can
be included depending on the requirements of the problem. The model can give feasible solutions
with regards to these, also taking capacity constraints into account. While all the above introduced
papers solve the vehicle scheduling problems with a single specific vehicle activity, our goal was to
provide a general model that can handle multiple different activities simultaneously.

4.2 Problem definition

We define the integrated vehicle scheduling and assignment problem with vehicle-specific activities
(VSAP-VS) the following way: let the input of the problem be set T of timetabled trips, set D of
depots and set V of vehicles. The concepts of these are are similar to the VSP defined in Section 2.2:
every trip t has a dt(t) departure and at(t) arrival time, a sl(t) starting and el(t) ending location,
along with the distance that they cover.

Similarly to the VSP, trips have a set of vehicles that can execute them, and this is also done
through the concept of depots. Vehicles can belong to depots, which are determined by the features
of the trips; certain trips might be served only by vehicles satisfying given constraints (eg. is the
vehicle wheelchair accessible, does the vehicle have air conditioning, or a given passenger capacity,
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etc). Such constraints are important, and are centered around the services you want to provide to
passengers taking the given trip (eg. people with wheelchair should have no problem getting on any
bus along the line of this trip), or regulation connected to the trip (eg. every bus covering a trip
that is longer than a given distance must have air conditioning),

The concept of these depots usually comes from the combination of two features: the type of
the vehicle (eg. with/without air conditioning, solo, elongated, etc.), and its starting location at
the beginning of the day. The VSAP-VS will consider depots as groups of vehicles sharing the same
vehicle-type and having the same starting/ending geographical location at the beginning/end of the
day. If the problem has at least two depots, every trip is also assigned a depot-compatibility vector
that corresponds to the depots that can execute it.

As opposed to the VSP, the VSAP-VS also considers vehicle characteristics. These also refer to
different attributes of the vehicles, but only ones that do not have an influence on servicing trips.
For example, the fuel type of the vehicle can be such a characteristic; vehicles belonging to the same
depot can run on different fuels, but can still service the same trips.

Let n different vehicle-specific activities be represented by set R. These activities are connected
to vehicle characteristics rather than depots (eg. refueling vehicles with natural gas, preventive
maintenance of hybrid vehicles, etc.), and certain activities can only be carried out by given vehicles.
Let set Rj ⊆ R denote the possible tasks belonging to activity j. Similarly to timetabled trips, task
r ∈ Rj also has a starting and ending time, and departure and arrival locations (although these
two are usually the same, as activities like parking or refueling are stationary). In order to properly
model the capacities of the certain activities, suppose that they can only be carried out in fixed,
discrete time intervals instead of continuous availability. Each activity has its own different rules
and regulations, but these are usually connected to a time-span or distance limit. For example,
vehicles cannot travel more than a given distance without carrying out a refueling task, or they have
to start a parking task if they would remain idle for more than a set amount of time. Compatibility
between trips and activities also has to be defined. Considering a pair of tasks a, a′ ∈ T ∪R, (a, a′)
are compatible if

• the same vehicle v ∈ V is able to service both of them (the depot of v is compatible with any
trips in {a, a′}),

• they both satisfy the vehicle characteristics of v (any vehicle-specific task in {a, a′} can be
carried out by v, eg. we cannot assign battery recharging to a vehicle running on gas), and

• vehicle v can fully service a′ after finishing a with respect to the running time and distance
between the arrival location of a and the departure location of a′ (also considering the possible
deadhead trip between a and a′, if needed).

The aim of the problem is to give a feasible vehicle schedule that includes both timetabled trips
and vehicle-specific activities, and tasks in any of the vehicle blocks are pairwise compatible. The
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cost of such a vehicle schedule is the linear combination of three different terms: a one-time daily
cost for each vehicle covering a block, a distance proportional cost for covering timetabled trips and
deadheads, and costs of the vehicle-specific activities included in the blocks.

4.3 Mathematical model

In this section, we present our model for creating vehicles schedules that also take vehicle-specific
activities into account.

4.3.1 A set partitioning mathematical model

For each depot d ∈ D, let Bd be the set of feasible b blocks that start from dt(d) and also return
there. A block is a sequence of compatible trips and activities that can be executed by the same
vehicle, and satisfies all activity rules connected to this vehicle. Let

B =
⋃
d∈D

Bd

be the set of all such blocks. For each b ∈ Bd, let ydb be the following binary variable

ydb =

1, if b ∈ Bd block is part of the solution

0, otherwise

Furthermore, let ade,b be the following

ade,b =

1, if b ∈ Bd block contains activity edge e

0, otherwise

Let T denote the set of trips for the problem, and R give the set of tasks belonging to all vehicle-
specific activities. Tasks that are connected to a single activity of a given vehicle characteristic are
given by Ri ⊆ R(1 ≤ i ≤ n), where n is the number of all such activities. The capacity of a depot
d ∈ D is denoted by kd, and the maximum number of vehicles that can simultaneously carry out a
vehicle-specific task r ∈ R is given by kr. Let cb be the cost associated with block b ∈ Bd. Then we
can formalize our model the following way:

minimize
∑
d∈D

∑
b∈Bd

cby
d
b , (4.1)

s.t.
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∑
d∈D

∑
b∈Bd,e=(dt(t),at(t))∈Ed

ade,by
d
b = 1,∀t ∈ T (4.2)

∑
d∈D

∑
b∈Bd,e=(dt(r),at(r))∈Ed

ade,by
d
b ≤ kr,∀r ∈ R (4.3)

∑
b∈Bd

ydb ≤ kd,∀d ∈ D (4.4)

ydb ∈ {0, 1},∀d ∈ D,∀b ∈ Bd (4.5)

ade,b ∈ {0, 1},∀d ∈ D,∀b ∈ Bd,∀e ∈ Ed (4.6)

Constraint (4.2) ensures that every trip is covered exactly once. Blocks simultaneously containing
certain vehicle-specific activities are given by constraint (4.3), every task r ∈ R having a maximum
capacity kr. Note, that this constraint only ensures the vehicle limits on each task, as we suppose
that every block is feasible, also meaning that they satisfy the distance and time constraints or any
other rules connected to the activities. Managing this feasibility will be addressed in the following
subsections. Constraint (4.4) limits the capacities of each depot d ∈ D.

4.3.2 A column generation approach

Due to the extremely high number of possible blocks (resulting in a large amount of decision vari-
ables), the model cannot be solved directly by a MIP solver. Moreover, generating all blocks is also
problematic, as the number of combinations is too large. Instead of giving all the possible blocks in
the model, only the most important ones have to be generated to achieve a good quality solution.

Column generation [42, 76] is a classical method that is usually applied to such problems, relaxing
the integer constraints of the variables. This relaxed problem is also called as the master problem.
The usual steps taken during the solution process are the following:

1. Create an initial solution. The resulting schedule will provide the starting set of columns.

2. Solve the relaxed problem (master problem) on the actual set of columns, store the lower
bound, duals.

3. Solve a pricing problem in order to look for new columns that have a negative reduced cost.

4. Add the new columns to the master problem, and erase any old columns that are obsolete,
and have a large cost.

5. Check termination criteria. If none apply, go to step 2.

6. Create the final schedule based on the current columns of the problem.
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Creating the final vehicle schedule in step 6. can be done by solving the resulting problem as an
IP using a solver. A solver can also be used in step 2. for the solution of the master problem LP.
The process can terminate in step 5. if a given iteration count is reached, or the solution has not
improved significantly over the past iteration steps. The most important part of the algorithm is
the solution of the pricing problem in step 3.

4.3.3 Initial solution

In this subsection, we present our heuristic for creating an initial solution for the column generation
process. Its pseudo code can be seen in Algorithm 5.

Algorithm 5 Initial vehicle schedules with activities.
Funct buildSchedule(T, V )

1: Let the set of blocks be B := {}
2: Order T by ascending trip departure times
3: for (t ∈ T ) do
4: Let f := b ∈ B with the cheapest insertion cost for t
5: if f = ∅ then
6: f := v ∈ V that can serve t with the smallest cost
7: Assign t to f
8: B := B ∪ {f}
9: else

10: Assign t to f
11: end if
12: for all activities Ri ⊆ R do
13: checkAtivity(Ri, f)
14: end for
15: end for
16: return B

Funct checkActivity(A, b)
1: P := all available tasks in A for b
2: d := resource (time/distance) needed for b to serve any trip t
3: v := is an activity rule violated servicing any trip t?
4: if d ≥ remainingResource(b) or v = true then
5: p := cheapest compatible task from P
6: Assign p to b
7: remainingResource(b) := MAX
8: else if v = true then
9: p := cheapest compatible task from P

10: Assign p to b
11: end if

The input of the algorithm is the set T of trips and set V of vehicles. The process iterates over
the input trips in ascending order of their departure times, and assigns the current trip to an existing
block with the cheapest cost. If there is no block where the trip can be inserted, then a new block
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is created for the trip. The vehicle chosen for this block is the one with the smallest cost that can
execute the trip. After each trip assignment, the current block is checked whether its vehicle has to
undergo a task belonging to any of its vehicle-specific activities.

The function checkActivity(A, b) checks block b if it could execute any of the remaining trips
without violating the rules of activity A. If any of the rules would be violated, b is sent to carry out
the given activity, and is assigned the cheapest compatible task. If the activity was connected to a
resource (eg. distance, time), then this is also replenished for the vehicle servicing the block.

Algorithm 6 Function for checking refueling activities.
Funct checkFuel(b)

1: R := all available refueling times for b
2: d := 2 ·maxDeadheadT ime+maxTripT ime
3: if d ≥ remDist(b) then
4: r := cheapest compatible refueling possibility for b
5: Assign r to b
6: remTime(b) := MAX
7: end if

As an example, we present a function for managing refueling activities in Algorithm 6. Vehicles
are sent for refueling tasks if their remaining distance (denoted as remDist) would not allow them to
head out for any trip, service it, and then head back to any location. For this, we count the distance
of two deadheads as maxDeadheadTime (with the maximal possible distance), and the distance of
the trip as maxTripTime (taking the maximal remaining trip distance into account). If refueling is
needed, the vehicle is assigned to the next available possibility with the cheapest cost. After the
refueling task is completed, the remaining distance that the vehicle can cover is again set to its
maximum value.

When the initial solution is created, its blocks are used as the starting columns of the relaxed
master problem.

4.3.4 Pricing problem

After the solution of the master problem, information about its duals is used to create new columns
that can improve its current objective. Each such column corresponds to a legal vehicle block. These
blocks are created with the use of a generation network.

This network is the basis of the pricing problem, and is used to build vehicle blocks with a
negative cost that also satisfy all the above mentioned vehicle-specific activities. This basically
means that after a vehicle has consumed enough of a given resource, the appropriate events for its
vehicle-specific needs also have to be scheduled. This can be done by solving a resource-constrained
shortest path problem.

We use a time-space generation network similar to the one presented by [96], and a separate
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network is created and solved for every pair of depot and activity type. Each network is given
by the possible tasks that can be assigned to the vehicles: timetabled trips, deadhead trips and
other vehicle-specific events. The nodes of the network correspond to the arrival and departure time
of these tasks on their given time-lines. The edges of the network can either correspond to their
respective tasks, or be waiting edges on the time-lines.

Formally, let G = (N,E) represent a general duty generation network. Such a network is created
for each combination of depot d and activity a, resulting in networks Hd

a = (Nd
a , E

d
a). The nodes in

Nd
a are the following: depot_source, depot_sink, trip_start, trip_end, activity_start, activity_end.

Edges in Eda are connecting these nodes; trip_start and trip_end nodes belonging to the same trip
are connected by trip edges, activity_start and activity_end nodes belonging to the same activity are
connected by activity edges. Any end node is connected to the start nodes of other tasks; deadhead
edges connect the ones in different locations, while waiting edges run between nodes in the same
location. The only exception to this is activities: the end node of an activity task is not connected to
the start node of the same activity type, as there is no point of executing two similar vehicle-specific
activities after each other. Block_start edges connect the depot_source node to every trip_start
node, and every trip_end node is connected to the depot_sink node with block_end edges.

An example of such a network can be seen in Figure 4.1. In this figure, refueling is considered
as the vehicle-specific activity of the network, and it contains 20-minute refueling tasks.

To provide feasibility with respect to vehicle-specific events, so-called resources are also associated
with each vehicle on the network. A single resource is allocated for each vehicle-specific activity,
which calculate the time/distance (depending on the resource) traveled by the vehicles with the help
of a resource extension function. These will filter out blocks whose total consumed resources violate
any of the vehicle-specific needs. Tasks belonging to the activity replenish the appropriate resource
capacity of the executing vehicle.

As suggested in [96], negative reduced cost vehicle blocks are generated on these networks using
a dynamic programming approach presented in [44]. Blocks with the lowest negative reduced cost
are added to the master problem from every generation network.

4.3.5 Creating the final schedule

After the column generation steps have concluded, the resulting master problem only gives us a
solution for the LP-relaxed scheduling problem. To obtain a final integer solution, a second phase
is usually executed. This can be done in several ways.

One approach is using a Lagrangian relaxation [59], as in the case of integrated vehicle and crew
scheduling problems, where the linking constraints between vehicle and crew are an ideal candidate
to be relaxed.

Another method is embedding the column generation process in a branch-and-bound framework
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that searches for the optimal integer solution [20, 78]. This method is also referred to as branch-
and-price.

Integer solutions can also be obtained by the use of truncated column generation, which has been
used for the MDVSP [85]. After the column generation has concluded, this approach tries to obtain
an integer solution of the master problem by performing a rounding/variable fixing heuristic, fixing
the values of fractional variables.

Our approach is similar to truncated column generation, but instead of applying a heuristic
approach to round the variables of our problem, we simply re-introduce the integrality constraint
to our master problem, and solve it using an IP solver. A similar approach is also used in [52].
To control the time of the solution process, we also set a time-limit for the solver. This approach
yields good quality solutions for single depot and smaller-sized multi-depot instances, but larger, or
hard-to-solve problems will usually yield poor results.

4.4 Test results

We tested our approach on random input generated by the method presented in Chapter 7.4.2.
Both single and multiple-depot test cases were created in different sizes: 50, 250, 500, 1000, 1500
and 2000 trips. While the model we presented can be used as a general framework for tackling
different vehicle-specific activities, we chose refueling to showcase our test instances, as this is the
most widely studied vehicle activity. However, while papers in the literature usually deal with only
a single fuel-type for a problem, our test instances have two different fuels. Moreover, we also allow
vehicles belonging to the same depot to have different types of fuel.

A total of 24 test case were solved both for the single- and multiple depot problems: we generated
4 instances for every problem size. The ILOG CPLEX solver was used during the solution process,
with a limit set on its running time: the limit on the column generation phase was 7.5 hours, while
the IP phase ran for 3 hours in the single depot case, and 5 hours in the multi-depot case. This
adds up to a total maximum running time of 10.5 hours (37800 seconds) for single depot problems,
and 12.5 hours (45000 seconds) for multi-depot problems. These limits have to be included if we
consider the practical application of such a solution method, as planners must have an estimate on
time when they will have a feasible solution.

The following information is presented about the results: the number of vehicle blocks given by
the initial heuristic (initial blocks), the final number of blocks given by the resulting IP (IP blocks),
the final optimality gap (%) given by CPLEX, and the solution time of the instance.

Table 4.1 shows results for the single depot test instances. It can be seen that good quality
solutions are achieved for all 24 problems, the optimality gap is mostly under 1% (with only a single
instance being above 3%, and six instances sitting between 1%-3%). The maximum runtime was only
reached by the 1500 and 2000 trip instances. One notable feature of all single depot results is that
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Table 4.1: Single depot test instances for the VSAP-VS.

Instance Trips Initial
blocks IP blocks MIP

gap (%)
Time
(s)

input_01

50

16 16 0.00% 95
input_02 16 10 0.00% 80
input_03 16 11 0.00% 86
input_04 16 16 0.00% 85
input_05

250

58 71 0.01% 258
input_06 56 56 0.00% 335
input_07 58 58 0.01% 329
input_08 56 69 0.00% 257
input_09

500

99 131 0.08% 4938
input_10 107 104 0.43% 5473
input_11 103 107 0.49% 5527
input_12 96 137 0.18% 5014
input_13

1000

184 290 1.51% 11228
input_14 183 231 2.16% 19808
input_15 187 219 2.03% 19361
input_16 185 288 1.54% 11073
input_17

1500

260 611 0.01% 21028
input_18 268 529 3.56% 21629
input_19 264 612 0.01% 18488
input_20 262 595 2.05% 21612
input_21

2000

374 731 2.70% 21643
input_22 364 663 0.76% 21615
input_23 358 383 0.00% 18105
input_24 358 593 0.01% 21007

the IP solution of the problem uses significantly more buses than the initial heuristic. The reason
for this phenomenon can be found by examining the different cost factors of the input. Most of the
vehicles generated for the input instances ended up having a relatively low daily cost, and a more
significant distance proportional cost factor. Because of this, the IP solution aimed to minimize the
distance traveled by its vehicles (which means trying to schedule as few deadhead trips as possible).
The initial heuristic is essentially a greedy assignment of trips to vehicles, which does not take
traveled distance into account, but only introduces new vehicles to the schedules if it really has to.

Overall, the solutions we achieved for a single depot and two fuel-types are promising, even for
larger instances. The maximum problem size presented by the test results for similar problems in
other papers in the literature rarely exceed 1000 trips, while we show good quality solutions for
several instances with 1500 and 2000 trips as well, while considering vehicles with two different
refueling constraints.

Table 4.2 gives the test results for the multi-depot test cases. Here we used vehicles belonging
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Table 4.2: Multiple depot test instances for the VSAP-VS.

Instance Trips Initial
blocks IP blocks MIP

gap (%)
Time
(s)

input_1

50

26 9 0.00% 10
input_2 25 8 0.00% 16
input_3 10 9 0.01% 26
input_4 9 9 0.00% 13
input_5

250

51 32 8.06% 19028
input_6 46 34 6.42% 19301
input_7 47 35 7.30% 19253
input_8 45 35 6.49% 18998
input_9

500

84 64 11.43% 22801
input_10 100 63 10.84% 23184
input_11 81 57 12.73% 24836
input_12 86 58 12.48% 24452
input_13

1000

181 135 15.29% 45067
input_14 164 122 23.59% 45045
input_15 177 124 21.65% 45087
input_16 182 124 23.48% 45064
input_17

1500

281 216 25.11% 45081
input_18 270 217 26.64% 45033
input_19 291 221 27.02% 45024
input_20 284 222 27.59% 45112
input_21

2000

366 320 26.35% 45113
input_22 376 329 26.10% 45160
input_23 378 336 26.19% 45119
input_24 335 313 27.60% 45061

to two different depots, and the problem also considered two fuel-types (both depots had a mix of
vehicles with both fuel-types). This results in a more complicated problem (multiple depots, two
fuel-types, instances with a large number of trips) that is usually considered in the literature.

The results for small, 50-trip instances are promising, as we also found near optimal solutions
in a short time. However, these were the only cases, where both the column generation phase and
the IP phase concluded well before its time limit. Even for the 250 trip instances, the IP solution
process was aborted prematurely as they ran out of time. For the 250 and 500 trip instances, the
column generation process concluded with no more columns to generate, but it also ran out of time
for the larger input.

The effect of reaching the time limit can clearly be seen on the results. While the average gap
given by the solver was 9.47% for the 250- and 500-trip instances, where the column generation
finished without any problems, the three remaining instance sets (with 1000, 1500 and 2000 trips),
where both the column generation and IP solution phases were aborted because reaching the time
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limit, had an average gap of 24.72%. While these results might not seem particularly promising, the
quality of the achieved solution only depends on the time allocated for the two phases. Based on the
single depot, and small multi-depot results, the model will provide good quality solutions, but the
time limit has to be increased significantly. However, this would invalidate the very reason that we
introduced the time limit in the first place: to make the solution process usable in practice, where
results have to be achieved in a foreseeable time.

4.5 Summary and remarks

In this chapter, we presented a general framework for the integrated vehicle scheduling and assign-
ment that also considers tasks for vehicle-specific activities. This framework gives a daily vehicle
schedule that also includes the special needs of the vehicles executing it; activities such as refuel-
ing, parking, etc. are considered in the resulting vehicle blocks. We gave a set partitioning-based
mathematical model for the problem, where most vehicle-specific activities can easily be integrated
based on the desired constraints. This model is then solved using a column generation approach. We
presented the efficiency of the proposed model on randomly generated test instances, using refueling
to showcase vehicle-specific activities.

Instances with one and two depots were both created, and all of them had two fuel-types with
different constraints (also allowing that the same depot can contain vehicles with different fuel-types).
To guarantee that a feasible result is achieved within a foreseeable period, a time limit was set for
both phases of the solution process. Test runs for the single depot cases resulted in good quality
solutions, as did the smaller-sized multi-depot ones. Results for the larger multi-depot instances
had a bigger optimality gap, but this is due to one or both of the phases terminating because of the
time limit. Based on the results of the other test cases, these gaps would also decrease significantly
given more time for the solution.

While the results are promising, there is always room for improvement of the process. Imple-
menting a proper branch-and-price framework could result in better solution. Because of the limited
running time, a truncated column generation approach with a rounding heuristic as the second phase
should also be examined. Another possibility to decrease solution time could be the parallelization of
the column generation process. Implementing these approaches and comparing their results should
be a next step of this research.

The model was created as a general framework that can handle multiple vehicle activities. Al-
though we presented problems with two different fuel-types as our test cases, we did not generate
instances with two (or more) completely different activity types. Our future research will also include
experimenting with different vehicle constraints.



Chapter 5

Managing disruptions with vehicle
rescheduling

The methods discussed so far in Chapter 3 and Chapter 4 can be used to construct vehicle schedules
for a single day. However, public transportation companies create their schedules in advance for a
planning period, which is usually a several-week-long horizon. Such a planning period is a series of
interconnected parts; the smallest such parts are generally the single daily schedules. We will refer
to these as the planning units of the period. Each planning unit has a pre-planned schedule that
has to be executed by the vehicles of the company.

While such a schedule is useful from a planning perspective, the series of tasks carried out in
practice by the end of a planning unit are generally different from the pre-planned ones. The main
reasons for this are unforeseen events that happen during the execution of a planning unit. These
events are called disruptions by the literature, and the field that deals with them is referred to as
disruption management. Clausen et al. [28] define a disruption as "an event or a series of events
that renders the planned schedules for aircraft, crew, etc. infeasible". Disruptions can occur for
various reasons, such as lateness, vehicle breakdown, or the introduction of completely new tasks
that have to be serviced. Disruptions have to be addressed as soon as possible to restore the order of
transportation. If such and event happens, the company has to create a new feasible schedule, where
all available tasks are carried out in a feasible manner once again. The vehicle rescheduling problem
(VRSP) was defined by Li et al. [73] for bus transit, and it deals with the scenario of restoring the
order of transportation after a single disruption.

Although the philosophy behind the VRSP (addressing an unknown disruption) suggests a dy-
namic problem, solving the scenario after the disruption has already happened is a static one: all
parts of the input data (the pre-planned schedule and the disruption) are known in advance, and
the problem can be solved to optimality given enough time. From an operations management point
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of view, focusing on solving a single disruption is not enough. In real-life scenarios, there are several
different disruptions happening over a planning unit, and the effectiveness of disruption management
can be measured by the quality of the final solution after the planning unit has ended. However, as
the disruptions are not known in advance, we are dealing with an online input for the problem.

In this Chapter, we first review the dynamic problems of transportation in Section 5.1, then
present two different aspects of vehicle rescheduling. In Section 5.2, we give a multi-depot network
model for the bus rescheduling problem, and also present two fast heuristic methods for solving
the problem in practice. These were first introduced in [35], then later extended in [37]. Section
5.3 introduces the concept of dynamic vehicle rescheduling (DVRSP), which aims to evaluate the
efficiency of disruption management methods over a planning unit. We proposed this problem in
[37].

5.1 Dynamic problems of vehicles

There are multiple research fields dealing with the dynamic problems connected to vehicles and
transportation . The majority of this research considers a variation of the vehicle routing problem
(VRP). The dynamic vehicle routing problem (DVRP) [88, 89] deals with pre-planned vehicle routes
and new incoming requests during their execution. This can result in the alteration or the complete
redefinition of the routing plan for the vehicles. Pillac et al. give a review of this field in [87].

The dynamic vehicle scheduling problem (DVSP), a dynamic variation for the VSP was intro-
duced by Huisman et al. [61, 62]. In these papers, they don’t solve an entire VSP in advance, but
generate it online solving a sequence of optimization problems. Their approach is different from the
one that was discussed for vehicle rescheduling previously, because they solve a VSP for an online
input of tasks instead of addressing disruptions occurring for a pre-planned schedule.

Disruption management in transportation can also be considered as a dynamic problem. Op-
timization methods for handling airline disruptions [69, 99] aim to solve disruptions by canceling
flights or rerouting aircraft. Models for these problems are specific to this field due to the relatively
small number of airplanes and their limited number of connections. Moreover, the methods used for
airline disruptions are computationally intensive, and have a long running time for the significantly
larger vehicle transportation problems. An overview of this field is given by Clausen et al. [29, 28].

Disruption management in railway transportation is covered in [64]. The structure of these
problems is also significantly different from the VRSP, the main difference being the fixed railway
network, and the capacity limit of the tracks.

For a long time, the VRSP for bus transportation was only considered in papers by Li et al. In
[73], they propose a quasi-assignment model and an auction algorithm for the problem, while they
introduce a network flow model for the VRSP in [74], which they solve using a Lagrangian method.
Their methods are also considered as part of a decision support system [72]. However, they only deal
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with the single depot case of the problem (where all vehicles are uniform and share same starting
location), which does not apply to all real-life problems. Since the publication of our research, two
other papers have been published dealing with the VRSP. Uçar et al. [101] present a robust model
for the multi-depot vehicle rescheduling problem that considers multiple disruption types. They
solve this model using a simultaneous column- and row-generation algorithm. Guedes et al. [54]
introduce the multi-depot vehicle type rescheduling problem, and give a mathematical model for
it that can also handle simultaneous disruptions. They achieve fast solutions using a three-phase
heuristic framework.

The above papers dealing with the VRSP aim to solve a single disruption scenario efficiently.
However, in practice several disruptions occur during a planning unit. These disruptions happen
independently of each other, and a disruption has no information about other future disruptions. As
far as we know, there has been no research of the overall effect of disruption management methods
on the final resulting schedule.

5.2 Recovery from disruptions

As it was mentioned earlier, companies create their vehicle schedules in advance for a longer planning
horizon. Each planning unit of this period has a pre-planned vehicle schedule. Such a schedule
consists of vehicle blocks, each such block assigned to a unique vehicle. When a disruption happens
at a given time s, the pre-planned schedule of the given unit may become infeasible, and as a result,
one or more trips can no longer be executed by their original vehicles. There are two major types
of disruptions according to their effect:

• Immediate effect: This type of disruption affects the schedule of the current day, and has
to be addressed as soon as possible. It can be caused by several different reasons:

– Shortage of vehicle: This usually happens when a vehicle is unavailable for a shorter
period of time (eg. due to lateness, or a breakdown), or there are newly introduced trips
that are not part of the original daily schedule (eg. there is a special need for them).

– Shortage of crew: Similarly to the above item, this happens when one or more drivers are
unavailable for a shorter period of time.

– Changes in the route: This is a somewhat different problem compared to the disruptions
introduced above. Trips have fixed routes that their vehicles have to cover, and these can
also be blocked by unforeseen event. In this case, the re-routing of trips also has to be
done in addition to managing lateness and any shortage.

• Long-term effect: More than one day of the planning period is affected by this disruption.
It is usually caused by a longer shortage of vehicle or crew, or an unforeseen roadblock that
lasts for a longer period.
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In this section, we will only be addressing the short-term disruptions of vehicle schedules: these
can happen either because of problems with the vehicle, or newly introduced trips to the daily
schedule. First, we introduce the VRSP in Section 5.2.1, then give a mathematical model for its
multi-depot case in Section 5.2.2. Section 5.2.3 presents two fast heuristics methods for solving the
problem.

5.2.1 The vehicle rescheduling problem

The most important input for the VRSP is the disrupted schedule DS of the planning unit. As a
disruption will happen at a time s, DS should only contain vehicles and trips that are still relevant
from an operational point of view: trips that were already executed before s and vehicles that are
not available after s should not be considered. We also have the set DT of disrupted trips, which
contains the trips that cannot be served due to the disruption. The set DT can contain timetabled
trips that no longer have their assigned vehicle as a result of the disruption, and it can also contain
newly introduced trips that were not part of the original daily schedule. Some vehicles might not
be available over a period of time due to the disruption. For this, we also get a list S of 3-tuples
(v, s1, s2), which correspond to vehicle v not being able to service trips between times s1 and s2.
Let T ′ ⊆ T be the subset of trips that start later than s. The aim is to provide a feasible vehicle
schedule for the problem that deals with all trips T ′ ∪DT , and minimizes the arising costs.

The costs of the problem depend on the restrictions that are taken into consideration. We will
introduce the following cost components:

• Operating costs: This cost is proportional to the distance covered by the given vehicle. If
a new vehicle is introduced, it also has a fixed daily cost. This cost can also be scaled with a
penalty parameter for new vehicles if we want to primarily use our current vehicles in service.

• Deviation from the original schedule: If a trip is carried out by a different vehicle in the
solution of the VRSP than in the original schedule, we introduce an extra penalty.

• Lateness of the trips: It should be allowed for trips to start later than their original starting
time. However, as this is not a desired results, each minute of lateness should be penalized.

• Trip cancellation: Trips can also be canceled in the final solution, but a penalty should also
be introduced for each such trip. This has to be a greater cost than the actual cost of the
trip and its possible deadhead trips, and it also has to be higher than the cost introduced for
the deviation from the original schedule. Generally, cancellations should be avoided, and this
penalty has to be chosen accordingly.

Figure 5.1 models a typical situation that can arise in the daily practice of a transportation
company. Each part of the figure (a), b), c)) presents a vehicle schedule, each row these schedules
corresponding to a vehicle block. The boxes in a row represent trips that have to be executed. The
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original schedule in part a) is disrupted, and the two blue trips have to be rescheduled using the
three available vehicle blocks. We give two different solutions: in part b), a task is moved from
the first block to the third one before the insertion of the disrupted trips, while part c) gives a
solution with trivial insertion of the blue trips into different blocks. Note, that other solutions are
also possible.

Figure 5.1: A typical example for the VRSP: the two disrupted trips in example a) have to be
inserted into the given blocks, b) and c) represent possible solutions

5.2.2 Mathematical models

In this section we give two multi-commodity network flow models for the VRSP. The VRSP has a
similar structure to the VSP, and because of this, we are using similar modeling approaches. The
connection-based network (CBN) presented in Section 2.2.3 is an important model for the VSP,
which represents all possible connections between the trips of the problem. The first mathematical
model we introduce for the quasi-static VRSP in Section 5.2.2 will be based on this CBN.

The main drawback of this model is its size: problems with a large number of trips become
impossible to solve directly, and this also remains true in case of the VRSP. The size of the model
can be decreased by reformulating it as a time-space network (TSN), which was introduced in Section
2.2.3. By using their method presented there, we reformulate the connection based VRSP model to
a TSN model in Section 5.2.2.

To show the major differences between the introduced models, we present a small VRSP instance
in Section 5.2.2. Based on this example, we construct the network for both models to illustrate the
structure of the problems.

The advantage of the CBN is that it represents the complete structure of our problem, where
each connection is explicitly modeled. This also gives its major drawback, that a large number
of possible connections result in a large problem size. Compared to the CBN, the TSN offers a
significant size reduction at the cost of aggregating unique connections.



60 CHAPTER 5. MANAGING DISRUPTIONS WITH VEHICLE RESCHEDULING

Connection based network model

Our most important input is the schedule of the company for the given planning unit, denoted by
DS. Let D be the set of depots (denoting groups of vehicles with the same type and starting/ending
geographical locations), V be the set of vehicles still in service at the disruption time s. Vehicles
used in the solution of the problem can either be newly introduced ones starting from one of the
depots, or they can also be the ones in service at the time of the disruption. To denote both options
as possible sources of vehicles for the problem, we also introduce the set P , where P = D ∪ V .

Let T ′ be the set of non-disrupted service trips of the given planning unit that start after s, and
let set DT contain any newly introduced disrupted trips. Let the set T = {T ′ ∪DT} represent all
the trips of our problem that have to be executed. Every trip t ∈ T has a departure time dt(t),
arrival time at(t), starting location sl(t) and ending location el(t). The set of depots and vehicles
that can execute a trip t is denoted by d(t). Let Td ⊆ T be the set of trips that can be executed
from depot d, and Tv ⊆ T the set of trips that can be carried out by vehicle v. We also have to give
a set S of tuples (v, s1, s2). If a vehicle v cannot service any trips due to technical problems between
times s1 and s2, then it will have no compatible trips that have s1 ≤ dt(t), at(t) ≤ s2.

For every depot d ∈ D, we introduce notations sl(d) and el(d). A depot d is represented by
sl(d) when we consider it as the starting location of its vehicles, while we use el(d) when it gives
the ending location of its vehicles. Similarly for every vehicle v ∈ V currently in service we define a
starting location sl(v) and ending location el(v). For a vehicle v, sl(v) corresponds to the current
geographical location of v at the time of the disruption, and el(v) is the geographical location where
it should end the planning unit. The set of nodes of our network will be the following:

N = {dt(t) ∪ at(t) ∪ sl(d) ∪ el(d) ∪ sl(v) ∪ el(v)|t ∈ T, d ∈ D, v ∈ V }.

Using the nodes above, we define the different edges of the network. Let

Jd = {(dt(t), at(t))|t ∈ Td}

be the set of trips that can be served by vehicles located at depot d, and let

Jv = {(dt(t), at(t))|t ∈ Tv}

be the set of trips that can be executed by vehicle v currently in service. Let

Kd = {(at(t), dt(t′))|t, t′ ∈ Td are compatible}

be the possible deadhead trips of vehicles located at depot d and

Kv = {(at(t), dt(t′))|t, t′ ∈ Tv are compatible}

be the possible deadhead trips of a vehicle v in service.
Let
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Ld = {(sl(d), dt(t)), (at(t), el(d))|t ∈ Td}

be all the pull-in and pull-out edges of vehicles located at depot d, and let

Lv = {(sl(d), dt(t)), (at(t), el(d))|t ∈ Tv}

be the pull-in and pull-out edges of vehicle v in service. The above sets together with circulation
edges for every depot and vehicle give us the set of edges of our network:

E = {Jd ∪ Jv ∪Kd ∪Kv ∪ Ld ∪ Lv ∪ {(el(d), sl(d))} ∪ {(el(v), sl(v))} for every d ∈ D, v ∈ V }.

With the nodes and edges introduced above, a solution of the vehicle rescheduling problem can
be determined by using the network (N,E). We give an integer vector x for every edge of the
network. Every p ∈ P defines a separate commodity for this network. Commodities share the same
N set of nodes, but may contain different edges between these nodes. For every edge e : (n1, n2) we
use the notation xpe if there is a directed e edge present between nodes n1, n2 ∈ N in commodity p.
We also introduce a variable wt for every t ∈ T , which allows the cancellation of t.

The difference between the original schedule and the resulting schedule should also be modeled.
For every vehicle v, and trip-edge e ∈ Jv, we introduce a value

qe =

1, if v carries out e in the pre-planned schedule

0, otherwise

This value will influence the cost of a trip edge e, because αqe will be added to the cost of each
such edge, where α is the penalty for deviation from the original schedule.

To allow lateness for trips, we introduce variable zt, which gives a new departure time for every
trip t. This value includes the added lateness, if any. In order to satisfy the feasible connections
between late trips, a constraint has to be added that examines trip compatibilities with respect to
zt:

(zt + length(t) + deadheadt,t′ − z′t)
∑
p∈P

xpa(t),d(t′) ≤ 0,∀(t, t′) ∈ E, (5.1)

where length(t) gives the running time of service trip t, and deadheadt,t′ represents the running
time of the deadhead trip between el(t) and sl(t′). Constraint (5.1) is not linear, but it can be
rewritten as such with the introduction of a large constant M , as seen in [43].

The IP model of the problem can be formalized in the following way:

minimize
∑
e∈E

∑
p∈P

cpex
p
e +

∑
t∈T

β(zt − start(t)) +
∑
t∈T

γwt, (5.2)

s.t.
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∑
p∈g(t)

xpdt(t),at(t) + wt = 1,∀t ∈ T (5.3)

∑
e:(sl(d),dt(t))∈Ld

xde ≤ k(d),∀d ∈ D (5.4)

∑
e:(sl(v),dt(t))∈Lv

xve = 1,∀v ∈ V (5.5)

∑
e∈δ−(n)

xpe −
∑

e∈δ+(n)

xpe = 0,∀p ∈ P,∀n ∈ N (5.6)

zt + length(t) + deadheadt,t′ − z′t ≤
∑
p∈P

1− xpa(t),d(t′)M, ∀(t, t′) ∈ E (5.7)

zt ≥ dt(t),∀t ∈ T (5.8)

zt ≤ dt(t) + L,∀t ∈ T (5.9)

xpe, wt ∈ {0, 1},∀e ∈ E, p ∈ P, t ∈ T (5.10)

Due to constraint (5.3), every trip is either executed exactly once, or canceled. Constraint
(5.4) gives maximum capacities for the depots of the problem, while vehicles in service always have
assigned tasks according to constraint (5.5). Constraint (5.6) ensures flow conservation. Constraint
(5.7) is the linear reformulation of (5.1). Constraints (5.8) and (5.9) limit the values of the trip
starting times: a trip t ∈ T will always depart in the [dt(t), dt(t) + L] time window, where dt(t)
is the departure time of t and L is the maximum allowed lateness. Values β and γ are penalty
parameters for lateness and trips cancellation respectively. cpe gives the corresponding operational
cost of edge xpe, along with the possible added penalty of deviation from the original schedule given
by αqe. The set of edges leaving and entering node n are denoted by δ+(n) and δ−(n) respectively.

As it was mentioned above, the CBN cannot be solved directly for bigger input due to its large
size. The model size can be decreased by reformulating it, which will allow solutions for larger
problem sizes as well. One such reformulation will result in the TSN.

Time-space network model

The TSN does not model every explicit connection between trips: it aims to reduce the number of
possible deadhead edges by carrying multiple connections on a single edge. The node set of this
model is the same as the set N we defined above. A time-line is created for each geographical
location and depot. These time-lines contain all the departure and arrival nodes belonging to their
respective depot or location. This structure can be utilized to aggregate connection edges of the
network. This is done by introducing waiting edges between the pairs of adjacent events on every
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time-line. Let W d be the set of waiting edges for vehicles belonging to depot d ∈ D, and W v be the
set of waiting edges for a vehicle v ∈ V currently in service. We use the edge aggregation technique
from [65] for the pull-in/pull-out edges and the possible deadhead edges. This gives us a set Kd

representing the possible connections between locations for vehicles belonging to depot d ∈ D while
set Kv gives the possible connections between locations for vehicle v ∈ V . Sets Ld and Lv are
given in a similar way. Edge sets Jd and Jv representing timetabled trips remain the same. The
circulation edges for the depots are given by the set

Cd = {(el(d), sl(d))|∀d ∈ 1D},

and let

Cv = {(el(v), sl(v))|∀v ∈ V }

represent the circulation edges of the vehicle.
The set of edges for the TSN formulation of our problem is given as:

E = {Jd ∪ Jv ∪Kd ∪Kv ∪ Ld ∪ Lv ∪ Cd ∪ Cd,∀d ∈ D,∀v ∈ V }.

The IP formulation of the TSN is similar to the CBN model presented above:

minimize
∑
e∈E

∑
p∈P

cpex
p
e +

∑
t∈T

β(zt − start(t)) +
∑
t∈T

γwt, (5.11)

s.t.

∑
p∈g(t)

xpdt(t),at(t) + wt = 1,∀t ∈ T (5.12)

∑
e:(sl(d),dt(t))∈Ld′

xde ≤ k(d),∀d ∈ D (5.13)

∑
e:(sl(v),dt(t))∈Lv′

xve = 1,∀v ∈ V (5.14)

∑
e∈δ−(n)

xpe −
∑

e∈δ+(n)

xpe = 0,∀p ∈ P,∀n ∈ N (5.15)

zt + length(t) + deadheadt,t′ − z′t ≤
∑
p∈P

1− xpa(t),d(t′)M, ∀(t, t′) ∈ E (5.16)

zt ≥ dt(t),∀t ∈ T (5.17)

zt ≤ dt(t) + L,∀t ∈ T (5.18)

wt ∈ {0, 1},∀t ∈ T (5.19)
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xpe integer,∀e ∈ E, p ∈ Pt ∈ T (5.20)

Trips are either executed exactly once or canceled due to constraint (5.12). The maximum
capacity of the depots is given by constraint (5.13), and constraint (5.14) ensures that vehicles
in service are always considered in the final solution. (5.15) is the flow conservation constraint.
Constraint (5.16) controls the maximum lateness for the trips, (5.17) and (5.18) give the time
window for a feasible late departure time.

An illustrative example

To show the difference between the two models presented above, we give a small illustrative example
in this section. Let us consider an original daily schedule of 4 trips (t1, t2, t3, and t4), and a single
depot d. Trips t1 and t2 have a starting location A and ending location B, while trips t3 and t4 start
at location C and end at location D. Both t1 and t2 are compatible with trips t3, t4. The original
schedules uses vehicles v and v′ (from depot d) to serve the trips in the following way:

1. vehicle v executes trips t1 and t3

2. vehicle v′ executes trips t2 and t4

Let us suppose that vehicle v′ is no longer available as a result of a disruption. This means that the
trips of our problem can either be served by vehicle v, or new vehicle(s) from depot d. Figure 5.2
illustrates the network of our first model for the above problem. The green edges represent possible
connections belonging to vehicle v, while the red edges give all the connections for any new vehicle
from depot d. The black edges belong to the trips, which either have to be executed or canceled.

Figure 5.2: Example for the connection based model of the VRSP

It can be seen in Figure 5.2 that the number of all possible connections is large even for such a
small example. This is the reason why we introduced the TSN network for the problem, which uses
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so-called waiting edges to aggregate these connections. Figure 5.3 shows the TSN network of the
problem.

Figure 5.3: Example for the time-space model of the VRSP

5.2.3 Solution methodology

Recovering from a disruption has to be done as quickly as possible, and fast and efficient solution
heuristics are needed because of this. However, the cost-wise optimal solution might not always be
the best one regarding operations planning, as results given by an algorithm are usually used as
suggestions by an operator of the company. These results help them in making fast decisions about
the resolution of arising disruptions. Integrating fast algorithms into a decision support system that
provides multiple suggestions can speed up the real-time decision process of the operators of the
company: in practice, they have to come up with an alternative solution for the disruption, make
the final decisions, and communicate it to the affected employee of the company, all in a matter of
minutes. For this reason, the running time of a solution algorithm is just as important as the quality
of the provided result when measuring its efficiency.

In this section, we present two fast solution methods that can provide multiple different good
quality solutions for the VRSP in a short time. These methods can easily be integrated into a
decision support system for disruption management in public transportation, which recommends
possible solutions for the operators depending on their parameter settings. We developed a decision
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support system similar to the one that will be presented in Section 7.2, and these heuristic methods
also performed well as part of such a system .

A recursive search algorithm

The first algorithm we propose for the problem is a recursive search heuristic. Recursive search
seems an ideal method because of the above described expectations: the algorithm is able to find
multiple solutions with a short running time. Our method can be seen in Algorithm 7.

The input of the algorithm is the following:

• vBlocks: The disrupted schedule of the planning unit. It includes all available vehicles and
the blocks assigned to the vehicles in service.

• dTrips: The set of all disrupted trips that have no assigned vehicle blocks.

• mod: A non-negative integer parameter that limits the number of modified vehicle blocks, and
as a result, it also limits the depth of the search tree. This parameter is reduced whenever one
or more trips are removed from a vehicle block (as a result of another trip being inserted).

The input of the heuristic is the set of feasible vehicle blocks, and the set of disrupted trips.
Every function call chooses the disrupted trip dt with the earliest departure time, and tries to insert
it into every compatible vehicle block vb. There are three possibilities for every dt− vb pair:

• One or more trips have to be removed from vb. The removed trips are flagged as temporary
disrupted trips.

• Trip dt can be inserted into vb, but lateness has to be introduced for some of the trips of vb.

• Trip dt can be inserted into vb without additional modifications.

If the set of disrupted trips is empty after a modification, and there are no temporary disrupted
trips, the heuristic has found a feasible solution, which is saved. Otherwise, the recursive function
is called with new parameters:

• vBlocks′: The original vBlocks is updated with the modified block.

• dTrips′: The temporary disrupted trips are inserted into dTrips, while dt is removed.

• mod′: If the size of dTrips′ is smaller than the size of dTrips, mod′ = mod. Otherwise,
mod′ = mod− 1.

The algorithm will explore the solution space determined by the trips and the blocks of the
problem, examining every possible solution found during its runtime. The depth of this search tree
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Algorithm 7 Recursive search for vehicle rescheduling.
1: procedure RecSearch(vBlocks, dTrips, mod)
2: if mod = 0 then
3: return 0
4: end if
5: for i = 1 to Size(dTrips) do
6: Trip = dTrips[i]
7: for j = 1 to Size(vBlocks) do
8: nBlocks = vBlocks
9: nTrips = dTrips

10: Block = vBlocks[j]
11: if Trip and Block are not compatible then
12: continue
13: end if
14: if Trip overlaps with trips in Block then
15: if Possible solution with lateness then
16: Block’ = Insert Trip into Block with added lateness
17: nBlocks’ = nBlocks with Block’ inserted into nBlocks[j]
18: nTrips’ = nTrips without Trip
19: if Size(nTrips’) = 0 then
20: Add(Solutions, nBlocks’)
21: else
22: RecSearch(nBlocks’, nTrips’, mod)
23: end if
24: end if
25: tRemoved = overlapping trips from Block
26: end if
27: Insert Trip into Block
28: Remove Trip from nTrips
29: nBlock[j] = Block
30: if Size(nTrips) = 0 then
31: Add(Solutions, nBlocks)
32: else if Size(tRemoved) > 0 then
33: Add(nTrips, tRemoved)
34: RecSearch(nBlocks, nTrips, mod-1)
35: else
36: RecSearch(nBlocks, nTrips, mod)
37: end if
38: end for
39: end for
40: return Best solution in Solutions
41: end procedure

is limited by the parameter mod. Further limitations can also be introduced into the method to
exclude visiting similar configurations multiple times.

These limitations (especially the parameter for the number of modified blocks) help to keep the
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Algorithm 8 Local search for vehicle rescheduling.
1: procedure LocSearch(vBlocks, dTrips, tRange)
2: Build infeasible block dt from dTrips
3: Label dt temporary
4: Add(dt to vBlocks)
5: tabuList = list of forbidden transformations
6: while notEmpty(dt) & !(terminatingConditions) do
7: tmpSchedules = empty container for vehicle schedules
8: for i = 1 to Size(vBlocks) do
9: for j = i+1 to Size(vBlocks) do

10: for each neighborhood transformation t do
11: if t(vBlocks[i], vBlocks[j]) is not forbidden then
12: newSchedule = apply t to vBlocks
13: Add(newSchedule, tmpSchedules)
14: end if
15: end for
16: end for
17: end for
18: bSchedule = best schedule from tmpSchedules
19: tS = transformation that can reverse bSchedule
20: vBlocks = bSchedule
21: Add(tabuList, tS)
22: end while
23: return vBlocks
24: end procedure

running time of the algorithm from exploding. The introduction of this parameter was also based
on a practical observation: each level of the recursive search tree corresponds to a vehicle whose
original block is modified. Companies want to keep the number of modified vehicle blocks minimal.
Because of the way mod is decremented, its initial value also defines the maximum number of vehicle
blocks from which the algorithm can remove trips. As it was mentioned in Section 5.2.1, deviation
from the original schedule should have a high cost, so it is unlikely that good quality solutions are
cut from the search tree by this parameter.

The algorithm terminates after it has traversed the above defined search tree, and the solution
with the lowest cost is returned as a result. If there are any trips left in the set dTrips of disrupted
trips, then those are considered to be canceled.

A local search algorithm

Our other algorithm for finding a feasible solution for the VRSP is a tabu search heuristic. A brief
outline of the algorithm can be seen in Algorithm 8.

The input of the algorithm is the following:

• vBlocks: The disrupted schedule of the planning unit. It includes all available vehicles, with
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undisrupted blocks assigned to their original vehicles.

• dTrips: The set of disrupted trips. These are currently not executed by vehicles, and have to
be assigned to vehicle blocks.

• tRange: Gives a time window in which the events are considered. The time window begins at
the start time of the disruption, and ends after the ending time of the last disrupted trip.

The initial candidate solution of the algorithm is constructed from the original vehicle schedule.
A new vehicle block is added to the schedule that contains all disrupted trips, sorted in ascending
order of their departure time. If there are more than one disrupted trips, this new block is likely
to be infeasible, which will also make our initial solution infeasible. This new block is labeled as a
temporary block.

In each iteration, the algorithm will examine all (i, j) block pairs. It checks the trips of the
blocks that are in the given tRange time window, and examines the following two neighborhood
transformations:

• 1-move: Moves a trip from block i to block j. This transformation is not carried out, if j is
a temporary block.

• 1-change: Exchanges a trip from block i with the corresponding trip(s) from block j. This
transformation is not carried out, if any of the blocks are temporary.

All feasible neighbors given by the above transformations are assigned a cost. This cost is
computed from the operational cost of the blocks and the penalties introduced in Section 5.2.1. If
the transformation moves a trip from a temporary schedule to another schedule, a high negative
penalty is added to decrease the cost, which will make it more likely to be chosen in an early iteration
of the local search. Trips on a temporary schedule contribute the penalty for cancellation instead of
their operational costs.

The local search algorithm chooses the neighbor solution with the lowest cost as its new candidate.
If any trip t was removed from a block B in the process, the (t, B) pair is saved on a tabu list. For
every (t, B) pair on the tabu list, trip t cannot be moved to block B by any of the transformations.

The algorithm terminates when at least one of the following terminating conditions is met:

• Limit for the running time.

• If the difference in quality of the consecutive candidates is always below a given gap for a fixed
amount of iterations.

The feasible solution with the lowest cost is returned by the algorithm as a result.
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5.3 Dynamic vehicle rescheduling

The standard VRSP presented in Section 5.2 only deals with solving a single possible disruption
scenario, providing a result that is as close to the optimal solution as possible. However, if we
consider the practical application of the problem, this approach is usually not a valid one. There are
several disruptions happening to a pre-planned vehicle schedule over a planning unit, and after the
first one has been resolved, the second disruption will impact the rescheduled vehicle blocks instead
of the original schedule.

Addressing subsequent disruptions happening over a planing unit is similar to solving an online
problem. An online algorithm receives a series of requests that have to be served in the order
of occurrence, without any additional information about future ones. In our case, these requests
correspond to the disruptions of the planning unit, and they arrive in the same order as they would
occur. We have to address each disruption without having any further information about future
disruptions, and modify the current schedule accordingly.

The quality of disruption management tools should be measured over the entire horizon of the
planning unit, and not by evaluating every disruption separately. For this, we introduced the
dynamic vehicle rescheduling problem (DVRSP) in [37], which we will present in this section. The
DVRSP aims to give a feasible solution for a planning unit with multiple disruptions, where all
the disruptions are resolved first before evaluating the effectiveness of their solutions methods. The
input of the DVRSP is the original vehicle schedule of the planning unit, and an ordered list of
disruptions which have to be solved in the order of occurrence. The output of the problem is a
final feasible vehicle schedule. While the VRSP wants to solve a single disruption to optimality, the
DVRSP aims to give a solution by the end of the planning unit that is as close to the pre-planned
schedule as possible.

As the input of the problem occur in an online manner, we cannot give the optimal solution for
the problem. However, we will also introduce the problem of the quasi-static DVRSP (QDVRSP):
this acts as the theoretical ’offline’ case of the problem, where all the disruptions of the planning
unit are known in advance.

5.3.1 The dynamic vehicle rescheduling problem

The DVRSP is a special case of the VRSP, and because of this, its problem definition will be similar
to the one given in Section 5.2.1. The main difference between the DVRSP and the QDVRSP is
that while the DVRSP solves the series of disruptions by always considering a single disruption at a
given time, the solution of the QDVRSP presents the theoretical scenario of rescheduling the entire
planning unit if all the disruptions were known in advance.

The input for the QDVRSP considers the entire original schedule DS of the planning unit, with
the set T of timetabled trips. Set DT will represent trips that did not belong to the planning unit
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originally, but have to be executed as a result of a disruption. Periods where certain vehicles are not
available over due disruptions are represented by a list S of 3-tuples (v, s1, s2). Such a tuple denotes
vehicle v not being able to service any trips between times s1 and s2. Similarly to the VRSP, we
also aim to give a feasible solution for the problem by executing (or canceling) all trips T ∪ DT ,
minimizing the arising costs. The costs of the problem are the same ones that were introduced in
Section 5.2.1: the standard operational costs, and penalties for deviation from the original schedule,
lateness, and trip cancellation.

The mathematical models we introduced for this problem in [37] are also similar in structure to
the ones presented for the VRSP in Section 5.2.2. As the TSN model proved to be more useful in
the case of the VRSP, we will only present that for the QDVRSP.

Time-space network model for the quasi-static DVRSP

As it was mentioned above, the QDVRSP is a special case of the VRSP, and the model we present in
this section will be similar to the one given for the VRSP in Section 5.2.2 because of this. The input
of the model is the entire original DS schedule of the company for a given planning unit. Let D be
the set of depots (denoting groups of vehicles with the same type and starting/ending geographical
locations), V be the set of vehicles in service for the planning unit according to DS. Vehicles in
V start the planning unit at the location defined by their respective depots. Let set P denote all
possible sources of vehicles for the problem, |P | = |D ∪ V |.

Let T ′ be the set of original service trips of the given planning unit, let set DT contain any
extra trips that have to be executed due to a disruption, and let CT give all trips that have to be
canceled (and are not considered at all because of this) during the day. Let set T = {(T ′\CT )∪DT}
represent all the trips of our problem. Every trip t ∈ T has a departure time dt(t), arrival time at(t),
starting location sl(t) and ending location el(t). The set of depots and vehicles that can execute a
trip t is denoted by g(t). Let Td ⊆ T be the set of trips that can be executed from depot d, and
Tv ⊆ T the set of trips that can be carried out by vehicle v. A a set S of 3-tuples (v, s1, s2) is
also given that defines unavailability periods for the vehicles. If a vehicle v cannot service any trips
due to technical problems between times s1 and s2, then it will have no compatible trips that have
s1 ≤ dt(t), at(t) ≤ s2.

For every depot d ∈ D, we introduce notations sl(d) and el(d). A depot d is represented by
sl(d) when we consider it as the starting location of its vehicles, while we use el(d) when it gives
the ending location of its vehicles. Similarly for every vehicle v ∈ V currently in service we define a
starting location sl(v) and ending location el(v), which will both correspond to the location of the
depot where the vehicle belongs. The set of nodes of our network will be the following:

N = {dt(t) ∪ at(t) ∪ sl(d) ∪ el(d) ∪ sl(v) ∪ el(v)|t ∈ T, d ∈ D, v ∈ V }.

The edges of the network can be defined using the above nodes. Let
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Jd = {(dt(t), at(t))|t ∈ Td}

be the set of trips that can be served by vehicles located at depot d, and let

Jv = {(dt(t), at(t))|t ∈ Tv}

be the set of trips that can be executed by vehicle v currently in service. A time-line is created
for every geographical location, depot, and vehicle. Time-lines contain all departure and arrival
nodes belonging to their respective depots or locations. Let W d be the set of all waiting edges for
vehicles belonging to depot d ∈ D, and W v be the set of waiting edges for a vehicle v ∈ V originally
in service. Similarly to Section 5.2.2, we apply the edge aggregation technique from [65] with the
help of these time-lines. This results in an edge set Kd representing all possible connections between
locations for vehicles belonging to depot d ∈ D while set Kv gives the possible connection edges
between locations for vehicle v ∈ V . Let

Ld = {(sl(d), dt(t)), (at(t), el(d))|t ∈ Td}

be all the pull-in and pull-out edges of vehicles located at depot d, and let

Lv = {(sl(d), dt(t)), (at(t), el(d))|t ∈ Tv}

be the pull-in and pull-out edges of vehicle v in service. Let

Cd = {(el(d), sl(d))|∀d ∈ D}

be the circulation edges belonging to depots, and

Cv = {(el(v), sl(v))|∀v ∈ V }

be the set of vehicle circulation edges. This results in an edge set

E = {Jd ∪ Jv ∪Kd ∪Kv ∪ Ld ∪ Lv ∪ Cd ∪ Cv,∀d ∈ D,∀v ∈ V }.

for the time-space network of the QDVRSP. While the underlying network of the QDVRSP has some
differences compared with the one given for the VRSP, the IP formulation of its TSN is exactly the
same as the mathematical model in Section 5.2.2:

minimize
∑
e∈E

∑
p∈P

cpex
p
e +

∑
t∈T

β(zt − start(t)) +
∑
t∈T

γwt, (5.21)

s.t.

∑
p∈g(t)

xpdt(t),at(t) + wt = 1,∀t ∈ T (5.22)
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∑
e:(sl(d),dt(t))∈Ld′

xde ≤ k(d),∀d ∈ D (5.23)

∑
e:(sl(v),dt(t))∈Lv′

xve = 1,∀v ∈ V (5.24)

∑
e∈δ−(n)

xpe −
∑

e∈δ+(n)

xpe = 0,∀p ∈ P,∀n ∈ N (5.25)

zt + length(t) + deadheadt,t′ − z′t ≤
∑
p∈P

1− xpa(t),d(t′)M, ∀(t, t′) ∈ E (5.26)

zt ≥ dt(t),∀t ∈ T (5.27)

zt ≤ dt(t) + L,∀t ∈ T (5.28)

wt ∈ {0, 1},∀t ∈ T (5.29)

xpe integer,∀e ∈ E,∀p ∈ Pt ∈ T (5.30)

Once again, trips of the planning unit are either executed exactly once or canceled due to con-
straint (5.22). The maximum capacity for vehicles waiting in depots is given by constraint (5.23),
while vehicles that are used in original schedule have to execute at least one compatible trip (if they
have any) due to constraint (5.24). Flow conservation is ensured by constraint (5.25), and maximum
lateness is controlled by constraint (5.26), with constraints (5.27) and (5.28) defining time windows
for late departure times.

The set of edges leaving and entering node n are denoted by δ+(n) and δ−(n) respectively.
Operational costs belonging to edge ep (and decision variable xpe) are given by cpe, with the added
penalty αqe if trip edge e was not executed by vehicle p in the original schedule. Penalties for
lateness and trip cancellation are given by values β and γ respectively.

Managing disruptions over a planning unit

As it was mentioned before, the model we presented for the QDVRSP above is similar to the TSN
model of the VRSP given in Section 5.2.2. However, there is a fundamental difference in how they
consider disruption management. While our VRSP model follows the traditional method of dealing
with a single disruption, and solving it to optimality, this is usually only useful from a theoretical
point of view. Solving a single disruption scenario has to be done efficiently, but the effect of this
solution to the rest of the planning unit should also be considered; a solution that is good cost-wise
might make future disruptions harder to address.

We introduced the concept of DVRSP to propose a more application-oriented approach to vehicle
disruption management. From an operational point of view, the efficiency of a disruption manage-
ment system should be measured by the combined quality of every change over the horizon of the
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planning unit, and not by evaluating the solution of every disruption as a separate problem. As
real-life disruptions happen in an online manner, giving an optimal final schedule for the planning
unit would mean knowing every information in advance. This is of course not possible in a real-life
scenario, which means that heuristic solution methods have to be considered. In the theoretical case
where all the disruptions are known, the quasi-static model of the DVRSP can be used to evaluate
the series of decisions done by a disruption management system at the end of a planning unit.

This philosophy will be applied in the following section when we evaluate the heuristic approaches
proposed in Sections 5.2.3 and 5.2.3. We use these methods for a series of disruptions on the same
pre-planned schedule, and present the quality of the solution by comparing the modified schedule at
the end of the planning unit to the result given by the corresponding QDVRSP.

5.4 Test results

In this section, we examine the efficiency of the heuristic methods presented in Sections 5.2.3 and
5.2.3. The quality of their solutions is measured over a planning unit, after the solution of multiple
disruption scenarios. Solutions for moderate-size instances are compared to the results of the quasi-
static DVRSP presented in 5.3.1, while their efficiency on larger input is also presented.

All test instances consider a single day as the planning unit, and input data for their schedules is
generated randomly using the method in 7.4.2. Pre-planned schedules are obtained for these days by
solving the TSN network in Section 2.2.3 for their input. Disruptions are also generated randomly
for these original schedules; for this, we use a structural aspect of these problems. One of the most
important structural features of a real-life workday instance can be seen on the histogram of its
traffic load.

Figure 5.4: Traffic load of a typical workday in Szeged, Hungary

Figure 5.4 shows the traffic load on a typical workday in the city of Szeged, Hungary. The time
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of day is given by the horizontal axis, while the vertical axis shows the number of vehicles required
to service all timetabled trips at a given minute. It can be seen in the figure that there are two
peaks: one starting around 6:00, and the other around 15:00. These correspond to the morning
and afternoon rush hours. The number of vehicles given by the figure is only a lower bound on
the number of vehicles needed in that minute, as there might also be other ones traveling between
locations without servicing a timetabled trip. The peak point on the curve can give us a lower bound
on the total number of vehicles required for the whole day. The exact structure and the intervals
of these peaks may vary depending on the country or the transportation company, but the one we
present here is typical for Hungarian bus transportation.

As the structure of the random input instances is similar to that of workdays from real-time
scenarios, they also contain similar peaks corresponding to the rush hour periods. Because of this,
we decided to generate our random disruptions in these time periods.

Four disruptions were generated for each input instance: two of these overlap with the morning
peak period (their starting time is given in a uniformly random way between 6:30-9:30), while the
other two are generated for the afternoon peak period (their starting time is also given in a uniformly
random way between 15:30-18:30). The length of these disruptions correspond to that of a short
trip (see Section 2.2.3), which is also generated randomly. The disrupted vehicle is also chosen in a
uniform random way for each disruption.

We solved the DVRSP by running the heuristics sequentially for the disruptions: in the first step,
the input of a heuristic was the original daily schedule and the first disruption. Each additional step
received the output of the previous step, and the next disruption as its input. The output of the
final step is the solution for the problem. We tested our heuristic methods in different ways:

• either all steps of the iteration were solved with the same heuristic,

• or both heuristics were applied in each step, and the result with the better cost was chosen.

The results we received for middle-sized instances were compared to the solution of the TSN-
based mathematical model of the same problem, which was solved for the whole ’offline day’. We
generated problems with 3 different sizes: 100, 500 and 800 trips. All test instances had vehicles
belonging to 4 different depots. For each problem, we also randomized the above disruption scenarios
separately.

The cost function of our solution methods was the total distance traveled by the vehicles. We
introduced the following multiplicative penalties:

• The cost of each trip that was executed by a different vehicle than in the original solution was
multiplied by 2.

• The penalty of a late trip depended on its lateness. If the lateness of the trip was at most 5
minutes, then its cost was multiplied by 2. The multiplicative penalty was 3 otherwise.
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• The cost of every task for a newly introduced vehicle was multiplied by 3.

• The cost of canceled trips was multiplied by 30, in order to discourage the algorithms from
canceling trips.

The mod parameter for the recursive algorithm was set to 4, while the terminating condition for the
local search was 50 iterations, during which it couldn’t improve its best solution. We generated ten
instances for each trips size. Our test results can be seen in Table 5.1.

The first two columns of the table give the details of the instances: trip and instance number. The
remaining columns present the running times in seconds (columns with header time) and optimality
gaps in percentage (columns with header gap) of the instances. Columns with header Opt give
results for the optimal QDVRSP solution of the ’offline day’, while columns with headers Rec, Loc,
and Mix present results for the recursive algorithm, local search, or the mixed strategy respectively.
For calculating the optimality gap, we only considered the extra costs caused by the disruption
management process compared to cost of the original, undisrupted schedule. For example, the cost
of the optimal ’offline day’ would be given by cost(Opt)-cost(Original), and the gap of the local
search would be given by comparing cost(Loc)-cost(Original) to that value, where cost(Original) is
the cost of the pre-planned schedule without any disruptions. The last four columns with headers
extra consider the entire cost of the rescheduled solutions, and give their extra cost in percentage
from the original, undisrupted ones. Column Opt extra gives the extra costs of the optimal ’offline
day’ compared to the cost of the original, undisrupted schedule, while columns Loc extra, Rec extra,
Mix extra present the extra costs of the local, recursive, and mixed methods respectively. The last
row of every instance size gives average results of all the instances. All tests were carried out on a
PC with and Intel Core i5 2.80GHz CPU and 4 GB RAM. The TSN IP model was solved using the
COIN-OR Symphony solver.

The heuristics were designed to provide good quality solutions for the DVRSP in a short time. It
can be seen from the test results that both algorithms were able to solve the series of 4 disruptions
in a couple of seconds, and results were close to the optimal solution. There were a small number
of instances which had a large gap (around 10-15% more extra costs than the optimal ’offline’
case). However, if we consider the total cost increase of these instances compared to their original,
undisrupted schedule, it is well below 1% in every case. The running time of the IP solution is long
even for smaller instances, which shows that getting the optimal solution by solving the mathematical
model would not be effective in a real-life situation. However, the optimum given by the model is
needed for checking the quality of the heuristic solutions.

We also experimented with instances that had different cost penalties. We tested all methods
on a small number of problems where either the lateness had no penalty, switching trips between
vehicles was free, or introducing vehicles had no extra cost. It seemed from these results that the
quality of the solutions is similar to those presented in Table 5.1, and the methods perform similarly
regardless of the costs of the problem.
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The size of the generated test examples was limited by the mathematical model. We chose
problems with 800 trips as our biggest instance because they are challenging to solve, and they can
also give a good estimate on the efficiency of our heuristics for the DVRSP. For problems with 1000
or more trips it became difficult to solve the model directly, and we ran out of memory during the
construction of the model. Because of this, we cannot provide any information about the optimal
cost of instances of this size. However, the heuristics were able to solve even these bigger instances
in a short time. Running times for these instances can be seen in Table 5.2.

Table 5.2: Running time of the DVRSP heuristics for larger instances

Instance Trips Rec.(s) Loc.(s) Mixed.(s)

Rand4 1000 3.82 2.45 4.302
Rand5 1500 2.67 2.83 2.68
Real1 2762 3.47 3.63 3.62

For larger instances, we ran the heuristics for both randomly generated (Rand) and real-life
(Real) problems. As we mentioned above, we could not compare the quality of our solutions to that
of the optimal one, but it can be seen from the results that the running time was short even for
bigger instances. This shows that the proposed heuristic methods are efficient at providing solutions
in a short time, while tests on random instances presented that the quality of these solution also
remains good for larger problem sizes.

5.5 Summary and remarks

In this Chapter, we studied the field of disruption management, which aims to address unforeseen
events happening to the pre-planned schedules of transportation companies. This area is important
from an operations management point of view, as multiple disruptions occur on a daily basis in
a real-life scenario, and they have to be resolved as soon ss possible to restore the order of the
transportation system.

In Section 5.2, we proposed a multi-depot network model for the vehicle rescheduling problem
(VRSP), which deals with the solution of a single disruption scenario. As such a problem requires
a fast, real-time result, this model can only be used as quality control for quick solution algorithms.
We proposed two simple, but effective heuristic approaches for the fast solution of the VRSP. One
is a recursive method that traverses the search tree of the problem, and distributes its disrupted
trips to the available blocks either by simple insertion, or by deleting overlapping trips from the
current block. As the size of this search tree would be extremely large for efficient use, we limit its
depth using a simple practical observation: the depth of this search tree corresponds to the number
of modified vehicle blocks. Since a useful solution of the VRSP will only contain a small number
of modified blocks (as completely rescheduling the itinerary of a large number of vehicles would be
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hard to manage in real-time), this limit will mostly cut inefficient solutions. The resulting tree can
be searched in a short time, and multiple good quality results can be presented as suggestions to
the planners of a transportation company. The other method is a tabu search algorithm, which
starts from an infeasible solution, and uses its neighborhood transformations to find a good quality
feasible one. This method is incentivized to remove trips from its infeasible block first, which leads
to the method trying to fix the disrupted scenario rather than wanting to ’re-optimize’ the already
feasible block by moving or swapping trips between them. The tabu search can also provide multiple
feasible solutions with a short running time, if needed. Because of their ability to produce multiple
good quality solutions in a short time, these algorithms seem suitable for a decision support system
that helps the operators of a transportation company in their rescheduling process by giving them
possible solution suggestions for the arising problems.

In Section 5.3, we introduced the dynamic vehicle rescheduling problem (DVRSP). While papers
dealing with disruption management consider the solution of a single disruption scenario, our aim
was to provide an alternative evaluation for rescheduling methods. As multiple disruptions happen
during a planning unit, the solutions for these problems should not be evaluated independently.
We introduced the concept of DVRSP for handling multiple independent disruptions in vehicle
scheduling over a planning unit, usually over a daily horizon. While the classical method of managing
disruption with the VRSP focuses on solving single disruptions to optimality, the DVRSP aims for a
good quality solution at the end of the planning unit after managing a series of disruptions. Because
the problem itself is dynamic, and the input (the disruptions) arrives in an online manner, we also
presented the concept of the quasi-static DVRSP, which gives us an ’offline’ version of the problem
where all the disruptions are known in advance. The quality of a solution for the DVRSP can be
measured using this model.

We used both heuristic methods presented for the VRSP to solve a series of disruptions for pre-
planned daily schedules, and showed that they give good quality solutions in a short time for the
DVRSP. Each input instance was tested independently with both heuristics, and we also showed
their combined results, where every disruption scenario was solved by both methods, and the one
with the better quality was chosen as the solution of the current step. This somewhat simulates
the real-life decision-making process of transportation planners, where they have to choose one of
multiple possible solutions for every disruption scenario.



Chapter 6

Vehicle assignment over a planning
horizon

While Chapters 3, 4, and 5 all considered problems connected to a single daily vehicle schedule,
it is important to remember that the long-term plans of transportation companies are created in
advance for a horizon of several days or weeks. In this chapter, we introduce the schedule assignment
problem for public bus transportation, which aims to assign the daily vehicle blocks of a planning
period to buses in the fleet of a transportation company. One of the most important requirements
of this assignment is the compatibility between blocks and vehicles, meaning that certain blocks
can only be serviced by buses belonging to given types. Other important constraints come from
the fact that the problem considers a long-term plan for several days or weeks; this means that
activities connected to the vehicles such as parking and periodic maintenance also have to be taken
into account.

Creating a long-term schedule is one of the most important optimization problems of a transporta-
tion company. This usually considers a planning period of several days or weeks, with timetabled
tasks that have to be serviced every day. An important feature of a real-life problem is that the
days of this planning period are usually not completely different from each other, and they can be
divided into several day-types (workdays, holidays, etc.). Days that share a day-type have the same
underlying timetable of trips, and the same daily schedule will be applied to them because of this.

As a result, vehicle blocks will be the same for every day that share the same day-type. However,
the vehicles executing these blocks can be different on two separate days. It was shown in the
previous chapters that creating a daily vehicle schedule is a well studied field in the literature.
Yet, the assignment of real vehicles to these schedules is not really considered to our knowledge.
In Chapter 4, we introduced the vehicle assignment problem for a single day, and the aim of this
chapter is to propose a long-term assignment between the daily vehicle blocks and the fleet of a

81
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transportation company. While our goal is to give an assignment over every day of the planning
horizon, this should not be done sequentially on a day-by-day basis, as the optimal solution is most
likely lost in the process. The assignment of every vehicle and task has a global effect on other days
of the horizon as well, and all constraints for every day should be considered together because of
this.

First, we present the problems of scheduling vehicle activities over a planning horizon, and give
a literature overview of these topics in Section 6.1. Using the introduced concepts, we define the
schedule assignment problem in Section 6.2, which aims to assign daily blocks to vehicles of the
company over a planning period with respect to parking and maintenance constraints. We give a
state-expanded multi-commodity flow network for this problem in Section 6.3, and show its results for
both real-life and randomly generated instances in Section 6.4. Our preliminary results on schedule
assignment can be seen in [33], while the extended model presented in this chapter is given in [38].

6.1 Considering vehicle activities over a planning period

Literature on vehicle scheduling over a planning period is really scarce, publications usually focus on
creating optimal schedule for a single day. Papers dealing with a longer horizon usually study rolling
stock rotations, vehicle maintenance, or try to integrate driver rostering with vehicle assignment.

6.1.1 Integrated vehicle assignment and driver rostering

Driver rostering aims to assign duties to the workers of the company over a planning horizon under
different constraint. While this is a separate research field in itself (see Ernst et al. [46] for a review),
there are certain papers dealing with the integration of vehicle assignment.

Peters et al. [86] gave a branch-and-price framework for the problem aided by a GRASP, and
presented their results of both real and simulated data. They consider both a primary and secondary
job type for the drivers, and address a fleet of heterogeneous vehicles. This problem formulation is
further studied by de Matta and Peters in [40], where they present the set covering mathematical
model behind the framework.

The vehicle-crew rostering (VCRP) problem is proposed by Mesquita et al. in [79], where they
aim to give an assignment between trips, duties, drivers and buses. They propose a preemptive goal
programming heuristic, which decomposes the VCRP into daily problems, and joins their outputs
to create the final roster.

Sargut et al. [95] consider a multi-objective crew rostering problem, and proposes a model with
assignment variables between vehicles and blocks. A tabu search method is proposed for the solution
of the problem, and results are presented on smaller instances.
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6.1.2 Rolling stock rotations

Papers about rotation planning aim to optimize long distance railway transportation, creating cyclic
plans based on a standard week using timetabled trips. Borndörfer et al. [23] present a hypergraph-
based MIP model for the rolling stock rotation planning problem for intercity railway. They consider
railway vehicle compositions, and also include maintenance constraints and infrastructure capacities,
and focus on the cyclic planning period of a standard week. They first studied this model in [21, 22].
Their results are presented on use-case scenarios of the Deutsche Bahn.

Integrating maintenance into the rolling stock circulation problem is also studied by Giacco et
al.[50]. They consider the same timetable to be repeated every day (calling it a cyclic timetable),
with scheduled train services also given in the input. Their proposed model inserts the maintenance
activities into this pre-determined assignment, and aims to produce a cyclic roster where the number
of days is minimal. In [49], they describe a framework that sequentially creates rolling stock rosters,
then assigns maintenance to these using the above approach. Their results are presented on small
scenarios of an Italian railway company.

Lai et al. [67] consider a MIP and a hybrid heuristic model for the rolling stock assignment
with maintenance constraints. They examine a single day, which is further divided into two time
slots. The assignment of a longer period is done sequentially over these time slots. They conduct
optimization on a daily basis, and only consider a look-ahead of 4 days when making decisions.
A rolling horizon is used with the above sequential solution approach to give results for a 90-day
period.

6.1.3 Bus transportation and maintenance

To our knowledge, the maintenance scheduling problem for buses is only studied by Haghani and
Shafahi [57]. They examine the insertion of different maintenance activities into existing bus sched-
ules over several days, but the assignment of schedules to buses is given in the input. They formulate
multiple mathematical models for the assignment of maintenance task into time slots of the pre-
determined schedules of the buses, and give test results for two different sets; a smaller example,
where maintenance is scheduled for a vehicle fleet of 10 buses over a 3-day planning period, and a
larger example of 181 buses and 182 days. However, they run the scheduling simulation daily in the
latter case, and solve single problems sequentially for each day.

6.1.4 Our contribution

Our motivation behind developing the schedule assignment problem was the introduction of a model
which creates a rostering over a longer planning period (several weeks, not just days), where

• every daily block is assigned to the buses in the fleet of the company,
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• buses are also sent to garages at the end of every day,

• regular preventive maintenance activities are carried out for every bus,

• and all of the above constraints are optimized together, minimizing the arising travel- and
operational costs.

Although all of the above requirements were studied before (see Sections 6.1.1, 6.1.2, and 6.1.3),
they either have not been considered together in the same problem, or solutions for a longer period
were acquired by a sequential solution of smaller subproblems of days. Considering a longer planning
period, both approaches have the same issue: the decisions made when fulfilling a requirement, or
developing a daily solution do not only have a local effect on the given day, but affect the entire
horizon as well.

Because of this, all constraints for every day should be considered in the same problem, otherwise
the optimal, or good quality solutions might be lost in the solution process. Our goal is to give a
model that represents the structure of the entire problem, and optimizes the whole horizon at once,
considering all arising constraints together.

As the model is capable of providing solutions for a period of multiple weeks, its results can be
used in a decision support system to aid long-term planning. Different configurations of vehicle fleet,
maintenance and garage capacities and block types can be experimented with, and the resulting
possible feasible solutions can help experts of the company in making a decision about the final
schedule.

6.2 The schedule assignment problem

As it was discussed earlier in Section 2.2, the resulting schedule of the VSP only gives the vehicle
blocks for a single day. This alone, however, is not enough when creating plans in advance for a longer
horizon (eg. several weeks, or even months). The days of this planning period are usually divided
into different ’day-types’ (workday, Saturday, holiday, etc.), and a theoretical vehicle schedule is
created for each of these. This means that days belonging to the same day-type will have the exact
same vehicle blocks, and same blocks will always have the same vehicle requirements throughout
the entire planning period. However, they will not necessarily be executed by the same vehicle on
different days.

The input for the schedule assignment problem is the n-day planning period of the company, with
each day i having an assigned day-type type(j). The set V of vehicles available over the planning
period is given as well. A set D of depots is also introduced for these vehicles, and the depot-type
d(v) ∈ D is determined for every v ∈ V . Similarly to the VSP, vehicles belonging to the same depot
share the same costs and characteristics. Set G represents garages where vehicles can stay for the
night between two days of the planning period.
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A theoretical vehicle schedule is also provided for every day-type type(j), which is the set
S(type(j)) of vehicle blocks that have to be executed on days of the given type. We consider
these schedules (and also the blocks contained by them) theoretical, because they only give the
sequences of timetabled tasks that have to be executed on days of the given type. However, they do
not contain information about the vehicle executing them, and consequently do not include the tasks
that are specific to this vehicle on the given day. Mandatory tasks that vehicles have to execute out
on a given day include a vehicle leaving its starting garage at the beginning of the day, parking at
a garage at the end of the day, or carrying out maintenance. Expanding the theoretical schedules
with such activities will be the task of the schedule assignment problem.

A vehicle block j ∈ S(type(j)) also has a binary depot-compatibility vector vj = (v1, ..., v|D|). A
vehicle from depot d can service block j if and only if vjd = 1. In some cases, it may be possible for
a vehicle to service multiple blocks on the same day. For this, we have to define block-compatibility:
two o, p ∈ S(type(j)) blocks of the same day i are compatible with regards to depot d, if both can
be serviced by vehicles of the depot (meaning both vod = 1 and vpd = 1), and there is enough time
for the vehicle between the ending time of o and the starting time of p to travel from the arrival
location of o to the departure location of p with a deadhead trip.

Contrary to the solution of the VSP, the vehicle blocks in the input daily schedules do not include
the starting and ending garages, as these will be given by the assignment. Papers dealing with the
scheduling of buses usually apply a constraint where vehicles have to return to their starting garage at
the end of each day. This may be a viable strategy for local transportation problems, where vehicles
only have to travel inside a city to reach their ending destination. However, vehicles in intercity
transportation do not necessarily end their blocks close to their starting garage, and returning back
there might be expensive. Instead of this, a garage g ∈ G also has to be assigned to each vehicle at
the end of each day, where it will stay for the night and begin the next day of the planning period.
Arising travel costs should also be considered when choosing this garage, as the vehicle has to travel
here from its location at the end of the day, and then also head out to the starting location of its
vehicle block on the next day.

We also consider a vehicle specific requirement during the solution of the problem, which is the
assignment of mandatory maintenance activities to vehicles. Maintenance activities can usually be
of two types: daily inspections are smaller tasks that can be included as tasks in the daily vehicle
blocks, or larger mandatory inspections (usually called preventive or periodic inspection) that require
an entire day. These large inspections usually have to be executed after a vehicle has been working
for a pre-specified time, or covered a set distance while servicing blocks since its last inspection.
In our case, we consider the number of days spent in service. Let integer parameter s give the
maximum number of days that a vehicle can spend servicing blocks before it has to be sent on such
an inspection. A vehicle can undertake an inspection activity anytime at a maintenance location
m ∈M , but vehicles that already reached their maximum runtime of s days have only two choices:
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either stay at their current garage, or undertake a periodic inspection at one of the maintenance
locations. Similarly to choosing the garages, arising travel costs to and from maintenance locations
should also be considered.

The aim of the problem is to assign the blocks to the vehicles of the company over the planning
period such that each block is executed exactly once, every vehicle stays at a garage at the end
of each day, a vehicle services blocks on at most s days between two inspections, and the arising
costs are minimal. A vehicle v from depot d contributes dc(d) ·workvi + tc(d) · dist(v) to the cost of
the problem, where dc(d) and tc(d) are the one-time daily and unit-distance costs of a vehicle from
depot d respectively, dist(v) is the distance traveled by vehicle v during the planning period (either
by servicing blocks or traveling to/from garages). The binary vector workv = (work1, ..., workn)
denotes whether vehicle v was in service on day i of the planning period, or not.

6.3 Assignment model with state-layers

This section introduces a state expanded multi-commodity network flow model for the schedule
assignment problem. The nodes of this network will represent the different tasks that can be carried
out by the vehicles (servicing a block, staying at a garage, or having a mechanical inspection), while
the edges give the transitions between them.

Let us consider a planning period of n days, and let integer parameter s denote the maximum
number of days that a vehicle can spend servicing blocks between two inspections. Whenever a node
is said to have inspection state h, it can only be carried out by vehicles that have serviced exactly h
blocks since their last inspection.

Let B be the node set of vehicle blocks given by the daily schedules of the planning period,
hypernode Bi,j ⊆ B representing the vehicle block j on day i, where 1 ≤ i ≤ n, 1 ≤ j ≤ k, and
k = |S(type(i))| is the number or blocks on day i. This hypernode Bi,j = (b0

i,j , b
1
i,j , ..., b

s−1
i,j ) consists

of nodes bhi,j representing all possible inspection states of the vehicle executing the given block, h
giving the inspection state of the node.

Let G be the set of garage nodes for the l garages of the input. Similarly to vehicle blocks,
garages are also represented by hypernodes Gi,j = (g0

i,j , g
1
i,j , ..., g

s
i,j), where a node ghi,j represents

garage j on day i for vehicles in state h (0 ≤ i ≤ n, 1 ≤ j ≤ l). The special hypernode G0,j denotes
the garage j at the beginning of the planning period. Every garage i also has a capacity kg(i), which
gives the number of vehicles that can simultaneously stay at that garage.

LetM be the set of maintenance nodes, representing geographical locations where the inspections
of the vehicles can be carried out, node mi,j ∈ M standing for location j on day i. Maintenance
nodes have a capacity km(i), which gives the number of vehicles that can be serviced there in a
single day. It might be possible, that the same geographical location contains both a garage and a
maintenance facility, but garage nodes and maintenance nodes are handled as separate entities even
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in this case: such a location will contribute two nodes (g ∈ G and m ∈ M) to the model of the
problem, and both will have separate kg(g) and km(m) capacities.

Let D be the set of d depots representing the vehicles of the company. Each depot i is defined
by two nodes: di,0 represents vehicles of the depot at the beginning of the planning period and di,1
at the end of the planning period. Vehicles belonging to the same depot are of the same type, and
share the same costs and characteristics, but they will not necessarily share their starting locations
at the beginning of the planning period. Depots also have a capacity kd(i) that gives the number
of vehicles available of that type.

The edges of the network can be given using the above nodes. These represent the possible
traveling activities of vehicles throughout the planning period, either heading to block nodes to
service them, to garage nodes where they stay for the night, or to maintenance nodes for a mechanical
inspection. Each depot will have its own set of edges The starting state of the different vehicle types
and their location at the beginning of the planning period is represented by depot starting edges

Eds = {(di,0, g0
0,j)|1 ≤ i ≤ d, j can be the starting garage of a vehicle from depot i}.

Vehicles of each depot ending the planning period in one of the possible garages are represented
by depot ending edges

Ede = {(ghn,i, dj,1)|1 ≤ i ≤ l, 1 ≤ j ≤ d, 0 ≤ h ≤ s}.

Vehicles leaving their garages to execute a block at the beginning of a day are represented by
block starting edges

Ebs = {(ghi−1,j , b
h
i,o)|1 ≤ i ≤ n, 1 ≤ j ≤ l, 1 ≤ o ≤ k, 0 ≤ h ≤ s− 1}.

Note that garage nodes in inspection state s cannot send vehicles to execute a block, as they
have to carry out a mechanical inspection activity first.

Vehicles returning to garages at the end of the day from a block are represented by block ending
edges

Ebe = {(bhi,o, gh+1
i,j )|1 ≤ i ≤ n, 1 ≤ j ≤ l, 1 ≤ o ≤ k, 0 ≤ h ≤ s− 1}.

When a vehicle travels through one of these block ending edges, its state (denoting the number
of days spent in service) is also increased by one; this is represented by the vehicle moving to another
state layer of the network (in the case of the above edges, from layer h to layer h + 1). Also note
that after servicing a vehicle block, the inspection state of the destination garage node has to be at
least 1.

As mentioned before, it may be allowed in some cases for a vehicle to service multiple blocks on
the same day. For every block-compatible (o, p) pair of blocks, we can introduce block connection
edges
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Ebc = {(bhi,o, bhi,p)|1 ≤ i ≤ n, 1 ≤ o, p ≤ k, 0 ≤ h ≤ s− 1}.

These edges will provide the possibility for a vehicle to service multiple compatible blocks on the
same day instead of heading back to a garage at the end of its first block. Note, that the state h of
the vehicle does not change between executing two blocks, as it is still in service on the given day i.
The change of its state will be managed by the block ending edge that is carried out after its last
block.

Vehicles leaving their garages for mechanical inspections are represented by inspection starting
edges

Eis = {(ghi,j ,mi,o)|1 ≤ i ≤ n, 1 ≤ j ≤ l, 1 ≤ o ≤ |M | , 1 ≤ h ≤ s}.

It can be noted again that vehicles in garages with inspection state 0 have no reason to execute
a mechanical inspection, and therefore these edges are not added to the network.

Vehicles returning to garages after a mechanical inspection are represented by inspection ending
edges

Eie = {(mi,o, g
0
i,j)|1 ≤ i ≤ n, 1 ≤ j ≤ l, 1 ≤ o ≤ k}.

A vehicle always arrives at a garage node with an inspection state 0 after a mechanical inspection.
Vehicles staying at a garage for a given day are represented by garage edges

Eg = {(ghi−1,j , g
h
i,j)|1 ≤ i ≤ n, 1 ≤ j ≤ l, 1 ≤ h ≤ s}.

The following circulation edges are also added between all depot ending and starting nodes

Ef = {(di,1, di,0)|1 ≤ i ≤ d}.

An illustration of the network can be seen in Figure 6.1. The figure presents a 3-day planning
horizon with a single depot, 2 garages, 2 daily vehicle blocks and 1 maintenance location. The
two blocks on the first day are block-compatible (given by edges (b0

0,1, b
0
0,2) and (b1

0,1, b
1
0,2)). The

parameter s for maximal days in service before inspection is set to 2, which can be seen on the three
state layers of the network (s = 0, 1, 2, represented by the dashed rectangles in the figure).

Using the node set N = {B ∪ D ∪ G ∪M} and edge set E = {Eds ∪ Ede ∪ Ebs ∪ Ebe ∪ Ebc ∪
Eis ∪ Eie ∪ Eg ∪ Ef} the multi-commodity network (N,E) can be defined. This network will have
d separate commodities, one for every depot. The commodities of this network will be denoted
by c ∈ D. For each edge e of this network, we give an integer vector xe. This vector will have
one component for every commodity c, which will be denoted by xce. The value xce represents if a
vehicle from depot c can be assigned the traveling activity connected to edge e (servicing a block,
undertaking maintenance, heading to a garage, staying at a garage). Edges Eds, Ede, Ef are added
for the respective commodity of the depot they represent, while edges in Ebs and Ebe are created
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Figure 6.1: Illustration of the schedule assignment model

for every depot d that is able to execute the corresponding block. Other edges are available for all
commodities. Notations δ+(n) and δ−(n) are used to denote the set of arcs leaving node n and
entering node n respectively. Based on the above data, the mathematical model can be formalized
the following way:

minimize
∑
c∈D

∑
e∈E

trcex
c
e

s.t.
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∑
e∈δ−(Bi,j)

xce = 1,∀(i, j) pair, 1 ≤ c ≤ d (6.1)

∑
e∈δ+(dc,0)

xce ≤ kd(c),∀c ∈ D (6.2)

∑
e∈δ−(Gi,j)

xce ≤ kg(j),∀(i, j) pair, 1 ≤ c ≤ d (6.3)

∑
e∈Eis

i,m

xce ≤ km(j),∀(i,m) pair, 1 ≤ c ≤ d (6.4)

∑
e∈δ−(n)

xce −
∑

e∈δ+(n)

xce = 0,∀c ∈ D,∀n ∈ N (6.5)

xce ∈ {0, 1},∀e ∈ {Eds ∪ Ede ∪ Ebs ∪ Ebe ∪ Ebc} (6.6)

xce ≥ 0 integer,∀e ∈ Eg ∪ Eis ∪ Eie ∪ Ef (6.7)

Constraint (6.1) determines that a block has to be serviced by exactly one vehicle. Constraint
(6.2) gives the vehicle limits for every depot at the beginning of planning period, while (6.3) defines
capacities for every garage at the end of every day. Constraint (6.4) sets the daily limits of the
maintenance nodes, the possible incoming vehicles for a maintenance node m ∈ M on day i being
represented by edges Eisi,m ⊆ Eis. Flow conservation for every node of the network is given by (6.5),
while constraints (6.6) and (6.7) provide the binary and integrality constraints for all the variables.

The objective of the model is to minimize the arising vehicle and travel costs: the cost of a vehicle
from commodity c to service the travel activity denoted by edge e is given by trce, the travel cost of
a vehicle from depot c to cover the distance denoted by edge e. If the edge is a travel activity during
which the vehicle leaves its current garage, then the cost of the edge is given by trce + dcc instead,
there dcc is the one-time daily cost of a vehicle from depot c.

6.4 Test results

The model was tested both on real-life and randomly generated input. Important characteristics
of both input types presented in this section along with their solution processes, and the achieved
results are also analyzed.

The mathematical model was solved using the Gurobi MIP solver, and ran on a PC with and
Intel Core i7 3.30 GHz processor using 32 GB RAM. The time limit for the solver was set to 1 day
(86 400 seconds), and the solver optimality gap tolerance was set to 0.00%.
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6.4.1 Real-life instances

The real input was part of a ’what-if’ scenario, trying to coordinate the transportation of three regions
in Hungary. The companies in these regions organized their transportation semi-independently
before. The transportation companies provided input for a 3-week long planning period, which
consisted of vehicle blocks belonging to 7 different day-types. The important features of the input
data can be seen in Table 6.1.

Table 6.1: Real input characteristics for schedule assignment

Vehicles 238
Garages 109
Maintenance locations 6
Average daily blocks 131

Vehicles of the input were separated into three different depots. Vehicles belonging to depot
3 were able to execute any of the vehicle blocks, while vehicles in depot 1 could execute blocks
belonging to either depot 1 or 2. Vehicle of depot 1 could not execute blocks belonging to other
depots. Blocks of the daily schedules were not block-compatible, meaning that a vehicle could only
service a single block on any given day. Using the input data above, we created two main groups of
test instances: one with all three vehicle types, and another with depots 2 and 3 merged into a single
type. We ran tests for the entire planning period of three weeks and smaller intervals of one and
two weeks also. Values between 2 and 6 were all used as the parameter s of maximum working days
for every instance type. Different combinations of the above parameters result in a total number of
30 different instances for the real-life input. The model was solved using the constraints introduced
at the beginning of this section.

The results of the mathematical model on the above real-life instances can be seen in Table 6.2.
Each row of the table presents solution data for a single independent test run; it gives the number of
depots used for the problem, the length of the planning period (in weeks), and the value of parameter
s (the number of maximum days that a vehicle can spend in service before going to maintenance).
It also gives the size (rows and columns) of the resulting mathematical model (denoting the number
of constraints and variables), and shows the solution time of the problem (in seconds), with the
optimality gap of the achieved result.

It can be seen from the table that solutions of a one-week period are easily reachable, and in
most cases, optimal results can also be acquired for a longer planning period of two weeks. Almost
optimal solutions are also obtainable for the large instances of the three-week long period. This
is especially important when considering the practical application of the model, as the results are
promising regarding both the running times and the qualities of the solutions. The easy modification
of the parameter s can also help in testing different scenarios for making future decisions.
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Table 6.2: Results of the schedule assignment for real-life instances

Depots Weeks s columns rows time (s) gap (%)

2

1

2 397 694 8 422 1 038 0.00
3 591 051 11 026 114 0.00
4 784 408 13 630 86 0.00
5 977 765 16 234 84 0.00
6 1 171 122 18 838 114 0.00

2

2 799 652 16 232 5 520 0.00
3 1 188 717 21 234 4 663 0.00
4 1 577 782 26 236 2 207 0.00
5 1 966 847 31 238 15 358 0.05
6 2 355 912 36 240 29 345 0.00

3

2 1 201 610 24 042 67 195 0.00
3 1 786 383 31 442 48 705 0.00
4 2 371 156 38 842 51 261 0.04
5 2 955 929 46 242 77 546 0.05
6 3 540 702 53 642 56 165 0.03

3

1

2 544 730 11 702 585 0.00
3 808 860 15 487 128 0.00
4 1 072 990 19 272 40 0.00
5 1 337 120 23 057 39 0.00
6 1 601 250 26 842 57 0.00

2

2 1 094 569 22 467 3 395 0.00
3 1 625 712 29 725 19 431 0.00
4 2 156 855 36 983 25 304 0.04
5 2 687 998 44 241 6 840 0.00
6 3 219 141 51 499 21 640 0.00

3

2 1 644 408 33 232 16 323 0.01
3 2 442 564 43 963 22 957 0.04
4 3 240 720 54 694 81 941 0.23
5 4 038 876 65 425 79 146 0.37
6 4 837 032 76 156 52 454 0.78

6.4.2 Random instances

Our random input data was generated in two steps. First, random VSP inputs were created using
the method in Section 7.4.2. These instances had 100, 500, or 1000 trips, and used either 2 or 3
depots. A total of 60 instances were generated this way, 10 for every depot-trip combination. Solving
the VSP for all these instances resulted in daily vehicle schedules, which were then used as an input
for the schedule assignment problem.

Each vehicle schedule was used as the input of a planning period with a single day-type, and
planning periods of one, two and three weeks were all considered for every schedule. Values between 2
and 6 were all used as the parameter s of maximum working days for every instance type. Considering
all combinations of the above parameters, we achieved optimal solutions for a total of 900 test runs.
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Important features of these input instances are given by Table 6.3.

Table 6.3: Random input characteristics for schedule assignment

Trips Average vehicles Garages Maintenance locations Average daily blocks
100 51 30 2 17
500 219 40 3 55
1000 433 60 4 99

The aggregated results of the instances presented above can be seen in Table 6.4. Each row of
the table provides optimal results for 3 different instance sets, every set representing one of three
problem sizes (100, 500 or 1000 trips). The problem size of a set is given by its column header, while
additional parameters of these sets are presented in the header of the row: the number of depots,
length of the planning period (in weeks) and the value of parameter s for maximum working days.
Each set presents the aggregated results of 10 different test instances, giving average model size and
running time of the optimal solutions.

Our preliminary test runs for the 900 instances in Table 6.4 were all executed with the same
constraints as mentioned before at the beginning of this section. We managed to solve 896 instances
to optimality this way within the given time. The remaining 4 instances all belonged to the set of 3
depot problems for a 3 week planning period with the parameter s = 6 for maximum working days.
The optimality gaps for their results we achieved within the time limit were 0.02%, 0.03%, 0.003%,
0.02% respectively. As these solutions are near-optimal, and we received optimal results for all other
test runs, we decided to solve these 4 instances also to optimality without the limit on running time,
thus not needing to include data for optimality gaps in the table. Because of this, the table presents
an average running time that is greater than the 1-day limit for the last instance set. The above
results are also promising, as solutions can easily be obtained for random input of different sizes
and parameter combinations. The size of the largest presented problem sets in the table (with the
average of 99 daily blocks) can be equivalent to networks of some regions, thus the given model and
solutions process can also be applied to real-life instances with similar characteristics.

As it can be seen both from the real-life and randomized test results, there are three main factors
influencing problem size and running time. One of these is the value of the parameter s. As the
state of the vehicles has to be tracked throughout the network, a separate layer is created for each
such state. This basically means the duplication of all garage and block nodes, and these result in
more constraints and variables to the problem (capacity constraints and flow conservation) as well
as more variables.

Using a heterogeneous fleet with multiple depots also results in an increased number of con-
straints. Each depot has its own commodity in the network, and similarly to state layers, both flow
conservation and node capacities have to be checked separately for every depot. Moreover, there are
also constraints linking these different commodities; constraints ensuring that each block is serviced
exactly once
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Naturally, the length of the planning period also influences the size of the model. As the schedules
of a single week are usually more or less similar in structure, the number of decision variables and
constraints is expected to grow in a somewhat linear proportion to the number of weeks considered
by the problem. This effect can be observed on the sizes of both the real-life and the randomly
generated problems.

The combination of the above three factors (parameter s, number of depots and size of the
planning period) contribute together to the problem size and solution running time. It can be seen
from both the real-life and random test results that instances with a 1-week planning period are
easily solvable in a short time regardless of number of blocks, depots, or s. This is also true in
the case of most test instances with a 2-week planning period, slower running times only occurred
for some problems with a higher (4 or greater) value of s. The only instance types that constantly
resulted in slow running times are the ones with a 3-week planning period, and a value s ≥ 4. Yet,
even solutions for these instances achieved within the given time limit of 1-day were optimal or
near-optimal. The model yielded good solutions for real-life data that connected the transportation
of 3 different regions, and gave results for a significant planning period of 3 weeks. The largest
random instance sets are also comparable with similarly sized real-life scenarios, meaning that the
model can be applied generally to such problems.

6.5 Summary and remarks

In this chapter, we introduced the schedule assignment problem for bus transportation over a plan-
ning period, where the pre-planned daily vehicle blocks are assigned to buses of a transportation
company. Important requirements like daily parking and preventive maintenance have to be taken
into account due to the long-term nature of the task. While similar constraints were studied either
separately or for shorter periods in the literature, they have not been considered together for a
horizon of several weeks.

We presented a mathematical model for the problem using a state-expanded multi-commodity
network, which was then solved by a MIP solver. Both real-life and random instances were used as an
input, and their results were promising for different number of vehicle types and varying parameters
for the time limit of the preventive maintenance. Instead of optimizing the period sequentially on a
day-by-day basis, the model represents the structure of the entire planning horizon, and achieves a
solution by considering all arising constraints of every day together.

However, the parking and maintenance constraints that we considered for the model are only
basic requirements of such an assignment, and the model can be extended to incorporate more
sophisticated needs. An obvious addition would be the inclusion of refueling activities at the end of
each day for vehicles that have been executing blocks. These could be inserted between the block
and garage nodes: vehicles would travel to refueling stations first after finishing their final block on
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a day, and then pull in to a garage from these stations.
Another important extension would be the consideration of ’vehicle history’ at the beginning

of the planning horizon: as the planning period is not a stand-alone unit, but the continuation
of another period, different vehicles should begin this period in different states with regards to
maintenance. This could be achieved by modifying the definition of vehicle start nodes in the
model: these should also be present in every state-layer, not just a single one.



Chapter 7

Concepts for decision support
systems

As it can be seen from the previous chapters, a transportation system is hard to design, as it
incorporates many different modules that have to work together in order to achieve a good quality
service. As these problems are already complex by themselves, they are usually solved in a sequential
manner. Naturally, good quality solutions are important at every step of this solution process, but
the aim of such a system is to provide a globally good result, which should be efficient cost-wise,
but should also have a nice and flexible structure that can be easily implemented in practice.

Most companies utilize computer aided planning to achieve this, which considers the optimization
algorithms of the subproblems as modules of a decision support system. The solutions given by this
system are analyzed by experts, and parts of it are applied in practice. The parts of a transportation
system that are connected to vehicles include: planning, evaluation and real-time control. While
the planning phase is extensively studied through different problems in the literature, the other
two steps are rarely considered as part of a decision support system. In this chapter, we introduce
multiple concepts that are not well studied from this application-oriented aspect, but can serve as
an important module of such a system. We present real-time control through a decision support
framework for vehicle rescheduling, and give a timed automata-based model and a test instance
generator that can be used for evaluating different modules of an optimization framework.

First, we review the general outline of the problems in an optimization system for public transit,
and highlight the scarcely studied stages of such a system. This overview is presented in Section
7.1.

In Section 7.2, we give a framework that can be used by companies to manage disruptions
happening during the execution of their schedules. This framework is designed to be flexible enough
to work with any number of different solution heuristics for the vehicle rescheduling problem. The

97
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basic idea behind this system was published in [12].
Section 7.3 presents a novel modeling approach for problems in public transportation. Instead

of the classical mathematical formulations, we propose a timed automata-based model to solve the
schedule assignment problem of Chapter 6. This idea was introduced in [39].

The final Section 7.4 presents the random instance generation method that was used for creating
input instances for the problems presented in the previous chapters. We modified the state-of-the-art
method of Carpaneto et al. [26], and also gave two approaches that consider depots with multiple
vehicle types. This method was published in [34].

7.1 Stages of a decision support system

In Chapter 2, we gave a brief overview the most important optimization phases of a transportation
system: strategic, tactical, and operational planning. These stages are responsible for the creation
of the long-term transportation plan that is executed by the company over a planning horizon.
The details of these phases can be seen on Figure 7.1 (taken from Ibarra-Rojas et al. [63]), which
presents the majority of the processes handled by an optimization system, with all their interactions
and required input information.

Figure 7.1: The planning process and real-time control of public transit (from [63])

The integration of the above subproblems (especially the ones connected to operational planning)
into a decision support system is well studied in the literature (see [15, 77, 80] for some examples).
However, additional phases can also be included in a such system, which are generally not considered.

A good illustration for this is the real-time control of a transit system. While the papers dealing
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with this field try to maintain the regularity of traffic, or to normalize passenger transfer times—
usually by holding buses at specific stations, or modifying the frequency of their lines—, different
types of real-time problems can also arise in such a system: addressing disruptions is a perfect
example, yet vehicle rescheduling problems are usually only considered as a variant of the VSP, and
not as a part of decision support.

Another scarcely studied aspect of these systems is the testing and evaluation of the different
implemented modules. A method that is going to be introduced into such a system has to be tested
extensively, on a much larger dataset than the instances of a single transportation company. As freely
accessible benchmark datasets are unfortunately not available for real-life transportation problems,
the easiest way to obtain test data an appropriate structure is to generate it. The structure and
validity of the implemented methods might also be interesting in some cases. However, these are
also not that widely studied.

In the following sections, we will propose concepts and methods for both of the above mentioned
problems. First, we introduce a flexible framework for vehicle rescheduling. Then, we present two
possibilities for testing and evaluation: a timed automata-based model that can be used to visualize
and validate parts of the problem, and a method for generation random instances that can be used
for the extensive testing of the system modules.

7.2 Framework for vehicle rescheduling

Disruption management and vehicle rescheduling were studied in Chapter 5, where we proposed
both a mathematical model and heuristic solution methods for the multi-depot vehicle rescheduling
problem. We also introduced the idea of dynamic vehicle rescheduling, which evaluates the efficiency
of disruption management methods over the horizon of a planning unit (usually a day) instead of
considering every disruption as a separate event.

In this section, we present a solution framework for the rescheduling problem in public trans-
portation, which could be used by companies for aiding their operators responsible for managing
disruptions. When a disruption happens during the execution of a daily schedule, it should be re-
solved as quickly as possible: the operator has to identify the exact cause of the disruption, evaluate
possible scenarios for it, then share the best solution with the involved parties (mainly the drivers)
so that the order of transportation could be restored. To help with such a problem solving process, a
decision support framework should be able to provide multiple different suggestions to the operators,
who can then make their decision based on these.

Optimization frameworks are already present for the long-term planning of the different phases
of public transportation systems (for some examples, see [15, 77, 81, 100]), but these are mostly
built around given solution approaches. To our knowledge, the only paper that deals with such a
system for bus rescheduling is the one by Li et al. [72], where they use the operational planning
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processes for the waste collection of a city in Brazil as a case-study.
An important requirement of this framework is that it should be able to handle multiple solution

approaches, if necessary, and should function the same way regardless of the applied solution method.
As the problem has to be solved in real time, another main requirement for the solution approaches
is that they have to provide suggestions quickly.

Although there are published mathematical models for the problem, these cannot be solved
quickly enough to provide the desired result. This leads to the design of efficient heuristic methods,
which are able to provide solutions in a short time. The system we present in this section is designed
to work with any kind of solution method, and gives results for the problem based on needs of the
operators, which they can control through different parameters.

In the following sections, we first give a quick overview of a disruption scenario, then provide the
different criteria and parameters that should be considered when solving a disruption. Finally, we
propose a flexible framework that is able to provide multiple suggestion for the problem in a short
time. We published these results in [12].

7.2.1 Disruptions in transportation

As an exhaustive overview and problem definition was already given for disruption management in
Chapter 5, we only present the most important concepts for a single disruption scenario.

The daily schedule of a transportation company consists of several blocks that have to be serviced,
each block being a series of tasks that have to be carried out in the given order. Every block has
a vehicle assigned to it, and at least one corresponding driver that executes its tasks. The most
common tasks are the ones corresponding to the trips of the timetable, and the so-called deadhead
trips, which are used by the drivers to travel with an empty vehicle from one location to another.
Blocks can also include several different vehicle specific tasks (eg. parking, refueling), while driver
shifts have driver specific tasks (eg. breaks, administration).

When a disruption happens during the execution of a daily schedule, usually one of the vehicles in
service becomes unavailable for a period of time. This leads to the pre-planned schedule becoming
infeasible, as one or more of the tasks are not executed by a vehicle anymore. Such trips are
addressed from now on as disrupted trips. A vehicle schedule becomes infeasible if it contains such
trips. Companies usually have a backup vehicle and driver ready, which are dedicated to such
situation, but this solution might not be the best one. Our aim is to propose different suggestions
that do not utilize this backup vehicle, and are more effective than this option.

Real-life criteria

In a real-life application, there are several rules and constraints that make the problem more com-
plicated as it was described previously. There are regulations that have to be followed in every
case, while the violation of others should be penalized. As we mentioned earlier, a daily schedule
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includes both vehicle blocks and drivers shifts, thus we classify the most important regulations into
two groups. In this section, we give a list of the most important rules for both groups. Note, that
these are only the most common regulations, and other ones might arise depending on the country
or the transportation company.

• Vehicle regulations

– Vehicle depot and trip compatibility: Trips can only be serviced by vehicles from a fixed
set of depots, and this should be respected when creating a new schedule to manage the
disruption.

– Vehicle type and trip characteristics: Similarly to depot compatibility, some trips can
only be executed by vehicles of a certain type. For example, trips that run between
different cities, or cover a longer distance, must have a bus with special equipment (eg.
air conditioning).

• Driver regulations

– Maximum driving time: Each driver has a maximum daily driving time, which they
cannot exceed.

– Driver breaks: After given time periods, mandatory breaks have to be assigned to the
drivers. Moreover, these breaks can only be carried out at specific geographical locations.

– Maximum working time: Similarly to driving time, the maximum daily working time of
drivers is also limited. This is not equal to the driving time, as driver shifts have other
events as well, which do not require a vehicle (eg. administration).

Besides these regulations, permitting different structural modifications should also be considered
in the schedule. For an illustrative example for these, refer to Figure 7.2.

The figure shows a disrupted daily schedule, where the disruption is represented by a vertical
line. There is one disrupted trip t0, that has no available vehicle anymore, and should be executed
by one of the Bj blocks still in service. Depending on the active regulations, we can give several
solutions for the problem. Here are a few examples:

• If trip t0 is compatible with block B1, and there is enough time to insert it to the available
gap (together with any necessary deadhead trips), then we can solve the problem.

• If we want to insert t0 to block B2, we have to remove trip t2. There are several different
places where we can insert this newly removed trip. It might fit into the gaps in blocks B1 or
B5 (if compatible, and there is enough time for deadheads). We might also be able to insert it
to blocks B3 or B4. However this would mean removing trip t3,2 or t4 respectively, and finding
a new duty for them.
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Figure 7.2: Example for possible modifications as a result of a disruption

• There are several scenarios similar to the above, where trips are removed from a block, and
inserted into another one.

• Lateness—if allowed— can also be introduced: delay trip t4 in blocks B4. This can give us a
big enough gap to insert our trip t0 (if it is allowed by compatibility and deadheads).

As it can be seen from these examples, there are some other constraints that we have not discussed
with the above requirements. These are connected to the original blocks and tasks (eg. modifying
departure/arrival time, or removing a trip from its original block). A solution method for this
problem has to know the penalties for violating each requirement, and it also needs to know the
hardness of their constraints. This information can be given easily with the use of parameters.

Parameters

In this section, we introduce parameters of our framework based on the different rules and constraints
presented in the previous sections. These parameters have to be considered by any algorithm solving
the bus rescheduling problem:

• A binary parameter that allows the violation of depot-compatibilities. A penalty parameter
for each violating task is also needed.

• A binary parameter that allows the violation of vehicle type correspondence. A penalty pa-
rameter also has to be introduced for each violating task.
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• A binary parameter that allows the introduction of lateness. A penalty parameter also has to
be introduced per 1 unit (minute) of lateness.

• A binary parameter that allows the movement of trips between feasible blocks. A penalty
parameter is also needed that gives the cost of each such move.

• A binary parameter that allows the cancellation of trips. A penalty also has to be introduced
for every canceled trip.

• An integer parameter that limits the maximum amount of lateness which can introduced by
the algorithms to the schedule.

• An integer parameter that limits the maximum amount of lateness an algorithm can introduce
to a single event.

• An integer parameter that limits the maximum amount of lateness an algorithm can introduce
to one block.

• An integer parameter that gives the maximum number of feasible blocks that can be modified.

• An integer parameter that gives the maximum number of trips that can be canceled.

• A parameter that limits the maximum total length of the newly introduced deadhead trips.

• A parameter, which gives the latest point in time, by the end of which the algorithms should
not modify any more feasible schedules.

• A parameter on the number of suggestions (feasible solutions) given by the framework.

• A parameter on the maximum running time.

As it can be seen in the list of proposed parameters, there are none that correspond to driver
rules. Driver regulations are very strict, and most of them are defined by the European Union, or
the country. Thus, they cannot be violated by any means. Depot compatibility and vehicle type
correspondence might also be strict in the case of certain companies, but we decided to let the
operator of the system decide about their violation.

7.2.2 The Solution Framework

In the previous sections, we presented our basic ideas behind the methodology for the problem. We
described the need for a framework that does not depend on the solution algorithm it executes,
and can be controlled through a list of different parameters. In Figure 7.3, we give a layout of the
different parts of the system.
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Figure 7.3: The structure of the rescheduling framework

The input for the system consists of two parts: the list of parameters described in the previous
section, and the problem specific data tables. The type and structure of these tables of course
can vary between different implementations of such a system, but it is important that it contains
the disrupted daily schedule, the set disrupted trips, and vehicles that are unavailable due to the
disruption. For the remainder of this chapter, we will refer to a 3-tuple of {disrupted schedule, set
of disrupted trips, unavailable vehicle information} as a configuration.

The input determines the starting configuration of our problem, which is a schedule that contains
the still feasible blocks, a set containing the disrupted trips that are not executed currently by any
vehicle, and unavailability information for the vehicles in service. A configuration is supposed to be
feasible, if all blocks in its schedule are feasible and do not violate any regulations or parameters. If
the set of disrupted trips is not empty, then those are considered canceled.

Once the input processed, it is then transferred to the main module of the system, which we
call the Rescheduling Black Box (RBB). This is the part that carries out the solution process, and
consists of two parts:

• The Solver Library (SL) manages the different solution methods that are built into the system.
The system can have any number of implemented solution methods, and the desired method
can be invoked by the use of additional parameters. If there is a possibility to parallelize
solution processes, multiple methods can also be executed at once.

• Any feasible solution produced by the algorithms is sent to the Solution Collector (SC). This
sub-module is responsible for managing feasible solutions. If more solution methods are running
in parallel, all of them post their results to the SC simultaneously. The SC then filters any
duplicate solutions, and also gives an ordering of the remaining ones based their cost.

Once all solution algorithms finish their execution, or the maximum running time is reached,
the SC returns the desired number of feasible solutions. This value can also be set by the operator
as a parameter (number of suggestions). The order in which these results are filtered can also be
determined by the operator (eg. rank them based on their costs, or ask for ones with no lateness, if
possible). The operator receives the output data, and can use the presented suggestions to decide
on how to solve the arising disruption.
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7.2.3 A real-life application

As we mentioned earlier, solution for the rescheduling problem has to be adequately quick, as the
order of transportation has to be restored as soon as possible. Because of this, the implemented
heuristic methods must have a running time of at most a couple of minutes to be acceptable.

Also, because of the flexibility of the SC module, it is useful to provide solution methods that find
multiple feasible solutions during their runtime. This gives the operator more suggestion options
to choose from. A simple approach that we implemented in our system is a naive search, which
basically finds all the possible trivial insertions in the starting configuration (if any), and sends
these to the solution collector. If there are any trivial insertions, it is highly likely that it will be
the cheapest solution with regards to any of the parameters.

In Section 5.2, we proposed two heuristic approaches that have also been implemented to the
system. We applied both the recursive and the tabu search heuristic simultaneously with the above
introduced naive method to test our framework. As both methods explore a part of the problem
space, they encounter a large number of feasible solutions. These could all be sent to the SC
module even while the algorithms are running. However, we introduced a simple modification to
these methods: while still registering the best feasible solution they have found so far, the algorithms
also store a bound on the cost of solutions that should be sent to the SC. If they produce a better
quality result than this cost, then the corresponding schedule is forwarded to the SC, but it is
discarded otherwise. The SC filters every solution with regards to driver rules, and discards the
infeasible ones.

Test results of the framework in real life have been promising. Every instance we experimented
with had a short running time (they all finished under 1 minute even for bigger instances), and was
able to produce multiple good quality suggestions based on the required parameters. It can also be
seen that the proposed framework allows the integration of any number of different algorithms, as
long as they take the required parameters into consideration. This provides a great flexibility for
the system, as operators can even choose which algorithms they want to utilize depending on the
type of the disruption.

7.3 Visualization and validation using timed automata

In this section, we propose a solution method using Timed Automata for the schedule assignment
problem introduced in Chapter 6. This approach was chosen as it presents a clear system of the
different actors, where the process of the solution can be tracked from the beginning to the end,
and the different parts and actors of the problem are clearly separated from each other. Various
types of automata have been applied successfully for the modeling of event-driven systems with
discrete state space when timing is not an essential aspect of the behavior of the system. The most
common extension of the simple finite automaton model with timing is the timed automaton with
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clocks, guards and invariants. With this model, each individual part of the system can be modeled
independently, and strict timing constraints can be enforced by guards on the event transitions and
invariants at the states. These individual models can be compiled into a single coherent model of the
whole system by the parallel composition operator, and later used for various analysis purposes. The
timed automata model has several advantages from the practical point of view. First and foremost,
if done correctly, individual automata are straightforward models of the real practical constraints.
This reduces the chance of making modeling mistakes, and also promotes re-usability. Moreover,
the model can be used to answer various practically important questions, such as ’can the system
run into a deadlock?’, ’would there be a feasible solution to the problem, if a certain parameter
would change its value?’, ’if a certain event occurs, does it ensure some properties?’, etc. Last, but
not least, if optimization is a goal, the extension to Timed Automata can tackle a wide range of
optimization problems, and provide the optimal sequence of events to reach a state with certain
conditions.

7.3.1 Timed automata

Timed Automata [5, 4] give a general purpose model for discrete event systems with timing con-
straints. In this model, the automata are accompanied by several clocks, and the transitions can
be guarded by timing constraints on these clocks. Transitions may also change the state of the
clocks, and states may have similar guards. With these alterations, timed automata became a very
expressive and powerful tool to model various systems. This model was further extended in [13] to
include linear pricing on the states for optimization purposes. In this extended model, the price of
a timed event sequence is increased during delay transition in certain states with a given coefficient.
The event sequence with minimal price can be found with a branch-and-bound style state enumer-
ation algorithm using Difference Bound Matrices [45]. Linearly Priced Time Automata have been
successfully applied for scheduling problems of batch processes, [83, 97].

As Timed Automata are not as commonly used as e.g. Mixed Integer Linear Programming, the
number of available software tools for this type of models is modest. Uppaal [17] is the result of the
collaboration between the Department of Information Technology at Uppsala University, Sweden and
the Department of Computer Science at Aalborg University in Denmark. Uppaal is an integrated
tool environment for modeling, validation and verification of real-time systems modeled as networks
of timed automata, extended with data types (bounded integers, arrays, etc.). The Uppaal-Cora
project extends the capabilities of the software for finding the optimal event sequences for Linearly
Priced Timed Automata[14].

7.3.2 A TA approach for the schedule assignment problem

The schedule assignment problem has been modeled in the Uppaal Cora software using timed au-
tomata. In this software, the model consists of the following parts:
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Global Declarations
This is a simple text input with a C-like syntax, where the channels, variables, custom types,
and functions are declared, that are in the global scope, i.e., reachable for all automata.

Templates
Templates can be considered as classes of automata, that can be instantiated with different
argument values. The templates describe the states, transitions, guards, etc. for a certain type
of automaton, and may also include declarations with a private scope.

System definition
The last part is the system definition, where the system is defined as a parallel composition of
several instantiated automata based on the available templates.

We will present the most crucial parts of the proposed model in the following sections.

Declarations

Custom defined functions and data types can ease the formulation, and propagate the transparency
of the model. However, the most significant part of the declaration is the set of defined global clocks,
channels and global variables.

In the proposed system there is only one global clock defined, that represents the time passed
since midnight on the current day:

clock time;

There is a single broadcast channel, that indicates the event of moving from one day to the next
at midnight.

broadcast chan daypass;

For each job-type, there is an event representing its start, and another one its finish.

chan start_job[job_id];

chan finish_job[job_id];

For each garage, there is an event of letting a bus in, and out through the gate.

chan go_garage[garage_id];

chan leave_garage[garage_id];

A simple integer variables will contain the number of the jobs of a day not yet assigned to any
bus, and the number of buses outside of a garage.

int[0,jobcount] jobsToAssign = 0;

int [0,buscount] busoutside=0;
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The variable currentday always holds the value of the current day starting from 0. It is initialized
to −1 to ease the modeling of the first day.

int[-1,daycount] currentday = -1;

Templates

There are 4 templates defined in the system: Bus, Garage, Job, and Controller. The first three
of these describe different entities of the schedule assignment problem: the vehicles, the garages, and
the daily blocks respectively.

The Controller template controls the daily behavior of the system, see Figure 7.4. Only one
instance of this template is created in the System definition, and the starting state of the automaton
is a so-called committed state, thus the event leading from Start to InProgress is guaranteed
to be fired immediately, which calls a function initializing the global variables. During the day the
automaton stays in the InProgress state, where a time ≤ 1440 invariant ensures that a day cannot
last longer than 1440 minutes. When the system is ready to move to the next day, the loop event
is fired. It has several guards to ensure that the system has not reached the last of the days, and
all of the buses are in a garage. Upon this event, the automaton sets some global variables to their
supposed values for the next day. When the last modeled day has ended, the automaton moves to
its Finish state.

Figure 7.4: The Controller template of the timed automata model

The Job template is the basis for each block-type defined in the input. The same automaton is
used for the same type of blocks appearing on different days. The template has 3 states: Waiting,
InProgress, and Finished_or_NotToday (Fig. 7.5). An instance of this template is initially in
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the last state, and moved to the first one at the start of a new day, if the job is present on that day.
Then, when the exact time of the Job comes, the automaton moves to its middle state, and finally
to the last one, when it is supposed to be finished. These two events synchronize via the job_start
and job_finish channels with the automaton of the bus assigned to it. The invariants on the first
two nodes do not affect the soundness of the model, however, they reduce the search space of the
algorithm significantly by removing branches that are unable to end up at a desired state.

Figure 7.5: The Job template of the timed automata model

The Garage template is the simplest one with a single state having a loop for the go_garage,

leave_garage channels with guards, ensuring that it is not occupied by more buses than its capacity.
Understandably, the template for the Buses is the most complicated. A simplified version of the

template is shown in Figure 7.6, where many guards, updates and invariants are left out to support
the figure’s transparency. Initially each bus automaton is in the Garage_evening state, representing
a bus that has parked in a garage for the night. When the day is over, all of the buses move to
the Garage_morning state, from which 3 options are possible: a) simply going back to the previous
state, i.e., the bus is not used during that day„ b) enqueing for inspection, or c) getting assigned to
the job. When the buses leave the garage for inspection or a job, they synchronize with the garage
automata through the leave_garage channels, and the same happens upon getting back to a garage
at the end of the day with the go_garage channels. Similarly, the automaton synchronizes with the
automaton of the assigned job via the start_job, finish_job channels. Note that the automaton
for the bus does not have guards for these events, as the source or reason of this constraint is not the
bus (e.g. its speed), but the timetable encoded in the job itself. This illustrates how the constraints
of the problem are modeled together with the entities where they belong, and that every component
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is a closed and compact entity by itself.

Figure 7.6: The Bus template of the timed automata model

The Bus template also has two local variables: one for the number of available maximal workdays
before inspection and the other for the current location of the bus. The constraints for that variable
are omitted from this template to serve visibility.

System definition and queries

The system definition is simple, it consists of the templates mentioned before, from which multiple
ones are instantiated except for the Controller.

An important feature of modeling with an automaton is to be able to express various questions
towards the engine, e.g.:

E<> deadlock - can the system get into a deadlock?

E<> currentday==3 && Bus(5).Under_Inspection - is there a feasible schedule (until the third
day), where the fifth bus can go to an inspection on the third day?

currentday == 4 && Bus(2).Garage_evening && time==1 –> deadlock - if the second bus
doesn’t leave the garage on the fourth day, does it imply a deadlock?

Questions like the above can be answered via the engine. If the states are extended with pricing
data, Uppaal-Cora can also provide the event sequence with the smallest price.
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Efficient modeling solutions

The efficiency of this approach can be improved a lot by restricting the search space that is explored
by the B&B optimization algorithm. Similarly to other techniques, e.g. MILP formulations, this
can be done to some extent by changing the mathematical model only. The general idea is to reduce
the state space of the model by excluding feasible solutions without losing the optimal one.

In case of TA models, there are some modeling pitfalls that, although they do not violate the
soundness of the model, can increase the state space unnecessarily. Some of these issues are discussed
here along with their resolution.

Exploring branches that lead to deadlocks One requirement for a sound TA model is that
all feasible runs in the model should be feasible for the original problem as well. If there are
branches in the state space exploration that do not yield any feasible solutions, the model can still
be considered valid. The evaluation of these branches, however, may require a lot of computation.
Unfortunately, this issue can be present in a model rather unperceived. A simple example would
be the Job template without the invariants. The timing constraints on the transitions enforce that
the automaton should stay in its In_Progress state only between the start and finish time of that
particular job. Without including the invariant on the state, however, the algorithm also explores
those runs where an automaton stays longer in this state, while other buses in the system may
perform other jobs. Depending on the number of jobs for the given day, this could result in a
relatively large tree, before the algorithm reaches a state on all branches, where the busoutside

variable is not 0, but the bus in question can not leave its Doing_a_job state. Even if other parts
of the model are excluded, the algorithm would explore 3n runs (where n is now the number of jobs
on a day), from which only a single one is feasible.

Permutation of independent transitions If there are n transitions that can be executed in
any order to achieve the same state, the algorithm will visit the same state n! times. Similarly to
the previous issue, it is easy to include such parallelism into the model. Two different examples can
be observed in the Bus template. First, let us assume, that the Garage_morning state is not set as
urgent. From this state, the automaton can move to three different directions: an inspection, a job,
or stay in the garage. If this state was not urgent, then the same decisions could be made in a lot of
different orders; not to mention the runs, where a bus would already move on to its traveling state
while the decisions for some of the other buses are not yet made. By setting the Garage_morning

state urgent, all of these decisions are forced to take place at the same time. Another parallelism
is avoided by the use of the nextjob variable. At the beginning of each day, this variable is set to
−1, and the setNextJob() function is called to give back the id of the next active job in the list. If
this was modeled with a select statement on the transition, then the same assignment of the buses
could be given in any order. This way, the assignments are only made in the order of the jobs.
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Large state size If possible, the size of a single state should be minimized. This can be achieved
via various modeling techniques. If some states can be made not just urgent but committed, that can
have a huge effect on avoiding parallel executions. Moreover, states that do not serve an important
goal could be avoided for the same purpose. Such examples in our case are the multiple states for
inspection in the Bus template. They could be merged into a single state that does not include
the different phases of the inspection process. This can be done because this level of detail is not
required in the case of our problem definition. However, it might be needed in the future, or under
different modeling constraints. Additionally, if possible, variables should have bounded ranges.

Some modeling decisions can serve more goals from the aforementioned. As an example, in the
Bus template, the buses are allowed to go for an inspection or stay in the garage only if all the jobs
have a bus assigned to them already. This has a double effect: (i) infeasible branches, where too
many buses are sent to inspection or stay in the garage (and there is not enough to perform the jobs)
are not generated (ii) the job assignment decisions can not be made in parallel with the decisions
for inspections or garages.

Note, that the presented templates are not fully optimized in this way, their purpose is to provide
a frame for describing the system. This model can still be improved by, e.g., removing the parallelism
between the inspection decisions, or to model the garages as integer arrays.

7.3.3 Proposed applications of the model

As it was mentioned at the beginning of this chapter, solving real-life problems with this model is
unfortunately not possible due to their large problem size. Currently, the model only enables results
for small test instances over a couple of days, with less than ten blocks during a day. However, as it
was mentioned in Section 7.3.2, the model is able to answer certain queries regarding problem state,
and thus validate theoretical scenarios.

Moreover, due to the underlying automata, the solution process of a scenario can be followed
step-by-step. We wanted to present an alternative model where the emphasis is on the clarity and
visualization of the solution process. While transport scheduling problems usually have a complex
structure, this method might provide a possible way for experts of a company to interpret and
analyze any feasible solution step-by-step.

7.4 Generating input instances

Testing the efficiency of algorithms developed for real-life problems is not always simple. While well
maintained, state-of-the art data repositories exist for theoretical problems like bin packing [47] or
the traveling salesperson problem [30, 90], this is not the case in transportation scheduling. The
field of public transportation is a highly competitive industry, and companies have no incentive to
share data about their internal processes.
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Although we were provided with the real-life instances of the transportation company of Szeged,
that only gave us a limited dataset to work with. As it is difficult to access the real-life instances of
transportation companies, the easiest way to acquire more test data that has the properties of the
real-life input is to generate it based on our needs. Many papers from literature that study vehicle
scheduling present the efficiency of their methods on random instances generated by the algorithm
of Carpaneto et al. [26]. A benchmark dataset using this generation method also was published
online by Huisman [60], and several papers use this to evaluate their methods.

However, our test experience shows that the structure of the data generated by this method was
different from the real-life instances of Szeged (a middle-sized city in Hungary) in many aspects.
Because of this, we proposed an improved way of generating random data in [34], which we present
in this section. This improvement comes both with adjustments to the original method, and with
the inclusion of extra features that were not considered by Carpaneto et al. First, we describe the
original method from [26], and then give our new variation for it.

The only other random instance generation method that we know of was published recently by
Guedes and Borenstein [53], who aim to produced random input for the MVTSP.

7.4.1 State of the art

In this section, we present the random instance generation method proposed by Carpanet et al. in
[26]. The input of the algorithm is the number n of trips, and the number m of depots. The number
f of geographical locations is uniformly chosen from the interval [n3 ,

n
2 ], their locations are chosen in

a uniform random way on a 60 ∗ 60 grid. The deadhead trips between geographical locations p and
q correspond to their d(p, q) Euclidean distance.

The properties of every ti trips is determined based on the above generated information. The
starting and ending sl(t) and el(t) geographical locations are chosen uniformly from [1, f ]. The
d(sl(t), el(t)) length of the trip is also determined based on these locations. Trips can have two
types: short trip, or long trip.

There is a 40% chance that a t trip becomes a short trip. Its dt(t) departure time is chosen
randomly:

• with a 15% chance uniformly from [420,480],

• with a 70% chance uniformly from [480,1020],

• and with a 15% chance uniformly from [1020,1080].

The at(t) arrival time of a short trip is chosen uniformly from the interval [dt(t)+d(sl(t), el(t))+
5, dt(t) + d(sl(t), el(t)) + 40].

Long trips are generated with a 60% chance. Their dt(t) departure time is chosen uniformly from
[300, 1200], while their at(t) arrival time is chosen uniformly from [dt(t)+180, dt(t)+300]. Long trips
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have the same starting and ending location, which means that a value is assigned to sl(t) = el(t)
uniformly from [1, f ].

They also presented a possible placement of the depots for m = 2, 3. The number of vehicles in
each depot is determined uniformly from [3 + n

3m , 3 + n
2m ].

7.4.2 Our approach

Our experience showed that the instances generated using the above method were very differently
structured from the real-life data we were dealing with. We decided to modify this method to
produce instances that are closer the ones that were provided by the transportation company. We
did two major changes to the method: extended its definition of depots, and modified the structure
of the generated trips.

Introducing vehicle type to the depots

While Carpaneto et al. uses the concept of depots as different starting locations for the vehicles,
their vehicle fleet is homogeneous, and all trips can be serviced by any vehicle. Our real-life data
uses depots as a combination of vehicle type and starting location, and because of this, we needed
input that includes a heterogeneous fleet. Another requirement we wanted to model is that trips
should not be executable by any vehicle, rather only the ones that have the characteristics needed
for the trips. These are given by the vehicle types, which are included in our definition of depots.

We introduced an additional input type: a pj probability for every 1 ≤ j ≤ m depot. The pj
value gives the probability that a trip can be executed from depot j. When the trips are generated,
they are assigned a boolean v = (v1, ..., vm) depot-compatibility vector. For every vj ,

vj =

true with pj probability

false otherwise

If all components of the v receive false values, then exactly one of them is set as true. This is
also decided using the given probabilities. A trip can be executed only from those depots, whose
corresponding components have a true value.

A more structured approach to vehicle types

We also developed a slightly different method for depot-compatibility generation, which is closer to
the practice of transportation companies. Compatibility vc can be defined between certain vehicle
types: vehicle v is compatible with v′ (denoted by vc(v, v′)), if v is able to service any trip that
v′ can. Note, that this relation is not symmetric, and does not automatically imply that v′ is also
compatible with v. For example, a solo bus that is wheelchair accessible could substitute any normal
solo bus without any problems, but the same would not be true the other way around.
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To generate vehicle depots this way, we also need the additional input probabilities pj for every
1 ≤ j ≤ m depot, where The pj gives the probability that a trip can be executed from depot i. A
major difference is that now this input also has to satisfy

∑m
j=1 pj = 1. All vc compatibilities between

the m depots have to be given as well. This way, the v = (v1, ..., vm) boolean depot-compatibility
vector created for every trip will only have a single true component at first, chosen according to the
pj values. After this component vk is determined, all other vl 6= vk components are also assigned
values the following way:

vl =

true if vk is compatible with vl
false otherwise

Modifying the length of the trips

Analyzing the trips of the original generator, we found that the average length of the trips was
too high compared to our real-life data. Also, trips were scattered geographically: the number of
generated geographical locations was very high compared to the number of trips, and two trips rarely
followed each other at the same location in a small time-frame. Because of this, the input lacked
any kind of regularity in its structure.

To address this, we introduced some further changes. After experimenting, we found the [ 2n
25 ,

3n
25 ]

interval that gives an acceptable number of locations. However, because of the decreased number of
geographical locations, we also had to decrease the area they are generated at. We used a 30 ∗ 30
grid for this.

To address the problem of the too long average trip length, we slightly modified the generation
of the trips as well. The ratio of the long and short trips has been exchanged, and we generated
short trips with a 60% chance, and long trips with only a 40% chance.

The length of the trips has been decreased. The at(t) arrival time of a short trip is chosen
uniformly from the interval [dt(t) + d(sl(t), el(t)), dt(t) + d(sl(t), el(t)) + 20], while the at(t) arrival
time of a long trip is chosen uniformly from [dt(t) + 40, dt(t) + 60].

Using the modification above, the random generated instances we received resembled more closely
to the real-life data we were provided by the transportation company of Szeged.

Generating details for refueling

While the above presented method will provide all the input for an MDVSP, other data might also
be needed for different problem types. We discussed the VSAP-VS problem in Chapter 4, where
vehicle-specific activities are also considered together with vehicle scheduling. We presented this
model on random instances that also included refueling activities. For this, fuel type also has to be
assigned to vehicles, and refueling station have to be generated.
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The additional input for this is the number of refueling stations, number of fuel pumps at a
station, the f number of fuel types, an qj probability that a vehicle belongs to fuel type j, where∑m
j=1 qj = 1. The maximum allowed distance and refueling time is also given for every type.
For every depot 1 ≤ d ≤ m, vehicles of d are all assigned a single fuel type according to the

probability qj . Refueling stations are chosen uniformly from the set of not utilized geographical
locations (ones that contain neither depots nor trip locations). Fuel types are also determined for
every pump at the station, according to the same qj probabilities that were used for the vehicles.

7.5 Summary and remarks

In this section, we presented a collection of different concepts that are rarely studied, yet they can
be integrated into decision support systems used by public transportation companies, or used at the
development of such a system.

As we showed in Chapter 5, disruption management is an important part of the everyday oper-
ations of a transportation company. We proposed a solution framework for this problem in Section
7.2, that is capable of handling multiple solution approaches in parallel, analyzing their results, and
providing multiple different suggestions to the operators of the company. The system has a high
number of different parameters that the operator can modify depending on the type of disruption,
or the structure of the required solution.

In Section 7.3, we proposed a new modeling technique for the schedule assignment problem
using timed automata. This approach was chosen because we wanted to develop a model for a
transportation scheduling problem where the solution process is easy to follow, and the structure
represents every important aspect of the input scenario. While the problem size ultimately turned
out to be too large for this purpose, the resulting system can be efficiently applied to visualize the
structure of the problem, and validate certain queries about the input.

Section 7.4 presented a random input generation method for the MDVSP and the VSAP-VS
problems. Methods that are developed for public transportation systems have to be tested exten-
sively, but proper benchmark data is unfortunately not available freely. We developed this method
as an alternative to the existing state-of-the-art approach by Carpaneto et al., as we felt that the
instances generated by their algorithm were not close enough to the real-life instances we used for
testing our methods. We expanded the concept of depots of their algorithm by also considering
vehicle types, and gave two generation options for these. Trips are also generated in a different way,
and we gave and extension for the inclusion of refueling activities.



Chapter 8

Conclusions and future work

In this dissertation, we studied optimization problems of vehicles in the fleet of a transportation
company. We examined several different problem types: some were connected to the daily schedules
of a company (either by creating them, or restoring their order after disruptions), while others
considered a longer planning horizon. An important aspect of all the studied problems was their
applicability in real-life scenarios.

The two methods we introduced in Chapter 3 were both heuristic algorithms for the creation
of multi-depot vehicle schedules. Section 3.2 presented three different heuristic approaches based
on variable fixing, which aimed to reduce the problem size of the MDVSP by finding series of
trips that are likely to belong to the same block in the final solution. The methods provided good
quality solutions with a short running time, and we also showed that using a practical property like
the concept of bus-lines for size reduction is an effective approach for real-life instances. Section
3.3 introduced an iterative algorithm that creates vehicle schedules satisfying the most important
constraints of driver shifts. This method can be combined with any solution approach for the
MDVSP, and helps the optimization process of a sequential framework by connecting the phases of
vehicle and driver scheduling.

In Chapter 4, we presented the integrated vehicle scheduling and assignment problem, which
creates vehicles schedules that also include activities connected to the vehicle executing the blocks
of the schedule. We gave a set partitioning model for the problem that was solved using a column
generation framework, and presented solutions that consider the refueling of vehicles with multiple
fuel types as the vehicle-specific activity of the problem.

Chapter 5 studied the area of disruption management in bus transportation. Section 5.2 pre-
sented a mathematical model for the multi-depot vehicle rescheduling problem for a single disruption,
and gave two fast heuristics for its solution: a recursive and a tabu search method. Section 5.3 intro-
duced the dynamic vehicle rescheduling problem, that proposes a new way of evaluating disruption
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management methods: instead of treating disruptions as separate problems, the efficiency of resche-
duling methods should be evaluated by studying the resulting schedule at the end of the day after
the solution of a series of disruption.

We introduced the schedule assignment problem in Chapter 6 for the long-term planning of public
transportation. The aim of the problem is to assign vehicles to the pre-planned daily blocks of the
company. This assignment also has to satisfy vehicle-specific constraints, like parking at the end of
each day, and attending regular mechanical inspections. We gave a state-expanded multi-commodity
flow model for the problem, which was then solved using a MIP solver.

Chapter 7 presented three different topics that are loosely connected by the concept of real-life
application. Section 7.2 presented a framework for vehicle rescheduling, that can be easily integrated
into a decision support system. This framework is able to provide suggestions to the operators of
the company, and functions the same way regardless of the implemented solutions methods. In
Section 7.3, we modeled the schedule assignment problem using timed automata. This was a new
approach to transportation problems, completely different from the classical mathematical models
given for them. While solutions of real-life scenarios is not yet possible with this proposed model, it
is capable of verifying queries about certain scenarios, and visualizing the structure of the problem.
The final Section 7.4 presented a method that generated random input similar to the ones of the city
of Szeged. These inputs consider multiple depots and vehicle types, and also include the properties
of refueling activities if needed.

While the above presented chapters studied many different practical aspects of problems related
to vehicles, there are always possibilities for future research. An important, but not widely studied
problem is the simultaneous creation of schedules for days that have the similar underlying timeta-
bles. The schedule of such days should not be developed completely independently of each other:
days that have a similar underlying timetable should have similarities between their daily blocks as
well. To our knowledge, this was only studied by Amberg et al. [6], who give an overview of possible
solution methods an a mathematical model for the problem. We presented our preliminary work on
this problem in a conference talk [36], where we created similar schedules using the modifications of
methods in Sections 3.2 and 5.2. We intend to continue this research, and also formulate a different
mathematical model for the problem.

Modeling transportation scheduling problems with timed automata also seems a promising tech-
nique. We intend to continue the research presented in Section 7.3, give a more efficient formulation
of the presented model, and also present automata-based models for different transportation prob-
lems as well.

Finally, we believe that the generation of random input data resembling real-life instances should
also be more widely studied. We would like to improve the algorithm presented in Section 7.4 to
also include more structural properties of real timetables: for example, the generated trips should
belong to bus-lines, and also have a more or less regular frequency.
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Summary

9.1 Summary in English

We presented several optimization problems that are connected to the vehicles in the fleet of a
transportation company. These cover a wide range of different problem types, including the creation
of daily schedules, long-term planning, real-time management of unforeseen events, and generation of
test instances. The topics are not only studied from a theoretical point of view, but their applicability
in real life is also considered. The theses of this dissertation are categorized into five different problem
groups:

I In Chapter 3, we presented two application-oriented heuristic approaches connected to the MD-
VSP. We call these methods application-oriented, as their results are not only efficient from a theo-
retical point of view, but can also be applied in a real-life decision support system because of their
structure and quick solution time.

I/1 In Section 3.2, we developed three variable fixing heuristic algorithms for the MDVSP. These
methods try to reduce the problem size by finding trips that are likely to be in the same
sequence in the final solution, and combine such groups into single, long trips. The resulting
smaller problem is then solved using the classical IP modeling approach, and solutions are
obtained with a greatly reduced running time. Through extensive testing on real-life and ran-
domly generated input, we showed that while generally good methods might be more appealing
from a theoretical point of view, using approaches based on structural properties of real-life
instances result in solutions that have both a better performance and structure considering
practical applications. This method is studied in our following publications: [32, 34].

I/2 In Section 3.3, we introduced a ’driver-friendly’ iterative algorithm that produces vehicle sched-
ules with a structure that also satisfies basic driver scheduling constraints. A classical VSP is
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solved, and the result is restructured through different steps: first, long blocks are modified
through a cut-and-join approach combined with a matching problem to satisfy maximum shift
length, then mandatory driver breaks are inserted into them. This process iterates until all
trips of the input are part of a feasible a vehicle block. To present the quality of the resulting
schedules, we also develop a method that gives a lower bound on the total working time of a
schedule based on its timetable of trips. Solutions on real-life instances show that, based on
the gap from this lower bound, a significant improvement can be achieved compared to the
original schedules of the transportation company. Any method can be applied in the first step
of the process for the solution of the VSP, and because of this, good quality solutions can be
achieved for the real-life test instances in several minutes. We introduced this ’driver-friendly’
method in [9].

II In Chapter 4, we introduced the integrated vehicle scheduling and assignment problem, which
aims to give a feasible vehicle schedule that also includes tasks specific to the requirements of the
vehicles executing its blocks. For example, vehicles can run out of fuel (and have to be refueled),
or have a longer idle periods (where they have to be sent to a parking location). We presented
a set partitioning model for problem, which serves as a general framework that can include most
vehicle-specific activities and consider their application-oriented constraints. We gave a column
generation-based solution method for this model, and showed its efficiency on randomly generated
test instances. To showcase the model, refueling was considered for these instances as their vehicle-
specific activity, and multiple fuel-types were also studied for the vehicles, which is also rarely
examined in other papers. We introduced the integrated vehicle scheduling and assignment problem
in [16].

III In Chapter 5, we studied two main concepts in the area of vehicle rescheduling.

III/1 In Section 5.2, we proposed a multi-depot network model for the VRSP. We also designed
two heuristic solution methods for the problem, which are both able to provide multiple good
quality solutions with a short running time. One is a recursive method that traverses the
search tree of the problem, and distributes trips of a single disruption scenario to the available
blocks either by simple insertion, or by deleting overlapping trips from these blocks. To avoid
the exploration of the large solution space, the depth of the tree is limited using a simple
practical observation. The other method is a tabu search algorithm, which starts with an
infeasible vehicle block in its schedule, and uses its neighborhood transformations to find a
good quality feasible solution. This method is incentivized to remove trips from this infeasible
schedule first. Because of their ability to produce multiple good quality solutions in a short
time, both algorithms seem suitable for a decision support system that helps the operators
of a transportation company by providing them with possible suggestions for the solution of
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arising disruptions. Our model and heuristics for the VRSP were published in [35].

III/2 In Section 5.3, we introduced the dynamic vehicle rescheduling problem. While the classi-
cal method of resolving disruptions with the VRSP focuses on solving a single disruption to
optimality, the DVRSP aims for a good quality solution at the end of the day after manag-
ing a series of disruptions. Because the problem itself is dynamic, and the input (the list of
disruptions) arrives in an online manner, we also presented the concept of the quasi-static
DVRSP, which provides an ’offline’ version of the problem where all the disruptions are known
in advance. The quality of a solution for the DVRSP can be measured using this model. We
applied both heuristic methods presented for the VRSP to solve a series of disruptions for
pre-planned daily schedules, and showed that they give good quality solutions in a short time
for the problem. The DVRSP was proposed in [37].

IV In Chapter 6, we introduced the schedule assignment problem, which assigns the pre-planned
daily vehicle blocks of a planning horizon to buses in the fleet of a transportation company. As the
problem considers a long-term plan for several days or weeks, activities connected to the vehicles
such as daily parking and regular preventive maintenance have to be taken into account. We gave
a state-expanded multi-commodity flow network for this problem, which was then solved by a MIP
solver. The efficiency of the model was presented on both real-life and randomly generated instances.
We presented a simple assignment model for the problem with parking in [33], and proposed the
state expanded model that also considers maintenance in [38].

V In Chapter 7, we studied three different concepts that can be integrated into the optimization
system of a transportation company. These can be used for real-time control and for evaluating
certain modules of the system.

V/1 In Section 7.2, We proposed a decision support framework for vehicle rescheduling. This
framework can apply multiple solution methods in parallel and present several suggestions to
the operators of a company in a short time. The system also has a high number of different
parameters that can be modified depending on the type of disruption, or the structure of the
desired solution. We proposed this system in [12].

V/2 In Section 7.3, we gave a novel modeling approach for the schedule assignment problem using
timed automata. We chose this modeling technique for the problem because its solution process
is easy to follow, and its structure represents every important aspect of the input scenario.
The resulting system can be efficiently applied to visualize the structure of the problem, and
validate certain queries about the input. This idea was introduced in [39].

V/3 Finally, in Section 7.4, we presented a random instance generation method that can be used
to create input with a structure similar to real-life problems. We developed this method as an
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alternative to the existing state-of-the-art approach by Carpaneto et al. [26], as we felt that
the instances generated by their algorithm were not similar enough to the real-life instances of
the city of Szeged. Our approach provides instances with multiple depots and vehicle types,
and can also include data for refueling activities. This method was given in [34].

9.2 Magyar nyelvű összefoglaló

A disszertációban több olyan optimalizálási probléma is bemutatásra került, ami egy közlekedési
társaság járműveihez kapcsolódik. Típusukat tekintve ezek számos témakört felölelnek: napi üte-
mezések kialakítása, hosszú távú tervezés, váratlan események valós idejű kezelése, valamint példafe-
ladatok generálása. A témaköröket nem csak elméleti oldalról, hanem a valós alkalmazhatóság
szempontjából is vizsgáljuk. A disszertáció téziseit öt különböző problémacsoportba soroltuk:

I A 3. fejezetben két gyakorlatorientált heurisztikus módszert mutatunk be az MDVSP-re. Ezek
gyakorlatorientáltsága abból ered, hogy nem csak elméleti szempontból hatékonyak az általuk szol-
gáltatott megoldások, hanem felépítésük és gyors megoldási idejük miatt gyakorlatban is jól használ-
hatóak.

I/1 A 3.2. Szekcióban három megközelítést adtunk a változófixálásos heurisztikára. Ezek olyan
járatsorozatok azonosításával próbálja meg csökkenteni a probléma méretét, amik a végső
megoldásban is nagy valószínűséggel egymáshoz fognak tartozni, majd az ilyen járatokat
egyetlen, hosszú járatlánccá ragasztják össze. Az így kapott kisebb méretű probléma hatékonyan
megoldható klasszikus IP-alapú módszerekkel, de eredményeiket a szokásosnál jelentősen rövidebb
futásidővel kapjuk meg. Valós és véletlenszerűen generált bemeneteken végzett alapos tesztelés-
sel megmutattuk, hogy — bár elméleti szempontból az általánosan jól működő megközelítések
vonzóbbak lehetnek — a feladat valós jellegzetességeit kihasználó módszerek jól teljesítenek
gyakorlati alkalmazhatóság szempontjából. A módszert a következő publikációinkban vizsgál-
tuk: [32, 34].

I/2 A 3.3. Szekcióban bevezettünk egy "vezetőbarát" iteratív módszert, ami olyan ütemezéseket
készít, melyek kielégítik a legfontosabb vezetőkhöz kapcsolódó szabályokat is. A módszer egy
hagyományos VSP megoldásával kezdődik, aminek eredményét különböző lépesek alakítják át:
először a túl hosszú blokkok kerülnek módosításra egy párosítással összekötött vág-és-ragaszt
módszer segítségével úgy, hogy megfeleljenek a maximális műszakhossznak, majd a kötelező
szünetek is beszúrásra kerülnek mindegyikbe. Az iteráció addig ismétlődik, amíg minden járat
kiosztásra került valamely járműblokkba. Az eredmények kiértékeléséhez egy olyan módszert
adtunk, mely egy menetrend járatai alapján megbecsüli a kiszolgálásukhoz szükséges munkaidő
alsó korlátját. A korlát segítségével megmutatjuk, hogy valós példákon kapott megoldásaink
költségei jobbak a közlekedési társaság eredeti ütemezéseihez képest. Mivel a "vezetőbarát"
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módszer bármilyen megközelítést használhat a VSP megoldására, így ezek az eredményeink
pár perc alatt megkaphatóak. A "vezetőbarát" módszert [9]-ben vezettük be.

II Az 4. Fejezetben bevezettük az integrált járműütemezési és hozzárendelési problémát, ami az
ütemezések kialakításakor figyelembe veszi az azokat kiszolgáló járművek igényeit is. Egy jármű
például kifogyhat az üzemanyagból (el kell küldeni tankolni), vagy hosszabb időszakon keresztül
tétlenül várhat (ilyenkor parkolóhelyre kell irányítani). A feladatra egy halmazparticionálási modellt
adtunk, amelybe a legtöbb járműspecifikus tevékenység beilleszthető, és rugalmas keretet nyújt a
gyakorlatorientált feltételek beépítésre is. A modellre oszlopgeneráláson alapuló megoldási módszert
ismertettünk, melynek hatékonyságát véletlenszerűen generált bemeneteken mutattuk meg. Ezekben
a járművek tankolását vesszük jármű-specifikus tevékenységnek, egyszerre több üzemanyagtípust is
vizsgálva, ami szintén egy keveset kutatott terület. A fenti problémát [16]-ban vezettük be.

III Az 5. Fejezetben két fő területet vizsgáltunk a jármű-újraütemezés témájában.

III/1 Az 5.2. Szekcióban többdepós jármű-újraütemezési modellt adtunk a VRSP-re, valamint két
olyan heurisztikus módszert terveztünk, amik rövid idő alatt több jó minőségű megoldást
is képesek szolgáltatni. Az egyik egy rekurzív algoritmus, ami bejárja a probléma által
meghatározott keresési fát, és szétosztja a zavar következtében nem kiszolgálható járatokat az
ütemezés többi blokkja között (vagy egyszerű beszúrással, vagy a blokkon lévő átfedő járatok
törlésével). Mivel egy ilyen keresési fa mérete túl nagy a hatékony bejáráshoz, egy gyakorlati
szempontból fontos megfigyelés segítségével csökkentjük annak mélységét. A másik módsz-
erünk egy tabu kereső algoritmus, ami kezdetben egy nem használható járműblokkot épít a
zavar miatt nem kiszolgálható járatokból. A módszer különböző szomszédsági transzformációk
segítségével keres lehetséges megoldásokat. Annak elkerülése érdekében, hogy ne a probléma-
mentes blokkokat próbálja meg újraütemezni a módszer, jutalmazzuk az olyan lépéseket, amik
ezt a kezdetben nem használható blokkot javítják, vagy onnan mozgatnak el járatokat. Mivel
mindkét módszer képes arra, hogy rövid idő alatt több megoldási javaslatot is szolgáltasson,
ezért ideális jelöltek egy olyan döntéstámogató rendszer számára, ami a társaságok operatív
forgalomirányításán dolgozó alkalmazottaknak segít meghozni a döntéseiket a különböző valós
időben felmerülő problémák esetén. A VRSP-re adott modellt és heurisztikus módszereket
[35]-ben publikáltuk.

III/2 A 5.3. Szekcióban bevezettük a dinamikus jármű-újraütemezési problémát, ami zavarok soroza-
tának kezelése után vizsgálja a módszerek hatékonyságát a nap végéig végrehajtott tényleges
ütemezés alapján. Míg a VRSP célja, hogy egyetlen zavart kezeljen a lehető legnagyobb
hatékonysággal, addig a DVRSP a nap végéig ténylegesen végrehajtott ütemezésre vizsgálja
azt, hogy az mennyiben tér el a nap kezdeti tervtől a nap során végrehajtott újraütemezések
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hatására. A probléma dinamikus mivolta miatt, illetve mert a bemenet (a zavarok listája) on-
line módon érkezik, felírjuk a feladat ’kvázi-statikus’ változatát is, ami a DVRSP olyan ’offline’
megfelelője, ahol minden zavar előre ismert már a nap elején. Ezzel a modellel mérhetőek a
DVRSP-re adott módszerek hatékonyságai. A DVRSP problémák megoldását mindkét fent
bemutatott heurisztikával megvizsgáltuk, és ezek ebben az esetben is jó eredményeket szolgál-
tatnak. A DVRSP koncepcióját [37]-ben vezettük be.

IV A 6. Fejezetben bevezettük az időszakra történő jármű-hozzárendelési problémát, ami egy
társaság hosszabb időszakra kialakított napi ütemezéseihez rendel járműveket. Ennek a beosztásnak
a járművekhez kapcsolódó olyan igényeket is figyelembe kell vennie, mint a parkolás minden nap
végén, vagy a rendszeres időközönként elvégzett műszaki karbantartás. A feladatot egy állapot-
kiterjesztett többtermékes hálózati folyamproblémaként írjuk fel, majd MIP megoldó segítségével
oldjuk meg. A modell hatékonyságát valós és véletlenszerű bemeneteken is bemutattuk. A modell
egy kezdeti verzióját [33]-ben, annak állapotkiterjesztését [38]-ben adtuk meg, és itt vezettük be a
karbantartáshoz kapcsolódó feltételeket is.

V A 7. Fejezetben három különböző témakört vizsgáltunk, amik beilleszthetőek egy társaság
közlekedésoptimalizáló rendszerébe, és segítik az operatív forgalomirányítást, valamint a rendszer
egyes moduljainak kiértékelését.

V/1 A 7.2. Szekcióban egy döntéstámogató keretrendszert adtunk a jármű-újraütemezéshez. A
rendszer egyszerre több megoldási módszert képes kezelni, és több javaslatot ajánl fel a vállalat
operátorai számára. Egy ilyen rendszer nagyszámú változtatható paraméterrel kell, hogy ren-
delkezzen, melyek módosításával mindig az aktuális helyzethez legjobban megfelelő megoldások
készíthetőek. Ennek a rendszernek a felépítését [12]-ben ismertettük.

V/2 A 7.3. Szekcióban időzített automaták használatával egy újfajta modellezési módszert java-
soltunk a jármű-hozzárendelési problémára. A választott modellezési módszer miatt a megoldás
lépései könnyen követhetőek, és a modell felépítése a bemenet minden fontos strukturális tu-
lajdonságát visszaadja. A kapott rendszer hatékonyan alkalmazható a probléma felépítésének
vizualizációjára, valamint a bemenettel kapcsolatos különböző kérdések validációjára. A fenti
ötletet [39]-ben vezettük be.

V/3 Végezetül a 7.4. Szekcióban egy véletlenszerű bemeneteket generáló módszert ismertettünk,
ami olyan példafeladatok készítésére alkalmas, melyek felépítése több szempontból is hasonlít
a valós életből vett problémákéra. Módszerünket alternatívaként kínáljuk a szakirodalom leg-
gyakrabban használt megközelítéséhez [26], mivel úgy érezzük, hogy az általa generált feladatok
szerkezete több fontos pontban is különbözött Szeged városának valós példáitól. A módszer
képes több depót és több járműtípust is kezelni, valamint tankolási események generálására is
használható. Ezt a módszer [34]-ben vezettük be.
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