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BEVEZETÉS

Az anyagszerkezeti kutatás egyik legfontosabb feladata 

a molekulák szerkezetének, fizikai és kémiai tulajdonsága­
inak, s ezen belül is a molekulákat Összetartó erők termé-

igoldósában a különféle 

kísérleti módszerek mellett jelentős helyet foglal el a
chanika, ill. a kémiai kötésekre vonatkoztatva, a 

kvsntumkémia. Bár a kvantummechanikai többtestprobléma a 

legtöbb esetben egzakt ÜL nem oldható meg, a sajátértékprob- 

lémák megoldására kidolgozott közelitő módszerek segítségé­

vel - bonyolultabb esetekben is — kielégítő pontosságú ered­
ményekhez lehet jutni. Molekuláris problémák tárgyalására 

kidolgozott ilyen közelitő módszer az u.n* LCAO-MO módszer, 
amelynél a molekula hullámfüggvényét atomi pályák lineár- 

kombinációjából felépített molekulapályák szorzata alakjában 

tételezzük fel.

A disszertáció az 

és az

szetének felderítése* E feladat

kvanti

[(KH3)4 Co(OHJ2 Co(NH3)414+ (a továb- 

[(NH3)3 Co(OH)3 Co(NH3)3)5+ (a továbbiakbanblakban K^)
Kg) kétmagu Co-komplexionok stacionárius állapotaihoz tartozó 

elektronenergiák meghatározását tartalmazza az LCAO-MO mód­
szer alapján. A sajátértékproblémák megoldásánál figyelembe 

vettük a komplexionok szimmetriatulajdonságait, 

portelméleti eredmények felhasználásával - a problémák megol­

dását lényegesen egyszerűbbé tette. &z az egyszerűsödés abból 
adódott, hogy a szimmetriatulajdonságok figyelembevételével 
olyan molekulapályák megszerkesztésére nyílott lehetőség,

ly - cső-
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amelyekből képezett szekuláris determinánsok alacsonyabb- 

rendü determinánsok szorzatai alakjában álltak elő, Így az 

elektronenergiák meghatározását lényegesen kevesebb numeri­
kus számítással lehetett nyerni, mint amelyet az LCAO-MO 

módszer közvetlen alkalmazásánál kellett volna elvégezni.
A disszertáció témája szorosan kapcsolódik a komplex

vegyületek fizikai és kémiai tulajdonságaival foglalkozó
ilyek - főként a több centrális iont tar­vizsgálatokhoz,

talmazó komplexek vonatkozásában - az utóbbi időben kerültek 

az érdeklődés középpontjába. Az egy centrális iont tartal­

mazó komplexek nagy részére már eléggé 

és elméleti eredmények állnak rendelkezésre, de a több 

centrális iont tartalmazó komplex vegyületek legnagyobb része 

még részletes vizsgálatra szorul. A és IC-, kétmagu komp- 

lexionokrs nyert eredmények ezekben a vizsgálatokban jelente­
nek egy kezdeti lépést •

sgbizható kísérleti

l.§. AZ LCAO-MO MÓDSZER

1.1. A molekulapálya-módszer

Egy több elektronból és atommagból álló rendszer (mo­
lekula) stacionárius állapotaihoz tartozó energiaértékeket a

*

№ « Et

időtől független Sehrödinger-egyenlet megoldásából nyerjük, 

amelyben Й a rendszer Hamilton-operátora. Ha a nagyobb 

tömegű atommagok mozgásától eltekintünk, továbbá elektro—
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nők és atommagok között csak elektrosztatikus kölcsönhatáso­

kat tételezünk fel, akkor a Hamilton-operátor

- í- E vfimv j, Lw =
alakú, ahol r^ az i-edik és k-adik elektron, 

elektron és o(-adik ato
i-edik

távolsága, Zл

rendszáma, m az elektron tömege, e pedig az elemi töltés.
Ha az elektronok száma n, akkor a H Kamllton-operátor egy 3n 

változás függvényre haté differenciáloperátor, minek követ­
keztében már kis elektronszám esetén is a molekulasajátérték- 

ígoldásánál közelitő eljárást kell alkalmaznunk.

oc-adik mag

probléma

Egy ilyen közelitő módszerhez juthatunk el akkor, ha 

nulladik közelítésben az elektronok közötti kölcsönhatástól 
eltekintünk. Ebben az esetben a molekulaproblémát egy olyan 

- több elektronból álló - problémával helyettesíthetjük, 

amelynél az elektronok az atommagok által létrehozott poten­
ciáltérben mozognak. A Hamilton-operátor ekkor

w = TÜ u-w
alakba irható, ahol;

jL*?- ила.)
oL

egyetlen elektron Hamilton-operátora. Minthogy az elektronok­
ból álló rendszer most független részekből áll, a teljes mo­

lekula sajátértékproblémájának

u, = - ( V * - 4 v )

igoldása

alakban irható fel, ahol

(л, *W.) .
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Az Így kapott molekulasajátfüggvényben szereplő, egyet­
len elektron koordinátáitól függő ^(л^) függvényeket egy- 

elektron-molekulafüggvényeknek, vagy molekulapá­

lya knak (MO-k) szokás nevezni. Ebben a közelítésben tehát 

a molekulasajátfüggvény molekulapályák szorzata alakjában áll 
elő, ezért ezt a közelitő módszert molekulapály a- 

m ó d 3 z e rnek, vagy MO-módszernek nevezzük.
A molekulapály»-módszer tehát a térben rögzítettnek 

képzelt atommagok elrendeződését ismertnek tételezi fel, s 

az ezek, valamint a számításba nem vett elektronok által al­
kotott molekulatörzsben, mint potenciáltérben,egyelektron- 

problémát vizsgál, amelynek megoldásából molekulapályák 

(egyetelektron-molekulasajátfüggvények), egyúttal energia- 

sajátértékek sorozata adódik. Az elektronok közötti köl­
csönhatás fennállása miatt azonban ez a módszer csak nulla­
dik közelítésnek tekinthető, ezért a második lépésben az MO- 
módszerrel nyert MO-ket és energiaértékeket nulladik közelí­
tésnek tekintve az egyes МО-kon lévő elektronok kölcsönha­
tását - mint perturbációt - szokás figyelembe venni.

A sajátértékprobléma megoldását molekulapálya-módszer- 

közelitésben tehát a

Cv = АД ) *'

Schrödinger-egyenlet megoldásaként nyerjük, ahol Hi 

(l.l.l.) Hamilton-operátor* Ilyen egyelektronprobléma egzekt
0

megoldása azonban csak a hidrogén molekulaion esetében si­

került, igy bonyolultabb esetekben már az MO-k oegh at ározásá­

nál is közelitő megoldásra vagyunk utalva. Leginkább elter-
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jedt közelítés aa ил. atomi pályák lineárkombinációjának 

Съело) módszere, amelynél a molekulapályákat atomi pályák 

lineárkombináélójának tételezzük fel. A legjobban közelitó
atomi pályák (AO-k) Нагtree-MO-kat akkor nyerhetjük, ha 

Fock-féle függvények, űe könnyű kezelhetőségük miatt gyakran
alkalmazzák az u.n. Slster-féle függvényeket is. Ez utóbbi 
függvényeket fogjuk mi 1з a tárgyalandó komplexek molekula- 

pályáinak megalkotásánál alapul választani. Az alábbiakban a 

llneárkombinációs együtthatók meghatározásának a problémájá­
val foglalkozunk.

1.2. Az LCAO-móőszer

Állítsuk elő a molekulapályát к számú 1%, (i=l
lineárisan független atomi pálya

w«V *
4

alakú lineárkomblnációjaként, és a ci együtthatókat variá­

ciós paraméterekként kezelve, határozzuk meg azt a lineárkom- 

binációt,

közelíti. A variációs módszer szerint az (l.2.1.) lineárkom­

bináció akkor a legjobb közelítés, ha a ^ -vei számított
c (лУ.Ц-У)£ = -------_

t*,*)
energia minimális. Ez az összefüggés a llneárkombinációs elő­

állítás behelyettesítésével az alábbi alakba irható s

k)

(1.2.1.)

ly a sajátértékprobléma megoldását © legjobban

*

,4 .
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Ha még bevezetjük а

(ft.Usfj) » Hej

jelöléseket, akkor az egyenlet;

^ Нц ~ ^ "] = о
4

Ha ezt az egyenletet differenciáljuk c* szerint és figyelem­
be vesszük a

H..%o = S4

i>í U= 4.2., ••■,'0= 0

minimumfeltételt, akkor a következő lineáris, homogén egyen­
letrendszerhez jutunk;

HCrl - £ S43 = О

Ez az egyenletrendsasr a együtthatékra - egy triviális 

megoldástól eltekintve - csak akkor oldható meg, ha a rend­
szer determinánsa eltűnik, vagyis ha;

(1.2.2.)U-x.i, •••» .

(l.2 .3 .)1 t sq \ = О = 4,2., ... Л)

Ebből a szekulárls egyenle tből legfeljebb

lyeket az (l.2.2.) egyen-k számú energiaérték nyerhető, 
letrendez erbe helyettesítve a lineárkombinációs együtthatók
egy' állandó faktor erejéig rendre kis zárni that ók. Ezt az 

állandó faktort a molekulapályák normálásámal lehet rögzíteni.
Az elmondottak alapján egy molekuláris probléma LCAO- 

MO módszerrel történő tárgyalásánál alkalmasan kiválasztott 

atomi pályákból lineárkombinációval MO-kat szerkesztünk, a 

a probléma stacionárius állapotaihoz tartozó energiaértékeket 

a probléma szekulárls egyenletéből, számíthatjuk. A szekulá- 

ris egyenlet megoldása azonban általában hosszadalmas nume-
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rikus feladat, ezért a numerikus munka leegyszerűsítése ér-

gszerkesztésénél a csoportelmélet ide vo­
natkozó eredményeit célszerű felhasználni.

dekében ©z MO~k

2•§• VÉGES CSOPORTOK ÁBRÁZOLÁSAI

2.1. Ábrázolás mátrixokkal
'"•V

Ha egy G véges vagy végtelenedrendű multiplikativ 

csoport minden g eleméhez homomorf módon egy D(g) mátrixot 

rendelünk, akkor a négyzetes mátrixokból álló

D = 1 Щ) ,3)^), ... }

csoportot a G »{g} absztrakt csoport mátrixelőállitásának, 
vagy ábrázolá sának, az előállító D(g) mátrix sora­
inak (vagy oszlopainak} a számát pedig az ábrázolás d i-

D(g) hozzárendelésaenzió j ának nevezzük. Ha e g 

egy-egyértelmű (tehát izomorf), akkor az előállítást h ü -
nek nevezzük, ellenkező esetben n e m h üábrázolásról 
beszélünk.

A homomorfia, vagy müvelettartóság azt jelenti, hogy ha

és 02 előállító mátrixok rendre D(g), D(g*)» ©(g**),
* ■*

akkor:

(2.1.1.)иц)■ ik<j’) - рц”) •
Speciálisan, ha t a G csoport egységeleme, akkor ej = t vá­
lasztással:

TX<j)-3XO = DC^b) = 3>(ecp = DCt) .D(<3) - ;
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amiből látjuk, hogy az t egységelemet a

D(&) s E

egységmátrix állítja elő. Legyen továbbá a elem inverze, 

akkor a

THcp-Wj') = D^cj') = 1)Ц-‘)-Т)Ц) = DU) = E

fennállásából látjuk, hogy

ТХср = Xí\y

q elem c[* inverzét a q-t ábrázoló mátrix inverzeazaz a
állitja elő.

Könnyen belátható az is, hogy ha D * lD(g)} egy G 

csoport ábrázolása, akkor bármely - ugyanolyan dimenzióju • 

nem zérus determinánsa S mátrixszal nyert

tf * SDS (2.1.2.)

mátrixhalmaz is előállítás. Ha ugyanis D ábrázolja &-t és

D\cj)= Sb^S-' , Щ) = STX^)S'*

akkor (2.1.1.) fennállása miatts

Л)Ч<р = $DtyS‘'.SX<pS'4 = = TKcf) ,

vágyás a D* * ÍD*(g)] G-nek valóban ábrázolása. Es»eri. nt ha 

G-nek ismeretes egy D ábrázolása, akkor belőle (2.1.2.) tí­
pusú mátrixtranszformációkkal végtelen sok további ábrázolás 

származtatható. Célszerű ezért a mátrixelőállitásokat az 

alábbi módon osztályozni.
Egy G absztrakt csoport két — D ill, D* mátrixrendsse­

rekkel elért - ugyanolyan dimenziós mátrixelőállitását

D\<f) = STXf) S'* >



Iон«
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előáll, G-re nézve nem irreducibilisek. Nyilvánvaló, hogy 

általában t. reducibilitás még nem Jelent szétesést, ugyanígy 

a szétesés teljes reducibilitást. Ha azonban D(g)-k Rn~ben 

uniter leképezést hoznak létre, akkor a mátrixalgebra azon 

tételét felhasználva [21,
gengedett altérre

ly szerint uniter operációkkal 
róleges altér is megengedett, 

következik, hogy ekkor G-vel szembeni rtducibllitása tel­
jes, Ilyen teljesen széteső vektortér esetén az eredeti bá- 

llett, amelyekre vonatkoztatva ü(g) az felemhez a 

(2,1.3.) elemet rendeli, az irreducibilis

szemben

zisok

gengedett alte­
reket kifeszitő bázisok összessége is kifeszitl RR-t, s egy­
ben létezik egy olyan nem zérus determinánsu S mátrix,

gadott hasonlósági transzformáció a két bázisrendszert
ly-

lyel
egymásba átviszi. Az a transzformáció pedig, amely az uj
bázisokra vonatkoztatva az 4,*. elemhez ugyancsak ^-t rendeli

a [31
-A

mátrix által van meghatározva $ s ekkor D*(g) alakja:

0 (2.1.4.)D’ty =
t ,

Rn tér direkt alkatrészeinek a száma, D^(g)ahol g
pedig a G csoport g elemét az i-edik irreducibilis megenge­

dett altérben ábrázoló mátrix. Látjuk, hogy egy teljesen 

reducibilis térben elért D(g) ábrázolásból hasonlósági 

transzfomációval G-nek olyan uj, D(g)-vel ekvivalens mát-
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rixelőállitás© nyerhető, ly ez irreducibilis filterekben 
elért D^^(g) mátrixelőállitások direkt összegéből tevődik 

össze. Az elmondottak alapján egy G csoport ábrázolásait 

tovább osztályozhatjuk.

Egy G csoport valamely n-dimenziós b(g) mátrixelőál-

litását irreducibilisnek, reducibilisnek ill. teljesen re-*

zerint, hogy D(g) n-dimenaiós Rr 

előállitástere irreducibilis, reducibilis ill. teljesen 

reducibilis. Ha egy D(g) mátrimelőállitás irreducibilis 

mátrixelőállitások direkt összege, akkor ezt a mátrixaid- 

állítást kiredukált ábrázolá snak nevezzük. 

Az elmondottakból következik, hogy egy teljesen reducibilis 

mátrixelőállitás alkalmas hasonlósági transzformációval 

kiredukált alakra hozható, vagy más szóval kiredukálható. 

Minthogy ezek szerint bármely teljesen reducibilis előállí­

tás irreducibilis előállítások direkt összegének tekint­

hető, ezért egy G csoportra nyilvánvalóan az irreducibilis 

inekvivalens előállítások lesznek jellemzők, ezért a további­

akban ezek vizsgálatára szorítkozunk. Véges csoportok esetén 

az irreducibilis inekvivalens előállítások, valamint a csoport 

jellemző adatai (nevezetesen a csoport rendje és © csoport 

egymáshoz konjugált elemeiből álló osztályainak száma) között 

fontos összefüggések állnak fenn. Ezek a következők:

Ha (g) és (g) egy h-adrendü véges § csoport két— 

пы $11. n

ducibilisnek nevezzük

dimenziós - irreducibilis inekvivalens mátrix- 

előállítása, akkor a Schur-lemma [3] segítségével bebizonyít­

ható a

<5
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u.n. ortogonslitási reláció, 

ire terjesztendő ki. Ebből az összefüggésből viszont az 

irreducibilis inekvivalens (g) ábrázolások

{2,1,5,}

ilyben az összegezés 0 eleme-

jL\<$ = = Т?т£иЦ)к
karaktereire közvetlenül nyerhetjük a

TI /°Ц)^сcf) *k,S^
relációt is, amelyet» karakterek ortogonslitási relációjá­
nak szokás nevezni, A (2,1.6.) ortogonalitási relációt uniter 

irreducibilis ábrázolásokra alkalmazva egy G csoport irredu­
cibilis inekvivalens előállításainak 6 száma és G egymáshoz 

konjugált elemeiből álló osztályainak s száma között a

(2.1.6.)

(2.1.7.)

míg a (2.I.6.) összefüggésből az Irreducibilis előállítások
>

n^ dimenziója és a csoport h rendje között a

í: << - к,

6 = s

(2.1.8.)

összefüggés adódik.
Ezek az eredmények egy G csoport valamely teljesen re- 

ducibilis ü(g) mátrixéiőállitására vonatkozóan fontos további 
felvilágosítást adnak. Már megállapítottuk, hogy egy telje­
sen reducibilis előállítás mindig olyan alakra hozható, amely 

bizonyos számú irreducibilis inekvivalens előállítás direkt 

összege. Az utóbbi eredményeink szerint viszont egy G csoport­
nak véges számú, pontosan az egymáshoz konjugált elemekből 
álló osztályok számával megegyező irreducibilis inekvivalens
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könnyen megadhatunk egy további ábrásolást, ha az R előálli- 

tástér felett értelmezett négyzetesen integrálható függvénye­
ket is figyelembe vesszük. Mielőtt azonban ezzel az előállí­
tással foglalkoznánk - a formulák áttekinthetősége érdekében - 

célszerű bevezetni a D(g) «0 jelölést,
j

rí = 9^
llyel (2.1.3.)

alakba irható. Tekintsük ezek után az n-dimenziós R komplex 

vektortér felett értelmezett négyzetesen integrálható komplex 

függvények L2(r) terét és jelöljük p(g)-vel azt az operációt, 

amely L2(r) eleméhez a
A

THcptfW) = ^(g'4)

elemet rendeli. Ezeket az L2(R)-ben értelmezett p(g) ope­

rátorokat - a D(g) mátrixok által - indukált ope-
у t

ráció knak nevezzük. Könnyen belátható £2|, hogy ezek az 

operációk G egy L2(R)-beli ábrázolását adják* mig a p(g) 

operációk lineáris és uniter tulajdonságának bizonyítása sem 

jelent különösebb nehézséget.
Az indukált operációk uniter tulajdonságának fontos kö­

vetkezménye van. Tekintsünk ugyanis egy olyan S lineáris, 

önadjungált operátort, amely p(g)-vel felcserélhető, azaz:

( 2 .2 .2 •}

(2.2.1.)

PCcj) S — ВРЦ)

Tegyük fel továbbá, hogy S diszkrét spektrumú operátor, és 

sr sajátértékéhez p számú lineárisan független sajátfüggvény 

tartozik, azaz sr p-szeresen degenerált• Jelöljük a saját- 

függvényeket rel (i * l,...,p), lyekre tehát:
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(2.2.5.)

Az S lineáris volta miatt © függvények mellett bármely

<?r - £ 
ts A

alakú lineárkombináció is kielégíti a (2.2.5.) sajátérték- 

egyenletet, vagyis minden (2.2.4.) alakú függvény az sr-hez 

tartozó sajátfüggvény. Ezek a függvények a négyzetesen in­
tegrálható függvények terében egy p-dimenziós S-sel szemben

p) bázisok feszítenek ki. Ezt az alteret a továb­
biakban az S operátor &r sajátértékéhez tartozó saját- 

t é rnek fogjuk nevezni.
Alkalmazzunk a (2.2.5.) sajátértékproblémára egy P(g) 

indukált operációtí

Scíf = *,<> (Л » •• -ИР )

(2.2.4.)

megengedett lineáris alteret képeznek, 

(i * 1

lyet a

Р(ф5<° - SPtyctf4 = s^PCcj)^ l l = л,г, ) -

Ebből az összefüggésből leolvasható, hogy minden ^függ­

vény esetén а = ^(gV) is sr sejátértékhez tartozik, 

következésképpen előállítható a sajátteret kifeszitő bázisok

РЦ)<4 - £ С О а 1 • • • )

alakú linear kombináció jaként. Egyben látjuk azt is, hogy a 

cki(g) elemekből álló C * (c^) mátrix mind a P(g), mind 

pedig g egy uniter mátrixelőállitását adja. Ha a sajáttér © 

P(g/ operációkkal szemben reducibilis, akkor P(g)-k uniter 

volta miatt teljesen reducibilis, Így a 2.1, pontban mondot­

tak szerint a sajáttérbe az eredeti ^ bázisok helyett 

hasonlósági transzformációval olyan uj bázisokat lehet be-
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vezetni* amelyekre vonatkozatva a sajáttér irreducibilis 

elterek direkt összege, a p(g)-ket ábrázoló mátrixok pedig 

(2.1,4.) alakúak.

Az eddigi eredmények egy teljesen reducibilis előállí­

tás kiredukálásának a módját lényegében már magukba foglal­

ják, de eddigi formuláink még explicite nem adnak felvilágo­

sítást arra, hogy egy reducibilis térbe hogyan lehet azokat a 

bázisokat bevezetni, amelyek az irreducibilis altereket fe­

szítik ki. Erre vonatkoznak az alábbi összefüggések!

Jelöljük az n^-dimenziós i-edik irreducibilis alteret 

kifeszitŐ - egyelőre ismeretlen — bázisfüggvényeket 

-vel és legyen ebben az altérben

mátrixelőíllitása. Ha valamelyik ^ bázisra P(g)-t alkal-
*

mázzuk, akkor a következő függvényt kapjuk eredményül!

D(iJ(g) a He) operáció

(2.2.5.)
*

Azokat a függvényeket, amelyekre ez az összefüggés tel­
jesül, az i-dik irreducibilis előállítás k-sdik sorához 

tartozónak nevezzük.
Bebizonyítható £2] továbbá, hogy bármely F(gL2(r)) 

függvényből származtatott
* ■*

€
függvény kielégíti a (2.2.5.) összefüggést, vagyis az ily 

módon nyert nem zérus ff függvény az i-edik irreducibilis 

előállítás k-adik sorához tartozik, más szóval ennek a tér­
nek egy bázisa. A (2.2,6.) összefüggés tehát a bázisok fel­
keresésére alkalmas formula, amelynek alkalmazásához lényeges

(2.2.6.)
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kihangsúlyozni, hogy minden F esetén létezik olyan i és k,
Ilyel (2.2.6.) nem zérus eredményre vezet. Bár © (2.2.6.) 

formula az összes bázis felkeresésére alkalmas, abban az 

esetben, ha (2.2.6.) segítségével egy bázist már meghatároz» 

tunk, célszerűbb © (2 .2.5 .)~ből kis átalakítással nyerhető, 
gyorsabban eredményre vezető

<1
összefüggés segítségével a többi bázist meghatározni.

Bebizonyítható t2í* hogy azok a bázisok, 

lönböző irreducibilis előállításhoz, vagy ugyanazon JLrredu- 

cibilis előállítás különböző sorához tartoznak, ortogonálisait 

egymásra. Lényegében ez a tétel teszi célszerűvé az előzők­
ben tárgyalt eredmények alkalmazását kvantumkémiai számítások­
nál. Vegyük úgy írnia figyelembe, hogy egy molekuláris probléma 

Hamilton-operátora a molekula konfigurációjához tartozó szim­
metriacsoportra nézve (2.2.2.) értelemben szimmetrikus. Ennek 

következtében a Hamilton-operátorra, ill. a szimmetriacso­
portra alkalmazhatók előző eredményeink, amelynek jelentősége 

akkor látszik teljes mértékben, ha ezt a molekulapályák 

megszerkesztésének problémájával összekapcsoljuk. Az MO-k 

felépítésénél abból indulunk ki, hogy bizonyos számú 

pályát bizonyos fizikai meggondolások alapján kiválasztunk, s 

belőlük lineárkombinációval MO-kat készítünk. Az energiasa- 

játértékeket akkor (1.2.3.) tipuau szekuláris egyenletből 
nyerjük. Az elvégezendő számolási munka azonban lényegesen 

egyszerűsíthető akkor, ha az L2(R) <fL»k által kifeszitett

(2.2.7.)

lyek kü-

atomi
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alterében a konfiguráció szimmetriacsoportJa által indukált 

operációk mátrixelőállitáaát megadjuk és ezt a korábbiakban 

részletezett eljárással kiredukáljuk. A kiredukóláasal az 

eredeti ^ -tóból olyan uj függvények nyerhetők, amelyek
egy-egy irreducibilis előállítás egy-egy sorához tartoznak. 

Amennyiben az MO-kat ezekből az uj bázisokból építjük fel, az
integrál eltűnik, sortogenalitás miatt több ill. S 

könnyen látható, hogy akkor a szekuláris determináns alacso- 

nyábbrendü determinánsok szorzatára esik szét, amelyből az
ghatározása egyszerűbben végezhető el.

*

energiasaJátértékek

3.§. A SAJÁTÉRTÉKPRCBLÍMÁK FELÍRÁSA

3.1. A koordinációs kötés

A kémia fejlődésének már meglehetősen kezdeti szaka­
szában észrevették, hogy bizonyos, egyébként önállóan is lé­

tező vegyületek egymással kapcsolódhatnak és uj vegyül®tét, 

u.n. molekulavegyületet alkothatnék. Az ilyen molekulavegyü- 

letek körébe tartoznak a komplex vegyületek is, amelyek két 

vagy több kémiai értelemben telitett vegyület egymásrahatása- 

kor Jönnek létre, miközben az alkotórészek eredeti tulaj­
donságai (pl. vezetőképesség, oldhatóság stb.) különböző

innék át. A kémiában a komplex vegyülete- 

ket más összetett ionoktól stabilitásuk ill. disszociáció­
juk alapján határolják el [41, emellett számos gyakorlati 

módszer alkalmas a komplexképződés felismerésére.

mértékű változáson
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A komplex vegyületek Werner-féle elmélete [41 alapján 

a komplex vegyületeket felépítő atomokat két csoportra, u.n.

övezetre szokás felosztani. Az egyik övezetbe soroljuk azo­
kat az atomokat, ilyek egy - középponti helyet elfoglaló, 

s a komplex vegyület jellegét és legfőbb tulajdonságait
ghatározó - u.n, centrális ion, vagy körül helyezkednek 

el meghatározott geometriai alakzatban, mig a másik övezetbe
az előbbi övezeten kívül elhelyezkedő atomokat soroljuk, A 

központi atom körül kialakuló első övezetet kötési szférá­
nak, vagy koordinációs övnek, a második kötési övezetet 
pedig ionogén szférának szokás nevezni. Ez utóbbi elnevezés­
sel arra utalunk, hogy az ebben a szférában helyet foglaló 

ionok a koordinációs övtől könnyen leválaszthatók.

Természetesen egy* centrális ion körül nemcsak atomok, 
hanem atomcsoportok, esetleg ionok is elhelyezkedhetnek. Az 

első kötési övezetbe, vagy koordinációs övbe tartozó atomo­

kat, atomcsoportokat, esetleg ionokat ligandoknak vagy Il­
iknek, ezek számát pedig koordinációs szánnak nevez­

zük. A koordinációs szám nagysága elsősorban a centrális 

atom kémiai sajátságaitól és geometriai méreteitől, másod­
sorban a ligandok sajátságaitól függ. Ha a koordinációs 

övben a centrális atom körül helyet foglaló ligandok száma 

megegyezik aa illető kapcsolatra nézve 

dinációs számmal, akkor koordinátive telitett vegyületről 

beszélünk.

g and:

ígállapitott koor-

A koordinációs övön belül a ligandok középponti atom­

hoz való kapcsolódása különböző természetű és erősségű

lyek jellege ill. erős­kémiai kötésekkel jöhet létre,
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sége fokozatos átmenetet mutathat az ionos és kovalens kö­
tésjelleg ill. viszonylag gyengébb vagy erősebb atomkapcao- 

lódások között. A komplex vegyületek nagyobb része a kovalens 

kötésű vegyületek csoportjába tartozik. A koordinációs kö­

tés elmélete szerint [4J egy komplex vegyület kovalens kö­
téssel akkor jöhet létre, ha a ligandokon vannak kötésben 

részt nem vevő elektronpárok s a centrális atom rendelkezik 

be nem töltött atomi pályákkal. Ebben esetben a kötés oly 

mádon jön létre, hogy a ligandok ezeket a még nem kötő

elektronokat leadják, s kovalens mádon stabilis kötést ala­
kítanak ki. A pályák és az elektronszáraok vizsgálata azt 

tatja, hogy akkor képződnek különösen stabilis komplexek, 
ha a ligandoktál származó elektronokkal a centrális atom 

körül nemesgáz-konfigurációnak 

lal helyet . A koordinációs kötés röviden vázolt Sidgwick- 

Pauling-féle elméletének jelentősége -«vele szemben fel-
llett - abban van, hogy ezáltal a 

kémiai kötés fogalma egységes képet nyer, minek következ­
tében a korábban bevezetett különböző tipüsu fő- és 

vegyértékek feltételezése szükségtelenné válik.

gfelelő számú elektron fog­

vethető hiányosságok

llék—

3.2. Modellalkotás

A vizsgálandó és К2 koraplexionokban szereplő há­

romszorosan ionizált, hatos koordinációju Co (ill) ionok 

- mint centrum - körül az ammónia molekulák és a hidat al­
kotó hidroxilionok oktaéderszimmetrikusan helyezkednek el, 

s az oktaéderek Kj-nél egy él, K^-nél pedig egy lap ntén
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kapcsolódnak egymáshoz. A közös él ill. laphoz tartozó 

csúcsokon hidroxilionok helyezkednek el (l. ábra).

1. ábra

A továbbiakban ezt az elrendeződést kettős-okt«|éderszimfflet- 

rikusnak fogjuk nevezni. Ha feltételezzük, hogy a ligandok a 

középponti Ceylonokat valamennyien érintik, akkor az ionsuga-
• A

rakra vonatkozó irodalmi adatokat [51 felhasználva azt kap­
juk, hogy az МЦ molekulák N-atomjának magja a Co-ionoktól 
1,92 8, az OH gyökök О-atomjának magja pedig 1,88 H távol­
ságra helyezkednek el. A ligand-centrális ion távolságokban

adódó ezen kis eltérés (0,04 Я) miatt a komplexek konfigurá­
ciója kis mértékben eltér a kettős-oktaéderszimmetriától.
Ez azonban a további számításokra nincs különösebb kihatással, 

mert az utóbbi geometriai alakzat szimmetriatulajdonságai
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tgegyeznek a kettős-oktaéder szimmetriatulajdonsá-teljesen

gaival.
A komplexionok kötéseire vonatkozóan féltételezzük, hogy 

a kötést a centrális ionok és ligandok azon - nulladik közelí­

tésben kölcsönhatásban nem lévőnek tekinthető - valencia-

lyek a komplexek kialakulása 

vettek részt« Ennek megfelelően a kötés
elektronjai hozzák létre, 

előtt kötésben n 

létrehozását a centrális Co (ill) - külső elektronszerke­
zettel biró - ionok hat 3ő, ЮЦ molekulák kettő, valamint
az OH-gyökök négy kötésben részt nem vevő elektronjainak 

tulajdonítjuk. Hogy a ligandok valóban ennyi elektronnal 
vesznek részt a kötés kialakításában, azt nagymértékben
plauzibilissé teszi az is, hqgy ilyen körülmények között a 

mélyebb, betöltött Со-héjak fölött d10s2p6 tipusu konfigurá­

lj éppen egy nemesgázkonfiguráciénak felelció alakul ki,
meg« Ha a kötésben résztvevő elektronok számát az előző fel­
tevések alapján számoljuk össze, akkor mindkét komplex ese­
tén 36 elektront kapunk eredményül.

Ezek a kölcsönhatásban nem lévőnek tekintett elektro-
ígfelelően a komplexeknők az 1JL. pontban mondottaknak 

kialakulása után a Pauli-elvet követve egy-egy molekulapá­
lyán helyezkednek el, s ha az atommagokat a többi elektron­
nal együtt rögzítettnek tekintjük, akkor ezen elektronok 

összenergiája a komplexek energiáit adják. Ha a ligandok 

esetén eltekintünk attól, hogy ezek mint molekulák vesznek 

részt a komplexek kialakításában, s a ligandok molekulapá­

lyái helyett közelítően К ill. 0 atomi pályákat használunk
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a komplexek molekulapályáinak felépítésére, akkor az elektron 

nők rendelkezésére álló molekulapályák 

elsősorban a Co (ill.) öt Id, egy 4s, három 4pj az OH-gyök
t *

О-atomjának három 2p, végül az NH^ molekula N-atomjának egy 

2p atomi pályáját kell figyelembe vennünk. A továbbiakban 

ezeket az atomi pályákat fogjuk alapul választani a moleku­

lapályák megszerkesztésénél, megjegyezve, hogy több atomi 

pálya figyelentoevétele esetén a tapasztalattal jobban egyező 

eredményekhez lehet jutni, viszont

gszerkesztésénél

elvégzendő számítások

jelentősen megnövekednek. Felhasználva a számítások során 

nyert azon eredményt, miszerint K^-nél az О-atom Co-0 kö­
téstengelyre merőleges atomi pálya a kötésben nem vesz 

részt, Kj—nél elegendő két oxigén-pályát figyelembevenni, 
igy a molekulapályákat ICj-nél 30, K^-nél pedig 33 Slster- 

tipusu atomi pálya lineárkombinációiból fogjuk felépíteni.
A komplexionokban kialakuló kötéseknek megfelelően a 

ligandok atomi pályáit az 1. ábrán vektorokkal ábrázoltuk, 

lyek egyben egy-egy llgandhoz tartozó koordinátarendszer 

tengelyeit is jelentik. A ligandok és a centrális ionok 

atomi pályáit egymástól
gi És égével fogjuk megkülönböztetni oly módon, hogy a 

felelő sorszámot az atomi pálya argumentumába, s ha szükséges, 
akkor az atom jelét is indexként az atomi pálya mellé Írjuk, 

így pl. az egyes sorszámú Со ion 4px atomi pályáját Px°(l), 

a hármas sorszámú N atom 2px atomi pályáját Р^(з) jellel

atomi pálya hovatartozása 

nyilvánvaló, akkor az atom jelét nem fogjuk feltüntetni.

ábrán feltüntetett sorszámok se-

■в-

fogjuk jelölni, ha azonban
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3.3. A komplexek szimmetriacsoportjai

Vegyünk fel ©z 1. ábrán látható módon egy-egy jobb- 

sodrású koordinátarendszert, és vizsgáljuk meg azon szim-** 

metriaoperációk összességét, ©melyek a konfigurációkat 

önmagukba viszik át. Közvetlenül belátható, hogy ezek az 

operációk a műveletek egymás után történő végrehajtására 

— mint szorzásra - nézve csoportot alkotnak, 

illető konfiguráció szimmetriacsoport- 

jának szokás nevezni.
A K-jL konfigurációt önmagába átvivő szimmetriamüve- 

letek a következők:

lyet az

identikus operáció 

x tengely körüli 180°-os forgatás 

у tengely körüli 180°-os forgatás 

z tengely körüli 180°—os forgatás 

a koordinátarendszer origóján át való tükrözés 

Cx,y) sikra való tükrözés 

(x,z) sikra való tükrözés
(y,z) sikra való tükrözés

»

A fenti szimmetriamüveletekből álló szimmetriacsoportot 

D2h"*va* szok^s jelölni [6l. Könnyen ellenőrizhető, hogy 

D2h Abel-féle csoport, következésképpen az egymáshoz 

konjugált elemekből álló osztályok s száma megegyezik a 

csoport (h * 8) rendjével. Ekkor azonban a (2.1.7.) ösz- 

szefüggésből következik, hogy D^-nak nyolc irreducibllls

E

<3
CzC2
i
6 xy
6xz
6yz
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lyeк mindegyike (2.1.8.) miatt 

egydimenziós. Ezeket az egydimenziós előállításokat -nak 

az 1. táblázatban megadott karakterrendszeriből [6] köz­
vetlenül leolvashatjuk.

mátrixelőállitása van,

1. táblázat

E * °2 * °2 * C2 *D • ®XZ •2h

1 1 1 1 iAl£ 1 11

11 1 1 —1 -1 **1•*1Alu

1 —1 -1 1 1 1 —1-1

1 -1 1 -1Blu -1 -1 1 1

1 •1 -11 -11 -1 1B2g
1 1-1 -1 1-1 1-1B2u

1 -1 1 -11 -1 -1B3g 1

1 1 -1 1-1 1-1 -1В3U

A Kg konfigurációt önmagába átvivő azIrmetrianrüvele­

tek a következők:

E : identikus operáció

: z tengely körüli, x—*-y irányú 120°-os forgatás 

s z tengely körüli, x—--y irányú 120°-os forgatás 

C2 * tartalmazó, СЬДуга merőleges tengely körüli

180°-os forgatás

C>2~t tartalmazó, Ö^Ö^-ra merőleges tengely körüli 180°- 

os forgatás

Cjjj : 0^-t tartalmazó, Öjo^-re merőleges tengely körüli 180°-

oa forgatás

1cl
C2C2 :
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б*, s az (x,y) sikra való tükrözés

S* s az (x,y) sikra való tükrözés, majd a z tengely körül

x—*-y irányba történő 120°-os forgatás

(x,,y) sikra való tükrözés, majd a z tengely körül
у

x —*- —у irányba történő 120°-oö forgatás 

Oj-et tartalmazó, Ö^Ö^-га merőioges sikon való tükrözés 

6^s 02»t tartalmazó, ÖjO^-ra merőleges sikon való tükrözés

6*s tartalmazó, äjT)2-re merőleges alkon való tükrözés

A fenti szimmetriamüveletekből álló szimmetriacsoportot 

D^-val szokás jelölni [71 . Ez a csoport a szorzásra nézve 

már nem kommutativ - tehát D^h nem Abel-féle -, s könnyen 

belátható, hogy D^-nak hat konjugált osztálya van. Ennek 

megfelelően a (2,1,7,), (2,1,8,) összefüggésekből következik,
Ф jf-"

hogy D^-nak négy egydimenziós és két kétdimenziós irredu- 

cibilis mátrixelőállitása létezik, karakterrendszerét a 

2, táblázat tartalmazza [71,

S3 *

61 I

2. táblázat

E . 2C* . 3C2 • буд • 2S,j • ^D3h *

Ai • 1
Ax . 1

A2 * 1 
и

1 1 1 11

11-1 -1 -1

1 -1 1 1 -1

. 1 1 -1 -1 -1 1a2
Е» . 2 -1 2 -10 0

и
Б ,2 —1 0 -2 1 0
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Ebből a táblázatból az egydimenziós irreducibilis mátrixelő- 

állitások közvetlenül leolvashatók. A kétdimenziós irreducibi­
lis mátrixéiőállitásokat el kellett késziteni. Egy ilyen elő­
állítás a következő:

í-l 91 

И -kJ
í-t -fi
19 -kJE = 6„= ‘

* 0 \
e5=s:=<2-s; =

f.t -511
l-s kJ

Közvetlenül látható, hogy ez az előállítás az E*-nek felel 
g. Az E karakterekkel rendelkező mátrixelőállitást az E*- 

höz tartozó előállításból oly módon nyerhetjük, hogy a csoport 

első hat eleméhez az előbbi mátrixokat, a további hat elemhez 

pedig rendre ezek -i-ezeresét rendeljük.

4 ?]í-6í- Cl =6y í i\-4

3.4* A sajátterek kiredukálása

Tekintsük a 3.2. pontban kiválasztott 30 ill. 33 atomi 
pályát az L2(R)-tér egy 30 ill. 33 dimenziós altere bázisainak, 

ahol aa R jelentse a háromdimenziós Euklidesi teret. Jelöljük
Ezekben az alt erekben aezeket az alt er eket L^q ill. L^-mal.

ill. sziramétriacsöpörtök - a 3.3.-ban megadott szim—

metriamüveleteknek az R-ben való értelmezésén keresztül - meg­
határozott indukált operációkat definiálnak, amelyeknek

triacsoportok egy teljesen reducibilis 

ábrázolását adják. Ezen mátrixok alakja a P(g) indukált operá­

ciók hatását tartalmazó 3* Ш. 4. táblázatokból leolvashatók.
Minthogy ezen P(g) indukált operációkkal szemben és 

Kg Hamilton-operátora nyilvánvalóan (2.2.2.) értelemben

D2h

g-
felelő mátrixok a szi



pounds 0£ 00 1 hY 0(ОО
(H'd(7) ’d l Vl’d(71 *d (П *dui’d(7) *d Ul’d(H’d

(H rd(H’d (71 ’d(H *dI7l*d (H’d(7) Td(П "d (71 'd
0 17) *d(7)’d (7) 'd (7)'d(VI'd(71 Td m’d(V) *d(H xd

(H "d m'd
CD’d

(7) *d(v) ’d (7) xd (H’d (7)’d(H*d(7)’d

(i) ’d (9) ’d•d19) ’d (s)’d lt)’dIt) Td ind(5)

(i> *d (t) Td (s)’d(S1 Td (t)’d(»)’d<9)’d (H’d<9)’d

(9) ’d (9)*d (<l*d(ff)Td (9)’d(»I’d (H’d l±)’d is)’d

if )’d (tl’d(S)’d (S)’d(9)’dit) ’d U)’d(9) *d(*)’d
N t*i)Td (v) *d (£)*d(*i)*d (H’d (h)Td(S)Td (7)*d(7)’d

ic)’d (f )Td ihl’d(H’d (b) *d(s)’d (H *d til’d(?)’d

17)’d (Sl’d(Ы Td(7)*d m’d(71 ’d(H’d(S)’d (h)’d

(H’d (H’d (il’d(H’d ibl’d (H’dI7)’d (7)’d(sl’d

(7)’TP U)’’P (7) *’P17)T’ P<n-’P (71 >’P(»>’Ptt)*’p (И’’Р

(0»*p(7)>’p(H’*p (71’’p(7) >’P (H’Tpu)’’P17) ’*P(H-’P
(7) ,K”’4p uvRv,p(7).fi-’’p (H»h'’’p (О p (7)'*‘’’P (7Vf”’'P (7)'fi-’’p(r)*ft'*'P
(>rÄV,p 171 ’K*’'p(>),«-ир l7),R-.«p (H*B"’*P {») ,h''*p(71

17)’"P 17)’Яр (71 ’fip(»)’*Р m’*p-I7)’bp-U)’hp-17)ж*р (H’*p

m’*p(H’Rp-(71Tfip (7)’kp-(H,Rp-rzl’^p (71’Kp-(0’Rp

(7)’*P (7)”p (7l’*p (7)«p~(H”p-(7l”p- m”Pш”р (И“Р~
(Имр ОГ-р(И’*р (П”р-(7)”Р(»)”P-(7)”Р (7)”р-(71 т*р-
(7)В*Р (71 Л”р —I71h,p (7)К’Р-(П*'р(Нк’р (ЦК’Р~ (Пк’р-(7)*'Р

°Э (И К’Р-<Н*‘р~(71 fi*p-(НЛхр (,)fixp(7) ^’р(7)*’р(И*’Р (7)К’р-

(7lTd(7)’d(M’d(71 ’d(H’d(7)’d (H’d(H’d(T)’d

(H’d(H’d(7)’d(H’d I71’d(7)’d (71 ’d(H’d(H’d

(71 fid(71 sd-(71 kd- (HKd (П Rd-(HKd-(7)ftd ()1 sd(il’d

(O Kd(П’d-(71 Äd-(H *d-(7)"d- 17) sd(7) Rd(H Kd(H’d

I7)'d-(7)’d(H’d(T)'d (71 *d-(H’d- IH'd-(H'd(7)’d

(H'd-t и'd(7)'d(7)’d- (7)'d-(7) *d (H'd-(H'dIH'd

17)S(7) 9(H SU1S(71S(T)S IHSins17) S
(П Sin s(71 S(7) S(1)5 (71S(7) S (HSIDS

’K9fix9 "97
;э1ЭDSDjDLj

ID3



á. táblázat (Юv

с;Е с; с; с: с;P(CJ)-h hatása

S(0SH) 5(0 S (4' Sít' Sín Síi)

SU) SU) SU) SU' 5U) S(4) S(4)

-Íp.w-tP«10t5psW -ip.Ul-^PsI2-'Px«> p.«> р.ч)

-■i p,(2H-y p,U)4р«‘»-?лш p,«)4p-u)+fpíu)p,«'p.«' p,(0

-4 p,io*? p«m-тР»(0-?рДО -lp,(Z)+Öpx(i) -íp,ai-£5P-u)р.ч>Px(4> p

-ТР>11)+Г P'a' -тР»а,-?Р'ш -lpa«l-f p.«) -ip, Ш + ^PxU)P>U' Рз«' fV4'
p,mp.Ot P.<4' pi44) Pi«>р„(г) p,№l

P,<*'<21 p.U) p»«1Pim (4) Pi«'P^ P^
-T^W-r^^’ -4d,,UH§d^U)- xdxa^'+f d/./<)-{d,a(4 )-§ dxvU)d,yH> d,4u)

Со
- rdx, CÜ-fcUftt! - ± d^UH^de-e« -f d«,C4>+£cUtfu> ■4d,„(4)-fd.vM1d.4U)d*M«' d,4(4)

-jd.iUl-yd*,«)~4d»i(4) + xdai4<' -4d.«t«-^dw»U)d,tc<)d„n> d»*4>

-4d,t(2)-fd9Iai -4 d.^lt-xdi*11' -xdxxto-xds*^1—J^d»i:(4)+X dn»Í4)d«r 44)d„U) d„u>
-4ds,(«+fd»*tt)-4da,(4)-f d,1(0-id,xC4)+5d,t(4) -4dslw)-yd.iU)dai<2)dst 0) dal«>

-4daxU)+xd*»al - jd,, (О-f d„m d„x(4i -id,i(4)-f d,«l‘> -dda.«)+^d«<4)dal(i)dyi<2)

d,.jW -i'Ww-f'd.a«) -id^t4,+ i d'4(,) -4d^v«>-fdL,WdevC4> -yde..(ltl'+ yd,a<2)d^(2)

-4cUí<«-?d.,(4) -dd^W+Td*»'0d.‘-^a' -dcU/lö+f d.sö) -4d^v‘«-?d.au)de-/(Z’ d/.,‘(i)

d,*(0 de«'dr-(4) de U)de (4) de«) de«>
de«'de «' de«' de«) d»*4)de (2) de ni

Pi 4" px 4П р»4Шp,44) pxCi) P»(‘)Pi 45)

pi 42) Pi(‘>pi(5) p*44) Pl(í)P,42) p»4M

Pi42) p.4S>px(S)p,(3) Px<4) PxC0Px<4)N
p»«)p.«*' Px<»'Px.(t)pt(S)Pl(UI p«.<2)

Pi<3>(S) pxUlPx4D Pi44) p«(4)Px tű)P^
P. «•' P*44)P* 4 4)pt(í) pi«)Pi<‘> Р*. 4 4* )

(4) p3 44) P«42'p«(2) ps<3)Pxp, (41 P«43)

piti)P,(4) psaip.(3) P3<3> P3«'p.4)

p. (3) p.(3) pa(Z) FVS>p.4<) Рз«'pxU)

Px41)P3«> px (4)Рз 4" p,U'0 p,C3>P^43)

px 40(1)paU) p.(3)Рз«> px (2)Р»P,44)

Px 131 p, 43)(3) P*44' p, (1)P3 42) P« (4)Рз
— Px. 42)(4)Pl (<> (.2) -pi«> -p.(3)Pi 43)P‘ Px
— p* 4 4)(2) pi (2) Pi 441 Pi(J) -Pi(sl -Pi<2)P*

Pi<4) -Pl(3)Pi (31 (3) -Pi«>Pi (2) -pi(2lPi

0Spurol* 0 -1-1 -i35



4.táblázat Ю

s; s:Plcjl-k hatása e; б:б:
S(4) sut sen БШ 9(П sen SÍ41

sen S ( 41 sen seit satS 14) sat

-I (*«»-?*«« -тР»ан§Р»ш -f Р-‘«+тР»l4’ -IP-l"-lp.(<1PxU) p.Ul p.«>

-4p.(«+f p,«t Р.Ч1 -rP* «i+Ep,ttip. (i) p.i" p.U'

lp,ai-§.p.u) rP> m+?P.«> •ip,«i + fip,mpam fp.lD-f p,W-Pa(I) -p,U)

■ipam+f p.m lPl((l-f P.14I xP« ai-gp.u.)p,ai ip,iii+fp.(n-P,m -p,d)

p»«> Pl(ii p.COF4» Pzi*' ft«'
Pz<l> p.m p.«i Pi«> Pzii'p.(ll fti"

сЦт -d.sm |d,s(4)-§d^(« X d,,44)+x d,v«i-d.,(4i

(Jo
d.^u) -d.,(4) X (4) + § dxi.^141 id,, U)-?dAva>jd,,UH^d,.vu)-d.,ai

d„a> -xd„«H§d,.U) -fd„«)+fiel,»l4) 4d„m-§d,z«>d,tm d„(4)

d,«.(n — X d^Cii-ydyz«' -£d..up§d,.(« -xd.*4ii+§d,.md.,ui -idll(4)t^d,.tii d..ai

xd^ai-f d,tmd,t(4) - d„iUl xd4,(i'+^d,iCi) xd,.(4if ^ d,«.(4) {d„(4)+fd„.a)-d„.44)

-d,,i(0 X diC(41+^-dxftC4) X dyz(4' - yd« t4>d,»U) 4-d^U)-f d„a> x d4x UM- x dxt ti'-d,.ii)

- x dn-^41+x'dxs4l — dr«_yi(i) dxy(2.) d^.^4o -idA4»U)-§d.,(4) -id,..^(4)+xd.,4Hd,..aa<) d^si(Z)

d^.,‘W -{d,._1)1U)+§ d.,U) -i d,._ ^W-x d.4tt)~X d^.a»(41-xd«sC4) — xd^.^aif jd,sO)d d.i.jiti)U)

íz)d^C4) dz'Ui dz*(" dz‘44'd»*44)

dz*«)d*‘U) dz.44) d*«a>dz‘(4) dz‘<i)dz*u>

Rt(MPz 44) Pz«> P.«'Pz 42.'Рх(Я pz 44'

p,HI p.U) p.l‘l pzi1*) pz'llp.(S) Pz44l

Pz<S> Pz«.) pziS)Pzi^l p.,41' pz«'p.(S'

Pz«) (3)Pzi") p»ll' PzC4) Pz«>P‘ Pzl«'

pzi« Pz4«l Pz(U|Pzil' pzCSlPz«' Pz44)

Pz(b) P.iSl Pz<« р»(ыPzil' pxlMPz44)

p„ 441 (!'psU' p,«)P,44) Pz 43' P-Py «)
ps(l'p. U' p«44'ps(4l РУ«> p,«> P.(l'

P« 45' p,(5' P« «>Py 44) p.ai p, (41PyU>

p,(4)p,i41 P* 42.' ps(4) p,U\p«l3' p,(3)0 a' P-,44'Psm p,43)P* p.(S) p,(llp»<4l

(S'р,(3) p,(<) РУ«’Pyil) Py1,1P* P* 41'

Pz 4 4) 44' Pz4D - ft«'P> Pzil' - p,ll'-pzi"

PZ<1>Pzil) p.is)pz"' -pzil'-p.i" -p.lll

pz«) p. 44)P»«l pz«' -p. "1 -Pz«'-pW

Оspurok 99 95 0



í - 29 -

szimmetrikus, H»ra és a megfelelő szimmetriacao portra alkal»

ígiamert általános eredményeink. Hint lát» 

tűk, a kiredukálás első lépését a teljesen reducibilis mát»

lyet a (2.1.9.) formula

mazhat <5 к 2 .2 .»ben

rixelőállitáa kiredukálása képezi, 

alapján kezdhetünk el. Ha a mátrixelőállitásókat is L-lel 111.
a karaktertáblázatokban használt jelekkel jelöljük, akkor az 

alterekben elért L^Q ill. teljesen reducibilis előállltá» 

sok kiredukálásábál a következő eredmények nyelhet ők;

(3.4.1.)L30 3 7Vmi«+^4a5u^+5B5«^AXu > 

b53 *&«»«► 5E” ♦ 5A{ ♦ 5A»| ♦ A>

Az lrreducibilis altereket kifeszitő bázisokat (2.2.6.) és 

(2.2.7.) formulák alkalmazásával lehet meghatározni, ezeket 

az 5. ill. 6. táblázatok tartalmazzák. A továbbiakban ©zen uj 

bázisfüggvények lineárkombinációjával fogjuk a komplexek 

>lekulapályáit előállítani.

(3.4.2.)

4.§. A SA^ÁTÉETÉKPRCBLáMÁK MEGOLDÁSA

Ha a kiredukálással nyert 5. ill. 6. táblázatokban sze» 

replő függvényekből alkotjuk meg a komplexek molekulapályáit,
ф * * <*

akkor az (l.2.3.) széküláris determináns a 2.2.»ben mondottak» 

nak megfelelően alacsonyabbrendü determinánsok szorzatára esik 

szét. Részletesebben, a I^-hez tartózd szekuláris determináns 

а (З.4.1.) felbontásnak megfelelően két heted», két negyed», 
két harmad» és két elsőrendű, a l^-höz tartózd szekuláris 

determináns pedig a (3.4.2.) felbontásnak megfelelően egy
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d^í) + dz 2(2) 
dx2-y2(l) + dx2-y2(2) 

í(l) + a(2) 
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•4 is
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hatod-, három ötöd- és egy elsőrendű determináns szorzataként 
áll elő, A további feladatot a bennük szereplő integrálok 

kiszámítása képezi.

4.1. Az átfedés! integrálok kiszámítása

A 3.2. pontban mondottaknak megfelelően a molekulapá­

lyákat Slater—tipusu atomi pályákból építjük fel. A Slater- 

fiiggvények [8]
г-е r

лг-, 2 <na.‘r (4.1.1.)Per) = r

radiális eloszlásában Z az illető atom rendszámát, 6 a zárt 

héjakon lévő elektronoknak a mag potenciálterét leárnyékoló 

hatását jellemző árnyékolás! tényezőt, 

n az u.n. effektiv főkvantumszámot, 

aA pedig az atomi hosszegységet jelenti. A ZA = Z - 6 mennyi- 

ség, az u.n. effektiv magtöltés értéke [91

a Co (ill) ion 3d pályájára 7,25, a 4s,4p pályákra 5,10; az
0

N-atom 2p pályájára 3,90j az О-atom 2p pályájára pedig 4,55.

Az n effektiv főkvantumszám értéke 1,2,3,4,5 főkvantumszám 

mellett rendre 1, 2, 3, 3,7 ,4. A 3.2. pontban mondottak 

alapján könnyen belátható, hogy mindkét komplexben a Co-ionok 

középpontjainak távolsága 2,6587 X. A ligand-ligand kölcsönha­

tásokat azok kicsinysége miatt figyelmen kivül hagyjuk. A 

fenti adatok ismeretében a szekuláris determinánsok felirhatók, 

amelyekben 5. ill. 6. táblázatbeli függvényekből képezett 

és H^j tipusu integrálok lépnek fel. Heklntettel arra, hogy 

az 5. ill. 6. táblázatban szereplő függvények Slater-függvények
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lineárkombinációi, az átfedést Integrálok kiszámítása 

Slater-függvényékből alkotott átfedések kiszámítására vezető-» 

dik vissza. Ez utóbbi integrálok kiszámítása, ha ez integrál­
ban szereplő mindkét Slater-függvény effektiv főkvantumszáma 

egész, elliptikus koordinákban, ha azonban ez egyik függvény 

effektiv főkvantumszáma tört (*1=3,7), de a másik egész effek-
л

tiv f őkvan turns zárnu, akkor kétcentrumu koordinátákban lehetséges.

Ezek az integrálok lényegében tabellázva vannak [101. 

Az előbbi integrálok llett mindkét komplexnél fellép­
nek olyan integrálok is, amelyekben mindkét Slater-függvény
effektiv főkvantumszáma tört. Ez az eset a centrális ionok 

(4s, 4s), (4p, 4p), (4s, 4p) átfedéseiben fordul elő. Az ilyen 

tipusu átfedések kiszámítósa az előző módszerrel nem lehet­
séges, ezért ezeknek az átfedéseknek a kiszámítására közelitő 

módszert kellett megadni. Evégből a 3,7 effektiv főkvantum- 

számu 4s, 4p ©tömi pályákat egész effektiv főkvantumszárna 

Slater-függvények lineárkombinációja alakjában állítottuk elő, 

• a lineárkombinációs együtthatókat abból a feltételből hatá- 

g, hogy a közelítő függvény és © 4s, 4p Slater- 

függvény különbségének négyzetintegrálja minimális legyen.

Ha a 4s, 4p atomi pályák radiális részét az

roztuk

^kbr) - ta4r + Qarl+ a5r5 + aHru)-e*r

függvénnyel közelítjük, (ahol á= Ze/nao) akkor az
°? a 
\ [ - {Qy + aj1 \ aj')] • e
о

feltételből a lineárkombinációs együtthatók értékére a követ­

kezőket lehet nyerni*

_2o<r a. = min.r dr
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* *»0,047 530 

0,360 146
* 0,728 295

a4 * -0,041 617

s&2

A közelítés mértékére következtetni lehet pl, oly módon, h<gy 

ezzel a közelitó függvénnyel egzaktul is kiszámítható átfedést 

határozunk meg. Ilyen vizsgálatokból az adódott, hogy a köze­

lítés a komplexekben előforduló kötéstávolságok értékeinél négy 

értékes jegynél nem rosszabb, sőt (4s, 2p6 ) tipusu átfedés

esetén - * 2,6 és R * 1,9231 9 mellett - a közelitő függvény­
nyel nyert (0,398 686) érték a közvetlenül számított (0,398 685)

t * >

értékkel még jobban megegyezett.
Az 5, ill, 6, táblázatbeli függvényekből képezett étfedési 
integrálok értékei a következőd

®luAlgК1 ’

513 •
514 •

-0,070 81 

0,114 71 

0,025 24 

0,054 66 

-0,109 33 

-0,127 67 

0,092 77 

-0,185 55 

0,698 08 

-0,233 33 

0,307 96 

0,307 96 

0,078 78 

0,290 17

0,045 31 

-0,070 36 

0,120 28 

0,052 40 

-0,104 81 

0,042 31 

0,092 55 

-0,185 11 

-0,298 13 

0,155 75 

0,205 56 

0,205 56 

-0,251 66 

0,185 65

S 15 *
S16 • 
s17 *
525 *
526 *
s27 *
S34 *
S55 •
S36 *

ш ‘

s37 *
545 *
546 •
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Ki . БВ 2g 3u
0,062 96 

0,171 52 

0,187 10 

-0,342 22 

0,252 46

-0,048 75 

-0,168 30 

0,183 60 

0,054 09 

0,199 20

S12 *
513 *
514 *
523 ’
524 *

B3gB2u

0,062 96 

0,357 03
-0,048 75 

0,281 71
S12 * 

S23 *

4 А»Дк2 . 2

0,045 31 

-0,070 36 

0,147 31 

0,064 18 

-0,298 13 

0,190 75 

0,251 76 

-0,308 22 

0,227 38

-0,070 81 

0,114 71 

-0,030 92 

0,066 95 

0,698 08 

0,285 77 

0,377 18 

,0,096 49 

0,355 38

S12 *
513 ’
514 ’
515 *
523 *
524 e
525 *
534 .
535 *

E» E* *

-0,018 32 

0,036 83 

-0,040 08 

-0,048 75 

0,145 75 

0,073 06 

0,159 00 

-0,046 84 

-0,187 01 

0,172 51

-0,055 28 

0,040 17
S14 *
515 *
516 • 

S23 * 0,062 96 

-0,148 54 

0,162 04
S24 *
525 *
526 *
534 *
535 e 

s36 *

0,296 37 

0,218 64
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Á táblázatban nem szereplő integrálok közül minden i-re 

Sii s 3.» a 'többi integrál pedig zérus,

4.2. tipusu integrálok kiszámítás©

Az uj bázisfüggvényekből képezett tipusu integrálok 

kiszámítására Wolfsberg és Helmholtz atomi pályák átfedéseire 

vonatkozó

hij = °>5'Vij (hu ♦ bjj> (4.2.1.)

félempirikus közelitő formuláját [11J használjuk fel,

a megfelelő Slater-féle atomi pályákból alkotott átfedés! 

integrál, Fx variációs paraméter, ill. pedig a megfe­
lelő atomi pályához tartozó ionizációs energia. A számitá- 

sokb

lyben

az ionizációs energiára а Со 4s pólyája esetén -7,84 eV, 
4p pályája esetén -4,08 eV, 3d pályája esetén -9,38 eV £123;

N 2p pályája esetén -13,81 eV; végül 

pályája esetén -11,24 eV, 2porpályája esetén pedig -10,54 eV 

[131 értéket veszünk figyelembe-. Az variációs paraméter 

értéke 6 tipusu kötésekre 2,20, зс tipusu kötésekre pedig 

2,65 [93 • Ezeket figyelembevéve a tipusu integrálok érté­
keire az alábbiak nyerhetőks

О 2p6" tipusu

% ®lu
- 9,836
- 9,417 
-10,448
- 5,526 

-11,24 

-13,81 

-13,81

H11 - 8,884
• 9,343
- 1,986 

- 0,548 

-11,24 

-13,81 

•13,81

«22
H33
H44
«55
H66
«77
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вК Alulg1
- 9,417H - 9,343

11

н*2 А»»2
- 9,836 

-10,448
- 5,526 

-11,24 

-13,81
- 0,858 3 

1,041 7
- 3,670
- 1,637 

3,909
- 4,003
- 5,996 

55,505
- 4,474

Н - 8,884
- 1,986
- 0,548 

-11,24 

-15,81
1,341 4

- 1,698 

1,043 9
- 1,708
- 9,153
- 5,998
- 8,982 

1,140 7
- 6,993

11 *
Н22 *
^33 *
Н44 *
**55 *
«12 * 

Н13 •
Н14 *
Н15 *
Ы23
Н24
Н25
Н34
Н35

Е» Е*»

- 9,417
- 9,667
- 5,350 

-11,24 

-10,54 

-13,81
0,347 2

- 0,972 1 

1,022 3 

0,869 4
- 3,306
- 1,928

% - 9,343
- 9,082
- 2,040 

-11,24 

-13,81

Н22
Н33н44
Н55
Н66
Н14 + 1,322 5 

- 1,024 8Н15
Н16 т

- 1,122 9 

3,369 

- 4,133

Н23
Н24
Н25
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Ki . Б» E”

- 4,056 

0,553 7 

3,625
- 3,395

H26 *
й34 * - 5,293

• 4,302«35 *
н36 •

ч
*10,54Н11 *

A táblásaiban nem szereplő integrálok zérusok*

4o3 * Elektronenergiák

gadott és integrá* 

elektronener­
giák meghatározására ICj-nél két heted*, két negyed*, két 

harmad* és két elsőfokú, a K2 komplexnél pedig egy hatod*, 

három ötöd* és egy elsőfokú algebrai egyenlet nyerhető, 

melyek gyökei közvetlenül a molekulapályákhoz tartozó ener­
giákat adják. Ezek a következők:

A 4.1. és 4.2. pontban 

lókkal felirt szekuláris determin'nsokból

Alg * ®lu B2g * S3u
* 0,259 . +59,168
* 6,004 . - 1,417
* 6,766 . • 5,905
* 9,275 . * 8,328
*12,622 . *12,160 

-14,883 . *14,794
*15.531 . *15.207

— .. Í2&
- 9,417 . - 9,343

+ 3,94 . - 3,24
* 6,02 . - 6,84
-12,26 . *12,65
-14,72 . *15,25

B2u
- 3,25 v + 1,881
- 9,70 . - 9,11
-14,09 . *14,14
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*2

Ч • A*l Е» E”

1,158 . +49,096
• 5,772 . - 0,5149
• 9,470 . - 8,472
-12,881 . -11,920 

risuij?.,,,. д..г*ьа21..

- 3,091 

• 6,724
- 9,193 

-11,156 

-12,076 

-14,603

• + 2,ЗЮ
• - 6,523 

« * 9,297 

в -12,165 
. -14,568

ч
-10,54

Asb adatok eV-ban értendők.

4.4* Elektronátmenetek

A 5.2. pontban figyelembevett 36 -36 elektron a 4.5. 

pontban megadott energianivdkat a Pauli-eÍvnek megfelelően 

töltik be. Az E*-höz és E**-höz tartózd - kétszeresen dege- 

nerált - energiaállapotokban ennek megfelelően négy-négy, 

a többi energiaállapotban pedig két-két ellentétes spinű 

elektron foglal helyet. Ennek ismeretében a komplexionok 

spektrumait oly módon származtathatjuk, hogy az elektronok 

megengedett kvantumatmeneteihez tartózd frekvenciákat, vagy 

hullámszámokat a Bohr-féle frekvenciafeltétel alapján ki­

számítjuk. A kvantumátmenetekre vonatkozó kiválasztási 

szabályok a kővetkezők [141!

%

3lu * Álu "ö2g * ®lg"B2u 

2u * Alu^~^B3g * B2u“B3g 

B3u * B2g-,~*~B3u * Blu"~^B3g
Slg * Blg^~*"B3u * Blu"~*'B2g

Alg
Вk4

Al€
Alu
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ч
ч—Ar . AJ — В*

. A>J—Е»»
. Е*> — Е” . Е* —-Е**

. Е»—Б»

Е»Ai
A kiválasztási szabásokat figyelembevéve a megengedett

»lelektronátmenetekhez tartozó hullámszámok cm -ben a követ«* 

kezók:

%

63 400
63 578
64 772
64 893
65 103
65 240
66 442 

68 104 

68 451

. 49 669 

. 49 781 

, 49 862 

. 51 274 

.53 493 

. 55 622 

. 54 195 

. 59 092 

. 62 069

12 603 
18 622
18 751
19 646 

20 816 

23 672
25 859
26 787
27 190

29 820 

43 520 

43 730
46 651
47 280
47 474
48 611 

48 692 

49 539

4
50 863
51 468 

54 275 

60 101 

63 288
63 570
64 909
65 071 

65 192 

67 774

. 43 545 

. 43 650 

. 43 900 

. 44 803 

. 45 521 

. 48 458 

, 49 184 

. 49 604 

. 49 676 

. 50 072

23 979 

29 756
29 796
30 789 

35 573 

35 759 

37 380 

43 181 

43 367 

43 440

839
2 235 

6 656 

8 052 

10 868 

15 838 

20 760 

22 155 

22 381 

23 261

A táblázatokban csak a 70 000 em"*-*iél kisebb hullámszámokat

tüntettük fel.
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AZ EREDMÉNYEK ÉRTÉKELÉSE

A hullámszámokra kapott eredmények alkalmasak arra, 

hogy számításainkat a tapasztalattal összehasonlítsuk, A 

komplexionok kloridjainak vizes oldataira nyert abszorpciós 

görbéivel (2, ill, 3. ábra, itt e a moláris dekadikus 

extinkciókoefficiens) [151 való összehasonlítás azt mutatja, 

hogy a számított eredmények a tapasztalati eredményekkel 
lényegében összhangban vannak. Mind a kísérleti, mind az 

elméleti eredmények szerint mindkét komplex vegylilét a 

10-50 000 emT^ hullámszámintervallumba eső fényt gyakorla­

tilag teljesen abszorbeálja.
Az eredmények tapasztalattal való egyezése azonban 

Kj-nél nem tekinthető kiel égi tőnek. Itt egyrészről a számí­

tott spektrumvonalak a kísérletileg meghatározott vonalak­
hoz viszonyítva igen erősen eltolódnak a nagyobb hullámszámok 

felé, másrészről a maximum és minimum helyek egyezése sem 

gfelelő. Az egyezés különösen az elméletileg nyert 30- 

43 000 cm"”'*' hullámszámtartományban rossz, A Kg-re kapott 

eredmények kielégítőnek tekinthetők. Itt © spektrumvonalak 

eltolódása (kb. 2-4 000 em“^) nem túlságosén nagy, továbbá 

a maximum és minimumhelyek azonosítása is elég jó közel i- 

tésben lehetséges* Ezektől az eltérésektől eltekintve azt 

lehet mondani, hogy az alkalmazott módszer alapján a komp - 

lexekre lényegében elfogadható eredmények nyerhetők.

A kísérleti eredményektől való eltérésnek számos oka
egzakt,van. Egyrészt az alkalmazott LCAO-MC módszer
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másrészt a komplexekre vonatkozó • 3.2. pontban tett - 

feltevések, továbbá az ionizációs energiák - 4.2. pontbeli - 

értékei sem tekinthetők a valóságos viszonyok Jó közelí­
téseinek . Hogy az elméletileg nyert eredmények tapasztalat­
tal való egyezése nem lehet a legjobb, arra már a 4.3. pont­
ban kapott eredményekből is következtetni lehet, ugyanis 

az ott kapott pozitív - de főként a Blu-hoz tartozó +59»168 

eV és az A*J-höz tartozó +49,096 eV — energiák már eleve 

erre mutatnak. Ezekből a túlságosan nagy energiaeltolódások­
ból viszont arra lehet következtetni, hogy egyrészt az 

átfedést integrálok - következésképpen a kiszámításuknál 
felhasznált, s elsősorban is az ionsugarakra vonatkozó ada­
tok - nem elég pontosak, másrészt a integrálok kiszá­
mítására alkalmazott (4*2.1.) Wolfaberg-Helmholtz-féle 

formula - legalább is az Fx paraméter felhasznált értékei 
mellett - rossz közelítés. Ez utóbbi következtetést indokol­
ja az is, hogy az energiaértékek az Fx paramétertől elég
erősen függenek, mégpedig a vizsgálatok szerint Fx növeke­
désével egyre abb, ill. nagyobb számú pozitív energia-
érték adódik. A kísérleti és elméleti eredmények közötti 
eltérést azonban - bár elsősorban az előbbiek következ­
ménye - a számításoknál alkalmazott közelitő módszer égé- 

szének kell tulajdonítanunk.
Az elmondottak egyúttal több lehetőséget adnak a 

kísérleti és elméleti eredmények egyezésének a megjavítá­
sára. Az egyik - legközeIfekvőbb - lehetőség az, hogy - a 

sajátértékproblémákat továbbra is a komplexionok 3.2.-ben
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megadott modelljei alapján tárgy eh? a ~ a integrálokat 

a (4.2.1.) Wolfsberg—Helmholtz-formula alkalmazása helyett 

egzaktul kiszámítjuk. Egy másik lehetőség az alkalmazott 

modellek módosításában van, amelyhez azonban a komplexlonok 

szerkezetére vonatkozó pontosabb kísérleti adatokra van 

szükség. Ezek a kísérleti adatok a dolgozat témájának ki­

álltak rendelkezésünkre. Végülválasztásánál
mények javulását várhatjuk további atomi pályák, valamint 

az elektronok közötti kölcsönhatások figyelembevételétől

ered-

is. Tekintettel azonban arra, hogy a integrálok egzakt 
kiszámítása, valamint további atomi pályák, és az elektro­
nok közötti kölcsönhatások figyelembevétele az elvégzendő 

számításokat - a dolgozatban alkalmazott közelítéshez vi­
szonyítva - jelentős mértékben megnövelik ( amellyel számos 

esetben nem jár együtt az eredmények kívánt mértékű javulása), 

lekuláris problémák tárgyalásánál többnyire megelégszünk 

a dolgozatban alkalmazott közelítés alapján nyerhető ered­
ményekkel.
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Ezen a helyen mondok őszinte köszönetét dr. H о r • 

v á t h János tanszékvezető docensnek, akinek ösz­

tönzése és munkám iránti állandó érdeklődése, továbbá a 

szekuláris egyenletek gyökeinek meghatározásához, és a 

disszertáció összeállitásához nyújtott segítsége nagy erő­

forrást jelentett e dolgozat elkészülése során.
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docensnek, aki a disszertáció témájának kiválasztásától a 

számítások befejezéséig értékes tanácsaival, a felvetődött 

problémák megoldásához nyújtott állandó segítségével, továbbá 

a disszertáció összeállítása során tett észrevételeivel 

munkám közvetlen irányitója és segítője volt.

Köszönetét mondok dr.Tóth Imr ének, a KFKI 

Matematikai Osztály osztályvezető helyettesének, aki a 

szekuláris egyenletek programozását elvégezte, és dr. 

Jánossy bajos akadémikusba KFKI igazgatójá­
nak, aki engedélyezte, hogy a Matematikai Osztály a prog­
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