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BEVEZETES

Az anyagszerkezeti kutatds egyik legfontossbb feladata
a molekuldk szerkezetének, fizikai és kémiai tulajdonsdga~
inak, s ezen belill is & molekuldkat Bsszetarts erfk termé-
szetének felderitése. E feladat megolddsdban a kiildnféle
kisérleti médszerek mellett Jjelentds helyet foglsl el a
kvantummechanika, ill,. a kémiesi kitésekre vonatkoztatva, a
kventumkémia, Bér a kventummechanikai tébbtestprobléme a
legtbb esetben egzaktul nem oldhaté meg, a sajitértékprob-
1émdk megolddsira kidolgozott kizelits médszerek segitségé-
vel -« bonyolultebb esetekben is - kielégitd pontossdgu ered-
ményekhez lehet jutni. Molekuldris problémsék tirgyaldsdra
&idolgozott ilyen kizelitd médszer az u.n. LCAO-MO médszer,
amelynél a molekula hullimfiggvényét atomi pdlydk linedre
kombindeid jébél feldpitett molekulapédlydk szorzata alakjséban
tételezziik fel, .

A éisszerticis az [(NRS)I, Co(0H), 00(!332414+ (a tovibe
biakben K;) és ez [(Ni,), Co(0H), ce(nms)J;’* (2 tovébbiakban
xz) kétmagu Coekomplexionok staciondrius dllapoteihoz tertozé
eléktromnergi&k meghatdrogdsdt tartalmezza az LCAO-MO méd-
szer alepjén. A sajatéritékproblémék megolddsédndl figyelembe
vettiik a komplexionok szimmetriatulajdonsdgait, amely - cso=
portelméleti eredmények felhaszndldsdval -« a problémik megol-
ddsat lényegesen egyssgzeriibbé tettc; Bz az egyszeriisBdés abbdl
adédott, hogy a szimmetriatulajdonsdgok figyelembevételével
olyan molekulapdlydk megszerkesztésére nyilott lehetdség,



emelyekb6l képezett szekuldris determindnsok alacsonyabb-
rendii determindnsok szorzataislekjében dlltsk eld, igy az
elektronenergidk meghatirozdsdt lényegesen kevesebb numerie
kus szdémitdéssal lehetett nyerni, mint emelyet az LCAQO-MO
médszer kbzvetlen alkalmazdséndl kellett volna elvégezni;

A disszertdcid témdja szorosan kapesolddik a komplex
vegyliletek fizikei és kémial tulajdonsdgeivel foglalkozd
vizsgdlatokhoz, amelyek « féként a tibb centrdlis iont tar-
talmazd komplexek vonatkozdsében - ag utébbi idében keriiltek
az érdeklddéds kﬁzéppontjéba; Az egy centrdlis iont tartale
mazé komplexek nagy részére mir eléggé megbizhaté kisérleti
és elméleti eredmények dllnak rendelkezésre, de a t&bb
centralis iont tartelmazé komplex vegyiiletek legnagyobb része
még részletes viaagélatra‘azorul; A Ky és K, kétmagu komp-
lexionokra nyert eredmények ezekben a vizsgfilatokban jelente-
nek egy kezdeti 1épést;

1.§. AZ LCAO=-MO MODSZER

1.1. A mlekulapélyaﬂﬂéﬁsse!’

Egy ttbb elektronbél és atommagbdél 4116 rendszer (mo=
lekula) staciondrius dllaspotaihoz tartozé energieértékeket a

HY =EY
136161 filiggetlen Schrddinger-egyenlet megolddsdbdl nyerjik,

amelyben H a rendszer Hamiltoneoperdtora., Ha a nagyobb
tomegili atommegok mozgdsdtél eltekintiink, tovébbd az elektro-



nok és atommagok ktzitt csek elektrosztatikus kélesBnhatdso-
kat tételeziink fel, akkor a Hamilton=-operitor

2 2
e, ‘k t 2 e" - er
H =g ;‘V“-“'E‘VLK E"m

alaku, shol ry, &z i-edik és keadik elekirom, r, az i-edik
elektron és oeedik atommsg tévolsdga, 2, az o=adik mag
rendszéms, m az elektron timege, e pedig az elemi t&1té a;
Ha az elektronok szdma n, ekkor a H Hamilionepperdtor egy %n
vdltozés figgvényre haté differencidloperdtor, minek kivet-
keztében mir kis elektronszém esetén is a molekulasajétértéke
probléma megolddsdndl k&zelits eljérdst kell alkdl magnunk,

Egy ilyen kizelitd médszerhez juthatunk el akkor, ha
nulladik kbzelitésben az elekironok kdzdtti kilcstnhatdstsl
eltekintiink, Ebben az esetben a molekulaproblémdt egy olyan
- t6bb elektronbél 4116 - problémdval helyettesithet jik,
amelynél az elektronok sz atommagok dltal létrehozott poten=-
cidltérben mozognak. A Hamilton-operdtor ekkor

H = E H'»
alakbe irhaté, shol:
’ . R
b =gl « TN, (V= -2€ ) (1a.1.)
egyetlen elekiron Hemilton-operdtora, Minthogy az elektronok-

bél 4116 rendszer most fliggetlen részekbdl 4ll, a teljes mo-
lekula sajiatértékproblémd jdnak megolddsa

Y o= Ao Y es)
alekben irhatdé fel, shol

Hb\Yb =EL~Y'\— (\,:\")_"N\.)



Az igy knpott molekulesajétfiiggvényben szerepls, egyet—
len elektron koordindtditél figegs () flggvényeket egy=-
elektron-molekulafiiggvényeknek, vegy mo l e ku l a p é=
1 y 6 knak (MO~k) szokds nevesni; Ebben a kBzelitésben tehdt
& nolokulaaajétftiggwém molekulapdlydk szorzata alakjdban 811
els, ezért ezt a kizelité médszert mole kulapdly ae=
méds ze rnek, vagy MO-médszernek nevezziik;

A molekulapélya~médszer tehdt a térben »8gzitettnek
képzelt atommegok elrendezldését ismertnek tételezi fel, s
az ezek, valemint a szdmitdsba nem vett elektronok dltal al-
kotott molekulatdrzsben mint potencidltérben egyelektron-
problémit vizsgdl, smelynek megolddsdbél molekulapdlysk
(egyetelektron-moleknlasa jétfiggvények), egyuttal energia-
sajétértékek sorogata addédik, Az elektl;onok kozotti kil-
e¢snhatds fenndlldsa miatt azonban ez a médszer csak nulla-
dik kdzelitésnek tekinthets, ezért a mdsodik lépésben az MO=
médszerrel nyert MO-kat és energisértékeket nulladik kbzeli-
tésnek tekintve az egyes MO-kon 1lévé clektronok k8lcstnhaw
tdsdt - mint perturbdeidét - szokds figyelembe venni,

A sajitértékprobléma megolddsdt molekulapdlya-médszere
kdzelitésben tehdt a

HLN\} =E*v (£=4.2,...)m.)

Schrédinger-egyenlet megoldédsaként nyerjiik, shol H, az
(1.1;1.) Huilton—operétor; Ilyen egyelektronprobléma egzekt
ngoldéa'a szonban c¢sak a hidrogén molekulsion esetében si-
keriilt, igy bonyolultabb esetekben mdr az MO-k meghatirozdsdi-
nédl is kozelits megolddsrs vagyunk utalva; Leginksbb elter-



jedt kdzelités az wan, stond pélydk linedrkombindcid jansk
(1cA0) médszere, smelynél a molekulepdlydkat atomi pélydk
lineédrkonbindeis jansk tételenzik Pel. A legjobben kzelits
MO~-kat akkor nyerhetjiik, ha ez atomi pdlydk (AO~k) Hartree-
Fock~féle fliggvények, de kdnnyl kezelhetlsigik niétt gyakran
alkalmazzék az u.n. Slater-féle fliggvényeket 1!.; Ez utdbbi
fiiggvényeket fogjuk mi is a térgyalandé komplexek molekula=
palydinak megalkotdsdndl alapul vélasztani, Az aldbbiskban a
linedrkombindcids egylitthatdk meghetédrozdsinak a problémd jé-
val foglalkozunk,

l.2. Az LCAO~miédszer

£111tsuk el8 2 molekulapdlydt k szému §, (i=1,...,k)
linedrisan filiggetlen atomi pdlya
"3 & WP
'\\) = §C°‘.Q" (102.1')
alaku linedrkombindcidjaként, és a ey egylitthatikat varife
¢iés paraméterekként kezelve, hatdrozzuk meg azt a linedrkom=
bindciét, amely a sajitértékprobléma megolddisdt a legjobban
kSzeliti. A varidciés médezer smerint az (1.2.1.) linedrkom-

bindeld akkor a legjobb kizelités, ha a  ~vel szdmitott

e o YY)
W)

energia minimdlis, Ez az §sszefiiggés a linedrkombindcids elé~
811itéds behelyettesitésével az aldbbi alakba irhatés

(1} S H ?Cj‘(’;} e E—(".—;Cc% J;-Cg‘(’g) x EC:% L@ Hg) ~elg, 9] =0 .



Ha még bevezet jik a

(foMeI =Wy (gep =5y
Jeldléseket, akkor az egyenlet:
Tcie-LHy -S4l =0

Ha ezt az egyenletet differencidljuk ¢ szerint és figyelem~
be vesszik a
e
°q
minimumieltételt, akkor a kdvetkezd linedris, homogén egyen—

=0 (L=12,...,K)

letrendszerhez jutunk:
I’:c’[\.\q -—E,SLS]—-:Q (L= .., R) (102.2’.)’

Ez az egyenletrendszy a C j egylitthatdkre - egy trividlis
megolddstdl eltekintve = csek akkor oldhaté meg, ha a rend-
szer determindnsa eltiinik, veagyis has

H_‘q ~eS |\ =0 (L] = 42,....%) (1.2.5%.)

Ebbél @8 s zekuldris egyenle thdfl legfeljebdb
k szému energiadrték nyerhets, emelyeket az (1;2;2;) egyen=
letrendszerbe helyettesitve a linedrkombinscids egyiitthatsk
egy 4llanddé faktor erejéig rendre kiasémithatdk; Ezt az
dllendé faktort a molekulapdlysdk norméldsdmal lehet régziteni.
Az elmondottak alapjin egy molekuldris probléma LCAQ=-
MO nddsaerroi torténd tdrgyeldsdndl slkslmesen kivdlasztott
stomi pdlydkbdl linedrkombindeidval MO-kat szerkesztiink, s
a probléma staciondrius éllapotaihoz tartozd enexfgiaértéhket
a probléma szekuldris egyenletébll, szémithatjuk. A szekuléd-
ris egyenlet megolddsa azonban dltaldban hosszadalmes nume-



rikus feladat, ezért a numerikus munka leegyszeriisitése ér-
dekében az MO~k megszerkesztésénél a csoportelmélet ide vo-
natkozé eredményeit célszerit felhaszndlni,

2.§. VEGES CSOPORTOK ABRAZOLASAI

2.1. fordzo}ds mitrixokkal

Ha egy G =(q} véges vagy végtelenedrendii miltiplikativ
esoport minden g eleméhez homomorf médon egy D{g) métrixot
rendeliink, akkor a négyzetes mdtrixokbdl 4114

D = {D9,d9), ... }

esoportot a G ={(g} sbsztrakt csoport mitrixelddllitdsdnak,
vagy 4br &z ol 4 sének, az e184111t6 D(g) mitrix sora-
inak (vagy oszlopainak) a szémdt pedig es dbrézolds @ & &-
menszidé Jdnak mvészﬂk; Ha a g — D{g) hozzérendelds
egy-egyértelmii (tehst izomorf), skkor ez el641litést h 4 =
nek nevezziik, ellenkezé esetbe;n nem h idbrdzoldsrdl
beazélﬁnk;

A homomorfia, vegy miivelettartdsdg azt jelenti, hogy ha
q9=9, és az el6411ité mitrixok rendre D(g), D(g’), D(g’’),
akkor: : | —

D()-D(g) = D(G) =Dgq) . (2.2.1.)

Specidlisan, ha ¢ a G csoport egységeleme, akkor o =t vé-
lasztdssal:

D(g) D) = D(ge) =D(eg) = DE) D) = DY ,



amibdl latjuk, hogy az ¢ egységelemet a
D(e) =€

egységmdtrix dllitje eld. Legyen tovdbbd q' a q elem inverze,
akkor a
DI DYH =Dq*) =D(g'q) = D(G)-Dig) = Dle) =€
fenndllésébdl 14t juk, hogy
DY = D)

azaz a ( elem q' inverzét a q =t dbrdzols métrix inverze
dllitja els.

Konnyen beldthaté. az is, hogy ha D = { D(g)} egy G

ecsoport dbrdzoldsa, akkor bdérmely - ugyanolyan dimenzidju -
nem zérus determindnsu S métrixszal nyert -

¥ = sps’ (2.1.2.)
métrixhelmaz is e16411itds, Ha ugyenis D dbrdzolja G-t &s

D(g) = SD@S' , P =D | Vi) = SDWHS |

akkor (2.1.1.) fenndlldsa mistts
B(g) T(g) = $9@S". DS = SDPDES ' = SDYHT ' = DY)

vagyds a D* = {D"(g)} Ginek weldban dbrdneléss:, Eszeri nt ha
G-nek ismeretes egy D ébrdzoldsa, skkor beldle (2.1.2 ) ti-
pusu mitrixtranszformdcidkkal végtelen sok tovdbbi ébrésoléa
e:émxtathaté; Célszerii ezért a métrixelddllitdsokat az
aldébbi mdédon osstélyozni;

Egy G ebsztrakt csoport két - D 111; D? métrixrendsze-
rekkel elért - ugyanolyan dimenzids mdtrixelddllitdsdt



e kv ivale n snek nevezzilk, ha van olyan S - nem zérus
determindnsu - méatrix, hogy a

BD(g) = SD@s™

egyenldség fenndll minden g elemet reprezentdlé D(g) 111;
p*(g) nétrixra; Ellenkez8 esetben a két elfdllitdst i n e k-
viv’aleng e‘ldéllitésnakmveazﬂk;Adeﬁni-
cidbdél kbvetkezfen két kiilonbdzé dimenzidju elddllitds mindig
inekvivalens, mig két ugysnolysn dimenzidju elfdllitds lehet
ekvivelens és inekvivalens 181;

Legyen & komplex szémok teste felett értelmezett n-
dimenzids R, =(¥,} ortogondlis linedris vektortér il] aG
esoportot &brizolé n-dimenzidés D(g) métrixok értelmezési
tartomdnya, vagy més szdévael 016'»&11 it éstero‘.‘
Ebben a térben a D(g) métrixok minden ~, elemhez, egy ugysn=-
esak Rn-beli ;

W, = DR, (2‘.1;3;)
elemet rendelnek. Ha sz R, vektortérnek a D{g) operdeidkkal
(tehét lényegében G-vel) szemben van nem trividlis megenge=-
dett altere, akkor Bnotl&re nézve reducibilis,
ellenkezf esetben i rreducibilis vektor~
t é rnek neveszzilk, Ha az Rn vektortér megengedett alterei
G-re nézve irreducibilisek és direkt Ssszegiik kiadja Rh-'&t,
akkcrnnéte-renéwe tel jesen reducibilis
vektortérnek nevezzilk, Ez utébbl esetben %—"t szokds teljesen
szétesé vektortérnek is mevezni, mig (csak) szétesének akkor
nevezziik, ha azok az alterek, amelyek direi:t dsszegeként Rn



elfdrl, Gere nézve nem :lrreducibiliaek; Nyilvénvald, hogy
dltaldban & reducibilitds még nem Jelent szétesést, ugysnigy
a szétesds teljes reduoibilitést. Ha asonbenm D{g)=-k R, =ben
uniter leképezést hoznek létre, akkor a mitrixalgebra azon
tételét felhaszndlva sz, mely szerint uniter operdecidkkal
szemben megengedett altérre merdleges altér is megengedett,
kivetkezik, hogy ekkor R Gevel szembeni reducibilitdsa tel-
Jes. Ilyen teljesen szétesd vektortér esetén sz eredeti bée-
zisok mellett, emelyekre vonatkoztatva D(g) az Y, elemhez a
(2.1.3 ) elemet rendeli, sz irreducibilis megengedett alte-
reket kifeszitl bdzisok sszessége is kifesziti R ~t, 8 egy-
ben létezik egy olyan nem zérus determindnsu S mditrix, asmely-
lyel megadott hasonlésdgh trenszformdcid a két bdzisrendszert
egymisba étviazi; Az a transzformdicis pedig, amely az uj
bédzisokra vonatkoztatva az ., elemhez ugysncsak ™ <t rendeli
& [3]

B = S ™

métrix dltal van meghatérozva; s ekkor D*{g) alakja:
p® I
Byt B 2 | - (2.4
0 [p® |

shol ¢ az R tér direkt alkatrészeinek a szdma, n(i?(g)
pedig a G csoport g elemét az i-edik irreducibilis megenge-~
dett altérben dbréazold nétrix; Litjuk, hogy egy teljesen
reducibilis térben elért D(g) dbrdzoldsbél hasonlésdgi
transzformdc idval Genek olym;\ uj, D(g)-vel ekvivalens mit-



rixelfdllitdsa nyerhets, amely ez irreducibilis slterekben
elért D(i),(g) métrixelddllitdsok direkt Gsszegébdl tevddik
bssze. AZ elﬁoadottak alapjén egy G csoport dbrizoldsait
tovébd osztdlyozhat juk.

Egy G esoport valsmely n~dimenziés D(g) matrixelédl-
litdséat irreducibilisnek, reducibilisnek 111; teljesen re-
ducibilisnek nevezziik aszerint, hogy n(g) n-dimenwiés R
elfdllitdstere irreducibilis, redueibilis ill, teljesen
reﬁueibilia; Ha egy D(g) mdtrimelfdllitds irreducibilis
matrixelddllitdsok direﬁ dsszege, skkor ezt a métrixell-
dllitdst kiredukdlt éhrégolémaknevezzﬁk.—
Az elmondottakbdsl kivetkezik, hogy egy teljesen reducibilis
mitrixelddllitis alkalmas hasonldségi transzformdeidval
kiredukdlt alakre hozheté, vegy més szdvel kirednkélhaté;
Minthogy ezek szerint bédrmely teljesen reducibilis eldédlli-
tds irreducibilis elddllitdsok direkt Gsszegének tekinte
hetd, ezért egy G csoporira nyilvénveléan az irreduecibilis
inekvivalens elddllitdsok lesznek jellemzSk, ezért a tovébbi-
akban ezek vizsgdlatdre ssoritkomnk; Véges csoportok esetén
a8z irreducibilis inekvivalens elddllitdsok, velsmint a csoport
jellemz6 adatai (nevezetesen a csoport rendje és a csoport
egymishoz konjugilt elemeibsl 4116 osztdlyainak széma) kSzott
fontos Gsszefliggések dllnak renn; Ezek a kivetkezlk: '

Ha D* (g) és D° (g) egy h-adrendii véges & csoport két—
n_ 311; n, dimenzids -'mmueﬁ?ina inekvivalens mitrix-
elfdllitdsa, akkor a Schur-lemma [3] segitségével bebizonyit-
haté a



%; T (@) D (4h) = z‘_\;.Sm Sjk qub (2.1 5.)

u.n, ortogonalitdisi reldeid, amelyben az Usszegezés G eleme~
ire terjesztendl ki, Ebb6l sz Usszefliggésbdl viszont az
irreducibilis inekvivalens D™ (g) ébrézolédsok

K@) =SV} =L Do)
keraktereire kizvetleniil nyerhet jiik a

E“ 7( (C}) f@(c[l) o kSo{Q (2.1 .6 o)
reldeiét is, amelyet.a karskterek ortogonalitdsi reldeid jie
nak szokds nevezni., A (2.1.6.) ortogonslitdsi reldeist uniter
irreducibilis dbrdzoldsokra slkalmagva egy G csoport irredu=

cibilis inekvivalens elfdllitdsainak G szdma és G egymdshoz
konjugdlt elemeibdl 4116 osztdlyainak s szdma kizstt a

6 =s (2.1.7.)

mig a (2.1.5.) Bsszefliggdsbll az irreducibilis eldsllitésok
ny dimenzid ja és a esoport h rendje kizdtt a

S 2 P
; o, =h (2.1.8.)

dsszefiiggés addédik,

Ezek az eredmények egy G csoport valamely teljesen re-
ducibilis D(g) métrixelsdllitdsdra vonatkozéan fontos tovébbi
felvilégomté;t aﬂnak. Mér megdllapitottuk, hogy egy telje-
sen reducibilis eldallitds mindig olyan alskra hozhaté, amely
bizonyos szému irreducibilis inekvivalens elfdllitéds direkt
Ssszege. Az utébbl eredményeink szerint viszont egy G csoport-
nak véges szdmu, pontosan az egymdshoz konjugdlt elemekbll
8116 osztdlyok szémdval megegyezl§ irreducibilis inekvivalens



ébrédzoldsa van. Ily médon egy teljesen reducibilis, kiredu=
kdlt mitrixelddllitds az irreducibilis elfdllitdsokat direkt
alkatrészként tibbszérisen tartalma:hatja; Ezt a szémot
azonban a reducibilis elddllitéds spurja, velamint a csoport
irredueibilis inekvivalens dbrézoldsainask kerekterei mér
egyértelmien meghatdrozzdik.,

Tegyiik fel ugyanis, hogy egy teljesen reducibilis D(g)
ébrézolds a Jeedik n(-’)(g) irreducibilis inekvivalens dbré-
zolédst a Joozer tartalmezza direkt alkatrészként, Legyen a
D(g) dbrdzolds spurja 7((3), akkor nyilvénveldan

9
§)
xXQ) = %\ XV
ahol s az egymdshoz konjugélht elemekb§l 4116 osztdlyok szima.

Ezt az egyenletet 7(“)«3' 'y =gyel beszorozva és G elemeire Hsz-
szegezve (2.1.6.) figyelembevételével nyerjik a kévetkezbt:

L@ gy =X os-%‘ @Y = Tahdy = ah

q 3 )
amibdls

a, = '31'5%‘ YDEAGY  wanzns) . (240494)

Miutén az irreducibilis inekvivalens eldéllitdsokat a x““(q
(£ =1,...,8) karskterek egy hasonlésdgi trenszformicié erejé=-
ig egyértelmiien meghatdrozzik, ezért aiok is egyértelmiien
meghatérozottak, Eszerint bérmely teljesen reducibilis elé-

dllitds egyértelmii médon bonthaté fel irreducibilis inekvi-
valens elfdllitdsok direkt 8sszegére.

2.2, Indulkdlt operdcidk és Hamilton-operdtor

Egy G ecsoport valamely D(g) mitrixel64llitdsdbsl



kénnyen megadhatunk egy tovébbi dbrdzoldst, ha az R elfdlli-
tdstér felett értelmezett négyzetesen integrdlhaté fiiggvénye=
ket is figyelembe vesszilk, MielStt azonban ezzel agz elfdlli-
tdssal foglalkoznink « a formldk dttekinthetlsége éréokﬁben -
célszerii bevezetni a D(g) =g Jjelslést, amellyel (2.1.3 )

alakba irhaté., Tekintsiik ezek utén az n-dimenzidés R komplex

vektortér felett értelmezett négyzetesen integrdlhaté komplex

fuggvények Lz(R) terét és Jelsljuk P(g)-vel ezt az operdcist,
amely I.z(R) Qor) eleméhes &

PP = Q(g'w) (2'.2;1;)
elemet rendeli. Ezeket ez L (R)-ben értelmezett P(g) ope-
rétorokat - a D(g) métrixok ditel < ima ukdlt ope~
r &d ¢ 1 6 knak nevezziik, Kénnyen beldthatd [z], hogy ezek az
operdcick G egy Lo(R)-bell dbrdzoldsst adjék, mig a ¥(g)
operdecidk linedris é; uniter tuls jdonsdgénak bizonyitésaj, sem
Jelent kiildndsebbd nehézséget;

Az indukédlt operdcidk uniter tulsjdonsdgdinak fontos ki-
vetkezménye van; Tekintsiink ugyanis egy olysn S linedris,
Snad jungdlt operédtort, smely P{g)evel felcserélhetl, azez: -

P@S =5SP(@q) . (2.2.2,)
Tegyiik fel tovdbbé, hogy S diszkrét spektrumu operdtor, és

8, sajitértékéhez p szdmu linedrisan fliggetlen sajitfiggvény
tartozik, azaz s pe-szeresen degenerdlt . Jeldljik a sajite
fuggvényeket . =rel (i = 1,...,p), amelyekre tehdt:



Sq® = 5, (benn, ey (202030)

Az S linedris volta miatt a Y figegvények mellett bdrmely

Q= i .y (2.2.4.)
alaku linesdrkombindcié is kielégiti a (2;2.3.) sajétérték-
egyenletet, vagyls minden (2.2;4.) sleku fliggvény ez s -hez
tertozd sajétfiiggvény. Bzek a fliggvények a négyzetesen in-
tegrdlhaté fiiggvények terdben egy p-dimenzidés S-sel szemben
negengedett lineédris alteret képeznek, smelyet a t?r“’

(1 =1,...,p) bézisok feszitenek ki, Est as alteret s tovéds
biakban az S'operétor S, sajédtértékéhez tartozé s a J & t -
%t é rnek fogjuk nevesni.

Alkalmezzunk a (2 .2.3 ) sajdtértékproblémira egy P{g)
induk4lt operdeist:

P@)SEY = SPPY” = 5 PP (L= Al P ).

EbbSl az Gsszefiiggésbbl leolvashaté, hogy minden «” fligge
vény esetén a P4 = ¢V gk) is az s, sajitértékhes tertozik,
kvetkezésképpen elfdllithatd a sgjdtteret kifeszitd bdzisok

PR = EE‘ Cl DG e i 8
alaku linedrkombindecié jaként., Egyben latjuk azt is, hogy e
cn(g? elemekb8l 4116 C = (°k1) métrix mind o P(g}, mind
pedig g egy uniter mdtrixelddllitdsdt adja. Ha a sajdttér a
P(g) operdeidkkal szemben reducibilis, akkor P(g)~k uniter
voli;a miatt teljesen reducibilis, igy a _2_,_;_,_ poniban mondote-
tak szerint a sajdttérbe az eredeti ¢~ bdzisok helyett
hasonlésdgl transzformdciével olysn uj bédzisokat lehet be~



vezetni, amelyekre vonatkoztetva a sajdttér irreducibilis
alterek direkt Ssszege, a P(g)=ket dbrézolé mitrixok pedig
(2.1.4.) alekuak, '

A;<eddigi eredmények egy teljesen reducibilis elddlli-
tds kiredukdlésénak a médjét lényegében mér magukbe foglale
Jék, de eddigi formuldink még expliciie nem adnak felvildgoe
sitdst arra, hogy egy reducibilis térbe hogyan lehet azokat a
bdzisokat bevezetni, smelyek az irreducibilis altereket fe-
szitik ki; Erre vonatkoznak az aldbbi OGsszefliggések:

Jeldl jik az ni-'di.nenzids i-edik irreducibilis alteret
kifeszité = egyeldre ismeretlen - bézisfiiggvényeket V.. A -
-vel és legyen ebben az altérben D(")(g) P(g) operdcié
métrixel6sllitésa. Ha valemelyik .’ bézisra P(g )=t alkal-

mazzuk, akkor a kivetkezd fliggvényt kapjuk eredményiil:
mg i e B
P = Lo%ut . (2.2.5.)
Azokat = ~\/;'“’ fiiggvényeket, amelyekre ez az Ssszefliggds tel=-
Jesiil, az i=dik irreducibilis eld4dilitds k-adik sordhoz
tartozdénak nevezzik,
Bebizonyithaté [2] tovébbs, hogy bérmely F(eL2(R))
fliggvénybdl szdrmaztatott

§ -5 TP (2.2.6.)
figgvény kielégiti a (2.2.5,) Bsszefiiggést, vegyls az ily
médon nyert nem zérus &’ figgvény az i-edik irreducibilis
elé4llitds keadik sordhoz tertozik, mds szével ennek a tér-
nek egy bézisa. A (2.2 .6;) Beszefiiggés tehdt a bdzisok fel-

keresésére alkalmes formula, emelynek alkalmazdsdihoz lényeges



kihengsulyozni, hogy minden F esetén létezik olysn i és k,
amellyel (2.2.6.) nem zérus eredményre vezet; Bér a (2;2 ;6;)
formula az asszex; bézis felkeresésére alkalmzs, sbban az
esetben, ha (2.2,6.) segitségével egy bizist mér meghatéroz-
tunk, eélszeribb a (’2.2 +5.)=b81 kis dtelekitdssel nyerhets,
gyorsabban eredményre veae‘l;d

()

= %-%ﬁ‘fve&q%ﬁ“’ (2.2.7.)
bsszefiiggés aogitaéaéyal a t8bbi bdzist mghatérozni;
Bebizonyithaté [2], hogy azok a bdzisok, amelyek kii=
16nb8zd irreducibilis elfdllitdshoz, vagy ugyanazon irredu-
ecibilis elddllitds kiilénbdzb sordhoz tartoznak, ertogondlissk
egymdsra, Lényegében ez a tétel teszl célszeriivé az eldzlk-
ben térgyalt eredmények alkelmazdsdt kvantumkémiei szdmitdsok-
ndl. Vegyilk ugyanis figyelembe, hogy egy molekuldris probléma
Hamilton-operdtora a molekula konfigurdeidjéhoz tertozé szime
metriscsoportra nézve {2;2 .2;) értelenben ssimsetrikus, Ennek
kévetkeztében a Hamiltonwoperétorra, 111; a szimmetriacso-
portra alkelmaghaték el6z§ eredményeink, amelynek Jjelentdsége
akkor ldtszik teljes mértdkben, ha ezt a molekulapdlydk
megszerkesztésének probléms jéval Osazekapcsol.jnk; Az MO=-k
felépitésénél abbdl indulunk ki, hogy bizonyos szdmu atomi
pdlydt bizonyos fizikai meggondoldsok alapjén kivdlasztunk, s
belflilk linedrkombindciéval MO-kat készitlink, Az energiasa=
jétértékeket akkor (1;2 «3.) tipusu szekuldris egyenletbsl
nyerjiik, Az elvégezendd szémoléai manke azonban lényegesen
egyszeriisithetd akkor, ha az L°(R) ¢ -k dltal kifeszitett



alterében a konfiguedeid szimmetriscsoportje dltel indukdlt
operfecidk métrixelddllitdsédt megedjuk és ezt a kordbbiakban
részletezett eljirdssal kiredukﬁljuk; A kiredukéldssal az
eredeti . <kb8l olyan uj fliggvények nyerhetlk, amelyek
egy=egy irreducibilis elfdllitde egy-egy sorshoz tartoznak;
Amennyiben az MO-kat ezekbSl az uj bézisokbdsl épitjik fel, az
ortogenalitds miatt t&bb niJ 111. Sid»intqgrél eltiinik, s
kénnyen ldthaté, hogy ekkor a szekuldris determindns alacso=
nysbbrendii determindnsck szorzatdira esik szét, amelybdl az
energiasajitértékek meghatdrozdsa egyszeriibben végezhetd el;

%3.8. A SAJATERTEKPROBLEMAK FELIRASA

3.1. A koordindcids kités

A kémia fe jlédésének mér meglehetdsen kezdeti szaka-
szfban észrevették, hogy bizonyos, egyébként dndllden is 1lé-
tezb vegyliletek egymissal kepcsoldédhetnak és uj vegyliletet,
u.n,. nolekulavegyﬁletet.alkothatnak;vAz ilyen molekulavegylie
letek kdrébe tartoznak a komplex vegyliletek is, amelyek két
vagy tobb kémial értelemben telitett vegylilet egymisrshatise-
kor jonnek létre, mikizben az alkotérészek eredeti tulaj-
donsdgei (pl. vezetlképesség, oldhatésdg stb.) kiilénbdzs
mértékii vdltozdson mennek ét; A kémidbsn a kmﬁplex vegylilete=
ket mds Osszetett ionoktél stabilitdsuk 111;;disszociéciéé
Jjuk alapjin hatédrol jik el t4], emellett szdmos gyakbrlati
médszer alkelmas a komplexképzddés felismerésére.



A komplex vegyliletek Werner-féle elmélete in alap jén
a komplex vegyiileteket felépits atomokat két csoportra, u.n;
vezetre szokds feloszteni, Az egylik Uvezetbe sorodjuk azo-
kat az atomokat, amelyek egy = kizépponti helyet elfoglels,
8 & komplex vegyiilet Jjellegét és legfébb tulajdonsdgait
meghatérozé = u.n; ecentrdlis ion, vagy mag kiril helyezkednek
el meghatédrozott geometriai slakzatben, mig a misik Svezetbe
a8z eldébbi Bvezeten kiviil elhelyezkedd atomokat sorol.juk; A
kozponti atom kiril kislekulé elsé Svezetet kitési szPérss
nak, vegy koordindcidés Bvnek, a mdsodik kbtési Bvezetet
pedig ionogén szférinak szokds nevonni‘.‘ Ez utébbi elnevezés-
sel arra utalunk, hogy az ebben a szférdban helyet foglalé
ionok a koordindecidés 6vtll kénnyen levdlaszthatdk.

Természetesen egy centrdlis ion kiriil nemcsak atomok,
hanem atomesoportok, esetleg ionok is olhelyezhdhetnek; Az
elsé kitésl Gvezmetbe, vagy koordindciés Svbe tartozd atomo-
kat, atomesoportokat, esetleg ionoka‘t ligandoknak vegy lie
g andumoknak, ezek szdmit pedig koordindciés szdmnak neveze
:ﬁk; A koordindcidés szdm nagysdga elslsorban a centrdlis
atom kémiai sajdtsdgeitél és geometriai méreteitfl, misod-
sorban a ligendok sajdtsdgaitsl fu,gg; Ha a koordindeids
Svben & centrdlis atom kiriil helyet foglalé ligandok széma
megegyezik am illetd kapcsolatra nézve megdllepitott koor-
dindeidés szémmel, akkor koordindtive telitett vegylletrsl
beszéliink .

A koordindeids 8vin belil a ligandok kdzdépponti atom-
hoz valé kapcsoldéddsa kiillsnbizs természetii és erdsségii
kémiai kotésekkel johet létre, amelyek Jjellege 111; erds-



sége fokozatos dtmenetet mutathat az ionos és kovelens ki-
tésjelleg 111, viszonylag gyengébb vagy erdsebd atomkapesoe
l6désok kdzttt. A komplex vegyiiletek nagyobb része a kovalens
kitésii vegyiiletek csoportjdba tertozik. A koordindcids ke
tés elmélete szerint t4] egy komplex vegylilet kovalens kbe
téssel akkor johet létre, ha & ligasndokon vannak kdtésben
részt nem vevlé elektronpérok s @& centrdlis atom rendelkezik
be nem t5ltdtt atomi pélyékkel; Ebben az esetben a kités oly
médon Jjon létre, hogy a ligendok ezeket a még nem k&té
elektronokat leadjédk, s kovalens médon stabllis k&tést ale-
kitenak ki, A pdlydk és sz elektronszdimok wvizsgdlata azt
mitatja, hogy akkor képzddnek kiildndsen stabilis komplexek,
ha a ligandoktdl szdrmazé elektronokksl a centrdlis atom
k8ril nemesgdz-~konfigurdcidnak megfeleld szému elektron fog-
lal helyet . A koordindcidés kités rdviden véazolt Sidgwicke
Pauling-féle elméletének Jjelentlsége =avele szemben fel-
vetheté hidnyossdgok mellett - sbben van, hogy ezéltal a
kémiai kbtés fogalmo egységes képet nyer, minek kivetkez-
tében a kordbban bevezetett kiilonbdzé tipusu fé- és mellék-
vegyértékek feltételezése sziikségtelennéd vélik;

B2+ Modellalkotds

A vizsgilendé Ky és Ké komplexionokban szerepld hée
romszorossn ionizdlt, hatos koordindcidju Co (III) ionok
- mint centrum - kiril sz amménia molekuldk és a ﬁidat ale
koté hidroxilionok okteéderszimmetrikusen helyezkednek el,
8 az oktaéderek xi-nél egy €1, Ké-nél pedig egy lap mentén



kapesolédnak egymdshoz, A kdzbds €1 111, laphoz tartozé
esucsokon hidroxilionok helyezkednek el (1. dbra).

1. dbra

A tovdbbiakben ezt az elrendezddést kettls-oktgéderszimmet-
rikusnak fogjuk nevezni; Ha feltételezziik, hogy a ligandok a
kézépponti Co=ionokat valamennyien érintik, skkor az ionsuga=
rakra vonatkozé irodalmi adatokat £5] felhaszndlva azt kape-
juk, hogy sz NH, molekuldk Neatomjinek magja a Co-ionoktél
1,92 %, ez OH gydkisk O-atomjinak megJa pedig 1,88 & tdvol-
sdgra helyezkednek el, A ligend-centrdlis ion tdvolsdgokban

adédé ezen kis eltérés (0,04 &) miatt a komplexek konfigurd-
ciéja kis mértékben eltér a kettds-oktadderszimmetridtsl.

Ez azonban a tovédbbi szimitdsokra nincs kiildndsebb kihatdssal,
mert az utébbi geometriai alakzat szimmetriatulsjdonsdgai



tel jesen megegyeznek a kettds-oktaéder szimmetriatulajdonsd-
geaival,

A komplexionok kttéseire vonatkozdan feltételeszziik, hogy
a k8tést a centrdlis ionok és ligandok azon - nulladik kizeli-
tésben kblcstnhatdsban nem lévének tekinthetl - valencia-
elektronjai hozzdk létre, amelyek a komplexek kialakuldsa
elftt kdtésben nem vettek részt; Ennek megfelelfen a kbtés
1étrehozdsét a centrdlis Co (III) & 3a° kileé elektronszerke=
zgettel biré = ionok hat 3d, az m.5 molekuldk kettd, valeamint
az OH-gydkdk négy kitésben részt nem vevd elektronjainask
tulajdonitjuk. Hogy a ligandok valéban ennyi elektronnal
vesznek részt a kités kialakitdsdban, azt nagymértékben
plauzibilissé teszi az is, hqgy ilyen kiriilmények kbzitt a
mélyebb, betsltstt Co<hdjek £516tt a*0s2p® tipusu konfiguré-
cié alakul ki, amely éppen egy nemesgdzkonfigurdcidnak felel
meg. Ha a kiitésben résztvevd elektronok szdimit az eldzd fele
tevések alapjén szdmoljuk Ossze, akkor mindkét komplex ese-
tén 36 elektront kapunk eredményfil.

Ezek a kilcstnhatdsbman nem lévének tekintett elekiro-
nok az l,1, pentban mondottaknak megfelelSen a komplexek
kialakuldsa utdn a Pauli-elvet kivetve egy-egy molekulapé-
lyén helyezkednek el, s ha az atommsgokat a tdbbi elektron-
nal egylitt régzitettnek tekintjiik, akkor ezen elektronok
Sssgenergidja & komplexek energidit ad;]ék; Ha a ligandok
esetén eltekintiink attél, hogy ezek mint molekuldk vesznek
részt a komplexek kislakitdséban, s a ligandok molekulapd-
lyéi helyett kbzelitden N 111; 0 atomi pédlydkat haszndlunk



a komplexek molekulapdlydinak felépitésére, skkor sz elektiroe
nok rendelkezésére 8116 molekulapdlydk megszerkesztésénél
elsGsorban a Co (III.) 6t 3d, egy 4s, hérom 4p; az OHegybk
O=-atomjénak héroni 2p, Jvégﬁl az 1m5 molekula Neatomjdnsk egy
2p stomi pdlydjét kell figyelembe venniink, A tovdbbiakban
ezeket az etomi pdlydkat fogjuk slapul vdlasztani a molekue
lapdlydk megszerkesztésénél, megjegyezve, hogy tSbb atomi
pédlya figyelembevétele esetén a tapasztalattal Jobban egyezd
eredményekhez lehet jutni, viszont az elvégzendd§ szdmitdsok
Jelentlsén megnidvekednek, Felhaszndlva a szimitdsok sordn
nyert azon eredményt, miszerint Klv—nél az O=atom Co=0 ki
téstengelyre merdleges atomi pdlya a kiitésben nem vesz
részt, Kl-nél elegendd két oxigén-pdlyét figyelembevenni,
igy a molekulapédlydkat Kl-"-aél 30, Kzonél pedig 33 Slateri“-"
tipusu atomi pdlya linedrkombindcidibél fogjuk felépiteni,

A komplexionokban kialekuld kdtéseknek megfelelden a
ligandok atomi pdlydit az 1; dbrdn vektorokkal dbrdzoltuk,
emelyek egyben egy-egy ligandhoz tertozé koordindtarendszer
tengelyeit is Jjelentik. A ligsndok és a centrdlis ionok
atomi pdlydit egymdstél az &brén feltiintetett sorszdmok se-
gikségével fogjuk megkiildnbbztetni oly médon, hogy a meg-
feleld sorszémot az atomi pdlya argumentamdba, s ha sziikséges,
skkor az atom jelét is indexként az atomi pdlya mellé uduk;
tey 33w sgyes sevsudaa 0% fan 4p, atomi palydjét pC°(1),
o hérmas sorszéma N atom 2p, atomi pdlydjit pi(3) jellel :
fogjuk jeldlni, ha azonban az atomi pédlya hdvatnz"tozésa
nyilvénvelé, ekkor sz atom Jelét nem fogjuk feltiintetni.



3¢5+ A komplexek szimmetriacsoportjai

Vegyiiik fel ez 1. dbrédn ldthaté médon egy~egy Jjobbe-
sodrdsu koordindtarendszert, és vizsgdljuk meg azon szime
metriasoperdcidk Osszességét, emelyek a konfigurdcidkat
onmagukiba viszik &t,. Kézvetleniil beldthaté, hogy ezek sz
operdcidk a milveletek egymis utdn térténé végrehajtipdra
- mint szorzdsra - nézve csoportot alkotnak, amelyet az
illet6 konfigurédcié s zimmetriacsoporte-
Jjénak szokds nevezni;

A Ky konfigurdcidét Snmegsba dtvivé szimmetriamiive—
letek a kivetkezlbks

E : didentikus operdciéd

C’Z‘ s x tengely kdrili 180%-os forgstis

¢} : y tengely koriili 180%-0s forgatds

c; s 2z tengely kirili 180%0s forgatds

i : a koordindtarendszer origdjén 4t vald tilkrdzés
6..t (x,y) sikra valé tikrzés

G .3 (x,ai sikra valé tikrozés

6 o ut (y,sj sikra valé tikrozés

A fenti szimmetriamiiveletekbdl 4116 szimmetriacsoportot
Dy =val szokds Jjeldlni iGI; Kénnyen ellenérizhetd, hogy
DZh. Abel~-féle csoport, kivetkezésképpen az egymédshoz
konjugdlt elemekbdl 4116 osztdlyok g széma megegyezik a
esoport (h = 8) rendjével. Ekkor sgonban a (2.1 ;7.) Bsz-
szefliggésbbl kévetkezik, hogy Dgy,=-nak nyole trreduc;ibilio



métrixelddllitdsa ven, smelyek mindegyike (2.1.8.) miatt
e:gydi.mentiéu. Bzeket oz egydimenzids elﬁéllitésokét Dgh-nak
az 1. %tdbldzatben megadott karskterrendszerébfl [6] kiz=-
vetleniil leolvashatjuk.

1, tdbléazat

. z
D 2h . E ° cg © cg ® cz . i » © Xy *® 6 Xz * 6 yz
Alﬂ A i 1 i 1 1 3
818 ° 1 "’1 "‘1 1 1 1 -1 —-1
Blu e 1 =1 -1 : 3 -1 -1 1 i
Bzg « 1 -1 1 -l 3 -1 1 -1
BZ& e 1 -1 1 -1 ~1 1 -1
5,5& « X =1 -1 1 -1 -1

A K2 konfigurdcidt dnmegdba 4tvivld szimmetriamiivele-
tek a kbvetkez Sk:

E 3 didentikus operdd é

ct : 2z tengely kbriilli, x—y irdnyu 120%0s forgatés

€S : % tengely koriili, x— =y irdnyu 120%0s forgatss

GZ, : Oj-et tartalmazs, Q—;ﬁgora merdleges tengely koriili
180%o0s forgatds

2 ¢ 0,°t tertalmasé, 0,0,-ra mersleges tengely kbrdli 180°-
os forgatéds

2 3 0,-t tertslmazs, 0,0,-re meréleges tengely korili 180°%=

os forgatds



6w 8 a2 (x,y) sikra valé tikrdzés
: az (x,y—j sikra valé tikrtzés, majd a z tengely kdriil
X—3 ixl'én-yba torténs 120%-0s forgatéds
: az (x,y) sikra vald tikrdzés, majd & z tengely kdriil
X — =y irényba't&rtén5 120%0s forgatds
6y 3 Ole-et tartalmezé, 55(—)3-:'& merdieges sikon valé tiikrszés
S} 023'"‘ tartalmazd, @Bora meréfleges sikon vald tiikrdzés

623 oS-t tartalmezé, 0,0,~re meréleges sikon vald tikrdzés

A fenti szimmetriamiiveletekbdl 4116 szimmetriacsoportot
Dshdval szokds Jeldlni i'n. Ez a csoport a szorzdsra nézve
ndr nem kommitativ < tehst DSh nem Abel~féle -, s lgannyon
beldthaté, hogy Dshinak hat_ kondnsﬂt osztélys van, Ennek
megfelelden a (2.1.7.), (2.1.8.) Seszefiggésekbll kivetkezik,
hogy Dsh-*-nak négy eyéimenziéa és 'két kétdimenzids irredu~
cibilis uétrixelGéllitésq 1létezik, DBh karakterrendszerét a
2. tébldzat tertalmazza [T77].

2. tédblézat

sn* B 203 «3C; o &, . 285 .36,

U T RS T TR
T SR | A a A
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e +1 3 B\ @A/ &/ 3
B .2 B o z n @
£ .2 . @ =2 1 »



Ebbél a tdbldzatbdl az egydimenzids irreducibilis métrixeld-
éllitdsok kdzvetleniil leolvanhatdk; A kétdimenziés irreducibi-
1is mitrixelddllitdsoket el kellett késziteni; Egy ilyen eld=-
dl1litds a kbvetkezf:

:-—5—" °] Gt | gl C;=S5, i 2
ks 5T Yy T |3 4 3= T3

;o A i Li 2 3 Lib -%.J

( (v B [ B )

A__ ik ] % 'O A i | fEg. = 5. .5 |- %

C,_—Gv— & ] C,.—Gv— Boq ] C,=6,= B L

\ i 2 2 L 2 2.

Kézvetleniil ldthaté, hogy ez az el8d4llitds sz E’-nek felel
meg. A% E kerskterekkel rendelkezd métrixel6sllitdst ez E'-
héz tertozd elddllitdsbél oly médon nyerhet jik, hogy a esoport
elsé hat eleméhez oz elébbi métrixokat, a tovdbbi hat elemhiaz
pedig rendre ezek ~i-azoeresét rendeljﬁk;

3.4, A sajitterek kiredukdléss

Tekintsiik a 3,2, pontban kivdlasztott 70 111; 3% atomi
pélyst as L2(R)stér egy 30 111, 33 dimenzids altere béziseinak,
ahol aa R Jcle’ntsc a héromdimenziés Euklidesi terot; Jeldsl jik
ezeket az altereket "30 ill1. L”-nal. l'?:e_kben az alterekben a
DZh ill., D3h szimmetriacsoportok = a 3,5.-ban megadott szim=
metriamiveleteknek az Reben vald értelmezésén keresz tiil - mege
hatérozott induksli operdcidkat definidlnsk, smelyeknek meg=
feleld métrixok a szimmetriscsoportok egy teljesen reducibilis
ébrézoldsét adjék. Ezen mitrixok elakje a P(g) indukélt operd-
¢iék hatdsdt tartelmezé 3. 111, 4. tdblizatokbél leolvashaték,

Minthogy ezen P(g) indukdlt operdcickkel szemben K, és
K, Hemilton-operdtora nyilvdnveléen (2.2.2.) értelemben



J.tablazat (K]

Pigi-k hatasa | E o C. C. t | Guy | Gex | Gy
s (1) 5 () s (2) s(2) s () 5(2) s (2) s ) s ()
S(2) s (2) S(4) s 5(2) s 5 ) S (2) s(2)
Pe() | Pel | P ] -pe(2) | -Pe () | -pa@V | pu2) | pet) | —pato
e Pe(2) Pxli) | =P (4) —Px (2) | —pa(1) Px4) P« (2) -Px(2)
Py (1) Py W) Py ) |=py(2) -py (O Py (2) | =Py (2) | —p, (4) Py ()
Py (2) Py (2) Py) | —py 1) —Py (2) | Pyth) | =Py (4) [ —py(2) Py(2)
Pa W) =MC) P=(2) P= (2) P= (O Px(2) Pz (2) P: (1) P=
Pe® | pe@) | pa(t | path) | pa@ | path) | putd) | po2) | pata)
Co Do) | ey | day@ | diy(2) | eyt | -Cey@) -duy @] ~dyy (1) | chy )
dey(@) | dey@) | duy (0 | duy () | diay(@) | =Buyt)] =duy )| -, (2)] —dyy (@
dea) | diz(t) | i@ | -Auz @) | ~dye | =z dee(@ | duelh) | ~dhxtt)
dr @) | dve@ dee ™ | =die M) | —de@)| —duxth| deel® | due@ | =ue(2)
dyz(1) | duz(0) | dye@ | =dys )| ~dye® | dye@)| -dya@ | ~dyelh | dye0)
dy(2) | da@ | dye™ | -dua (| ~diu@)| dyeth)| =dye )| ~dys@| dye@
davye ()| dyeye () | dur ()| D (D) droye (| oy (2) Aueyt )| A () | oy (0
dyroye@)] dit-g @) iyt ()] duneyr ()| Aot )] it )] At ()| a0 @)] Do 2)
de() | det| de@| de@| du| de| dee)| deet)| duth)
de(2)| du@ | det| duth| duef det)| dat| du@)| du
P | pet) | Pel | Pe® | PelZ) | p ()| p (0 | p ) | pet2)
P2 | Px@ | PG peld | pel) | picn | pe(3) | pe@) | pett)
Pe(3 | Pef® | pe@ ] p) [ palh Pt | pal2) | p(3) | et
Pzl | pelt p=() | P2 | pz® | pa2) | pyih) pe) | pe(®
" Pe(3) | Pal® | P3| P8 pell) | PN | pth | pe(€) | pet5)
Pe(6) | pet®) | Pel® | po® | pu(8) | pu® | pun | P2 | pue
Pe(¥F | pat¥) | PalS)]| pel6) | Pel®) | peld) | pul€) | put®) | pet¥
P | P | Pe@| P8 | P | pate) | pu® | pat® | px(d
Pt | P | pe) | pe@) | P2V ] pa) | el | et | pe)
g [LPe® | P2t | P Pet] P ] P | patt | Pt putt |
P | p) | P | P | Pl | pacal | ot | Pt | pe
P=2) | px) | pe) | Pl pat | peth | pe@) | pett | peh)
spurok 30 0 0 2 ° - 1 "0
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C.

s s S s(2) 5(2) 5(2)
S(2) S(2) s(2) s(2) S5 s(4) S(4)
i
Py (1) Pt [-ipaw pgny | 4 p-(l)—gp'(” Px (2) “iP"”'{EP’m _%P‘(,_ng,m
px(2) Pe2 | -4 p,m—Ep\,m . | p,(z',+—'3p @) ) [} u,.;ﬁ | -4 m—ﬁp ()]
£2 Y 2 z 2Py Pl -1 Ps 2 Py =3 P= Pl ]
py (1 =MSY -{p,u)—‘,_zp-m _.%p,uni} Px () Py @ _Jip,u)«;.g'p.(z) -%p,(z -1'-,_3 Px(2)
P2 | Py® —%P-.“Hg P«(2)| -3 p, (“‘%P"“ Pyt | -fpy “"jzi P (-1 Py w+Fpa.n
Pa( Pzt P=(4) P P=(2) P (2) P
Pe(2) p=(2) P (2) p=(2) pe (0 Pz () Pet4)
1 s 10
Co dyy () d, -Td,,un{:d,-.,;m_%d_gu)_gdww diy@) | -4,y @3 da o4 d,,(m%d.-_ L0
s 5
dey@ | d, 2 -%d,,(z)--;d.h,-m-{d.,m'r'%d-w“’ Ay |4 FINOTE NG ~dn-Edagw
L5}
dx‘ 1) dxt [€)} -%d,‘(ﬂ +%dgz(n —-‘idlgu)'fd!‘u) dll.u-) -%du(n_gd\ll(") -%dlg(n‘}%dﬁ‘u)
dez(2) | dee(2) -{d,gzm-%d,‘m —{-d.‘(m‘{-d,.m dee ) |44, 048 dpc _%d.,u)-%d,.m
Ayt | dytt) FEdu-Edl L dwsfdew | dy idgaardiew L4 d,@-Zda@
dye @) | dyat@ L4 dyen 8da@|-4d, @-Fdrad)| g, -4 dye (-t 24, w4 E detn
iy @ | dp g 4deyg-Bdyl 4d, g+ Ede| g,y L g0 By @4 d g - F e
Ao @ | dpp g @2 g1 @ 40 0-Fey @ Ao () [ 4 g -F iy 0] 2 o, 04 By
dpa) | da dz da dgz(2) dga @) da@
da@) | da@ dz@ da @) de ) detn d2()
P ) P,.(n Pz (¢A] P= (3) p=(t) P=(5) Pz(&)
P‘(ZI P,_(Z) P“M p.(n P‘“) Pt P‘(S)

N qu) P‘”’ P,_(n P,_(l) p;(S) p=zt6) P,(M)
Pz(@ p= (9 P (5 pz(e) p= P=(2) Pz(®
Px(5) pe (5) P (&) [=HQ) P=(3 Pt P
P"(‘) P= (3] P‘(l.) P‘(S) p;(l) p‘(b) P‘Ul
pPx ) pPx Px (3) px(2) Py 0 Py (3 Pyt
p.(l\ p.(l) pPx P=(3) Py (® p,(z) P‘JU)
pPx (3 P,(s) pPx2) px() P,(i) Py P.,(Sl

O Py () py (0 Py ® pPy(2) Px (0 Px (3 Px @

Py (2 Py (2 Py ) P,(S) Px(3) Px(2) pxt0
Py (3! Py 3 Py (2) Py Px () Px () Px(3)
P | patd) Pe (3) px(2) -p=0 -pa(® -p=
pe (2) Px(2) P ) Pet® —pe(3) —pe(2) -pz
Pe (3 P‘(“ Pe 2) p,_u) -p=(2) PO —P‘("
spurok 3 o] 0 -4 -4 —4




L tablazat |

(

K

4

Pg)-k hats ) * 2 =2
@k halosg 5, S. S, G. G, G,
s s S(2) S (2) S0 s S
s(2) S s S 5(2) S(2) 5(2)
P‘“) P. (PA} —%P,(l)-gp’(l) —%P,(l\+§ P,(l\ p,(ﬁ _%P.u)+gp’ (7)) _{_P-(“_‘_zp‘(n
Pe(2) | patid _-;:p,(n-‘-gp,(u —ilp.(n-%p,m Pt -1Ps m-g Pstd) - fp. 0+ E p,@)
Psth | -py(2) {p,(z\-{f-p. @ | +py (z)+-‘,§p,(l) ~Pyt {-p.,uui}p,u) %p,(.,-lg Pe ()
1
Py (2) -Py 0 TP’HHIEP'(" {p,((l—g Pa ) | =py) {p, (n-gp.u_) %P, (L)+%p.(z\
P | pe(2) R(2) P2y Pett) Patd) Pa 0
P=(2) | patd) [=X({]] Pt P pP=(2) Pt
4 5 1
Co diy |-y @ |+ @4 Fdag@) £d,@1-Bdg | ~diyr | d, w0-Bd, 0| Ld, w+Ed, W
dy@ |-diy ) |4d, -5 dp g 4 dn+Edagn| —duy %d,,(mizi dp | £d,, @-Fd,.
deeth | d, @ --;:du(z)-% d,.@ |-+d.@+Bd,@ | d,.m -{-d,_un%d,.m -idaw-Ed,m
d..@ | dieth -+ d,gm%d,.m -4 d.‘(u-‘-}d,.w dee @ -‘td..(u-{! def-£d.. (zw‘;-i dye
de (o |-dg@ %d,‘a)—gdum $dye@+53d.c) | -dyetn | £dyato+ B doeo| £d e+ E dr
dy@ |-dg@ %d,‘uw%duw 1den-Bd. | —dpy {dpew-§d.of td.@+Edoc
d.‘_g‘(” d'l_!l (2) --i'd,p_g(lH-‘]_;-d.,(I-) —%dﬂ.f"‘)'g dl'(l) dﬂ.fu, —‘;_' Mu)-gd.,(‘) -%d,l_.‘a(‘){“;—id.g“,
Ayt ()| Auegt®) [~ £ dp pt-B o0l -t eyt B dyy ] d -4, L+ Ed, 0L e p@-2d, 0
dath | duc@ da (@ et (2) desto) du dan
der(2) | deat) da () deat) da@) de@ dus ()
pP=W p‘('ol P=(5) p,_(c) P=Ct) P2 P=(3
p=(2) P= (5) p=(© pP=() P=(3 Pt p=®
N P= (3 Pe(®) Pe p= (5! pet2) Pe(® p=tt)
p=t P‘“’ p=(2) Pg(!l pPetw p=(5 p=(&)
P._(S! Px(“ p._(:s) P‘“) p.,(&) p.(kl P‘(S)
P,_(c\ p,(!n P‘(” P,_u_) P‘(Sl Pz (@ Pt
P,u) Py ) py3) Py (¢A)] P,U) Ps (3 P.(L\
P. ) P’ (2) p,(n P"G) P<(3 p,(L\ P<
P.(S) Py (3) py@) py () Pxf2) Pa () Px (3
O P,H\ p,(n P~ (3 p,(L\ P,(H Py(3) Py (2
Py 2 | px2) Px ) P (3) Put3 Py Pyt
P‘!(” P,(B) Px(2) Px (4] P'(Z‘ Py P.,m
P,_(” P,_(“ Pz (3 Pe (@) ~peth) - Pe(® - pr(2)
ELTL)‘ M};—:(L) P,_(H P‘(Si ~Pe(® _P,_(z_) —patt)
PTU] VP;(-"‘ P=(2) pP= ) [~p=tt) -pe i) —Pat®
spurok 3 0 0 | 9 9 ‘ 9




szimmetrikus, Hera és a megfelell szimmetriecsoportra alkale
mazhaték g_,g,«ben megismert dltaldnos erodnényeink; Mint lit-
tuk, a2 kiredukdlds elsS lépését a teljesen reducibilis mét-
rixelddllitds kiredukdldsa képezi, amelyet a (2.1 ;9;) formula
slapjén kesdhetiink el. Ha a mitrixelssllitdsokst is L-lel 11,
a karaktertéblésato&an lgaunélt Jelekkel Jel81Jjiik, akkor az
alterekben elért L.:m ill. !-.” teljesen reducibilis elfdllité~
sok kiredukdldsdbdl a kivetkezl eredmények nyerhetdk:

Ligg = Thy 9By #4B, #4B ¥38, 4380 9By oy, 5 (3e4.1)
Lyg = GB* + 3BE'" + 54 + 5A%) + A} (5;@;2,%;)

Az irreducibilis altereket kifeszité bézisokat (z.z 6 ) és
(2.2.7 ) formulék slkalmezdséval lehet meghatdroszni, ezeket
agz 5, 111. 6. tébldazatok tertalmazzdk. A tovdbbiskban ezen uj
bézisfiggvények linedrkombindeisjaval fogjuk a komplexek
molekulapélydit ¢164114tent

4.8, A SAJATERTORPROBLIMAX MEGOLDASA

Ha a kiredukdldssal nyert 5; 311, 6; tébldzatokban sze-
replé flggvényekbsl alkokjuk meg a komplexek molekulapdlydit,
akkor oz (1;2.3;) szekulédris determindns a ,g_,g,»bm mondottake-
nak megfelelden ﬁacaonyahbmdﬁ determindnsok szorzatéra esik
uét; l_ugshtcubben, a Kl-“ihel tartozd szekuldris determindns
a (3.4.1.) felbontdsnsk megfelelBen két heted-, két negyed=,
két hmaéa és két claérgngﬁ, a K,=htz tertozé szekuldris
determinéns pedig a (3.4.2.) felbontdsnak megfelelden egy



5. tédblézat (Kl)

Co o N
d=2(1) +d=2(2) | pe(D) 42D+ p- () +p-@) | p=(1)+ p.(2)+ - (3) +-(4)
4 it )+ dale) P=(5) +p=(6)+p=(7) +p-(8)
" s(1)+5(2)
Pp=(1)+p=(2) |
Asu diy (1) +dxy (2)
Bia dey(1) — dry (2) i
d2(1) —d-2(2) 'p,\.(l)—px(2)—p:(1)+p:(2) p=(1)+p=(2) — p-(3) — p. (@)
By | et —deapl | P=(5) +p:(6) —p- () —p.(3)
s(1)—s(2) 1
p-()—p.(2)
B dxa(1) = dxx(2) P +pe@ =p=(D)=p:@) | p.(1)—p-(2) +p-(3) — p-(4)

Px(1) —px(2)

(I_v_—, ( l) - dy: (2)

|
l
|
|
[
|
|
i

p=(5) —p=(6) — p=(7) +p=(8)

Pia Py =py(2)
% dy=(1) + dy=(2) * p=(5) —p=(6)+p=(7) —p-(8)
=L py(1)+py(2)
A ! . _
B, d=(1) + de=(2) [P(D) = Px () +p-(D)—p=(2)| p.(1)— p.(2) — p- (3) +p-(4)
' (1) +pe(2) !
6. tiblézat (K,)
Co o N '
dz2(1) 1 d=2(2) (1) +py (1) +p(2) + P=-()+p=2)+p-(3) +
A s(1) +5(2) +2y(2)+p<B)+p.(3) +p=(4) +p-(5) +p-(6)
p=(1)+p=(2)
A5 p=(D)+p:=(2)+p-(3)
d2(1) — d-2(2) px()+p« @) +p(3) — p=()+p=(2) +p-(3) —
A s(1) —s(2) —py(D)—py(2) —py(3) —p:(4) —p:(5) —p=(6)
p=(1)—p=(2) 1
d2-y2(1) +d2-2(2) 2p(1)+2py (1) —p<(2) — 2p-()+2p-(4) — p=(2) —
ds=(1) 4 de=(2) =Py —p<(3)—py(3) —p=(3)—p:(5) — p=(6)
o px(1)+p(2) p=(2)—p:(3)
dey (1) — dy (2) Px(2)+py(2) —p<(3) —py(3)| P=(3) +p:(6) —p=(2) —p:=(5)
dy=(2) — dy=(1) p=(2)+p-(3) —2p-(1)
py(2)—py(1)
dey(1) +dey (2) Px()+py(3) —py(2) —px(3)| P=(2)+p:(6) — p-(3) —p:(5)
dy=(1) + dy=(2)
py()+py(2)
T o WS e R L e e S, W WS NI | MRS (O MM s, SRR e

dx2-y2(2) —dx2-y2(1)
dxz(l) —dxz (2)

2py(D) —2p () +p (@) +
+px(3)—py(2) —py (3)

2p=(1)—2p-(4) +p-(5) +
+p=(6) —p-(2) —p-(3)




hatod=-, hérom 8tdd- és egy elsdrendli determkndns szorzataként
411 elS. A tovibbi feladatot a benniik szerepld integrédlok
kiszdmitasa képezi.

4.1, Az &tfedési integrdlok kiszémitdsa

A 3,2, pontban mondottaknak megfelelSen a molekulapée=
lydkat Slater-tipusu atomi pdlydkbsl épitjik fel. A Slater-
figgvények [8]

‘ -

Rir) = Y‘m- . g ma. (4.1.1')

radidlis eloszldséban 2 az illetl atom rendszimdt, 6 a zdrt

hé jakon 1évé elektronoknak = mag potencidlterét ledrnyékold
hatdsét jellemzé drny ékoldsi tényezdét,
nazume,. effektiv fédkvantumszédmot,

8q pedig az atomi hosszegységet jelenti, A zoE Z -6 mm-i-
ség, azun, effektiv magtidltés értéke [9]

a Co (III) ion 3@ pdlydjéra 7,25, & 4s,4p pélyékra 5,10; az

. Neatom 2p‘pélyé,jéra 3,90; az O=atom 2p pdlydjéra pedig 4,55.
Az n effektiv flkvaniumszém értéke 1,2,%,4,5 fékvantumszdm
mellett rendre 1, 2, 3, 3,7 , 4. A _2_,_2_, pontban mondottak
alapjén kdnnyen beldthaté, hogy mindkét komplexben a Co-ionok
kdzéppont jainak tdvolsdga 2,6587 2; A ligand-ligand k&;csbnha—'-
tédsokat azok kicsinysége miatt figyelmen kiviil hagyJjuk. A
fenti adatok ismeretében a szekuldris determindnsok felirhaték,
amelyekben 5; 111, 6. tdbldzatbell fliggvényekblfl képezett SiJ
és ui j tipum; integrdlok lépnek fel. Tekintettel axrra, hogy

az 5. 111, 6. tdblézatban szerepld fliggvények Slater-fliggvények



linedrkombindeidi, az Sid 4tfeddsi integrilok kiszémitédsa
Slater-fiiggvényekbdl alkotott dtfedések kiszdmitisira vezetds
dik vissza. Ez utébbi intcgrdlok kiszimitdsa, ha az integrdle
ban szZerepld mindkét Sleter=fligavény effektiv fékvantumszdma
egész, elliptikus koordindkban, ha azonbon ez egyik fiiggvény
effektiv fékventumszdma tort (n=3,7), de a misik egész effeke
tiv fékvantumsziamu, akkor kétcentruﬁu koordindtdikban Iehetséges.
Ezek az integrdlok lényegébén tabelldzva vannsk ile;

Az elébbi integrdlok mellett mindkét komplexnél fellépe
nek olyan integrdlok is, amelyekben mindkét Slater-fiigevény
effektiv fékventumszéme tért. Ez az eset a centrdlis ionok
(4s, 4s), (4p, 4p), (4s, 4p) 4tfedéseiben fordul 016; Az ilyen
tipusu étfbdéaek iiszémitésé az eldz6 médszerrel nem lehet-
séges, ezért ezeknek az dtfedéseknek a kiszdmitisdra kizelitd
médszert kellett megadni, Evéghdl a 3,7 effektiv fékvantume
szdmu 48, 4p stomi pdlydket egész effektiv fékvantumszdmu
Slater-fiiggvények linedrkombindeidje alakjdban dllitottuk eld,
8 2 linedrkombindeids egyltthatdkat sbbél a feltételbSl haté-
roztuk meg, hogy a kézelitd flggvény és a 4s, 4p Slatere
fliggvény kiildnbségének mégyzetintegralje minimédlis lagyen;

Ha a 4s, 4p atomi pdlydk radidlis részét az

R = (QF+ ayr*+ o » o). %"

flggvénnyel kdgelitjiik, (ahol qzaze/nab) akkor az

©So
2 _2«xva ‘
\ L~ (o + o + 0,2 +a, )] @ ¥ar = min.

o

feltételbdl s linedrkombindcids egylitthatdk értékére a kivet-
kezlket lehet nyerni:



ay = =0,047 530
= 0,360 146
= 0,728 295

®2
s
a, = 0,041 617

A kbzelités mértékére kbvetkeztetni lechet pl; ely médon, hegy
ezzel a kizelitd fiiggvénnyel egzektul is kiszdmithatd dtfedést
hatirozunk meg. Ilyen vizsgdlatokbdl az adédott, hogy a kize-
lités a kompiexekben eldfforduld kitéstdvolsdgok értékeinél négy
értékes jegynél nem rosszebb, sét (4s, 2p6 ) tipusu &tfedds
esetén = o= 2,6 és R = 1,927 £ mellett - a kbze1its fliggvény=
nyel nyert {0,398 686) érték a kizvetlentil szdmitott (0,398 685)
értékkel wég Jobban mégegyezett; v
Az 5. il11l, 6, tébldzatbeli fliggvényckbll kipezett atfedési
integrédlok értékei a kivetkezbk:

Ky Mg - By,

513 0,045 31 =0,070 81
S14 -0,070 36 0,114 71
Sy5 0,120 28 0,025 24
516 0,052 40 0,054 66
Si7 =0,104 81 =0,109 33
Sog 0,042 31 =0,127 67
Sog 0,092 55 0,092 77
So7 -0,185 11 -0,185 55
Ss4 +  =0,298 13 0,698 08
Sx5 0,155 75 =0,233 35
846 0,205 56 0,307 96
Ssq 0,205 56 0,307 96
845 -0,251 66 0,078 78
S 0,185 65 0,290 17



33

| 3'28 Bau
Beo 0,062 96 -0,048 75
Sy 0,171 52 =0,168 30
8,4 0,187 10 0,183 60
Sps « 0,342 22 0,054 09
S,4 0,252 46 0,199 20

Boy Bsg
s -0,048 75 0,062 96
Bay 0,281 71 0,357 03
Ky A A'3
815 0,045 31 -0,070 81
8y -0,070 36 0,114 71
8, 0,147 31 =0,030 92
e 0,064 18 0,066 95
Sp =0,298 13 0,698 08
S 0,190 75 0,285 77
By 0,251 76 0,377 18
Beo ~0,308 22 +0,096 49
835 0,227 38 0,355 38

E’ E’!,
814 0,018 32 ~0,055 28
S)s 0,036 83 0,040 17
S1¢ -0,040 08 %
S2 0,048 75 0,062 96
" 0,145 75 =0,148 54
Sos 0,073 06 0,162 04
8.6 0,159 00 3
By, -0,046 84 0,296 37
Syg =0,187 01 0,218 64
S 0,172 51 z



A tdbldézatban nem szerepld integrdlok kizil minden iere
Sj'1 = 1, a tdbbi integrdl pedig zérus.

4024 By J tipusu integrdlok kiszdmitdsa

Az uj bdzisfliggvényekbsl képezett H, 3 tipusu integrdlok
kisgémitdsdra Wolfasberg és Helmholtz atomi pdlydk dtfedéseire

vonatkozé
hys = 0,5°Fy8y, 0‘1& + hyy) (4».2-.1.)

félempirikus kdzelitd formuldjat Ell] hasznédljuk fel, smelyben
8 4 @ megfelels Slater-féle atomi pdlydkbél alkotott dtfedési
integrdl, Fx varidciés paraméter, hu ili. h 3 J'podlg a megfe=
lels atomi pdlydhoz tartozé ionizdeids emergia. A szdmités
sokban az ionizdcids energidra a Co 4& pélyd ja esetén 37,84 eV,
4p pélydja esetén 4,08 eV, 3d pdlydja esetén =9,%8 eV [121;
az N 2p pdlydja esetén =13,81 eV; végil az O 2pstipusu
pﬂ\yéaa esetén «11,24 eV, 2prpdlydja esetén pedig «10,54 eV
il}] értéket vessiink figyolcmbcr; Az Zl‘x varidcids paraméter
drtékg '6‘ tipusu kitésekre 2,20, x tipusu kitésekre pedig

2,65 [9]. Bzeket figyelembevéve o Hy § tipusu integralok értés
keire az alédbbiak nyerhetdk:

. S Me . B1u
nll ) - 9.836 ® - 8,884
By . - 9,417 . - 9,343
Ny & £10,448 b s 1,986
Hy, = 5,526 . = 0,548
By o =11,24 . 11,24
B - <13,81 . <13,81
Er' B "13’81 El ‘13’81
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K, - Alg Blu
Hys o = 0,858 3 1,341 4
B, - 1,007 s 1,698
Hyg + = 2,99 - 0,852
316 . - 1,33%6 8 - 1,394
By » 2,673 6 2,789
Hys » = 0,801 09 5,054
Hyg o+ = 2,361 s 2,367
327 . 4,722 4,733
334 - 3,909 - 9,153
Hyg = = 5,269 4,897
336 « = 4,985 - 7,334
Hyp o = 4,895 - 7,334
5‘5 . 4,494 - 0,931
Hyg + = 3,653 = 5,710
. Bog Bau
H, . =09,08 - 9,667
Hyy, « = 2,040 - 5,350
Hyy o 11,24 211,24
Hy, - -13,8 13,81
B, . +21,123 0,869
313 . - 3,890 3,817
By, - =477 s 4,683
Hyy « 6,112 = 0,639
Hy, . - 4,968 - 3,920
N By, 338
Hyy « = 9,667 - 9,082
322 ° - 59550 - 2,040
Hys « =13,81 -13,81
Hy, « 0,869 4 1,123
Hys o« = 5,544 - 7,026



K Bl& 2 AMu
311 - 9,417 . - 9,343
X, 3 M
Hyq - 9,836 . - 8,884
Hy, 10,448 ! - 1,986
3.53 - 5,526 . - 0,548
Hyy 11,24 ‘ 211,24
Hy -13,81 . -13,81
Hy, - 0,858 3 . 1,341 4
Hyy 1,041 7 ' - 1,698
H, - 3,670 . 1,043 9
Hyss » = 1,637 . =1,708
o’ 3,909 . =9,153
Bag - 4,003 ’ < 5,998
Hys = 5,996 . <8982
Hgy 55,505 . 1,140 7
Ny = 4,474 ; - 6,993
B? . B*?
B, - 9,417 . = 9,343
Hyy - 9,667 ! = 9,082
Hys - 5,350 : - 2,040
Hy, -11,24 : =11,24
Ry 10,54 . -13,81
Hgg 13,81 ‘ ™
Hy, 0,347 2 . +1,322 5
Hys = 0,972 1 ' - 1,024 8
Hyg 1,022 3 . &
Ry 0,869 4 . 53,222 9
Hyy - 3,306 . 3,369
Hys - 1,928 3 s 4,133



V xl . Er - E??
Ezs © - 4;056 3 -
534 . 0,553 7 » boud 5,293
u,s . ”623 ° - "’02
356 . . ’,595 ° oo

« Ai L ]
an ® .10,54 o

A téblédzatban nem szerepls integrdlok zérusok.
4.5. Elektronenergidk

A 4,1, és 4,2, pontban megadott S1 3 éa Ri 3 integrde
lokkal felirt szekuldris determininsokbdél az elekironenere
gidk meghatdrozdsdra K, -nél két hetedw, két negyed=, két
hermad= és két elsdfoku, a K, komplexnél pedig egy hatode,
hérom 538d=- és egy elsifoku algebrai egyenlet nyerhetd, a=
melyek gySkei kizvetleniill a molekulapdlydkhoz teortozd enede

gidket adjék. Ezek a kivetkezdk:

%

- 9,259 ® "59’168 + 3’94 .« * 3.2‘
- 6’004 e - 1"17 - 6,02 *« = 6’8"
= 6.766 “ = 5’905 ‘12’26 ° 912’65
- 9,275 . = 8,528 “14’72 . ‘15.25
$12,622 . <12,160
-14,883 . =14,794 By - By
’!2.:22! - oli.gszz - 5’25 e + 1.881

BM 2 Am had 9’70 & - 9’11

b 9,“7 e = 9,345 -14’09 ™ ‘14,14



ke
Ai > A*’é E? o B
1,158 « ""9’096 - 3;091 « * 2’310
- 5’,772 * - 0’3149 - 6,724 .« *® 6’523
- 9.470 « = 8'472 - 9’193 . ™ 9’297
-12,881 . =11,920 #11,156 . -12,165
A3 <14,603 .

<10,54

Az sdatok eVeban értendfk.

4.4, Elektrondtmenetek

A L_a__, pontban figyelembevett 35-36 elektron a _{,2,
pontban megadott energisnivékat a Peuli-elvnek megfelelden
t81tik be; Az B’~hiz és E'’<hiiz tartozdé ~ kétszeresen degee=
nerdlt - energisdllapotokben ennek megfelelfen négy=-négy,

a t8bbi energizdllapotban pedig két-két ellentétes spinil
elektron foglal halyet; Ennek ismeretében a komplexionok
spektrumsit oly médon szérmeaztathatjuk, hogy az elektronok
megengedett kventumdtmeneteihez tartozé frekvencidkat, vagy
hullémszdmokat a Bohreféle frekvenciafeltétel alspjén kie
szdmitjuk. A kventumédtmenetekre vonatkozd kivdlasztdsi
szebdlyok a kivetkezlk ijlﬂ:

%
“13*_“3111 . Alu‘“”a% ’ Blg“—”s?.’u
b= P BBy B
Mg~y o Byg—Byy o« Byy—Byy




o
A —Ap . A3 —E , BB
. AV3—EM
Ai_,_,_g’ " E?? —E?? e E?-—E

A kivédlasztdsi szabdlyoket figyelembevéve a megengedett

elektrondtmenetekhez tartozdé hulldmszdmok clrlnbem a kiivets

kezlks

5%

12603 . 2980 ,49669 . 63 400
18622 . 43520 .49781 . 63578
18751 . 43 730 .49 862 . 64 772
19 646 . 46 651 .51 274 , 64 893
20816 . 47 280 53 493 . 65 103
23 672 . 47 474 .53 622 |, 65 240
25 859 . 48611 ,.54195 . 66 442
26 7187 . 48692 .59 092 . 68 104
27 190 . 49539 .62069 ., 68 451

839 . 23979 43545 . 50 863
223 . 29756 . 43650 . D51 468
6656 . 29796 .43 900 . 54275
8052 . 30789 ,44803 , 60101

1088 . 35575 .45521 . 63 288
15838 . 35759 .48 458 . 63 570
20760 . 37 380 , 49 184 , 64 909
22155 . 43181 , 49604 , 65 071
22 381 . 43 367 .49 676 . 65192
23 261 . 43 440 . 50072 . 6T 774

A t4bldzatokben csek a 70 000 em™ .ndl kisebb hullémszsimoket
tiintettilk fel.



AZ EREDMENYEK ERTEKELASE

A hullédmsgdmokra kepott eredmények alkalmassk arra,
hogy szémitdsainkst a tapasztalattal ﬂss-zehasonlitsuk; A
komplexionok kloridjainak vizes oldataire nyert asbszorpeids
gorbéivel (2; 111, 3; ébra, itt ¢ & moléris dekadikus
extinkeidkoefficiens) £151 valé §sszehssonlitds azt mutatja,
hogy a szédmitott mémérwek a tapasztalati eredményekkel
lényegében Ssszdhangban vennak. Mind a kisérleti, mind az
elméleti eredmények szerint mindkét komplex vegylilet a
10-50 000 en™ hullémszémintervallumba es§ fényt gyakorles
tileg teljesen abszorbeél:)a;

Az eredmények tepasztelattal vsld egyezése azonban
xlvanél nem tekinthetd kiel égitdnek., Itt egyrészrdl a széimie
tott spektrumvonalek a kisérletileg meghatdrozott vonalake—
hoz viszonyitva igen erdsen eltoldédnak a nagyobb hullémszdmok
felé, mésrészrfl a meximum és minimum helyek egyezése sem
mgfelelé; Az egyezés killonbsen sz elméletileg nyert 3%0-

43 000 em™* hulldmszémtartondnyben rossz. A K,=re kapott
eredmények kielégitdnek tekinthetﬁk; Itt a gpekirumvonalak
eltolsassa (kb . 2=4 GO0 em"l) nem tulsdgosen nagy, tovébbd
s meximum és minimumhelyek a;onositésa is elég Jj6 kbzel i-
tésben 1ehetséges; Ezektfl az eltérdsektdl eltekintve azt
lehet mondeni, hogy az alkelmazoitt médszer alapjdn a komp -
lexekre lényegében elfogadhaté eredmények nyerhetdk,

A kimérleti eredményektfl vald eltérésnek szdmos oka
van, Bgyrészt ag alkelmazott LCAO-MO médszer sem egzakt,
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mésrészt a komplexekre vonatkozd = 2_,&, pontban tett -
feltevések, tovibbd az ionizdeids energidk - _4_,3_,_ pontbeli -
ériékei sem tekinthetSk o valdsdgos viszonyok j6 kizeli-
téseinek . Hogy 2z elméletileg nyert eredmények tapasztalate
tal valé egyezése nem lehet a legjobb, srra mir a .‘hl: ponte
ban kespott eredményekbsl is kivetkeztetni lehet, ugyenis

az ott kapott pozitly - de féként a B, ~hoz tartozs +59,168
eV és az A’é-”-has. tertozd +49,096 eV < energidk mér eleve
erre mutatnak, Egekbll o tulsdgosen nagy energilaeltoldddsok=
bél viszont erra lehet kivetkeztetni, hogy egyrészt az 813
étfedési integrdlok » kivetkezésképpen a kiszémitdsukndl
felhasznédlt, s elsfsorbsn is a2z ionsugarakrea vonatkozé ades
tok - nem elég mtossk! gﬁaréaat a Ri P integrdlok kiszéde
mitdsdra slkalmazott (4.2.1.) WolfsbergsHelmholtzeféle
formila  legaldbb is az F,_ pereméter felhassnlt értékei
mellett =« rossz kizelités. Ez utdbbi kivetkeztetést indokol-
Ja az is, hogy az energiaértdkek az l"x paramétertfl elég
erdsen fluggenek, mégpedig a vizsgdlatok szerint l‘x névekee
désdével egyre magassbb, 111, nagyocbb szdmu pozitiv energise
érték adddik. A kisérletl és elméleti eredmények kizdtti
eltérést azonben = bér elslsorban sz elébbiek kivetkese
ménye = a szdmitdsokndl alkslmazott kizelitl médszer egée
szének kell tulajdonitamk;

Az elmondottak egyuttal t8bb lehetlséget adnak a
kisérieti és elméleti eredmények egyezdsének a megjevitd=
sére. Az egyik & legklzelfecvébb - lehetsség oz, hogy = &
sajétértékproblénikst tovébbra 1s s komplexionok 3,2,<ben
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ugad_ott modell jei alapjén térgyslvea « a Hy 3 integrdlokat

a (4.2.1.) WolfsbergsHelmholtz-formula alkalmazdsa helyett
egzaktul iiuénit.juk; Egy mésik lehetlség ag alkalmazott
modellek médositdséban van, amelyhez azonban a komplexionok
szerkezetére vonatkozd pontosebb kisdrleti adatokra van
az:ﬁkaég; Ezek a kisérleti edatok 2 dolzozgt témd jének kie
védlaszidsdndl nem é11l%sk rendelkezésiinkre. Végil az ered=-
mények jevuldsdt vdrhatjuk tovébbi stomi pdlydk, valemint

az elektronok kizdtti kilcsdnhatdsok figyelembevételétll
13»; Tekintettel azonben arra, hogy a lli 3 integrdlok egzakt
kisgdmitdsa, valamint tovibbi atomi pdlydk, és az elekiro-
nok kizdtti kSlcsinhatisok figyelembevétele az elvégzends
szémitdsokat « a dolgozetben alkalmazott kizelitéshez vie
szonyitva - jelentSs mértékben megnivelik ( emellyel szdmos
esetben nem jir egylitt az eredmények kivént mértéki javuldsa),
molekuldris problémdk tdrgysldsdndl tobbnyire megelégssziink '
a dolgozatban alkelmazott kizelités alapjén nyerhetd ered-
ményekkel .



Ezen a helyen mondok 6szinte kiszdnetet dr. Hor -
vdth Jédnos tanszékvezetd docensnek, skinek sz~
tonzése és munkdim irdnti dllandé érdekldddse, tovibbd a
szekuldris egyenletek gybkeinek meghatdrozdsihoz, és a
disszertdeld Ssszedllitdsdhoz nyujtott segitsége nagy erd=
forrdst jelentett e dolgozat elkésziilése aorén;

Hélds kSsabnettel tertosom ér. Gilde Ferene
docensnek, aki a disszertdcid témdjének kivélasztdsdtdél a
szdmitdsok befejezéaélg értékes tendcsaival, a felvetfddtt
problémék megolddiséhoz nyujtott dllendé segitségével, tovdbbéd
& disszertdcld Ysszedllitdsa sordn tett észrevételeivel
munkém kbzvetlen irdnyitdja és segitéje volt;

Kbsstnetet mondok ar. T 6 th Inmr ének, a KFKI
Matematikei Osztdly osztdlyvezetS§ helyettesének, aki a
szekuldris egyenletek progremozisit elvégezte, és dr,
Jédnoessy Layjos askadémikusi s KFKI igazgatsjé-
nak, aki engedélyezte, hogy a Matemetikei Osztdly a prog-
ramot a KFKI elektronikus szémoldgépén hfattua&;
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