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Most frequently used variables and parameters 

α(t) A quantity characterising the physiological state of 

the bacterial culture at the time t  (0≤α(t)≤1) . In 

simplest form, α(t)=µ(t)/µmax . 

α0 Value of α(t) (at the moment of inoculating a 

bacterial culture in a new environment). α0=e
-µ·λ 

αN (Initial) Physiological state parameter for a 

population consisting of N cells at inoculation.   

h0 = µ·λ = -ln α0  

λ Generic notation for the lag time (defined in various, 

empirical or mechanistic ways). 

L, Lg In the exponential phase, the cell population grows, 

on the log scale,  as the delayed linear function y(t) = 

µ·(t-L).  The _g subscript refers to the fact that this is 

a rather “geometrical” (opposed to “physiological”) 

definition. 

 L
(i)

 The L-lag for the cell i .  Though strictly speaking τi , 

the physiological lag,  is not the same as L
(i)

 we 

identify them unless their very difference is studied. 

Numerical simulation can prove that E(L
(i)

)=E(τi) 

and their variance is close to each other, provided 

the generation times in the exponential phase do not 

have too big variance.  

LN “Geometrical” lag as above, emphasizing that it is 

generated by N initial cells. 

µ(t) Instantaneous specific growth rate at the time t :  

µ(t)= dx/dt /x(t) = d(ln x(t)) / dt 

µmax , µ (Maximum) specific growth rate 
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m  Curvature parameter for our sigmoid growth model, 

characterizing the transition from the exponential to 

the stationary phase. 

νb Specific accumulation rate of a bottle-neck 

intracellular substance needed to overcome the lag 

time 

nC  Curvature parameter characterizing the transition 

from the lag to the exponential phase. In our model 

nC=νb/µmax  

N ,  N0 Inoculation level of a batch culture. x0 is also used. 

τi  A random variable, the “physiological” lag time of 

the single cell i. The time to the first division is the 

sum of τi  and the first (random) generation time.  

t time 

Tdet Detection time.  x( Tdet)= Xdet 

x(t) Cell concentration at the time t  

x0 Initial cell concentration,  x(0) 

xmax Maximum population density; the carrying capacity 

of the environment. 

Xdet  Detection level (constant):  x(Tdet)= Xdet  

y(t) Natural logarithm of cell concentration at the time t :  

y(t)=ln x(t)   

y0 Natural logarithm of initial cell conc.: y0 = y(0) 

ymax Natural logarithm of maximum population density: 

ymax =ln Xmaxt  

ydet Natural logarithm of the detection level: ydet =ln Xdet 
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Introduction 

In the 80’s, with powerful desktop computing becoming 

everyday use, the name ‘predictive microbiology’ was coined 

for an area of food microbiology. Its closest relative can be 

found in biotechnology with its predictive mathematical 

models well elaborated in the 60’s. 

 

At the beginning of this thesis, we found major differences in 

requirements for mathematical models applied to 

biotechnology problems and those to be developed for food 

microbiology. New approaches were needed for modelling 

bacterial growth and survival in food. 

 

Deterministic modelling for bacterial population 

Let x(t) describe the variation of the size of the bacterial 

population with the t time. In a constant environment, bacterial 

growth is usually described by a linear differential equation 

with a constant coefficient: 

x
dt

dx
 µ=  

 

Here µ is called the specific growth rate of the population. Its 

value is characteristic to the species and the environment. It is 

close to the average number of divisions of a cell per unit time. 

It is a function of environmental factors such as temperature, 

pH etc. It can be estimated by fitting a linear function to the 

exponential phase of the “ln x(t) v. time” curve.  

 

In food microbiology laboratories, typically batch cultures of 

bacteria are generated, that form a sigmoid curve on the log 

scale. The phase before the exponential (on log scale: linear) 

phase is called the adaptation/adjustment period, or lag phase. 

While this phase is ignored in biotechnology research, it is of 
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paramount importance in food microbiology and Microbial 

Risk Assessment.  

 

Sigmoid curves can be obtained, on the arithmetical scale by 

means of the Initial Value Problem  

xx
dt

dx
 )(µ=        

x(0) = x0 (0 < x0 < xmax  ;          xmax is fixed) 

 

where    

- µ: (0,xmax] → R 

- µ(x) is continuously differentiable on (0, xmax) 

- dµ/dx  is strictly negative on (0, xmax) 

- µ(x0) > 0  and   µ(xmax) = 0 

 

Certain sigmoid curves, special cases of the above generic 

model, were in common use, until the 90-s, to describe 

population kinetics on the log scale. This was a purely 

empirical approach and, from mechanistic point of view, 

became untenable as the demand for sophistication in 

mathematical modelling increased also in food microbiology.  

 

Stochastic modelling for single cell 

Let the initial number of a growing cell population be N0=N.   

Omit the stationary phase. The end of the lag phase (LN) will 

be defined as the breakpoint of the bi-phasic linear function 

(where there is no growth in the first phase) fitted to the y(t)=ln 

x(t) growth curve. This population lag is generated by N initial 

cells. Its mathematical relationship with the distribution of the 

lag time of individual cells is far from straightforward. In 

addition, it is hard to acquire information on the variability of 

single cells during the lag time because, in that phase, the cell 

concentration is small and it is complicated and expensive to 

introduce an automated system that would detect cells at all. 
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Objectives 

We set out to create new models for bacterial kinetics in food, 

from deterministic models for population growth, with their 

numerical aspects and implications, to stochastic models for 

the kinetics of individual cells, including their numerical 

algorithms for parameter estimations. Our aim was to help 

better understanding and predicting of bacterial responses to 

food environments and to improve Quantitative Microbial Risk 

Assessment in Food. 

 

For the deterministic (population level) problems, we wanted 

to show where it was most important to replace empirical 

approaches with mechanistic approaches. We aimed at 

developing easy-to-implement models and analyse their 

numerical aspects. 

 

With the stochastic (single cell level) problems, our objective 

was to develop formulae linking the distribution of single cell 

lag times and that of the population. The theoretical work 

would imply numerical algorithms to reconstruct the 

distribution of single cell’s kinetic parameters from data at 

population level acquired by automated measurements 

 

Results 

Deterministic, non-autonomous models for population growth 

and their implementation 

1. We applied a so-called adjustment function, to the µ(x)  

function of the deterministic model described in the Introduction. 

xxt = x
dt

d
⋅)()( µα       ( 0 ≤ t < ∞;    0 < x)  

x(0)= x0              (0< x0 < xmax)    

 

where α(t) is sufficiently smooth and may depend on the pre-

inoculation environment; besides 
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0 ≤ α(t) ≤ 1   ( 0 ≤  t < ∞ ) 

α(t) → 1  monotone increasingly as t → ∞ 

 

The solution gα(t) for the obtained non-autonomous model can be 

expressed by means of the solution of the autonomous model,  f,  

and the adjustment function, α(t).  Its form is: 

gα(t) = f( A(t) )     where              A(t)= ∫
t

dss
0

)(α   

This is a result of Baranyi et al (1993b) and this is the basis of all 

the specific models developed for user-friendly applications. 

 

2. The use of the Hill-function proved to be one possible option 

for α(t) – see Baranyi et al (1993a).  The derived formulae were 

algebraic, but too complex for example to build them in an 

ordinary spreadsheet. Besides, α(t) was not given in a 

mechanistic way, and it was dubious how to interpret it if the 

environment changed dynamically during lag. 

 

3. Baranyi and Roberts (1994) introduced an adjustment function 

based on the Michaelis-Menten kinetics, which is until today the 

most successful for practical modelling. The result is: 

xx
tq

tq
 = x

dt

d
⋅

+
)(

)(1

)(
µ    

q =q
dt

d
b

⋅ν   

 

x(0)=x0       ;  q(0)=q0 

 

where νb  describes the speed of adaptation.  As it turns out  

e+q

q
  (t)

t-

0

0

b ⋅
=

ν
α   

 

and         
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










q+1

q+e
+t = A(t)

0

0

t- bν

ν
ln

1
 

 

Besides        

 

bν

)q/+(
 = 0

11ln
λ  

 

is a good definition for the lag time:  f(A(t)) will be a sigmoid 

curve on the log scale and converges to f(t-λ) .  The 0 ≤ α0 ≤ 1  

parameter was suggested to quantify the initial physiological 

state of the population.  

 

4. If the Richards-model is taken for the autonomous ODE 























x

x(t)
-x(t) = 

dt

dx(t)
m

max

max
1µ  

 

then we obtain an algebraic solution and the natural logarithm 

of the cell concentration will vary with time as 










e

-e
+1

m
-t+y = y(t)

)y-ym(

tm

0
0max

max 1
ln

1
max

µ

µ  

 

Using the above A(t) function instead of t, as suggested in 

points 1 and 3, we get a versatile sigmoid function, with six 

parameters, with two curvature parameters, m and nC=νb/µmax.  

We introduced several reparameterization for the model for 

numerical stability; see Baranyi et al (1994, 1995a). 

 

5. Assuming that the rate of adjustment, νb  and the potential 

maximum specific growth rate instantaneously takes up the 

value that is characteristic of the E actual environment: 
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 u(x)xt
tq

tq
  =

dt

dx(t)
⋅

+
))((

)(1

)(
Eµ    

 ))(( t  =
dt

dq(t)
b Eν      

 

This dynamic model can be used to predict bacterial growth 

even if the environment changes during the lag. Important 

simplifications were that νb=µmax  and  q0=const were assumed 

for the different environments. These simplifications are based 

on regressions carried out using large datasets. The 

assumptions are certainly justified, if the dynamic environment 

is identified with the variation of the temperature, inside a 

strongly growth-supporting region, with not too abrupt 

changes (Baranyi et al, 1995). 

 
Stochastic model to describe the lag time of individual cells 

6.  Here we consider only on the lag and growth phases. 

Measure the lag (LN) by means of the fitted bi-phasic linear 

function generated by N initial cells: 

y(t) = y0 + max( µ(t-LN), 0)    

y0=lnN 

 

We call the obtained L-value as the “geometrical” lag, due to 

its definition. If N=1, we arrive at the single cell lag time, L1. It 

is not the same as the physiological lag time, but for practical 

purposes the L-definition is more useful. For historical reasons 

we denote the L1-value for the cell i also by τi.  Its expected 

value is τ .  

 

Assume that τi  (i = 1…N) are identically distributed random 

variables, with τ as their expected value. Introduce the αi=e
-µτi  

variables. Their arithmetical mean is closer and closer to the 

respective parameter of the whole population, as N is 

increasing: 
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N

e

= eN

N

iL

i

N

∑
=

−

−= 1 )(

µτ

µα  

The physiological state parameter of the population turned out 

to be the arithmetical average of the individual cells’ 

physiological state parameters. This implies:  

αα  )(  → ∞→N
 N   and  

µ

α )ln(-
  → →∞N

N  L =λ  

Furthermore, the rate of convergence can be estimated by: 

N
= N i )(Var

 )]([Var 
α

α  

 

These results, published in Baranyi (1998), solved our basic 

problem and gave bases for further developments. 

 

7. We compared a deterministic compartment-model with our 

stochastic model and proved that the results are the same if the 

bacterial division follows Poissonian birth process.  For 

example,  

µ

τµ )+ln(1
 

⋅
 → ∞→N

N  L =λ 

can be obtained from compartmental models, too (Baranyi, 

1998). 

 

8. We drew parallels between the survival curves with 

“shoulders” and growth curves with lag, both at single cell and 

population levels. We analysed three different distributions for 

the individual survival/lag times and derived formulae to 

express some of their analytical properties.  

 

The gamma distribution proved to have the best properties. For 

the growth situation, a generalisation of the formulae of the 

previous point can be obtained: 
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α=E[αi] =   
1

p

r

r









+
  ;         Var[αi]  

12

2 pp

r

r

r+

r









+
−








=  

where  r=κ/µ   and the parameter κ is the scale-,  p is the 

shape- parameter of the distribution. This result from Baranyi 

and Pin (2001) is the basis for the numerical methods 

described in the last chapter to measure the distributions of 

individual lag times. 

 

We proved the following generalisation between the limit 

population lag, λ, and the mean individual lag time: 

p

p

/

1ln

µ

τ
µ

λ








+

=  

 

where τ=p/κ is the mean of the gamma distribution. This is a 

generalisation of the result of point 7 and shows how the 

population lag depends on the shape of the distribution of the 

individual lag times. 

 

9. Using the above formulae, we developed methods to 

estimate the expected value and variance of individual lag 

times. We assumed that experiments started from different 

initial levels where the ratio between the inocula was known 

(for example the lower was obtained from the higher by 

dilution), and that a culture starting from the level x0, reaches 

the detection level in its exponential phase.  Then we provided 

an ANOVA protocol:  
 

Let Tdet be the detection time when x(Tdet)= Xdet. Use notations  as 

follows: we study m groups of cultures characterized by  m 

different inoculum levels. In the group k (k=1...m) we have 

j=1…nk  cultures. For a fixed j, the Xdet detection level is reached 

at the time T
(j)

, starting from the inoculum level x0
(j)

.  Denote 
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the physiological state parameter of this culture by α(j)
=α(x0

(j)
).  

Then 
(j)µT(j)

re α
(j)

/
−=     

 

where  r
(j)

=  x0
(j)

 / Xdet .    Besides     
(j)(j) rXv)Var(α det/=   

 

where v is the common variance of the e
-µτi  individual αi 

physiological states. The grand mean of all αi is 

α

α µ

   

(j) j

j

n

(j)

j

n

j

n

sum

j

= =
=

=

−

=

∑

∑

∑r

r

e

r

T( )
( )

1

1

1
     where     ∑

=

=
n

1j

sum   (j)
rr   

The group means are :        
nn

= 
)k(

k

n

1j

 

k

n

1j

jk,
(k)

k

jk,

k

r

e
T∑∑

=

−

=
=

µ
α

α  

 

Define the variance ratio 

 

( )

( )∑ ∑

∑

=

=

−
−

−+

−

=
m

k=

n

j

(k)

k,j

k

(k)

m

k

sum

(k)

k

(k)(k)

k

αα 
/n

r

  

nr

r

n

ααr

V

1 1

2

1

2

11

21

 

 

The distribution of V is very close to the F-distribution and by 

minimizing it, we can get a good estimation for the mean and 

variance of the individual physiological state values, therefore 

for similar parameters of the individual lag times. 

 

The method was implemented in a user-friendly spreadsheet 

model (Baranyi and Pin, 1999) and tested on many datasets 

derived from laboratory experiments. 
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10. We developed formulae to obtain information also on 

the shape of the distribution of the individual lag times. 

The calculations were based on the situation that the 

initial cell number is random and follows the Poisson 

distribution, which can be achieved by serial dilutions 

(Baranyi et al, 2009).  In this case, when the number of 

terms in a sum is also random, namely Poisson-

distributed, then the moments of the sum of random 

variables can be calculated explicitly. We assumed that 

the distribution of the individual lag times could be 

described by a shifted gamma distribution and their mean 

value have the form Lg
 
= Tshift + βθ  where β  is the shape, θ 

is the scale parameter of the distribution. Equating the 

theoretical and the sample moments, we obtained a method 

that was an extension, with more complex formulae, of the one 

described in the previous point. The procedure was validated 

by comparing results with those obtained by the maximum-

likelihood method. The outcomes were similar but our method 

was superior in terms of speed and computational resources.  

This made it possible to build it, again, into spreadsheet 

applications, advantage of which is that in most food 

microbiology laboratories data are collected and stored in this 

way. 
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