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5 

Most frequently used variables and parameters 
 

α(t) A quantity characterising the physiological state of the bacterial culture at the time t  

(0≤α(t)≤1) . In simplest form, α(t)=µ(t)/µmax . 

α0 Value of α(t) (at the moment of inoculating a bacterial culture in a new 

environment). α0=e
-µ·λ 

αN (Initial) Physiological state parameter for a population consisting of N cells at 
inoculation.   

h0 = µ·λ = -ln α0  

λ Generic notation for the lag time (defined in various, empirical or mechanistic ways). 

L, Lg In the exponential phase, the cell population grows, on the log scale,  as the delayed 

linear function y(t) = µ·(t-L).  The _g subscript refers to the fact that this is a rather 
“geometrical” (opposed to “physiological”) definition. 

 L(i) The L-lag for the cell i .  Though strictly speaking τi , the physiological lag,  is not 
the same as L(i) we identify them unless their very difference is studied. Numerical 

simulation can prove that E(L(i))=E(τi) and their variance is close to each other, 
provided the generation times in the exponential phase do not have too big variance.  

LN “Geometrical” lag as above, emphasizing that it is generated by N initial cells. 

µ(t) Instantaneous specific growth rate at the time t :  

µ(t)= dx/dt /x(t) = d(ln x(t)) / dt 

µmax , µ (Maximum) specific growth rate 

m  Curvature parameter for our sigmoid growth model, characterizing the transition 
from the exponential to the stationary phase. 

νb Specific accumulation rate of a bottle-neck intracellular substance needed to 
overcome the lag time 

nC  Curvature parameter characterizing the transition from the lag to the exponential 

phase. In our model nC=νb/µmax  

N ,  N0 Inoculation level of a batch culture. x0 is also used. 

τi  A random variable, the “physiological” lag time of the single cell i. The time to the 

first division is the sum of τi  and the first (random) generation time.  

t time 

Tdet Detection time.  x( Tdet)= Xdet 

x(t) Cell concentration at the time t  

x0 Initial cell concentration,  x(0) 

xmax Maximum population density; the carrying capacity of the environment. 

Xdet  Detection level (constant):  x(Tdet)= Xdet  

y(t) Natural logarithm of cell concentration at the time t :  y(t)=ln x(t)   

y0 Natural logarithm of initial cell conc.: y0 = y(0) 

ymax Natural logarithm of maximum population density: ymax =ln Xmaxt  

ydet natural logarithm of the detection level: ydet =ln Xdet 
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Introduction 

 

A highly interdisciplinary and fast developing area of applied mathematics is mathematical 

biology, sometimes also termed as biomathematics. The Biotechnology and Biological 

Sciences Research Council of the UK, sponsoring among others the Institute of Food 

Research in Norwich, where the author of this thesis works, has always been in the forefront 

of supporting biological research that applies advanced mathematical modelling techniques. 

(A good example for this was Ronald A. Fisher (1890-1962), one of the pioneers of 

mathematical statistics, who worked for the predecessor of BBSRC for many years).  

 

Food security, defined as a sustainable supply of “sufficient, affordable, nutritious and safe 

food, adapting to a rapidly changing world”, was identified as the No. 1 research priority of 

the BBSRC Strategic Plan 2010 – 2015  

(http://www.bbsrc.ac.uk/publications/policy/strategy/index.html).  Food safety and, generally, 

food microbiology problems belong to this strategic area, in which the increasingly extensive 

application of mathematical modelling techniques is expected to play a primary role (e.g. on 

modelling the microbial ecology of foods and the gastrointestinal tract). 

 

In the 80’s, with powerful desktop computing becoming everyday use, the name ‘predictive 

microbiology’ was coined for this area of mathematical microbiology. Its closest relative can 

be found in biotechnology with its mathematical models well elaborated in the 60’s. When the 

author of this thesis started his work in this field, ideas regarding microbial growth models 

applied in biotechnology were taken from the classic papers of Tsuchiya et al (1966), 

Frederickson et al (1967), Turner et al (1976), Roels and Kossen (1978),  Srivastava and 

Volesky (1990), Nilsen and Villadsen (1992).  

 
However, three major points of difference had to be taken into account (Baranyi et al, 1994):  

- The bacterial concentration region of concern (usually 1 - 109 cells/gram) in food 

microbiology is much broader than the concentration region that biotechnologists 

are interested in. It may be inappropriate therefore to extrapolate the mathematical 

models applied in biotechnology. Another numerical consequence of the broad 

region of interest is that, for statistical/computational reasons, it is not the cell 

concentration but its logarithm which is the preferred variable to be modelled. 
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- The aims are different. Generally, the aim of food microbiologists is to prevent 

bacterial growth (rather than for example to optimize it). The region for food 

safety problems are typically below 102 cell/gram; food spoilage issues focus on 

cell concentrations below 105 – 107 cell/gram. Even the latter one is lower than the 

typical cell concentrations in biotechnological studies. Therefore, in food 

microbiology, the data at the initial stage of the bacterial growth, at low cell 

concentrations, are deemed to be uncertain but their study is of great importance. 

- In food microbiology, the environmental factors influencing growth are generally 

heterogeneous, their measurements are inaccurate and often inadequate; 

sometimes, such as in the case of food structure, rather poorly quantified. 

 

These are the main reasons why new approaches were needed when modelling bacterial 

growth and survival in food. The first attempts to put down a mathematically solid framework 

for bacterial growth in food were Zwietering et al (1990) and Van Impe et al (1992).  Models 

taking the above differences into consideration, in a dynamic model described by Ordinary 

Differential Eequations, were published first by the author of present thesis in a series of 

papers (Baranyi et al, 1993a, 1993b, 1994, 1995a, 1995b). 

 

In the following chapters we show the process of model development, from deterministic 

models of population growth, with special attention to the bacterial lag, to stochastic models 

of the kinetics of single cells.  We demonstrate how to integrate the two and what numerical 

algorithms they imply for practical applications. We point out the differences between 

growth- and (seemingly mirror-image) survival- modelling. 

 

Chapter 1 introduces some classical deterministic growth models, some of them with a history 

that spans through centuries. One of the main drives behind our modelling approach (a main 

difference from the models analysed by Zwietering et al, 1990) is the recognition that the 

classical models should not be directly applied to bacterial growth on the log scale, especially 

if the lag time has a significant role. 

 

Chapter 2 discusses deterministic models of bacterial batch cultures commonly generated in 

food microbiology laboratories. As we will see, they are (on the log scale) of sigmoid shape 

but, from mechanistic point of view, it is incorrect to model them by one of the well-known 

growth functions described in Chapter 1 (such as the Gompertz or the logistic model). On the 

log-scale, those classical growth models have monotone decreasing slope (they are sigmoid on 
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the arithmetical scale only).  The reason for the real curve being of sigmoid shape is that the 

cell population needs to adapt to the new environment after inoculation. This adjustment 

period, somewhat incorrectly, is traditionally called the lag period. In fact it is more like a 

transient period connecting two autonomous systems and a lag parameter is for convenience 

only rather than for mechanistic interpretation. Its connection to the physiological lag concept 

interpreted at the single cell level is far from straightforward, as we will see in chapters that 

follow. 

 

Chapter 3 concentrates on the implementation of the new model, from regression point of 

view. We put special emphasis on optimal reparametersisations, for the sake of numerical 

stability. We also report on the possible biological interpretations of some of the newly 

introduced parameters.  

 

Integrating single-cell and cell-population models is the main topic of Chapter 4. Assuming, 

in the exponential phase, a delayed µ(t-L) linear function for the logarithm of a single-cell-

generated subpopulation, where the L delay parameter is a stochastic variable, the lag appears 

at population level as a sort-of (non-arithmetical!) average of the individual lag times.  We 

will give an approximation for the expected value of the population lag, finding its main links 

with the distribution of the single cell lag times. The theory provides a set of tools to 

investigate the variability of single-cell kinetics, which will be explored in the following 

chapters. 

 

Chapter 5 refines the theory introduced above and analyses the “compatibility” between 

parallel growth and survival models. One of its main messages is that the analogy breaks 

down in many aspects.  

 

In Chapter 6 and 7 we show how the developed models can be used in practical applications, 

to estimate statistical and kinetic parameters of bacterial populations. The methods have been 

extensively used in laboratories since their publication. 

 

Chapter 8 generalizes the short-term (non-genetic) adaptation model introduced earlier, for 

future research. It emphasizes the importance of databases, the handling of data deluge and 

studying its implications in the near future. 
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The thesis follows the time-sequence of the publications of the author, spanning through 18 

years.  An overall conclusion inferred by these papers is that a healthy modelling framework 

cannot be completed without observing and modelling intracellular processes during the lag 

time. Accordingly, in the research group led by the author, laboratory measurements and 

modelling effort have been initiated and being carried out at the moment at molecular level. 

Concepts and computational methods borrowed from Network Science is being applied to the 

dynamics how a cell genetic (more precisely transcriptomic) intracellular networks change 

during the lag time. The work is designed to lead to a complete analysis of bacterial 

adjustment, from theory to application. We hope, with this, to contribute to the development 

of predictive food microbiology and quantitative microbial risk assessment, and as a final goal, 

to improve the microbiological safety and quality of our foods. 
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Chapter 1 

Modelling population growth 

1.1. A deterministic approach 

The simplest model of population growth was derived by Malthus (1798), after observing that 

a homogeneous population in a constant environment grows exponentially (al least until the 

carrying capacity of the environment inhibiting its growth). That is, the variation of the x(t) 

cell number with time can be described by a linear differential equation with a constant 

coefficient: 

x
dt

dx
 µ=          (1.1) 

 

The evidence is strong that µ, called the specific growth rate of the population, is 

characteristic to the species and the environment (Rubinow, 1984). Because of  

dt

txd

dt

x(t)

dx(t)

t
)(ln

)( ==µ        (1.2) 

 

µ can be conceived as a “sort-of” average number of divisions for a cell per unit time (the 

reason, why this is only a “sort-of”, is that this average is not necessarily arithmetical; see 

Chapters 4-6).  Indeed, for bacterial populations, the statistical distribution of the number of 

division per unit time can be measured (Baranyi, 2005) and described by a stochastic birth 

process.  Using an analogy: just like humans can have maximum about one child/female a 

year, in the same way a bacterium like Escherichia coli can divide maximum ca 3 times in an 

hour, due to its biological make-up (Koch, 1988).  

 

The specific growth rate, as a function of environmental factors such as temperature, pH etc, 

can be very accurately predicted by observing individual cells (Pin and Baranyi, 2008).  The 

problem is that the environment-dependent specific growth rate is, in practice, an 

instantaneous parameter; in fact it is very difficult to make sure that the environment is 

reasonably constant for sufficiently long time, so that µ can be measured really accurately. If 

yes, the easiest approach is to fit a linear function to the exponential phase of the “ln x(t) v. 

time” curve: 
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In food microbiology research, experimenters typically sample the cell population after 

applying a series of dilutions, so that they can count ca 50-300 colonies, each produced by a 

single.  Therefore both the measurement errors and the expected growth kinetics justify that  

the logarithm of cell concentrations are considered as raw data. The accuracy of the measured 

concentrations can be assessed by the observation that the number of significant digits are 

typically around two. 

 

These curves commonly show a sigmoid shape (see Fig.1.1). The raw data are distributed 

around them with more or less normally distributed error. 

 

Following the notations of Fig.1.1 

y(t) is the natural log of the population at the time t. 

y0 = ln x0     -  natural log of the initial population; 

µmax  -  maximum specific growth rate  (µ(t) will denote the instantaneous specific 

growth rate at the time t); 

λ  - duration of the lag time 

ymax = ln xmax     -  natural log of the maximum concentration the culture can reach; 

 

For convenience, a so-called lag-parameter, λ, is also defined for sigmoid curves; it is 

empirically described as the time when the interception of the tangent drawn to the inflexion 

crosses the inoculum level (Pirt, 1975).  The fact that this definition does not have mechanistic 

basis and a possible correction will be a main point of the first three chapters.  

 

y(
t)

 =
  

ln
 c

e
ll

.n
o

 

t   time 
λλλλ: lag 

y0  inoculum 

exponential 
phase 

stationary 
phase 

ymax   max. population 
density 

adjustment 
period 

 µµµµmax   slope 

Fig. 1.1. Phases of a typical 
bacterial growth curve 
commonly analyzed in 
food microbiology 
research.  
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1.2. Classical sigmoid models of growth  

There are several useful sigmoid growth models that could be fitted to the bacterial growth 

curves, but those were originally conceived for the number of individuals in the growing 

population, not for its logarithm, and this makes their use an empirical curve fitting exercise 

only.  However, can we modify them in order to obtain a suitable modelling framework?  

 

Let the starting point be the well-known generic autonomous growth model (Vance, 1990): 

xx
dt

dx
 )(µ=          (1.3) 

x(0) = x0 (0 < x0 < xmax  ;          xmax is fixed)    (1.4) 

 

where    

- µ: (0,xmax] → R 

- µ(x) is continuously differentiable on (0, xmax) 

- dµ/dx  is strictly negative on (0, xmax) 

- µ(x0) > 0  and   µ(xmax) = 0 

 

As well-known, under these conditions the above differential equation has a unique solution, 

which is monotone increasing and converges to  xmax  as  t→∞. 

 

Turner et al. (1976) published a formula for µ(x), called 'generic equation', which is general 

enough to include most of the well-known sigmoid functions: Gompertz (1825); Pearl-

Verhulst (or logistic: Pearl, 1927); Richards (1959), etc.  For example, for the Gompertz 

function: 










x

x
 c  = (x) maxlnµ          (1.5) 

 

Introduce µ(x)= µ·u(x), where µ is the maximum specific growth rate, as defined earlier, and 

u(x) is the so-called inhibition function. For Richards’ model: 






















⋅=⋅=

x

x
-xux

m

max

maxmax 1)()( µµµ        (1.6) 

 

where m is a curvature parameter, characterising the “abruptness” of the transition to the 

stationary phase. For m=1, the renowned logistic model is obtained.  Fig.1.2. shows the 
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obvious difference between the inhibition functions depending on whether we consider it as a 

function of the x population size or its logarithm.  

 

Fig.1.2.  Some classical sigmoid models.  They differ in their inhibition functions. 

 

1.3. Are the classical growth models suitable to model bacterial growth in food? 

The autonomous nature of the model (1.3) – (1.4) means that the µ(x) specific rate of the 

population depends only on the actual number of cells and it does not depend, for example on 

their internal physiological state. That this cannot hold for our problem can be easily seen on 

two growth curves measured in our laboratory ( http://www.ifr.ac.uk/safety/comicro/; 

thousands of such curves can be freely downloaded from www.combase.cc) : 

 

 

 

 

 

 

 

 

 

The specific rate of these curves obviously must depend on something else, too, not only on 

the cell concentration level. So we have to give up the autonomous property, at least if the 

number of variables is only one (as known, every Ordinary Differential Equation can be made 

autonomous, at the expense of introducing an extra variable). 

 

Non-autonomous growth models have already been analysed for example by Vance (1990) 

and Vance and Coddington (1989), but their “non-autonomy” came from the seasonal changes 
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Fig.1.3. Two different growth curves of the same 
organism, same environment, except that the cells along 
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than those in the other culture. The maximum specific  
rates are the same but the lag (adjustment) times are 
markedly different. 
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of the environment. Coleman (1978) also analyzed non-autonomous logistic equations to 

characterize the adjustment of the population to environmental changes. Our problem is more 

like the “distributed delay” studied by McDonald (1978). 

 

Before the 90’s, several food microbiology papers used classical sigmoid growth models as 

above, but for the logarithm of the cell concentrations. This was obviously of rather limited 

use, making mechanistic interpretation impossible. For details, see Zwietering et al. (1990), 

who compared these models from fitting and robustness point of view. 
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Chapter 2 

Deterministic modelling of adaptation 

2.1. A non-autonomous model  

The problem outlined above was solved in a series of papers published by the author of this 

thesis  The model described by Baranyi and Roberts (1994) is commonly called the “Baranyi-

model” in predictive microbiology (see for example Buchanan et al, 1997; Grijspeerdt and 

Vanrolleghem, 1999; Xiong et al, 1999a; Vadász and Vadász 2007). 

 

We assumed that the effect of the actual environment is described by the autonomous ODE 

(1.3).  Depending on the choice of  µ(x), different sigmoid functions can be obtained for 

solutions.  If  f(t)  denotes the particular solution for which f(0)=x0 (see (1.4),  then the general 

solution of (1.3) takes the form  f(t-L),  where  L  is a delay parameter.  The solutions of (1.3) are 

monotone increasing and converging to  xmax  as   t→∞ , with a sigmoid shape (Vance, 1990). 

 

Note that the condition dµ/dx  < 0  means that the larger the population density the lower its 

specific growth rate. As can be shown, this means that the derivative of the logarithm of the 

solution is strictly monotone decreasing.  However, due to the history-effect (see the 

background of the lag concept in the Introduction), growth curves in food microbiology show 

sigmoid shape on the log-scale, too!  The (1.3) autonomous growth  model will be a suitable 

description in asymptotic sense only.  

 

Apply a multiplier, a so-called adjustment function, to the µ(x)  function: 

xxt = x
dt

d
⋅)()( µα       ( 0 ≤ t < ∞;    0 < x)     (2.1) 

x(0)= x0              (0< x0 < xmax)        (2.2) 

 

where  α(t) is a sufficiently smooth function. It can depend on the pre-inoculation environment, 

too; besides we require that 

0 ≤ α(t) ≤ 1   ( 0 ≤  t < ∞ ) 

α(t) → 1  monotone increasingly as t → ∞ 

 

We will say that the model defined by (1.3) - (1.4) describe the potential growth, and  (2.1) - 

(2.2)  define the actual growth  in the current environment.   
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The biological background can be summarized as follows:  The environment changes suddenly 

at the time t = 0. This happens when food becomes contaminated, or a pathogenic cell gets in the 

gastrointestinal track, or the cells are inoculated in a new, fresh medium under laboratory 

conditions. Let E1 denote the pre-inoculation environment ( t <0) , and E2 the actual growth 

environment (t ≥ 0).  E1 and E2 are commonly represented by a vector of environmental variables.  

In predictive microbiology, Ei=(temperature, pH, Aw, Air, preservatives … etc) ,  where Aw 

denotes the water availability, Air characterizes the air composition. 

 

The inoculum level,  x0 , uniquely determines a potential growth curve, according to which the 

population would be able to grow if the previous environment had been the same as the present 

environment (E1 = E2:  no need to adjust, that is  α(t) ≡ 1 and λ=0). The potential growth of the 

population is described by the autonomous model (1.3). The actual growth, however, is described 

by (2.1), which means that initially, for small t values, the cells' growth is heavily inhibited 

because they need to spend their energy for adaptation. Later, however, the effect of the previous 

environment diminishes, until, some time after the inoculation, it has little or no effect at all and 

the cells grow essentially at their potential growth rate, µ(x),  defined by the new environment, E2. 

Therefore the ratio of the actual and the potential growth rate, i.e. the adjustment function, is 

expected to increase from close to zero (no growth) to  1  (total adjustment).  

 

 

 

 

 

 

 

 

 

 

 

It can be readily checked that the solution gα(t) for the (2.1) non-autonomous model can be 

expressed by means of the solution of the autonomous model,  f,  and the adjustment function, α. 

Its form is: 

 gα(t) = f( A(t) )        (2.3) 

 

where  

  

L
n

 x
 

time 
  

lag      

ln x 0   

µµµµmax 

  max.spec. 
g.rate    

E2 actual environment 
E1 
History 

Fig.2.1.  The reason 
for the sigmoid shape 
is the adjustment to 
the actual 
environment, which 
can be described by a 
classical growth 
model, an 
autonomous ODE. 
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 A(t)= ∫
t

dss
0

)(α         (2.4) 

(see Baranyi et al (1993b) 

 

2.2. Using the Hill-function to model the adaptation period 

In Baranyi et al (1993a), the Hill-function (Hill, 1910) was tested for the role of the adjustment 

function: 

n

n

n

n

nn

n

z

z

t

t

t

t
t

+
=

+
=

+
=

1)/(1

)/(
)(

λ

λ

λ
α    ( z = t/λ)      (2.5) 

where n is a positive integer, λ is a parameter. It is evident that it satisfies the criteria of an 

adjustment function; besides 

α(0) = 0 ;               α(λ) = ½ ;                α(t) → 1    (t → ∞) ;                 0
0

=
=tdt

dα
  . 

 

Furthermore,  it has an inflexion point at  Λn = λ· n

n

n

1

1

+

−
.  As was pointed out in Baranyi et al 

(1993b), the λ parameter is a suitable definition of the lag time, since for t>λ  the gα(t)=f(A(t))  

solution of the non-autonomous growth model  is close to a solution of its autonomous 

counterpart of the form  f(t-Λn).  It was shown that   

A(t) = t - Bn(t/λ)   where 

( ) ∫ +
=

z

nn ds
s

zB
0
1

1
        (2.6) 

 

For n=4, the most commonly used curvature parameter, when Λ4 = 0.88·λ , the above integral is  











+

+−

++
= )(

12

12
ln

2

1

22

1
)(

2

2

4 z
zz

zz
zB γ      (2.7) 

 

where 















>+
−

=

<
−

=

)1(             
1

2
arctan

)1(                           
2

1(              
1

2
arctan

)(

2

2

t
z

z

t

)t
z

z

z

π

π
γ      (2.8) 
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Though this specific form of the model, published in Baranyi et al (1993a), was used and cited 

by many papers in the 90’s, it had some disadvantages.  The (2.5) adjustment function resulted in 

recursive formulae (from n to n+1)  for the needed integral defined by (2.4). The (2.8) formula 

was not straightforward to program correctly, e.g. in an ordinary spreadsheet, because of its 

relative complexity of.  Another, more serious problem with it was the lack of mechanistic 

interpretation. It was dubious how to apply the model, if the environment changed dynamically 

during lag. 

 

2.3. The most commonly used adjustment function 

Baranyi and Roberts (1994) introduced an adjustment function with some mechanistic model 

assumptions: 

Suppose that an intracellular substance is the bottle-neck in the process of growth (such as 

certain enzymes to metabolize new substrates in the new environment). Denote its time-

dependent per cell concentration by P(t). Suppose that the specific growth rate of the cells is 

affected by P(t) according to the well-known Michaelis-Menten kinetics: 

P(t)+K

P(t)
 =(t)

P

α         (2.9) 

 

where KP is the Michaelis-Menten constant and that, after the inoculation, the accumulation of 

P(t) follows a first order kinetic process 

P =P
dt

d
bν          (2.10) 

where the rate of the bottle-neck substance, νb, is characteristic of the actual environment: 

νb=νb(E2).          (2.11) 

 

The adjustment function depends on the ratio q(t)=P(t)/KP.  A rescaling of q(t): 

q(t)+

q(t)
 =(t)
1

α          (2.12) 

can be used to characterize the gradual adjustment of the cells to the new environment.  

Namely: 

xx
tq

tq
 = x

dt

d
⋅

+
)(

)(1

)(
µ        (2.13) 

q =q
dt

d
b ⋅ν          (2.14) 

 

with the initial values  x(0)=x0  ;   q(0)=q0=P(0)/Kp 
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If the actual environment, E2, is constant then P(t) grows exponentially at a constant specific 

rate, νb, and our new adjustment function can be obtained in the form: 

e+q

q
  (t)

t-

0

0

b ⋅
=

ν
α         (2.15) 

therefore 












q+1

q+e
+t = A(t)

0

0

t- bν

ν
ln

1
       (2.16) 

 

The parameter 

bν

)q/+(
 = 0

11ln
λ         (2.17) 

turned out to be a good definition for the lag time:  f(A(t)) will be a sigmoid curve on the log 

scale (Fig. 2.2), converging to f(t-λ)   

 

 

 

 

 

 

 

 

Fig. 2.2. The relationship between 
f(t), the potential growth curve, its 

delayed version, f(t-λ), and f(A(t)) , 
the solution of the non-autonomous 
model. The sigmoid shape is due to 
the inhibited growth before and after 
the linear segment (exponential 
growth). 
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time   f (t - λλλλ )   
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Chapter 3 
 

Model implementation and numerical considerations 

3.1. A versatile sigmoid function 

Consider the model of Richards (1959) for (2.1): 























x

x(t)
-x(t) = 

dt

dx(t)
m

max
max

1µ                      (m>0)                                                 (3.1) 

 

As can be checked, it has algebraic solution. Express it for y(t), the natural logarithm of the 

cell concentration: 










e

-e
+1

m
-t+y = y(t)

)y-ym(

tm

0
0max

max 1
ln

1
max

µ

µ                                                               (3.2) 

 

Most frequently, the parameter m is taken to be 1, in which case the well-known logistic 

growth can be obtained for the bacterial concentration.  

 

Using   

u(x)= 






















x

x(t)
-

m

max

1 ,          (3.3) 

the model that combines the logistic growth model with our adjustment function, detailed by 

(2.12) – (2.14) , can be written as  

 

u(x)x
tq

tq
  =

dt

dx(t)
⋅

+
µmax

)(1

)(
          (3.4) 

 b  =
dt

dq(t)
ν                (3.5) 

x(0) = x0      ;     q(0)=q0           (3.6) 

 

The solution for y(t)=ln x(t)  is 










e

-e
+

m
-A(t)+y = y(t)

)y-ym(

A(t)m

0max

max 1
1ln

1
max0

µ

µ                                                            (3.7) 

 

Here, A(t) is as defined by (2.16).  
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3.2. Reparameterisations for numerical stability and for biological interpretation 

Another parameterization of (2.16) is: 

( )
b

)-(t-t-
e+e-

 +- t = A(t)
bb

ν
λ

λνν ⋅1ln
                                                                            (3.8) 

where   

λ = -(lnα0)/νb = h0/νb            (3.9) 

α0=q0 /(1+q0)          (3.10) 

 

It can be easily seen that the parameter λ  defined by (3.9) is very close to the traditional 

definition of the lag time given in the Introduction under Fig.1.1. 

 

The above reparameterization can be useful when selecting an optimal arrangement of the 

expressions for numerical stability.  Namely 

( )
b

ht- ee-
 +- t = A(t)

b

ν
λ

ν )1(1ln 0−⋅

         (3.11) 

From this rearrangement, due to ln(1-ε) ≈ -ε if   ε is small,  it is obvious, that  A(t)  is 

exponentially converging to t-λ  as t is increasing.  What is more, the eh0   term is a stable 

parameter, since for the majority of experimental curves h0 <5, regardless of the experimental 

conditions (see Fig. 3.1), therefore a generic value can be chosen for a threshold t from which 

A(t)=t-λ  can be used. 

 

The  

0

0
0

1 q

q
 = 

+
α            (3.12) 

00 lnα− = h            (3.13) 

reparameterization of the q0  initial value also have biological interpretations. One is given by 

Baranyi and Pin (1999):  if only α0 fraction of the inoculum grows, but without lag, they 

would provide the same growth in the end as the actual total population with lag (Fig. 4.1). 

 

Baranyi and Roberts (1994) pointed out that the νb=µ assumption is a useful one, in which 

case  

µ

λ

/1
0  = h          (3.14) 

where 1/µ  is in fact a “sort-of” generation time in the exponential phase (the exact statement 

depends on the distribution of the generation times of single cells – see later).  The parameter 
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h0 can also be considered as a backlog, by how many generations the culture is behind a 

potential one, which would NOT have needed to adapt. In other words: the delay due to the 

need to adapt can be measured by h0 number of “generation-backlog”.  As Fig.3.1 shows, this 

is independent of the temperature that affects only the speed of the process, in accord with 

intuition. 
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The obtained (3.7)-(3.8)  equations describe a sigmoid curve with six parameters. Out of these, 

four (y0 , ymax , µmax and λ) are familiar;  their role is similar to other four-parameter sigmoid 

curves. The fifth, the parameter m affects the curvature of the curve linking the linear segment 

and  the upper asymptote. Similarly, the parameter ν affects the curvature from the lag to the 

linear phase. In practice, parallel to the definition of m ,  a dimensionless curvature parameter can 

be introduced also for the pre-exponential transition phase:  

nC=νb /µmax         (3.15) 

 

3.3. Regression by the algebraic solution – how many parameters? 

With the notations above, a versatile sigmoid function is obtained, where the abruptness of the 

transition phases are controlled by the respective curvature parameters: 

 

 

 

 

 

 

 

 

In practice, the curve fitting has to take into consideration that, with commonly available 

measurements of bacterial growth, the curvature estimates are not very robust. It is much more 

efficient to fix them at a certain value and concentrate on the remaining four parameters only. 

Then one can follow the method well-known in polynomial regression. Statistical tests, such as 

  

  

Effect 
of nC  

  

Effect 
of m 

Fig. 3.1  The h0=λ·µ  

parameter is the same for the 
two bacterial curves, though 
they were generated at very 
different temperatures (15 
and 5 C). In both cases, the 
actual growth curve is ca 4 
generations behind the 
potential growth curve. 

Fig. 3.2.  Effect of the curvature 
parameters. The bigger they are, 
the more abrupt the transition 
period. 
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the F-test can decide whether the parameters ymax or λ can be added to an originally linear fit, as 

shown below: 

 

 

 

 

 

 

 

 

If one wishes to use the model to fit data other than bacterial counts, it is useful to consider 

the reparameterization of the equations in such a way that the optimal curvature parameters do 

not depend on the scale on which the raw data were measured. h0 =vbλ  instead of nC,  and  

M=m(ymax-y0) instead of m, can be such substitutions. The reparameterized form of the 

equations, with these h0 and M new curvature parameters, can be written as: 









e+e- 
M

y-y
-A(t)+y = y(t) y-y

A(t)-y-y
M-M-

0 0max

max0max

1ln0max
max

µ

µ  (3.16) 

where 














− e+e-

h
 - t = A(t) )-

t
(h-

t
h- 1

0

001ln
1

1 λλλ  (3.17) 

 

Following numerical experience,  5 < h0 <10,  5<M<10  are good empirical constants, to 

describe gentle curvatures. 

 

It is important to see that the parameter µmax is not necessarily the steepest slope of the actual 

growth curve, but expresses a 'potential' maximum specific growth rate that is characteristic to 

the population only if the initial concentration level is not very high. The difference between 

the steepest slope and µmax is noticeable if the curvature parameters are small and/or y0 is 

close to ymax. 

 

Keeping robust numerical algorithms in mind when using the algebraic expression of the 

model for regression, it is useful to consider another form of (3.16).  There, the sigmoid shape 

is partly due to a modification of the delayed linear segment, y(t) = y0+µmaxA(t),  with a 

logarithmic term.   A rearranged form 

  

From a linear 
to a sigmoid 
model 

  

m= 0   

nC=1 

  

m= 0   

m= 1   

  

nC=0 Fig. 3.3.  Symbolically, we call the respective curvature parameters 
zero, if there is no transition. This is equivalent to the omitting a 
parameter of the sigmoid curve. This technique enables users to fit 
sigmoids progressively, starting from a linear (two-parameter-) 
model and adding the other two parameters one by one, provided 
that a statistical test approves it. 
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








e

-e
+

m
-y = y(t)

tAm

)y-ym

ma )(

(

max

1
1ln

1 0max

µ
      (3.18) 

 

shows the modification of its upper asymptote, ymax .  As t increases, the denominator in the 

logarithmic term in the latter arrangement can become very big, for which case a control 

should be introduced in the fitting program, applying the ln(1+ε)≈ε approximation for small ε. 

That is, for large t :    y(t)=ymax . 

 

3.4. Simulating bacterial growth under dynamic conditions 

One of the most important features of the developed model is that the lag is considered as an 

adjustment process, where the rate of adjustment is νb .  If the E actual environment changes 

during the lag time, while still remains in a growth-supporting region, then it is a reasonable 

assumption that the νb(E) and µ(E) instantaneously take up the values characteristic of the 

actual environment.   The “comfort zone” of this assumption was studied by Baranyi et al 

(1995).  

 

The existence of algebraic solution was significant for data fitting. However, if the 

environment changes during the bacterial response, algebraic solution generally does not exist. 

With the assumption above, we can still use the original ODE form (for the sake of simplicity, 

with the νb=µ assumption): 

 

 u(x)xt
tq

tq
  =

dt

dx(t)
⋅

+
))((

)(1

)(
Eµ          (3.19) 

 ))(( t  =
dt

dq(t)
Eµ               (3.20) 

 

This model was tested by Baranyi et al (1995).  Individual growth curves generated under 

different but constant E environments were fitted by the algebraic form, from which a µ=µ(E) 

so-called secondary model was established.  As have been mentioned, h0=µmax·λ  could be 

taken as a constant, from which the q0 initial value was calculated by (3.9)-(3.10).    The 

carrying capacity of the environment was also taken as constant (this quantity does not have 

significance in food microbiology anyway, because by the time bacteria reach the carrying 

capacity of the environment, the food is inedible anyway). 
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The result is demonstrated in Fig. 3.4. The environment was characterised by temperature 

only. The simulation predicted the bacterial growth very well, even during the adjustment 

(lag) period. This prediction would not have been possible with former predictive models used 

in predictive microbiology (see a summary of those in Zwietering et al, 1990).  The key was 

the dynamic (ODE)  background and the introduction of the physiological state characterised 

by a critical substance that is gradually improving at the same rate as the specific rate. 

 

Note that the α0=const assumption proved to be valid only in a “smooth” growth-supporting 

region of the temperature (see the original publication). In addition, recent studies have shown 

that the assumption does not hold for other environmental factors, like pH. 

 

 

Growth of B.thermosphacta at changing temperature
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Fig. 3.4. Bacterial growth when the 
temperature changes (during the lag time, 
too).  The temperature profile (dotted red 
line) is recorded in a fridge, the door of 
which was left open after 2 hrs, so the food 
put inside first cooled down then increased 
back to ambient. The data (black stars) are 
not fitted but predicted (thick blue line) 
from parameters measured at constant 
temperatures. 
For demonstration, the thin blue line is the 
predicted bacterial growth, had the 
physiological state been 100% suitable to 

the new environment (i.e. α0 = 1;   h0 = 0:  
the no-lag situation.)  
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Chapter 4 

A stochastic model of adaptation 

 

4.1. A stochastic model of the lag time of individual cells 

Baranyi (1998) introduced a stochastic birth process with random lag time which was 

distributed over the initial cell population. The paper became the basis of further papers 

detailed in later chapters. 

 

Let the initial number of a growing cell population be N0=N.   Because here we omit the 

stationary phase, the end of the lag phase will be defined as the breakpoint of the bi-phasic 

linear function fitted to the y(t)=ln x(t) growth curve (see Fig.6.1, where more details are 

discussed about this definition).  This population lag, LN , is generated by N initial cells;  as 

can be seen from the notation, we cannot guarantee that the population lag is independent of 

the initial counts, if the cells divide randomly. 

 

Though the (rather geometrical) definition of the population lag has been used extensively in 

microbiology, its connection with the lag time of the individual cells has not been analysed 

sufficiently. The main reason why this should be looked into is that lag studies typically focus 

on low bacterial counts. As Renshaw (1991) pointed out, stochastic models should be used 

when studying small populations. 

 

The physiological lag for a single cell is not necessarily the same as L1.  The end of the 

physiological lag, τ, is not marked by any special event; the only thing we know is that the 

time to the first division is the sum of the physiological lag and the following first generation 

time. This is why it is difficult to validate any physiological cell concept. The definition of the 

above defined “L-lag”, on the other hand assumes and requires information on the generated 

subsequent subpopulation. Still, simulations show that the difference between the two is 

negligible, unless the generation times in the exponential phase are variable or/and their 

length is about the same as the lag. This is discussed in more details in Chapter 6. 

For the sake of compatibility with the original publications, we denote the Li -value for the 

cell i  also by τi  unless we want to emphasize their differences. 
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Denote the single cell lag time of the cell i  of the initial population by τi . We assume that τi  

(i=1,2...N) are identically distributed independent random variables, and their expected value 

E(τi)  is  τ.   

 

Suppose that a cell population, size of which is x(t) at the time t, grows according to the 

classical Poisson birth process after the lag, with a constant birth intensity parameter, µ.  

Let y(t) = ln x(t) denote the logarithm of that population.  Suppose that the subsequent 

subpopulations of each single cell of the initial culture grow together, but independently of 

each other. Simulate the population growth as above and measure the individual lag times by 

means of the fitted bi-phasic linear function where there is no growth in the first phase: 

y(t) = y0 + max( µ(t-L), 0)        (4.1) 

 

Here the y0 initial value is  y0=ln(1)=0.  If the exponential phase is long enough then the fitted 

µ  parameter will be an accurate estimation of the birth intensity.  As mentioned, the estimated 

L parameter is a close representation of the individual lag time:  L(i) = L1
(i)  varies around τ .  

 

Similarly, for N=1,2... ,  fit the bi-phasic linear function given by 

yN(t) = ln (N) + max(µ (t-L) ,  0 )      (4.2) 

 

to the growth curves of the populations generated by N=1,2... cells. The expected value for the 

L parameter is LN, the population lag produced by N cells. This way, the LN  sequence is 

defined for the expected population lag as a function of the initial cell number, N. 

 

4.2. An analysis of the stochastic lag 

Our investigation is focused on the LN  sequence. Because only the population lag can be 

measured by traditional microbiology methods, it is important to know, whether the measured 

lag depends on N, the initial cell number (in this model, the cells grow independently, so they 

do not ‘know’ if they are part of a small or a large population). Another, perhaps even more 

important, question raised here is: what can be inferred, from the measured population lag, to 

the individual lag? 

 

Following the definitions above, the size of the bacterial population, as a function of time, can 

be approximated by a sum of the exponent of bi-phasic linear functions. These bi-phasic 

functions estimate the growth curves of the subpopulations generated by the individual cells 

of the initial culture, consisting of N cells: 
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∑
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N
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)0,(max  )( τµ
       (4.3) 

 

Take the logarithm of the population size:  yN(t)=ln xN(t).  For sufficiently large time values,  the 

formula can be rearranged to a linear form : 





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




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
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e

tN= ty

N

i

N

i

1ln
 )(ln )(    ( t > max τi)   (4.4) 

 

Therefore, for the population lag produced by N  initial cells, the following formula can be given: 

N

e

= N

N

i

i∑
=

−

− 1ln
1

 )(

µτ

µ
λ        (4.5) 

 

Introducing the  αi=exp(-µτi)  (i=1,2,...N)  notation, the αi variables are also identically 

distributed, so their arithmetical mean obtained in the right hand side of the above formula 

converges to a limit value as N  increases. This limit is the common expected value of the αi 

variables; let it be denoted by α. 

 

It follows from our formula (4.5) that 

µ

α )ln(-
  → →∞N

N  L         (4.6) 

 

Remember that we used α = exp(-µλ)  to quantify the ‘suitability’ of the population to the new 

environment. Similarly,  

 eN NL⋅−= µα )(         (4.7) 

 

will quantify the suitability of the initial population consisting of N cells. A rearrangement of our 

formula (4.5) is 

N

e

= e

N

iL

i

N

∑
=

−

− 1 

µτ

µ
        (4.8) 

i.e. 
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N
= N

N

i

i∑
=1 )(

α

α          (4.9) 

 

This says that the suitability of the population is the arithmetical average of the suitability of the 

individual cells, for any initial cell number (Fig.4.3b).  

 

This result can help to estimate the rate of convergence in (4.6) via the variance of the 

arithmetical mean: 

N
= N i )(Var

 )]([Var 
α

α         (4.10) 

 

The population lag can be written as  

 
N

LN
µ

α )(ln −
=         (4.11) 

 

(see formula 4.9). For explicit formulae consider the following line of thoughts: 

As it is well-known, the individual generation time of a Poisson birth process follows the 

exponential distribution.  Suppose that the individual lag times also follow the exponential 

distribution, with the mean value τ. In this case, as can be calculated, the probability 

distribution function of αi is : 


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10  if          

0   if       0

)( Pr)( rαα
     (4.12) 

where r=(µτ)−1 . 

 

By means of the Fα(s) distribution function, the expected value and the variance of the αi  

variables can be calculated as 
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After substitution: 
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µ

τµ )+ln(1
 

⋅
 → ∞→N

N  L        (4.15) 

 

The above results solved our basic problem. The population lag converges to the above value, 

while the formulae (4.10), (4.11) and (4.14) define the rate of that convergence (Fig.4.3a). 

 

4.3. Comparison with a deterministic model 

Now, we show a deterministic compartment-model-equivalent of the above problem. 

Let the cell population be divided into two compartments: cells which are still in the lag phase, 

xLag(t),  and cells which are in the exponential phase, xExp(t). Assume that the cells transform 

from the lag to the exponential phase at a constant rate, κ. (Remember that the duration of the 

lag is smaller than the time to the first division, which includes also the first generation time). 

 

Assuming that all the initial cells (x0=N) are in the lag phase at the time zero, our 

compartment model can be described by a system of two linear differential equations with two 

initial values: 

Lag

Lag
x = 

dt

dx
⋅−κ         (4.16) 

LagExp

Exp
xx = 

dt

dx
⋅+⋅ κµ        (4.17) 

 

xLag(0) = x0         (4.18) 

xExp(0) = 0         (4.19) 

 

The solution of this initial value problem is 
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)()( 0Exp

tt eex = tx ⋅−⋅ −
+

κµ

κµ

κ
      (4.21) 

 

Therefore, the total cell population can be described by 
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This result can be obtained also by the following way:  Because the daughter cells do not need 

the adjustment (lag-) time anymore, the probability that, at time t, a cell is still in the lag phase, 

is equal to the proportion of these cells in the present total population  i.e. to  x0e
-κ·t 

/ x(t). 

 

Incorporate the lag in the Poisson model. The probability that a cell got over the lag phase is  

1-x0e
-v·t

/x(t), therefore 

t
x

ex
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x

x
tv
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∆ ⋅−

µ01         (4.23) 

 

Transform this equation back to its infinitesimal form: 

)( 0

vt
exx  = 

dt

dx −−µ         (4.24) 

As can be checked, the solution of this differential equation is really (4.22). 

 

Let  y(t)  be the natural logarithm of x(t)  and  let  y0= ln x0 .  Then for the solution (4.22) we  

can write: 
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Therefore  ( )λµ −+→∞ ty ty 0)(        as      t→∞     (4.26) 

where 

µ

κ

µ

λ








+

=

1ln

         (4.27) 

 

If the individual lag times follow the exponential distribution with  τ=1/κ  as expected value, 

than we get the formula (4.15) back for the limit value of the population lag. 

 

4.4. Comparing the developed stochastic and deterministic models 

When studying growth by both deterministic and stochastic models, the expected growth 

predicted by the stochastic process is often the same as the deterministic prediction. For 

certain growth parameters, however, sometimes surprising results can be obtained. As has 

been mentioned, for example the doubling time for the deterministic exponential growth was 

ln2/µ , which is about 30% less than the mean generation time, 1/µ, of the analogous Poisson 

growth. As Rubinow (1984) writes, the fast growing cells contribute to the total population 
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more than the slow cells, this is why this unexpected result. From our model, an analogous 

result can be inferred, since we have obtained: 

µτ

µτ

τ

λ )+ln(1
 =         (4.28) 

 

As can be seen, the ratio between the population lag and the mean individual lag depends only 

on the factor h’ = τ / (1/µ ), which is the ratio between the mean lag and generation time of the 

individual cells.  Because the right hand side of the above equation cannot be bigger than 1, 

the population lag is always less than the average individual lag. Besides, from the above 

formula, λ/τ  converges to zero as µ  is increasing. Therefore, at fixed individual lag-

distribution, the population lag can be any small, as long as the subsequent exponential 

growth can be chosen sufficiently high. 

 

The analysed process can be easily simulated on computer, by means of a sequence of 

independent random numbers, Ri  (i=1,2..N),  uniformly distributed between 0 and 1. The 

values τi=-τ ln(Ri) will be then independent, exponentially distributed numbers, with the 

expected value τ,  and  αi=Ri
µτ  are the appropriate random numbers for the simulation of the 

physiological state parameters of the cells.  
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Fig 4.1. Simulated growth curves of the subsequent subpopulations of three single cells, generated 
independently of each other (small plots), and the joint growth curve of the unified population of the three 
subpopulations (large plot). The (population) lag of the joint growth curve, with  y0=ln N = ln 3  initial cell 
number, is about 2, while the average of the individual lag times of the three cells is about 4. 
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The figures 4.1 -4.2 were prepared by means of the above random number generating 

procedure, with τ = 3 and  µ=0.5  .  Fig.4.1 shows the independent and joint growth of the 

subpopulations generated by  N=3  cells.  Fig.4.2 demonstrates the inoculum-dependence of 

the expected population lag, described by the LN sequence. Here, the subsequent growth of 64 

cells were simulated and the generated subpopulations were grouped as 1⋅64  (N=1) ,  4⋅16  

(N=4) … 32⋅2  (N=32) ,  and the respective population lag times were fitted for these N values. 

As can be seen, from lower inoculum, higher population lag can be expected, with higher 

variance. 

 

 

 

 

 

 

 

 

 

 

 

 

It is important to see that the decrease of the population lag with higher inoculum is caused by 

purely the randomness of the process and not because the cells have information on the size of 

the surrounding population (which would be the so called quorum-sensing).  The population 

lag converges to a limit value given by formula (4.15).  However, the rate of this convergence 

depends on the specific growth rate (although the generation time is independent of the 

individual lag time!) and on the distribution of the individual lag times of the cells. 

 

The results have numerical effects on those studies which are based on the detection time of 

bacterial populations as defined by the interval elapsed from the inoculation to the time when 

the population reaches a certain level. Assuming pure exponential growth until the time of 

detection, preceded by the lag period only, the distribution of the detection times reflect the 

distribution of the population lag times which is more and more scattered for lower inoculum 

levels. The detection time, for lower inoculum, has higher expected value and variance, which 

has obvious consequences, for example, when estimating the time until certain symptoms 

appear caused by growing bacteria. We return to this question in Chapter 6. 

0

2

4

6

0 4 8 12 16 20 24 28 32

N

 

0

0.2

0.4

0.6

0.8

1

1.2

0 4 8 12 16 20 24 28 32

N

 
Fig 4.2. a/ The population lag, LN, and its 
variance, as a function of the initial cell 
number, demonstrated by simulated data. 
 

Fig 4.2.b/ The mean physiological state 

parameter, α(N), and its variance, demonstrated 

by the same data. 
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Chapter 5 

Generalizations and analogues with survival models 

 

5.1. Bacterial survival curves 

We have seen that for food safety modelling, it is vital to study and model the adaptation time 

when bacteria are inoculated in a new environment. The situation is similar with survival 

curves where a so-called “shoulder” period precedes the exponential decay.  Mirror images of 

growth functions are also used to model survival curves (Xiong et al., 1999b) but a parallel 

study on growth and survival models outlined in this chapter shows that the symmetry is not 

that straightforward as it looks at the first sight. 

 

For both growth and survival models,  we call the "ln counts v. time" curve the population 

curve.  When the cells’ environment suddenly becomes inactivating (such as thermal 

treatment of food), the "time to death" for a single cell will be called the individual survival 

time.   

 

The main questions to be answered in this chapter are:  What is the relationship between the 

distribution of individual survival times and the survival curve of the population; 

furthermore between the distribution of individual lag times and the growth curve of the 

population. 

 

We are particularly interested in developing formulae between the parameters of the 

distribution functions of individual survival/lag times and the parameters of the 

survival/growth curves of the population.  For this purpose, we introduce the following 

definition.  If the growth/survival curve (meant as the “ln counts v. time” curve,  y(t)) 

asymptotically converges to a linear function 

 

ya(t) = ln N + µ⋅(t-λ),         (5.1) 

 

where N is the initial counts, µ  and λ are constant and do not depend on N,   

(i.e.   |y(t)−ya(t)| → 0    as N→∞,  t→∞ ),  then µ and λ  are called the limit slope and limit 

shoulder / lag parameter of the survival/growth curve, respectively (see Fig.5.1). 
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4.2. Inactivation after a shoulder period 

Denote the survival time of the i-th cell, during an inactivation process, by τi (i=1…N). As 

before, for the sake of compatibility with the respective publication (Baranyi and Pin, 2001),  

we equate τi  with the “geometrical” definition of lag, defined by a bi-phasic function fitted to 

the logarithm of the generated subpopulation.  

 

Suppose that the population is homogeneous, that is the τi  random variables are independent 

and identically distributed, with τ  mean value. Denote their common probability density 

function (pdf)  and cumulative distribution function (cdf)  by f(t) and F(t), respectively.  

 

5.2  Inactivation after a shoulder period 

For inactivation, the answer to our basic question is easy and well known. Because 

x(t) = Σ P(τi >= t ) = N ⋅ ( 1 – F(t) )      (5.2) 

 

so the population survival curve is (see Fig.5.1): 

y(t) = ln N  +  ln ( 1 – F(t) )       (5.3) 

 

Consider some specific examples for F(t).  

 

Case A1. 

The most cited situation is when τi  are exponentially distributed with the mean value τ  (pure 

Poissonian death process).  In this case,  F(t)=1–e
-t/τ ,  so the survival curve is 

y(t)  = ln N  – t/τ        (5.4) 
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Fig.5.1. There is a one-to-one mapping between F(t), the cumulative distribution function of the 
survival times of individual cells and  y(t), the survival curve of the population.  If y(t) 

asymptotically converges to a linear function, ya(t) , then a shoulder parameter, λ ,  is interpreted 
for the population curve. The parameter h0 can be interpreted as in the growth scenario.  
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Therefore, the survival curve is linear; the reciprocal of its slope is the mean value of the 

exponentially distributed survival times of the individual cells, and there is no positive 

shoulder parameter in this situation: λ=0. 

 

Case A2. 

A possible generalisation of Case A1 is when τi  (i=1…N) follow the gamma distribution, with 

the parameters  p≥1 and ν>0 , where the expected value of the survival time for a cell is 

τ=p/ν.   This can be interpreted in the following way: the cell needs p damaging hits (see the 

multi-hit theory in Casolari, 1988), and the times θj  (j=1...p)  between the hits are 

independent, exponentially distributed variables,  with a common mean value θ =1/ν  .  Then 

the survival time of the i-th cell is 

∑
=

=

p

j

ji

1

θτ          (5.5) 

 

therefore τi  (i=1…N)  are gamma distributed.  In this case, 

y(t) = ln N  +  ln (1 – Γp,ν (t))       (5.6) 

 

where Γp,ν (t)  is the cdf of the gamma distribution, with parameters p and ν , and mean value 

p/ν.   

 

We show below that, though the derivative of y(t) converges to a constant (namely ν),  a limit 

shoulder still does not exist in the p>1 case.  This, however, has only theoretical significance. 

With practical data, the value of  y(t) cannot be arbitrarily small and therefore, though the 

shoulder λ  does not exist in mathematical limit sense (apart from the p=1 , exponential 

distribution case), in practice it would be simply determined by ν and the smallest measurable 

value of y(t). 

 

►  Let the individual survival times be gamma-distributed, with p ≥1, ν > 0  parameters: 

( ) ∫
−−

Γ
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where the constant Γp is defined as  

∫
∞
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Remember that for an integer p,  Γp = (p−1)!  and for p=1 the exponential distribution is 

obtained. 

 

The mean value and the variance of τ are 

( )
ν

τ
p

=E                   ( )
2

Var
ν

τ
p

=       (5.9) 

 

The survival curve of the population is  

y(t) = ln N  +  ln (1 – Γp,ν (t))       (5.10) 

 

For its derivative, one can calculate that 
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Applying the L'Hospital rule, as t→∞,  the ratio of the counter and denominator converges to 

the same value as the ratio of their derivative: 
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As was expected, the derivative of the survival curve converges to  −ν .  However, this does 

not ensure that asymptotic linear function exists. Indeed, suppose that, for a constant b: 

 

ln(1-F(t))   →   −ν t + b          (t→∞)      (5.13) 

 

That would be equivalent to 
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Again, apply the L'Hospital rule: 
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This expression, however, is convergent only for p=1, when  b=0 and the survival curve 

describes a pure exponential death, with y(t)=ya(t)= -νt  (straight line through the origin). If  

p>1  then the expression cannot be convergent, so though the slope of the survival curve is 

convergent, the shoulder is not.         ◄ 

 

Case A3 

Another possible generalisation of Case A1  is the so-called multi-target model (Hermann and 

Horst, 1970). According to that, a cell has p targets that are being hit synchronously (not 

consecutively as in the previous case). The times needed to destroy the targets, θj (j=1...p), are 

independent, exponentially distributed variables with the common mean value of 1/ν  and the 

cell is live until all targets are inactivated.  Therefore, the survival time of the i-th cell is 

 

j
pj

i θτ
≤≤

=
1
max          (5.16) 

 

and  F(t)=(1–e-νt )p , where p ≥ 1 . The population survival curve is now 

 

y(t) = ln N  +  ln (1 – (1–e-νt)p )      (5.17) 

 

which will converge to the linear asymptote ya(t) = ln N  – ν ⋅ ( t – ln p / ν) ,   as shown below: 

 

►  The population growth curve in this case is 

y(t) = ln N  +  ln (1 – (1-e-νt )
p
)      (5.18) 

 

Standard analysis can show that this is a monotone decreasing function of t, starting from 

y(0)=ln N .  Its derivative also decreases monotonically, to the asymptotic final slope,  -ν : 
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According to the L’Hospital rule, the last term converges to ln(1)=0: 
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Therefore y(t) converges monotonically to the linear function 

ya(t) = ln N + ln p – ν t       (5.21) 
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In this case, the limit shoulder parameter can be calculated as 

λ = ln p / ν         ◄ 

 

5.3. Growth following lag 

The situation is more complex when studying growth after a lag period.  Let τi  be the lag time 

of the i-th cell, where τi  (i=1…N) are independent, identically distributed random variables, 

with common pdf  and cdf  (f(t) and F(t), respectively).  Assuming that, after the lag period, 

the subpopulation generated by the cell grows at a constant specific growth rate, µ, the 

expected population x(t) consists of two subpopulations: those that are over the lag period (or 

already daughter cells) and those that are the original cells, still in the lag period. Therefore 
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that is: 
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Just like in the case of inactivation curves, the above formula provides a one-to-one mapping 

between the distribution of the individual lag times and the population growth curve. The 

growth curve converges to a straight line as t approaches infinity, so (not surprisingly) it is the 

curvature from the lag to the exponential phase that characterizes the F(t) distribution. This is 

similar to that situation when, in inactivation models, a Laplace-transformation maps the 

distribution of resistance of individual cells onto a survival curve (Körmendy et al., 1998). 

 

If one could observe the lag times of individual cells and one or two subsequent divisions in the 

exponential phase (to estimate µ), then, by the equation (5.23), the growth curve of the whole 

population could be predicted.  It should be also possible to estimate the distribution of the lag 

times of individual cells from traditional viable count growth curves, if there is sufficient amount 

of accurate measurements before the exponential phase. However, equation (5.23) is a one-to-

one mapping only in theory. In practice, it is not feasible to identify the distribution of the 

individual lag times from traditional viable count growth curves. We give a numerical example 

for this below. 
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Consider the growth curve on Fig.5.2/B, with one of the observed growth curves in the paper of 

McClure et al (1993).   Test the exponential distribution for f(t):  

 t
etf

     )( νν −=  

 

where ν  is the reciprocal of the average lag time of the individual cells: ν =1/τ .   Our equation 

(5.23) reads as follows: 
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After converting the raw data into natural logarithm of the cell concentrations, the three 

parameters, y0 , µ, ν, can be fitted by least squares method. The fitted curve, after transforming it 

back to log10-scale, can be seen in Fig.5.2/B.  Though the fit is obviously good, one must note 

that this is the best fit if f(t) is chosen from the family of exponential distributions for the 

individual lag times. Indistinguishably similar fits can be obtained if  f(t) describes gamma (of 

which exponential is only a special case) or lognormal distribution (Fig.5.3/A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.2.  One-to-one mapping between (A) the probability density function of the exponential distribution 
assumed for the individual lag times and (B) the growth curve characterizing the transition of the 
population from the lag to the exponential phase. 

Fig.5.3.  As in  Fig.5.2, but log-normal assumption for the distribution of the indiviual lag times. The two 
distributions (Figs.5.2/A and 5.3A) are markedly different, still the respective two population growth 
curves (Figs.5.2/B and 5.3/B) are indistinguishable from each other. 
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Therefore, though equation (5.23) provides a theoretical background to make equivalence 

between growth curves and lag distributions, the standard curve fitting procedures, numerically, 

are not robust enough on commonly measured growth data. The traditional viable count curves 

are not suitable to identify what type of distribution is followed by the individual cells. New 

approaches are necessary in the measurement techniques, too (image analysis, flow cytometry, 

etc), in order to study individual cell kinetics. 

 

By rearranging (5.23), we obtain: 
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As can be seen,  for  t→∞  the  population curve y(t) asymptotically converges to the  linear 

function 

ya(t) = ln N  + µ⋅ ( t  + (ln α ) / µ )      (5.26) 

 

where  

∫
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)( dssfe
sµα         (5.27) 

 

As the formula shows, the parameter α  is the (common) mean value of the  αi = e
−µ⋅τi  

variables, which is the mean physiological state. 

 

Note that this is a new proof  for the result of the previous chapter that, for sufficiently large t, 

the y(t) population curve converges to the linear function 

N

e

tN = ty

N

i
a

i∑
=

−

+⋅+ 1lnln)(

µτ

µ      (5.28) 

 

Because the argument of the "ln"  function is the arithmetical mean of the αi = e
−µ⋅τi  

(independent, identically distributed) variables,  it converges to their common mean value, α .  

Therefore the limit lag parameter of the population is related to the individual lag times 

indirectly, through the mean of the individual physiological states. The wanted formula is 
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µ

α
λ

 ln 
 −=          (5.29) 

 

so we obtained the lag introduced in Chapters 2-3 as a special case.  

 

This relationship was deduced without making any use of some particular form of the 

individual lag distribution, exploiting only that the mean value of the αi variables exists. This 

was not the case with survival curves because there the linear asymptote was not guaranteed. 

 

Because the growth situation is much more complex than the parallel equations for survival, it 

is worth investigating possibilities for simplification.   

 

Case B1 

Suppose that the individual lag times are exponentially distributed with the mean τ.  Then, 

with the notation κ=1/τ , 
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Therefore 
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This confirms another formula of the previous chapter when we derived this by using two 

compartments (lag and exponential phase cells) to model the population growth curve, 

assuming that the specific transition rates between the compartments were constant. However, 

this result holds only if the individual lag times are exponentially distributed.  After 

calculating α  from τ and µ,  the wanted relation between the limit population lag and the 

mean individual lag time is: 

( )
µ

µτ
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1ln
        (5.32) 

 

Case B2 

Suppose that the τi  (i=1…N)  individual lag times follow the gamma distribution, with the 

parameters p and κ, so the mean individual lag is τ=p/κ.  The biological interpretation of this 

scenario is analogous to Case A2 : the cells have to carry out p consecutive tasks, and the 
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times θj (j=1...p) required by the individual tasks are independent, exponentially distributed 

variables, with the mean time θ = τ/p = 1/κ . Therefore, the τi  individual lag time is the sum 

of the times required by the p subtasks. 

 

In this case, the common mean of the αi=exp(-µτi)  variables  is α=(1+µ/κ)-p  as shown 

below: 

 

►  Let  κ/µ = r, where µ is the subsequent constant specific rate in the exponential phase. 

Then, as can be checked, the respective pdf of the individual physiological states,  

αi = exp(-µτi)  is: 
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The mean and variance of the above pdf is calculated by means of two substitutions: first  s = 

−ln t  is applied to both;  then the u = (r+1)s  transformation is applied to the expected value,  

and  u = (r+2)s  to the variance: 
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Similarly,  
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We obtain the relation for the limit population lag and the mean individual lag time: 
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This equation is, indeed, a generalization of the formula used so far with  p=1, when the 

gamma distribution is reduced to exponential distribution (the cell has one task to be carried 

out during the lag).        ◄ 

 

Case B3 

Suppose that the τi  (i=1…N)  individual lag times are obtained analogously to Case A3:  the 

cells have to carry out p subtasks simultaneously during the lag, and the times  θj (j=1...p)  

required by the individual subtasks are independent, exponentially distributed variables, with 

the mean time θ= 1/κ.  Then τi  is the maximum of the times required by the p subtasks. 

 

As we will show, now the expected value of the population mean of αi will be 
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where  

∫
∞
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0
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p         (5.39) 

 

►  The cdf of the individual lag times is  F(t)=(1−e−κ·t)
p .  With the notation  κ/µ = r, the cdf 

of αi = exp(-µτi)  is: 

( )pr
ssF −−= 11)(        ( ]1,0(∈s   )     (5.39) 

 

Its expected value is therefore 
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This definite integral can be calculated in an explicit form, after u=s
r substitution and 

considering the relationship between the beta and gamma functions: 
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hence 
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Similarly, the variance can be calculated from the connection between the gamma and beta 

functions:  
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We obtain the relation for the population lag and the mean individual lag time: 
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Again this is a generalisation of earlier results, when the cell had only one task to be carried 

out during the lag (p=1).      ◄ 

 

5.4. An important by-product 

In Chapters 2-3, we introduced the concept of ‘physiological state’ or “suitability parameter” 

quantified by α0=exp(-µλ)  , where λ is the traditionally defined lag time of a growing 

bacterial culture.  In Chapter 4, we saw a good use of it when studying the kinetics of dividing 

individual cells. Here we extended the approach to survival kinetics and pointed out the 

analogy as well as the difference. 

 

We defined the shoulder and lag parameters assuming that the initial population, N ,  is big.  

This is frequently a pre-condition for the applicability of population parameters. A commonly 

used formula, for example, that the expected time required by an exponentially growing 

population to double is  td = ln2 / µ  (Rubinow, 1984).   However, this is obviously not true, 

for example,  for a single cell, if the division time is exponentially distributed; then the 
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expected time to division is 1/µ . In fact, we show that the expected time for N cells to double 

is  

∑
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11 N

i

d
N

t
µ

        (5.45) 

converging to ln 2 /µ  as N→∞ .  Therefore, the expected doubling time is a function of the 

number of cells and it decreases from 1/µ  (for N=1)  to ln 2 /µ   (for N→∞). 

The proof is partly (up to the formula 5.50) is the work of my co-author Carmen Pin (see 

Baranyi and Pin, 2001). 

 

►  Suppose that all the N cells are in the exponential growth phase and the individual division 

times, di (i=1...N)  are independent, exponentially distributed variables, with  the common 

parameter µ  (Poisson birth process).  We wish to estimate the time required to obtain 2N 

cells;  i.e.  the sum of the first N  time intervals, each of which is defined by two consecutive 

divisions in the population: 
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For the time to the first division, t1 , we obtain 

t1=min{d1 ... dN)        (5.47) 

It can be shown that t1 follows the exponential distribution with the parameter Nµ : 

F(t) = Pr ( t1 < t ) = 1−Pr ( d1 > t ;  ... ; dN > t ) = 1−(e−µ t)N = 1−e−Nµ t  (5.48) 

therefore 

E(t1)=(Nµ)-1         (5.49) 

 

The time between the first and second division (t2) is the minimum division time of the 

resulted N+1 cells.  Because of the so-called "memory-less" feature of the exponential 

distribution,  we can apply the previous result for N+1 cells, so the cdf of t2  is  

F(t) = 1−e−(N+1)µ t     and       E(t2)=((N+1)µ)-1 . 

 

By induction, it follows that the expected value of td(N) is 
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   (5.50) 

As a special case, if  N=1 , then the doubling time is 1/µ (as well-known about exponentially 

distributed times). 

 



Dissertation   József Baranyi 
 

 47 

Let  HN = ∑
=

N

i i1

1
         so      

µ
NN

d

HH
NtE

−
= −12)]([  

We show that the right hand side converges to ln2/µ  as N→∞. 

 

Using a simple stepwise rectangular approximation for the integral of the 1/x function, one 

can obtain: 
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That is, ln2 separates the two series: 

( ) 1122        2lnln2ln    −− −<=−<− NNNN HHNNHH    (5.52) 

 

We just need to prove that the difference between the two series converges to zero: 

NN
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2
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)()()()( 12212112 −=−−−=−−− −−−−  

The right hand side converges to zero, as N→∞,  so the proof is complete. ◄ 
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Chapter 6 

Estimating the distribution parameters of individual lag times in a cell-

population 

6.1 Can we measure the distribution of single cell lag times? 

Automated measures are commonly used to estimate bacterial growth parameters. 

Unfortunately, little information is obtained on the lag phase (λ) because the change in the 

physical properties of a culture (turbidity, conductance, etc.) is detectable only at high cell 

concentrations. This problem is serious, for example, in food microbiology, where predicting 

the end of the lag phase is of great importance. 

 

The parameter α=exp(-µλ)  was introduced in Chapters 2-3 to quantify the physiological state 

of the initial population. As has been shown in Chapter 4, the lag parameter of a bacterial 

growth curve, also termed population lag, is not a simple arithmetical average of the lag times 

of the individual cells, τi  (i=1...N , where N  denotes the initial cell number).  The 

physiological state of the inoculum, however, is equal to the arithmetical mean of the 

physiological states of the individual cells, the αi=exp(-µτi)  quantities. We refer to this as 

physiological state theorem.  Note that the theorem is generally valid for “smooth” 

distributions of the individual lag times.  

 

Consider the biological interpretation of the physiological state of the inoculum as below. Let 

y0 = ln N  is the natural logarithm of the inoculum level, and let the lag period be λ. Find 

another, hypothetical growth curve which will be identical to the previous ‘real’ growth curve 

in its exponential phase but has no lag (Fig. 6.1). It can be readily seen that α=exp(-µλ)  is the 

factor by which if N decreased, the hypothetical growth curve crosses the vertical axis.  In 

other words, α  expresses the potential fraction of the initial counts which, without lag, could 

“catch up” with the real growth curve which does have lag.  The extreme values of this 

fraction are 0 and 1, corresponding to the situations that the real growth curve has ‘infinitely 

long lag’ and ‘no lag’, respectively. The α  physiological state is a dimensionless parameter 

quantifying the ‘suitability’ of the culture to the actual environment. It is, in fact, an initial 

value, just like the inoculum level, from which the lag parameter can be derived  by   

λ = - lnα /µ, expressing that the lag is inversely proportional to the maximum specific growth 

rate and depends on the physiological state of the inoculum, too, not only on the actual 

environment. 
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In this Chapter, we highlight a useful feature of the physiological state parameter. We develop 

a new method, based on the physiological state theorem and an ANOVA procedure, to 

estimate the maximum specific growth rate and the lag time of a homogeneous bacterial 

population. The advantage of the method is that it uses detection times, which are the first 

data available when recording bacterial growth, and it allows for the estimation of the within-

population variance of lag times. 

 

6.2 A consequence of the physiological state theorem.   

Let  αi = exp(-µτi)  (i=1...x0)  denote the individual physiological states.  If LN denotes the 

population lag generated by N cells, then  α(x0) = exp( -µLN )  is the physiological state of the 

inoculum consisting of  x0  cells. According to the physiological state theorem: 
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Therefore:  

(i)  the expected value of the physiological state of the initial population is the same as 

the (common) expected value, α̂  ,  of the individual physiological states:  

E(α(x0))=E(αi)= α̂ ;  

(ii) with higher initial counts, the physiological state of the initial population closer to α̂ ; 

(iii) denoting the (common) variance of the individual physiological states by v, the rate 

of the above convergence can be estimated by the relation that the variance of the 

physiological state of the initial population is x0-times smaller than the variance of 

the individual physiological states:  Var(α(x0)) =  Var(αi)/x0 = v/x0 
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growth rate 

µµµµ 

Xdet  
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Fig.6.1.  The intercept of the inoculum level with 
the tangent drawn to the exponential phase of the 
growth curve marks the end of the lag phase. The 

detection time, Tdet, depends linearly on the lag, λ. 

The parameter α0,  can be used to define a 
hypothetical inoculum level from which a growth 
curve, without lag, is able to catch up with the 
real curve with lag. 
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6.3.  An ANOVA protocol.   

We use the population state theorem to develop an ANOVA procedure for our method. We use 

the indices i, j, k  to differentiate between N cells of an inoculum (i=1...N);  between n detection 

times generated by N(j)  initial cells (j=1...n); and between m groups of identical inoculum levels 

(k=1...m). 

 

Suppose that a culture, growing from x0  initial counts, reaches a certain detection level,  Xdet , at 

the time Tdet ,  while still in the exponential phase.  As  can be followed from Fig.5.1: 

µ
N

X

L NT N

det

det

ln 
   )( +=          (6.2) 

 

From this equation, it follows that the detection time does not depend on both Xdet and N 

independently, but only on the ratio  

det

  
X

N
= r  

that we call the dilution ratio. If the variance of the dilution ratio is negligible, the distribution of 

the lag times, apart from a constant additive term, is identical to the distribution of the detection 

times. 

 

Suppose that we measure the T(j) detection times for some subcultures generated by N=x0
(j)  

initial counts (j=1,2...n) . Denote  α(j)
=α(x0

(j)) .  Then, from equation (6.2),  

(j)

µT
(j)

r

e
 α
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=          (6.3) 

 

where 

r
(j)=  x0

(j)
 / Xdet          (6.4) 

 

Besides, as we have seen, 

 (j)

(j)

rX

v
)Var(α

det

=         (6.5) 

(recall that v is the common variance of the exp(-µτi)  individual physiological states). 

 

For the expected value of the physiological state, an efficient estimation is the weighted 

average of the  α(j)  values, where the weights are proportional to the reciprocals of the 

respective variances. After simplification, we obtain: 
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∑
=

=
n

1j

sum   (j)
rr           (6.7) 

 

The variance of the  α estimator is: 
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Suppose that we dilute a culture from the detection level, Xdet ,  and we obtain n=n1+…+nm  

subcultures, where  

    - n1 subcultures belong to Group 1 characterized by the 
1n,11,1

)1( ... rrr ===  dilution ratio. 

Denote their detection times by 
1n,11,1  ,..., TT ; 

    ....................... 

    -   nm subcultures belong to Group m characterized by the 
mnm,m,1

)m( ... rrr ===  dilution ratio. 

Denote their detection times by 
mn,m1,m  ,..., TT . 

 

Let  
)k(

α  be the mean of the k-th group (1≤k≤m) of the physiological state observations and let 
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Then, from equation (3): 
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As we know, the variance of  
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Define the V-value as the variance ratio 
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Following the standard ANOVA technique, 
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As can be checked, 
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Calculate the variances in the denominator of (6.12): 
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After substitution, we obtain: 
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The distribution of the V  variance ratio, if completed with the respective degrees of freedom, is 

very close to that of the F-distribution, except that the differences in the summations are not 

normally distributed. Even so, due to the robustness of F-statistics,  the maximum specific 

growth rate, µ,  can be estimated by minimizing the V variance ratio. The advantage of this is that 
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V  is dimensionless, independent of the Xdet and x0
(j) values and depends only on the dilution 

ratios and the detection times. 

 

6.4. Practical implementation 

Baranyi and Pin (1999)  used Pseudomonas strains to record the turbidity of the cultures 

inoculated in Bioscreen.  Microtiter plates, with 300 µl/well, were incubated and the detection 

times were measured needed to reach ODdet = 0.15,  equivalent to approximately Xdet≈107 

cells/well. This estimate was checked by making a series of dilutions from a culture grown in 

nutrient-rich broth at 25 oC for 24 h. The ODs of the dilutions were monitored by the Bioscreen 

while bacterial counts were estimated by ordinary plating technique. 

 

A culture, whose turbidity was ODdet=0.15  was used to produce altogether m=7 groups of 

subcultures with different inoculum levels. The groups k=1...7  were characterized by  r1...r7  

dilution ratios where r1 = 10 -3⋅2 -6   and  rk=rk-1/2   (k=2...7),  because of consecutive binary 

dilutions.  Note that the exact value of  Xdet belonging to ODdet is not necessary for our method;  

it is enough to know that Xdet is reached in the exponential phase. 

 

The data were collected in a Microsoft Excel spreadsheet and the ‘Solver’ add-in of the software 

was used to minimize the calculated V  variance ratio with respect to the maximum specific 

growth rate, µ. A sample data and calculations are given in Tables 6.1 and 6.2. 
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The observed detection times belonging to seven groups of initial counts  are shown in Fig. 6.2. 

The groups are characterized by the  r1=10 -3⋅2 -6  ...  r7=10 -3⋅2 -12  dilution ratios. Calculating with 

Xdet=107 cells/well detection level corresponding to the  ODdet = 0.15  turbidity, the initial counts 

in the wells of the lowest inoculum level was around   N = x0 = r7 Xdet = 10-3⋅2-12
Xdet = 2.44  

Fig.6.2. Detection times from different 
inoculum levels obtained by a series of binary 
dilutions. 
The lower the inoculum level the larger is the 
scatter of the detection times. 
 
Legend: 
Cross ( × ):   measured detection times. 
Broken line ( --- ):  detection time predictions 
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cells/well.  As has been said, however, the actual values of  x0  or  Xdet  were not used to estimate 

the maximum specific growth rate and the population lag. 

 

The ANOVA procedure described above estimated  µ=1.07 h-1  for the maximum specific 

growth rate of pseudomonad at 25 oC.  From µ, the mean physiological state of the inoculum was 

estimated  as  α̂ = 0.27  (see the grand mean in Fig.6.3). The population lag was calculated as λ 

= - lnα̂ /µ  = 1.21 (h). 

 

 

To demonstrate, how robust the technique is, Fig. 6.4 shows the scatter and trend of the 

physiological state values at two specific growth rates which were obtained by perturbing the 

calculated µ value. If the specific rate is chosen about 10% lower or higher, then the (group 

means of the) physiological states show a downwards or upwards tendency. 

                  

 

 

 

 

6.5. Discussing the use of detection time measurements for single cell studies 

Detection times from different  x0
(j)  initial levels,  have been used by other authors to estimate 

bacterial growth parameters. Unfortunately, the variance of the observed detection times 
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Fig.6.3. Physiological state values, obtained by 
transforming the detection times by means of the 
respective dilution ratios and the estimated specific 
growth rate.  Legend: 
Cross ( × ) :  Physiological state data. 
Filled squares connected by continuous line ( ■ ):   
Group mean of the physiological state data generated 
by the same inoculum level. 
Broken line ( --- ) :  Grand mean,  ;  the estimate for 
the mean physiological state of the initial population. 
Dotted curve  ( .... ) : the expected theoretical 
deviation from the grand mean calculating with 
Xdet=107  detection level and assuming exponential 

distribution for the individual lag times. 

Fig.6.4.  Demonstrating the robustness of the method. If the maximum specific growth rates are slightly 

perturbed (µ(A)=0.95 h-1 , µ(B)=1.2 h-1 ;   instead of the correct  µ=1.07  h-1),  then the physiological state 
values show strong downwards and upwards tendency, respectively.   Legend as in Fig.6.3. 
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increases as the inoculum size decreases. We overcome this problem by applying the 

physiological state theorem.  One of its consequences is that the variance of the α = exp(-µTdet)/r  

value is inversely proportional to the r=x0/Xdet dilution ratio. This relationship was used to 

develop an ANOVA procedure. 

 

To apply our method, the detection level should be in the exponential phase. If, for example,  

Xdet  is close to the stationary phase then the method underestimates the real specific rate. 

Another source for uncertainty is the possible error in the r dilution ratio. 

 

The physiological state theorem is valid irrespective of the distribution of the lag times, τi,  of 

the individual cells. An important case, however, when those are exponentially distributed, 

deserves special attention. In that case, the mean individual lag time can be estimated by 

µ

α
τ
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with the same τ  variance, while the variance of the individual physiological states is 
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(Note that the mean individual lag time is longer than the population lag). 

 

Applying the above formulae to our numerical results, the average of the lag times of the 

individual cells was 2.5 hours, with v=0.084 variance (ca.  0.29 hours standard deviation). By 

means of v and the estimated Xdet=107 detection level, the standard deviations of the )k(α  

group means can be calculated (assuming exponential distribution for the individual lag times) 

by equation (5.11) . These estimated standard deviations are represented by the differences 

between the dotted lines and the grand mean of the α values in Fig. 6.3. The fact that they are 

close to the standard deviations of the groups (which can be calculated simply from the raw 

data, irrespective of the exponential assumption) suggests that the distribution of the lag times 

of the individual cells are, indeed, close to exponential. 

 

An important point in the applicability of the method is that, as follows from the assumptions 

of the physiological state theorem,  the total number of cells in a homogeneous living space 

that should be considered for the inoculum, as well as for the detection level (cells/well), and 

not just the density of the inoculum. Therefore, a population of, say,  1 cell/ml concentration 

in a liter volume (1000 cells altogether) should produce the same lag as 103 cell/ml  
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concentration in a ml volume. This relationship does not hold in practice because the cells do 

not grow independently but exchange chemical signals whose effectiveness does depend on 

the actual size of the living space.  

The distribution of the detection times of cultures with low initial numbers has not been 

previously examined in detail and has the potential to be used in the development of stochastic 

approaches. For practical applications, see a simple spreadsheet model described by Tables 

6.1 and 6.2, using the syntax of Microsoft Excel, being aware that food microbiology labs are 

commonly collecting their data using this application. 

 

A   |  B  C D  E       F       G      H      I       J      K 
k j N_k r_kj T_kj beta_kj alpha_kj alpha_k   Between Within 
1 1 4 2.44E-07 21 1.05E-11 4.29E-05 3.06E-03 9.1E-06 1.438E-12 6.9E-12 

1 2   2.44E-07 18 3.88E-10 1.59E-03 3.06E-03 2.2E-06   

1 3   2.44E-07 17 1.29E-09 5.30E-03 3.06E-03 5.0E-06   

1 4   2.44E-07 17 1.29E-09 5.30E-03 3.06E-03 5.0E-06   

2 1 3 4.88E-07 18 3.88E-10 7.95E-04 2.03E-03 1.5E-06 3.319E-13 1.7E-12 

2 2   4.88E-07 17 1.29E-09 2.65E-03 2.03E-03 3.8E-07   

2 3   4.88E-07 17 1.29E-09 2.65E-03 2.03E-03 3.8E-07   
              

       n r_sum alpha  mu V 
       7 2.44E-06 2.44E-03  1.2E+00 2.1E-01 

 

 

Table 6.1. Example data and their organization given in an Excel sheet to follow the ANOVA procedure. The raw 
data are given in the D3-E9 region. The calculations can be followed in the F3-K12 region. The numerical results 
shown here are generated by the respective Excel statements given in Table 6.2. The bold letters indicate Excel 
variable names referring to the arrays below them, which were used in the formulae in Table 6.2. 
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       F        G          H        I      J      K 
beta_kj alpha_kj alpha_k   Between Within 

=EXP(-mu*T_kj) =beta_kj/r_kj 
=AVERAGE 
(G3:G6) 

=(alpha_kj-
alpha_k)^2 

=r_k*(alpha_k-
alpha)^2/(1/n_k+ 
r_k/r_sum-2/n) 

=r_k/ 
(1-1/n_k)* 
SUM(I3:I6) 

=EXP(-mu*T_kj) =beta_kj/r_kj =$H$3 
=(alpha_kj-
alpha_k)^2   

=EXP(-mu*T_kj) =beta_kj/r_kj =$H$3 
=(alpha_kj-
alpha_k)^2   

=EXP(-mu*T_kj) =beta_kj/r_kj =$H$3 
=(alpha_kj-
alpha_k)^2   

=EXP(-mu*T_kj) =beta_kj/r_kj 
=AVERAGE 
(G7:G9) 

=(alpha_kj-
alpha_k)^2 

=r_k*(alpha_k-
alpha)^2/(1/n_k+ 
r_k/r_sum-2/n) 

=r_k/ 
(1-1/n_k)* 
SUM(I7:I9) 

=EXP(-mu*T_kj) =beta_kj/r_kj =$H$7 
=(alpha_kj-
alpha_k)^2   

=EXP(-mu*T_kj) =beta_kj/r_kj =$H$7 
=(alpha_kj-
alpha_k)^2   

       

N r_sum Alpha  mu V 

=SUM(n_k) =SUM(r_kj) 
=SUM(beta_kj)/ 
r_sum  1.204 

=SUM(Between)/ 
SUM(Within) 

 

Table 6.2.  Respective Excel statements generating the numerical results given in Table 6.1.  The Solver add-in 

minimized the value of the V  variance ratio in the K12 cell by varying the value of µ in the J12 cell. 
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Chapter 7 

Numerical estimations for the statistical distributions of  

individual lag times   

 

7.1. Single cell lag time – a review on its definition 

In this chapter, we will denote the lag parameter defined at population level, by Lg 

(see Fig.7.1), referring to its rather “geometric” definition.  The Lg(N0) notation 

indicates that its value depends on the initial cell number, N0.  

 

In Fig. 7.1, the horizontal "steps” represent the intervals when no division occurred. 

The "physiological" lag for the initial cell was a random number generated to follow 

the Gamma distribution with mean=5.4 h,  σ=1.8 h. After the lag, the subsequent 

times for division of the daughter cells were also generated by the Gamma 

distribution, with mean=1 h and σ=0.26 h. The time to the first division (equal to the 

"detection time" when the detection level is ydet=ln 2) is the sum of τ and the first 

generation time. The parameters of the simulation were taken from flow-chamber 

experiments presented in Elfwing (2004). 
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As have been said, no observable event happens at the end of the τi  period.  The time 

to the first division is in fact the sum of τi  and the first generation time.  When 

interpreting the single cell lag time as above, it is important to see that Lg(1) is not 

identical to τi.  In fact, Lg(1)  is not a parameter of the original single cell, but that of 

the sub-population generated by the single cell.  Namely, due to its definition, the 

estimation is affected by the variability of the successive generation times of the 

Fig.7.1. Simulated growth curve of a one-cell-
generated population growing as a result of 

subsequent divisions.  
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daughter cells.  The distribution of the detection times, tdet, reflects the distribution of 

the Lg "geometrical" lag and not necessarily the physiological lag. 

 

To analyse this difference, consider the simulated, single-cell-generated population 

growth curves of an exponentially growing culture in Fig.7.2.  It was assumed that the 

initial cell had no lag , however, the resulting geometrical lag times, Lg,  are different 

from zero because of the variability of the successive generation times of the daughter 

cells.  The estimated Lg values are dispersed around zero, with a variance that depends 

on the generation time distribution. The Lg parameter has a considerable spread (Fig. 

7.3), due to the variance of the first few generation times. 
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The fact that Lg  is not a physiologically interpretable single-cell lag time is not a 

disadvantage.  With the Lg parameter, a simple bi-phasic model can be used to predict 

the time and its distribution by which the population would reach a given (e.g. 

harmful) level of bacteria; risk assessors need exactly this. 

 

7.2. Detection time 

In practice, it is difficult to follow the division of individual cells with automated 

measurements. Suppose that ydet= ln(xdet) is the level at which a homogeneous 

bacterial culture can be detected, for example, by measuring its turbidity in a liquid 

Figure 7.2.  Two simulated examples for a one-cell-generated population with no lag. The 
distribution of the generation times is as in Fig. 7.1. The distribution of the Lg parameter comes 
exclusively from the distribution of the subsequent generation times, since the physiological lag 
time is zero. The two panels demonstrate that both (i) Lg(1)<0  and (ii) Lg(1)>0  are possible for 
the random population growth process   
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medium (see the previous Chapters). Suppose that ydet is in the exponential phase and 

let Tdet denote the detection time at which the single-cell generated subpopulation 

reaches this ydet threshold value. Then the detection time is a shifted version of the Lg 

parameter. However, this value depends on the number of initial cells and if this is 

unknown, it is not easy to infer to the single cell lag times. 

 

Our main objective is to use detection time data to give an accurate estimation 

procedure for the distribution parameters of the single cell lag times, when the initial 

cell number is random.  We will also discuss some practical implications regarding 

Quantitative Microbial Risk Assessment. 

 

7.3. Practical considerations and measurements 

Simulation studies can prove that, under reasonable assumptions, Lg(1) can be well 

approximated by a shifted Gamma distribution, if the single cell generation times are 

also Gamma-distributed (not necessarily with the same parameters as the distribution 

of Lg(1)  ). This is demonstrated in Fig.7.3.  
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Another source of variability could be the specific growth rate of the single-cell 

generated population. As the simulation studies showed, the variance of the specific 

growth rate is negligible in comparison to the variance of Lg and the first few 

generation times (Métris et al 2003). This can also be seen intuitively, since the 

specific rate is determined by many cells, therefore its variance is much less than that 

of the division time of a single cell.  Hence the estimation of the specific growth rate 

Fig. 7.3.   Distribution of the Lg(1) single cell 
lag times with the same simulation 
parameters as in Fig. 6.2, based on 1000 
replicates of a Monte-Carlo simulation. The 
age of the initial cell was also picked 
randomly. The cells had no physiological lag 
time, so this distribution of the geometrical 
lag time is a sole consequence of that of the 
subsequent generation times. It is compared 
with a zero-centered, shifted Gamma 
distribution (continuous line), where the shift 
is equal to the mean of the generation times 
(1 h) but the deviation is higher (0.4 h vs. 

0.26) than that of the generation times. 
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is hardly affected by the variability of the single cell generation times in the 

exponential phase. 

 

First (Case A), the detection times of a Listeria innocua culture (Métris et al, 2006) 

were used to test the new method. The detection times refer to the times when the 

turbidity as measured by Bioscreen C plate reader  (an automated optical density 

detector) reached a fixed level (optical density, OD=0.11) which was shown to be 

equivalent to ca 107.7 cell/ml concentration.  

 

In the second experiment (Case B), L. innocua was inoculated in the same way, but 

after receiving a mild heat shock, so the lag was significantly longer.  

 

The maximum specific growth rate of the organism was measured in an independent 

experiment, by means of traditional plate count technique. The parameter, at 22°C, 

was estimated as µ = 0.45 h-1 from the plot of colony forming units against time, 

using the curve-fitting program DMFit, available at www.ifr.ac.uk/safety/DMFit. 

 
If the initial number of cells in a well is exactly one and the detection level is in the 

exponential phase, then the difference between the detection time and the Lg(1) 

parameter of the initial single cell depends only on the specific growth rate of the 

organism, which is constant as the population is in a  homogeneous environment (see 

above). In this case the detection time differs from the Lg(1) single cell lag time only 

by an additive constant. 

 

There is no easy way to sort single cells into the wells of microtitre plates. Methods 

available include sorting by flow cytometer, which is expensive and can introduce 

bias during the process, e.g. if the cells are sorted according to size. Instead cultures 

are diluted to a level such that a sample in a well should contain only a few cells. 

With a sufficiently high dilution factor, most wells will receive zero or one cell. This 

technique was applied by Augustin (1999) and Francois (2005)  to evaluate the 

variation of the lag times of single cells   The disadvantage is that many wells will be 

empty and, for a statistically robust distribution estimation, it is desirable to have as 

many positive wells as possible, a minimum of about one hundred (Baranyi, 2005). 
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7.4 Estimation procedures  

Cell cultures were obtained after successive dilutions, and placed into W  number of 

wells (W = 200 for the microtitre plates of the Bioscreen). Hence, the initial number 

of cells (N0) in a well follows the Poisson distribution, i.e.  

Pk = 
!

)exp()( 0
k

kNP
kρ

ρ−==   (k=0, 1, …)   (7.1) 

where the expected value of N0 is E(N0)=ρ. The fraction of empty wells can be used to 

estimate ρ  by� )/ln(ˆ
0 WW−=ρ , where W0 is the number of negative (empty) wells. 

 

A linear method relating detection time and single cell lag time. Consider the 

stochastic delayed birth process model proposed in Chapter 4. For a cell in the initial 

population, the first division happens after a time interval, which is the sum of its 

physiological lag time and the first generation time. At time point t in the exponential 

phase, the natural logarithm of the expected population size in a well can be 

calculated from 

y(t;N0) = ln(N0) + µ ( t - Lg(N0) )  for t > Lg   (7.2) 

where Lg(N0)
 is the "geometrical" lag in the well, and µ  is the specific growth rate of 

the population. The notation indicates that the Lg variable depends on the N0 initial 

number of cells in a well.  We assume that, for single cells, the distribution of 

Lg=Lg(1)  can be well described by a shifted Gamma distribution, i.e. for a Tshift  

parameter,  Lg(1) - Tshift   is Gamma distributed (Fig.7.3).  In order to create a simple 

bi-phasic model for the growth curve the Tshift parameter compensates for the 

randomness of the first few division times. Alternatively, if Tshift is significantly 

different from zero, then it can be interpreted as a ‘compulsory repair time’ for a 

period after injury during which the probability of division is zero for any cell. An 

example will be shown for this later (Case B), with heat-shocked cells. 

 

The linear method transforms the Tdet(N0) detection times into individual lag times 

using the estimation for ρ :  
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µ
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where Lg
(LIN) is the linear estimation for the Lg(1)  single cell lag time, ydet is the 

natural logarithm of the cell concentration at the detection level.  This linear method 

substitutes the random variable, N0, by an estimation of its mean, therefore the 

variability of Lg(1) comes only from that of the observed detection times.  If N0   was 

fixed at 1, then the difference between Tdet(1) and Lg(1) would be only the additive 

term  ydet/µ . 

 

A ‘moments-based’ method. Define 

α(N0) = exp(-µ Lg(N0))       (7.4) 

 

as the physiological state parameter for the population generated by N0 initial cells in 

a well (Baranyi, 1998).  Let Sα(N0) denote the sum of the physiological state 

parameters of the one-cell generated subpopulation: 

∑
=
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jNS αα          (7.5) 

 

As we have seen in Chapter 4, the physiological state parameter of a population is the 

arithmetical average of the physiological state parameters of the constituent 

subpopulations, 
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and using the relationship 

ydet(N0) = ln(N0) + µ [Tdet(N0)– Lg(N0)]     (7.7) 

 

we obtain 

)()(

0
0det0det)( NTNy

eNS
⋅−= µ

α        (7.8) 
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This idea was used by Métris et al (2006). In Baranyi et al (2009) we developed the 

method further.  We utilised the fact that N0 is Poission-distributed and we can get 

explicit formulae for the M1, M2, M3 moments of Sα(N0): 

 

► The first three moments of the random variable e-µτ  , where  τ  is Gamma 

distributed with scale parameter θ  and shape parameter β :  

βµθ −+= )1(1m          (7.9) 
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Suppose that the Lg =Lg(1) geometrical lag has a (constant) time shift parameter, i.e.  

Lg-Tshift   follows the original Gamma distribution. Therefore, the respective moments 

of the physiological state  gL
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The moments of the compound random variable Sα(N0) can be calculated by means of 

the moments of N0 and αj : 
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Combining the two sets of equations: 

βµ
α µθρ −− += )1()( shift
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eSM      (7.20) 



Dissertation   József Baranyi 
 

 65 

       

Let the Lg(1)- Tshift   Gamma distributed variable have the scale and shape parameters 

θ   and  β , respectively.  Make the moments of Sα  equal to the empirical moments of 

Sα  : 
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where j=1…n  numbers the observations, 

 

As mentioned, ρ can be estimated by the number of empty wells, W0, out of the total 

wells, W.  The specific rate is calculated from different data, so three equations 

remain with 3 parameters, Tshift,  β  and θ.  The estimate for Lg(1) will be  

Lg
(M) = Tshift + βθ        (7.24) 

 

with the fitted parameters. 

 

7.4 Experimental validation 

The author of this thesis coordinated a large EU-funded project, called Bacanova,  in 

which seven institutes of different countries analysed bacterial lag times of single 

cells in order to provide a solid basis for quantitative microbial risk assessment (see 

Baranyi, 2005).  One of the major outputs of the project was the paper of Elfwing et al 

(2004), reporting on a so-called flow-cell-based method. The output of the system was 

a series of images that made it possible to observe the statistical distribution of the 
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division times of single cells (Fig. 7.4 – experimental results from microbiologist 

colleagues): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7.4.  The flow chamber technique of Elfwing et al (2004) projects the cell division into a series of 
images from which the distribution parameters of single cell division times can be estimated. 

 

The novelty of the method was that the cells were immobilised in the chamber, and 

the flow of nutrients was exactly so strong that during division one daughter cell 

attached to the surface remained immobile while the other was flushed away by the 

shear-power. Above them, a digital camera took photos at regular intervals and the 

images were analysed by analysis software. The sizes of hundreds of cells were 

translated into pixel sizes and the series of photos revealed the stochastic dynamics of 

cell division. 

 

The data acquired this way was the basis of a series of papers (Métris et al, 2003, 

2006;  Kutalik et al 2004a, 2004b, 2005; Pin and Baranyi 2006, 2008).  One of the 

important conclusions of the data was that the division time distribution of the cells 

gradually converged to the one they have in the exponential phase. Fig. 7.5 

demonstrates this process. 
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This result confirms that the physiological lag time is not a well-modellable variable, 

and highlights the usefulness of the Lg  concept for the lag time. 

 

7.6. Application  

The linear method is reliable only if the average number of initial cells is very low, so 

the majority of the wells contain one cell only. We demonstrate below that there can 

already be a significant difference between the true Lg(1) values and the linear 

estimate produced by Eq. (7.3) when the average initial number of cells in a well is 

between 2 and 3. 

  

The simulation programs and the analysis below were prepared by my co-author, Z. 

Kutalik, of the Baranyi et al (2009) paper. Two cases for the Gamma parameters of 

the physiological single cell lag times ere simulated:  

Simulation_1:   τ ~ Γ(2,1)  [     E(τ) = 2h,    SD(τ) =  1.4h   ] 

Simulation_2:   τ ~ Γ(2,10)  [     E(τ) =20h,   SD(τ) = 14 h    ] 

 

The “coefficient of variation” values of these Gamma distributed variables are the 

same and, from observed data, realistic (Kutalik et al, 2005a). The difference between 

them is the ratio of their scale parameters to their means and to the subsequent 

specific growth rate, which is fixed at µ= 0.45 (h-1).    

 

Assume that the cells are inoculated into 200 wells, with E(N0) =ρ = 2.5 cells per well. 

Simulate the theoretical outcome considering only wells with less than 5 cells (88% of 

the non-empty wells). Table 7.1 shows the mean and SD values of the respective 
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distributions based on one million simulations. With Simulation_1, the SD of the 

linearly transformed Tdet   (last row) is smaller, while with Simulation_2 it is much 

bigger than that of Lg(1) (which is represented in the first row, by the one-cell-

generated subpopulations). There is no doubt that the distribution of the detection 

time, Tdet(N0), is not a very good approximation of the distribution of the single cell 

lag time. 

 

Number of initial 

cells in a well. 

Proportion of wells with k 

cells among the positive 

wells 

Simulation_1 

E(τ) = 2 h 

 σ(τ) = 1.4 h 

Simulation_2 

 E(τ) = 20 h 

 σ(τ) = 14 h 

N0 ~ Poisson(2.5) Pk = P(N0=k)  = (lag ≈ 

gen.time) 

(lag >> 

gen.time) 

N0 = k    (0<k<5)   (ρk e-ρ / k!) / (1-e-ρ) σ(Lg(k)) σ(Lg(k))  

K = 1 P1 = 0.223564 1.41 14.15 

K = 2 P2 = 0.279455 0.86 8.25 

K = 3 P3 = 0.232879 0.67 6.12 

K = 4 P4 = 0.145549 0.56 5 

Convolution (k < 5) 0.881447 σ(Lg(N0))  ≈  

1.54 

σ(Lg(N0))  ≈  

10.36 

 

 

           

 

 

It is evident that the higher the Poisson parameter, ρ, the less it is true that the linear 

method estimates the distribution of the single cell lag time. However, we 

demonstrate below that the new method is also suitable for ρ>1 cases. We applied it 

to two experimental data sets obtained with L. innocua.   

 

Case A. The first example is the same as used by Métris et al (2006).  Out of the 

W=200, 146 were positive, so the average initial number of cells per well was ρ̂ = -

ln(54/200) = 1.31. The specific rate was fixed at the value µ=0.15 h-1 as reported in 

Table 7.1. The detection time variability (i.e. the variability of the Lg(N0) lag time, where N0 is 
random) can significantly differ from the variability of single cell lag times. If the single cell lag time 
is comparable to the generation times in the exponential phase (Simulation_1), then the difference is 
around 10%;  however if the lag time is much longer than the subsequent generation times 
(Simulation_2), then the relative difference between the two can be as high as 40-50%.  
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the original paper.  The physiological state of the cell population could be calculated 

by using the estimate for the mean of N0 : 
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The standard deviation of the detection times was SD(Tdet)=12.5 h while our method 

resulted in SD(Lg(1))=32.23 h  for the single cell lag times.  Tshift was insignificant, 

and its value could be fixed at 0. After fitting the β, θ parameters, the average single 

cell lag time was calculated as Tshift+βθ = 55.5 h. Note that the lag of the population 

was –ln(α)/µ = 26.5,  about half of the mean single cell lag time. These results 

coincide with those of Métris et al (2006), because the Tshift parameter was zero. 

 

Case B. In the second example, after a mild heat shock, cells were inoculated into 

wells as described earlier. In this case, 189 wells out of W=198 were positive, so the 

average initial counts per well was ρ̂ = -ln(9/198)=3.09.  Equipped with the linear 

method only, experiments with such a high average initial count would normally be 

discarded as unsuitable to measure the variability of single cell lag times.  Using our 

method, we were able to estimate that the standard deviation of the detection times 

was SD(Tdet)=15.52 h and that of the  individual lag times was SD(Lg(1))=23.6 h.  

Here, the Tshift parameter was significant, its estimate was 6.6 hours.  The 

physiological state parameter and the lag of the population was ca. 10-4 and 20.6 h, 

respectively, the latter being less than half of the mean of the single cell lag times that 

was estimated as 49h.  These result could not have been obtained without introducing 

the Tshift parameter.  

 

7.6. Comparing the two methods 

Numerical stability. The estimation procedure requires the solving of the three 

equations (7.21)-(7.23) for Tshift , θ and β.  The system of equations is highly non-

linear and a common solver algorithm tends to find extreme values of the parameters, 

when all terms disappear. To avoid this, we minimise the sum of squares of the 

differences of the logarithm of the equality of the respective sides of those equations.  

If that minimum is sufficiently small, then we accept the obtained parameters as 

solutions. 



Dissertation   József Baranyi 
 

 70 

 

Even in this case, a global minimisation algorithm can still cause problems because of 

the extreme parameter values. A local minimum is needed which requires good initial 

estimations of the parameters. This is quite demanding, and probably there is no better 

way than examining the sum of squares on a feasible grid of the parameters. If no 

local minimum was found then the data are not compatible with the basic assumptions 

of the method (Poisson distribution for N0 and shifted Gamma distribution for Lg(1)). 

  

As shown in Fig.7.4, the distribution of the single cell lag times can be either wider or 

narrower than the distribution of the Tdet(N0) detection times, depending mainly on N0  

and the relation between the lag and the growth rate. With N0 increasing, the 

estimation for ρ is less accurate; as are the estimates for the moments. However, when 

cells grow together in a well, then their population lag has a smaller variability than 

that of a single cell lag time. This increases the accuracy of the estimation procedure. 

 

In our two examples, SD(Tdet(N0)) < SD(Lg(1)).   The relatively wide distribution of 

the single cell lag time means that if cells grow together then the population lag of 

N0>2 cells is dominantly determined by the subpopulation of the first dividing initial 

cells (by the time the slowest cells divide, the others are in the exponential phase). In 

this case, it  is crucial to know the specific growth rate a-priori.  Here we used viable 

count growth curves for its accurate estimation, but Baranyi and Pin (1999) showed a 

method to also measure the specific rate as well as determining the lag time 

distribution using the Bioscreen. 

 

An obvious alternative to fitting a distribution to Tdet(N0), instead of the moment-

based method, is the Maximum Likelihood (ML) method.  We compared our results 

with those generated by an ML program.  The difference in the parameter estimates 

was insignificant but the computational cost (time, resources) of the ML method was 

much higher. 

 

7.7. Application of single cell lag variation in Microbial Risk Assessment 

The results can be used in simulations for Quantitative Microbial Risk Assessment. A 

framework for this is demonstrated in Fig. 7.6: Suppose that the initial number of cells 

on a portion of food is a random variable following a distribution that we call 
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"vertical" for obvious reasons. This distribution is the result of the history of the cells. 

Let y0=lnN0  denote the natural logarithm of the initial counts. Each cell goes through 

a lag period, Lg, which follows a distribution we call "horizontal", then, during the 

exponential phase, the log number increases linearly. The question a risk assessor is 

most interested in is the probability that the contamination level at the time of 

consumption, tc, is above a certain threshold. The “vertical” distribution of this 

contamination level, y(tc) is affected by the “vertical” distribution of y0 , the 

(horizontal) distribution of Lg and the specific growth rate that we consider constant 

here. The distribution of the bacterial population level can seldom be calculated 

explicitly by algebraic operations but Monte-Carlo simulations provide a 

straightforward solution to study them. For those simulations, the underlying 

distributions should be measured as accurately as possible. Unfortunately, the region 

of interest is at relatively low cell concentrations, where automated measurements, 

which are necessary for sufficient data to obtain robust distribution estimates, are not 

available. At high concentrations, however, assuming that the detection level ydet is 

still in the exponential phase, one can use the "horizontal" distribution of the Tdet 

detection times instead of the Lg lag times, as we did here. 

 

Generally, only vertical distributions are measurable in food, while broth cultures are 

suitable to determine both horizontal and vertical distributions. The transformation 

between them can be made by means of the specific growth rate, since the two types 

of distributions are rotated by 90o.  
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The lag time distribution has significance in predicting contamination levels only if 

the estimation of the specific growth rate is accurate. When this is the case, the ideas 

shown in this chapter can be built into Monte-Carlo simulations as the "computational 

engine" behind Microbial Risk Assessment programs. 

Fig. 7.4. Schematic representation of the 
horizontal and vertical distributions for a 
Monte-Carlo simulation for Quantitative 
Microbial Risk Assessment. The vertical 
distribution of the  Ln N(tc) log cell 
number, where tc is the time of 
consumption, depends both on the 
vertically distributed initial load, y0, and 
the horizontally distributed Lg 
"geometrical" lag time. The horizontal 
distribution of the detection time is 
measurable at higher cell concentration. 
The vertical and horizontal distributions 
can be transformed into each other by 

means of the specific growth rate, µ, 
which is assumed to be constant. 
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Chapter 8 

Future research and conclusions 

8.1. A predictable development 

Physiological state of bacteria and their role in adaptation have not been modelled 

before. In fact, strictly speaking, the results above do not show a mechanistic model 

of the physiological state either, rather a summary of the desired and needed 

analytical properties of a mechanistic model. The computational analysis of their 

fitting properties showed that the deterministic model is useful from empirical curve 

fittings, too; while the stochastic model is suitable to assess the kinetics and the 

distribution of the kinetic parameters of individual cells (Baranyi et al 2009). 

 

The deterministic model introduced in Chapter 2 can be embedded in the following 

problem: 

 

 

  

 

 

 

 

 

 

In the Environment E1  (history) the system is described by the autonomous system    

 

 

 

In  the environment E2 (actual environment) it is 

  

 

 

At time t=0, when the environment suddenly changes from E1  to E2 , the adjustment 

is controlled by an internal process, which is a “work to be done” during adaptation.  

Modelling this internal process is the key to understand adaptation. 
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A typical example for the above framework is when the cells are under sub-lethal or 

lethal stress (starving, heat) and the survival fraction goes through a recovery period, 

then start to growth. Many laboratory growth curves show these characteristics and a 

suitable growth model to describe growth curves of this shape (starting with decline) 

can be derived similarly as shown in Chapter 5. 

 

Over the last 10 years, a wide range of sophisticated methods has been developed to 

observe the growth and division of single cells. (Elfwing et al, 2004; Brehm-Stecher 

and Johnson, 2004).  Consequently, more and more studies have concentrated on 

modelling the lag times of single cells (Prats et al 2008; Pin and Baranyi, 

2008).  Stochastic models play a major role in the new approach. Taking into account 

the variability of single cells is a must for risk assessors focussing on the presence or 

absence of a few pathogenic cells in food.  

 

However, a healthy mechanistic approach to modelling adaptation must acquire 

information also on the intracellular processes during lag.  Such molecular processes 

are being studied at the moment at the research group of the author of this thesis 

(http://www.ifr.ac.uk/safety/comicro/). We use network science methods to 

characterize the cells’ physiological state by the topological properties of the cells’ 

transcriptomic network; similarly the adaptation process would be described by the 

dynamic change of that network. The first attempt to characterize the physiological 

state by the topological properties of the cells’ transcriptomic network was published 

in Pin et al (2009). 

 

8.2 Conclusions 

Predicting microbial responses to the food environment has long been on the wish-list 

of researchers, industrialists and regulatory officers interested in the microbial quality 

and safety of food (McMeekin et al, 1993). Traditionally, when a new technology or a 

new formulation for a food product is introduced, it is subjected to a challenge test for 

shelf-life and safety, a process that is expensive, time-consuming and often does not 

reflect the numbers of potentially pathogenic microbes in the food or the conditions of 

use of the product.  Hence challenge tests provide only modest assurance that a 



Dissertation   József Baranyi 
 

 75 

product formulation will be safe in the food chain. There has always been a question 

hanging over such experiments: couldn't the results be predicted/estimated, from 

appropriate laboratory data, as occurs in scientific literature, or from the outcome of 

other microbiological tests? 

 

The key to this is mathematical modelling  (McKellar and Lu, 2004). It is important to 

appreciate that modelling is not simply compiling a set of equations. Modelling, in 

some way, is the art of omitting the unnecessary. It will never be an automated 

process, because the extent and nature of those omissions depend on the purpose of 

the modelling. 

 

The first mathematical models in food microbiology described the inactivation of 

pathogens at constant heating temperatures by log-linear models. Analogously to this, 

log-linear models were applied also to growth temperatures, when the logarithm of 

the microbial counts was expected to increase linearly with time. This simple law was 

applicable only to idealistic situations, when the environment was constant around the 

microbial population and the cells could grow according to their maximum ability 

characteristic of that environment. In practice, however, the growth phase is preceded 

by a certain "preparation" time.  This “lag” (or "adjustment") time, which is a 

transition from the previous to the new environment, has become the centre of 

research for understandable reasons: in applications, the lag time is the very parameter 

the user would like to see extended as much as possible.  This complication was also 

added to simple linear kinetics and today the non-linear growth / inactivation models 

are the norm rather than the exception. 

 

It is important to see, however, that only those new non-linear approaches have 

received long-lasting acknowledgment, in which the classical linear kinetics can be 

embedded as a special case. In other words: when more complex models are 

introduced, it is desirable to ensure that they can accommodate the scenarios for 

which previously simpler models were "good enough".  This evolution process is 

typical in science.  To draw a parallel with a distant but well-known field: quantum 

mechanics and relativity theory both involve the classical Newton mechanics as a 

special case. 
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An interesting by-product of this evolution is that food microbiologists, in order to 

communicate with modellers and with each other, had to learn "to omit the 

unnecessary".  Namely, not only did mathematical models need to be formulated, but 

also systematic computerisation of microbiological data (which is a pre-requisite for 

creating mathematical models and, ultimately, predictive software from them), 

database structures and "templates" had to be created in order to pool experimental 

results from different laboratories.  The quantity of data necessitates the use of 

relational databases, with rigorous structure that would not just swallow any 

information indiscriminately. The database builder must select what pieces of 

information are relevant and has to omit the unnecessary here as well; otherwise the 

creation would be a datadump rather than a database  (McMeekin et al, 2005). An 

example where this selection process has taken place is the ComBase database (see 

www.combase.cc), which is a joint effort between several international laboratories. 

 

Interdisciplinary attitude has played a key role in the development of predictive 

microbiology. It is not difficult to predict that this will be true in the future, too.  For 

this, just as food microbiologists need to learn to omit the unnecessary, we 

(statisticians, mathematicians, as this author) need to exercise empathy: to see not 

only data but also the process and the circumstances behind the data, in order to 

suggest what is unnecessary. 

 

The mathematical models developed by the author, and their numerical 

implementation, have been overviewed in this thesis. The application area is food 

microbiology which was an almost exclusively empirical science until some decades 

ago. Partly the reason for this is that the food environment can be very complex and it 

may be difficult to quantify or even to categorise some of its features and/or their 

potential effects on microbial population dynamics or the ability to recover a target 

organism from a food sample. An example is food structure, which may affect 

environmental limits for growth, but little progress has been made to model this effect. 

 

The process, through which modelling microbial adaptation has been going through is 

typical for life sciences: 
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Fig. 8.1. Reductionist, followed by a systems approach. 

 

An additional difficulty is that, with the background information on the environment 

and with currently available techniques to measure microbial responses, both 

variability and uncertainty may be large. Uncertainty also arises when information is 

missing or conflicting, events that regularly cause consternation in the conduct of 

quantitative risk assessments. In such situations, it is essential to accumulate as much 

information as possible. 

 

A database pooling such information is ComBase (Combined, or Common i.e. joint, 

dataBase of microbial responses to food environments), which was primarily 

developed by the author of this thesis.  Its technical details can be read in Baranyi and 

Tamplin (2004) and on the website, www.combase.cc .   

 

The implementation of the model of Baranyi and Roberts (1994) in the ComBase 

system contributed to its popularity. Users can freely access >50,000 growth and 

survival curves and can fit them interactively, via the web.  The stability of those fits 

have greatly improved by the rearrangement technique described in Chapter 3.   

Similarly, publicly available Risk Assessment Model is being commonly used that is 

based on the results of Chapter 6-7.   

 

 

- by deterministic dynamic models at population level 

Data and models of bacterial responses to the environment at cell-
population level 

Distributions of kinetic and physiological parameters of 
single cells - stochastic models.  

- by stochastic processes at single cell level 

- by biostatistical and network methods at 
intracellular (molecular) level  

High through-put “-omics” data 
Systems biology  
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Mathematical modelling techniques inevitably permeate all sciences, such as food 

microbiology, that was a purely descriptive and empirical science just some decades 

ago. The present thesis gave a snapshot of the results with which the author hoped to 

contribute to this process. 

Fig. 8.2. Fitting a growth curve on www.combase.cc  using the significant parameters only (in this 
case no lag). The non-significant parameters are omitted by means of an F-test.  
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 Summary 

 

It has long been recognized that mathematical modelling is key to predicting 

microbial responses to the food environment.  In the 80’s, with powerful desktop 

computing becoming everyday use, the name ‘predictive microbiology’ was coined 

for this area of mathematical food microbiology. Perhaps the Quantitative Microbial 

Ecology of Food would have been a more appropriate name but by now the original 

term has set strong roots in the literature. The closest relative to the field is probably 

biotechnology, but because of the differences detailed in the Introduction, it was 

necessary to develop new models specifically for applications in food microbiology. 

 

In this thesis we showed a process of model development, from deterministic models 

of population growth of bacteria, with special attention to the bacterial lag, to their 

stochastic models.  We analysed the differences between growth- and survival 

modelling.  We demonstrated how to link the population (deterministic) and single 

cell (stochastic) models.  We developed several numerical algorithms to implement 

the models for practical applications.  

 

Deterministic modelling of lag   

In Chapters 1-2 we pointed out that the classical autonomous growth models (Logistic, 

Gompertz, etc) are not suitable for lag time modelling. We introduced a non-

autonomous model, where an α(t) factor, a so-called adjustment function describes 

the transition from the lag to the exponential phase. We showed the connection 

between the non-autonomous model and its autonomous counterpart. Two classes of 

adjustment functions: that of Hill’s and of Michaelis-Menten was analysed in detail. 

 

Numerical considerations 

The Michaelis-Menten adjustment function turned out to be more user-friendly and 

stable for numerical applications as shown in Chapter 3. A by-product was a versatile 

sigmoid function with six parameters, quantifying the initial value (y0);  the maximum 

specific growth rate (µmax);  the length of the lag period (λ);  the maximum carrying 

capacity (ymax) of the environment; and the abruptness of the two transition phases: 
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from the lag to the exponential phase (nC) and from the transition to the stationary 

phase (m). 

The model proved to be useful for general parameter-by-parameter curve fitting, too, 

because the parameters λ and ymax can be omitted if data do not justify their use, thus 

reduce the complexity of the model.  For such regression, an F-test can be used to 

control the elimination, similarly to the significance analysis of the coefficients when 

fitting polynomials of higher degrees. 

 

Biological interpretation and experimental validation 

An important point discussed was that the lag depends on an initial physiological state 

(α0) of the culture via λ=-ln(α0)/µ .  The α0 value is an initial value, just like the 

inoculum size.  It depends on the difference between the history and the current 

environment.  Instead of the lag as a delay in time, we suggested that the delay 

measured by delays in generations (h0) is a more convenient concept to characterise 

adaptation.  

 

After studying large datasets, we established that the h0 parameter is relatively 

constant for various environmental conditions. We interpreted this as the 

manifestation that h0 is in fact an initial value at the time zero, a link from the history 

to the current growth environment. By means of this thought and assuming that the 

maximum specific rate as well as the rate of adjustment instantaneously responds to 

changing temperatures, we successfully predicted the growth of a spoilage organism 

even when the temperature continuously changed during the lag time. 

 

Stochastic modelling of lag   

In Chapter 4, we showed that the commonly used definition of the lag is less and less 

compatible with its physiological concept as the initial population decreases. We 

focussed on bi-phasic growth models where the duration of the first phase (lag, 

denoted by L) is random; so is the α0=e
-µL  physiological state parameter. Our most 

important theorem was that, due to the subsequent exponential growth, the 

physiological state parameter of the population converges to the mean of the 

individual cells’ physiological state parameter, as the initial population size increases. 
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This is a basic theorem in this thesis, with easily interpretable consequences and 

applications: 

 

- The variance of the population’s physiological state can be explicitly calculated;  

- The lag of the population is a non-arithmetical mean of the lag of individual cells, 

in which relationship the subsequent specific rate plays a crucial role.  

- The higher the specific growth rate, the closer the population lag to the minimum 

of the individual cells’ lag times. 

 

Comparison between growth and survival modelling 

The main questions answered in Chapter 5 were:  What is the relationship between the 

distribution of individual survival times and the survival curve of the population; the 

distribution of individual lag times and the growth curve of the population. We were 

particularly interested in developing formulae between the parameters of the 

distribution functions of individual survival/lag times and the parameters of the 

survival/growth curves of the population. How extensive is the analogy between the 

two seemingly perfect inverse problems? 

 

We derived explicit, useful formulae for the problems above. We pointed out that, 

though there is a one-to-one map between the distribution of the individual lag times 

and the adaptation period (and similar mapping is valid in the survival case), still in 

practice, it is not feasible to identify the distribution of the individual lag times from 

traditional viable count growth curves. Again, we obtained in a different way that the 

physiological state parameter of the population is a mean value of the individual α0 

values.   

 

An important special case was analysed when the individual lag times followed the 

gamma distribution. Explicit formulae were derived for the mean and the variance of 

the physiological state of the population, which later played a significant role in the 

numerical applications. As an important by-product of our analysis, we gave an 

elementary proof that for a Poisson birth process, the doubling time of the population 

is smaller, by an ln2 factor, than the average generation time. 
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Estimating the distribution parameters of individual lag times from measurable 

information 

Automated measures cannot provide direct information on the lag phase of individual 

cells because measurable properties of a culture (turbidity, conductance, etc.) are 

detectable only at high cell concentrations.  

 

In Chapter 6 we made good use of the relationships, we obtained for the physiological 

state parameter, to solve the above problem. We developed a new method, based on 

the physiological state theorem and an ANOVA procedure, to measure the maximum 

specific growth rate and the lag time distribution of single cells. The advantage of the 

method is that it uses detection times, which are the first data available when 

recording bacterial growth. An important point was made that, though the 

physiological state theorem is valid irrespective of the distribution of the lag times of 

the individual cells, in the case, when those follow the gamma distribution, the 

explicit formulae for the statistical parameters made it possible to do the calculations 

in a simple spreadsheet model. We noted that, by means of a so-called flow-chamber 

technique, developed specifically for this purpose in the research group I lead, it was 

possible to validate the Gamma-assumption.  

 

Further numerical developments 

The disadvantage of the methods discussed so far was that we could reliably estimate 

only the variance of the distribution of single cell lag times, not its shape. In Chapter 7 

we developed new formulae for the situation  when the initial cell number at the 

highest dilution is small and random.  A great advantage of the procedure that it 

assumes Poisson distribution for the inoculula that can be achieved by serial dilutions.  

 

Our method was based on the fact that moments of the sum of random variables can 

be calculated explicitly in those cases, when the number of terms in the sum is also 

random, namely Poisson-distributed.  The moments-based method was validated by 

the maximum-likelihood method. The results were similar but our method was 

superior in terms of speed and computational resources.  This made it possible to 
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build it into user-friendly spreadsheet applications, which are the most commonly 

used in food microbiology laboratories. 

 

 

Future research 

We discussed some practical implications of our findings regarding Quantitative 

Microbial Risk Assessment. We pointed out that a healthy mechanistic approach to 

modelling adaptation must gain information on the intracellular processes during lag.  

For this Pin et al (2009) is an example that reports on the results of a project 

completed recently in the research group of the author of resent thesis. There, the 

physiological state was characterised by the topology of the actual genetic (more 

exactly transcriptomic) network, among others, by methods used in network science. 

Another field, on which big emphasis has been put recently by the very development 

of Network science is the sistematicus development of databases, for which a good 

example is the ComBase system (www.combase.cc). Its predictive numerical tools are 

based on the results reviewed in this thesis and their future development is planned to 

follow the directions shown here. 
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Összefoglaló 

 

Régóta elismert hogy az élelmiszer-mikrobiológia fejlődéséhez is elengedhetetlen új 

matematikai modellek alkotása. A 80-as években, ahogy egyre hatékonyabbá és 

hétköznapibbá váltak a személyi számítógépek, a ‘prediktív mikrobiológia’ nevet 

kapta a matematikai élelmiszer-mikrobiológia ezen ága. Talán az “élelmiszer 

kvantitatív mikrobiológiai ökológiája” név helyesebb lett volna,  ám mára az eredeti 

elnevezés gyökeret vert az irodalomban. A legközelebbi rokon tudományág 

valószínűleg biotechnológia, de a különbségek amelyeket a Bevezetésben 

részletezünk szükségessé tették hogy matematikai modelleket fejlesszünk külön csak 

élelmiszer-mikrobiológiai alkalmazásokra. 

 

A jelen disszertációban egy modellalkotási folyamatról  számoltunk be, a 

baktériumpopuláció determinisztikus modelljeitől - különleges figyelemmel a 

lappangási időre - a sztochasztikus modellekig.  Elemeztük a növekedés és pusztulás 

modellezésének hasonlóságait és különbségeit, demonstráltuk hogyan kapcsolódnak 

egymáshoz a populációs determinisztikus és az egyéni sejtek sztochasztikus modelljei.  

Számos numerikus algoritmust dolgoztunk ki a modellek megbízható gyakorlati 

alkalmazására.  

 

A lappangási idő determinisztikus modellezése 

Az első két fejezetben rámutattunk hogy a klasszikus autonóm növekedési modellek 

(Logisztikus, Gompertz, etc) nem alkalmasak a lappangási idő leírására. Bevezettünk 

egy nem-autonóm modellt, ahol egy α(t) faktor, ún. adaptációs függvény írja le az 

átmenetet a lappangási fázisból az exponenciális fázisba. Kielemeztük a nem-autonóm 

modell és autonóm párja között a kapcsolatot. Az adaptációs függvények két osztályát 

elemeztük részletesebben: a Hill és a Michaelis-Menten függvényeket. 

 

Numerikus meggondolások 

Numerikus szempontból a Michaelis-Menten adaptációs függvény bizonyult a 

legkezelhetőbbnek, mint az a 3-dik fejezetből kiderül.  Mellékeredményként egy 

gazdag felhasználhatóságú szigmoid függvényt is kaptunk, hat paraméterrel, amely 

jellemezte a kezdeti szintet (y0);  a maximális érintőt (µmax);  a lappangási időt (λ);  a 
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környezet kapacitását (ymax); valamint a két fázisátmenet gyorsaságát: a lappangási 

fázisból az exponenciális fázisba (nC);  s az exponenciális fázisból a stacionárius 

fázisba (m).  A modell hasznosnak bizonyult általános, fokozatos görbeillesztésre is, 

mert a λ és ymax paraméterek elhagyhatók ha az illesztendő adatok nem igazolják 

használatukat, így a modell komplexitása igénynek megfelelően csökkenthető.  Az 

ilyen regresszióra F-teszt használható hogy a paraméterek elhagyhatóságát eldöntse, 

hasonlóan ahhoz amikor magasabbrendű polinomok illesztésénél az együtthatók 

szignifikanciáját vizsgáljuk.  

 

Biológiai értelmezés és kísérleti igazolás 

Lényeges megállapítás volt, hogy a lappangási idő egy kezdeti értéktől függ (α0) ami 

a (kezdeti) fiziológai állapotot kvantifikálja, s így λ=-ln(α0)/µ .  Az α0  épp úgy 

kezdeti érték mint az inokulum nagysága.  Valójában az inokuláció előtti és a 

jelenlegi környezet különbségét jellemzi.  Rámutattunk, hogy a lappangás miatti 

késleltetést célszerűbb azzal mérni hogy hány (h0) generációval van lemaradva a 

növekedés ahhoz képest mintha a múlt és a jelen környezet megegyezne.  

 

Megfelelő, nagyszámú adathalmazok tanulmányozása után arra jutottunk, hogy a h0 

paraméter a különféle környezetektől viszonylag független konstans. Ezt úgy 

értelmeztük hogy h0  valóban egy kezdeti értéket fejez ki, ami előírt laboratóriumi 

méréseknél kb ugyanaz. Ezzel, valamint a feltevéssel hogy a maximális specifikus 

növekedési sebesség és az igazodási ráta késlekedés nélkül felveszi az éppen aktuális 

környezetre jellemző értéket, sikeresen megjósoltuk egy romlást okozó baktérium 

növekedését időben változó hőmérséklet mellett, holott a hőmérséklet a lappangási 

idő alatt is változott.  

 

A lappangási idő sztochasztikus modellezése  

A 4-dik fejezetben megmutattuk hogy a lappangási idő tradicionális értelmezése egyre 

kevésbé összeegyeztethető a fiziológiai értelmezéssel ahogy a kezdeti populációs 

nagyság csökken. A lappangási idő definíciójára kétfázisú lineáris függvény első 

fázisát használtuk (L) mint véletlen változót. Ezzel a α0=e
-µL  fiziológiai állapot is 

véletlen változó.  Legfontosabb tételünk az volt, hogy a rákövetkező exponenciális 

növekedés miatt, a populáció fiziológiai állapotát jellemző paraméter az egyéni sejtek 
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hasonló paraméterének átlagához tart amint a kezdeti populációt nagyobbnak 

választjuk. Ez az egyik alaptétele a disszertációnak, könnyen értelmezhető 

következményekkel és alkalmazásokkal: 

 

- A populáció fiziológiai állapotának varianciája zárt formában kiszámítható az 

egyéni sejtek lappangási idejének eloszlásából. 

- A populáció lappangási ideje az egyéni sejtek hasonló paraméterének egy nem-

aritmetikai átlaga, s az összefüggés képletében a µ specifikus ráta játsza a fő 

szerepet  

- Minél magasabb a specifikus növekedési sebesség, annál közelebb lesz a 

populációs lag az egyéni sejtek lappangási idejének minimumához. 

 

Pusztulási és növekedési modellek összehasonlítása 

Az 5-dik fejezet megválaszolandó kérdése az volt, hogy vajon milyen kapcsolat van 

az egyéni sejtek tulélési idejének eloszlása és a populáció pusztulási görbéje valamint 

az egyéni sejtek lappangási idejének eloszlása és a populáció növekedési görbéje 

között. Különösen az érdekelt bennünket,  milyen formulák vezethetők le az egyéni  

túlélési/lappangási idők eloszlásainak paraméterei és a populáció túlélési/növekedési 

görbéinek paraméterei között. Mennyire húzható párhuzam a két látszólag teljesen 

inverz probléma között? 

 

Explicit, könnyen kezelhető formulákat vezettünk le a fenti problémára. Rámutattunk, 

hogy egy-egy értelmű leképezés létezik az egyéni lappangási idők eloszlása és az 

adaptáció lefolyása között (ugyanígy a túlélési esetben), mégis a gyakorlatban az 

egyéni sejtekre vonatkozó eloszlás nem vezethető le a populáció adaptációs 

szakaszából. Ismét eljutottunk, most egy másik úton, ahhoz a tételhez, hogy a populáció 

fiziológiai állapota az egyéni sejtek fiziológiai állapotának várható értéke.   

 

Fontos speciális esetként tárgyaltuk azt amikor az egyéni lappangási idők gamma 

eloszlást követtek. Explicit formulákat vezettünk le a populáció fiziológiai 

állapotának várható értékére és varianciájára, amely később nagy szerepet játszott 

numerikus alkalmazásokban. Mint mellékeredmény, elemi bizonyítást adtunk arra 
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vonatkozólag, hogy a Poisson-féle születési folyamat esetén a populáció duplázási 

ideje ln2 faktorral kisebb mint az átlagos generációs idő. 

 

Egyéni lappangási idők eloszlás-paramétereinek becslése hozzáférhető mérésekből 

Automatizált mérések nem alkalmasak arra hogy egyéni sejtek lappangási idejére 

vonatkozó információt közvetlen úton nyerjünk, mert a baktériumtenyészet mérhető 

tulajdonságai (turbiditás, vezetőképesség, etc.) csak magasabb koncentráció esetén 

jelentkeznek.  

 

A 6-dik fejezetben ennek a problémának a megoldására használtuk fel a fiziológiai 

állapotra kidolgozott összefüggéseket. Kidolgoztunk egy, a fiziológiai állapotra 

vonatkozó tételen és ANOVA eljáráson alapuló numerikus módszert, amivel a 

maximális növekedési sebesség és lappangási idők eloszlása megállapítható. A 

módszer előnye, hogy detektációs időket használ, amely az első mérhető adat a 

baktériumtenyészet vizsgálata közben. Rámutattunk hogy bár a fiziológiai állapotra 

vonatkozó tétel az egyéni sejtek lappangási idejének eloszlásától függetlenül érvényes, 

amikor azok gamma eloszlást követnek az explicit formulák lehetővé teszik a mérések 

feldolgozását egyszerű táblázatkezelő programokkal. Beszámoltunk arról hogy egy 

technológia (ún “flow-cell”), amit munkatársaim speciálisan erre a problémára 

fejlesztettek ki, lehetővé tette a Gamma-hipotézis ellenőrzését.  

 

További numerikus fejlesztések  

Az egyéni sejtekre eddig ismertetett numerikus módszerek hátránya volt hogy 

feltételezte, hogy a kémcsőben vizsgált baktériumtenyészet egy sejtből indult. A 7-dik 

fejezetben formulákat dolgoztunk ki arra az esetre amikor ez a szám kicsi és véletlen.  

Nagy előnye az eljárásnak, hogy Poisson-eloszlást tételez fel a kezdeti sejtszámra, 

ami egyszerű hígítási sorozat végén kapható.  

 

A módszer azon alapult hogy véletlen változók véletlen tagszámú összegének 

momentumai explicit módon kiszámíthatók, ha a tagszám Poisson eloszlást követ. A 

momentumon alapuló módszert a maximum-likelihood módszerrel összehasonlítva 

igazoltuk gyakorlati számításokra. A mi módszerünk előnye a sebesség és az 

alkalmazhatóság egyszerű, felhasználó-barát, táblázatkezelő programokban, amelyek 

élelmiszer-mikrobiológiai laboratóriumok leggyakrabban használt számítási eszközei. 
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Jövőbeni kutatás 

Eredményeink gyakorlati következményeire mutattunk rá ebben a fejezetben, különös 

tekintettel az élelmiszerek mikrobiológiai kockázatának kvantitatív módszereit 

illetően. Rámutattunk, hogy továbbfejlődés lehetetlen anélkül, hogy ne elemeznénk 

intracelluláris kvantitatív modellekkel a sejtek fiziológiai állapotát. Erre példa Pin et 

al (2009), amely egy, a jelen disszertáció szerzőjenek kutatócsoportjában befejezett 

projekt eredményéről számol be. Ott a fiziológiai állapotot az aktuális genetikai (még 

pontosabban, transzkripciós) hálózat topológiajával jellemeztük, többek között 

hálózattudományban használatos módszerekkel. 

Másik nagy, éppen a hálózattudomány által egyre nagyobb hangsúlyt kapott terület a 

szisztematikus adatbázis építés. Erre jó példa a ComBase rendszer (www.combase.cc), 

amelynek prediktív numerikus eszközei az ebben a dolgozatban ismertetett 

eredményeken alapulnak, s fejlesztésük is az itt bemutatott iráanyvonalat követik. 

 


