Pebble Macro Tree Transducers
with Strong Pebble Handling

Abstract of the PhD Thesis

Lorand Muzamel

Department of Foundations of Computer Science
University of Szeged

Arpéad tér 2., H-6720 Szeged, Hungary
muzamel@inf .u-szeged.hu

Supervisor: Professor Zoltan Fiilop

PhD School in Computer Science

May 24, 2010

1 PRELIMINARIES AND THE MODEL WE CONSIDER 1

1 Preliminaries and the model we consider

Tree translations play an important role, among others, in the specification of the
syntax-directed semantics of a programming language [Iro61, Knu68, Knu71, WM95],
in functional programs working on tree structured data [Vog91], and in the specification
and implementation of XML transformations [MNO1, BMN02, MBPS05], and XML
query languages [Via01].

Tree transducers are computation models for studying the abstract properties of the
different tree translations which exist in practice. For instance, the macro tree trans-
ducer [Eng80, Eng81, CF82, EV85] is a model for syntax-directed translations, the
attributed tree transducer [Fiil81, FV98] is a model for the translations realized by
attribute grammars [Knu68, Knu71], and the n-pebble tree transducer [MSVO03] is a
model for XML query languages and transformations. The pebble macro tree trans-
ducer of [EMO3] is a combination of the pebble tree transducer and the macro tree
transducer, hence it is a model which is suitable for studying the relationship between
pebble tree transducers and macro tree transducers. Each tree transducer computes
a tree transformation, which is a binary relation over abstract trees, i.e., trees over
ranked alphabets.

In the corresponding thesis we consider pebble macro tree transducers of [EM03]. An
n-pebble macro tree transducer (n-pmtt) M is a finite-state device that takes an input
tree and generates an output tree. Each state has a rank, hence states are ranked
symbols. In the remainder of this thesis abstract M stands for an n-pmtt.

M has finitely many rules of the form (q,0,b,5)(y1,...,ym) — ¢. On the left-hand side
of the rule, ¢ is a state of M, ¢ is an input symbol, b is a bit vector which can be used
to test the presence of the pebbles at a node of the input tree, and j is a number to
test the child number of a node of the input tree. Finally, the symbols y1, ...,y are so
called parameter variables. The right-hand side ¢ of the rule is a tree over the output
symbols, the parameter variables y1, ..., ¥, and ranked pairs of the form (g,), where
q is a state and ¢ is an instruction. The tree ¢ is built in the way as the right-hand
side of a rule of a macro tree transducer in [EV85], i.e., it contains recursive calls of
applications of other rules. Instruction can be moving instructions as stay, up, and
down; and pebble instructions as drop and lift.

M takes an input tree s and makes a computation over sentential forms. A general
sentential form & is a tree over output symbols and configurations. A configuration is a

pair {(q, h), where ¢ is a current state and h = (u, [u1;...;u;]) is a pebble configuration,
where u is a pointer to a current node of s and [u1;...; ;] is a vector of pointers to the
nodes of s where pebbles 1, ..., are placed, respectively.

At the beginning of the computation, the current state of M is its initial state and
the current node is the root node of s. Moreover there are no pebbles at the nodes
of s. Thus the initial sentential form is the configuration (qo, (¢,[])), where qo is the
initial state of M, ¢ is the pointer to the root of s, and [] is an empty list of the pebble
pointers. Then, M acts as follows. It takes a node v in the current sentential form &
labelled by a configuration (g, h) with h = (u, [u1;...;1]), such that there is not any

1 PRELIMINARIES AND THE MODEL WE CONSIDER 2

other configuration nodes in the € — v path of &, i.e., v is an outside-active node. Then
M takes a rule r : {q,0,b,7)(y1,..-,Ym) — (, if any, such that o is the label of node
u of s, the bit vector b fits the presence of pebbles at u, and j is the child number of
node u. Now M applies the rule r to the sentential form £ in the following way. Every

instruction ¢ occurring in ¢ is applied to the pebble configuration (u, [u1;...;u;]). The
result of the application of ¢ to (u,[u1;...;w)]) is denoted by ¢((u, [u1;...;w])). For
instance, if ¢ = down;, then @((u, [u1;...;w])) = (ui,[ug;...;]) indicating that the

pointed moves down to the i¢th son of the current node u. Furthermore, if ¢ = drop,
then o((u, [ug;...;w])) = (u, [u1;...;u;u]) indicating that the next pebble is dropped
at node u. The pebbles are used in a stack-like fashion, i.e., if [< n pebbles are
on the tree s, then either the (I + 1)th pebble can be dropped (provided I < n) or
the [th pebble can be lifted. The obtained pebble configuration ¢((u, [u1;...;u])) is
substituted for ¢ in (. This process yields a tree ¢’. Finally ¢’, which may contain the
variables y1,...,ym, is substituted for the configuration node (g, h) in a second-order
way in £. The result of this substitution yields the next sentential form 1. We denote
this transition by £ = 7.

The concept of n-pebble macro tree transducers of [EMO03] was introduced with weak
pebble handling. In [FMO09] we generalized it by allowing strong pebble handling to
the model, see [EH07, MSS06], however we left its original name unchanged. Roughly
speaking, strong pebble handling of a tree-walking device generalizes weak pebble han-
dling only in lifting of pebbles as follows:

Lifting pebbles in weak pebble handling: If 1 <[< n pebbles are placed on the input
tree, then pebble [can be lifted provided that it is at the current node;

Lifting pebbles in strong pebble handling: If 1 <[< n pebbles are placed on the input
tree, then pebble [can be lifted regardless of its position;

By a pebble macro tree transducer (pmtt) we mean an n-pmtt for some n > 0. In the
remainder of this thesis abstract M stands for an n-pmtt and s an input tree to M.
The n-pmtt M is called

e an n-pebble tree transducer (n-ptt) if each state in @ has rank zero;

e a stay-macro tree transducer (smtt) if n = 0 and there is no up instruction in the
right-hand sides of the rules;

e a macro tree transducer (mtt) if it is an smtt and there is no stay instruction in
the right-hand sides of the rules;

e a top-down tree transducer if it is a O-ptt and an smtt.

The classes of tree transformations computed by n-pmtts, n-ptts, smtts, mtts, and
top-down tree transducers are denoted by n-PMTT, n-PTT, sMTT, MTT, and T,
respectively. The deterministic, total, and context linear subclasses of each above
classes are denoted by prefixing the classes with d, ¢, and cl, respectively. For instance,
n-dPMTT stands for the class of tree transformations computed by deterministic n-
pebble macro tree transducers.

2 RESULTS OF THE THESIS 3

In the thesis we prove composition and decompostions results concerning pebble macro
tree transducers as well as we prove that circularity problems concerning pebble macro
tree tranducers are decidable.

2 Results of the thesis

2.1 Circularity

A computation of a pmtt M may not terminate because it has a subcomputation which
starts in a configuration (g,h) € Cir,s being at an outside-active node of the current
sentential form and the result of this subcomputation is a sentential form which also
contains (q,h) at an outside-active node. Now after substituting the result of the
subcomputation for (g, h), we get a sentential form which also has an outside-active
node with label (g, h). Hence, the computation may lead to a circulus vitiosus. If M
is deterministic, then it does. We call this phenomenon circularity.

We define three concepts of circularity: weak circularity, circularity and strong circu-
larity. The hierarchy of the three concepts, not surprisingly, is that strong circularity
implies circularity, which implies weak circularity.

Lemma 4.3 (Lemma 14 of [FMO08]) The following statements hold for the n-pmtt
M.

a) If M is strongly circular, then it is circular.

b) If M is circular, then it is weakly circular. o

Hence, the most natural concept is the strong circularity because the “smallest” condi-
tion for a pebble macro tree transducer M to guarantee that no computation of M gets
into a cycle is that M is not strongly circular. Yet, we use also the other two circularity
concepts because we could only prove some of our results by assuming that a pebble
tree transducer is noncircular or a pebble macro tree transducer is not weakly circular.

2.2 Composition and decomposition results

We also consider the composition and the decomposition of tree transformations com-
puted by n-pebble macro tree transducers. In general, in the composition theory of
tree transformations we consider if the composition of two (or more) tree transforma-
tions computed by some tree transducers can be computed by a single tree transducer.
The composition appears in applications in a natural way: in multi-pass compilers, as a
model for deforestation in functional languages [Kiith98, Voi02], and as implementations
of queries to a (possibly iterated) view of an XML database. The decomposition of a
tree transformation computed by a tree transducer means to consider if the tree trans-
formation appears as the composition of (mainly two) tree transformations computed
by “simpler” machines. The decomposition may help to understand the work of the
original machine.

2 RESULTS OF THE THESIS 4

We give an example of both a composition and a decomposition. It was shown in
[EV85], see also [FV98], that the composition of a total and deterministic top-down
tree transformation [Eng75, Rou70] and a yield transformation can be computed by a
total and deterministic macro tree transducer (a composition result) and vice versa, that
each tree transformation computed by a deterministic and total macro tree transducer
is equal to the composition of a deterministic and total top-down tree transformation
and a yield transformation (a decomposition result). By putting the above composition
and decomposition result together, we obtain the characterization dt MAC = dt TOP o
dt YIELD of the class of tree transformations computed by deterministic and total
macro tree transformations, where the notations should be clear from the context. Let
us mention that this result leads to show that the composition closure of deterministic
and total macro tree transformations and of attributed tree transformations [Fiil81,
FV98] coincide, see Chapter 6 of [FV98].

Since pebble macro tree transducers are somewhat similar to macro tree transducers,
we consider if “yield-like” composition and decomposition results can be obtained for
them like the above one. (The fact that for macro attributed tree transformations
such a composition and a decomposition result exists [KV94], see also Theorem 7.29
of [FV98], just confirms us to believe that we can find some for pebble macro tree
transducers as well.)

First, we prove a yield-like composition result for pebble macro tree transducers.
Namely, for the arbitrary n-pebble tree transducer M and yield tree transformation
yield, (were g is a mapping from leaves to sets of trees), we construct an n-pebble
macro tree transducer M’ such that may = Tas o yield, holds. If M and yield, are
deterministic (total), then also M’ is deterministic (total). Hereby, we obtain the fol-
lowing composition result. We denote by YIELD the class of (nondeterministic) yield
tree transformations.

Lemma 6.1 (Lemma 41 of [FMO08]) For all n > 0 we have n-PTT o YIELD C
n-PMTT. o

This construction of the above lemma is a generalization of the one appearing in the
recalled composition of deterministic and total top-down tree transformations and de-
terministic and total yield tree transformations.

Then we decompose pebble macro tree transformations. Namely, the arbitrary n-pebble
macro tree transducer M, we effectively give an n-pebble tree transducer M’ and a yield
tree transformation yield, such that 7py = 73 o yield,. Hence we get the following
decomposition result.

Corollary 7.9 (Corollary 4.11 of [FMO09]) For all n > 0 we have n-PMTT C
n-PTT o YIELD. o

Combining this decomposition with the composition result n-PTTo YIELD C n-PMTT
of Lemma 6.1, we obtain our first main characterization result.

Theorem 7.10 (Corollary 4.12 of [FMO09]) For all n > 0 we have n-PMTT =
n-PTT o YIELD. o

We note that in the construction of the proof of Corollary 7.9 we more or less fol-

2 RESULTS OF THE THESIS)

low the classical technique applied for the decomposition of total and deterministic
macro tree transformations in [EV85, FV98]. However, our construction also works for
nondeterministic and for circular (i.e, not terminating) pebble macro tree transducers.
Unfortunately, it is a weakness of our construction that the pebble tree transducer M’
is strongly circular and not deterministic (even if M is not circular and deterministic).
We discuss this problem in Section 7.3 of the thesis.

Therefore, we examine if there is another (semantically correct) decomposition con-
struction which produces M’ and yield, and preserves some good properties of M (like
determinism and noncircularity) at least for some reasonably restricted class of pebble
macro tree transducers. It turns out that the answer is positive. The first restriction
we make concerning M is that it is deterministic (or context linear). Besides this re-
striction, for providing the semantical correctness, we also need to assume that M’ is
noncircular. (In the following M’ and yield, denote the ptt and yield transformation,
respectively, obtained from M by the alternative construction.)

Lemma 8.4 (Lemma 30 of [FMO08]) If M is deterministic and M’ is noncircular,
then 7ps = 7pp o yieldy holds. o

Lemma 8.6 (Lemma 32 of [FMO08]) If M is context-linear and M’ is noncircular,
then 7as = Tap o yield, holds. o

Next we examine whether a reasonable syntactic restriction on M can be made to
guarantee that M’ is noncircular. A trivial restriction is that M is a macro tree trans-
ducer. In this case M’ will be a top-down tree transducer (see [EV85]), which cannot
be circular. Hence the conditions of Lemmas 8.4 and 8.6 hold and we obtain slightly
different versions of the decomposition dtMTT C dtT o dtYIELD of [EV85], namely,
the inclusions dMTT C dtT odYIELD and cdMTT CtT odYIELD.

Another natural restriction could be that M is noncircular. However it is not sufficient
because there is a noncircular pebble macro tree transducer M such that the pebble
tree transducer M’ is circular.

A natural and appropriate restriction is that M is not weakly circular. We show that if
M is not weakly circular (nwc) then M’ is noncircular (nc). Hence, we obtain that for
every not weakly circular and deterministic (or context-linear) M, the decomposition
equation 7y; = Ty o yield, holds.

Corollary 8.10 (Corollary 37 of [FMO08])

n-dPMTT,,c C n-dtPTT,.o dYIELD and
n-clPMTTy,c € n-tPTT,.o dYIELD. o

Since every partial yield tree transformation can be computed by a noncircular and
deterministic O-pebble tree transducer, we obtain another main result of the thesis:
each not weakly circular and deterministic (resp. context-linear) n-pebble macro tree
transformation is the composition of a noncircular and total and deterministic (resp.
nondeterministic) n-pebble tree transformation and a noncircular and deterministic
0-pebble tree transformation.

2 RESULTS OF THE THESIS 6

Theorem 8.11 (Theorem 38 of [FMO08])

n-dPMTT,. € n-dtPTT,.o0-dPTT,. and
n-clPMTTy,c € n-tPTT,.00-dPTT,. o

2.3 Simulation of n-ptts by (n — 1)-pmtts

The next topic we consider in the thesis is the solution of an open problem raised
in Section 8 of [EMO03]. Namely, we prove that each (deterministic) n-pebble tree
transducer M, provided n > 1, can be simulated by a (deterministic) (n — 1)-pebble
macro tree transducer M.

Theorem 9.6 (Theorem 5.7 of [FMO09]) For each n > 1, n-PTT C (n — 1)-PMTT
and n-dPTT C (n — 1)-dPMTT. o

The idea behind the construction is that we can replace the power of pebble n (the last
pebble) of the pebble tree transducer by macro calls.

2.4 Further results

There are some important consequences of Theorems 7.10 and 9.6.

Theorem 10.3 (Theorem 6.5 of [FMO09]) For each n > 0,

(1) n-PMTT C 0-PTT o YIELD""!,
(2) n-PMTT C 0-PTT""2,
(3) n-PMTT C sMTT""2

and for each n > 1,
(4) n-PTT C 0-PTT o YIELD",
(5) n-PTT < 0-PTT™'!
(6) n-PTT C sMTT™

O

In the above theorem sMTT denotes the class of stay-macro tree transformations of
[EMO03]. These decompositions were obtained in Theorems 10 and 35, and Section 8 of
[EMO03] for the weak pebble handling case. However, we think that those proofs cannot
be generalized for the strong pebble case because the mapping EncPeb appearing in
the proof of Theorem 10 of [EMO03] is strongly based on weak pebble handling.

Then we obtain the following applications of the above decomposition results.

In Lemma 27 of [EMO03], it was proved that sMTT C MON o MTT, where MON is
the class of monadic insertions and M7TT is the class of macro tree transformations.
Moreover, both the inverses of monadic insertions and of macro tree transformations
preserve regularity of tree languages. These obviously imply that the inverses of stay-
macro tree transformations also preserve regularity. Hence, by n-PMTT C sMTT"+?
of Theorem 10.3, we obtain the following results.

2 RESULTS OF THE THESIS 7

Theorem 10.4 (Theorem 6.7 of [FMO09]) The inverses of compositions of pebble

macro tree transformations effectively preserve regularity. o
Corollary 10.5 (Corollary 6.8 of [FMO09]) The domains of (compositions of) pebble
macro tree transformations are effectively regular. o

Next we obtain a type checking result for pebble macro tree transformations. Roughly
speaking, the type checking problem of XML transformations is the question whether
the results of an XML transformation of trees in an input DTD satisfy an output
DTD. Formally, the type checking problem for pebble macro tree transducers [EMO03,
MBPSO05] is the following decision problem. Given two regular tree languages L,
and L,,:, and a pebble macro tree transformation 7, we ask whether, for each input
tree s € Lj,, the outputs of s translated by 7 are in Ly, or not (i.e., if it is true
that 7(L;n) € Loyut). Now, we can conclude the type checking result for pebble tree
transducers from the decomposition n-PMTT C sMTT"2 of Theorem 10.3 and the
fact that the type checking problem for compositions of stay-macro tree transformations
is decidable of Corollary 44 of [EMO03].

Theorem 10.6 (Theorem 6.9 of [FMO09]) The type checking problem of pebble
macro tree transformations are decidable. o

Moreover, we obtain the following decidability results for the circularity problem of
pebble macro tree transducers. Since the inverses of (compositions of) stay-macro
tree transformations preserve regularity, it also follows from the decomposition result
n-PMTT C sMTT"2 of Theorem 10.3 that the domains of pebble macro tree trans-
formations are effectively regular (Corollary 10.5). This can be used directly to prove
that the various types of circularity problems are decidable.

Theorem 10.8 (Theorem 20 of [FMO8]) The strong circularity problem (sc-
problem) for pmtts is decidable. o

Theorem 10.9 (Theorem 21 of [FMO08]) The circularity problem (c-problem) for
pmtts is decidable. o

Corollary 10.11 (Corollary 36 of [FMO08]) The weak circularity problem (wc-
problem) for pmtts is decidable. o

Finally, we consider domains of pebble tree transformations. In fact, we define the
concept of an n-pebble alternating tree-walking automaton, which models the behaviour
of an n-pebble tree transducer on its domain. In particular we use deterministic and
nonlooping n-pebble alternating tree-walking automata, and the corresponding tree
language class is denoted by n-PATWA,;. The deterministic subclass is denoted by
n-dPATWA,,.

It turns out that nonlooping n-pebble alternating tree-walking automata recognize the
domains of not strongly circular pebble tree transformations. Formally, for each n > 0
we have n-PATWA,;; = dom(n-PTTs.). As the main result, we show that the domains
of deterministic and not strongly circular n-pebble tree transformations form a proper
hierarchy with respect to n. In fact, it immediately follows from the next theorem and
from the fact that n-PATWA,; = dom(n-PTT).

Theorem 10.25 (Theorem 5.7 of [Muz08]) For each n > 0, n-dPATWA,; C

3 METHODS APPLIED IN THE THESIS 8

REG = dom(PTT)
| Th. 10.26(3)
dom(dPTT sc)
|
i Th. 10.26(2)

dom(1-dPTT psc)

|
dom(0-dPTT) |

I Th. 10.26(1)

dTWA

Figure 1: The hierarchy (dom(n-dPTTs:) | n > 0) and its relation to REG and dTWA.

(n+ 1)-dPATWA,,. o

Finally, using the straightforward fact that, for each n > 0, tree languages recognized
by deterministic and non looping n-patwa are the same as domains of deterministic
and not strongly circular pebble tree transformations, we obtain the following result.

Theorem 10.26

(1) dTWA C dom(0-dPTT psc)-
(2) For each n > 0, dom(n-dPTT,s.) C dom((n + 1)-dPTT sc)-

(3) dom(dPTTs.) C REG. o

We note that Theorem 10.26 appears first time in the present thesis. However, all
important background was published in [Muz08].

In Figure 1 we visualize the strict hierarchy (dom(n-dPTT ,s.) | n > 0) and its relation
to the class REG of regular tree languages and the class dTWA of tree languages
recognizable by deterministc tree-walking automata.

3 Methods applied in the thesis

We mainly apply some standard proof technics of the theory of tree transducers. One of
them is the composition, which means that we find a machine (tree transducer) which
computes the tree transformation obtained as the composition of tree transformations
computed by other machines. With this method we can prove that a class of tree
transformations is closed under composition. Another method is the decomposition,
meaning that we consider if a tree transformation computed by a certain kind of tree

3 METHODS APPLIED IN THE THESIS 9

transducer appears as the composition of two (or more) tree transformations computed
by simpler machines. Both methods result substantial information about the working
of the tree transducers that we consider. In obtaining the positive decidability results
concerning the circularity problems of pebble macro tree transducers we reduce these
problems to decidable problems of regular tree languages. At the end of the thesis we
compare the classes of domains of pebble tree transducers in the way that we set up
the Hasse-diagram of those classes with respect to inclusion.

The main results of the thesis are proved by the following extension of the simultaneous
induction which was used for macro tree transducers (among others) in [Eng75, FV98].

Let K: (N —{0}) — {true, false} and L : N — {true, false} be predicates. For every
[> 1, we say that K[I] holds if K(1) = true,...,K(l) = true and we say that K holds
if, for every [> 1, K[I] holds. We use the same terminology for [> 0, L[], and L.

The simultaneous induction is a proof method which, in certain concrete instances of
K and L, is suitable to prove that K and L hold.

Let K and L be predicates as above and consider the following three statements:
IB: L(0) holds.
IS1: For every [> 0, if L[I] holds, then K(! + 1) holds.
IS2: For every [> 1, if K[l] holds, then L(!) holds.

The principle of simultaneous induction is based on the fact that if statements IB,
IS1, and IS2 hold, then also K and L hold. Here IB, IS1, and IS2 are the base of the
induction, the induction step 1, and the induction step 2, respectively.

This version of simultaneous induction turned out to be rather useful in proving the cor-
rectness of composition and decomposition constructions concerning pebble macro tree
transducers because statements could be described as instances of K and L. Besides,
we frequently applied the proof by induction on the structure of trees.

4 THE AUTHOR’S PUBLICATIONS CITED IN THE THESIS 10

4 The author’s publications cited in the thesis

[FMO08] Z. Fiilop and L. Muzamel. Circularity and Decomposition Results for
Pebble Macro Tree Transducers. Journal of Automata, Languages and
Combinatorics, 13(1):3-44, 2008.

[FM09] Z. Fiilop and L. Muzamel. Pebble Macro Tree Transducers with Strong Pebble
Handling. Fundam. Inf., 89(2-3):207-257, 2009.

[Muz08] L. Muzamel. Pebble Alternating Tree-Walking Automata and Their
Recognizing Power. Acta Cybernetica, 18(3):427-450, 2008.

REFERENCES 11

References

[BMNO2] G. J. Bex, S. Maneth, and F. Neven. A formal model for an expressive
fragment of XSLT. Information Systems, 27:21-39, 2002.

[CF82] B. Courcelle and P. Franchi-Zannettacci. Attribute grammars and recursive
program schemes [-II. Theoret. Comput. Sci., 17:163-191, 235257, 1982.

[EHOT7] Joost Engelfriet and Hendrik Jan Hoogeboom. Automata with nested peb-
bles capture first-order logic with transitive closure. Logical Methods in
Computer Science, 3(2), 2007.

[EMO03] J. Engelfriet and S. Maneth. A Comparison of Pebble Tree Transducers
with Macro Tree Transducers. Acta Informatica, 39:613-698, 2003.

[Eng75] J. Engelfriet. Bottom—up and top—down tree transformations — A compar-
ison. Math. Systems Theory, 9:198-231, 1975.

[Eng80] J. Engelfriet. Some open questions and recent results on tree transducers and
tree languages. In R.V. Book, editor, Formal language theory: perspectives
and open problems, pages 241-286. New York, Academic Press, 1980.

[Eng81] J. Engelfriet. Tree transducers and syntax-directed semantics. Technical
Report Memorandum 363, Technische Hogeschool Twente, March 1981. also
in: Proceedings of the Colloquium on Trees in Algebra and Programming
(CAAP 1992), Lille, France 1992.

[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comput. System
Sci., 31:71-146, 1985.

[FMOS] Z. Filop and L. Muzamel. Circularity and Decomposition Results for Pebble
Macro Tree Transducers. Journal of Automata, Languages and Combina-
torics, 13(1):3-44, 2008.

[FM09] Z. Fulop and L. Muzamel. Pebble Macro Tree Transducers with Strong
Pebble Handling. Fundam. Inf., 89(2-3):207-257, 2009.

[Fiil81] Z. Fiilop. On attributed tree transducers. Acta Cybernet., 5:261-279, 1981.

[FVOg] Z. Filop and H. Vogler. Syntaz-Directed Semantics — Formal Models Based
on Tree Transducers. Monographs in Theoretical Computer Science, An
EATCS Series. Springer-Verlag, 1998.

[Iro61] E. T. Irons. A syntax directed compiler for ALGOL 60. Comm. of the ACM,
4:51-55, 1961.

[Knu68] D. E. Knuth. Semantics of context—free languages. Math. Systems Theory,
2:127-145, 1968.

[Knu71] D. E. Knuth. Semantics of context-free languages: Correction. Math. Sys-

tems Theory, 5(1):95-96, 1971. Errata of [Knu68].

REFERENCES 12

[Kiih9g]

[KV94]

[MBPS05]

[MNO1]

[MSS06]

[MSV03]

[Muz08]

[Rou70]

[Via01]

[Vogal]

[Vo0i02]

[WMO95]

A. Kiihnemann. Benefits of Tree Transducers for Optimizing Functional
Programs. In V. Arvind and R. Ramanunjam, editors, Foundations of Soft-
ware Technology and Theoretical Computer Science, volume 1530 of LNCS,
pages 146-157. Springer-Verlag, 1998.

A. Kithnemann and H. Vogler. Synthesized and inherited functions — a new
computational model for syntax—directed semantics. Acta Inform., 31:431—
477, 1994.

S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML Type Checking with
Macro Tree Transducers. In Proceedings of the 24th ACM Symposium on
Principles of Database Systems (PODS’ 05), pages 283-294. ACM Press,
2005.

S. Maneth and F. Neven. Recursive structured document transformation.
In R. Connor and R. Mendelzon, editors, Research issues in structured and
semistructured database programming - Revised papers DBLP 99, volume
1949 of Lect. Notes Comput. Sci., pages 80-98. Springer-Verlag, 2001.

A. Muscholl, M. Samuelides, and L. Segoufin. Complementing deterministic
tree-walking automata. Information Processing Letters, 99:33-39, 2006.

T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. J.
of Comput. Syst. Sci., 66:66-97, 2003.

L. Muzamel. Pebble Alternating Tree-Walking Automata and Their Rec-
ognizing Power. Acta Cybernetica, 18(3):427-450, 2008.

W.C. Rounds. Mappings and grammars on trees. Math. Systems Theory,
4:257-287, 1970.

V. Vianu. A Web Odyssey: From Codd to XML. In Proceedings of the 20th
ACM Symposium on Principles of Database Systems (PODS’ 01), pages
1-15. ACM Press, 2001.

H. Vogler. Functional description of the contextual analysis in block—
structured programming languages: a case study of tree transducers. Science
of Comput. Prog., 16:251-275, 1991.

J. Voigtlander. Conditions for Efficiency Improvement by Tree Transducer
Composition. In Sophie Tison, editor, 13th International Conference on
Rewriting Techniques and Applications, Copenhagen, Denmark, Proceed-
ings, volume 2378 of LNCS, pages 222-236. Springer-Verlag, July 2002.

R. Wilhelm and D. Maurer. Compiler Design. Addison-Wesley, 1995.

