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Introduction

Maintaining legacy systems incur signi�cant costs. Most of the time, re-engineering such a system
is a better choice than rewriting it from scratch [9]. Re-engineering consists of two stages, namely
reverse engineering information from the current system and, based on this information, (forward)
engineering the system into a new form. Successful re-engineering demands a really reliable reverse
engineering of the legacy system because any decision made during the forward engineering phase will
be based on this information. It motivated us to develop a method which extends and improves one
of our reverse engineering tools, and to develop benchmarks and perform experiments on evaluating
reverse engineering tools.

In this study we deal with design pattern miners, duplicated code detectors and rule violation

checkers. Design pattern mining tools help one to better understand the system and its components.
Duplicated code detector tools discover risky copied code fragments that could carry the same bugs
and make the maintenance of the system di�cult. Rule violation checkers audit typical programmer
errors in the source code. These tools provide important information about the legacy system, but
their results may contain false positives.

We enhanced our design pattern miner tool, which is a component of the Columbus framework [6].
We used machine learning methods to further re�ne the pattern mining by marking the pattern
candidates returned by the matching algorithm as either true or false [34]. We also compared three
design pattern miner tools (Columbus, Maisa and CrocoPat) from three aspects, namely di�erences
between the hits, their speed and memory requirements [35]. Furthermore, we present experiments
performed on a newly developed benchmark (DEEBEE) for evaluating and comparing design pattern
miner tools. With the help of this benchmark, the accuracy of two design pattern miner tools were
evaluated on reference implementations of design patterns and on two software systems [36, 37, 38].
We also introduced DPDX, a common exchange format for design pattern miner tools. Here, we
propose a well-de�ned and extendible metamodel that addresses a number of limitations of current
tools. Then, the proposed metamodel is implemented in an XML-based language [39, 40]. After, we
introduced a new version of the DEEBEE system, called BEFRIEND, which has become more useful
since we generalized the evaluation aspects and the type of the evaluated tools. With BEFRIEND, the
results of reverse engineering tools that recognize arbitrary aspects of source code can be subjectively
evaluated and compared with each other [41, 42].
Now I will state �ve main results in the thesis. These are:

1. The improvement of an existing design pattern miner tool.

2. Performance evaluation of design pattern miner tools.

3. Validation of design pattern miner tools.

4. Common exchange format of design pattern miner tools

5. Validation of reverse engineering tools.

In the following sections I will brie�y present these results and emphasize my own contributions at the
end of each section.
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1 Improvement of an existing design pattern miner tool

The problem with the more common approaches to pattern recognition (based on pattern matching) is
that they are inherently too lax in the sense that they produce many false results, in which some code
fragments are identi�ed as pattern candidates that share only the structure of the pattern description.
Here we present a machine learning method and results of experiments that tell us how to improve
the results of design pattern miner tools so as to decide whether they are correct or not. We applied
the design pattern mining approach of our Columbus framework [4]. We carried out experiments on
StarWriter (containing over 6,000 classes), the text editor of the StarO�ce suite [28]. Using the
pattern-matching algorithm of Columbus we �rst found several pattern candidates that were further
�ltered using machine learning methods to provide more accurate results.

The learning process

In the following we will give an overview of the concrete steps of the learning process we developed.

1. Predictor value calculation. In the original pattern mining process [4], Columbus analyzes the
source code and creates an Abstract Semantic Graph (ASG) representation. Afterwards, the
design pattern miner component of Columbus (CAN2Dpm) �nds design pattern candidates
that conform to the actual DPML (Design Pattern Markup Language) �le, which describes the
structure of the pattern looked for. Each design pattern has features (predictors) that are not
related to its structural description. We retrieve this kind of information from the ASG - saving
them to a CSV �le (predictor table) - and use them as input for the learning system.

2. Manual inspection. Here, we examine the source code manually to decide whether the design
pattern candidates are false candidates or not. Then we extend the predictor table �le with a
new column containing the results of the manual inspection.

3. Machine learning. We perform the training of the machine learning systems(C4.5 [25] and
Backpropagation [7]). The outputs of these are models which contain the acquired knowledge.

4. Integration. Lastly, we integrate the results of machine learning into Columbus.

Figure 1 graphically describes this process. The original elements of the mining process of Colum-
bus are denoted by straight lines and empty boxes, while the new parts introduced by the current
study are denoted by dashed lines and �lled boxes.

Experiments

We performed experiments with two design patterns, Adapter Object and Strategy. To assess the
accuracy of the learning process we applied the method of three-fold cross-validation, which means
that we divided the predictor table �le into three equal parts and performed the learning process three
times. We de�ned the learning accuracy score in each case as the ratio of the number of correct
decisions of the learning systems (compared to the manual classi�cation) over the total number of
candidates. We calculated the average and standard deviation (shown in parentheses) using the three
testing results and got the scores shown in Table 1.
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Figure 1: The learning process

Design Pattern Decision Tree Neural network

Adapter Object 66.70% (21.79%) 66.70% (23.22%)

Strategy 90.47% ( 4.13 %) 95.24% ( 4.12 %)

Table 1: Average accuracy with standard deviation based on three-fold cross validation

Our goal was to �lter out false candidates from the results provided by our structure-based pattern
miner algorithm [4]. In our experiments we achieved learning accuracy scores of 67�95% and with the
model obtained we were able to �lter out 86% of the false candidates of the Adapter Object design
pattern, and 94% of the false candidates of the Strategy pattern.

Own contribution

The author performed the experiments with the Strategy design pattern and manually tagged the
results of the design pattern mining tool in the case of the Strategy design pattern. The results of
this thesis are published in [34].
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2 Performance evaluation of design pattern miner tools

In this study we compare three design pattern miner tools, namely Columbus, Maisa and CrocoPat.
We chose these tools because it is possible to prepare a common input for them with Columbus. Our
previous work enabled us to provide the input for Maisa [12], while in the case of CrocoPat we created
a new plug-in for Columbus which is able to prepare the appropriate input. We illustrate this process
in Figure 2.

Figure 2: Common framework

Approach

Now we present a comparative approach of the given design pattern mining tools with the following
viewpoints.

• Di�erences between the design pattern candidates found. Sometimes, tools report the same
design pattern candidate di�erently. These di�erences might be due to several reasons. The
tools might use di�erent techniques to de�ne a design pattern and the representation of the
results might not be the same. We will try to discover the possible reasons for the di�erences
experimentally.

• Speed. Speed is measured by the amount of the time taken by the tool to mine the given design
pattern.

• Memory usage. We measured the maximal memory required for the design pattern mining task.

Experiments

We made a comparison on four open source small-to-huge systems (DC++, WinMerge, Jikes and
Mozilla) to make the benchmark results independent of system characteristics like size, complexity
and application domain. All the tests were run on the same computer, so the measured values were
independent of the hardware and hence the results are comparable. Our test computer had a 3 GHz
Intel Xeon processor with 3 GB memory.
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Di�erences between the design pattern candidates found

In essence, the design pattern candidates found would be the same in most of the cases if we could
disregard the following common causes of the di�erences.

Di�erent de�nitions of design patterns. We found that there were some speci�c reasons why the
tools discovered di�erent pattern candidates. The main one was that in some cases a design pattern
description overlooked a participant as in the case of the Builder pattern in Maisa. Here the pattern
de�nition did not contain the Director participant, hence the candidates discovered by Maisa were not
the same as those found by the other two. Such di�erences could be intentional and ad-hoc as well,
therefore it would be di�cult to standardize and to eliminate them.

Precision of pattern descriptions. Another di�erence was how precise the pattern descriptions
actually were. For example, in the case of Jikes the di�erences in the total number of Adapter Class
candidates found were due to the fact that CrocoPat and Columbus de�ned the Target as abstract
while Maisa did not.

Di�erences in algorithms. We found di�erences in the design pattern miner algorithms as well. For
example, Columbus and Maisa counted the repeated candidates with certain classes in common only
once, but CrocoPat counted each occurrence. Such di�erences should be handled and standardized
in a fair comparison of candidate correctness.

Speed.

Overall, we concluded that the best tool from a speed perspective is CrocoPat, but in some cases
Columbus was faster. Columbus can be applied in the case of small- or medium-sized systems and in
the case of complex design patterns like Visitor. As for CrocoPat, it can used in the case of a larger
system or in the case of a simpler design pattern like Template Method.

Memory usage.

The results here showed that the memory usage strongly depends on the size of the projects analyzed
and it is independent of the given design patterns. In the case of Columbus, the required memory
was very large compared to the other two. This is due to the fact that Columbus is a general reverse
engineering framework and design pattern detection is just one of its many features. For this reason it
uses an ASG representation, which contains all the information about the source code. Note that with
CrocoPat and Maisa the required memory was smaller because their inputs only contained information
about the source code necessary for pattern detection. We conclude that, in the terms of memory
requirements, Maisa's performance was the best.

Own contribution

The author developed the Columbus-CrocoPat exporter and integrated it into the Columbus frame-
work. He also de�ned several design patterns in the representation language (RML) of CrocoPat.
Furthermore, the author performed the experiments presented in this thesis. The author also partici-
pated in �nding a concrete de�nition for the comparison-and-evaluation approach.
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3 Validation of design pattern miner tools

We developed a publicly available benchmark called DEEBEE (DEsign pattern Evaluation BEnchmark
Environment) for evaluating and comparing design pattern miner tools. Our benchmark is general,
being language, software, tool and pattern independent. With this benchmark the accuracy (precision
and recall) of the tools can be validated by anyone.

Benchmark

Figure 3 shows an overview of the benchmark. First, design pattern miner tools and developers
discover design patterns from the source code. Afterwards, design pattern miner tools generate their
results in a tool-speci�c format, which have to be converted into the input format of DEEBEE (which
is a CSV �le).

Figure 3: Overview of DEEBEE

Developers manually discover design pattern candidates and then store their results in the DEEBEE
CSV �le format. In the next step, the candidates (CSV �les) are uploaded into the benchmark. After,
the candidates can be queried and browsed, evaluated and compared via the online interface of
DEEBEE. Furthermore, the benchmark is able to automatically generate statistics (e.g. precision
and recall) based on the evaluations given by the users. These functionalities signi�cantly ease the
evaluation and comparison process of design pattern miner tools.

As shown in the second thesis, the results of the di�erent design pattern miner tools may di�er for
several reasons. In DEEBEE we propose a method to handle this. We labelled the same but di�erently
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reported pattern candidates as siblings. The identi�cation of siblings is based on the fundamental

participants of design pattern candidates. For example, in the case of the State pattern [13] the
fundamental participant plays the role of the State class.

The benchmark contains 1,274 design pattern candidates from three C++ software systems
(Mozilla [21], NotePad++ [22] and FormulaManager [29]), three Java software systems (JHot-
Draw [17], JRefactory [18] and JUnit [19]) and C++ reference implementations of design patterns.
The uploaded design pattern candidates are recovered by three design pattern miner tools: Columbus
(C++) [4], Maisa (C++) [23] and Design Pattern Detection Tool (Java) [30].

Experiments

To compare di�erent tools, reference implementations of design patterns based on a book by Gamma
et. al. [13] were created by us. With these reference implementations the basic capabilities of C++
pattern miner tools can be evaluated and compared. Since the reference implementations contain
disjoint implementations of the design patterns in an arti�cial context, we developed a program called
FormulaManager where each design pattern occurs in a real context at least once. In addition,
pattern instances from NotePad++ recovered by professional software developers were added to the
benchmark.

We evaluated and compared two design pattern miner tools, namely Maisa and Columbus, with
the help of DEEBEE. The tools were evaluated on reference implementations, on FormulaManager,
and on NotePad++. The results are shown in Table 2.

System Reference impl. NotePad++ FormulaManager
Tool Columbus Maisa Columbus Maisa Columbus Maisa
Precision 100% 80.00% 62.50% 16.67% 52.27% 80%
Recall 58.33% 33.33% 29.41% 11.76% 71.88% 25%

Table 2: Results

Own contribution

The author developed the benchmark (except the instance view). He also de�ned and implemented
the uploading format of the benchmark including the sibling and grouping mechanism. The author
performed the experiments with Maisa and Columbus, and uploaded their results into the benchmark.
He also participated in designing the architecture of the benchmark, in determining the evaluation
aspects, in manually tagging the results of the tools and in designing its use cases.
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4 Common exchange format of design pattern miner tools

We propose to address the limitations of output formats of current design pattern detector (DPD)
tools by introducing a common exchange format for them, called DPDX, based on a well-de�ned and
extendible metamodel. This format should aid the comparison [35], fusion [20], visualization [10], and
validation [37] of the outputs of di�erent DPD tools.

Requirements

We de�ne the following core requirements that the common exchange format must ful�l to address
the limitations of current DPD tools outputs and serve as the basis for a federation of tools:

1. Speci�cation. The exchange format must be speci�ed formally to allow DPD tool developers
to implement appropriate generators, parsers, and/or converters.

2. Reproducibility. The tool and the program to be analyzed must be explicitly reported to allow
researchers to reproduce the results.

3. Justi�cation. The format must include explanations and scores expressing con�dence in the
results produced by the tool.

4. Completeness. The format must be able to represent program constituents at every level of
role granularity described in design pattern literature.

5. Identi�cation of role players. Each program constituent playing a role in a design motif
must be unambiguously identi�ed.

6. Identi�cation of candidates. Each candidate must be unambiguously identi�ed and reported
only once.

7. Comparability. The format must allow one to report the motif de�nitions assumed by a tool
and the applied analysis methods to allow other tool users to compare results.

8. Language-independence. (optional) The common exchange format should abstract language
speci�c concepts so that it can be used to report candidates identi�ed in programs written in
arbitrary imperative programming languages (including object-oriented languages).

9. Standard-compliance. (optional) The speci�cation should be consistent with existing stan-
dards so that it can be easily adapted, maintained, and evolved.

Metamodels

Three meta-models together specify the DPDX format: the meta-model of design pattern schemata,
the meta-model of program element identi�ers and the meta-model of DPD results. The schema meta-
model allows the tools to report the schema of the patterns they search for; the program element
meta-model allows the tools for identifying the program elements of the source code playing some
role in the pattern instance; and the result meta-model describes the detected pattern candidates
themselves.
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Figure 4 shows how these models are related. Here the results are instances of the result meta-
model. Their main part is the mapping of roles and relations (from schemata) to the program elements
(in the program element model). Candidates are targets of mappings like this. Note that candidates
may overlap; that is, program elements can play a role in di�erent pattern schemata, as illustrated by
the overlap of one of the Singleton candidates with one of the Decorator candidates.

DPD results of tool T for program P

Metamodel of

DP Schemata 

S1 = Schema 

of Singleton 

Metamodel of

DPD Diagnostics

Sn = Schema 

of Decorator

instanceOfinstanceOf

...

Metamodel of

Program Elements 

Role mappings and 

relation mappings

Diagnostics

of T for P

Schemata 

of tool T

instanceOf

Elements of

program P

Figure 4: Relation between schemata, diagnostics and instances

Implementation

For long-term maintainability, the implementations of the meta-models should rely as much as possible
on emerging or de-facto standards. Therefore we shall base our common exchange output format on
XML. The implementation of DPDX consists of the realization of the three meta-models. To keep the
implementation simple, we have adhered as much as possible to the following general principles for
mapping meta-models to XML: (1) classes of the meta-models are mapped to XML tags; (2) attributes
of the meta-model elements are mapped to attributes of the XML elements; (3) aggregation between
the elements of the meta-models is represented by the parent-children nesting technique of XML; (4)
an element that can be referred to by another element has an `id' attribute, and the element that
would like to refer to this element has an attribute to refer it; (5) an association with target cardinality
greater than 1 is represented by a group element included with individual referencing elements.

Own contribution

The author developed the initial versions of the schema metamodel implementation and described the
Maisa tool. He also participated in the substantial improvement and �nalization of the initial ideas
(concepts, metamodel, implementation) in their eventual form.
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5 Validation of reverse engineering tools

We further developed the DEEBEE system to help make it more suitable by generalizing the evalu-
ating aspects and the data to be evaluated and compared. The new system is called BEFRIEND

(BEnchmark For Reverse engInEering tools workiNg on source coDe). BEFRIEND largely di�ers from
its predecessor (DEEBEE) in �ve aspects.

1. Domains. DEEBEE supports the evaluation and comparison of the results of design pattern
miner tools. With BEFRIEND, the results of reverse engineering tools from di�erent domains
recognizing the arbitrary characteristics of source code can be evaluated and compared with each
other. Such tools include design pattern detectors, duplicated code detectors and coding rule
violation checkers. In BEFRIEND, a user is able to set the active domain, and every further
action (e.g. listing candidates) on the user interface will be in this active domain.

2. Evaluation aspects. BEFRIEND allows the adding and deleting of the evaluating aspects of
the results in an arbitrary way, while DEEBEE has �xed evaluation aspects. On the basis of this,
the uploaded candidates can be evaluated. In one evaluation criterion, one question has to be
given to which an arbitrary number of answers can be de�ned. For each answer a percentage
ratio should be set to indicate to what extent the given question has been answered. Based on
the replies by users, the benchmark can calculate di�erent statistics using this ratio.

3. User interface. The user interface of DEEBEE was also improved by us during the development
of BEFRIEND. For example, in DEEBEE, the instance view just displays one code fragment but
BEFRIEND displays two code fragments (see Figure 5). For instance, it eases the comparison of
copied code fragments detected by duplicated code detector tools.

4. Grouping mechanism. BEFRIEND generalizes the de�nition of grouping mechanism (sibling
relationships) to tackle the problems of other domains, not just design pattern mining, e.g. for
duplicated code detectors where fundamental participants cannot be used as a basis for grouping
the same results, unlike DEEBEE. Three things determine the existence of the sibling relation
between two candidates in BEFRIEND. These are the matching of their source code positions, the
minimal number of matching participants, and domain dependent name matching. The settings
of sibling relations can be aligned in BEFRIEND for each available domain separately.

5. Plug-in oriented architecture. DEEBEE has a special CSV format for uploading, and a design
pattern miner tool has to convert his output into this format. BEFRIEND allows the uploading
of �les in di�erent formats by introducing a plug-in oriented architecture. In this way, it permits
the uploading of the results of a new tool by implementing the appropriate plug-in.

Experiments

We applied BEFRIEND to three reverse engineering domains, namely design pattern mining tools, code
clone mining tools, and coding rule violation checking tools. In the code clones domain we performed
some experiments with the benchmark. Five duplicated code �nder tools were assessed on two di�erent
open source projects called JUnit and NotePad++. For the evaluation, three evaluation criteria were
used. The Correctness criterion is used to decide to what extent a code clone group comprises cloned
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Figure 5: Group instance view

code fragments; precision and recall scores are calculated based on votes for this criterion. The second
criterion is Procedure abstraction with the related question 'Is it worth substituting the duplicated

code fragments with a new function and function calls?'. The third criterion is Gain with the related
question 'How much is the estimated gain of refactoring into functions?' The results for JUnit are
shown in Table 3.

Tool Bauhaus clones CCFinder Columbus PMD Simian
Precision 62.79% 54.84% 100.0% 100.0% 100.0%
Recall 84.38% 53.13% 12.5% 15.63% 6.25%
Proc. abstr. 48.31% 44.23% 79.0% 73.0% 66.25%
Gain 29.36% 30.98% 62.5% 62.5% 62.5%

Table 3: Results on JUnit

Own contribution

The author adopted and generalized the theory of sibling relations and provided the corresponding
implementation. He also participated in de�ning the terminology, manually evaluating the candidates
using the benchmark and in the presentation of the benchmark's architecture.
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Conclusions

The main contributions of this work are summarized as follows. First, we employed machine learning
methods to further re�ne the results of our design pattern miner tool. In this study, we showed that a
machine learning-based method can be successfully applied for �ltering out false positives of a reverse
engineering tool. Previously, several interesting approaches were published [32, 33, 16, 1] to improve
the results of design pattern miner tools, but no one has tried to improve the results as we do here.

In our second study, we evaluated and compared three design pattern miner tools in a set of
experiments. During these experiments, the common di�erences of tool results were collected, and
it was learned which tool should be used in certain circumstances in terms of speed and memory
consumption. Based on the experiences of the second study, we developed DEEBEE, a benchmark
for evaluating and comparing design pattern miner tools, and performed some experiments using
it. The benchmark is general, being language, software, tool and pattern independent. With this
benchmark the accuracy of the tools can be validated by anyone. Previously, several studies were
published [24, 15, 11, 2, 14] about the evaluation and comparison of design pattern miner tools and
about a review, but such a benchmark like DEEBEE did not exist (e.g. with an automatic grouping).

We also introduced an XML-based output format (DPDX) for design pattern miner tools. The
proposed format is based on a well-de�ned and extendible metamodel that addresses the limitations
of formats of design pattern miner tools. This format should aid the comparison [35], fusion [20],
visualization [10], and validation [37] of the outputs of di�erent design pattern miner tools.

Lastly, we developed BEFRIEND, a benchmark that can be used for evaluating and comparing
reverse engineering tools. We applied BEFRIEND to three reverse engineering domains, namely design
pattern mining tools, duplicated code detector tools, and coding rule violation checking tools. In the
duplicated code domain we performed experiments with the benchmark using �ve duplicated code

�nder tools. Several papers were published [5, 27, 8, 31, 3, 26] about the evaluation and comparison
of di�erent kind of reverse engineering tools, but a general benchmark like BEFRIEND did not exist
previously.

Table 4 summarizes which publications cover which results of the thesis.

N o. [34] [35] [36] [37] [38] [39] [40] [41] [42]
1. •
2. •
3. • • •
4. • •
5. • •

Table 4: The relation between the thesis topics and the corresponding publications.
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