
В /S4f

V- Magyar Tudományos Akadémia Számítástechnikai és Automatizálási Kutató Intézete
Computer and Automation Institute. Hungarian Academy of Sciences

Institut für Rechentechnik und Automatisierung der Ungarischen Akademie der Wissenschaften
Исследовательский Институт Вычислительной Техники и Автоматизации Венгерской Академии Наук

А CHANGE nyelv/multiprocesszor

Legendi Tpmás

-

Budapest, 1972.

k

A kiadásért felelős
Dr. Vámos Tibor

az
MTA Számitástechnikai és Automatizálási

Kutató Intézetének
igazgatója

fii V,
ii ő sncro

Készült az Országos Műszaki Könyvtár és Dokumentációs Központ
házi sokszorosítójában

P.v.: Janoch Gyula

i

BEVEZETÉS

A dolgozat részletesen ismerteti a CHANGE nyelv elvi és gyakorlati céljait,

felépítését, általános és konkrét alkalmazásait, fordító-, értelmező- és vég-
^ ' "... - '• ■ -------- n

'УОАЛуХлЛ. '4/\ Ллл ЛлЛ/)r^Hajté programjainak szerkezetét.

A bevezetés röviden ismerteti azokat a problémákat és a megoldásukra irá­

nyúié javaslatokat, amelyek a nyelv kialakításához vezettek, kiemelve az éj

illetve viszonylag éj elemeket.

A hagyományos programozási nyelvek különböző előnyeik ellenére a felada­

tok jelentős részénél csak nehézkesen alkalmazhatóak (különösen célorien­

tált nyelvek feldolgozására, adaptiv programok Írására, szintaktikus elem­

zésre) .

A nehézségek főbb okai:

1 . A magasabb szintű nyelvek megtartják a gépi kőd lineáris végrehajtási mód­

ját (az utasítások egymás után kerülnek végre hajtásra, kivéve, ha vezér­

lésátadó utasítás ir elő más sorrendet). Az algoritmusok jelentős részé­

nél, a célorientált nyelvek télnyomó többségénél a természetes végrehaj­

tási mód nem lineáris, és ezeknek a feladatoknak lineáris programmá való

átkódolása többletmunkát okoz a programozónak (az elkészült program kevés­

sé tükrözi az eredeti feladatot).

2. Magasabb szintű nyelveknél elvész a gépi kódban elérhető csaknem teljes

közvetlen hozzáférés a program végrehajtását befolyásoló értékekhez.

(A gépi kódé programok közvetlenül módosíthatják a programot tartalmazó

rekeszek, az utasitásszámláló (k), valamint az utasitásszámláló-módositő

(k) tartalmát.)

3. A magasszintű nyelvek szintakszisa és szemantikája kötött, a fordítást

és a futást vezérlő paraméterek többsége a fordító-végrehajtó program ki­

zárólagos ellenőrzése alatt áll, dinamikusan nem változtatható.

3

A .javasolt megoldás:

1. A végrehajtási mód és vezérlése.

A lineáris végrehajtási módot az jellemzi» hogy a programokat 1 procesz-

szor hajtja végre, 1 utasitásszámláló felhasználásával. (A vezérlésáta­

dó utasítások közvetlenül előírják az utasitásszámláló űj értékét, az

egyéb utasítások végrehajtása után 1-gyel nő az utasitásszámláló tartal­

ma.) Ezt az eljárást általánosítva, egy programot tetszőleges számó,

önálló utasitásszámlálóval és utasitásszámláló-módositóval rendelkező

processzor hajt végre. (Általános végrehajtási mód.) A processzorokat

vezérlő (indító, megállító stb.) és az utasitásszámláló-módositó értékét

előíró utasítások bevezetésével tetszőleges nem lineáris végrehajtási

mód is (dinamikusan) programozható.

2. A végrehajtási módot vezérlő utasítások közvetlen hozzáférést biztosíta­

nak a végrehajtást befolyásoló legfontosabb értékekhez. A programok fu­

tás közbeni tetszőleges módosítását az egyes utasításokat a programon

belül áthelyező utasítások végzik. Ezek az utasítások vagy változatlanul

helyezik át az előirt utasítást,vagy pedig az áthelyezés előtt egyes ki­

jelölt változókat aktuális értékükkel helyettesítenek is.

(Mivel egy programon belül a teljes utasitáskészlet rendelkezésre állhat,

igy a program bármely utasításának helyére tetszőleges utasítás kerül­

het .)

3« A kötöttségek feloldását elsősorban az ój adattípusok definiálását, va­

lamint automatikus feldolgozását lehetővé tevő kiterjesztő utasítások

biztosítják.

Lényeges többlet a hagyományos kiterjeszthető nyelvekkel szemben, hogy

a kiterjesztett nyelv (processzor) végrehajtási módja is előírható a ki­

terjesztő utasítások szemantikai részében.

Ezenkívül a fordítást és a futást vezérlő paraméterek (nyomkövetési szin­

tek, optimalizálási szintek, mely utasításokat kell csak egyszer végrehaj-

4

tani, a szubrutinmélység maximális ás aktuális értékének előírása stb.)

beállítására külön utasítások vannak, amelyek dinamikusan (futás alatt)

is alkalmazhatóak.

5

összefoglalva:

A nyelv nagyfokú hajlékonysággal rendelkezik, minden lényeges alapelemén

lehet műveleteket végezni, igy többek között:

az adattípusok és az utasítások szintaktikus és szemantikus leírásán

(a nyelv kiterjeszthető);

az utasításokon (a programok futás alatt médosithaték programozott

médon);

a végrehajtási médon (tetszőleges végrehajtási méd irhaté elő dina­

mikusan) .

a.

b-

c.

Az ezekkel a tulajdonságokkal rendelkező CHANGE nyelv előnyösen alkalmaz­

ható nem lineáris végrehajtási móddal rendelkező célorientált nyelvek

definiálására és processzoraik automatikus elkészítésére, valamint adap­

tiv programok Írására.

A nyelv esetleg alkalmazható univerzális programozási nyelvként is, de

ebben az esetben a futás áttekinthetőségét zavaró eszközök használatát

korlátozni kell és a nyomkövető utasítások fokozott mértékű alkalmazásá­

val lehet elérni a futás megbízható ellenőrzését.

A. A nyelv célja

fl/4 Л\0л/и Ол/Х^ кл ' & 5°^

1 . A programnyelvek llnearitásának feloldása •^£j U24^A' «о/ ^ /-*•
fi yviéwi --M

2. A programok futás közben történó (ön) módosítása programozott úton (űj-

rafordítás nélkül) ^{jLArwJíA - TS ‘ (mv,

Aыу J £л/1м Oi/ íku■ v-\- /iw,/»,i4fI/
MwUrf '

/1Л.

7)

3. Programozási nyelveket (ás egyben processzorokat) kaphassunk kiter­

jesztéssel egy hajlékony alapnyelvból
f

'We/iAo - a

4. A programozó egy olyan magasszintű absztrakt számítógépet programozzon,

amelyen mindenhez hozzáfér (tehát a nyelv minden lényeges alapelemén le­

hessen utasításokkal műveleteket végezni)

5. A multiprocesszoros gondolkodásmód kialakítása

*»

7

В. A célok elemzése

1 . A célok közötti összefüggések

A bevezetésben szereplé gondolatmenet világosan mutatja, hogy a negye­

dik cél a legáltalánosabb.

A linearitás feloldása elérhető a végrehajtási mőd fogalmának bevezeté­

sével és a végrehajtási médot előiré utasításoknak a nyelvbe valé beé­
pítésével .

A programok futás közbeni médositását, az utasításokon műveleteket vég­

ző áthelyező utasítások biztosítják.

A kiterjeszthetőséget az adattípusok és az utasítások szintaktikus és

szemantikus leírásán műveleteket végző utasítások biztosítják. A nem li­

neáris végrehajtási médot előiré utasítások felhasználása az űj utasítá­

sok szemantikus leírásában lehetővé teszi tetszőleges végrehajtási mád­

dal rendelkező kiterjesztett nyelv (processzor) létrehozását.

2. A célok következményei

a. Feltétlenül interpretálásra vagy inkrementálls fordításra [2] van

szükség a programot médosité (utasításokat áthelyező) utasítások, a

futás közben változtathaté végrehajtási méd, és a nyomkövetési utasí­

tások realizálásához.

b. Interpretálás vagy inkrementálls fordítás esetén a programok illetve

egyes utasításaik belső ábrázolása eleve megfelel az on-line feldol­

gozás követelményeinek, Így az utasitáskészlet minimális kiegészíté­

se már lehetővé teszi a multlprocesszor on-line felhasználását is.

8

С. A nyelv összefoglald .jellemzése

1. Műveleteket lehet végezni egész, valés, logikai, karakter, szövegtipusu

változdtömbök illetve egyszerű listák elemein, utasításokon, a CHANGE

multiprocesszor végrehajtási médját szabályozd paramétereken, valamint

az adattípusok és az utasítások szintaktikus és szemantikus leírásán.

2. A CHANGE nyelv alapnyelv jellegű.

A nyelv alkalmas általános algoritmusok leírására; alkalmazásának fd

célja célorientált nyelvek definiálása, és egyben processzoralk automa-

tikus elkészítése.

3. Az alapnyelv jellegnek megfelelden az 1. pontban felsorolt objektumokon

nagyszámű elemi művelet végezhető. A műveletek rendszere minimális re­

dundanciát tartalmaz, az általában használt összetett műveletek feléplt-

hetdek az elemi műveletek alkalmazásával.

4. Az alapnyelv kiterjeszthetősége

a. tfj adattípusok és utasítások építhetők be a nyelvbe.

b. A párhuzamos végrehajtást előírd és az utasitásszámláldmddositd ér­

tékét kijelölő utasítások segítségével a programok végrehajtása tet­

szőleges, nem lineáris mddon történhet (futás alatt dinamikusan vál­

tozhat).

c. A CHANGE multiprocesszor végrehajtási mddját előírd, a b. pontban

említett utasítások szerepelhetnek az utasitáskiterjesztő utasítás

szemantikai részében, igy speciális végrehajtási mdddal rendelkező

processzorok (nyelvek) deflniálhatdk. (Egyes speciális problémaosz­

tályok számára természetesebb lehet (kialakult felfogásához, jelö-

9

lésmódjához, Illetve nyelvéhez közelebb állhat) valamely nem lineáris

végrehajtási mód, mint az univerzális lineáris végrehajtási mód.)

d. A végrehajtási módot dinamikusan (futás közben) befolyásolhatják a

nyomkövető utasítások.

1 0

D. A nyelv felépítése

1• Egy program felépítése

a. Egy program tetszőleges számú, egymást követő utasitásokből áll.

b. Az utasítások lehetnek egyszer végrehajtandó vagy állandő utasítások,

ezek tetszőleges sorrendben állhatnak.

Az állandő utasítások mindannyiszor végrehajtásra kerülnek, amikor

a vezérlés rájuk kerül. Az egyszer végrehajtandő utasítások csak ak­

kor hajthatők végre, amikor először kerül rájuk a vezérlés, címkéjü­

ket és a programban elfoglalt helyüket megtartják ezután Is. CHANGE

utasitás(ok) Is hivatkozhat(nak) ezekre az utasításokra továbbra Is.

Ha a vezérlés Ismételten egy egyszer végrehajtandő utasításra kerül,

akkor az adott végrehajtási lépés (ld. a D.2.b pontot) során az ezt

az utasítást végrehajtó processzor nem végez semmilyen műveletet.

Az alapnyelv minden utasítása állandó utasítás.

c. Minden program utolsó utasítása a FINIS utasítás, amely a program vé­

gét jelzi a fordító-értelmező program számára. A vezérlés soha nem

kerülhet rá.

d. Az utasítások pozitív egész számokkal cimkézhetők.

e. Minden utasítás (belső) sorszámmal rendelkezik.

f. Az első utasítás sorszáma 1 , a rákövetkező utasítások sorszáma mindig

eggyel nő.

11

2. Egy program végrehajtása (a multiprocesszor)

a. Egy CHANGE programot tetszőleges számú, egyidejűleg működő processzor

hajthat végre. A processzorok között alá-, (fölé-) illetve melléren­

deltségi viszony áll fenn, ez szabja meg, hogy az egyes processzorok

hogyan vezérelhetik egymás működését.

b. Egy program végrehajtásának egy lépése során minden működő processzor

1-1 utasítást hajt végre. Egy program végrehajtása tetszőleges számú,
egymást követő végrehajtási lépésből áll.

JCWvJlДолл A ЪлллЛм^зА ■
^QvyvJvVoA^ nvüAJi/iVO-'Yo'c

c. Minden processzor rendelkezik egy utasitásszámlálőval, amelynek tar­

talma pozitív egész szám.

A

d. Minden processzor rendelkezik egy utasitásszámlálő-médositéval, amely­

nek tartalma egész szám.

e. A végrehajtás egy adott lépése során egy processzor számára utasitás-

számlálőjának tartalma határozza meg a végrehajtandő utasítás sorszá­

mát .

f. Az utasitásszámlálé tartalma az utasítás végrehajtása után megválto­

zik. ^ \Sf\f\r'

í

g. Az ÜTSZ utasítás közvetlenül kijelöli az utasitásszámlálé tartalmát.

h. A vezérlésátadé utasítások kijelölik a következő végrehajtandő utasí­

tás címkéjét, az ennek a címkének megfelelő (belső) sorszám kerül az

utasitásszámlálőba.

i. Ha nem ÜTSZ illetve vezérlésátadé utasítás került végrehajtásra,

1 2

akkor az utasitásszámláló tartalmihoz hozzáadódik az utasitásszámlá-

ló-módositó tartalma.

j. Az UTSZM utasítás meghatározza az utasitásszámláló-módosltó tartal­

mát (ás igy közvetve a kővetkező végrehajtandó utasítás sorszámát).

k. Egy program végrehajtásának a kezdetekor egy processzor működik, uta­

sitásszámláló jának tartalma +1 , utasitásszámlálá-rnádositójának tartal­

ma +1 . A processzorhoz az 1 sorszám van hozzárendelve.

1. A COPE#(kSSOR utasítással (a végrehajtó processzorhoz képest) mellé­

rendelt, a SUBPROCESSOR utasítással (a végrehajtó processzorhoz képest)

alárendelt űj processzor működése indítható el. A processzorok mellé-

rendeltsége(és alárendeltsége) reflexiv ^szimmetrikus és tranzitív

reláció. Az egymással mellérendeltségi viszonyban levő processzorok

ugyanazoknak a processzoroknak vannak alárendelve.

m. A COPROCESSOR illetve a SUBPROCESSOR utasításban meg kell adni az űj

processzor által elsőnek végrehajtandó utasítás címkéjét, és az elin­

dított processzorhoz sorszámot kell hozzárendelni (az űj processzor

a következő végrehajtási lépésben kezd működni, az indító processzor

is folytatja működését).

n. Egy processzor akárhány processzor működését elindíthatja, a működő

processzorokhoz rendelt sorszámok különbözőek kell hogy legyenek.

o. Bármely processzor számára a WAIT utasítás végrehajtása saját műkö­

désének felfüggesztését eredményezi.

p. A COWAIT utasítás előírja valamely, az utasítást végrehajtó procesz-

szorhoz képest alá- vagy mellérendelt processzor működésének felfüg­

gesztését . fh <k(a-
í-feií (jixPkJ coG^jíU,

а ^ 4^-*'
<T.ЫА i víkh,V4n

-Л — ■ Ú - . ,r)

q. A NOWAIT utasítás hatására valamely, az utasítást végrehajtó procesz-

szorhoz képest alá- vagy mellérendelt processzor folytatja működését.

r. Egy processzor működése a STOP utasítás hatására fejeződik be (ekkor

sorszáma is megszűnik).

s. A SUBSTOP utasítás előírja valamely, az utasítást végrehajtó procesz-

szorhoz képest alárendelt processzor működésének befejezését.

t. Egy teljes program végrehajtása akkor fejeződik be, amikor egyetlen

processzor sem működik (ebből a szempontból a felfüggesztett működé­

sű processzort nem működőnek kell tekinteni). Az utasítást végrehaj­

tó processzornak alárendelt Összes processzor működését megszünteti a

GENERAL STOP utasítás végrehajtása.

1 4

3• Az alapnyelvben megengedett változó típusok: egász, valós, logikai, ka­
rakter, szöveg.

4. A változóazonositók tetszőleges hosszúságú betűvel kezdődő alfanumeri­
kus karaktersorozattal adhatók meg.

A változóazonositók mindig egy változótömb azonosítójául szolgálnak.

5* Az egyes változótömböknek a számitógápben 1-1 összefüggő memóriaterület

felel meg, amelyen folyamatosan helyezkednek el a tömb elemei, (növek­

vő) indexeik sorrendjének megfelelően.

6. Az egász, valós, logikai ás karakter típusú tömbök tárolása.

a. Azonos tipusu tömbök egyes elemei azonos számú memóriarekeszben ke­

rülnek tárolásra.

b. Különböző tipusu tömbelemek különböző számú rekeszben kerülhetnek

tárolásra.

c. Az a. szerint tárolt tömbelemekre indexeik segitságável lehet hivat­

kozni mind a memóriába Író, mind a memóriából olvasó utasításokban,
i.

-*s
Пí

7• A szöveg tipusu változótömbök tárolása.

a. A szöveg tipusu változótömbök egyes elemei különböző számú memória­

rekeszt foglalhatnak el, azaz a szöveg tipusu változók ártáke tetsző­

leges hosszúságú karaktersorozat lehet.

15

b. A szöveg tipusu tömbelemekre Indexeik segítségével (csak) a memóriából

olvasó utasításokban lehet hivatkozni (azaz a tömb elemeinek értékét

megkaphatjuk a megfelelő indexre való hivatkozással, a tömb valamely

elemének nem adhatunk értéket indexére való hivatkozással).

c. A szöveg tipusu változótömbök elemei csak indexeik növekvő sorrendjé­

ben kaphatnak értéket, (a továbbiakban ismertetésre kerülő karakter-

szöveg tipusu értékadó utasításokkal) ez az értékadás bármikor kezdőd­

het újra a tömb első eleménél, de ekkor a tömbelemek előző értéke el­

vész.

1 6

8. Az általános változók szerkezete

a. A változók lehetnek index nélküliek vagy Indexesek.

(Az index nélküli változó mindig a tömb első elemét Jelenti.)

b. Index lehet pozitív egész szám, pl. a(1), b(5), alfa(2C), vagy pozi­

tív értéket felvevő egész tipusu index nélküli változó, pl. a(j),

b(k), alfa(beta).

c. Egy indexes változónak lehet kitevője

A kitevő nem negativ egész szám vagy nem negativ értékeket felvevő

egész tipusu változó, pl. a (J), b (5), alfa (beta).

A kitevő Jelentése: a (J) = a '(J) = J

a (J) = a" (J) = a(j)

a (J) = a^(j) = a(a(a(J)))

ha n = C

ha n = 1

ha n = 3

d. Index lehet Indexes változó is

a(b(3))t a (b(3))t c(alfa (gamma)), c (beta (delta(9))); stb.Pl.

e. A változók lehetnek többdimenziósak, (lehet több indexük, ezeket vesz-

szővel kell elválasztani) a dimenziószám tetszőleges.

f. A legbelső zárójelben álló változó(k) vagy a zárójelet nem tartalmazó

változó előtt x Jel állhat. (Csak a CHANGE utasításokban van szerepe.)

17

9. Deklarációs utasítások

a. Tipusdeklarációs utasítások

A tipusdeklarációs utasítások az INTEGER (egész), REAL (válás), LOGI­

CAL (logikai), CHARACTER (karakter)', TEXT (szöveg) (v.0.3.pont) alap­

szavak valamelyikével kezdődnek, majd tetszőleges számú, vesszővel

elválasztott tömbdeklarátorral folytatődnak. Tömbdeklarátor lehet

törnbnáv, vagy tömbnév és utána (kerek zárőjelben állő, vesszővel el­

választott) tetszőleges számú konstans vagy változőazonositő. A tipus-

deklaráciős utasítás a tömbnővhez hozzárendeli az utasításban szerep­

lő alapszónak megfelelő típust, ás helyet biztosit a tömb számára a

memóriában a törnbnáv után felsorolt (a tömb máretát megadó) konstan­

sok illetve változóazonositók ártákánek megfelelően. (Ha a tömbdekla­

rátor csak tömbnávből áll, akkor egyelemű, egydimenziós tömb számára

történik helyfoglalás.) Szöveg tipusu változók esetén a tömb első sza­

bad eleme az 1 indexű elem. (Egydimenziósnak tekintve a tömböt.)

Ha egy tömb tipusa megváltozik az utasítás végrehajtásának hatására,

akkor elemeinek értéke elvész (definiálatlan).

b. Tömbméret deklaráciős utasítások

A DIMENSION alapszó után tetszőleges számú tömbdeklarátor állhat. Az

egyes tömbdeklarátorokban szereplő változóazonositók, illetve kons­

tansok száma adja meg az adott tömb dimenziószámát, (aktuális)' érté­

kük határozza meg a tömb méretét (méreteit). Az utasitás végrehajtá­

sa helyet biztosit a memóriában az egyes tömbök számára méretüknek

(és típusuknak) megfelelően.

Ha egy tömb dimenziószáma megváltozik az utasitás végrehajtásának ha­

tására, akkor elemeinek értéke elvész. Ha egy tömb dimenziószáma vál­

tozatlan marad, akkor mindazon (régi) elemeinek értéke megőrződik, a-

melyek indexei az új Indexhatárokon belül esnek.

1 8

AUTODIM
Az AUTODIM utasítás végrehajtása után az egyes változótömbök mérete

automatikusan megnő, ha a program a deklarált méretnél nagyobb méretű

tömböt kísérel meg használni.

N0 AUTODIM
Megszünteti az AUTODIM utasítás hatását.

19

Az értékadó utasítások -ban az egyenlőségjel baloldalén mindig egy álta-1 C.

lános változó áll, a jobboldalon

vagy egy általános változó,

vagy műveleti Jellel összekötött két általános változó,

vagy relációjellel összekötött kát általános változó,

vagy egy belső függványnáv ás egy változó neve állhat (a jobboldalon

változó helyett bárhol állhat konstans).

A Jobboldali kifejezés kiértékelésével kapott érték típusa meg kell,

hogy egyezzen a baloldali változó típusával. A baloldalon álló változó

felveszi a Jobboldali kifejezés aktuális értékét.

, x , / , xx

(aritmetikai)

a. Műveleti jelek: + ,

.NOR..AND .NAND.NOT • OR •»• * • f • 9

(logikai)

Megjegyzés: a .NOT. műveleti jel előtt nem állhat változó, utána egy

változó állhat.

b. Belső függvények; sin, cos, atan, abs, alog, alog 10, exp, sqrt,

max, min, float, ifix

c. Relációjelek: .EQ .NI.• LT .LE .IN.GT.NE • GE • 9• 9 • t• 9 • 9 • 9• 9

(Jelentésükről ld. a 11.c. pontot)

2 -

d. Konstansok:

Az egész tipusu konstansok tizes számrendszerbeli számjegyekből

állnak. (A számjegyek maximális száma az adott számitógéptől függ.)

A valós konstansok szintén tizes számrendszerbeli számjegyekből áll­

nak, valahol ki kell tenni a tizedespontot.

A logikai konstansok: .TRUE, (igaz) és

•FALSE, (hamis)

A karakter konstansok: az adott számítógépen elérhető teljes karak­

terkészlet, az egyes karaktereket két ferde zárójel közé kell zárni.

A szöveg konstansok: kezdő és végzárójel közötti tetszőleges karak­

tersorozatok.

ai

11. A vezérlésátadó utasítások

a. Az összes vezérlésátadó utasításban a vezérlésátadás helyát (helyeit)

megadó páráméter(ek) lehet(nek) pozitív egész szám(ok), vagy pozitív

értéket felvevő egész tlpusu változé(k) (Jelölésük P és egy utána ál­

ló egész szám).

b. Feltétlen vezérlésátadás

GO T0P1

A vezérlés a P1 címkéjű utasításra adódik.

c• Feltételes vezérlésátadás

IF (VI) Pl , P2, P3

Ha a V1 egész vagy valós tlpusu változó aktuális értéke

negatív P1

P2 címkéjű utasításra kerül a vezérlésnulla akkor a

pozitív P3

IF (V1.REL.V2) P1 , P2

Ha a V1 és V2 megegyező tlpusu általános változók (konstansok) között

fennáll a REL reláció, akkor a P1 cimkére, ellenkező esetben a P2

címkére adódik a vezérlés.

A megengedett relációk: EQ(=), NE(^), GT(>), GE(.>), LT(<), LE(£),

IN(<C), И1(ф)

22

Az .EQ. és a .NE. relációjel tetszőleges típusé változók között áll­

hat, a .GT. a .GE. az .LT. és az .LE. reláciéjel egész, illetve valós

típusé változók között állhat, az .IN. és az .NI. relációjel pedig

szöveg típusé változók között állhat.

IF (L) P1 , P2

Ha az L logikai változó aktuális értéke igaz (.TRUE.) akkor a P1 cím­

kéjű utasításra, ellenkező esetben a P2 címkéjű utasításra kerül a ve­

zérlés .

d. Clklusutasitás

DO Pl 11=12,13>14

11, 12, I3t 14 egész tipusu változó (konstans).

P1 (aktuális) értéke egy REPEAT (cikluszáró) utasítás címkéjét kell,

hogy megadja.

Ha 12 értéke nem haladja meg 13 értékét (13 a ciklus változó maximá­

lis értéke), akkor az-utasítás hatására az 11 ciklusváltozó felveszi

az 12 kezdőértéket. Ellenkező esetben a P1 címkéjű REPEAT utasítás

után (a végrehajtási mód szerint) következő utasításra történő feltét­

len vezérlésátadást ir elő az utasítás.

(Pl) REPEAT

A REPEAT utasítás végrehajtásakor az 11 clklusváltoző aktuális érté­

kéhez hozzáadásra kerül 14. Ha az 11 ciklusváltozó értéke nem haladja

meg 13 aktuális értékét, akkor a hozzátartozó DO utasítás után (a DO

utasítás utolsó végrehajtásakor érvényes végrehajtási mód szerint)

2 3

kővetkező utasításra, ellenkező esetben a REPEAT utasítás után (a

végrehajtási mőd szerint) következő utasításra adódik a vezérlés.

A ciklus futása alatt P1 , 11, 12, 13» 14 értéke módosítható. Az ösz-

szetartozó DO - REPEAT utasltáspárt különböző processzorok is vég­
rehajthatják.

e. Szubrutinhlvás

SUBRP1

A SUBR P1 utasítás hatására a P1 címkéjű utasításra kerül a vezér­

lés, és tárolódik a SUBR utasítás után (a végrehajtási mód szerint)

következő ('visszatérő’) utasítás (belső) sorszáma.

EXIT

Az EXIT utasítás hatására feltétlen vezérlésátadás történik az EXIT

utasítást végrehajtó processzor által utoljára végrehajtott szubru-

tinhivás által meghatározott visszatérő utasításra.

A visszatérő utasítás sorszámának tárolása (egy-egy processzoron be­

lül) az .SDI. azonosítójó tömbben történik az alábbiaknak megfelelő­

en. Az .SDI. tömbnek a forditó program az INTEGER.SDI.(53) utasítás­

nak megfelelően biztosit helyet a memóriában (automatikusan), az .SD.

egész tipusu változónak a C értéket adja. Minden szubrutinhivásnál

•SD. értéke 1-gyel nő először, majd .SDI.(.SD.)-be kerül beírásra a

megfelelő visszatérő cim. Minden EXIT utasítás hatására .SDI.(.SD.)

kerül az adott processzor utasitásszámlálójába, majd .SD. értéke

csökken 1-gyel.

2 4

f. A szubrutlnhlvást és a visszatérést befolyásold utasítások

«SDI. (11)

Az utasítást végrehajtó processzorhoz tartozó .SDI. tömb mérete 11

(aktuális) értéke lesz. Az űj indexhatáron belül eső régi tömbele­
mek értéke megőrződik.

AUTO .SDI.

Az utasítást végrehajtó processzorhoz tartozó .SDI. tömb mérete au­

tomatikusan nő, illetve csökken a végrehajtás során.

NO AUTO .SDI.

Az utasítást végrehajtó processzorhoz tartozó .SDI. tömb (pillanat­

nyi aktuális) mérete rögzített marad.

II — »SD #

Az 11 egész tipusu változó felveszi az utasítást végrehajtó procesz-

szorhoz tartozó .SD. értékét.

.SD. = 11

Az utasítást végrehajtó processzorhoz tartozó .SD. felveszi az 11

változó értékét.

25

12 . A CHANGE utasítások

(utasitásmódositás)a. CHANGE 11 = 12,13

11, 12, 13 egész tipusu általános változó (konstans) lehet. Az uta­

sítás vágrehajtásakor 11, 12, 13 (aktuális) ártáke pozitív egász szám

kell, hogy legyen, a programban szerepelnie kell 11, illetve 13 cimká­

jű utasításnak, 12 cimkájű utasítás nem szerepelhet (kiváve ha 12 = 11,

vagy 11 = 12 = 13).

Az utasítás hatására az 11 címkéjű utasítás helyére az 13 címkéjű

utasítás aktuális ártáke kerül, 12 clmkável. (Az 13 címke, ás az 13

cimkájű utasítás változatlanul marad.)

Egy utasítás caktuális ártákát ügy kapjuk, hogy azon változók helyű­

be, amelyek elótt x áll, beírjuk aktuális ártáküket. (Egy utasítás

aktuális ártáke tehát szintűn utasítás, egy olyan utasítás aktuális

ártáke, amelyben x jel nem szerepel, sajátmaga.)

£Páldául az a(-*£) = ■JíS utasítás aktuális ártáke

az a(2) = 5.1 utasítás, ha I aktuális ártáke 2,'■aktuá­

lis ártáke 5.1

(Az a(fe) = -ÄB utasítás általában azonos hatású, mint az a(l) = S

utasítás, csak ha CHANGE utasításban szerepel, akkor kell aktuális

ártákát venni figyelembe.)

ÚJ utasítással akkor ás csak akkor bóvülhet a program, ha az 13

cimkájű utasítás aktuális ártáke nem egyezik meg az 13 cimkájű uta­

sítással .

Speciálisan fennállhat 11 = 12 (az 11 címke nem változik) illetve

2 6

11 = 13 (az 11 címkéjű utasítás nem változik, ha jel nem szerepel

benne). 11 = 12 = 13 esetén az utasítás végrehajtédik, de hatására

semmilyen változás sem következik be (ha az 11 címkéjű utasításban

* jel nem szerepel).

A programb n leirt bármely utasítás (akárhányszor) áthelyezhető a pro­

gram bármely utasításának helyére. (Tehát a programban eredetileg

egyszer szereplő utasítások több helyen is állhatnak - természetesen

más-más címkével egyes utasítások eltűnhetnek a programbél (helyük­

re valamely más utasítás kerül) speciális esetként elérhető a program

utasításainak átrendezése, illetve néhány (alap) utasltásbél állé uta-

sitáskészletből vett utasitásokbél állé program futás alatt generálása

(a generált program azonnal futhat, ha a generálé program ráadja a ve­

zérlést).

/ ?(paramétermédositás)b. CHANGE VI = V2 чг .
V1 és V2 azonos típusú általános változé (konstans). V1 helyére a

programban mindenütt V2 kerül.

1 3• A NULL utasítás

A NULL utasítás üres utasítás, végrehajtása nem eredményez változást sem

a programban, sem a változétartományban. Szerepe lehet a CHANGE utasí­

tás végrehajtásakor - mintegy helyet biztosit a betoldandé utasítások­

nak, ezenkívül mint üres utasítás, eredményezheti egy-egy processzor

késleltetését, üresjárását, ha pl. össze kell hangolni két vagy több

processzor egyidejű működését.

27

14. A végrehajtási módot előíró utasítások

A végrehajtási módot előíró utasítások részbeni ismertetését és Jellem­

zését tartalmazza a D.2. pont, amely leírja, hogy a CHANOE multiprocesz-

hogyan hajt végre egy programot, ezért ez a pont az utasítások tömör

szintaktikus és szemantikus leírását tartalmazza.
szór

a. ÜTSZ utasítások

11 = ÜTSZ

Az 11 egész tipusu változé felveszi az (utasítást végrehajtó procesz-

szorhoz tartozó) utasitásszámlálÓ értékét (az utasltásszámláló értéke

az 11 = ÜTSZ utasítás belső sorszáma).

ÜTSZ « 11

Az (utasítást végrehajtó processzorhoz tartozó) utasltásszámláló fel­

veszi az 11 egész tipusu változó (konstans) értékéti A következő vég­

rehajtásra keríiló utasítás belső sorszáma 11 (aktuális) értéke.

28

b. UTSZM utasítások

11 = UTSZM

Az 11 egész tipusu változó felveszi az (utasítást végrehajtó procesz-

szorhoz tartozó) utasltásszámláló-módosltó értékét.

UTSZM = 11

Az (utasítást végrehajtó processzorhoz tartozó) utasltásszámláló-mó­

dosltó felveszi az 11 egész típusú változó (konstans) értékét.

Ha 11 (aktuális) értéke nem nulla, akkor a következő végrehajtandó

utasítás (belső) sorszámát úgy kapjuk, hogy az utasitásszámlálóhoz

(amelynek tartalma az UTSZM = 11 utasítás belső sorszáma) hozzáadjuk

az utasitásszámláló-mődositó új értékét.

Ha 11 (aktuális) értéke nulla, akkor a következő végrehajtandó utasí­

tás (belső) sorszámát úgy kapjuk, hogy az utasitásszámláló tartalmá­

hoz hozzáadjuk az utasltásszámláló-módosltó régi (az UTSZM = 0 utasí­

tás végrehajtása előtti) értékét. Az utasitásszámláló-mődositó tartal­

ma C lesz az utasítás végrehajtása után. (Tehát ha a következő végre­

hajtásra kerülő utasítás nem ÜTSZ, UTSZM vagy vezérlésátadó utasítás,

akkor mindig ugyanezt az utasítást fogja végrehajtani az adott pro­

cesszor. Ennek a lehetőségnek a felhasználásával a szimulációs alkal­

mazásokat tárgyaló G.2. pont foglalkozik.)

29

с. A párhuzamos végrehajtást vezérlő utasítások

COPROCESSOR 11 ,12 SUBPROCESSOR 11 ,12

- egész típusú változó (konstans) kell, hogy legyen. A program­

ban szerepelnie kell 11 címkéjű utasításnak. A multiprocesszorban nem

lehet 12 sorszámú processzor (sem működű, sem felfüggesztett állapot­

ban).

11 ,12

Az utasítás hatására a multiprocesszor működésének következő lépése so­

rán az 11 címkéjű utasítás végrehajtásával elkezdi működését az 12 sor­

számú processzor.

Az utasítást végrehajtó (indító) processzor is folytatja működését.

Az új processzor alá van rendelve mindazon processzoroknak, amelyeknek

az indító processzor alá van rendelve.

A COPROCESSOR utasítással elindított processzor mellérendeltségi vi­

szonyba kerül az indító processzorral, és az azzal mellérendelt pro­

cesszorokkal .

A SUBPROCESSOR utasítással elindított processzor alá van rendelve az

indító processzornak.

Az elindított alárendelt processzor mellérendeltségi viszonyba kerül

az indító processzor által előzőleg elindított (az annak közvetlenül

alárendelt processzorokkal).

30

WAIT

A WAIT utasítást végrehajtó processzor felfüggeszti működését.

COWAIT 11

11 - egész típusú változó (konstans)

11 (aktuális) értéke valamely, az utasítást végrehajtó processzornak

alá- vagy mellérendelt processzor sorszáma kell, hogy legyen.

Az utasítás hatására az 11 sorszámú processzor felfüggeszti működését.

Egy processzor működésének felfüggesztése nincs hatással a processzorok

mellé- illetve alárendeltségi viszonyára.

NOWAIT 11

11 - egész típusú változó (konstans)

11 aktuális értéke valamely alá- vagy mellérendelt (felfüggesztett mű­

ködésű) processzor sorszáma kell, hogy legyen. Az utasítás hatására az

11 sorszámú processzor folytatja működését.

DCONTROL 11 ,12

Az utasítás végrehajtása után a jrjultl^rocesszor ellenőrzi, hogy az egyes

lépések során párhuzamosan végrehajtandó utasítások függetienek-e egy­

mástól. Az 11 egész típusú változó értéke C mindaddig, amíg a végrehaj­

tott utasítások függetlenek, értéke 1-gyei nő minden olyan végrehajtási

31

lépés során, amelyben nem független utasítások szerepelnek. Az 12 egész

típusé tömb tartalmazza az utoljára végrehajtott, nem független utasí­
tások belső sorszámait.

N0 DC0NTR0L

Megszünteti a DCONTROL utasítás hatását.

A végrehajtás a párhuzamosan végrehajtott utasítások függetlenségének

• vizsgálata nélkül történik. Az utasítások hatása követhető annak a

konvenciőnak a figyelembevételével, amely azt Írja elő, hogy az ala­

csonyabb sorszámé prooesszor által előirt utasítást kell előbb végre­

hajtani, egy végrehajtási lépés során (egy processzorral rendelkező

számitőgépen valő végrehajtás esetén).

Az utasítások függetlensége azt Jelenti, hogy azok (egy processzorral)

bármely sorrendben valő végrehajtása azonos eredményt ad. (Az adat és

a programterületet is, valamint a végrehajtási mőd paramétereit is be­

leértve .)

32

1 5• A STOP utasítások

STOP

A STOP utasítást végrehajtó processzor befejezi működését (sorszáma meg­
szűnik) .

SUBSTOP 11

11 - egész tipusű változé (konstans)

11 aktuális értéke valamely, az utasítást végrehajté processzornak alá­

rendelt processzor sorszáma kell, hogy legyen. (Sorszáma megszűnik.)
■M■á

GENERAL STOP

A végrehajté processzor, és az annak alárendelt összes processzor befeje­

zi működését (sorszámuk megszűnik).

Egy processzor működésének befejezése (sorszámának megszüntetése), befo­

lyásolhatja a processzorok mellé- illetve (közvetlen) alárendeltségi vi­

szonyát .

A megszűnt £rocesszornak (MP) közvetlenül alárendelt processzorok mellé­

rendeltségi viszonyba kerülnek az MP - vei mellérendelt processzorokkal,

és közvetlenül alá lesznek rendelve az MP-nek közvetlenül fölérendelt

processzornak.

33

16. Az adatátviteli (input - output) utasítások

Az I/O utasítások file-ok között Írnak elő adatátviteli műveleteket.
File-nak tekintendők az I/O eszközök, a háttérmemória rászei ás a memó­
ria rászei.

A file-okra sorszámukkal (pozitív egász számok) lehet hivatkozni, a
file-definíciós utasításokban (előzőleg) meg kell adni, hogy az egyes fi­
le-ok hol találhatóak.

A file-ok márete tetszőleges mártákben kiterjeszthető, ez az adatát­
viteli utasítások hatására automatikusan törtánik.

Minden file-hoz tartozik egy programozható (utasítással módosítható)
lokációé cira, amely megadja, hogy az adott file-ra vonatkozó adatátviteli
műveletet hol kell elkezdeni.
(A cimzás egyságe 1 memóriaelem.)

File definiáló utasítások

FILE F IS ARRAY T

F egász tipusű változó(constans),
T szöveg tipusű változó(constans).

Az F sorszámú file a T aktuális éi%ke által adott nevű tömb.

FILE F IS DEVICE I

F,I egász tipusű változó(constans).

Az F sorszámú file az I sorszámú input/output egyság.
(Az egyes számitógápeken az I/O egyságeket egyártelműen sorszámozni kell,
Így a konkrét multiprocesszorokban ez az utasítás tényleges hozzárendelést
valósit meg.)

FILE F IS OH SECONDARY STORAGE

F egész típusú változó(constans).

Az F sorszámú file a háttérmemóriába kerül.
A file-definiáló utasítások végrehajtásának hatására az adott filehoz tar­
tozó lokációé cim értéke 1 lesz.

34

A lokáclős elmet meghatároző utasítás;.

LOCATE F TO I

F,I egész típusé véltozé(constans).

Az F flle-hoz tartozé cím aktuális értéke I lesz az utasítás végrehajtá­
sának hatására.

Az adatátvitelt eléíró utasítás:

FROM F1 TO F2

F1, F2- egész típusú változő(constans) vagy tömbelem (neve) vagy tömbnév.

Az utasítás az F1 flle-rél az F2 file-га történi adatátvitelt lr elé.
(Az F1 file-on az adat változatlanul megmarad).

Az adatátvitel az F1-hez illetve az F2-höz tartozó lokációé cimtól kez-
dídien történik. Az utasítás végrehajtásának hatására mindkét lokációé
címhez hozzáadódik az átvitt adat méretének megfeleli memőrlaelemek szá­
ma.
F1 és F2 közül (legfeljebb) az egyik lehet tömbelem (neve) vagy tömbnév,
ebben az esetben az adatátvitelben a megfeleli tömbelem illetve tömb vesz
részt és ennek mérete adja meg az átviendi adat méretét. Ha F1 és F2 egyi­
ke sem tömbnév illetve tömbelem(neve) akkor az F2 file-га át kell vinni
az F1 file-nak (a hozzátartozó lokációé cimtil kezdidien) a teljes tartal­
mát.

55

17« A kiterjesztő utasítások

A kiterjesztő utasítások viszonylag egyszerű szintaktikával és tetszőle­
gesen bonyolult szemantikával rendelkező üj utasítások definiálását te­
szik lehetővé.

A hagyományos kiterjeszthető nyelveknél nagyobb fokü hajlékonyságot biz­
tosit egyrészt az, hogy a szintaktikus leírás változőkat is tartalmazhat
és ezek aktuális értékét a szemantikai leírást képviselő programrész fel­
használhatja, másrészt pedig ez a szemantikai leírás két különböző szinten
is módosíthatja saját magát.
(tartalmazhat СНАШЕ utasításokat, amelyek a program végrehajtása során
aktivizálódnak, és tartalmazhat egy olyan programrészt, amely a programba
való bekerülés pillanatában - egyes fordítd-értelmező programoknál ez
történhet a fordítási fázis során - módosítja a szemantikai leírást az
aktuális paraméterek, a program egyes aktuális utasításai függvényében).

a.) Az űj utasításokat definiáló utasítás(ok)

EXTEND T1„ T2. T3. T4. SYNTAX AT P1. SEMANTICS AT P2

- az alábbiakban ismertetésre kerülő alapszavak, vagy
ezeket tartalmazó szövegtipusü változók, T1 kivéte­
lével kötelező valamennyit kiírni»

T1, T2, T3, T4

- az üj utasítást mindig címkével kell ellátni
vagy UNLÁBELED - az üj utasítást tilos címkével ellátni

T1s vagy LABELED

Ha T1 elmarad, akkor az üj utasítás állhat címkével ia, cimke nélkül is.

- az üj utasítás szemantikáját megadó program CHANQE
nyelvű és Így a CHANGE könyvtárba kerül.

T2» vagy CHANQE

- az űj utasítás szemantikáját megadó program nem
CHANGE nyelvű, Így az alap (külső nyelvű) könyv­
tárba kerül.

vagy EXTERNAL

36

A CHANGE értelmező - fordító program tartalmaz egy alapkönyvtá­
rat, ez nem változtatható. Az új utasításokat (adattípusokat)
definiáló EXTEND vagy utasításokat törlő (RELEASE) utasítások ha­
tása ideiglenes (csak az azokat tartalmazó program végrehajtása
során érvényes) hacsak a program során előzőleg EXTERNAL LIBRARY
illetve CHANGE LIBRARY utasítás nem került végrehajtásra. (Ebben
az esetben a megfelelő könyvtár tartalma módosul).

utasítás hatására a multiprocesszor meg-Az EXTERNAL LIBRARY
vizsgálja, hogy az EXT nevű file-on (ennek megnyitásáról előző­
leg gondoskodni kell) van-e már külső nyelvű könyvtár. Ha van,
akkor ennek alapján folytatódik a fordítás és a végrehajtás; ha
nincs, akkor átmásolódik az alapkönyvtár az EXT file-ra és en­
nek alapján folytatódik a fordítás és a végrehajtás.

utasítás hatására a multiprocesszor megvizs­
gálja, hogy a CH azonositójú (nyitott) file-on van-e CHANGE
könyvtár. Ha van, akkor ennek tartalmát is figyelembevéve foly­
tatódik a fordítás és a végrehajtás; ha nincs, akkor egy (egyen­
lőre üres) CHANGE nyelvű könyvtár kerül a CH file-ra.
A speciális utasítások között (19.pont) ismertetésre kerül egy
hatékonyabb és egyben bonyolultabb könyvtárszervezésre szolgáló
utasitáscsoport. Ezek alkalmazása lehetővé teszi, hogy a multi-
processzor egyes processzoréi különböző CHANGE (nyelvű) könyvtá­
rakkal rendelkezzenek.

A CHANGE LIBRARY

ТЗ: vagy OPEN - az új utasítás helyére nyilt szubrutinként kerül
az új utasítás szemantikáját meghatározó CHANGE
program (a megfelelő paraméterátadással)

- az új utasités végrehajtásakor zárt szubrutinhi-
vás aktivizálja az új utasítás szemantikáját le-
iró programot

T3 = OPEN csak akkor lehet, ha T2 = CHANGE

vagy CLOSED

T4: vagy PERMANENT - az új utasítás állandó utasítás
vagy NONPERMANENT - az új utasítás egyszer végrehajtandó utasités

P1, P2 - pozitív értékeket felvevő egész típusú változó (constans) lehet,
(aktuális) értékük azokat a címkéket adja meg, ahol az új utasí­
tás szintakszisa illetve szemantikája a programban található.

37

A SYNTAX AT és a SEMANTICS AT alapszavak elhagyhatók.

Az ú.1 utasítás szintaktikus leírása kétféle médon történhet:
a) <P1> SYNTAX T1.T2 Tn

T1, T2, . . . Tn szövegtipusú változó (constans) lehet.
Az egyes T i-k (i=1,2,...n) aktuális értéke lehet

i) alapszó (pl. SYNTAX,EXTEND,DO,вtb)
ii) adattípust megadó azonosító (pl. INT,REAL,LOG,CHAR,TEXT az alap­

nyelv adattípusai esetén, vagy valamely tipuskiterjesz-
tő utasításban szerepelt T2)

Ili) >J:jel után álló egész tipusu változó, név vagy constans (szövegfor­
mában)

iv) kezdd vagy végzárójel

Tn megadja, hogy balról-jobbra haladva egymás után milyenT1 , T2
rögzített alapszavak illetve milyen típusú változók szerepelhetnek az

9 * * •

új utasításban. Az alapszavak és adattípusok egyszerű felsorolásán kí­
vül lehetséges az esetleges ismétlódó részek tömör megadása a következű
módon:

Tk az ismétlődő rész, akkor ezt zárójelek közé helyez-
Ha az ismét­

lődések száma előre rögzített, akkor Tk+2 - ben egy olyan szöveget helye­
zünk el, amelynek első karaktere >}:, az ezután következő számjegyek Írják
elő az Ismétlődések számát.
Ha az ismétlődések száma tetszőleges, akkor Tk+2 - ben egy olyan szöveget
helyezünk el, amelynek első karaktere >J:, az ezután következő karakte­
rek egy egész típusú változó nevét adják meg. Az új utasítás szintakti­
kus elemzése során ennek az egész típusú változónak az értéke az ismét­
lődések tényleges száma lesz. A továbbiakban ismertetésre kerülő szeman­
tikai utasítás felhasználhatja ezt az értéket, ilyen módon más-más je­
lentés tulajdonítható a különböző ismétlésszámú (de egyébként azonos
struktúrájú) utasításoknak.
Több ismétlődő rész is lehet, az ismétlődő részek (teljes egészükben)
egymásba lehetnek ágyazva (tetszőleges mélység megengedett).
Az utasítás Írható

Ha Ti, Ti+1
zük (Ti-1-ben kezdő, Tk+1-ben záró zárójelet helyezünk el).

f • e e e

<P1> SYNTAX T ARRAY

formában is, ebben az esetben a teljes T szöveg típusú tömb játssza T1,
T2,....Tk szerepét.

38

b) PROGRAM FOR SYNTAX P3-P4. K.T

РЗ,Р4 - pozitív egész értékeket felvevő egész típusú változó (constans)
lehet, (aktuális) értékük két, a programban szereplő címkét ad
meg,

A P3 címkéjű utasítással kezdődő és a P4 címkéjű utasítással végződő
programrész a szintaktikus analízist végző rutinhoz kerül kiegészítés­
ként. Ha ez a rutin valamely utasítást nem tud feldolgozni, akkor átad­
ja ezt az utasítást а К karakter típusú tömbön a kiegészítő rutin(ok)-
nak, amely(ek) eredményként az a) pontnak megfelelelő szintaktikus le­
írást kell hogy adjon (adjanak) a T ezöveg típusú tömbön. Ha a kiegészí­
tő rutin(ok) sem tudja (tudják) értelmezni az utasítást, akkor hibajel­
zést ad a multiprocesszor.

SYNTAX Pl "SYNTAX P2

P1 ,P2 - pozitív egész értékeket felvevő egész típusú változó (constans)
lehet (aktuális) értékük két, a programban szereplő SYNTAX uta­
sítás címkéjét kell hogy megadja.

Az utasítás hatáséra a P1 cimkéjű SYNTAX utasítással és a P2 címkéjű
SYNTAX utasítással leirt struktúrájú utasités (csoport)hoz ugyanaz a
szemantikus leirés fog tartozni. (EXTEND utasítással előzőleg vagy
csak a P1 cimkéjű SYNTAX utasításhoz vagy csak a P2 cimkéjű SYNTAX
utasításhoz hozzá kellett rendelni szemantikust leirést. Ellenkező
esetben - egyik utasításhoz sem, ill. mindkettőhöz történt hozzáren­
delés - az utasités hatástalan és hibajelzés történik).

Az ú.i utasítás szemantikus leirása a következőképpen történik!
\

>P> SEMANTICS BODY Pl-P2. PARAMETERS P3-P4.
CONDITIONAL MODIFICATIONS P5-P6

Qj\, Л/vCyWv
7

//

Pi (1=1,2
(constans) lehet, (aktuális) értékük a programban szereplő címkéket kell
hogy megadjon.

6) pozitív egész értékeket felvevő egész típusú változó, • • •

Az új utasítás hatására végrehajtandó programot (“szubrutint a P1

3 9

címkéjű utasítással kezdődi ás a P2 címkéjű utasítással végződő program­
rész adja meg. Ha az (új) utasítás jelentését leiré program nem CHANGE
nyelvű, akkor a P1 címkéjű utasítás EXTERNAL utasítás kell, hogy legyen,
közvetlenül ez után következik a külső nyelvű program, majd a P4 címké­
jű END OF EXTERNAL utasítás jelzi a külső nyelvű program végét.

На a P1-P2 címkékkel határolt programrész CHANGE nyelvű, akkor az abban
szereplő változók (tömbök) két csoportra oszthatók:

a)szimbólikus változók('formális paraméterek') amelyek helyére a vég­
rehajtandó (új) utasítás tényleges változói ('aktuális paraméterei')
kerülnek az alább ismertetett szabályok szerint.A szimbólikus változók
tipusdeklarációs utasításban nem szerepelhetnek.

b)ideiglenes változók, ('lokális változók') amelyekre csak addig van
szükség, amíg az (új) utasítás végre nem hajtódik. (Ezeknek szerepel­
niük kell a deklaráciős utasításokban)

A P3 címkéjű utasítással kezdődő és a P4 címkéjű utasítással végződő
programrész írja elő (a szintaktikus leírással együtt) a szimbólikus -
tényleges változócserét ('formális - aktuális páráméteresere ')
Ebben a programrészben

Ysstypename (I) utasítások biztosítják a változócserét.
V - szimbólikus változó
typename helyére tetszőleges adattípust megadó azonosító (INT,

REAL,LOG,CHAR,TEXT vagy valamely tipuskiterJesztő u-
tasitás T2 -Je) írható.

I - egész típusú változó (constans)

Az utasítás hatására a baloldalon szereplő szimbólikus változó helyére
kerül a jobboldal által megadott tényleges változó.

A Jobb oldalon álló adattípus azonosító az utána zárójelben álló sor­
számmal (I) együtt a végrehajtandó (új) utasítás valamely változóját
adja meg. A sorszám határozza meg, hogy a végrehajtandó utasításban
balról-jobbra haladva az adattípus - azonosító által előirt típusú vál­
tozók közül hányadikat kell figyelembe venni.

A P3-P4 programrészben szerepelhetnek egyéb utasítások is (pl. ciklus-
utasítás) de az előforduló változóknak (ebben a programrészben szerep­
lő) deklarációé utasításokban szerepelniük kell.
Ezen kívül a vezérlés nem adható át a P3-P4 programrészen kívülre ennek

40

a programrésznek a végrehajtása sorén, (a programrész zárt).

A külsé nyelvű programok által leirt szemantika esetén az alapnyelv nem
Írja elő a paraméterátadást illetve a módosítást szabályozó utasításokat.

A P5 utasítással kezdődő és a P6 utasítással befejeződő zárt programrész
Írja elő a P1-P2 illetve a P3-P4 programrész módosítását. Ez a módosítás
függhet a végrehajtandó (új) utasítás

tényleges változóitól (pl. hogy vannak-e köztük azonosak, stb.)

környezetétől (milyen utasítások előtt ill. után áll, stb.)

a szintaktikus leírásban szereplő, ismétlődő részek tényleges számá­
tól vagy tetszőleges egyéb programozható feltételektől.

Ha nincsen módosítás, akkor a SEMANTICS utasításból elhagyható a P4 utá­
ni vesszővel kezdődő rész.

RELEASE P

P pozitív egész értékeket felvevő egész típusú változó (constans) lehet,
(aktuális) értéke valamely, a programban szereplő SYNTAX vagy PROGRAM POR
SYNTAX utasítás címkéjét kell hogy megadja.

Az utasítás hatására a végrehajtó processzor által használt könyvtárból
(EXTERNAL,CHANGE) törlődik a P címkéjű utasítás által leírt szlntaktiká-
jú utasítás.

41

b.) Az adattípus - kiterjesztő utasítás

INPUT AT P2, OUTPUT AT P3T1 , T2 t 11 , SYNTAX AT P1fEXTEND TYPE

T1, T2 szöveg típusú változő(conetans)
11f P1,2,3 égisz típusú változó(constans)

adja meg az uj adattípushoz tartozó típust előíró új utasítás alap­
szavát. / Az új típust előíró utasítás, az alapnyelv tipusdeklará-
clós utasításaihoz hasonlóan a típust előlró alapszóból, majd vesz-
szőkkel elválasztott tetszőleges számú tömbdeklarátőrből áll./

T1

Írja elő, hogy az utasitásklterjesztő utasítás(ok)ban milyen náwel
kell hivatkozni az uj adattípusra.

T2

adja meg, hogy hány memóriaegységet kell biztosítani 1-1 új típusú
adat számára. Ha ez az érték határozatlan (dinamikusan változhat)
11 értéke

11

0 kell hogy legyen.

címkéjű SYNTAX utasítás az uj adattípusnak megfelelő constans szin­
taktikus leírását adja meg. (Az új constans előfordulhat a progra­
mokban és az adatok kozott egyaránt.)

P1

<P2> INPUT BODY P4 - P*5. PARAMETERS P6 - P7

P4,5,6,7 - címke

címkéjű SYNTAX utasításA P4 - P5 zárt programrész Írja elő, hogy a P1
által előirt külső adatábrázolási módnak milyen belső (memóriabeli) adat-
ábrázolás felel meg. A SEMANTICS utasítással azonos módon történik a
szlmbőlikus-tényleges változőcsere. (a P6 - P7 programrész Írja elő.)

Ezen kívül kitüntetett szerepe van a .NEWTYPE. változótömbnek. Ez nem
szerepelhet tipusdeklaráclős utasításban, a multiprocesszor (automatiku­
san) hozzárendeli a megfelelő (új) típust, tömbméret deklarációé utasí­
tásban azonban szerepelnie kell. A (teljes) .NEWTYPE. tömb kell, hogy
felvegye az új adat (constans) belső ábrázolásának megfelelő értéket a
P4 - P5 programrész végrehajtása után.

<P3> OUTPUT BODY P8 - Pq. PARAMETERS P10 - P11

P8,9,10,11 - címke

42

A .NEWTYPE. teljes tömb (deklarálása azonos korlátozásokkal törtánlk,
mint az ÍNFŰT utasítás esetáben) tartalmazza az új típusú adatot.
A P8-P9 programrész Írja eld a .NEWTYPE. tömbnek a P1 cimkájú SYN­
TAX utasítás szerinti kivitelét (kiirását). A szimbőllkue változó-
cserét tvpename (I) = =» V utasítások biztosítják (a P10 -
P11 zárt programrészben).

szimbólikus változóV

typename(I) a SEMANTICS utasításnál ismertetett módon a
SYNTAX utasításban szerepló valamely változót ad meg.

A P8 - P9 programrészben a szimbólikus változó(k) értéket kell, hogy
kapjanak, és 8z(ek) az érték(ek) kerül(nek) a multiprocesszor által auto­
matikusan kiírásra.

Adatátviteli utasításokra nincs szükség sem a P4 - P5
a P8 - P9 (output body) programrészben.

(input body), sem

Az EXTEND TYPE utasítás végrehajtása lehetővé teszi az új adattípust
deklaráló utasítás használatát, a programokban az új adattípus változóként
és constansként való alkalmazááát, valamint az új típusú adatok és cons-
tansok adatátviteli műveletekben való használatát.

Az új adattípussal végzendő műveleteket utasités-kiterjesztő EXTEND
BÍ4ús(ok) segítségével lehet leírni.

uta-

U 1i , Vft Van

43

18. A nyomkövető (TRACE) utasítások.

A nyomkövető utasítások a nyelv szerves részét képezik a 'mindenhez hozzá­
férés' elvének megfelelően. Pontos feladatuk, hogy a nyelv 'veszélyes' ele­
meinek (különösen a programot médosité utasításoknak) a hatását ellensúlyoz­
zák, biztosítsák, hogy a programozó ne veszítse el a futó program feletti
ellenőrzést. A programok elkészítése (belövése) alatt nyújtott hathatós se­
gítségen kívül a nyomkövető utasítások lényeges információkat szolgáltathat­
nak a kész (hibátlan) programokról is. (a memória kihasználtságáról, az egyes
programágak használatának gyakoriságáról, stb.) Ezen kivül Jól felhasználha­
tók olyan célnyelvek definiálásánál, amelyeknél gyakoriak az 'utasitásközi
műveletek', azaz természetes igény, hogy (bizonyos típusú) utasítások között
(külön ki nem irt) standard rutinok kerüljenek végrehajtásra.
A nyomkövető utasítások eredménye folyamatosan kiíratható, vagy file-okon
tárolható és külön utasításokkal Íratható ki. Megszüntethető külön-külön
az egyes nyomkövető utasítások hatása, megszüntethető (egy utasítással)
az összes előzőleg végrehajtott nyomkövető utasítás hatása, törölhető a
programból az összes nyomkövető utasítás.

OVERFLOWINDEX

A processzor külön utasítás nélkül nem tekinti hibának (nem figyeli) az
indextúlcsordulást (vagyis hogy valamely utasítás nem használ-e olyan tömb­
elemet, amelynek indexe nagyobb a tömb aktuális méreténél). Az INDEX OVER­
FLOW utasítás hatására a processzor figyeli, hogy nem fordul-e elő index-
túlcsordulás, ha igen, akkor erről informativ hibajelzést ad. (a program
fut tovább)

STACK 11

11 pozitív egész értékeket felvevő egész típusú változó (vagy constans).

Az utasítás hatására a multiprocesszor által végrehajtott utolsó 11 db uta­
sítás eredményeivel együtt folyamatosan tárolásra kerül. Mindig az utoljára
végrehajtott STACK 11 utasítás hatása érvényes, ha 11 (aktuális) értéke 0
vagy negativ, akkor a stack nem kerül tárolásra.

Ez az 11 utasítás és eredményeik ('a stack') kiíródnak, hiba miatti le­
állás esetén automatikusan, vagy kiirathatók az alábbi utasításokkal.

'í Л. у

WRITE______ STACK
Az utasítás végrehajtásának hatására kiíródik a stack.

44

WRITE STACK mode
(amikor a vezérlés a P1 címkéjű utasításra kerül,

kiíródik a stack)
EVERY 11 STEP (minden I1-edik végrehajtási lépésben kiíró­

dik a stack)
Többféle m о ű e is érvényben lehet egyidejűleg.

mode: AT P1

LABEL TRACE
A multiprocesszor által végrehajtott utasítások közül a címkével el­
látott utasításokat figyeli, hatására kiíródnak az érintett utasítá­
sok címkéi. Ha csak egy programrészen kívánjuk elérni ezt a hatást,
akkor a

LABEL TRACE Pl
utasítást kell alkalmazni, (hatása a P1 címkéjű utasítással kezdődé
és a P2 címkéjű utasítással végződó programrészre terjed ki)

P2

GENERAL TRAGE
Minden végrehajtott utasítás és eredménye kiírásra kerül.Ha csak egy
programrészen kívánjuk elérni ezt a hatást, akkor vagy a

TRACE Pl - P2
utasítást kell használni, (hatása a P1 címkéjű utasítással kezdődő
és a P2 címkéjű utasítással végződő programrészre terjed ki) vagy a

TRACE Pl

utasítást kell használni (hatása a P1 címkéjű utasításra terjed ki)
>v

ARRAY TI PROTECTED AGAINST WRITING
\J VV J t 'T1-szövegtipusu változó (vagy constans), valamely tömb nevét tartal-
J Ymázzá.

Ha a T1 aktuális értékének megfelelő tömb valamely elemébe beiráei
kísérlet történik, hibajelzés kerül kiírásra (a beírás nem történik
meg, a program fut tovább)
Hasonlóan kiolvasás ellen is védhető valamely T1 tömb, az

ARRAY TI PROTECTED AGAINST READING

utasítás alkalmazáséval.

V'
у

45

Programrészt tartalmazó raeraóriaterület is védhető irás/olvasée ellen a

3 PROGRAM P1-P2 PROTECTED AGAINST WRITING
PROGRAM P1-P2 PROTECTED AGAINST READINGч

utasítások alkalmazásával.
Védeni lehet egy tömb elemeit az előzetes értékadás nélkül történő fel-
használástól az

ARRAY T1 PROTECTED AGAINST READING WITHOUT WRITING

utasítással.
Figyelhető egyes tömbök illetve programterületek aktuális értékének
változása a

TRACE ARRAY TI illetve a
TRACE PROGRAM P1-P2 utasítás alkalmazásával

T1-szöveg tipusu változó(constans) P1,P2-cimke.Kiírásra kerül a vál­
tozást okozó utasítás és eredménye.(a program fut tovább)

Az UNUSED MEMORY ill. az UNUSED PROGRAM

utasítás hatására a multiprocesszor figyeli (tárolja) a felhasználásra
nem kerülő tömbelemet illetve utasításokat és kiírja ezeket a

WRITE UNUSED MEMORY illetve a

WRITE UNUSED PROGRAM
utasítás hatására.
COUNTING

Az utasítás hatására a multiprocesszor számlálja az egyes tömbök és
{Vaz egyes utasítások használatát ill.v végrehajtását.

MEMORY MAP

Az utasítás hatására kiírásra kerülnek a használatban levő tömbök ne-

46

vei, típusuk és aktuális méreteik (valamint használatuk gyakorisága, ha
előzőleg COUNTING utasítás került végrehajtásra)

LIST

Az utasítás hatására kiírásra kerülnek a program aktuális utasításai,
a bennük szereplő változók aktuális értékei(valamint az utasítások vég­
rehajtási gyakorisága, ha előzőleg COUNTING utasítás került végrehajtás­
ra)

LIBRARY LIST

Az utasítás hatására kiírásra kerülnek a végrehajtó processzorhoz tar­
tozó könyvtár(ak) utasításai.

TRACE PROCESSZOR 11.Pl AT P2

11 - egész tipusu változó (constans)
P1,P2 - egész tipusu változó (constans)

Az utasítás hatására a P2 címkéjű utasitás végrehajtásával egyidejűleg
megkezdi működését az 11 sorszám! processzor a P1 címkéjű utasitás vég­
rehajtásával. (11 sorszámű működő processzor nem lehet a multiprocesszor-
ban a P2 címkéjű utasitás végrehajtásakor)Az áj, 11 sorszámű processzor
alá van rendelve a TRACE PROCESSOR utasítást végrehajtó processzornak.

IF ERROR с от a n d act ion

Futási hibák (túlcsordulás, a programban nem szereplő címkére történő
vezérlésátadás, stb.) esetén a multiprocesszor hibajelzést ad és foly­
tatja működését, (a hibás művelet eredménye definiálatlan) Az eddig is­
mertetett nyomkövetési utasítások között szerepelt indextiílcsordulás
figyelését, memóriavédelem, stb. megvalósítását előíró utasitás. Ezek
a nyomkövetési utasítások is azt Írják elő, hogy hibajelzést adjon a
multiprocesszor, majd folytassa működését.

Az IF ERROR utasitás segítségével más tipusu akciók is előírhatók futá­
si hibák esetén. А с о m a n d rész Írja elő, hogy mely utasításokra
vonatkozik az IF ERROR utasítás, az action rész pedig a végre-

4 7

hajtandó akciót Írja elő.

(Az utasítás az egész programra, a P1 - P2
programrészre illetve a P1
utasításra vonatkozik)

P1 - P2с о m a n d :

Pl

T

T szöveg típusú változótömb, amely valamely utasítás (csoport) szin­
taktikus leírását tartalmazza, a SYNTAX utasításnak megfeleld módon,
azzal a különbséggel, hogy elegendő a szintaktikus leírás elejét Írni
le. Az IP ERROR utasítás hatása kiterjed valamennyi olyan utasításra,
amelynek a szintaktikus leírása úgy kezdődik, mint a T - ben levő
szintaktikus leírás.

(A hibás utasítást végrehajtó processzor
és az annak alárendelt processzorok befe­
jezik működésüket, a hibás utasítás kiíró­
dik).

action STOP

TRACE PROCESSOR 11, Pl■ 12. 13

A hibás utasítás végrehajtását követő lépésben megkezdi működését az
11 sorszámú processzor a P1 címkéjű utasítás végrehajtásával. 13 a hi­
bás utasítás (belső) sorszáma, 12 az ezt végrehajtó processzor sorszá­
ma/ Az 11 sorszámú processzor mellérendeltségi viszonyba kerül az 12
sorszámú processzorral. (11, P1 , 12, 13 pozitív egész értékeket felvs
vő egész típusú változók (11,P1 constans is lehet)s 11 sorszámú műkődő
processzor nem lehet a multiprocesszorban).

Ellentétes hatású IP ERROR utasítások közül mindig az utoljára
végrehajtott utasításban előirt akció az érvényes.
A kapcsoló jellegű STACK, UNUSED MEMORY, UNUSED PROGRAM, 0OUNTING uta­
sítások kivételével az összes eddig ismertetett nyomkövető utasítás
elé (az utasításon belül) irható a

4r hfo*

(F - file sorszámát megadó egész egész
típusú változó vagy constans)

utasitásrész, amelynek hatására az adott nyomkövető uta-aitáe eredményei
nem kerülnek kiírásra, hanem az P fiiéra kerülnek.

T 0 P :

A nyomkövetési erdmények kiirathatók a

48

utasítással.WRITE TRACE FILE P mode

Az F nyomkövetés! információt tartalmazó file kiírásra kerül a mode
rész által előirt időben. (a kiírás után a file tartal-ma törlődik).

az utasítás végrehajtásakor.mode

a P1 címkéjű utasítás végrehajtá­
sakor.

AT Pl

EVERY II STEP minden 11 - edik végrehajtásil lé­
pésben.

(11 pozitív értékékeket felvevő egész típusú válto­
zó (constans)).

A nyomkövetési információk file-га küldése felhasználható a különböző
típusú információk szétválasztáséra (külön-külön történő kiíratására)
valamint a karakterformában tárolt információk programmal történő e-
lemzésére.
(a kiíratás mellett vagy helyett).

NO TRACE

Valamennyi TRACE utasitás hatása megszűnik.

NO TRACE Pl

A P1 címkéjű TRACE utasitás hatása megszűnik.

CLEAR TRACE

A programból törlődnek az összes nyomkövető utasítások.

4 9
У

: \;íí SZZQr.5 az i
V-.. <л'.

' Ш

19• Speciális utasítások

A speciális utasítások közé olyan utasítás-csoportok kerültek be, amelyek

nem teljesek (egyes utasításaik más csoportoknál vannak felsorolva, to­

vábbi fejlesztés alatt állnak), vagy amelyek több csoportba is bekerülhet­

tek volna,(esetleg zavarták volna azoknak a csoportoknak az egységességét).

Szerepel itt néhány olyan érdekes utasítás is, amely nem tartozik feltét­

lenül a nyelv egységes koncepciójának megfelelően a nyelvhez, de hasznos

kiegészítő szerepe van (pl. a speciális szubrxitin illetve corutlnhivé uta­

sítások).

a. A programokhoz (szerkezetükhöz, belső ábrázolásukhoz) való teljesebb

hozzáférést segítik elő a következő (a végrehajtási módot előíró, a

szubrutinokból való visszatérést befolyásoló és a nyomkövető utasításo­

kat kiegészítő) speciális utasítások:

11 IS LABKL OF INSTRUCTION 12

11,12 - pozitív értékeket felvevő egész típusú változó

(konstans)

Az utasítás hatására az 11 változó értéke az 12 belső sorszámú utasítás

címkéjének értéke lesz (ha az 12 utasítás nincs címkével ellátva, akkor

nincsen a programban 12 belső sorszámú utasítás,11 értéke C lesz, ha

11 értéke -1 lesz).

INSTRUCTION 11 HAS LABEL 12

11,12 - pozitív értékeket felvevő egész típusú változó

(konstans)

Az 11 változó értéke az 12 címkéjű utasítás belső sorszáma lesz (ha

50

nincsen 12címkéjű utasítás a programban, akkor 11 értéke 3 lesz).

LOCATION OF ARRAY T1 TO 11

T1 - szöveg tipusű változó (konstans)

11 - egész tipusű változó (konstans)

A multiprocesszorban az aktuális tömbök a végrehajtó program által

kezelt .MEMORY, tömbön helyezkednek el. A .MEMORY, tömb memórielemen-

ként címezhető (indexelhető). A .MEMORY, tömb (elemei) csak a

.MEMORY•(11) = .MEMORY.(12)

(11,12 - egész tipusu változó (konstans))

speciális értékadó utasításban szerepelhetnek.

A LOCATION OF... utasítás hatására az 11 változó értéke a T1 (aktuális

értéke) által adott váll-ozótömbnek a .MEMORY, tömbön belüli kezdő el­

mét (indexét) adja meg.

DESCRIPTON OF INSTRUCTION 11 TO I

11 - egész tipusű változó (konstans)

I - egész tipusű változótömb

Az 11 (belső) sorszámű utasítás leírása az I tömbre kerül a következő

formában: 1(1) tartalmazza az utasítás kódját (belső sorszámát), 1(2)

tartalmazza az utasítás paramétereinek (általános változóinak) számát

l(m) tömbelemek tartalmazzák az utasítás paramé­

tereinek a leírását. A paraméterek leírása az utasításban való előfor­

dulásuk (balról-Jobbra haladva) sorrendjében kerül felsorolásra.

(n), az 1(3),1(4)

5 1

Mivel egy paramétert több cim is leírhat, az egyes paraméterek leírását

egy-egy G értékű tömbelem választja el.

Egy paraméter leírása a paraméterben szereplő tömbök kezdőcímeiből il­

letve a konstansok elmeiből áll, a paraméterben valő előfordulásuk (ba.l-

ről-jobbra haladva) sorrendjében,

Egy tömb kezdőcímét első elemének a .MEMORY, tömbön belüli sorszámáből

egyet levonva kaphatjuk meg.

Egy konstans elme a .MEMORY, tömbön belüli indexe.

A paraméteren belül szereplő kitevő leírásában előforduló elmek nega­

tiv előjelet kapnak.

CODE OF INSTRUCTION P1 TO 11

P1,11 - egész tipusű változó (konstans)

P1 - valamely SYNTAX utasítás címkéje

Az utasítás hatására az 11 változó értéke a P1 címkéjű SYNTAX utasítás

által leirt utasitás(csoport) kódja (belső sorszáma) lesz.

SUBPROCESSORS OF 11 TO I

11 - egész tipusű változó (konstans)

I - egész tipusű változó(tömb)

Az utasítás hatására az I tömb első elemének értéke az 11 sorszámé pro­

cesszornak alárendelt processzorok (darab) száma (n) lesz, az 1(2),1(3)*

I(n+1) elemek értéke az alárendelt processzorok sorszáma lesz. A

felfüggesztett működésű processzorok sorszáma negativ előjellel van el­

látva.

• • • *

COPROCESSORS OF 11 TO I

A SUBPROCESSORS utasítással azonos mádon az I tömb fogja tartalmazni az

11 sorszámú processzorral mellérendelt viszonyban levő processzorok (da- •

rab)számát ás sorszámait az utasítás végrehajtásának hatására.

PROCESSOR LIST TO I

A SUBPROCESSOR utasítással azonos módon az I tömb fogja tartalmazni az

összes processzorok (darab)számát és sorszámait.

NUMBER OF PROCESSOR TO I

I - egész típusú változó

Az utasítás végrehajtásának' hatására I értéke a végrehajtó processzor

sorszáma lesz.

ÜTSZ OF PROCESSOR 11 TO 12

11 - egész típusú változó (konstans)

12 - egész típusú változó

Az 12 változó értéke az 11 sorszámú processzor utasitásszámlálójának ér­

téke lesz, ha az 11 sorszámú processzor alá van rendelve az utasítást

végrehajtó processzornak (ha ez nem áll fenn, akkor az értékadás nem

történik meg, és hibajelzés kerül kiírásra).

UTSZM OF PROCESSOR 11 TO 12

Az utasítás hatása megegyezik az előző utasítás hatásával, az egyetlen

különbség az, hogy az utasitásszámláló-módositó értéke kerül átadásra.

53

ü

Az előző kőt utasításban szereplő feltételek mellett lehetséges a fordí­

tott értékadás is, az

és az12 TO ÜTSZ OF PROCESSOR 11

12 TO UTSZM OF PROCESSOR 11

utasítások alkalmazásával.

54

b. Szöveg és karakter típusú változókat kézéig utasítások

CLEAR T

A T szöveg típusú változótömb elemeinek értéke definiálatlanná válik az

utasítás hatására, a tömb első szabad eleme T(1) az utasítás végrehajtá­

sa után. (Egydlmenziésnak tekintve a tömböt.)

T1 TO T

A T szöveg típusú változétömb első szabad eleme felveszi a T1 szöveg tí­

pusú változó értékét, és foglalt elemmé válik. (A T tömb első szabad e-

leme ezután az 1-gyel nagyobb indexű elem, egydimenziósnak tekintve a

tömböt.)

T1 IS 11 IN T

Az 11 egész típusú változó felveszi a T1 szöveg típusú változó sorszá­

mát a T szöveg típusú tömbben. (T1 sorszáma T-ben azt adja meg, hogy T1

értéke T hányadik elemének értékével egyezik meg, T-t egydimenziósnak

tekintve.) Ha nincs a T tömbben olyan elem, amelynek értéke megegyezne

T1 értékével, akkor 11 értéke C lesz, ha több ilyen elem is van, akkor

a legkisebb sorszám lesz 11 értéke.

NUMBER OF CHAR IN T1 IS 11

Az 11 egész típusú változó értéke a T1 szöveg típusú változó karaktere­

inek száma lesz az utasítás végrehajtása után.

C(I1)-C(l2) TO T

Az 12 index (aktuális) értéke nagyobb vagy egyenlő kell hogy legyen,

5 5

mint az 11 index (aktuális) értéke. A T szöveg tipusű változétömb első

szabad eleme felveszi a C(I1), C(I1+1)

végértékét (és foglalt elemmé válik).

C(I2) karakterekből állő sző-t • • • f

T1 ТО C(I1)-C(12)

Az 12-11+1 kifejezés aktuális értéke nagyobb vagy egyenlő kell hogy le­

gyen, mint a T1 szöveg tipusií változő (szöveg) értékében szereplő karak­

terek száma. Az utasítás hatására C(I1) értéke T1 első karaktere, C(I1+1)

értéke T1 második karaktere,'...,

T1 N darab karakterből áll).

C(I1+N-1) értéke T1 N-dik karaktere (ha

e

56

с. A multlprocesszor on-llne felhasználását elősegítő utasítások:

EXECUTE

Az utasítás végrehajtása után a multiprocesszorba (folyamatosan) beérke­

ző utasítások azonnal végrehajtásra kerülnek, és nem őrződnek meg (éjra

végrehajtani azokat vagy hivatkozni rájuk nem lehet a továbbiakban).

SAVE

Az utasítás végrehajtása után a multiprocesszorba beérkező utasítások

tárolásra kerülnek (folyamatoséin, +1-gyel növekvő belső sorszámmal). A

multiprocesszor működése a beérkező utasitásoktől függetlenül folytatő-

dik.

SAVE AND EXECUTE

Az utasítás végrehajtása után a multiprocesszorba beérkező utasítások

tárolásra kerülnek (a SAVE utasítás által előirt mődon), és azonnal vég­

re is hajtődnak (az érvényben levő végrehajtási mőd szerint).

DELETE specification

Az utasítás végrehajtása után törlődnek a programbői a specifikáciős

rész által előirt utasítások.

specification 11 az 11 belső sorszámé utasítás

az 11 belső sorszámé utasítással kez­

dődő, és az 12 belső sorszámé utasítás­

sal végződő programrész

11-12

57

a P1 címkéjű utasításLABELED P1

a P1-P2 programrészLABELED P1-P2

a P1 címkéjű SYNTAX utasítás által meg­

határozott utasítás(csoport)

SYNTAX AT P1

INSERT specification END AT P1

A programba bekerülnek a specifikáciés részben megadott utasítás után

(közvetlenül) az INSERT utasítást kővetően a multiprocesszorba beérke­

ző utasítások, a P1 címkéjű utasítással bezárélag. A specifikáciés rész

megegyezik a DELETE utasításnál felsoroltakkal, csak a SYNTAX AT P1 for­

ma nem megengedett.

58

d. Teljes programoknak a háttérmemóriában való tárolását ás onnan törté-

nó aktivizálását szolgálják a következő utasítások:

PROGRAM TO FILE F

A program aktuális utasításai ás a végrehajtási mód Jellemzői az F fi-

le-ra kerülnek, a program folytatja futását.

PROGRAM AND DATA TO FILE F

A program aktuális utasításai, a végrehajtási mód Jellemzői és a vál­

tozóterület az F file-ra kerül, a program folytatja futását.

PROGRAM FROM FILE F

Az F file-on tárolt program és változőterülete, ha az is az F file-on

van, bekerül a memóriába, és folytatja futását a (szintén az F file-on

tárolt) végrehajtási mód szerint. Az utasítást végrehajtó program és

változóterülete törlődik a memóriából.

Tömbök illetve a program szegmentálását szolgálja a következő két u-

tasitás:

ARRAY T1 TO FILE, BUFFER 11,12

T1 - szöveg tipusű változó (konstans)

aktuális értékét T-vel jelöljük

11,12 - egész tipusű változó (konstans)

Az utasítás végrehajtása során a T tömb átkerül a multiprocesszor

által kezelt (háttérmemória) file-ok valamelyikére, a fő memóriában

elfoglalt helye felszabadul.

5 9

A propram további futása során változatlanul lehet hivatkozni a T tömb
%

elemeire. A kivánt tömbelemeknek a fi memóriába juttatását egy 11+12+1

tömbelem móretű puffer gyorsítja meg. A puffer tartalma az utasítás

vágrahnjtásakor a. tömb első 11+12+1 eleme lesz (egy-indexesnek tekintve

tömböt). A továbbiakban a puffer tartalma mindig addig marad válto­

zatlan, amig a kivánt tömbelemek megtalálhatók benne. Ha a keresett К

Indexű tömbelem nem található a pufferban, akkor a T(K-I1),T(K-I1+1)

T(K),...,T(K+I2-1), T(K+I2) tömbelemek kerülnek a pufferba (egy-in-

f • •

• • • f

dexesnek tekintve a tömböt).

PROGRAM P1-F2 TO FILE, BUFFER 11,12

Az elózó utasításhoz hasonlóan, a P1-P2 programrósz átkerül a háttór-

memóriába, a fó memóriában elfoglalt helye felszabadul, a továbbiakban

is rákerülhet a vezórlós, illetve utasításaira lehet hivatkozni.

Aktivizálását egy 11+12+1 utasítás móretű puffer gyorsítja meg, amely­

nek tartalma az utasítás vógrehajtásakor a P1 cimkójű utasítás ós az

utána következó 11+12 darab utasítás- A továbbiakban a puffer tartal­

ma mindaddig változatlan marad, áruig a keresett utasítások megtalál­

hatók benne. На а К belső sorszámú utasítás nem található a puffer-

K+I2-1,K+I2 belső sorszámú utasi-ban, akkor a K-I1,K-I1+1

tások kerülnek a pufferba.
.. Кf • • 9 • • • t

e. A flle-ok (rá)Írással ós (ki)olvasással szembeni vódelmót a nyomkö­

vető utasításoknál ismertetett, tömbök vódelmót szolgáló utasítások­

kal azonos módon biztosítja a

FILE FI PROTECTED AGAINST WRITING, a

FILE F1 PROTECTED AGAINST READING ós a

FILE F1 PROTECTED AGAINST READING WITHOUT WRITING

utasítás, az egyetlen különbsóg az, hogy itt a file sorszámát az F1

60

egész tipusú változó (konstans) adja meg.

tásban a T1 szöveg típusú változó adta meg a megfelelő tömb nevét.) A

vúdelem megszüntethető a NO TRACE P1 utasítás alkalmazásával.

(A tömbökre vonatkozó utasi-

Állandó file-ok használatát biztosítja a következő három utasítás:

T 15 PERMANENT FILE length

T - szöveg típusú változó (konstans)

length - üres (változó hosszúság)

- LENGTH 11 egósz típusú változó

(konstans)

Az utasítás vágrehajtása után a háttármemóriában rendelkezásre áll a

T nevű 11 memóriaelem (vagy tetszőleges* azaz dinamikusan változtatha­

tó) máretű állandó file.

FILE F IS FILE T

F - egész típusú változó (konstans)

T - szöveg típusú változó (konstans)

Az előzőleg állandó file-nak deklarált T file-га F file azonosítóval

lehet hivatkozni az utasítás végrehajtása után.

CLEAR FILE T

T - szöveg típusú változó (konstans)

Törlődik a T file az utasítás hatására.

6 1

f. A CHANGE nyelv alap utasitáskészlete állandó utasításokból áll. Egy­

szer végrehajtandó utasítások a kővetkezőképpen keletkezhetnek:

a. tfj utasítások definiálásakor az EXTEND utasítás A4 paraméterének

értéke NONPERMANENT.

utasítás segítségévelb. A NONPERMANENT specification

specification P1 -P2

P1

SYNTAX AT P1

A P1-P2 programrész, a P1 utasítás, illetve a P1 címkéjű SYNTAX u-

tasltás által leirt (minden) utasítás egyszer végrehajtandó utasí­

tás lesz.

utasítás hatására állandóA PERMANENT specification

utasítás keletkezik (a specifikációs rész ugyanaz lehet, mint a

NONPERMANENT utasítás esetében).

62

g. A szubrutin- illetve corutlnhlvás speciális változatai nemcsak EXIT

(WAIT) utasítás végrehajtása esetén teszik lehetővé a rutlnből va­

ló visszatérést, hanem bizonyos számé utasítás végrehajtása Is lehet

a visszatérés feltétele.

SUBR P1 BACK AFTER 11 STEPS

- egész típusé változó (konstans)P1 ,11

A vezérlés a P1 címkéjű utasításra kerül, 11 végrehajtási lépés le-

utasitás után (a végrehaj­

tási mód szerint) következő utasításra kerül (ha addig EXIT, STOP,

stb. utasítás nem került végrehajtásra).

telte után a vezérlés a SUBR P1 BACK • • •

COPROCESSOR V1, V2 DURING 11 STEPS

SUBPROCESSOR V1, V2 DURING 11 STEPS

V1,V2,I1 - egész típusé változó (konstans)

A V1 sorszámé mellé- (alá-) rendelt processzor elkezdi működését a

következő végrehajtási lépésben a V2 címkéjű utasítás végrehajtásá­

val, 11 végrehajtási lépés letelte után a V1 sorszámé processzor

felfüggesztett állapotba kerül (ha addig STOP, WAIT

tást nem hajt végre).

stb. utasi-

NOWAIT V1 DURING 11 STEPS

V1,I1 - egész típusé változó (konstans)

A V1 sorszámé processzor folytatja működését, legkésőbb 11 végre­

hajtási lépés mélva (éjra) felfüggesztett állapotba kerül.

67

1ШGO ТО 11,12,13,. • « >

I(N) - egész típusú változó11,12 9 • <* * 9

Az utasítás hatására N darab új, a végrehajtó processzorhoz képest

alárendelt processzor kezd működni a következő végrehajtási lépés

l(N) címkéjű utasításokat hajtva végre. Az új

processzorokhoz automatikusan sorszámot rendel hozzá a multlprocesz-

szor, és az 11,12

sorszáma lesz. A sorszámok mindig a multiprocesszorban rendelkezés­

re álló legkisebb értékű sorszámok lesznek.

során az 11 ,12 9 • • • 9

I(N) változók értéke a megfelelő új processzor9 ••• 9

formában is Írható, ekkor a teljes I tömbAz utasítás GO TO ARRAY I

ICH) szerepét.játssza 11,12 , • • • *

COMMENT T

A COMMENT alapszó után az utasításon belül tetszőleges szöveg vagy

szöveg típusú változó Írható. Az utasítás hatása megegyezik a NULL

utasítás hatásával.

Ui l J \aM
►Алл*—J

1 .
А\Л t v//ЫtaJl Va ^

v •VfsgAЛЛ ^^ &i<h 4.I

rjtA
VÍ

■ko-4

Ы&4

ri

t *

i

h. Az EXTEND utasításoknál leirt módon törtónó könyvtárszervezés és ke­

zelés merev, egyes bonyolultabb feladatok megoldására Igen nehézkesen

használható fel. A következő utasitáscsoport a különböző könyvtárak

dinamikus (futás alatti) kezelését biztosítja, és lehetővé teszi több

(az egyes processzorokhoz hozzárendelt) CHANGE nyelvű könyvtár egyi­
dejű használatát.

A multiprocesszorban mindig egy (külső nyelvű) alapkönyvtár van ta­

mely minden processzorra érvényes), az egyes processzorokhoz tartoz­

hat (nem feltétlenül tartozik) egy-egy CHANGE nyelvű könyvtár. Több

processzorhoz is tartozhat ugyanaz a CHANGE könyvtár.

Az alapkönyvtárban az alapnyelv adattípusainak és utasításainak szin­

taktikus és szemantikus leírása található. A multiprocesszorhoz tar­

tozó alapkönyvtár nem módosítható és nem bővíthető. A multlprcesz-

szor működésének a kezdetekor az alapkönyvtár egy másolata áll ren­

delkezésre, ez módosítható, bővíthető, tetszőleges file-ra vihető.

Egy file-ra vitt (tetszőlegesen módosított) alapkönyvtár behívható

a multiprocesszorba az éppen bent lévő alapkönyvtár helyett. Egy

alapkönyvtárban minden adattípusnak és utasításnak egyértelmű sor­

száma van.

Az EXTEND utasítások előírhatják CHANGE könyvtár kibővítését (létre­

hozását). Ezeknek az utasításoknak a hatására az EXTEND utasítást

végrehajtó processzorhoz tartozó CHANGE nyelvű könyvtárba bekerül

az \íj adattípus illetve utasítás szintaktikus és szemantikus leírá­

sa, és ezenkívül az alapkönyvtárba is bekerül a szintaktikus leírás,

és ott egyértelmű sorszámot kap. (Ez a sorszám tárolásra kerül a

CHANGE könyvtárban is.)

---ä

Egy CHANGE könyvtár file-ra vihető, file-ról behívható valamely pro­

cesszorba. CHANGE könyvtár létesítésekor egy üres (egész tipusű C-

65

-kát tartalmazó) flle-ról kell behívni egy 'CHANGE könyvtárat', az

ennek a könyvtárnak a 'kibővítését' elóiró első EXTEND utasítás ha­

tására a könyvtár iniciálása is megtörténik.

Az adattípusok és utasítások sorszámozását az teszi szükségessé,

hogy egy program futása előtt általában nem lehet tudni, hogy az e-

gyes utasításokat mely processzorok fogják végrehajtani. A progra­

mok egyértelmű lefordításához (olyan egyértelmű belső ábrázolásához),

amely lehetővé teszi, hogy bármely processzor végrehajthasson (egy­

értelműen) bármely utasítást, az alap könyvtárban össze kell gyűjte­

ni a multiprocesszorban érvényben levő összes utasításnak legalábbis

a szintaktikus leírását.

A programozó különböző futások alkalmával más-más CHANGE és alap-

könyvtárakat hozhat létre, azokat file-окоп tárolhatja, és azután

bármikor aktivizálhatja.

A multiprocesszor ellenőrzi az egyes könyvtárak aktivizálásakor,

hogy a CHANGE könyvtárakban előforduló szintaktikus leírások u-

gyanazzal a sorszámmal szerepelnek-e az alapkönyvtárban (ha elő­

fordulnak az alapkönyvtárban). Hiba esetén a program futása leáll.

Űj alapkönyvtár aktivizálásakor az egész program űjra fordítása

kerül végrehajtásra.

Ez az utasitáscsoport lehetővé teszi különböző számítógépek egy rend­

szeren belül való együttműködésének modellezését.

Egy másik fontos alkalmazás az utasítások kiterjesztésének a lehe­

tősége régi szintaktika teljes egészében történő megőrzésével. Az

utasítás Jelentése más és más lehet aszerint, hogy melyik procesz-

szor hajtja végre.

66

Ezek az utasítások kísérleti jellegűek, ha alkalmazásuk hasznosnak bi­

zonyul, akkor a könyvtárakra vonatkozó szabályok a multiprocesszor ál­

talános leírásánál illetve az EXTEND utasításoknál kerülnek ismertetésre.

EXTERNAL LIBRARY TO FILE F

F - egész tipusű változó (konstans)

A külső nyelvű (alap)könyvtár az F file-ra kerül.

(A multiprocesszorban is változatlanul megmarad.)

EXTERNAL LIBRARY FROM FILE F

Az F file-on levő alapkönyvtár lesz a multiprocesszor alapkönyvtára az

utasítás végrehajtásának a hatására. (A multiprocesszorban levő alap-

könyvtár törlődik.)

LIBRARY TO FILE F

F - egész tipusű változó (konstans)

Az utasítást végrehajtó processzor CHANGE nyelvű könyvtára az F file-ra

kerül.

LIBRARY FROM FILE F

F - egész tipusű változó (konstans)

Az utasítást végrehajtó processzor CHANGE nyelvű könyvtára az F file-on

tárolt CHANGE könyvtár lesz. (Esetleges előző CHANGE könyvtára törlő­

dik.)

67

LIBRARY FROM FILE F TO PROCESSOR I

I,F - egész típusé változó (konstans)

Az utasítást végrehajtó processzor számára az I sorszámé processzor alá­

rendelt kell hogy legyen. Az utasítás hatására az I sorszámé processzor

CHANGE nyelvű könyvtára az F flle-on tárolt CHANGE könyvtár lesz.

(Az I sorszámé processzor esetleges előzó CHANGE könyvtára törlődik.)

1. TRANSLATE P1-P2 TO F

P1,P2,F - egész típusé változó (konstans)

Az utasítás hatására a P1-P2 programrészt a multlprocesszor lefordít­

ja az EXTERNAL könyvtárnak megfelelő külső nyelvre, és az Így kapott

program az F file-ra kerül.
Sw

A lefordított program általában lényegesen gyorsabban futtatható. (A

gyorsabb futást az teszi lehetővé, ha a multiprocesszort realizáló in-

terpretatlv végrehajtó program részben vagy teljes egészében felesle­

gessé válik, ami akkor áll fenn, ha önmódositó, multiprocesszoros és
--------------------—.--v

nyomkövető utasítások nem szerepelnek a P1-P2 programrészben. Mivel ez

Igen erős megszorítás, az utasítás főleg a CHANGE programmal generált

programok lefordítására használható előnyösen.)

>

4

68

E. Mit ás hogyan biztosit a nyelv felépítése

1 . a. A COPROCESSOR ás a SUBPROCESSOR utasítás, illetve az UTSZM utasítás

külön-külön is lehetővá teszi nem lineáris programok Írását.

e/u

b. EXTEND utasítás(ok)ban használva a COPROCESSOR, a SUBPROCESSOR ás az

UTSZM utasítást, a kiterjesztett multiprocesszor tetszőleges nem li­

neáris mádon hajthat vágre programokat. Az egyes speciális probláma-

osztályok számára kedvezőbb lehet egy speciális nem-lineáris vágrehaj-

tási mád, mint az univerzális lineáris mád.

4 — 0^ 7

2. A CHANGE utasítások biztosítják a programok dinamikus (futás közben tör-

tánő) programozott mádositását, lehetővá teszik CHANGE nyelvű programok

' futás közbeni generálását (adaptiv programok, forditáprogramok, stb.).

3. Az EXTEND utasítások lehetővá teszik űj adattípusok ás utasítások defi­

niálását, ás a nyelvbe valá automatikus beápitását.

4. A programozá igen szabad kezet kapott a fordítás ás a futás vezárlásáre.

A ’mindenhez valá hozzáfárás’ elvánek realizálására rendelkezásre áll­

nak a vágrehajtási mádot előirá (UTSZM ás párhuzamos feldolgozást ve-

zárlő) utasítások, a kiterjesztő (EXTEND) utasítások, a programok ön-

mádositását lehetővá tevő CHANGE utasítások (ezek használata különösen

a változádefiniciá által megengedett egyszerű listák segitságável lehet

előnyös), a szubrutinmályságet szabályozá ISD utasítások, valamint a

nyomkövető (TRACE) utasítások (amelyekre a "mindenhez valá hozzáfárás'

elvánek megfelelően közvetlenül is szükság van, de az elv realizálásá­

hoz kiválasztott, az előzőekben felsorolt eszközök feletti ellenőrzás

is szükságessá teszi a nyelvbe valá beápitásüket).

Í.O

5. A COPROCESSOR, a SUBPROCESSOR, n COWAIT ós a NOWAIT utasítások segit-

multiprocesszoros programok Írhatók és futtathatók.^ ^ A f®1 'I sógóvel

4

7 о

F. A processzor realizálása

1 • Szűk subset interpretativ fordítóprogramja a MINSZK-22 gépen [5].

2. USASI FORTRAN IV alapú processzor a CDC-3300-a.s gépen.

a. A processzor interpretativ módon működik.

b. Előforditó program (a program külsó formájáról belsó listastruktu-

rában törtúnó ábrázolásra való áttérés).

c. Értelmező ós végrehajtó program

(A belső listustruktúrában ábrázolt program utasításainak értelme-

zdsót ős végrehajtását biztosítja.)

d. Az előforditás alatt a szintaktika analizátor rőszekre bontja a le­

fordítandó utasítást, az egyes részeket külön-külön elemzi, és lefor­

dítja egy közbenső nyelvre (igy tulajdonképpen az egész utasítást

lefordítja erre a közbenső nyelvre).

e. A szintaktika, analizátor az utasítás közbenső nyelvű ábrázolása a-

lapján meghatározza az utasítás kódját (vagy esetleg hibajelzést ad).

f. A szintetizáló program beépiti a belső listastrukturába az utasítás

kódját és az utasítás paramétereit leiró cimeket (egy-egy paramétert

általában több cim ir le).

g. Az értelmező és végrehajtó program belső hierarchiájában az első he­

lyen a multlprocesszor program áll, cimely az egyes processzorok in­

dítását, felfüggesztését, megszüntetését és futás alatti vezérlését

irányítja.

71

h. Egy processzor működését vezérli az EXEC 1 program (az utasitásszám-

láló tartalma által meghatározott belső sorszámé .utasítást értelmezi

és végrehajtja, az utasltásszámlálé-médosité tartalmát hozzáadja az

utasitásszámláléhoz a következő végrehajtandé utasítás sorszámának

meghatározására - ha ez szükséges -, valamint végrehajtja az előirt

nyomkövetés! akclékat).

1. Egy utasítás végrehajtása során először a CIMSZ/ÍMITÓ program meghatá-

roza az utasítás paramétereit leiré elmeknek megfelelő aktuális el­

meket, majd az uta.sitáskód által meghatározott könyvtári szubrutin ke­

rül végrehajtásra (ez a szubrutin lehet a FORTRAN-könyvtárban, vagy a

CHANGE-könyvtárban).

3. A CDC 33üC-as processzorban alkalmazott eljárásokrél

a. Egyetlen közös szimbélumtábla-kezelő rutin kerül felhasználásra a szö­

veg típusé változók kezelésére, az előforditásra, a közbenső nyelvre

fordított utasítások kódjának felismerésére, az EXTEND utasítások vég­

rehajtására. (A gazdaságosság illetve áttekinthetőség mellett a pro­

cesszor esetleges bootstrappelt felépítésére is lehetőséget nyéjt ez

a megoldás.) V\ Q/Л ^

b. A belsőlistastruktéra rendkívül tömör

Ha egy utasítás vagy egy paraméter többször is ismétlődik a programban,

leírása csak egyszer kerül tárolásra. Ez a megoldás igen hajlékony, a

programot módosító CHANGE utasítások végrehajtását megkönnyíti, és ál­

talában memórianyereséget tesz lehetővé, mivel az utasítások, illetve

a paraméterek leírása a rájuk való hivatkozásoknál átlagosan 5-1ü-szer

több helyet igényel. Ez az ábrázolási mód megkönnyítheti az automatl-

kus szubrutinkészitést. V44WC

72

4. CHANGE processzor klsszámitógépekhez c* Ez
t H $ yQí

cLtАлл* Ал\ /
fИлAaJÉPA*. о»

a. Kisszámitógép esetén nem Jelent különösebb hátrányt az interpretativ

végrehajtás (abban az értelemben, hogy a közepes vagy magasszintű nyel­

vű programok végrehajtása általában interpretativ módon történik a szűk

utasitáskészlet és a viszonylag kis memóriaméret miatt).

b. A leforditott CHANGE program igen tömör ábrázolása viszonylag nagyobb

méretű programok futtatását teszi lehetővé.

c. Ha a kisszámitógép szatellitként (is) működik, akkor a CHANGE pro­

cesszor feladatai előnyösen feloszthatók a központi számitógép és a

szatellit között.

On-llne használat esetén a munkamegosztás a következő lehet:

A kisgép egyszerű előforditó-programja a szintaktikusán hibás utasításo­

kat visszautasítja, a szintaktikusán helyes utasításokat tömör előfordi-

tott formában továbbítja a nagygép felé, ahol a fordítás folytatódik,

illetve a fordítás befejezése után megtörténik a program végrehajtása.

Kész programok használata esetén célszerűnek látszik, hogy a nagygépen

egy optimalizáló fordítóprogram készítsen el egy viszonylag kis helyi­

gényű leforditott programot a kisszámitógépen való futtatáshoz.

d. A cimszámitó és az EXEC 1 rutin fixmemóriában (kevesebb mint 53C byte)

való elhelyezésével egy nagyságrenddel javítható a futási sebesség.

73

(!P5• А 1GG1С számítógép CHANGE végrehajtó programja
_ Ч —

b.,c. részében felsorolt tények a 1 GG1 G eseténa. Az elózó (4.) pont a

is fennállnak.

• f

b. Rendelkezésre állnak az ALGOL forditéprogram interpretativ végrehajtás­

hoz készített rutinjai, amelyek szervezése olyan, hogy viszonylag egy­

szerűen beépithetűk a CHANGE végrehajtó program könyvtár részébe.

c. így reális célnak látszik első lépésként végrehajtó program elkészí­

tése. A fordítás a CDC 33GG-on történhet.

74

G. A CHANGE nyelv általános jellegű alkalmazása

4. A nyelv kiterjeszthetősége lehetőséget nyújt arra, hogy nem túl bonyolult

nyelveket (és egyben processzoraikat is) egyszerűen lehessen definiálni.

(Nincs szükség az egyes nyelvekhez szintaktika analizátorok Írására, a
Г ,

■

programok belövéséhez a nyomkövető utasítások segítséget nyújtanak.)

A definiálni kívánt nyelvek 'erősen célorientáltak' lehetnek, azaz felépí­

tésük igen közel maradhat a nyelv felhasználási területén szokásos irás-

médhoz, mivel a CHANGE processzor végrehajtási médja előirhaté, és a prog­

ramok futás alatt médosithatéak.

\v - •
í

V\4, *
V 4

U 'JI

2. Diszkrét rendszerek szimulálása

< 4
A rendszer változé tartománnyal ábrázolt alapelemei a tipuskiterjesztő

utasításokban jellemezhetünk, a rendszer programmal leirt elemeit pedig a

kiterjesztő utasítások segítségével egy-egy utasítás ábrázolhatja. Ez az

ábrázolás több szinten is történhet, ahogy a rendszer egyre magasabb özin-

tű blokkjai felépülnek.

A blokkok közti kapcsolatot a változétartományon keresztül, esetleg prog­

ramok segítségével lehet megvalésitani.

A rendszer elemeinek egyidejű működése a párhuzamos műveletvégrehajtásv.

előiré utasítások segítségével történhet.

Például: A rendszer legmagasabb szintű blokkjait egy-egy kiterjesztett u-

tasitás képviseli. A blokkok közti kapcsolat a változétartományon keresz­

tül történik, a blokkok működési sebessége megegyezik. A blokkok működése

egyszerre kell, hogy elkezdődjön. Egy külső (fő) program hatására fejezhe­

tik be működésüket.

Az igy megadott feladat realizálhaté pl. a következőképpen:

A blokkokat képviselő utasításokat címkével látjuk el, és egymás után ír­

juk azokat. A főprogram gondoskodik arrél, hogy az egyes utasításokat u-

gyanabban az időpillanatban különböző processzorok kezdjék végrehajtani

75

ügy, hogy utasitásszámláló-módositójuk tartalma C legyen, azaz mindig a

blokkot képviselő utasítást hajtsák végre (ez az utasítás rendszerint nem

vezérlésátadé utasítás). Mivel egyszerre tulajdonképpen csak egy procesz-

szor működése indítható el, a tényleges egyszerre való indítás a már el­

indított processzorok késleltetésével, pl. MULL utasítások végrehajtásá­

val történhet. Az a fontos, hogy a blokkokat realizáló utasításokra való

rálépés történjen egyszerre. (A rálépés előtti utasítás UTSZM=C kell hogy

legyen.)

A főprogram gondoskodhat az egyes processzorok felfüggesztéséről, illetve

a szimuláció befejezéséről.

A szimuláció 'idejének mérésére' szolgálhat egy további processzor által

állandóan (UTSZM=C) végrehajtott ID0=ID0+1 utasítás is. Az IDŐ változó ér­

tékét figyelheti a főprogram, vagy egy további processzor által állandóan

végrehajtott feltételes vezérlésátadó utasítás:

(P2) (IF(IDO.GT.MAXIDO) P1,P2), amely az 'idő túllépése', azaz a feltétel

bekövetkezése esetén elindítja valamely program működését (amelynek első

utasítása valószínűleg megváltoztatja UTSZM értékét, a továbbiakban pedig

befolyásolja a főprogram működését).

3. Adaptiv programok (programot készítő ('iró') adaptiv programok)

Egy adott (az adaptiv programban leirt) alap-utasitáskészletből a prog­

ramot módosító utasítások segítségével programok generálhatóak és futtat-

hatóak a főprogram vezérlése alatt. Ez a vezérlés különböző formákban

történhet, pl. a főprogram átadja a vezérlést a generált programnak, és

az bizonyos idő múlva (vagy időnként) visszaadja a vezérlést a főprog­

ramnak (esetleg az előző pont végén leirt működésű időmérést és meg­

szakítást szimuláló, két párhuzamosan futó processzor segítségével).

A főprogram folytathatja futását párhuzamosan a generált programmal,

mintegy működés közben figyelve azt. A figyelés eszköze, akár folyama­

tosan, akár szakaszosan történjen, valamely ellenőrző programrész lehet,

7Ó

amely vizsgálja, hogy a generált program megfelelően működik-e. Ez az el­

lenőrző blokk az esetek egy részében hasonlé lehet a szimulációs progra­

mokhoz, illetve egy megfelelően paraméterezett általános szimulációs prog­

ram lehet.

Az adaptiv program feladata, hogy az ellenőrző programrész által adott

eredmény alapján módosítsa a generált programot, amíg csak szükséges.

4. Makroprocesszorok, listakezelő és szimbólummanipulációs nyelvek

A szövegkezelő (tulajdonképpen szimbólumtábla-kezelő) utasítások és a

kiterjesztő utasítások természetes eszközöket adnak makroprocesszorok

Írására. Az általános változódéfinició és a kiterjeszthetőség segítségé­

vel a listakezelő utasítások, a karakter és szöveg tipusű változók segít­

ségével a szimbólumkezelő utasítások közelithetőek meg.

77

Н. А CHANGE nyelv konkrét alkalmazásai

(geometriai/technológiai leiró nyelvek)1 . NC nyelvek

a. Az NC nyelvekre általában jellemzi a G.1. pontbeli általános leírás.

b. ADMAP postprocesszor (optimalizálással) a CII 1CC1C számítógépre

Az ADMAP PP feladatát,funkcionális felápitósót [6] Írja le részletesen.

A PP feladata, az ADMAP nyomtatott áramköri lapokat kászitó berendezés

vezérló lyukszalagjának elkészítése. A berendezést működteti egyes u-

tasitásoknak 1-1 karakter felel meg a lyukszalagon. Az utasításrendszer

egyszerű, a rajz (fúró stb.) fejet mozgató utasításokból, toll-fel,

toll-le, nagylépésváltás, kislépésváltás és fűrás utasításokból áll.

Mivel a berendezés rajz (fűró stb.) fejét két léptetimotor hajtja, és

ezek egyszerre is működtethetik, a fej egy adott P helyzetből az U*,U4,

...,Uy utasítások hatására a. P^ , •»P, pontokba juthat.f • *

Рч p* Pa.

. L

L

25 mm ha az utol-^»
jára végrehajtott

L =4 váltóutasitás kislépésváltó
volt.2,5 mm ha az utol­

jára végrehajtott

váltéutasitás nagylépésválté
4-

A berendezést egy (0,0) kezdőpontból Indítva a fej az (n.0,25 mm,

m.0,25 mm) koordinátája pontokba vezérelhető. A toll-fel utasítás hatásá­

ra a rajzfej a lap (vagy papír) fölé emelkedik (ezután következő mozgató

utasítások hatására a levegőben mozog), a toll-le utasítás hatására a

rajzfej a lapra (papírra) ereszkedik (ezután következő mozgátó utasítások

hatására a lapon (papiron) mozog).

A fúrás utasítás hatására a fúrófej leereszkedik a lapra, lyukat fúr,

majd a lap fölé emelkedik (a fúrófej mindig a lap fölött mozog).

A PP által elkészített teljes eredményszalagnak a következő részekből kell

állnia:

az anyag elme olvasható formában (legible punch),

az egyes technológiai műveletek olvasható neve

(ez tulajdonképpen a gépkezelőnek szóló utasítás),

majd az ADMAP által végrehajtandó utasítások.

A program adatszalagja két fő részből áll - az elvégzendő technológiai

műveletek listájából és a (nyomtatott áramköri lapot jellemző) rajzlei-

rásból.

79

A rajzleirás a lapon található vonalak felsorolásából áll. Az egyes vonalak

megadása pontjaik felsorolásával történik, ezen kivül meg kell adni, hogy a

vonal hányadik rétegben található (ha többrétegű a lap). Az egyes pontokat

koordinátáikkal és technológiai utasítással kell megadni. Ezenkívül célsze­

rű, hogy a rajzleirás tartalmazza a lap azonosítóját és méretét.

A technológiai utasítás azt határozza meg, hogy az adott pontban a különbőzé

technológiai műveletek során mit kell a rajzgépnek csinálnia, - azaz egyálta­

lán el kell-e Jutnia a fejnek az adott koordinátájű pontba, és ha igen, mi­

lyen utasítási sorozat) hajtandó végre ebben a pontban.

példa ADMAP adatszalagra

x forrasztaasoldal

nagyfurat

x

vezeerloo lap 1971 .10.1 .

keepmeeret: 112,48,

t:19,43, n:21,44.5, (az elsó vonal)

n:22,44.5, t:24,46.5f

n:1 9,45, (a második vonal)

(a harmadik vonal)n:23»1 6.5*

(a negyedik vonal)n:1 7,45,

V

8o

A PP jelenlegi adata kiterjesztett CHANGE nyelvű programként kerülhet vég­

rehajtásra. (A végrehajtandó technológiai műveletek listájából és a rajzle-

irásból álló adat felfogható, mint a rajzgép programozására szolgáló köze­

pes szintű programozási nyelven irt program.)

Kiterjesztéssel keletkező űj utasítások a PP utasítás, a technológiai műve­

letek, a műveletek vége, a CÍM, a KEPMERET utasítás, a technológiai utasí­

tások, valamint a VEGE utasítás.

Minden program a PP utasítással kell hogy kezdődjön. A PP utasítás előírja

a végrehajtási módot (ennek lehetséges változatait tartalmazza a leírás to­

vábbi része), és a program szintaktikus szerkezetét (technológiai műveletek,

műveletek vége, cim, képméret, technológiai utasítások, rajz vége). Ezután

a CIM utasításra kerül a vezérlés. (Ennek hatására olvasható formában lyu­

kasztásra kerül a program neve.) Ezután a sorrendben következő KEPMERET u-

tasitás végrehajtása következik. (Ennek hatására összehasonlításra kerül a

képméret utasításban megadott maximális lapméret a technológiai utasítások­

ban megadott pontok koordinátáival.

- Hiba esetén az összehasonlítás befejezése után a program futása befejező­

dik - ha nincs hiba, akkor vezérlésátadás történik az első technológiai mű­

veletre .)

A KEPMERET utasítás után a technológiai műveletek kerülnek egymás után (vagy

egymással párhuzamosan, ha a PP utasítás ezt Írja elő) végrehajtásra. A

technológiai műveletek végét jelző utasítás hatására befejeződik a program

futása.

Az egyes technológiai műveletek végrehajtása a művelet nevének olvasható le-

lyukasztásával kezdődik. Ezután a művelet típusa (pont, vonal) szerint az

adott művelet során figyelembeveendő pontok illetve vonalak listázása kö­

vetkezik. (A technológiai utasítások definíciója tartalmazza, hogy mely

technológiai műveletek során kell végrehajtani azokat, és milyen ADMAP uta-

sitássorozat felel meg az egyes technológiai műveletelmek.) A listázás tör­
ténhet a rajzleirás-rész egyszeri végrehajtásával. Ezután az optimalizáló

program [7] (csatolható FORTRAN rutinok) átalakítja a listát az optimális

sorrendnek megfelelően. Most következhet a listában felsorolt utasítás(cso­

port)ok végrehajtása, amelynek során az abszolűt értékükkel adott koordiná­

ták közti űtnak, ADMAP elmozdulás utasításokat feleltet meg a TRACE utasí­

tásként csatolt ELMOZD FORTRAN rutin (azért TRACE utasításként, mivel az

elmozdulás számítása utasitásközi műveletként értelmezhető), és a technoló­

giai utasítások helyébe ADMAP utasítás(csoport)ok kerülnek.

Az egyes technológiai műveletek végrehajtása során a rajzleirás változatlan

maradt, a lista tartalmazta a rajzleirásban szereplő egyes utasitás(cso-

port)ok végrehajtásának sorrendjét, a lista elemeinek értékét közvetlenül

is felveheti az utasitásszámláló (az ÜTSZ utasítás segítségével). Vonal­

technológiai tipusű műveletek végrehajtásakor előfordulhat, hogy az opti­

malizálás egy vonalnak megfelelő utasitáscsoport fordított sorrendben való

végrehajtását Írja elő. (Az UTSZM=-1 utasítás végrehajtásával elérhető a

'visszafelé* való végrehajtás.)

Ha nem ragaszkodunk ahhoz, hogy a rajzleirás változatlan maradjon (például

a háttérmemóriában tároljuk a rajzleirást és minden technológiai művelet

elején újra beírjuk a memóriába), akkor a leválogatás és az optimalizálás

az egyes utasítások fizikai átrendezésével is történhet. (Ezt CHANGE utasí­

tások segítségével realizálhatjuk.)

A PP fenti módon történő realizálása viszonylag egyszerű, felhasználhatók

a FORTRAN PP egyes rutinjai, az új utasítások definíciója mintegy 1CC uta­

sításból álló programot igényel (külön szintaktika analizátor nem szüksé­

ges), egységes közös nyelven kerül leírásra a műveleti lista és a rajzlei­

rás, valamint az ADMAP utasítások is.

82

(dialógus-nyelvek)2. Dialógus-gépek

A számítógépek interaktív használata során az ember-gép párbeszéd (dialó­

gus) szervezése és lefolyása a különböző alkalmazásoknál sok közös elemet

tartalmaz és többé-kevésbé független a megoldandó konkrét feladatoktól. A

dialógusoknak ezeket az általános jellemzőit különböző szintű dialógus­

nyelveken lehet leírni.

Egy dialógus elemi dialógus-lépésekből áll. Egy dialógus-lépés során az

ember információt közöl a számítógéppel ('kérdés'), majd információ érke­

zik a számítógéptől ("válasz'). A számitógép által küldött információ függ­

het a dialógus előző részétől.

A dialógus minden lehetséges lefolyásának leírása a dialógus programja.

Egy dialógus-program felfogható mint egy dialógus-gép, amelyen dialógusok

futtathatók.

Egy dialógus-gép (dialógus-program) programozható közvetlenül valamely

programnyelven, célszerű dialógus-programok leírására szolgáló valamely

dialógus-nyelven irnl azokat.

Egy dialógus-nyelv fordító (és végrehajtó) programja (proces-szóra) prog­

ramozható közvetlenül valamely programnyelven, vagy valamely általános

StXoJbb*
ГДЛЛ - A.

dialógus-nyelven ('dialógus-processzor összeállító nyelv').

(

e-t*
i/\í\/ч£Л*л.

Egy általános dialógus-gépen általános dialógus-programokat lehet futtat­

ni, eredményül dialógus-nyelvek processzorait kapjuk.

A DISTAR-B [8] rendszer egy általános dialógus-gép részének tekinthető.

A DISTAR-B rends^h felhasználásával készült az AIR [9] dialógus-nyelv.

Mindkét rendszer realizálásra került a CDC ЗЗЗС-as számítógépen USASI

FORTRAN nyelven. A dialógus-programok jelenleg egy űn. direkt kódban (gépi

•33

kád szintű) irhRták le. Tervezés alatt áll egy assembler szintű nyelv.

CHANGE nyelven (kiterjesztéssel) egyszerűen felépíthető magasabb szintű

bemenő nyelv. Az általános változók használata lehetővé teszi pszeudodi-

namikus és korlátozott mértékben dinamikus dialógus-programok Írását is,

a programot módósitó (CHANGE) utasítások lehetővé teszik általános dina­

mikus dialógus-programok készítését is.

a. A DISTAR-B rendszer

A DISTAR-B rendszer a dialógus-nyelvek processzorainak összeállításá­

hoz felhasználható általános szubrutinokat tartalmaz.

A DISTAR-B dialógus-nyelveken leírható dialógus-gépek olyan absztrakt

számítógépnek tekinthetők, amely véges sok különböző dialógus-állapot­

ban lehet, az egyes állapotokban végrehajt valamely állapotkezdő akci­

ót, kiad egy kérdést, választ fogad és elemez, majd átmegy valamely di­

alógus-állapotba .

A DISTAR-B rendszer CHANGE nyelven történő realizációja bonyolultabb,

de hasonló elvek alapján történhet, mint amelyeken az AIR/CH nyelvnél

ismertetésre kerülő eljárás alapszik (ld. alább). A rendszer kiterjesz­

tése általános dialógus-géppé viszonylag egyszerűen történhet.

b. Az AIR dialógus-nyelv

Az AIR dialógus-nyelv APT típusú nyelveken [3] irt programok (párbeszé­

des) összeállítására készült, általánosabb célokra is használható (al­

fanumerikus display használatát feltételezi).

Az AIR nyelvű dialógus-programokban le kell Írni az egyes dialógus-ál­

lapotokban kiadandó kérdéseket (ezek szemantikailag két csoportba oszt-

8/)

hatóak: olyan kérdések, amelyekre szöveg választ vár a dialőgus-gép,

és én. *menűk*, amelyekre a menüben szereplő elemek közül történő vá­

lasztás a válasz), valamint, hogy a kapott válasz alapján mi a követ­

kező dialégus-állapot.

A menű-rendszerű kérdésekre a válasz csak a menüből való választás le­

het (söreim, vagy cursorcim megadásával), az egyéb kérdésekre adott

szöveg válaszok lehetnek a dialégus-programban előre rögzített szöve­

gek, vagy a felhasználó által a dialógus során adott (éj) szövegek.

Az éj szövegválaszok különböző csoportokba tartoznak (pontok, vonalak,

körök, stb. nevei).

A dialógus-programban eló kell Írni, hogy melyik csoportba kerüljön ez

éj szöveg (egy-egy adott dialógus-állapotban).

Tehát a dialógus-programban rögzíteni kell a dialógus-állapotok számát

és a kérdéseket, valamint a válaszokra következő dialógus-állapotokat.

A válaszok lehetnek rögzítettek vagy szimbólikusan Jelöltek (ekkor az

egyes dialógusok futása alatt kell hogy szöveg értékeket vegyenek fel).

0 * Az AIR dialógus-nyelv realizálása CHANGE nyelven

Az AIR processzor központi utasításai CHANGE nyelven mintegy 1 C éj ki­

terjesztett utasítás (kb. 8C-9C soros program) segítségével előállit-

hatók (a szöveg típusé változók és a kezelésükre rendelkezésre álló

utasítások, valamint az EXTEND utasítások segítenek ehhez a tömörség­

hez).

Az AIR/CH nyelven az egyes dialógus-állapotok leírása egy olyan prog­

ramrésszel történik, amelynek első utasítása egy címkével ellátott

szövegkonstans, vagy szöveg típusé változó. A cimke felel meg a dialó­

gus-állapot sorszámának, a szöveg a kiadandó kérdésnek.

8

Ezután annyi utasítás következik, ahány válasz lehetséges (ezen az u-

tasitásosoporton belül bizonyos esetekben össze lehet vonni egyes uta­

sításokat).

Menfl-rendszerű kérdés esetén a válasz vagy söreim (annak a sornak a

sorszáma, amelyben a kiválasztott válasz található), vagy cursorcim

(amely megadja, hogy a képernyő melyik pontján kezdődik a kiválasztott

válasz). Ennek megfelelően a LINE (sor) illetve a CURSOR alapsző és

az utána állő egész tipusű változó (vagy konstans) határozza meg a vá­

laszt, az ezután következő címke Jelöli ki az erre a válaszra követke­

ző dialógus-állapotot.

Egyéb (nem menű-rendszerfl) kérdés esetén az egyes utasítások a válasz­

nak megfelelő szövegkonstansból vagy szöveg típusú változóból és egy

címkéből állnak (válasz-utasitás).

A cimke adja meg az adott válasz hatására bekövetkező új dialógus-ál­

lapotot .

A szöveg tipusu változónak értéket kell adni a dialógus futása előtt,

vagy a dialógus futása alatt (mielőtt az adott dialógus-állapotra sor

kerül).

Ez az értékadás a dialógus futása alatt ügy történhet, hogy a válasz-

utasitásban a szöveg típusú változó elé egy NEW csoportazonosítót i-

), ennek az utasí­

tásnak a hatására a dialógus során az ebben a dialógus-állapotban be­

érkezett válasz lesz a szöveg típusú változó értéke. Az AIR/CH pro­

cesszor megvizsgálja, hogy a NEW csoportazonosítónak megfelelő cso­

portban nincsen-e már ezzel az értékkel megegyező szöveg (ha van, hi­

bajelzést ad, ha nincs, akkor ez az érték is bekerül a csoportba és a

dialógus további futása során előfordulhat a válaszok között).

runk (NEW POINT - új pont, NEW LINE - új vonal » • • •

Választ leiró utasítások összevonása lehetséges, ha változó indexes

3'i

változó jelöli ki a választ, ás a rákövetkező dialógus-állapotot is.

Ekkor az utasításon belül megadható, hogy mely indexpárokat figyelembe

váve kell (többszörösen) végrehajtani az utasítást.

Az egyes dialógus-állapotokat leiró programrészek végére Írható egy

ERROR utasítás, amelyben meg kell adni azt a címkét (dialógus-állapo­

tot), ahol a dialógus-program folytatja munkáját hibás válasz esetén.

(Ha a programozó nem ir ERROR utasítást a dialógus-állapotot leiró

programrész végére, akkor hibás válasz esetén az AIR/CH processzor le­

állítja a dialógus-program futását, és hibajelzést ad.)

87

IRODALOM

[1] P. Wegner: Progr-mming languages, information
structures end machine orgmizr tion
Me Grew Hill 1968.

[2] Wesley J. Rishel: Incrementrl compilers
Datamation I970.1 .p.129

[3] F. E. Dress: APT Training Manual for Engineers
Manual 1,2, 3
Sandia Co. 1964.

[4] Harry Katzan Jr.: Programming and operating systems
'Advanced programming'
Van Nostrand Reinhold Company 1970.

A MINSZK—22 számítógép CHANGE/1 fordító-
programja
Számítástechnika '71 konferencia

[5] Legendi T.:

[6] Legendi T.: Az ADMAP nyomtatott áramköri lapokat
gyártó berendezés post-processzor programja
Mérés és Automatika 1972.2

Keresési algoritmus egy speciális metrikus
térben
Mérés és Automatika 1971.6

[7] Legendi T.:

Distar-B általános dialógusrendszer
AKI Tanulmány 1972.

[8] Forgács T.
Krammer 0.

88

[9] Pikier Qy.s Minicomputer-based conversational
program writing system
FROLAMAT '73 IFAC konferencia

[1C] Jay Earley -
Howard Sturgis:

A formalism for translator interactions
CACM 1970.1C

[11] Me Intyre, D. E.: An introduction to Illiao IV computer
Datamation 197C.4

[12] Paul Bérry: IBM APL/36C Primer Student Text
IBM Technical Publications Department 1969.

[13] С. T. Fike: PL/1 for Scientific Programmers
Prentice - Hall, 197C.

[14] A. Van Wijngaarden,
B. J. Mailloux,
J. E. L. Peck,
C. H. A. Koster:

Report on the
Algorithmic Language
ALGOL 68

Numerishe Mathematik Band 14. Heft 2, 1969.
1969

89

TARTALOM

Bevezetés 3-5

A nyelv célja..
A célok elemzése........
A nyelv összefoglaló Jellemzése

A - 1
В - 1
C - 1

A.
B.
C.

A nyelv felépítése D.1-1 - D.19.1-1D.

1. Egy program felépítése
2. Egy program végrehajtása (a multiprocesszor) D.2-1 - D.2-3

D. 1 - 1

3-6. Változók és tárolásuk..............................
7. A szöveg típusú változótömbök tárolása
8. Az általános változók szerkezete..........

D.3 - D.6-1
. D.7 — 1
. D.8 - 1

9. Deklarációs utasítások.
10. Az értékadó utasítások.

D.9-1 - D.9-2
D.10-1 - D.10-2
D.11-1 - D.11-4
D.12-1 - D.12-2-D.13
D.12-2 - D.13
D.14-1 - D.14-5
D.15-1
D.16-1 - D.16-3
D.17.a-1 - D.17.b-3
D.18-1 - D.18—9
D.1 9.a-1 - D.19.1-1

11. A vezérlésátadő utasítások................
12. A CHANGE utasítások..
13. A NULL utasítás..
14. A végrehajtási módot előíró utasítások...
13. A STOP utasítások..........................
16. Az adatátviteli (input-output) utasítások
17. A kiterjesztő utasítások................................
18. A nyomkövető (TRACE) utasítások............. ...
19« Speciális utasítások................

• « •

Mit és hogyan biztosit a nyelv felépítése
A processzor realizálása............

E-1 - E-2
F-1 - F-4

E. • • •
F.

A CHANGE nyelv általános jellegű alkalmazása
A CHANGE nyelv konkrét alkalmazásai.

G-1 - 0-3
H.1-1 - H.2-5

G.
H. • ••••••»

Irodalom

9o

