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INTRODUCTION 

The Virus 

Pseudorabies virus (in short: PRV; also known as Aujeszky‟s disease virus (ADV) or suid 

herpesvirus (SHV-1)) is a well-known pig pathogen responsible for Aujeszky‟s disease. 

The earliest reports on the disease were published in 1813 in the United States. In 1902 a 

Hungarian veterinarian, Aladár Aujeszky, isolated PRV from dog, ox, and cat and 

showed that it caused the same disease in swine and rabbits [1]. The name pseudorabies 

came from the symptoms similar to rabies that it caused in rabbits.  PRV infects a wide 

variety of domestic and wild animals, however, humans and higher primates are resistant 

to PRV infection [2].   

PRV belongs to the subfamily of Alphaherpesvirinae, which is also called as neurotropic 

herpesviruses.  Alphaherpesviruses, such as herpes simplex virus type 1 and 2 (HSV-1,-

2), varicella- zoster virus (VZV), and PRV, have a similar gene arrangement and share 

considerable amino acid sequence homologies in their gene products [3]. Hence, PRV is a 

relevant model to study the biology of Alphaherpesviruses. Furthermore, PRV is easy to 

propagate in cells of several mammalian species including rodents and it is not harmful to 

laboratory workers. Because of its neurotropic nature, PRV has also been used as a tool to 

trace circuits in the mammalian nervous system [4] and it has also reported to serve as a 

suitable tool for gene delivery to various cell lines [5]. 

Life cycle 

Pseudorabies viruses can undergo a lytic (productive) or a latent infection. During 

productive infection of HSV-1 the transcription of the immediate early (IE) genes is 

activated by VP16, which is the HSV tegument‟s major component [6]. TAATGARAT 

(R means a purine nucleotide) is the target DNA sequence of VP16. This sequence is 

present in at least one copy in all HSV IE promoters. TAATGARAT is the binding site 

for the cellular factor Oct-1, which was initially characterized by the ability to bind the 

octamer sequence ATGCAAAT [7]. VP16 and other cellular proteins bind to the Oct-

1/TAATGARAT complex, by this means bringing the VP16‟s C-terminal domain into 

proximity with the preinitiation complex. Pseudorabies virus early protein 0 (EP0) may 

play the same role as VP16, that is, EP0 is supposed to act in combination with IE180 

protein, the major regulatory protein of PRV [8]. During a latent infection the viral 
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genome is transcriptionally silent, with the exception of latency-associated transcripts 

(LATs), which accumulate to high levels [9, 10, 11, 12 and 13]. LAT is encoded in the 

complementary DNA strand ep0 gene, suggesting that LAT inhibits ep0 expression by a 

yet unrevealed antisense mechanism. The LAT promoter (LAP) shows neuronal 

specificity and is also associated with the prevention of apoptosis of neuronal cells [14]. 

Reactivation from latency can be achieved by external stimuli (e.g. stress or 

immunosuppression). The ability of PRV to reactivate from latency results in persistent 

disease and virus transmission [15]. 

Viral structure 

PRV genome is composed of a 142-kb linear double stranded DNA molecule, which 

contains two components, a unique long (L) and a unique short (S) region. With regard to 

the orientation of L and S components relative to each other, the viral DNA consists of 

two equimolar isomers [16]. PRV contains 70 protein coding genes. The genome of PRV 

is enclosed within an icosahedral capsid, which is embedded in a protein matrix (called 

tegument) and the latter is surrounded by the envelope, a lipid membrane containing 

numerous viral glycoproteins [2]. 

Gene expression 

Gene expression of PRV is clustered into three main kinetic classes: immediate-early 

(IE), early (E) and late (L) phases during a productive infection. The expression is 

regulated in a cascade like-fashion. IE genes are synthesized directly following infection 

and they switch on the transcription of the next kinetic class of genes, the early genes. 

These genes are generally involved in DNA replication and nucleotide metabolism. The 

late genes are synthesized after viral replication and mainly encode the structural proteins 

of the virions, including capsid proteins and viral glycoproteins. The transcription of late 

genes is regulated by ie180, the only IE gene of PRV [17] and some E gene products [2]. 

The product of ie180 gene has been shown to be homologous to that of ICP4 protein of 

HSV-1. IE180 functions as a strong transactivator on different promoters and as a 

repressor on its own transcription [18]. Nevertheless five IE genes have been described in 

HSV-1, four of them participate in controlling gene expression (icp4, icp0, icp27 and 

icp22), while one (icp47) interferes with antigen presentation [19]. In PRV ep0 (homolog 

of HSV icp0) and ul54 genes (homolog of HSV icp27 gene) are expressed with early 
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kinetic, while PRV lacks the icp47 gene. There is a debate as to whether PRV us1 gene 

(homolog of HSV icp22) is expressed with an IE or an E kinetics [20]. 

Earlier, the kinetic classes of genes were characterized by Northern and/or Western blot 

techniques or later with microarray analysis. Nevertheless, these techniques have 

numerous disadvantages. For example, Northern blotting is time-consuming and labor-

intensive, allows only semi-quantitative determination of the mRNA level. Over the past 

decade, the DNA chip techniques have revolutionized practically all disciplines of 

molecular biology, including large genome virus research. One of the biggest 

disadvantages of DNA chip technology is associated with the uncertain quality control: it 

is impossible to assess the identity of DNA immobilized on any microarray. Also during 

microarray experiments in the laboratory, sequence homologies between clones 

representing different closely related members of the same gene family may result in a 

failure to specifically detect individual genes and instead may hybridize to spot(s) 

designed to detect transcript from a different gene. This phenomenon is known as cross 

hybridization. Further, fluorescence technology, which is the most commonly used 

detection method for array readouts is reproducible, but is limited in sensitivity and there 

are many artifacts associated with image and data analysis. Despite its disadvantages 

microarray has been recently applied technique to investigate herpesvirus gene 

expression. Real-time RT-PCR is an alternative to microarray techniques for the analysis 

of transcription from multiple genes. RT-PCR (reverse transcription-polymerase chain 

reaction) is the most sensitive technique for mRNA detection and quantitation currently 

available. Compared to the two other commonly used techniques for quantifying mRNA 

levels, Northern blot analysis and microarray analysis, RT-PCR can be used to quantify 

mRNA levels from much smaller samples. In fact, this technique is sensitive enough to 

enable quantitation of RNA from a single cell. To date, Real-time RT-PCR has not been 

frequently utilized in herpesvirus research for global gene expression analysis [21, 22 and 

23].  
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PRV genes  

The ie180 gene 

PRV expresses a single immediate-early (IE) protein from two copies of the IE gene that 

can be found in both inverted repeats of the viral genome. The ie180 gene encodes a 180-

kDa protein (ie180) consisting of 1460 amino acid residues that is essential for initiation 

of the early and late gene expression and represses the synthesis of its own RNA [18]. 

The Ie180 shows a high degree of homology with the immediate early protein of other 

alphaherpesvirus, i.e., icp4 of herpes simplex virus type 1 (HSV-1). Without expression 

of the IE gene, the switch from the IE phase to the early and late phases of PRV gene 

expression does not occur, and therefore the viral replication is aborted [24]. The 

promoter region of the IE gene has been well characterized [25]. The IE promoter 

contains nine imperfect repeats; each consists of five to six different consensus elements 

for the binding of transcription factors [26]. The IE promoter contains numerous 

conserved regulatory elements, for example the transcription factor Sp1 binding sites, the 

TAATGARATTC motifs, the CCAAT boxes, the GCGGAA motifs and the repeated 

sequence which possibly plays a role in autoregulation of IE gene‟s transcription [27]. 

This sequence is recognized by IE180 protein. The PRV IE promoter is activated directly 

after the viral infection. Because this promoter regulates its own protein‟s expression, it 

plays an important role in the activity of this promoter and probably determines the viral 

tissue specificity and pathogenicity [28].  The PRV IE promoter drives a pan-specific 

expression in the transgenic mice, and the activity is constantly high in the neuronal 

tissues. In vitro analysis of mutated IE180 mutants has identified three functionally 

essential domains: the acidic transcriptional active domain, the DNA-binding domain and 

the nuclear localization signal. All these domains are required for the transactivation, and 

the latter two are also essential for autoregulation of IE180 gene itself [29]. 

 

The early protein 0 (ep0) 

The early protein 0 is a very important regulatory proteins of PRV, which is expressed at 

the early stage of virus infection[30]. Ep0 gene is located in the unique long region of the 

PRV genome. A polyadenylated 1.7-kb transcript encodes the 409-aa PRV EP0 nuclear 

phosphoprotein. The amino acid sequence of EP0, especially the amino-terminal C3HC4 
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RING (Really Interesting New Gene) finger domain, shares homologies with HSV-1 

Infected-Cell Polypeptide 0 (ICP0) and VZV open reading frame 61 (ORF61) protein, 

BICP0 of bovine herpesvirus 1 and the equine herpesvirus‟s gene 63 (Eg63) [31]. It is 

thought that EP0 may play an important role in DNA-binding, RNA-binding, or protein-

protein interactions [32]. Previous studies exposed that EP0, ICP0, and ORF61 protein 

are able to activate the expression of all classes of alphaherpes viral genes such as ICP4, 

thymidine kinase (TK), gB, gC, gD and gG, as well as cellular genes, such as (1) 

elongation factor 1α, (2) ubiquitin-specific protease or (3) PML [33, 34, 35, 36 and 37]. 

In our days important regions have been precisely located within the sequence of ICP0, 

namely the nuclear localization signal, the USP7 binding domain (594 to 633 amino 

acids) [38], and the multimerization C-terminal sequences (633 to 711 amino acids) [39 

and 40]. Hence, to define the extent of sequence similarity between ICP0 and its 

homologues BICP0, Eg63, ORF61, and EP0, the amino acid sequence homologies were 

analyzed by Parkinson and Everett. It has been shown that no other obvious sequence 

similarities are present in PRV EP0 and its alphaherpesvirus homologues, except of the 

RING finger domain, and none of the ICP0-related proteins showed sequence similarities 

to the well-defined USP7 binding region (Table 1) [41]. 

 

Table 1. Localization of RING-finger domain in alphaherpesviruses [42] 

The expression of ep0 in vivo initiates gene expression from PRV promoters, such as 

ie180, ul23, and us4, and other viral promoters in HSV and VZV. Whether EP0 acts 

directly or indirectly in modulation of transcription is not yet established. Ho and co-

workers publication describes [43], that PRV EP0 activates the TATA-containing 

promoters through facilitating the transcription initiation, suggesting that PRV EP0 has a 
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preference for specific core promoter. In addition, this protein (and its homologues in 

HSV) is able to interact with the components of initiation complex [44, 45 and 46]. 

Further, the expression of ep0 gene plays a key role in enhancement of reactivation from 

quiescence, by disruption of ND10 structures, induction of proteasome-dependent 

degradation of cellular proteins, and interaction with cyclin D3 [2]. It is still unclear 

whether EP0 associates with the envelope, tegument or capsid protein. Ono and co-

worker showed that EP0 is a virion component, and since EP0 is an activator of the IE 

gene, it is presumably located in the tegument, such as the strong transactivator, VP16, of 

the HSV-1 IE genes [8]. 

 

The virion host shut off gene (vhs) 

Virion host shutoff (VHS) protein is the product of ul41 gene that induces rapid shutoff 

of host cell and viral protein synthesis. The ul41 is expressed as a late gene during 

infection, then is packaged into virions and in newly infected cells, where it degrades the 

preexisting and newly transcribed mRNAs [47]. The ul41 expression results in two forms 

of the VHS protein, the 59.5 kDa phosphoprotein and the 58 kDa polypeptide [48]. These 

proteins are essential in the early stage of shutoff phenomenon. The delayed shutoff 

happens due to the expression of ul54 gene, which role is the shutoff of host protein 

synthesis. The VHS protein does not differentiate between cellular and viral mRNAs, but 

it shows a strong preference for mRNAs, as opposed to rRNA and tRNA and this 

indicates that vhs acts as an mRNA-specific RNase [49]. HSV vhs and its orthologues in 

the other alphaherpesviruses show significant similarity in their amino acid sequence to a 

family of cellular nucleases that participate in DNA replication and repair, such as FEN-1 

(non-viral proteins), which is an endo/exonuclease that removes the RNA primers from 

Okazaki fragments during DNA replication in eukaryotes [50].  

 

Ribonucleotide reductase (rr) gene 

Ribonucleotide reductase (RR) is an essential component of the de novo pathway for 

deoxyribonucleotide synthesis and is required to elicit acute infection in pigs and mice. 

The RR subunits are encoded by the genes ul39 (the large subunit, or RR1) and ul40 (the 
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small subunit, or RR2). Deletion of rr gene made PRV avirulent, however rr strains 

retained their ability to form viable viral particles in cultured cells [51 and 52].  

 

Glycoprotein E and glycoprotein I (gE, gI)  

The tegument of extracellular virions is localized between the capsid and the envelope of 

the virus. The tegument of Alphaherpesvirinae consists of at least 20 viral encoded 

proteins [53 and 54]. Loret and colleagues suggested that the actual number of viral 

protein is 23 which have numerous functions during viral replication [55]. Such roles are 

(1) the capsid transport during entry and egress, (2) targeting the capsid to the nucleus, 

(3) regulation of viral-gene expression, (4) DNA replication, (5) immune modulation, (6) 

cytoskeletal assembly and (7) nuclear egress of capsid. Originally HSV-1 virion proteins 

were named as viral protein (VP) 1 to VP24, based on their migration in a protein gel 

[56]. HSV-1 tegument proteins are also called as infected cell polypeptide (ICP). It was 

known that a number of VPs represented differential posttranslational modification of the 

same tegument protein and were encoded by single gene. For example, VP11 and VP12 

are both encoded by the gene ul46 and is referred to as VP11/12 or p(protein) UL46. The 

prefix “p” was adopted to distinguish between gene and protein for both HSV-1 and PRV 

[57]. The exceptions to this nomenclature (which was generated at the 18
th

 International 

Herpesvirus Workshop in 1993) are the tegument proteins ICP0, ICP4 and ICP34.5, 

whose genes are localized at the repeat regions of the virus. In HSV-1, most of the 

tegument proteins, pUL46 (VP11/12), pUL47 (VP13/14), pUL48 (VP16), pUL49 (VP22) 

are present at 1000–2000 copies while the rest are present at less than 1000 copies. As 

reported by del Rio et al. for PRV, deletion of nonessential tegument proteins is 

compensable by increased incorporation of other tegument proteins such as pUL46, 

pUL48 and pUL49 or cellular proteins such as actin [58]. PRV has at least three 

nonessential membrane proteins which are important for directional spread of virus from 

neuron to neuron. The type I transmembrane glycoproteins E (gE protein, encoded by us8 

gene) and I (gI protein, encoded by us7 gene), and the type II membrane protein US9 are 

necessary for spread from presynaptic retinal ganglion cells to postsynaptic neurons. In 

pigs, gE and gI are essential for PRV to passage from presynaptic olfactory neurons to 
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postsynaptic neurons. All viruses deleted for these genes spread in a reverse order, from 

postsynaptic to presynaptic neurons. 

The gE and gI form a hetero-oligomer that promotes the maturation and intracellular 

transport of these proteins to the plasma membrane of cells. It is still unknown that US9 

forms a complex with gE or gI, or it may act at another step to subserve transneuronal 

spread of PRV. Infection of non-neuronal (for example: Madin-Darby bovine kidney) 

cells by gE and gI null mutants, results in formation of small plaques suggesting that gE 

and gI may be essential for efficient cell-to-cell spread of the virus. The analysis of 

truncated gE protein showed that the gE protein‟s N-terminal extracellular domain is 

adequate for gE-gI complex formation, and for anterograde spread of PRV, while the C-

terminal cytoplasmic domain of gE is necessary for CNS infection through anterograde 

and retrograde transport of virus [59].   

Little is known about the kinetics of PRV US7 expression, though its gene product can be 

detected late (6 hours) after infection at high MOI in PK15 cells. Expression kinetic is not 

well characterized in HSV-1 either, where US7 is thought to be a leaky-late (γ1) gene 

[60].  

PRV US8 transcripts are absent at 2 h pi but appearing at 3 to 5 h pi following infection 

at very high MOI (100 pfu/cells) [60]. US8 transcript was characterized as an early gene, 

while its HSV-homolog was described either as an early or as a late gene; so there is no 

consensus on this issue [61].  

 

Genomic sequences   

Antisense Promoter (ASP) 

The putative antisense promoter can be found at the PRV‟s inverted repeat region; 

therefore, it is represented in two copies. The presumed role of ASP is to control the 

expression of an antisense transcript called AST (antisense transcript), but the exact 

function of this transcript is not known yet. Boldogkői et al published in 2002, that a 

single point mutation (within the TATAA box of the promoter) in this region leads to 

substantial reduction of virulence in PRV [51]. 
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Neut region 

The PRV BamHI8‟ fragment can be found between the ie180 and ep0 genes and contains 

numerous unique restriction sites. Mutations within this region are neutral with respect of 

the virulence of PRV. 

 

Antisense RNAs 

The traditional view of transcriptional regulation has dramatically changed in the past 

few years, because it has become evident that the majority of complex organism‟s 

genome is transcribed to produce large numbers of non-coding (nc) RNAs, which are 

antisense and intergenic or overlapping with protein-coding genes. Such ncRNAs 

function by base-pairing with complementary sequences in other RNAs or DNAs. These 

ncRNAs can be categorized into two major groups, cis and trans. Example for the former 

contain sequences in UTRs that bind regulatory proteins or to be targets of RNA editing 

to control the translatability, stability or localization of mRNAs. The regulation by cis- 

(overlapping) RNAs was described by Spiegelman et al. in 1972 [62], who worked on the 

gene regulation of bacteriophage λ, and found that these transcripts are common in 

viruses, bacteria and eukaryotes. The possible function of these ncRNAs is the formation 

of dsRNAs, which are cleaved into small interfering RNAs (siRNAs) that can directly 

modulate the gene expression. Examples of the trans-acting RNAs are the “riboswitches” 

that can regulate metabolic pathways by binding e.g. vitamins or amino acids to control 

mRNA translation or stability [63]. In the 1980s it was discovered in Escherichia coli that 

small RNA molecules (about 100 nucleotides in length) bind to a complementary 

sequence in mRNA and inhibit translation [64]. Currently, about 60 of regulatory trans-

acting antisense RNAs are described in E. coli. Translation regulation trough antisense 

RNAs in eukaryotes was first demonstrated in 1993 [65 and 66], when genes regulating 

the development of Coenorhabditis elegans were studied [67]. The idea of this regulatory 

mechanism became more accepted, when a second example of small regulatory RNA was 

discovered in C. elegans, because in that case similar sequences were found in other 

species. Nevertheless, the situation changed radically when a large number of 

microRNAs (miRNAs), were revealed in 2001 [68, 69 and 70]. “Infrastructural” 

ncRNAs, like rRNAs, tRNAs, spliceosomal uRNAs and small nuclear RNAs (snoRNAs) 
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are required for both translation and splicing. But recent findings suggest that some of 

these RNAs may also be involved in regulatory processes. For example, U1 RNA 

(besides its role in splicing) interacts with cyclin H [71], posing the possibility that this 

ncRNA is involved in cell cycle regulation. Nowadays, there is growing evidence that 

these ncRNAs are functional; they also may have a role in the regulation in epigenetic 

processes [72].     

In PRV, LLT (long latency transcript, also called as antisense transcript; AST) and LAT 

(latency-associated transcript) overlap the ie180 and ep0 genes (a homologue of icp4 and 

icp0 in HSV), respectively, have been described to play important roles in the 

establishment of latency [2 and 73]. It has not yet been unequivocally clarified whether 

the expression of antisense transcript produced by the complementary DNA strand of the 

ie180 gene is solely controlled by the LAP (LAT promoter) producing LLT (AST) or also 

by a putative promoter (antisense promoter, ASP) localized on the inverted repeat of the 

PRV genome, producing a shorter transcript [16]. In this thesis, I will use the term 

„antisense transcript‟ (AST) for the RNA molecule transcribed from the complementary 

DNA strand of the ie180 gene. 

 

Herpesviruses in neurobiology 

The central nervous system (CNS) is a complex network of synaptically linked neurons. 

To understand the function of this complex network, it is needed to distinguish between 

the functionally related and the non-related neurons; hence, various labeling techniques 

were developed in the past decade [74]. The non-viral labeling methods are almost based 

on microtubular axonal transport mechanism [75] and are useful for retrograde (opposite 

to the direction of impulse transmission; determination of the somata‟s location of labeled 

afferent nerve fibers) tracing. The first such conventional tracer was the horseradish 

peroxidase (HRP), a plant enzyme, which could be taken up by the axon and moved to 

the cell body [74]. Nowadays HRP, TrueBlue and FastBlue are commonly used tracers, 

nonetheless numerous disadvantages of these dyes are known, like they are unusable for 

multiple labeling and cannot cross synapses. The natural spreading mechanism of 

neurotropic herpesviruses, like PRV allow them to be suitable candidates for gene 

delivery into the nervous system. The replicating virus has the ability to spread through 
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the synaptically linked neurons, while attenuated strains (e.g. the Bartha strain), are used 

in neuroanatomical tracing experiments, because it spreads in a retrograde manner and 

are able to deliver large or mutated foreign DNA fragments. [76]. Recently, PRV become 

the most important viral tracer in neuroscience, because by genetic modifications (namely 

with deletion of gE, gI, us9 genes) all the requirements can be fulfilled, that are essential 

for an efficient neuronal circuit tracer. These requirements are as follows: low virulence, 

specific and retrograde spread. In several studies was pseudorabies virus used to map 

neural circuits [77, 78 and 79]. Transsynaptic pseudorabies viruses expressing various 

cytosolic or membrane-bound fluorescent proteins are effective for labeling neurons in 

the same functional circuit within a complex mesh of local neural circuits in vivo or in 

vitro. Furthermore, the activity of neurons can also be monitored by using genetically 

modified PRV expressing genetically encoded fluorescent Ca
2+

 sensors. Furthermore, 

PRVs encoding two differently colored fluorescent proteins can be utilized for revealing 

the synaptic orders of the examined neural pathway[4].  

  

Herpesviruses in cardiovascular research 

As far as we know, no other research group used genetically modified herpesviruses for 

delivery and expression of foreign DNA sequences into cardiomyocytes. 

 

The aims of the studies 

Gene expression analysis  

Global gene expression of PRV under different experimental conditions. We examined  

1., global expression of PRV genes in CHX and PAA treated and non-treated cells  

2., the dependence of expression properties of 37 PRV genes on the multiplicity of 

infection 

3., the effect of vhs- knock-out virus strain on the expression of other PRV genes  

 

PRV in neurobiology 

Development of transgenic viruses that are expressing an activity sensor and multiple 

colored fluorescent proteins. With the help of these viruses we can differentiate between 
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pre- and postsynaptic neurons, measure the activity of these connected neurons and 

determine the time-window for functional analysis.   

 

PRV as a tool in cardiovascular research 

Our aim was to use fluorescent protein encoding PRVs as gene delivery vectors for 

cardiomyocytes. An additional aim was to monitor the effect of recombinant viruses on 

cell viability.     

 

Remark: In this thesis, I will focus more on PRV gene expression studies, which were 

my main projects, than on the use of PRV as a tool in biological disciplines, in which I 

participated as a co-worker. 

 

MATHERIALS AND METHODS 

Cell lines  

Porcine kidney 15 (PK-15) cells 

Monolayer cultures of immortalized porcine kidney 15 (PK-15) cells were cultured in 

Dulbecco's modified Eagle medium (DMEM) (Sigma-Aldrich) supplemented with 5% 

fetal bovine serum (Gibco) and 80 μg gentamicin (Invitrogen
TM

) per ml at 37°C with 5% 

CO2.  

Cell viability analysis of canine cardimyocytes 

Freshly isolated myocytes were centrifuged five times in sterile 10% PBS. The 

supernatant was replaced first by 500 μM then by 1mM Ca
2+

 containing PBS solution. 

Precipitated cells were resuspended in culture medium and plated on laminin coated (1 

μg/cm2) sterile cover glass. Cells were left 4 hours at 37◦C under sterile conditions in an 

incubator ventilated with 5% CO2 and 95% air to attach to the 6-well-plate and after this 

time period non attached cells were washed out, and the rest was infected with various 

titers of recombinant pseudorabies viruses. Following the first medium (Culture medium 

consisted of serum-free medium 199 (M199) supplemented with 25mM NaHCO3, 5mM 

ceratine, 2mM L-carnitine, 5mM taurine, 100 units/mL insulin (CCTI supplemented 

medium) and 50 μg/mL gentamycin) change, subsequent medium changes were carried 

out every day. Morphological changes of cells were observed by light microscope on a 
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daily basis parallel with physiological measurements. Troponeon-positive cells were 

examined by fluorescence microscopy from one to three days following isolation at 

standard titer of viruses. Infection efficacy was determined separately for infected cells 

by manual cell counting using a fluorescent microscope (Olympus IX-71) [5]. 

 

Viruses and infection 

Virus strains 

Strain Kaplan of pseudorabies virus (PRV-Ka) was used for gene expression analysis and 

for developing some of recombinant virus strains (Ka-gEI-Orange, Ka-VHSlac-

gEI∆DupCFP, PRV-rrep0lacgfp, Ti-PRV08) [4 and 76]. PRV Bartha (PRV-Ba) strain 

was also employed for producing recombinant PRVs (Ba-DupmemTFP, Ba-DupGreen, 

Ba-NeutRed [80]. For the gene expression study Ka-vhs∆ strain was applied. Viruses 

were maintained in cultured of immortalized porcine kidney cells.  

Viral stock preparation and infection 

The virus stock used for the gene expression experiments was prepared as follows. 

Rapidly-growing semi-confluent PK-15 epithelial cells were infected at an MOI of 0.1 

pfu/cell and were incubated until a complete cytopathic effect was observed. The cell 

debris was removed by low-speed centrifugation (10,000 g for 20 min). The supernatant 

was concentrated and further purified by ultracentrifugation through a 30% sugar cushion 

at 24,000 rpm for 1 h, using a Sorvall AH-628 rotor. The sedimented virus was 

resuspended in sodium Tris-EDTA buffer. After the addition of proteinase-K (l00 μg/ml 

final concentration) and sodium dodecyl sulfate (SDS; 0.5% final concentration), the 

lysate was incubated at 37°C for 1 h, which was followed by phenol-chloroform 

extraction and dialysis. The number of cells in a culture flask (Corning, 150 cm
2
) was 

5x10
6
. In high-MOI and in low-MOI experiments, 5x10

7
 and 5x10

5 
pfu viral particles, 

respectively, were applied for the infections. Thus, in the high-MOI experiment, 

practically all the cells were infected, while in the low-MOI experiment, approximately 

5x10
5 

cells ((10% of the cells in a culture flask) were infected by the virus) were infected 

at a MOI of 0.1 or 10 for the gene expression analysis. The two experiments were run 

simultaneously. We ran four independent sets of measurements for each time point in 

both low and high-MOI studies, but occasionally we had to remove data because of low 
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amplification efficiencies or the amplification of non-specific products in the reaction. 

Thus, in some genes, instead of four, we only used three independent data. Infected cells 

were incubated for 1 h, followed by removal of the virus suspension and washing with 

phosphate-buffered saline (PBS). After the addition of new medium to the cells, they 

were incubated for 0, 1, 2, 4 or 6 h. For the analysis of antisense transcripts, cells were 

also treated with 100 μg/ml cycloheximide (CHX), a protein synthesis inhibitor, or with 

400 μg/ml phosphonoacetic acid (PAA), inhibitor of DNA replication 1h prior to low-

MOI virus infection.   

For the examination of knock-out virus stains, cells were infected with high (10 pfu/cell) 

multiplicity of infection of wild-type (Ka-strain), vhs-mutant viruses and were incubated 

for 1, 2, 4, 6, 8, 12, 18 or 24h. In our studies, mock-infected cells were used as controls, 

which were otherwise treated in the same way as the infected cells. The virus stock for 

PRV-based delivery system was made by infecting PK-15 cells with 1 pfu/cell and then 

harvesting them for 24h. After this step cells were freezing and thawing three times then 

cells were centrifuged and the pellet was discard. The supernatant was stored at -80 C° in 

400 μL aliquots until further use.     

  

RNA preparation 

RNA was extracted by using the NucleoSpin RNA II Kit (Macherey-Nagel GmbH and 

Co. KG), as described previously [21]. Briefly, after the cells had been collected by 

centrifugation and lysed by buffer containing chaotropic ions, the nucleic acids were 

docked to a silica column. The DNA was removed with RNase-free DNase solution 

(supplied with the NucleoSpin RNA II Kit). Finally, the RNAs were eluted from the 

column in RNase-free water (supplied with the kit). To eliminate the residual DNA 

contamination, all RNA samples were treated by an additional digestion with Turbo 

DNase (Ambion Inc.). The concentrations of the RNA samples were measured by 

spectrophotometric analysis with a BioPhotometer Plus instrument (Eppendorf). RNA 

samples were stored at -80 °C until further use.  
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Quantitative real-time RT-PCR 

A two-step quantitative real-time RT-PCR was carried out for the transcriptional analysis.  

Reverse transcription (RT)  

Total RNA isolated from infected cell cultures and was reverse-transcribed into cDNA 

for PCR analysis. RTs were performed in 5 μl of solution containing 0.07 μg of total 

RNA, 2 pmol of the gene specific primer, 0.25 μl of dNTP mix (10 μM final 

concentration), 1 μl of 5× First-Strand Buffer, 0.25 μl (50 units/μl) of SuperScript III 

Reverse Transcriptase (Invitrogen) and 1 U of RNasin (Applied Biosystems Inc.) and the 

mixture was incubated at 55°C for 60 min. The reaction was stopped by raising the 

temperature to 70°C for 15 min. No-RT control reactions (RT reactions without 

Superscript III enzyme) were run to test the potential viral DNA contamination by 

conventional PCR. RNA samples with no detectable DNA contamination were used for 

quantitative RT-PCR reactions.  

 

Real-time PCR 

First-strand cDNAs were diluted 10-fold with DEPC-treated water (Ambion Inc.) and 

after that subjected to real-time PCR analysis. Real-time quantitative PCR experiments 

were performed with a Rotor-Gene 6000 cycler (Corbett Life Science). All reactions were 

carried out in 20-μl reaction mixtures containing 7 μl of cDNAs, 10 μl of ABsolute 

QPCR SYBR Green Mix (Thermo Fisher Scientific), 1.5 μl of forward and 1.5 μl of 

reverse primers (10 μM each). The running conditions were as follows: (1) 15 min at 

95°C, followed by 30 cycles of 94°C for 25 sec (denaturation), 60°C for 25 s (annealing), 

and 72°C for 6 s (extension). The absence of nonspecific products or primer dimers was 

indicated by observation of a single melting peak in melting curve analysis. An additional 

extension and detection step was applied for those primers that produced primer dimers: 

for 2 s at a temperature just below the Tm (melting point) of the specific product and 

substantially above the Tm of the primer dimers. With this technique we could eliminate 

nonspecific fluorescent signals produced by primer dimers. Following the PCR reaction, 

melting curve analysis was performed to control amplification specificity (specificity was 

defined as the production of a single peak at the predicted temperature and the absence of 

primer dimers) by measuring the fluorescence intensity across the temperature interval 
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from 55°C to 95°C. The 28S ribosomal (r)RNA was used as the loading control 

(reference gene) and was amplified in each run. H2O was included as a no-template 

control, and cDNA derived from the reverse-transcribed RNAs of non-infected cells was 

used as a negative mock-infected control. We applied SYBR Green-based real-time PCR 

because of the lower costs and simpler protocol than for TaqMan probe-based methods 

for instance [21]. It has recently been demonstrated that the SYBR-based method of 

detection is as sensitive and specific, and has a similar dynamic range to that of the 

TaqMan-based technique [81].  

 

Data analysis 

The following formula was used for calculation of the relative expression ratio (R):  
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where R is the relative expression (quantification) ratio; E is the efficiency of 

amplification; Ct is the cycle threshold value; sample refers to any particular gene at a 

given time point; and ref is the 28S rRNA, which was used as a reference gene and was 

amplified in each run. Instead of individual values, we applied the average maximal value 

of E
Ct

 for each gene as the control. The relative copy numbers of mRNAs were calculated 

by normalizing cDNAs to 28S rRNA using the Comparative Quantitation module of the 

Rotor-Gene 6000 software (Version 1.7.28, Corbett Research), which automatically 

calculates the real-time PCR efficiency sample-by-sample. Thresholds were set 

automatically by the software. 

Data were analyzed by the Microsoft Excel program, the average and the standard 

deviance functions of the software were used. The inhibitory effect of CHX or PAA was 

calculated via the ratio of the drug-treated and untreated (UT) R values at 2, 4 and 6 h pi 

for CHX: Ri-CHX = RCHX/RUT, or 4 and 6 h pi for PAA: Ri-PAA = RPAA/RUT. Thus, a low 

value indicates a high inhibitory effect and vice versa. To measure the net change in R 

between two consecutive time points, R∆ was calculated via the following formula: R∆ = 

R(t+1)-Rt. The rate of change was calculated as follows: Ra = R(t+1)/Rt. The effect of VHS 

protein on the gene expression was calculated by using the Rr values, a ratio between the 
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R values of vhs-knockout and wt PRVs ( wtvhsr RRR / ), where R vhs and Rwt 

represent the R value of a particular gene at a given time point in vhs-knockout and wild-

type genetic background, respectively. A high Rr value indicates an excessive inhibitory 

effect of the VHS protein on the transcript level of a particular gene in the wild-type 

virus. Furthermore, we have calculated the average Rr for the E, E/L and L genes for 

every time points: wtvhsr RRR / . Pearson‟s correlation was used for the analysis of the 

relationship between low- and high-MOI and wild-type and mutant virus infections. 

Pearson's correlation coefficient (r) was calculated as follows. 

r =  
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n
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The correlation measures the linear relationship between two variables, X and Y. 

Pearson‟s coefficient (r) is a number ranging from -1 to +1 that measures the degree of 

association between X and Y. If X and Y are independent, Pearson‟s correlation 

coefficient is 0. A positive r value for the correlation implies a positive association (large 

values of X tend to be associated with large values of Y, and small values of X tend to be 

associated with small values of Y). A negative value for the correlation means an inverse 

association (large values of X tend to be associated with small values of Y, and vice 

versa). For gene expression analysis the above mentioned formulas were used [21]. 

 

Construction of recombinant viruses  

Targeting plasmid vectors were used to deliver reporter genes and/or mutations to the 

PRV genome. Homologous recombination between the targeting vector and the virus was 

used to deliver foreign sequences of a mutation to the PRV genome. After isolation of 

targeted virus DNA and sub-cloning it to a plasmid vector, different colored fluorescent 

protein coding genes and activity sensor markers were inserted into the cloned viral 

sequence. After this the viral DNA was transfected along with the targeting plasmid to 

PK-15 cells, where the homologous recombination took place. The recombinants were 

then isolated on the basis of the fluorescence of the infected cells.  
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Flanking sequences 

PRV DNA segments of interest were subcloned into members of a palindrome-containing 

positive-selection vector family (pRL479, pRL525, pRL494) [82]. Subsequently, viral 

DNA sequences were cut with one or two unique restriction endonucleases, followed by 

Klenow filling-in of 5‟-overhangs and insertion of either an EcoRI or a HindIII linker, 

which served as a cloning site for the incorporation of reporter gene expression cassettes 

[4].  

Reporter genes 

For creating membrane targeted FPs, reporter genes (e.g. Orange, memTFP or CFP) were 

fused with MARCKS2 (myristoylated alanine-rich C-kinase substrate). Each expression 

cassette was modified to contain either EcoRI or HindIII restriction endonuclease sites at 

both ends for subcloning into flanking viral sequences [4]. 

 

gE-gI (glycoprotein E and I gene)-mutant  

The BamHI-7 PRV DNA fragment was isolated and subcloned into the pRL525 vector to 

give p525-B7. The 1855-bp StuI – AgeI DNA fragment of p525-B7 was replaced by an 

EcoRI linker generating pgEgI-RI. Removal of the StuI – AgeI DNA fragment resulted in 

the inactivation of both gE and gI genes of the virus.  

 

vhs (virion host shut-off gene)-mutant 

The 2526-bp XhoI DNA fragment containing the entire VHS gene was subcloned into the 

SalI site of pRL494 resulting in p494-Xh. The unique NruI site of this DNA segment was 

converted to an EcoRI site (generating pVHS-RI) by linker insertion, which resulted in a 

frameshift mutation in the VHS gene. LacZ gene was inserted in the unique EcoRI site 

and the former was controlled by a CMV promoter. This construct was transfected along 

with wild-type (Ka) PRV in cultured cells, where homolog recombination occurred.  

 

ep0 ( early protein 0)-mutant  

The KpnI-F fragment of the viral genome was cloned into the KpnI site of pRL425, then 

the BamHI-14 fragment of 1 390 bp containing almost the entire EP0 gene, was deleted 

from the plasmid by BamHI digestion followed by ligation of the DNA ends. This 
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plasmid was treated with BamHI and Klenow enzyme, and then HindIII linkers were 

attached to DNA, resulting in pΔEP0. The HindIII fragment of the expression cassette 

was engineered into the HindIII site of pΔEP0, resulting in the transfer plasmid 

(pΔEP0lac). Plasmid pΔEP0lac was linearized by EcoRI, and used for cotransfection 

with the purified viral DNA to produce recombinant virus. 

 

rr (ribonucleotide reductase gene)-mutant 

Mutant PRV was engineered by deleting the ep0 and rr genes (Prv-rrep0lacgfp), which 

made the virus unable to replicate in neurons.  The 5-kbp SalI-F fragment of PRV DNA 

containing the rr gene was isolated and cloned into pRL494, resulting in pRR. This 

plasmid was cleaved with Scal and Mlul restriction enzymes, resulting in the loss of a 

1,805-bp sequence which includes a 1,789-bp fragment from the 3‟ end of rrl and a 7-bp 

sequence from the 5‟ end of rr2. EcoRI or HindIII linker was attached to the DNA ends 

filled up with Klenow enzyme, generating pRRI and pRRH, respectively. LacZ gene 

casette was subcloned to the EcoRI or HindIII site of the plasmid.  

 

ASP (putative antisense promoter) region.  

The BamHI-8‟-F PRV DNA fragment was isolated and subcloned into the pRL525 vector 

resulting in p525-B8‟-F. The DraI site of this PRV sequence was converted to EcoRI by 

linker insertion generating pASP-RI. Alternatively, BamHI-8‟-F fragment was subcloned 

into pRL479 to give p479-B8‟-F, followed by conversion of the DraI site to HindIII 

resulting in pASP-HIII. The various reporter gene expression cassettes (gfp, troponeon) 

were inserted either into the EcoRI site of pASP-RI or into the HindIII site of pASP-HIII, 

resulting in the generation of ASP-based targeting constructs.  

 

Neut region 

The BamHI-8‟ segment of viral genome was subcloned to pRL494 plasmid vector. The 

unique StuI restriction endonuclease site of BamHI-8‟ fragment of PRV DNA was 

converted to EcoRI by linker insertion obtaining a plasmid termed pB8‟-RI. We used 

pDsred2 (purchased from Clontech Laboratories) as the source of red fluorescent protein 

gene. The AseI site at the 5‟-end of hCMV promoter and the AflII site at the 3‟-end of 
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SV40 polyadenylation sequence were converted to EcoRI resulting in an expression 

cassette containing the DsRed2 gene and the regulatory sequences bracketed by EcoRI 

sites. This EcoRI fragment was subcloned to the EcoRI site of pB8‟-RI, which resulted in 

the targeting vector, termed pNeut-DsRed. BaDsRed was linearized by HindIII enzyme 

and used to generate recombinant viruses by means of homologous recombination using 

standard techniques.  

 

Transfection and selection of recombinant viruses 

Reporter protein-encoding plasmids were transfected to PK-15 cells with 

Lipofectamine
TM

 transfection reagent (Invitrogen 
TM

) according to manufacturer‟s 

instructions. Growing PK-15 cells were co-transfected with linearized targeting vector 

and viral DNA. Recombinants were selected on the basis of fluorescence/color of 

infected cells and were isolated by 6-15 cycles of plaque purification.  

Recombinant PRV strains which were used during my work:  

Name Genome Marker gene 

Ka-gEI-Orange Ka Orange 

Ba-DupmemTFP Ba TFP 

Ka-VHSlac Ka LacZ 

Ka-ep0lac Ka LacZ 

Ka-VHSlac-gEI∆DupCFP Ka LacZ and CFP 

Ba-DupGreen Ba GFP 

Ba-NeutRed Ba dsRed 

Prv-rrep0lacgfp Ka GFP and LacZ 

Ti4-PRV08 Ka TN-L15 and dsRed 
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RESULTS 

Gene expression analyses  

Expression kinetics of regulator genes of PRV using cycloheximide (CHX), PAA 

treatment and untreated samples 

Traditionally, herpes virus genes are classified into distinct kinetic groups on the basis of 

the effects of protein and DNA synthesis inhibition on the gene expression [21]. To test 

the requirement of de novo protein synthesis for PRV mRNA production, PK-15 cells 

were untreated or treated with 100 μg/ml CHX prior to the infection of cells with the 

virus at a MOI of 0.1. At the indicated time points, RNA was isolated and converted to 

cDNA, which was subsequently analyzed by qRT
2
-PCR. The degree of inhibition [1-Ri-

CHX) × 100] was found to range between 97.3 and 100% for all but one protein encoding 

PRV gene (the ie180 gene) and two antisense transcripts [the long-latency transcript-1 

(LAT), antiparallel to ep0, and the long-latency transcript-2 (AST), antiparallel to ie180). 

IE180 mRNA displayed a significantly increased level of expression in the CHX-treated 

samples at the analyzed 3 time points: 2.27-fold at 2 h; 5.55-fold at 4 h; 1.4-fold at 6 h pi, 

the expression of IE180 mRNA was found to be significantly increased. We explain this 

phenomenon in that the IE180 proteins exert an inhibitory effect on their own synthesis 

(upon the binding of their own promoters), which is resolved by CHX blocking protein 

synthesis from the IE180 mRNAs. The other exception for the negative CHX effect is 

AST: a 1.72-fold increase at 2 h and a 3.983-fold increase at 4 h. Interestingly, at 6 h pi 

AST is significantly repressed by CHX. The repression of LAT expression at 2 h pi is 

relatively low, but this antisense transcript is significantly blocked by CHX at 4 and 6 h 

pi. Overall, our CHX analysis indicated that the only true IE protein-encoding gene of 

PRV is ie180. While the icp27 and icp0 genes in the HSV are IE genes, their PRV 

homologues ul54 [11] and ep0 [10] genes were earlier described as E genes, which was 

confirmed by our CHX analysis (Figure 1). In HSV, icp22 gene is expressed with IE 

kinetics; our analysis revealed that its homologous counterpart, the us1 gene of PRV, is 

drastically blocked by CHX, and hence it is not an IE gene. As a result of CHX treatment, 

AST exhibits elevated levels at 2 and 4 h pi, which indicates that IE180 transcription 

factor exerts a negative effect on its expression. Thus, AST appears to be an IE transcript. 
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However, AST displays fairly low relative expression at 1 h pi, and therefore it cannot be 

regarded as an IE gene beyond doubt [21]. 

 

 

Figure 1.  

The effect of CHX on the expressoin  

of ep0, LAT, ie180 and AST at 2h, 4h  

and 6h pi .  

 

 

 

 

For examination of the dependence of the PRV genes on DNA replication, PK-15 cells 

were infected with the virus (0,1 MOI) in the absence or presence of 400 μg/ml PAA, an 

inhibitor of DNA polymerase. It was expected that PAA would exert a more drastic effect 

on the L genes because the expressions of these genes are highly dependent on DNA 

replication. However, PAA must affect the E gene expression, too. The reason for this is 

that the gene expression is dependent not only on the promoter activity, but also on the 

copy numbers of the genes, which are higher after DNA replication than in the initial 

phase of infection when the PRV DNA is represented in a single copy in a cell (at least in 

our system). The 2 antisense transcripts displayed a surprising response to PAA 

treatment: the level of LAT increased to 2.94-fold at 4 h, and droped to 0.007-fold at 6 h 

pi relative to the untreated sample; while the level of AST increases close to 40-fold at 4 

h, and 3-fold at 6 h pi. The ie180 gene expression is also significantly inhibited by PAA 

(0.211); however, we found that ie180 was expressed in an "irregular" manner in other 

analyses. We found, that the ie180 and AST and LAT genes cannot be classified on the 

basis of the Ri-PAA data alone, because they show unique expression kinetics. LAT and 

AST respond differently to CHX and PAA treatment, indicating that these antisense 

transcripts are, at least partially, under different regulation. We presume that the putative 

antisense promoter (ASP; [10]) controls the expression of AST [21]. 
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Dependence of expression properties of 37 PRV genes on the multiplicity of infection 

In this study, PK-15 cells were infected with pseudorabies virus at MOIs of 0.1 and 10 

[83]. Albeit the difference in the infectious dose in the two parallel experiments was 100-

fold, an individual cell was invaded by only 10 times more virus particles in the high-

MOI than in the low-MOI experiment (5x10
6
 versus 5x10

5
 infected cells), the reason for 

this being that in the latter case approximately 90% of the cells remained uninfected. 

Cells were harvested at 0, 1, 2, 4 and 6 h post-infection (pi), as in our earlier report [21]. 

We used 6 h as the maximum infection period in order to exclude the possibility of the 

initiation of new infection cycles in the low-MOI experiment. In this study, we analyzed 

the expression of 37 genes (53% of the total PRV genes) and two antisense transcripts 

(AST and LAT) (Figure 2) [83].  For the calculation of relative expression ratios (Rs), we 

used the average 6 h E
Ct

 values of the high-MOI experiments of both the “samples” and 

the “references” as controls. We used a correction factor of 10 for the calculation of R for 

the low-MOI experiment. With this calculation technique, approximately the same 

numbers of infected cells, and hence the relative amounts of transcripts in an average 

infected cell, were compared in the two experiments. However, in the high-MOI 

experiment, the proportion of the genome copy number in an infected cell was also 10-

fold higher on average, at least before the start of viral DNA replication (the first 2 h pi), 

the reason for this being that in the high-MOI experiment 10 virus particles infected an 

average cell, while in the low-MOI infection 10 per cent of the cells were infected with a 

single virus particle. Thus, to compare the gene expressions from a single virus DNA per 

cell, two normalizations are necessary: multiplication of the R values of the low-MOI 

data by 10, and division of the R values of the high-MOI data by 10. In some 

calculations, the original data were handled accordingly (see the indications in the 

particular cases). The relationship between the infectious dose and the genome copy 

number of PRV becomes non-linear in later stages of viral infection; the DNA copy 

numbers in the two experimental situations are therefore not comparable on the basis of 

the infectious dose. The R values of LAT and AST were calculated by using the 6 h E
Ct

 

values of the corresponding genes, ep0 and ie180, respectively, as the reference gene 

[83]. 
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Figure 2. Localization of examined PRV genes on the viral genome. The direction of 

transcription is indicated by the arrows. Grey boxes indicate examined genes. Broken-

line boxes show the known antisense transcripts of PRV. Unexamined genes are shown as 

white boxes.    

 

R  values were used to monitor the net change in the quantity of viral transcripts within a 

given period of time. Ra shows the ratio of the changes in the amounts of transcripts 

between two adjacent time points. We considered two principles for the selection of 

genes for expression analyses [83]. (1) We analyzed the upstream genes of each nested 

gene cluster, the reason for this being that these genes are not overlapped by other genes, 
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and the amounts of these transcripts are therefore proportional to their protein products. 

This is in contrast with the downstream genes, which, if transcribed from the promoter of 

an upstream gene, are not translated, because they do not have cap sequences that are 

required for the recognition by the ribosomes. (2) Furthermore, we analyzed genes that 

are of primary importance in the regulation of global viral gene expression, such as ie180, 

ep0, vhs and ul54.  

In the first 2 h of infection, the viral DNA replication has not yet been initiated, and the 

copy number of viral genomes in a cell therefore corresponds with the infectious dose. In 

this analysis, we found that the mRNA levels of most examined PRV genes were higher 

in the cells infected with the high MOI than in those infected with the low MOI at both 1 

h and 2 h pi. This was not unexpected since in the former case viral DNAs were 

represented in an approximately 10-fold higher proportion in an average infected cell. 

Exceptions to this were the transcripts ul1, ul33, and ul51 mRNAs at 1 h pi, and ul36, 

ul38, ul43, and ul48 mRNAs at 2 h pi, and at both 1 h and 2 h: ie180 and ul30 mRNAs, as 

well as, LAT and AST. However, the expression levels normalized to the genome copy 

number (i.e. using R/10 values in the high-MOI infection) showed an inverse pattern: 

only a few genes were expressed at higher abundance in the high-MOI than in low-MOI 

infection. AST was expressed at a considerably higher quantity in the cells infected with 

the low MOI than in those infected with the high MOI. In the high-dose infection 6 of the 

37 genes (ie180, ul36, ul50, ul54, us1, and ul24) exhibited higher expression levels at 1 h 

than at 2 h pi. It should be noted that 3 of them (ie180, us1 and ul54) are regulatory 

genes. The fourth regulatory PRV gene, ep0, is expressed at a very high level during the 

first 2 h in the high-MOI infection (R1 h=1.87, R2 h=2.05). Apart from ep0, ul5 was the 

only gene that was expressed at a higher extent in the early stages of infection than at 6 h 

pi in the high-MOI experiment. The ie180 gene is the only one that was expressed in a 

higher amount at 1 h than at 2 h pi under both experimental conditions. Overall, it 

appears that the 4 regulatory genes were expressed at relatively high levels before the 

onset of DNA replication in the high-MOI infection, which was not the case in low-MOI 

infection, with the exception of the ie180 gene. We think that the reason for the higher 

expression of regulatory genes at the onset of viral DNA replication in the high-MOI 

infection is that more regulatory proteins are needed to carry out the multiplication of a 
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higher copy number of the viral genome. The rate of change in gene expression within 

the 1 h to 2 h interval (R2h/R1h) was higher in more than two-thirds of the PRV genes 

(25/37) in the low-MOI than in the high-MOI infection. The proportion of AST to ie180 

mRNA molecules (RAST/Rie180) was 0.47 at 1 h pi, and 4.72 at 2 h pi in cells infected with 

the low MOI, while this ratio was extremely low (~0.01) at both 1 h and 2 h pi in the 

high-MOI infection (these data are only semi-quantitative since the primer efficiencies in 

the RT reaction are not necessarily equal for the two transcripts). Thus, the proportion of 

AST to ie180 mRNA (RAST-low MOI/Rie-low MOI) / (RAST-high MOI)/Rie-high MOI)  was higher at 

1 h pi and 2 h pi in the low-MOI than in the high-MOI infection. The ep0 gene is 

expressed in higher quantity at both 1 h pi and 2 h pi in the high-MOI infection than in 

low-MOI infection, which is in contrast with LAT, its antisense partner, whose 

expression level was lower in the high-MOI infection. Thus, the ratios of LAT to ep0 

mRNA molecules were 8.33-fold higher at 1 h pi and 13.05-fold higher at 2 h pi in the 

low-MOI than in the high-MOI experiment, although, unlike AST, LAT is abundantly 

expressed in the high-MOI infection (Figure 3) [83].  

 

Figure 3. The ratio of ie180 and ep0 mRNAs to their antisense partners 

The continuous lines illustrate the ratio of ie180 mRNA to AST, while the dotted lines 

represent the ratio of ep0 mRNA to LAT at the low- and high-MOI infections. 
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At 4 h pi the transcript levels of more than three-quarters of the PRV genes (28/37) were 

still higher in the cells infected with the high MOI than in those infected with the low 
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MOI. However, in about two-third of the viral genes the rate of change (Ra values) in the 

expression level was higher in the low-MOI than in the high-MOI infection 24/37 within 

the 2 h to 4 h period, and 25/37 within the 1 h to 4 h period . In the low-MOI infection, 

the amounts of 5 transcripts (ul5, ul44, us1 and us6) were less than 10% of those in the 

high-MOI infection at 4 h pi. All of the examined us genes are expressed at a 

significantly lower level in the low- than in the high-titer infection at 4 h pi. There were 

significant decreases in the quantities of both AST and LAT in the low-titer infection at 4 

h pi relative to the 2 h values. We explain this phenomenon by the negative effect of the 

regulatory genes on their antisense partners. Regulatory genes are upregulated at the 

onset of DNA replication (in order to facilitate this process), which exerts an inhibitory 

effect on the expression of AST and LAT. In contrast, there were increases in the 

amounts of antisense transcripts in the high-MOI in this time interval. However, while 

LAT was expressed at high level under the high-MOI conditions, the AST expression 

remained extremely low in this period of infection. The amount of the ie180 transcript 

was practically unchanged within the 2 h to 4 h infection period under either infection 

conditions. There was a 4.7-fold increase in the ep0 mRNA level within the 2 h to 4 h 

infection period (R4h/R2h) in the low-MOI infection, as compared with only 1.4 in the 

high-MOI experiment. On average, the amounts of mRNAs in low titer infection became 

higher than those in the high-infection titer by 6 h pi in more than half of the PRV genes 

(22/37). We assume that the reason for this might be that the ie180 gene, the major 

coordinator of gene expression, is expressed at higher levels at 4 and 6 h pi at low-MOI 

than at high-MOI infection. Moreover, in the high-MOI infection the amount of AST 

reached almost 30% of the transcript level in the low-MOI infection, while LAT was 

expressed at approximately the same level under the two infection conditions at 6 h pi. 

The genes expressed at lower levels in the low-dose infection appeared to be clustered on 

adjacent genomic locations (Fig. 2). Each gene and the two antisense transcripts were 

expressed at higher rates (Ra values) within the 4 h to 6 h period in the low-MOI than in 

the high-MOI infection without exception. In the high-MOI infection, 11 genes and LAT 

peaked at 4 h within the 6-h examination period, while in the low-MOI infection only the 

us3 transcript had a slightly lower R value at 6 h than at 4 h pi. The us3 gene was the only 

one among the 70 PRV genes which was expressed at a higher level at 4 h than at 6 h pi 
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in another study [84]. Intriguingly, the ep0 mRNAs reached a 3.5-fold higher level in the 

low-dose than in the high-dose infection in an average cell at 6 h pi. Furthermore, at 6 h 

pi the ul1 and ul51 genes were expressed at an approximately 10 times higher level under 

the low-MOI than under the high-MOI conditions [83]. 

Most genes were expressed at a lower level in a cell in the low-MOI experiment in the 

first 4 h of infection, but more than half of these gene products surpassed the high-MOI 

values by 6 h pi. The R values of 3 PRV genes (ie180, ul1 and ul30) were higher in the 

low-MOI than in the high-MOI infection at every examined time point, while the 

opposite was true (the R values of high-MOI were always higher) in 13 genes: ul5, 

ul15,ul17,ul19, ul23, ul24, ul44, ul49.5, ul54, us6, us9, us1 and us3 (Fig. 4). These latter 

genes form clusters on the basis of their localization on the genome (genes in close 

vicinity are underlined), which suggests that the adjacent genomic sequences might be 

under common regulatory control. This observation is supported by the similarity of the 

Ra curves of adjacent genes [83]. For example, the expression rates of the ul36, ul37 and 

ul38 genes were similar to each other in both experiments, but each of them exhibited an 

inverse expression pattern in the two infection conditions. All genes were expressed at a 

higher rate (Ra) within the 1 h to 6 h period of infection in the low-titer experiment, 

except for ie180 and the two antisense transcripts. The quantities of ie180 mRNAs were 

similar in the two experiments, except at 1 h pi, where the level of the transcripts was 2.8-

fold higher in the low-MOI infection. Thus, the amount of total ie180 transcript in an 

infected cell appears to be under strict control, independently of the initial infection 

conditions. In contrast, the expression of the ep0 gene differed basically in the two 

experiments. In the high-MOI experiment, the amount of ep0 mRNAs was high from the 

first hour of infection, and its expression even declined by 6 h in the high-MOI infection, 

while the amount of these transcripts rapidly increased throughout the 6-h infection 

period in the low-dose infection, and reached a 3.5-fold higher level compared to that of 

the high-dose infection by 6 h.  The ratio of sense and antisense transcripts during the 6-h 

infection period displayed intriguing patterns. First of all, in the high-MOI infection the 

amount of AST and its ratio to ie180 mRNA were very low throughout the 6-h infection 

period. We demonstrated an inverse relationship in the expression kinetics of ie180 

mRNA and AST and also ep0 mRNA and LAT in the low-MOI infection; however, we 
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did not observe this inverse relationship between the complementary transcripts under the 

high-MOI conditions. 

Figure 4. Heatmap-like representation of the ratio of transcripts produced in the low-

MOI and high MOI infection (Rt low MOI/Rt high MOI) PK-15 cells were infected with the PRV-

Ka strain t different MOIs (0.1 and 10). Real-Time PCR data were normalized to 28S 

RNAs. The Rlow/Rhigh values are plotted in a heat map-like manner. Black boxes indicate 

the highest ratio, and dark-red boxes the lowest values. White boxes demonstrate 

approximately equal values. 
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In our earlier report [21], we showed that treatment of infected cells with cycloheximide 

(a protein synthesis blocker) resulted in significant increases in the amounts of both ie180 

mRNA and AST, while phosphonoacetic acid (a DNA synthesis inhibitor) treatment led 

to a decrease in ie180 mRNA and a significant increase in the AST level. These results 

suggest a negative effect of the IE180 transactivator on ASP synthesis. We explain the 

huge drop in ASP level in the infected cells in the early stage of the high-MOI infection 

by the presence of a 10-fold higher amount of inhibitory IE180 protein localized in the 

tegument of the infecting virions [85]. The same reason could account for the lower ie180 

mRNA level in the high-MOI infection. The us1 gene was expressed in the late kinetics 

in our earlier low-MOI analysis in both phophonoacetic acid-treated and non-treated 

samples. These results are in concordance with those of the present high-dose infection 

experiment, i.e. us1 mRNA was expressed at a relatively low level at 1 h, which even 

dropped by 2 h pi. The highest rate of us1 mRNA expression was observed at 4 h, with a 

rate (R4 h/2 h = 13.32) typical of L genes. The Pearson correlation coefficients of the R, R , 

and Ra values precisely show the degree of similarity (or differences) of the expression 

kinetics of the genes in the low- and high-MOI experiments (Figure 5). Several genes 

exhibited high correlations for all three parameters. For example, the ie180, ul19, ul21, 

ul22, ul42 and ul43 genes gave high correlation coefficients for the R, R  and Ra values. 

The us1 gene behaved in an irregular manner; it gave a relatively high correlation for the 

R values, no correlation of R , and an inverse correlation for the Ra values. AST yielded 

relatively high negative values for all three parameters, indicating a significant negative 

correlation. The expressions of LAT under the two experimental conditions did not 

correlate on the basis of the R values, whereas it gave a very high negative correlation for 

its R  and Ra values [83].  

 

Figure 5. Typical expression curves. These pictures show the expression dynamics of two 

genes in the low-MOI and high-MOI infection.  
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Effect of vhs-knock out virus strain on the expression of other PRV genes 

VHS molecules modify the transcript levels of each individual gene in a varying manner, 

but we have observed important regularities of these effects typical to the different 

kinetics classes of genes (see below). Data show that all of the examined PRV transcripts 

are expressed at a lower level from the vhs  genome than from that of wild-type‟s (Rr = 

R vhs/Rwt  1) at 1h pi (Figure 6). Our explanation for this phenomenon is as follows. 

Although, viral mRNAs are also the targets of VHS protein, the preferential degradation 

of cellular mRNAs by the viral RNase at this stage of infection might compensate this 

effect in two different ways: by the elimination of competition between the host and the 

virus for the translation apparatus of the cell in favor of the virus, and by the production 

of new ribonucleotides serving as raw materials for the newly synthesized viral 

transcripts. We have found no bias of VHS effect toward any kinetic classes of PRV 

genes at this time of infection. At 2 h pi tegument VHS proteins exert an inhibitory effect 

on the accumulation of PRV transcripts in all of the three kinetic classes (E, E/L and L; 

Figure 6) with a few exception. Thus, tegument-derived VHS proteins appear to switch 

their inhibitory effect toward viral mRNAs, but without distinction between the kinetic 

classes of viral transcripts within the 1 to 2 h period of infection [86]. There is an overall 

fall of VHS effect in the 2 to 4 h infection period (Figure 7) ( wtvhsr RRR / ).The 

gene expression curves show that the average transcript levels of E/L and L genes in vhs 

null mutant become practically the same as in the wt virus at 4 h pi. This is in contrast to 

the E transcripts whose average levels remain higher in vhs mutant strain than in wt virus, 
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but their levels become also somewhat lower at 4h than at 2h pi in the mutant PRV. We 

explain this phenomenon by the dampening level of tegument VHS proteins, which 

uniformly acts on the different kinetic classes of viral genes and the raising level of newly 

synthesized (de novo) VHS proteins, which appear to lower the levels of E transcripts in a 

differential manner. Expressions of early PRV genes tend to be significantly higher in 

vhs-knockout than in wt virus from 4 to 24 h pi, which is most remarkable at time points 

8 and 12 hours of infection (Figures 6 and 7).  

Figure 6. Heatmap-like presentation of the ratio of transcripts produced in vhs-mutant and 

wild-type virus infection (Rr = R vhs/Rwt) Black boxes indicate the highest ratio, and red 

boxes the lowest values. Light-grey boxes demonstrate approximately equal values 
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Figure 7.  This figure shows that the VHS protein exerts its strongest effect on E and E/L 

genes between 8 and 12 h pi. 
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Average late gene expressions have not been significantly changed in the mutant virus 

compared to the wt virus after 4h of infection. There are some L genes whose transcripts 

levels are even lower in the vhs  background than in the wild-type‟s at many time points 

of infection; for example, ul1, ul5, ul10, ul19, ul44, ul48, and us1 genes. The average 

levels of E/L transcripts always fall between E and L in the 6 h to 24 h pi interval. No 

selective effect of VHS activity is observed in E/L and L kinetic classes of PRV genes at 

4 and 6 h time points of infection. In fact, the average effect of VHS protein is similarly 

low on E/L and L transcripts at the first 6 h of infection, while this is not the case in E 

genes of the virus (Fig 7). The rR  value of E genes rapidly increases within the 4 h to 12 

h period but sharply drops by 18 h pi; however, the amount of these transcripts remains 

higher in vhs-deleted virus than in wt virus even at this time point (18 h) of infection. The 

rR  value of E/L transcripts becomes larger than 1 from at each time points between 6 to 

18 h peaking at 8 h pi at a medium level compared to E mRNAs. According to our date, 

there is no selective effect of VHS protein on E/L transcripts at 24 h pi. Transcripts of L 

genes are only slightly affected by the de novo VHS proteins within the 6 h to 24 h 

interval of infection with a peak of Rr = 1.56 at 12 h pi. Examination of individual E 

genes reveals that their maximal expressions are shifted from 4 and 6 hours to 8 and 12 

hours in most genes (Figure 7). Furthermore, while in the wt virus the average R values 

of L genes are higher than those of E genes; it is basically changed in favor of E genes in 



34 

 

vhs . Together, the absence of VHS protein renders the kinetics of early gene expressions 

similar to those of late genes‟. These results suggest a critical role of VHS protein in the 

transition of early to late phase transition of PRV gene expression. Our data show that 

VHS protein exerts far the highest impact on the transcript level of early protein 0 gene 

(ep0) among all of the examined 38 PRV transcripts (Fig 6). At the first hour of infection, 

similarly to other genes, VHS protein exerts a strong stimulatory effect on the 

transcription of ep0 gene. Later on, VHS protein acts to lower the copy number of EP0 

mRNAs, which culminates at 12 h pi, where the level of EP0 transcripts become more 

than 11 times higher in vhs null mutant than in the wt virus. Furthermore, ep0 

transcription kinetics becomes highly correlated with that of ie180 in the vhs null mutant 

virus (r = 0.858), which is not the case at all in wt virus, where there is no correlation in 

the expression kinetics between the two transcription factor genes (r = 0.210). 

Furthermore, in the vhs  strain there is a high correlation between EP0 transcripts and 

other PRV gene products (r = 0.868 on average), while there is an inverse correlation 

between EP0 mRNA and other PRV transcripts (r = - 0.571) in the wt virus. It cannot be 

excluded that VHS exerts its effect on the level of PRV transcripts through the regulation 

of EP0 mRNAs. According to this scenario, VHS proteins act to lower EP0 protein level 

by the degradation of EP0 mRNAs, which in turn, results in the selective lowering of E 

transcripts. Indeed, EP0 mRNA reaches its maximum at 4 h pi in the wt virus, while it 

peaks at 12 h at a very high level in vhs  virus. This delay in the expression maximum in 

ep0 gene might account for the same delay of maximal expression of early genes. 

Furthermore, the drop of EP0 transcript level from 4 h pi might explain the decline in the 

speed of production of E gene transcripts in the wt virus. Furthermore, the similar 

transcription kinetics of IE180 and EP0 transcripts in vhs  virus might account for both 

the synchronized viral gene expression and the high correlation of transcript levels of 

PRV genes with IE180 transcript level in the vhs mutant virus. For explanation, in 

contrast to the vhs  strain, in wt virus the ep0 gene is expressed in a kinetic different 

from that of ie180 gene, which might disrupt the correlation between the amount of 

IE180 protein and the rest of PRV gene products. We analyzed the effect of ep0-knock 

out mutant virus strain on the expression of 37 PRV genes (Figure 9.).  
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Figure 9. Heatmap-like presentation of the ratio of transcripts produced in ep0-mutant and 

wild-type virus infection (Rtep0/RtKa) Black boxes indicate the highest ratio, and white boxes 

the lowest values. Light-grey boxes demonstrate approximately equal values 
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PRV as a neural circuit tracer 

The following projects were done in collaboration with other research groups. 



36 

 

I focus on the results obtained in these projects more concisely than the result of kinetics 

expression studies, which were my main projects. 

Retrograde spread (gE and gI deletion) 

Recombinant PRVs were engineered (either derivatives of the Bartha (Ba) strain or the 

wild-type Kaplan strain) to be retrograde by deleting the gI and gE genes of the virus and 

named as As1-PRV08. To determine if As1-PRV08 is a retrograde transsynaptic tracer, 

we compared its spreading properties to the well characterized GFP-expressing 

retrograde PRV152 strain (recombinant Bartha strain). We injected As1- PRV08 into 

either the anterior chamber of the right eye or into the primary visual cortex (V1) of mice 

and tested putative retrogradely labeled retinal ganglion cells for TN-L15 expression in 

the contralateral eye. To reach these ganglion cells, the virus would need to travel 

retrogradely through at least one (from V1 through the lateral geniculate nucleus) or at 

least three (from the anterior chamber via the pupillary reflex pathway) synapses (Figure 

10). We could conclude that PRV mutants with deleted gE and/ gI genes exhibit an 

exclusively retrograde transsynaptic spread [4].  

 

Figure 10. Schematic diagram of the pupillary reflex pathway. Green arrows indicate a 

retrograde route along the reflex pathway (top, left, SCG: superior cervical ganglion, 

IML: intermediolateral nucleus of the thoracic spinal cord, PVN: paraventricular 

nucleus). Labeled brain areas after As1- PRV08 injection into the AntC of the right eye.  
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Combined viruses 

Our research group engineered PRV viruses, called timer PRVs (Ti-PRVs), that express 

two differently colored fluorescent proteins (GFP and DsRed2, with different maturation) 

which are detectable in a time shifted manner: membrane-targeted green fluorescence 

appeared at the early stage of infection (primary fluorescent protein), while the soluble 

red reporter was detectable several hours later (secondary fluorescent protein). Another 

type of genetically modified viruses is the Activity sensor viruses. To test whether the 

delay between red and green reporter expression was preserved in vivo, we injected Ti1-

PRV07 (expressing membrane bound GFP and DsRed2) into the anterior chamber of the 

right eye in mice and analyzed the brain nuclei of the pupillary reflex pathways 3.5 d 

after infection (Fig. 11). In the Eddinger-Westphal nucleus (EWN), which is the first 

station of the viral spread in the brain, the expression of GFP and DsRed2 was similar. In 

contrast to the EWN, GFP levels were higher compared to DsRed2 in the olivary 

pretectal nucleus (OPN), intergeniculate leaflet (IGL) and the suprachiasmatic nucleus 

(SCN), which are one or two steps further in the retrograde route of the virus. These 

results confirmed that GFP can be detected earlier than DsRed2 in vivo [4].  

 

Figure 11. Timer-PRVs. Green:red fluorescence emission ratio in different brain regions 

3.5 d after Ti1-PRV07 was injected into the anterior chamber of the mouse right eye. 
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Calcium plays an essential role in the function of nerve cells, therefore real-time 

monitoring of its concentration gives us information about the actual cell activity. TN-

L15 is a calcium-sensitive chimeric protein which contains a calcium-binding domain, 

which is sandwiched between a pair of fluorescent proteins, a blue CFP and a yellow 

Citrine. The operation of this molecule is based on the Fluorescence Resonance Energy 

Transfer (FRET) that means CFP in its excited state may transfer energy to Citrine in 

case of close proximity. If we excite CFP when the calcium content is low, we see blue 

color. However in high calcium content FRET accrues. We can measure the Ca 

concentration on the basis of the ratio of blue and yellow. 

To show that the physiological state of the infected cells didn‟t significantly change 

during the seven-hour period, we engineered PRVs with both Activity sensor and Timer 

functions. Four days after virus injection, light-evoked Calcium changes were monitored 

from ganglion cells by FRET. The recordings were repeated every hour until the 

appearance of the red fluorescent. Responses were similar in the green-to-red time 

window. This result suggests that until the cell turns red, electrophysiological 

measurements can be carried out (Figure 12) [88]. 

 

Figure 12. Combined viruses. Genome of the Ti4-PRV08 and a plot of light-induced 

Ca2+ responses measured with Ti4-PRV08 from an ipRGC during 9 h after removing the 

retina from the left eye of the mouse.  
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Dual-tracing 

We have developed Ba-PRV based mutant viruses (Ba-NeutRed) via inserting dsRed 

fluorescent protein gene into the Neut region of PRV. In combination with Ba-DupGreen, 

Ba-NeutRed is a useful tool for transneuronal tracing. Following administration of 

neurotropic virus into the adrenal gland or into the ovary, double-labeled neurons could 

be observed in the ventrolateral medulla, the nucleus of the solitary tract, the caudal raphe 

nuclei, the A5 catecholaminergic cell groups, and in the hypothalamic paraventricular 

nucleus (Figure 13) [80].   

 

Figure 13. Dual-labeling. Coronal sections of rat brains. The left ovary was injected with 

pseudorabies virus expressing green fluorescent protein, while the left adrenal was 

inoculated with a recombinant strain expressing DS-RED. Neurons connected with the 

left adrenal gland or the left ovary are well distinguished. 

 

 

 

Investigating PRVs in human embryonic cord neurons 

The aim of the present study was to investigate the efficacy of the genetically engineered 

PRV the Prv-rrep0lacgfp, in infecting human embryonic spinal cord neurons ex vivo and 

in establishing gene expression after transplantation (Figure 14). For this we generated a 
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triple-deletion mutant virus. This recombinant virus was constructed in two steps. The 

small subunit of the ribonucleotide reductase (rr) gene was first abolished by a frameshift 

mutation and an expression cassette containing the lacZ gene alone or together with the 

GFP gene was then inserted in place of the early protein 0 (ep0) gene of PRV. The 

reporter gene cassettes were positioned downstream from the PRV latency-associated 

promoter. The results revealed that the mutant PRV effectively infected human 

embryonic spinal cord neurons ex vivo and the grafted cells exhibited reporter gene 

expression for several weeks. [76]. 

 

Figure 14. Human spinal cord graft cells infected with Prv-rrep0lacgfp virus before 

transplantation. The cells containing hu-NCAM (human cells) are red, GFP+ cells are 

green and the cells expressing both antigens are yellow. Confocal microscopic 

photographs (A, B and C) illustrate the same grafted spinal cord tissue after a survival 

time of 1 week in the dorsal horn of the host cord. In D, E and F human neurons can be 

seen 3 weeks after transplantation: the human neurons express GFP and possess well-

defined processes. In G, host cells (arrows) are shown expressing GFP near the human 

graft 3 weeks after transplantation. 
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PRV as a tool in cardiovascular research 

To establish optimal surviving conditions several culture conditions were tested based on 

microscopic evaluation of changes in cellular morphology during the four days of culture 

(Figure 15). Cultured cells were used 1–3 days after isolation. During this period, visible 

small-scale changes in cell shape and cross-striation could be observed [5].    

 

Figure 15. This table shows the survival of noninfected and virally infected cells from day 

0 to day 5. It can be seen that virally infected cells exhibit slightly better survival than 

noninfected cells, for which the reason remains to be ascertained. 

  
Day 

0 

Day 

1 

Day 

 2 

Day  

3 

Day 

4 

Day 

5 

Control Average 

(%): 

100 60,0 44,9 4,3 2,8 2,2 

 Standard 

error: 

 6,0 8,4 0,5 0,3 0,3 

Virus 

infected 

Average 

(%): 

100 85,5 69,2 12,8 3,1 1,3 

 Standard 

error: 

 4,7 9,3 3,7 1,5 0,6 

 

Features typical of acutely isolated (Day 0) cells were the rod shape with rectangular 

stepped ends and clear cross-striations. After 1 day (Day 1) in culture, the cells were still 

rod-shaped with clear cross-striations; however, the ends of the cells started to become 

slightly rounded in appearance. After 3 days (Day 3) in culture, cells remained rod-

shaped and cross-striated, and the main change was that cell ends became progressively 

more rounded. Survival rates were found to be dependent on the isolation procedure, 

density of the attached myocytes, and the applied virus titer. Even after three days, the 

cell culture contained a substantial number of good quality cells both in the control and 

virus-infected groups. Surprisingly, a moderately but consistently higher cell survival rate 

was found in virus-infected groups as compared to non-infected groups. The infection 
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efficiency was found to be 100%, that is 24 hours post infection every surviving cells 

emitted fluorescent signals provided that high dose of virus was used for the infection [5].    

 

DISCUSSION 

 

Analysis of expression kinetics of regulator genes under CHX and PAA treatment 

 

We employed a novel qRT
2
-PCR technique with strand-specific primers for the reverse 

transcription reactions to determine the expression kinetics of specific PRV genes. 

Traditionally, herpes virus genes are grouped into kinetic classes on the basis of gene 

expression inhibitory effects of protein and DNA synthesis-blocking reagents. The IE 

genes should not be significantly inhibited by any of the above drugs, the E genes are 

inhibited only by DNA synthesis blockers, and the expression of the L genes is 

substantially inhibited by both protein and DNA synthesis blockade. The expression of 

the ie180 gene is enhanced by CHX treatment. The explanation of this phenomenon lies 

in the fact that the IE180 protein normally inhibits its own expression a short time after 

the onset of virus infection, a feature which is absent in CHX-treated cells due to novel 

protein synthesis being blocked by CHX. The other PRV genes were inhibited to a 

significant extent by CHX at every examined time point. Consequently, ie180 is the only 

IE gene of the PRV. The ep0 and ul54 genes (IE genes in the HSV) were shown to be E 

genes by others [30 and 89], and this was confirmed also by our analyses [21]. The CHX 

analysis suggested that IE180 protein facilitates LAT activity, and inhibits AST. The 

PAA treatment resulted in a significantly elevated antisense transcript level at 3 of the 4 

time points in antisense transcripts, which indicates the existence of another regulatory 

level besides IE180 protein action. We assume that transcription from one DNA strand 

negatively influences the expression of transcripts from the complementary DNA strand. 

The interaction can occur at the level of transcription (RNA polymerase moving in one 

direction along one of the DNA strands inhibits RNA polymerase moving in another 

direction) and/or translation by forming double-stranded RNAs by the sense and 

antisense transcripts. As an example, PAA has a negative effect on the transcription of 

ie180 (the level of IE180 mRNA is reduced to a quarter) at 4 h pi, which results in a 
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lower rate of transcription from ie180 (thereby facilitating the expression of AST); and a 

lower amount of inhibitory IE180 proteins, which also facilitates AST expression. 

Overall, the AST level increases 39.4-fold relative to the untreated conditions. 

Furthermore, genes with the same kinetic properties exhibit a distinctive distribution 

pattern along the PRV genome. Interestingly, us1, which is an IE gene in the HSV, 

appeared to be an L gene in most of our analyses; its expression was significantly 

inhibited by PAA; it afforded a low amount of mRNAs at 1 h pi, and a high rate of 

increase of transcript level at 4-6 h pi, all of these being L characteristics. Our 

explanation is that if the us1 gene has an important function early in the lytic cycle of the 

virus, it might fulfill this without de novo synthesis by being released upon infection from 

the tegument layer of the virus where it might be incorporated. 

 

Dependence of expression properties of 37 PRV genes on the multiplicity of infection 

In this study we infected PK-15 cells were with wild-type Ka strain of pseudorabies virus 

at MOIs of 0.1 and 10. Than we compared the gene expression pattern on the basis of 

infectious dose. We found that the mRNA levels of most examined PRV genes were 

higher in the cells infected with the high-MOI than in those infected with the low-MOI at 

early stages of infection. In the early stages of PRV infection, the amount of AST was 

very high; while the amount of AST and also its ratio to ie180 mRNA were extremely 

low in the high-MOI infection. Moreover, ie180 mRNA is expressed to a significantly 

higher extent in the low-MOI experiment despite the 10 times lower copy number of 

PRV DNA in an infected cell, which is especially important because IE180 is a DNA-

binding protein. We think that this observation reveals an important regulatory 

mechanism of the herpes viruses, which is as follows: in a high-titer infection, the virus 

initiates a lytic infection in a cell, while in a low-titer infection, the virus has the choice of 

whether to establish a dormant state or enter a lytic cycle in a cell. The molecular 

mechanism of this phenomenon might be based on the interaction of ie180 and AST 

genes at both the transcription and translation levels. (1) The ie180 protein might exert a 

negative effect on the synthesis of AST, such as in LAT in HSV [90] by binding the 

promoter of the antisense transcript. (2) Furthermore, the complementary transcripts 

might mutually influence each other‟s expression transcript by RNA-RNA interaction. In 
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a low-MOI infection, the two transcripts exhibit a complementary expression pattern, 

which indicates a competition between the two transcripts. In a high-MOI infection, 

however, the high initial amount of ie180 gene product inhibits the expression of AST. 

The significance of this infection strategy could be that, in the case of a low-amount 

infection, the virus has no chance to invade the host cells; therefore, it is better to hide 

against the immune surveillance. Accordingly, similarly to AST, LAT is expressed in a 

significantly higher proportion to ep0 mRNA in the low-MOI infection in the early stages 

of infection, which may also be important as concerns of the replication strategy of the 

virus. The expression of viral genes per DNA did not uniformly decreased in this 

analysis; some genes even became more active in the high-MOI infection, which 

indicates the selective effect of the reduced availability of the IE180 protein. We found in 

our analyses that AST and LAT are, at least partly, expressed independently from each 

other, which supports the existence of separate elements controlling the expressions of 

the two antisense transcripts. Indeed, AST was suggested to be controlled by an antisense 

promoter (ASP) localized in the outer regions of inverted repeats [91].  

The effect of the MOI on the overall gene expression of HSV-1 has been investigated by 

Wagner and colleagues [92], who found that, following the infection of cultured cells by 

wild-type virus at MOIs ranging from 0.05 to 5 pfu/cell, the temporal profiles of 

transcript abundance were essentially the same. This is in sharp contrast with our results. 

We explain the differences by the low resolution of the microarray technique that Wagner 

et al. used for their analysis. An analysis of the global transcription of Rhesus monkey 

rhadinovirus, a -herpesvirus, has revealed differential gene expression at different MOIs 

[90], but these data cannot be compared because they related to later time points (12, 20, 

44 68 and 93 h) than in our analysis.   

 

Effect of vhs-negative mutant viruses on gene expression 

Our results show that VHS protein is an important coordinator of global gene expression 

in PRV. In this study we have shown that at the early period of infection tegument VHS 

proteins affect the amount viral transcripts without bias toward any kinetic classes of viral 

transcripts. However, later on, de novo VHS protein appears to exert a differential 

negative effect on the level of early gene transcripts. We have also found that the 
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expression kinetics of PRV late transcripts are only slightly affected by the viral 

ribonuclease, while this effect on the level of E/L transcripts is intermediate. Our data 

suggest that a major function of the VHS protein is the assistance in the switch from the 

early to late phase of viral infection by selective inhibition of the early transcripts from 4 

hour of infection. Theoretically, the effect of VHS protein on the PRV transcriptome 

might be indirect, that is, it can act through the regulation of mRNA level of one or more 

viral transactivators. Indeed, VHS protein exerts far the highest impact on EP0 transcripts 

among all of the examined PRV genes, suggesting that the ep0 gene might be the major 

target of VHS effect, which does not exclude the possibility that VHS could affect other 

mRNAs in a direct manner, too. Altogether, we assume that VHS protein of PRV has an 

important role in the regulation of the PRV transcription cascade by its selective 

dampening effect of E transcripts, and to a lesser extent of E/L gene products at the late 

stages of viral infection. 

 

PRVs as neuronal circuit tracers 

With the deletion of gE and gI genes we could generate genetically modified PRVs, 

which are able to spread only in a retrograde manner. We engineered PRVs, the so called 

Ti-PRVs with both activity sensor and timer functions. Ti-PRVs could be used as internal 

clocks to determine a time window for functional studies [4]. 

 

These results arise from the collaboration of two research groups: the Department of 

Medical Biology, based in Hungary, and the Friederich Miescher Institute, based in 

Switzerland. 

 

Dual-viral tracing 

We have developed Ba-DupGreen and Ba-NeutRed fluorescent protein expressing 

viruses, which were used in dual viral transneuronal tracing method. This method was 

already successfully applied in numerous previous studies [93, 94 and 95]. In our 

experiments in which mixture of the two recombinant viruses was inoculated into the 

adrenal gland, the pattern and intensity of infection induced by the two virus strains were 

similar, that demonstrates that the main characteristics of the two recombinants, such as 
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invasiveness, rate of transport and replication do not differ from each other. Our results 

suggest that the dual transneuronal tracing with, we applied, reflects the supraspinal 

connections of the left adrenal gland and the left ovary [80]. 

 

This project was executed in cooperation between the Department of Medical 

Biology,Szeged, Hungary and the Research Laboratory of Neuromorphology and 

Neuroendocrinology, Budapest, Hungary.  

  

PRVs in human embryonic cord neurons 

We found that Prv-rrep0lacgfp is non-cytotoxic to the human embryonic cells as the PRV 

incubation did not increase the rate of cell death as compared with untreated tissues. Our 

observations suggest that this PRV strain is suitable for delivery of foreign genes into 

transplantable human cells.  

 

These results due to the scientific cooperation with the Department of Ophtamology, 

Szeged, Hungary. 

 

PRV as a tool in cardiovascular research 

We showed that novel PRV-based vectors can transducer genes into cardiomyocytes, 

without causing cytotoxic effect on these cells. During our cell viability analysis we 

found, that electrophysiological measurements on these cells should be done within 4 

days.  

 

This project was performed in cooperation with the Department of Pharmacology and 

Pharmacotherapy, Szeged, Hungary. 
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Summary the results of 

 

1. Gene expression analysis 

 

We have examined the expression kinetics of the gene regulator genes under drug 

treatment. 

We have observed the effect of viral load on PRV gene expression  

We have shown that real-time RT-PCR is a useful method for the analyses of the effect of 

different gene-deleted mutant viruses on the PRV genome. 

 

2. PRV as neural circuit tracer 

 

We have developed genetically modified PRVs, which spread only in retrograde manner. 

We have generated viruses for visualizing the connections of different brain regions.  

We have generated viruses for the analysis of neural activity.  

We combined the function of Timer and Activity sensor PRVs, to determine the time-

period when functional measurements can be done. 

We have engineered recombinant virus strains that are useful for the investigation of the 

central circuitry which is involved in the control of adrenal gland and ovary.  

 

3. PRV as gene-delivery vector 

 

We have developed PRVs which have no cytotoxic effect on the infected cells and are 

suitable for gene delivery into transplantable human cells and cardiomyocytes. 
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