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Introduction

The formation theory of Fourier series can be made by middle of XVIII century, when
the length l of the vibrating string taut at both ends of the shape wanted to set an arbitrary
time t, under the assumption that the transverse oscillation out. Daniel Bernoulli in 1750,
found that the appropriate unit of time is chosen, the solution is an

u(x, t) =
∞∑

n=0

cn(t) sin
nπ

l
x

trigonometric series. Although the classical Fourier expansions easiest, and most impor-
tant case (in the section monotone and continuous functions) Dirichlet has proved a
pointwise convergence, the problem is still living, as almost all convergence of classical
Fourier series of the quadratically integrable functions proved Carleson only in 1966. It is
understandable that even today many mathematicians may be researching this branch of
the analysis.

Our goal is the generalization of the results Ferenc Móricz [10], [11], [12], [13] and [14].

The dissertation research examined three main categories of problems. The first area
is the term-by-term differentiability one-variable Fourier series, and thus obtained a series
of Lipschitz class covers the debt. In the next section we investigated the relationship
between the two-varialbe Fourier series coefficients of the appropriate scale and function
of generalized Lipschitz and Zygmund classes debt. Finally, we give a necessary and suf-
ficient condition that a Fourier transform of bivariate functions comply with a “classical”
Lipschitz and Zygmund condition.

The following four publications of the author’s thesis are based on [7], [8], [15] and
[17].

The markings and numbers are the same as used in the dissertation.

Differentiation of Fourier series and function classes

In this section we summarize the results of Chapter 2. This theorems generalizes the
corresponding theorems proved by Boas [3] and Németh [16].

We assume that {ck} ⊂ C is an absolutely convergent series, then the trigonometric
series

∑
cke

ikx converges uniformly, and consequently it is the Fourier series of its sum
f(x).

In Theorem 2.1.1 we give necessary and sufficient conditions for the magnitude of
Fourier coefficients of the function f in order that the function f is r ≥ 1 times differen-
tiable in x ∈ T. Furthermore, we also show that the uniform convergence of rth formal
derivative series of the Fourier series is equivalent to the continuity of the function f (r)

on the torus.
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In Theorems 2.1.2 and 2.1.3 we give sufficient conditions of the magnitude of the
Fourier coefficients in order that the function f (r) belongs to one of the classes Lip(α),
Zyg(1) and lip(α) or zyg(1) (where 0 < α < 1).

Finally, in Theorems 2.1.4 and 2.1.5 we show that the above condition is not only
sufficient but also necessary in the case ck ≥ 0 or kck ≥ 0. So, these conditions are best
possible.

Let {ck : k ∈ Z} ⊂ C be a sequence such that

(1.1)
∑

k∈Z

|ck| < ∞.

Then the trigonometric series

(1.2) f(x) :=
∑

k∈Z

cke
ikx

converges uniformly on the torus and it is the Fourier series of its sum f .

Definition 1.1.2 (Lipschitz classes). Lip(α) consists of all functions f for which

|∆1f(x, h)| := |f(x+ h)− f(x)| ≤ Chα =: O(hα) for all x ∈ T and h > 0,

where C is a constant depending on f , but not on x and h.
The little Lipschitz class lip(α) consists of all functions f for which

|∆1f(x, h)| = o(hα) uniformly in x.

Definition 1.1.3 (Zygmund classes). Zyg(α) consists of all continuous functions f for
which

|∆2f(x, h)| := |f(x+ h)− 2f(x) + f(x− h)| = O(hα) for all x ∈ T and h > 0.

The little Zygmund class zyg(α) consists of all continuous functions f for which

|∆2f(x, h)| = o(hα) uniformly in x.

Theorem 2.1.1. If for some r ≥ 1,
∑

|k|≥n

|ck| = o(n−r),

then the r times formally differentiated Fourier series in (1.2) converges at a particular
point x ∈ T if and only if f is r times differentiable at x, and in this case we have

(2.1) f (r)(x) =
∑

k∈Z

(ik)rcke
ikx.
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Furthermore, the rth derivative f (r) is continuous on T if and only if the series in (2.1)
converges uniformly on T.

Theorem 2.1.2. If for some r ≥ 1 and 0 < α ≤ 1,

(2.2)
∑

|k|≥n

|ck| = O(n−r−α),

then f is r times differentiable on T, f (r) ∈ Lip(α) in case 0 < α < 1, and f (r) ∈ Zyg(1)
in case α = 1.

Theorem 2.1.3. If for some r ≥ 1 and 0 < α ≤ 1,

(2.3)
∑

|k|≥n

|ck| = o(n−r−α),

then f is r times differentiable on T, f (r) ∈ lip(α) in case 0 < α < 1, and f (r) ∈ zyg(1)
in case α = 1.

Theorem 2.1.4. Suppose that either kck ≥ 0 for all k or ck ≥ 0 for all k, and that f is r
times differentiable on T. If f (r) ∈ Lip(α) for some 0 < α < 1, then (2.2) holds with this
α; while if f (r) ∈ Zyg(1), then (2.2) holds with α = 1.

Theorem 2.1.5. Both statements in Theorem 2.1.4 remain valid if Lip(α) and Zyg(1)
are replaced by lip(α) and zyg(1), respectively, and (2.2) is replaced by (2.3).

Corollary 2.1.1. (i) If for some r ≥ 1,

(2.4)
∑

|k|≤n

|kr+1ck| = O(1),

then f is r times differentiable on T and f (r) ∈ Lip(1).
(ii) Suppose that kr+1ck ≥ 0 for all k and that f is r times differentiable on T, where

r ≥ 1. If f (r) ∈ Lip(1), then (2.4) holds.

Double Fourier series and function classes

In this section we summarize the results of Chapter 4. We generalized the single valued
theorems of Ferenc Móricz [11] and [12] and we enlarged the theorems of two variables
[13]. We assume that the {ckl} ⊂ C absolute converges, so we can examine the function

f(x, y) =
∑

k∈Z

∑

l∈Z

ckle
i(kx+ly).
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In Theorem 4.2.1 we give a sufficient condition of the magnitude of Fourier coefficients
of a function f to belong to the class Lip(wαβ), where 0 < α, β ≤ 1. This condition is also
necessary in some particular cases (see Theorems 4.2.1-4.2.3 below).

The claim of Theorem 4.2.2 relates to the class Zyg(wαβ). We give a sufficient condi-
tion for the Fourier coefficients of f function to ensure that f to belong to an extended
Zygmund class, where 0 < α, β ≤ 2.

Throughout this chapter, by {ckl : (k, l) ∈ Z2} we denote a sequence of complex
numbers with the property

(3.1)
∑

k∈Z

∑

l∈Z

|ckl| < ∞.

The double trigonometric series

(3.2) f(x, y) =
∑

k∈Z

∑

l∈Z

ckle
i(kx+ly)

converges uniformly. Consequently, the series in (3.2) is the Fourier series of its sum f ,
which is continuous on the two-dimensional torus.

We recall that a positive valued, measurable function L defined in [a,∞) (a > 0
arbitrary), is said to be slowly varying (in Karamata’s sense) if for every λ > 0,

L(λx)

L(x)
→ 1, as x → ∞.

Let L be a two-variable function such that

(4.1) L(x, y) = L1(x)L2(y), where Lk(t) → ∞ and
Lk(2t)

Lk(t)
→ 1 as t → ∞.

Definition 3.1.1 (Multiplicative Lipschitz classes). Let α, β > 0 arbitrary and

(3.3) ∆1,1f(x, y; h1, h2) = f(x+ h1, y + h2)− f(x+ h1, y)− f(x, y + h2) + f(x, y).

The class Lip(α, β) consists of all continuous functions f(x, y) for which

|∆1,1f(x, y; h1, h2)| = O(hα
1h

β
2 )

for all x, y ∈ T; h1, h2 > 0.
The class lip(α, β) consists of all continuous functions f(x, y) for which

lim
h1,h2→0

h−α
1 h−β

2 |∆1,1f(x, y; h1, h2)| = 0 uniformly in (x, y) ∈ T
2.

Definition 3.1.2 (Multiplicative Zygmund classes). Given α, β > 0 and

∆2,2f(x, y; h1, h2) =
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= f(x+ h1, y + h2)− f(x+ h1, y − h2)− f(x− h1, y + h2) + f(x− h1, y − h2)−

−2f(x, y + h2)− 2f(x+ h1, y)− 2f(x, y − h2)− 2f(x− h1, y) + 4f(x, y).

The class Zyg(α, β) consists of all continuous functions f for which

|∆2,2f(x, y; h1, h2)| = O(hα
1h

β
2 )

for all x, y ∈ T; h1, h2 > 0.
The class zyg(α, β) consists of all continuous functions f(x, y) for which

lim
h1,h2→0

h−α
1 h−β

2 |∆2,2f(x, y; h1, h2)| = 0 uniformly in (x, y) ∈ T
2.

We will use the special series

(3.6) ckl ≥ 0 for all k, l ≥ 1,

and

(3.7) ckl = −c−k,l = −ck,−l = c−k,−l |k|, |l| ≥ 1.

Definition 4.1.1 (Generalized Lipschitz classes). Given α, β > 0 and a function
L(x, y) satisfying condition (4.1), a continuous function f is said to belong to the gener-
alized multiplicative Lipschitz class Lip(α, β;L) if

|∆1,1f(x, y; h1, h2)| = O
(
hα
1h

β
2L

( 1

h1
,
1

h2

))

for all x, y ∈ T; h1, h2 > 0.
Given α, β ≥ 0 and function L satisfying condition (4.1), the function f is said to

belong to Lip(α, β; 1/L) if

|∆1,1f(x, y; h1, h2)| = O
( hα

1h
β
2

L(1/h1, 1/h2)

)

for all x, y ∈ T; h1, h2 > 0.
Given α, β ≥ 0, we denote by Wαβ the class of all functions wαβ : [0, 1]× [0, 1] → R+

which are nondecreasing in each variable and possess the following properties:

(4.2) wαβ(0, δ2) = wαβ(δ1, 0) = 0 for all δ1, δ2 ≥ 0;

(4.3) sup
0<δ1,δ2≤1

wαβ(2δ1, δ2)

wαβ(δ1, δ2)
=: cα < ∞, sup

0<δ1,δ2≤1

wαβ(δ1, 2δ2)

wαβ(δ1, δ2)
=: cβ < ∞,
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(4.4) lim inf
m→∞

wαβ(2
−m−1, δ2)

wαβ(2−m, δ2)
> 2−α′

, lim sup
m→∞

wαβ(2
−m−1, δ2)

wαβ(2−m, δ2)
≤ 2−α

for all α′ > α and 0 < δ2 ≤ 1;

(4.5) lim inf
n→∞

wαβ(δ1, 2
−n−1)

wαβ(δ1, 2−n)
> 2−β′

, lim sup
n→∞

wαβ(δ1, 2
−n−1)

wαβ(δ1, 2−n)
≤ 2−β

for all β ′ > β and 0 < δ1 ≤ 1.

We will define the modulus of continuity and the modulus of smoothness by

ω(f ; δ1, δ2) := sup
0<hj≤δj

||∆1,1f(x, y; h1, h2)||

and
ω2(f ; δ1, δ2) := sup

0<hj≤δj

||∆2,2f(x, y; h1, h2)||,

where j = 1, 2 and ||.|| denotes the usual maximum norm.
Remark. Bary és Stečkin [1] introduced another classes of moduli of continuity which
are defined by means of a function ϕ(t) ∈ Φ, 0 ≤ t ≤ π with the following four properties:

• ϕ is continuous on the interval [0, π], however this was not used in the proofs of [1],

• ϕ is non-decreasing,

• ϕ 6= 0 for every 0 < t ≤ π,

• ϕ → 0 as t → 0.

Definition 4.1.2 (Enlarged Lipschitz classes). Let wαβ ∈ Wαβ for some α, β ≥ 0. We
define the Lip(wαβ) of continuous functions as follows:

Lip(wαβ) := {f : ω(f ; δ1, δ2) = O(wαβ(δ1, δ2))}.

Definition 4.1.3 (Enlarged Zygmund classes).

Zyg(wαβ) := {f : ω2(f ; δ1, δ2) = O(wαβ(δ1, δ2))}.
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Fourier series and enlarged Lipschitz and Zygmund classes of func-

tions

Our new results are summarized in the following three theorems.

Theorem 4.2.1. Let wαβ ∈ Wαβ.
(i) If {ckl} ⊂ C is such that for some 0 < α, β ≤ 1 we have

(4.8)
∑

|k|≤m

∑

|l|≤n

|klckl| = O(mnwαβ(m
−1, n−1)),

then (3.1) is satisfied and f ∈ Lip(wαβ), where f is defined in (3.2).
(ii) Conversely, suppose that {ckl} ⊂ R is such that conditions (3.1), (3.6) and (3.7)

satisfied. If f ∈ Lip(wαβ) for some 0 ≤ α, β ≤ 1, then condition (4.8) is satisfied.

Theorem 4.2.2. Let wαβ ∈ Wαβ.
(i) If {ckl} ⊂ C is such that for some 0 < α, β ≤ 2 we have

(4.9)
∑

|k|≤m

∑

|l|≤n

k2l2|ckl| = O(m2n2wαβ(m
−1, n−1)),

then (3.1) is satisfied and f ∈ Zyg(wαβ), where f is defined in (3.2).
(ii) Conversely, suppose that {ckl} ⊂ R is such that condition (3.1) is satisfied and

(4.10) ckl ≥ 0 for all |k|, |l| ≥ 1.

If f ∈ Zyg(wαβ) for some 0 ≤ α, β ≤ 2, then condition (4.9) is satisfied.

Theorem 4.2.3. Let wαβ ∈ Wαβ.
(i) If {ckl} ⊂ C is such that for some 0 ≤ α, β < 1 we have

(4.11)
∑

|k|≥m

∑

|l|≥n

|ckl| = O(wαβ(m
−1, n−1)),

then f ∈ Lip(wαβ), where f is defined in (3.2).
(ii) Conversely, suppose that {ckl} ⊂ R is such that conditions (3.1) and (4.10) are

satisfied. If f ∈ Zyg(wαβ) for some 0 ≤ α, β ≤ 2, then condition (4.11) is satisfied.

Remark. In the case 0 < α, β < 1, Part (i) in Theorems 4.2.1 and 4.2.3 are equivalent.
In the case 0 < α, β < 2, Part (ii) in Theorems 4.2.2 and 4.2.3 are equivalent.
Part (ii) in Theorems 4.2.1 and 4.2.3 are not comparable.

Remark. We note that it seems to be likely that our Theorems 4.2.1-4.2.3 in the cases
0 < α, β < 1 can also be obtained using the theorems of Bary and Stečkin [1]. The proofs
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of the theorems in [15] we estimate the moduli of continuity or smothness directly in
terms of the function in question. We investigate the classes Lip(wαβ) and Zyg(wαβ) for
0 ≤ α, β ≤ 1 and 0 ≤ α, β ≤ 2, respectively. Further difference is that in the following
lemmas {akl} is an arbitrary series, while the function ϕ ∈ Φ is non-decreasing. The
exponent γ and δ may be arbitrary real number for which γ > α ≥ 0 and δ > β ≥ 0.
Finally, the key fact in the proofs of our theorems is that Part (i) and Part (ii) are
equivalent whenever γ > α > 0 and δ > β > 0.

The following three Lemmas will be of vital importance in the proofs of Theorem 4.2.1,
4.2.2 and 4.2.3:

Lemma 4.4.1. Let {akl : k, l = 1, 2, . . . } ⊂ R+ and wαβ ∈ Wαβ.
(i) If for some γ ≥ α > 0 and δ ≥ β > 0,

(4.12)

m∑

k=1

n∑

l=1

kγlδakl = O(mγnδwαβ(m
−1, n−1)),

then
∑∑

akl < ∞ and

(4.13)
∞∑

k=m

∞∑

l=n

akl = O(wαβ(m
−1, n−1)).

(ii) Conversely, if (4.13) is satisfied for some γ > α ≥ 0 and δ > β ≥ 0, then (4.12) is
also satisfied.

Lemma 4.4.2. Let {akl} ⊂ R+ and wαβ ∈ Wαβ.
(i) If (4.12) is satisfied for some δ ≥ β > 0, while γ, α are arbitrary, then

(4.29)

∞∑

k=m

n∑

l=1

lδakl = O(nδwαβ(m
−1, n−1)).

(ii) If (4.13) is satisfied for some δ > β ≥ 0, while γ, α are arbitrary, then (4.29) is
also satisfied.

Lemma 4.4.3. Let {akl} ⊂ R+ and wαβ ∈ Wαβ.
(i) If (4.12) is satisfied for some γ ≥ α > 0, while δ, β are arbitrary, then

(4.33)

m∑

k=1

∞∑

l=n

kγakl = O(mγwαβ(m
−1, n−1)).

(ii) If (4.13) is satisfied for some γ > α ≥ 0, while δ, β are arbitrary, then (4.33) is
also satisfied.

9



Fourier series and generalized Lipschitz classes

The following two theorems are special cases of Theorem 4.2.1-4.2.3.

Theorem 4.3.1. Assume {ckl} ⊂ C with (3.1), f is defined in (3.2) and L satisfies
condition (4.1).

(i) If for some 0 < α, β ≤ 1,

(4.6)
∑

|k|≤m

∑

|l|≤n

|klckl| = O(m1−αn1−βL(m,n)),

then f ∈ Lip(α, β;L).
(ii) Conversely, let {ckl} ⊂ R be a sequence such that conditions (3.6) and (3.7) hold.

If f ∈ Lip(α, β;L) for some 0 < α, β ≤ 1, then (4.6) holds.

Theorem 4.3.2. Assume {ckl} ⊂ C, with (3.1), f is defined in (3.2) and L satisfies
condition (4.1).

(i) If for some 0 ≤ α, β < 1,

(4.7)
∑

|k|≥m

∑

|l|≥n

|ckl| = O
(m−αn−β

L(m,n)

)
,

then f ∈ Lip(α, β; 1/L).
(ii) Conversely, let {ckl} be a sequence such that conditions (3.6) and (3.7) hold. If f ∈

Lip(α, β; 1/L) for some 0 < α, β < 1, then (4.7) holds.

Problem. It is an open problem whether tha claim in Theorem 4.2.2 (ii) remains valid
if 0 < α, β < 1 is replaced by 0 ≤ α, β < 1.
Remark Theorem 4.2.1 is generalization of Theorem 4.3.1, which is wαβ(δ1δ2) := δα1 δ

β
2L(

1
δ1
, 1
δ2
)

arises easy choice.
Similarly, Theorem 4.2.3 is generalization of Theorem 4.3.2 of the Lip (wαβ) ⊂ Zyg(wαβ)

and the relation of wαβ(δ1δ2) :=
δα
1
δβ
2

L(1/δ1,1/δ2)
selection.

Double Fourier transforms and function classes

In this section we summarize the results of Chapter 6. We consider complex-valued
functions f ∈ L1(R2) and prove sufficient conditions under which the double Fourier
transform f̂ belongs to one of the multiplicative Lipschitz classes Lip(α, β) for some 0 ≤
α, β ≤ 1, or to one of the multiplicative Zygmund classes Zyg(α, β) for some 0 ≤ α, β ≤ 2.

In Thorem 6.2.1 we give sufficient conditions under which f̂ belongs to the class
Lip(α, β), where 0 < α, β ≤ 1. This condition is also necessary in the case when xf(x) ≥ 0
for almost every x ∈ R.
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In Theorem 6.2.2 we prove an analogous result in the case of Zygmund classes Zyg(α, β),
where 0 < α, β ≤ 2.

Theorem 6.2.1. (i) Suppose f : R2 → C is such that f ∈ L1
loc(R

2) and there exist some
s0, t0 > 0 such that

(6.1) f ∈ L1({(x, y) ∈ R
2 : either |x| > s0 and |y| < t0, or |x| < s0 and |y| > t0}).

If for some 0 < α, β ≤ 1,

(6.2)

∫

|x|<s

∫

|y|<t

|xyf(x, y)|dxdy = O(s1−αt1−β), s, t > 0,

then f ∈ L1(R2) and f̂ ∈ Lip(α, β).
(ii) Conversely, suppose f ∈ L1(R2) is such that for almost all (x, y) ∈ R2

+ we have

(6.3) f(x, y) = −f(−x, y) = −f(x,−y) = f(−x,−y) ≥ 0;

in particular, if f(x, y) is odd in each variable. If f̂ ∈ Lip(α, β) for some 0 < α, β ≤ 1,
then (6.2) is satisfied.

Remark. The condition (6.2) is equvalent to the condition

(6.4) f ∈ L1({(x, y) ∈ R
2 : |x| > s és |y| > t}), s, t > 0.

Due to the assumption that f ∈ L1
loc(R

2), in order to conclude f ∈ L1(R2) in statement
(i) above, we need the fulfillment of condition (6.1).

If there exist some constants t0 > 0 and C̃ such that

(6.5)

∫

|x|<s

∫

|y|<t0

|xf(x, y)|dxdy ≤ C̃s1−α, s > 0,

then we also have
f ∈ L1({(x, y) ∈ R

2 : |x| > s és |y| < t0}).

Analogously, if there exist some constants s0 > 0 and C̃ such that

(6.6)

∫

|x|<s0

∫

|y|<t

|yf(x, y)|dxdy ≤ C̃t1−β, t > 0,

then we also have
f ∈ L1({(x, y) ∈ R

2 : |x| < s0 és |y| > t}).

In particular, conditions (6.5) and (6.6) imply the fulfillment of condition (6.1).
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Theorem 6.2.2. (i) Suppose f : R2 → C is such that f ∈ L1
loc(R

2) and there exist some
s0, t0 > 0 such that condition (6.1) is satisfied. If for some 0 < α, β ≤ 2,

(6.7)

∫

|x|<s

∫

|y|<t

x2y2|f(x, y)|dxdy = O(s2−αt2−β), s, t > 0,

then f ∈ L1(R2) and f̂ ∈ Zyg(α, β).
(ii) Conversely, suppose f ∈ L1(R2) is such that f(x, y) ≥ 0 for almost all (x, y) ∈ R

2.
If f̂ ∈ Zyg(α, β) for some 0 < α, β ≤ 2, then condition (6.7) holds.

Remark. Again, condition (6.7) implies only the fulfillment of (6.4). Due the assumption
that f ∈ L1

loc(R
2), in order to conclude f ∈ L1(R2) in statement (i) above, we need the

fulfillment of condition (6.1).

If there exist some constants t0 > 0 and C̃ such that

(6.8)

∫

|x|<s

∫

|y|<t0

x2|f(x, y)|dxdy ≤ C̃s2−α, s > 0,

then we also have
f ∈ L1({(x, y) ∈ R

2 : |x| > s és |y| < t0}).

Analogously, if there exist some constants s0 > 0 and C̃ such that

(6.9)

∫

|x|<s0

∫

|y|<t

y2|f(x, y)|dxdy ≤ C̃t2−β, t > 0,

then we also have
f ∈ L1({(x, y) ∈ R

2 : |x| < s0 és |y| > t}).

In particular, conditions (6.8) and (6.9) imply the fulfillment of condition (6.1).
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