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Chapter 1

Introduction

1.1 Approximations of empirical processes

Empirical processes play a fundamental role in statistics. The theoretical background
of many methods is the fact that an empirical process converges in distribution in
some function space. The best known and most important example is the uniform
empirical process of independent and identically distributed uniform sample variables.
The classical goodness of �t tests, the Kolmogorov�Smirnov and the Cramér�von Mises
test, are based on the convergence of this process to the Brownian bridge.

In general, an applied statistician does not need any further properties of the uni-
form empirical process, because the weak convergence implies the validity of the stan-
dard methods. However, in theoretical research sometimes it can be very useful if we
have a stronger type of convergence. It is well-known that the uniform empirical process
does not converges almost surely, because the process has in�nitely many accumulation
points with probability one. The solution of the problem is the approximation method,
which means that on a suitable probability space we can represent the process in such
a way, that the distance between the process and the elements of a suitable sequence of
Brownian bridges converges to zero almost surely. In the '60's and the '70's several ap-
propriate representations were constructed. The most remarkable one, which provides
the best rate of convergence, is due to Hungarian mathematicians, to János Komlós,
Péter Major and Gábor Tusnády. This is the Hungarian construction, also known as
the KMT approximation.

By applying the Hungarian construction in the '70's and the '80's many new results
were achieved in the theory of empirical processes, which were unavailable by using
only the earlier techniques. One of the motivations of our research in the subject is the
fact that many of these improvements are due to Hungarian mathematicians, and some
of them were achieved in Szeged, at the university of the author. Endre Csáky, Miklós
Csörg®, Pál Révész, and the author's supervisor, Sándor Csörg® were among the �rst
who understood and applied the method. Among many others, a few years later two
of their students, Edit Gombay and Lajos Horváth joined them in the research. In the
viewpoint of our research we must mention that Sándor Csörg®'s co-author and friend,

5



1 Introduction

David M. Mason also has important results in the theory.
Consider independent and identically distributed real valued variables X1, . . . , Xn

and a measurable function f(t, x) de�ned on a Borel set T×X ⊆ R2. Assume the Xi's
lie in X with probability one and the mean function h(t) = Ef(t,X) is �nite for every
t ∈ T. Also, consider the empirical counterpart of h de�ned by

hn(t) =
1

n

n∑
i=1

f(t,Xi) , t ∈ T .

The classical de�nition of the empirical process corresponding to the function h is

Hn(t) = nα
[
hn(t)− h(t)

]
, t ∈ T , (1.1)

where α is a suitable real constant. The phrase �suitable� means that using the scaling
factor nα the process Hn(t), t ∈ T, converges in distribution as n goes to in�nity. Note
that in most cases α = 1/2 by the central limit theorem. Observe that the classical
empirical process can be represented by this form, and also, the empirical characteristic
and moment generating process are considered in this way, as well.

It is important to note that the process Hn de�ned in (1.1) is not optimal in every
applications, in many problems it is worth to modify the formula. For example, in
some cases the function h is unknown, and we must estimate it with some ĥn. In such
a situation we can obtain an empirical process by replacing h with ĥn in (1.1). Also,
working in a regression or a bootstrap model we apply the conditional mean of f(t,X)
with respect to some background variable(s) instead of h(t), t ∈ T.

1.2 Aims of the thesis

In the thesis we investigate the asymptotic behavior of some empirical processes based
on independent and identically distributed random variables. In most cases we apply
the approximation technique, that is, on a suitable probability space we construct a
representation of the underlying process and copies of an appropriate Gaussian pro-
cess such that the distance between the empirical process and the Gaussian processes
converges to zero in almost sure or stochastic sense as the sample size goes to in�nity.

We study two types of empirical processes. In Chapter 3 we investigate the para-
metric and the non-parametric bootstrap versions of the parameter estimated empirical
process de�ned on a parametric family of distributions. The main goal of the chapter is
to show the convergence of the processes by proving weak approximation theorems for
them. We present a bootstrap algorithm for testing goodness of �t, and we demonstrate
the bootstrap method with a simulation study.

In Chapter 4 we investigate empirical processes based on the probability generating
function of non-negative valued random variables, and we work out an e�ective and
�exible background for the study of the subject. Using this framework we prove a strong
approximation result and a law of the iterated logarithm for the generating process and
its derivatives. Also, we de�ne the bootstrapped and the parameter estimated version
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1.2 Aims of the thesis

of the probability generating process, and we apply them to construct con�dence bands
for the probability generating function and to test goodness of �t.

Chapter 2 is a technical one, we introduce some basic concepts which will be applied
in our research. We present the main results of the Hungarian construction method, we
prove a background theorem for the bootstrap technique and we extend the de�nition
of stochastic integration on a �nite interval to stochastic integral on the real line.

The author has written three papers on the subject of the thesis. The convergence
of the parametric bootstrap version of the estimated empirical process is published
in Sz¶cs (2008). The related theorem for the non-parametric bootstrap process and
the simulation study in Chapter 3 are the subjects of an accepted paper, see Sz¶cs
(20??) for reference. Finally, Sz¶cs (2005) contains the statements on the probability
generating process for non-negative integer valued variables. The generalization of the
results on generating processes for arbitrary non-negative valued variables is new and
unpublished.
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Chapter 2

Some basic concepts

2.1 The Hungarian construction

In this section we provide an overview on the so-called Hungarian construction and
the related strong approximation method of empirical processes. Let U1, U2, . . . be
independent random variables distributed uniformly on the interval [0, 1], and consider
the empirical distribution function based on the sample variables U1, . . . , Un de�ned
by the form

En(u) =
1

n

n∑
i=1

1{Ui≤u} , 0 ≤ u ≤ 1 .

(Here and throughout our work the notation 1 stands for the indicator of an event or
a Borel set on the real line. We mark the indicator variable of an event A by 1A, and
1A(u), u ∈ R, denotes the indicator function of the set A ⊆ R, that is, 1A(u) = 1{u∈A}.)
Then, the uniform empirical process based on the sample is

βn(u) = n1/2
[
En(u)− u

]
, 0 ≤ u ≤ 1 . (2.1)

The process βn is a random element of the Skorohod space D[0, 1], that is, the space of
all càdlàg functions de�ned on the interval [0, 1]. (We say that a real valued function
is càdlàg if it is right-continuous and has left-side limit at every point where it is
de�ned.) The space D[0, 1] is endowed with the Skorohod metric, under which D[0, 1]
is complete and separable. By the well-known result of Donsker the uniform empirical
process converges in distribution in D[0, 1] as n → ∞ to the Brownian bridge, which
is a Gaussian process de�ned on the interval [0, 1]. For the detailed properties of the
Skorohod space and a proof of Donsker's theorem see Chapter 3 in Billingsley (1968).

The Brownian bridge noted by B(u), 0 ≤ u ≤ 1, in our work is a sample-continuous
Gaussian process having pointwise mean 0 and covariance function

Cov
(
B(u), B(v)

)
= min(u, v)− uv , 0 ≤ u, v ≤ 1 .

It is obvious that B is a random element of C[0, 1], the space of all continuous functions
considered on the interval [0, 1]. The distribution of the Brownian bridge can also be
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2 Some basic concepts

represented based on the standard Wiener process W (u), u ≥ 0, since the process
de�ned by the form

B∗(u) = W (u)− uW (1) , 0 ≤ u ≤ 1 ,

has the same distribution as B has. In the later chapters we will work with a special
sequence of Brownian bridges B1, B2, . . . , which are not independent, and we desire to
describe the dependence of the processes. It turns out that a biparametric Gaussian
process is the suitable tool to achieve our wish. The Kiefer process K(u, x), 0 ≤ u ≤ 1,
0 ≤ x, is a centered sample-continuous Gaussian process with covariance function

Cov
(
K(u, x), K(v, y)

)
= min(x, y)

(
min(u, v)− uv

)
, 0 ≤ u, v ≤ 1 , x, y ≥ 0 .

The covariance structure implies that in the variable x the process K(u, x) acts as a
Wiener process, and in the other variable u it is a Brownian bridge. More precisely,
the standardized process

B?(u) = x−1/2K(u, x) , 0 ≤ u ≤ 1 ,

is a Brownian bridge for every �xed x > 0.
The weak convergence of the uniform empirical process is a crucial tool in statistics,

and an applied statistician does not need any further nice properties of βn. However,
in theoretical research sometimes it would be very useful if we have a stronger type of
convergence. By the famous result of Finkelstein (1971) the uniform empirical process
is relative compact in the space D[0, 1], and hence, we can not obtain convergence
with probability 1 as n goes to in�nity. Fortunately, it turns out that on suitable
probability spaces one can construct a representation of the variables U1, U2, . . . , such
that the related uniform empirical process can be approximated strongly by a sequence
of Brownian bridges. We do not detail the construction method of the random variables
and the Brownian bridges, because in our work we will only need the following theorem
and its corollaries provided by Komlós, Major and Tusnády (1975, 1976). (Recent
details on the theory and on the proof of Theorem 2.1 are given by Bretagnolle and
Massart (1989) and Castelle and Laurent-Bonvalot (1998).)

Theorem 2.1 (Komlós, Major and Tusnády, 1975). On a su�ciently rich probabil-
ity space (Ω,A, P ) one can construct a sequence of Brownian bridges B1, B2, . . . and
independent random variables U1, U2, . . . having uniform distribution on the interval
[0, 1], such that the related uniform empirical process βn satis�es

P
(

sup
0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ > n−1/2(x+ c1 log n)

)
≤ c2 exp(−c3x)

for all x ≥ 0 and n = 1, 2, . . . , where c1, c2 and c3 are positive universal constants. Also,
one can construct a Kiefer process K and an other sequence of variables U ′1, U

′
2, . . . ,

such that for the related uniform empirical process β′n we have

P
(

sup
1≤m≤n

sup
0≤u≤1

∣∣m1/2β′m(u)−K(u,m)
∣∣ > (x+ c′1 log n) log n

)
≤ c′2 exp(−c′3x)

for all x ≥ 0 and m = 1, 2, . . . , with positive universal constants c′1, c
′
2 and c′3.
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2.1 The Hungarian construction

The result of Komlós, Major and Tusnády is usually called the Hungarian construc-
tion or the KMT approximation of the empirical process. During our work we refer
the probability space and the variables de�ned in Theorem 2.1 as the KMT space.
The Hungarian construction provides a very powerful method to handle empirical pro-
cesses, but mostly we will need only the following consequence in our applications.
The next statement points out also that the representation is optimal in some sense.
Here and throughout, for a sequence of random variables V1, V2, . . . and a sequence of
positive constants a1, a2, . . . we write Vn = O(an), n → ∞, if there exists a universal
real constant C, not depending on the underlying distributions, such that

lim sup
n→∞

∣∣Vn/an∣∣ ≤ C , n→∞ , a.s.

Theorem 2.2 (Komlós, Major and Tusnády, 1975). On the KMT space we have

sup
0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ = O

(
log n

n1/2

)
, n→∞ ,

and also,

sup
0≤u≤1

∣∣β′n(u)− n−1/2K(u, n)
∣∣ = O

(
log2 n

n1/2

)
, n→∞ .

Furthermore, the rate of the approximation can not be sharpened, there does not exist
construction which provides o(n−1/2 log n) or o(n−1/2 log2 n), respectively.

It is important to note that there were approximations for the empirical process βn
before the Hungarian construction, but they provided slower rates of convergence. The
�rst representation using a sequence of Brownian bridges was constructed by Brillinger
(1969), and Kiefer (1972) was the �rst who applied the biparametric process named
after him. These constructions provided the rates

O
(
n−1/4(log n)1/2(log log n)1/4

)
and O

(
n1/2(log n)2/3

)
.

At this point someone may say that the whole theory is not interesting at all, if
we are able to state something only for the uniform distribution. However, it turns
out that using a simple and well-known technique we can transfer the statements for
an arbitrary distribution. We will refer this method in the following as the quantile
transformation. Let F (x), x ∈ R, be an arbitrary distribution function, and consider
the related quantile function

F−1(u) = inf
{
x : F (x) ≤ u

}
, 0 < u < 1 . (2.2)

Also, consider a sequence of independent random variables U1, U2, . . . having uniform
distribution on the interval [0, 1] and being de�ned on an arbitrary probability space,
and introduce the transformed variables

Xi = F−1(Ui) , i = 1, 2, . . . (2.3)

11



2 Some basic concepts

Clearly, the Xi's are independent and have common distribution function

P (Xi ≤ x) = P
(
Ui ≤ F (x)

)
= F (x) , x ∈ R .

Also, the empirical distribution function of the variables X1, . . . , Xn is

Fn(x) =
1

n

n∑
i=1

1{Xi≤x} =
1

n

n∑
i=1

1{Ui≤F (x)} = En
(
F (x)

)
, x ∈ R .

That is, the empirical process corresponding to the sample can be written in the form

αn(x) = n1/2
[
Fn(x)− F (x)

]
= n1/2

[
En
(
F (x)

)
− F (x)

]
= βn

(
F (x)

)
, x ∈ R . (2.4)

By considering the uniformly distributed variables provided by Theorem 2.1, the �rst
approximation of Theorem 2.2 immediately implies that for the transformed variables
de�ned on the KMT space by (2.3) we have

sup
x∈R

∣∣αn(x)−Bn

(
F (x)

)∣∣ ≤ sup
0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ = O

(
log n

n1/2

)
, n→∞ .

Note that one can get a corresponding result using the Kiefer process K, as well.

Theorem 2.3 (Komlós, Major and Tusnády, 1975). Consider the variables X1, X2, . . .
de�ned by (2.3) based on the uniform variables of the KMT space. The corresponding
empirical process αn satis�es

sup
x∈R

∣∣αn(x)−Bn

(
F (x)

)∣∣ = O
(

log n

n1/2

)
, n→∞ .

As a result of Theorem 2.3 we get weak convergence of the general empirical process
αn to the Gaussian process B(F ) in D[−∞,∞], the space of càdlàg functions de�ned
on the real line. (For details on the topology of D[−∞,∞] see Chapter VI of Pollard
(1984).)

There is an other important consequence of Theorem 2.1, which can not be achieved
by using only the weak convergence of the uniform empirical process. Let ψ be a
real valued measurable functional de�ned on the space D[0, 1], and assume that ψ is
continuous on the subspace C[0, 1]. Then, since the Brownian bridge lies in C[0, 1]
with probability 1, it follows from Corollary 1 to Theorem 1.5.1 in Billingsley (1968),
that ψ(βn) converges in distribution to ψ(B). The most important application of this
result is the case when ψ is the supremum of the functions in D[0, 1]. Unfortunately,
this technique does not provide a rate of convergence, but using Theorem 2.1 one can
improve the result. The following statement holds for any representation of the uniform
empirical process not only for the one provided by the KMT space.

Theorem 2.4 (Komlós, Major and Tusnády, 1975). Consider a real valued measurable
functional ψ de�ned on D[0, 1] satisfying the Lipschitz condition∣∣ψ(f)− ψ(g)

∣∣ ≤M sup
0≤u≤1

∣∣f(u)− g(u)
∣∣

12



2.2 The bootstrap method

with some �nite M > 0, and suppose that ψ(B) has bounded density. Then, we have

sup
x∈R

∣∣P(ψ(βn) ≤ x
)
− P

(
ψ(B) ≤ x

)∣∣ = O
(

log n

n1/2

)
, n→∞ .

Note that we apply similar method to prove our Theorem 4.20 as required for the
justi�cation of Theorem 2.4. With some improvements on the technique one can obtain
similar results for certain continuous functionals which are not Lipschitzian. Perhaps
the most important example is the functional

ψ : D[0, 1]→ R , ψ(f) =

∫ 1

0

f 2(u) du ,

that is, when ψ(βn) is the Cramér�von Mises type statistics based on the sample.
Csörg® (1976) showed that the distribution function of ψ(βn) converges to that of
ψ(B) with the same rate as Lipschitzian functionals do in Theorem 2.4.

Motivated by the results of Komlós, Major and Tusnády (1975, 1976) the Hungarian
construction became a widely used tool to handle both unweighted and weighted em-
pirical processes. Note that Csörg® and Révész (1975) and Philipp and Pinzur (1980)
provide similar uniform strong approximations also for the multivariate empirical pro-
cess. We do not present these statements, because in our research we investigate only
one-dimensional problems. For a survey on the most important results obtained by the
KMT approximation see Csörg® and Révész (1981), and Shorack and Wellner (1986)
provides a comprehensive overview on the whole theory of empirical processes.

2.2 The bootstrap method

Consider a typical statistical problem. There is a sample of independent and identically
distributed variables X1, . . . , Xn having unknown distribution function F (x), x ∈ R,
and the goal is to estimate some parameter τ = τ(F ) of the background distribution.
In a favorable case there is a statistic

τn = τn(X1, . . . , Xn)

which serves as an estimator of the parameter τ . For example, if we want to determine
the expected value or the variance of the distribution then the sample mean and the
empirical variance provides a good estimation. In some other applications we want to
specify not a single parameter but a function τ(x, F ), x ∈ R, of the distribution. The
most important case is that when the desired function is the theoretical distribution
function F (x), x ∈ R, and the empirical distribution function Fn(x), x ∈ R, of the
sample is a suitable tool. But, unfortunately, based on a single collection of observations
we can not determine the variance or the error of the statistics τn. This di�culty is
not surprising in the sense that to get an estimation for the variance of τn we need
several observations of the statistic, but having only one sample X1, . . . , Xn we can
write it up only once. That is, we have no tool the determine the variance by using
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2 Some basic concepts

only the standard statistical methods. Similarly, the empirical distribution function
is a pointwise estimate of its theoretical counterpart, but we can not construct a
con�dence band for F . A possible solution for these di�culties is the application of
some resampling technique, that is, the usage of the jackknife or the bootstrap. In our
work we study the latter one.

The bootstrap method was introduced by Efron (1979) and the basic idea is very
simple. It seems that all of the presented di�culties are derived from the fact that
we have only a single collection of observations X1, . . . , Xn. Since it is not possible to
obtain further samples from the �real life� let us create them by ourselves. Of course, we
have no information on the original distribution of the sample variables, and hence, we
can not construct additional samples having the unknown distribution function F . The
solution of the problem is to obtain samples by choosing values with replacement from
the observations X1, . . . , Xn. That is, consider bootstrapped variables X∗1,n, . . . , X

∗
mn,n

being conditionally independent with respect to the Xi's and having distribution

P
(
X∗i,n = Xj | X1, . . . , Xn

)
= 1/n , j = 1, . . . , n , i = 1, . . . ,mn .

By this way we get the bootstrapped sample X∗1,n, . . . , X
∗
mn,n with size mn, where mn is

an arbitrary positive integer. Now, let us apply the statistics τmn on the bootstrapped
variables to obtain a bootstrap estimation

τ ∗mn,n = τmn
(
X∗1,n, . . . , X

∗
mn,n

)
for the unknown parameter τ . Heuristically, since the bootstrapped variables comes
from the original sample they �behave similarly� as the Xi's, and hence, the boot-
strapped statistics τ ∗mn,n has a distribution being close to the law of τn in some sense.
That is, the distribution of τ ∗mn,n may be a good estimation for the law of τn, and we
can estimate the error or the variance of the statistics τn based on the corresponding
attributes of τ ∗mn,n. Because the bootstrapped observations are obtained by a simple
replacement from the original sample, the conditional attributes of the statistics τ ∗mn,n
can be determined in theoretic way by direct calculations or by applying the Edgeworth
expansion method. However, thanks to the high performance of computers, nowadays
we can apply a much simpler method. By using a computer we can generate hundreds
of copies of the bootstrapped sample X∗1,n, . . . , X

∗
mn,n in a few seconds, and by calcu-

lating the statistics τ ∗mn,n for each sample we can obtain a good empirical estimation
for the law of τ ∗mn,n.

In his fundamental paper Efron (1979) recommended also a variant of the presented
method. Suppose that we know it a priori that the sample comes from a member of a
distribution family

F =
{
F (x, θ) : x ∈ R, θ ∈ Θ

}
,

that is, F (x) = F (x, θ0), x ∈ R, with a �xed but unknown θ0 ∈ Θ. Again, the goal is to
estimate some parameter τ0 = τ(θ0) of the background distribution using the sample
X1, . . . , Xn. In a favorable case the desired parameter is a smooth function τ(θ) on

14



2.2 The bootstrap method

the family, and we can obtain a good statistics in the form τn = τ(θn) based on an
estimator

θn = θn(X1, . . . , Xn)

of the unknown parameter θ0. Unfortunately, in this way we get only a point estimator,
but in most cases we have no information on the variance and the error of τn. Again,
the basic idea is to consider additional samples, but in this case the bootstrapped
variables are not obtained by replacement from the original sample. If the function
F (x, θ) is smooth enough in the parameter θ, and θn is a good estimator of θ0, then
the laws corresponding to the functions F (x, θ0) and F (x, θn) are close to each other in
some sense. That is, if we consider independent bootstrapped variables X∗1,n, . . . , X

∗
mn,n

having conditional distribution function F (x, θn), x ∈ R, then the bootstrapped sample
�behaves similarly� as the original one. Hence, we can estimate the distribution of τn
with the statistics τ ∗mn,n = τ(θ∗mn,n), where

θ∗mn,n = θmn
(
X∗1,n, . . . , X

∗
mn,n

)
is the estimation of θn based on the bootstrap sample. Again, the attributes of τ ∗mn,n
can be determined by direct calculation, but this method can be very di�cult if the
function F (x, θ) of the family is provided only in a complicated formula. In this case
the usage of computer programs to determine the distribution of τ ∗mn,n by generating
large number of bootstrap samples is preferred.

The �rst method, when we obtain the bootstrap sample by replacement from the
original observations is the so-called �Efron bootstrap�, and the second one, when we
generate the variables by using an estimation θn is the �parametric bootstrap�. The
common point of the two methods is that in both cases there is an estimator F̂n(x) of
the unknown distribution function F (x), x ∈ R, based on the sample X1, . . . , Xn, and
the bootstrapped observations X∗1,n, . . . , X

∗
mn,n are conditionally independent and have

conditional distribution function F̂n with respect to the Xi's. This remark highlights
that the bootstrap method might be applied in a much general framework than the
Efron and the parametric bootstrap. In some applications it might be preferable to
obtain bootstrapped variables based on some other estimation F̂n(x) of F (x), and not
by applying the distribution functions Fn(x) or F (x, θn), x ∈ R.

It is important to note that the presented idea is only heuristics and not a proved
fact, but under some conditions we can verify the validity of the bootstrap technique.
The theoretical background of many standard statistical methods is that some func-
tional ψn = ψn(τn, τ) of the estimator τn converges weakly to a variable ϕ. In many
applications we can determine the distribution of ϕ which provides a better or wrong
estimation for the law of τn. The di�culty arises in those models when we can not
specify the distribution of the limit variable ϕ. In a typical case these statistics can be
written in the forms

ψn = ψ(αn) and ϕ = ψ
(
B(F )

)
,

where αn(x), x ∈ R, is the empirical process based on the sample X1, . . . , Xn, the
random function B(u), 0 ≤ u ≤ 1, is the Brownian bridge, and ψ is a functional on
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2 Some basic concepts

the space D[−∞,∞]. In many applications the convergence of the functional ψn fol-
lows from the weak convergence of the empirical process αn to B(F ). Now, consider
a bootstrapped sample based on the original variables, that is, choose conditionally
independent valuesX∗1,n, . . . , X

∗
mn,n fromX1, . . . , Xn with replacement. Then, the boot-

strapped observations have empirical distribution function

F ∗mn,n(x) =
1

mn

mn∑
i=1

1{Xi,n≤x}

and their conditional theoretical distribution function with respect to the Xi's is the
empirical distribution function Fn(x), x ∈ R, of the original sample. The heuristics
presented in the previous paragraph advices us to consider a bootstrapped sample and
apply the same statistical function on the generated variables as we use for the original
sample. That is, it seems to be a good start to apply the functional ψ∗mn,n = ψ(α∗mn,n),
where

α∗mn,n(x) = n1/2
[
F ∗mn,n − Fn(x)

]
, x ∈ R .

is the so-called bootstrap empirical process, which is conditionally the empirical process
of the bootstrap sample. It is important to note that we can determine the conditional
distribution of ψ∗mn,n by applying theoretical calculations, or at least, we can obtain an
empirical estimation for it by large number of bootstrap sample generations. Now, if we
can show that ψ∗mn,n converges weakly to ϕ, then we have a better or worse estimate of
the distribution of ϕ, and hence, we have an approximation for the law of ψn, and we are
done. Similarly to the non-bootstrapped setup in many cases the convergence of ψ∗mn,n
can be obtained by showing that the bootstrap empirical process α∗mn,n converges in
distribution to B(F ). This asymptotic behavior would not be surprising in the sense
that the basis of the bootstrap heuristics is the idea that the objects based on the
generated sample behave just the same way as the corresponding objects based on the
original sample.

The paper of Efron (1979) was much rather a receipt book than a theoretical work.
He introduced the basic concepts of the bootstrap on some interesting examples, but
he did not prove the validity of the technique. The theoretic background of the method
was demonstrated �rstly by Bickel and Freedman (1981) who provided a law of large
numbers and a central limit theorem for the Efron bootstrap, and they showed also the
convergence of α∗mn,n(x) in distribution to B(F (x)), x ∈ R, in the space D[−∞,∞].
The next decade was the renaissance era of the bootstrap, and many applications of
the method was found both in applied statistics and in theoretic �elds. For an overview
on the most important developments see Efron and Tibshirani (1993) or Hall (1992).
Also, for a theoretic survey on the asymptotic properties of bootstrapped sums see the
paper of Csörg® and Rosalsky (2003). In the viewpoint of our work the most interesting
result is a uniform strong approximation for the bootstrap empirical process provided
by Csörg® and Mason (1989).

Theorem 2.5 (Csörg® and Mason, 1989). Consider an arbitrary distribution function
F (x), x ∈ R, and assume that there exist positive constants C1 and C2 such that

C1 < mn/n < C2 , n = 1, 2, . . .

16



2.2 The bootstrap method

On a su�ciently rich probability space one can de�ne independent random variables
X1, X2, . . . having common distribution function F (x), x ∈ R, and bootstrapped sample
variables X∗1,n, . . . , X

∗
mn,n, n = 1, 2, . . . based on the Xi's, and a sequence of Brownian

bridges B∗1 , B
∗
2 , . . . , such that for the corresponding bootstrap empirical process we have

sup
x∈R

∣∣α∗mn,n(x)−B∗mn
(
F (x)

)∣∣ = O
(

max{l(mn), l(n)}
)
,

with the function l(n) = n−1/4(log n)1/2(log log n)1/4. Also, the Brownian bridges are
independent from the Xi's.

We must note that the last statement of the theorem about the independence of
the Brownian bridges is not stated in the referred result of Csörg® and Mason (1989),
but it also holds. The proof of the theorem applies the KMT approximation presented
in Theorem 2.1. The basic idea of the construction is that we consider the product of
two KMT spaces, and de�ne the variables X1, X2, . . . on the �rst space, and construct
the bootstrapped samples on the other one. In this way the empirical process and
the Brownian bridges of the second KMT space serve as α∗mn,n and B∗n, and they
provides the desired approximation. Since the original sample variables X1, X2, . . . are
considered on the �rst KMT space, they are independent from the Brownian bridges.
This interesting idea is adapted also by us in the proofs of our Theorems 3.2 and 3.3.

Unfortunately, this approximation has a weakness. In a typical application we have
a signi�cance level 0 < α < 1, and the goal is to obtain a critical values cn(α) satisfying
the equation

P
(
ψn ≤ cn(α)

)
= 1− α ,

or at least the convergence

P
(
ψn ≤ cn(α)

)
→ 1− α , n→∞ . (2.5)

Since the statistics ψn converges weakly to ϕ, the critical value cn(α) can be estimated
by using one any value from the interval [c(α), d(α)], where

c(α) = inf
{
x ∈ R : Fϕ(x) ≥ 1− α

}
, d(α) = sup

{
x ∈ R : Fϕ(x) ≤ 1− α

}
, (2.6)

and Fϕ(x), x ∈ R, is the distribution function of ϕ. By the bootstrap heuristics the
quantile c(α) may be approximated by

c∗n(α) = inf
{
x ∈ R : P

(
ψ∗mn,n ≤ x | X1, . . . , Xn

)
≥ 1− α

}
, (2.7)

and c∗n(α) can be estimated by the empirical quantiles of ψ∗mn,n after a large number
of bootstrap sample generations. That is, working with a given sample X1, . . . , Xn we
need the conditional weak convergence of the bootstrap empirical process with respect
to the observations. The di�culty derives from the fact that Theorem 2.5 implies only
unconditional convergence. Fortunately, the approximation technique provides also a
solution for this problem.
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2 Some basic concepts

Consider the observations X1, X2, . . . , the related bootstrapped variables, and an
arbitrary statistics with the form

ψ∗mn,n = ψ∗mn,n(X1, . . . , Xn, X
∗
1,n, . . . , X

∗
mn,n) .

Since for any �xed n the bootstrapped variables X∗1,n, . . . , X
∗
mn,n come from the original

sample X1, . . . , Xn, the statistics ψ∗mn,n is independent from the remaining variables
Xn+1, Xn+2, . . . Assume that the background probability space is rich enough to pro-
vide a sequence of variables ϕ1, ϕ2, . . . having the same distribution function Fϕ(x),
x ∈ R, such that ∣∣ψ∗mn,n − ϕmn∣∣→ 0 , n→∞ , (2.8)

unconditionally in almost sure or stochastic sense. Based on the KMT approximation
such a representation may exist. Additionally, suppose that the sequence ϕ1, ϕ2, . . . is
independent from the observations X1, X2, . . . The goal is to obtain some conditions
under which the quantile c∗n(α) introduced in (2.7) converges to c(α) of (2.6).

First, investigate the case when we have almost sure convergence, that is, the event

A =
{
|ψ∗mn,n − ϕmn| → 0, n→∞}

has probability 1. Since the variables X1, X2, . . . are independent the conditional prob-
ability of the convergence in (2.8) can be written as

P
(
|ψ∗mn,n − ϕmn| → 0 | X1, . . . , Xn

)
= P

(
A | X1, X2, . . .

)
. (2.9)

By using Lemma 1.1 of Csörg® and Rosalsky (2003) it follows that the event A has
probability 1 if and only if the conditional probability (2.9) is equal to 1, and hence, the
unconditional strong approximation in (2.8) is equivalent with the related conditional
strong convergence. Since the variables ϕ1, ϕ2, . . . have the same distribution as ϕ and
they are independent from the Xi's, we also obtain the conditional weak convergence
of ψ∗mn,n to ϕ, that is, we have

P
(
ψ∗mn,n ≤ c | X1, . . . , Xn

)
→ P

(
ϕ ≤ c | X1, . . . , Xn

)
= Fϕ(c) , (2.10)

as n→∞ for every continuity points c ∈ R of the function Fϕ.
In our next proposition we show that the conditional weak convergence (2.10) holds

also in the case when we have the convergence in (2.8) only in stochastic sense, and in
Theorem 2.7 we provide a theoretical background for our applications in the following
chapters. The proofs of the statements adapt the ideas presented in the Appendix of
Csörg® and Mason (1989). Note that the results can be applied both for the parametric
and for the non-parametric case. It is possible that these results or similar ones are
already published by someone, but the we have not �nd any reference for them.

Proposition 2.6. If the convergence (2.8) holds in probability then for any continuity
point c ∈ R of the distribution function Fϕ(x), x ∈ R, we have

P
(
ψ∗mn,n ≤ c | X1, . . . , Xn

) P−→Fϕ(c) , n→∞ .
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2.2 The bootstrap method

Proof. Fix any values ε, δ > 0 and consider the events

An(ε) =
{∣∣ψ∗mn,n − ϕmn∣∣ > ε

}
,

and
Bn(ε, δ) =

{
P
(
Amn,n(ε) | X1, . . . , Xn

)
> δ
}
.

Note that the stochastic convergence in (2.8) implies that the probability of the event
An(ε) converges to 0. By restricting the domain of integration from the whole universe
Ω to Bn(ε, δ) we get

P
(
An(ε)

)
= E

(
P
(
An(ε) | X1, . . . , Xn

))
≥ δP

(
Bn(ε, δ)

)
.

Since the left side converges to 0 it follows that

P
(
P
(
An(ε) | X1, . . . , Xn

)
> δ
)

= P
(
Bn(ε, δ)

)
→ 0 ,

for any positive δ, and hence,

P
(
|ψ∗mn,n − ϕmn| > ε | X1, . . . , Xn

)
= P

(
An(ε) | X1, . . . , Xn

) P−→ 0 .

Using the fact that{
ψ∗mn,n ≤ c

}
⊆
{
ϕmn ≤ c+ ε

}
∪
{
|ψ∗mn,n − ϕmn | > ε

}
and the independence of the variables ϕ1, ϕ2, . . . from the Xi's, we obtain

P
(
ψ∗mn,n ≤ c | X1, . . . , Xn

)
≤ P

(
ϕmn ≤ c+ ε | X1, . . . , Xn

)
+ P

(
|ψ∗mn,n − ϕmn| > ε | X1, . . . , Xn

) P−→Fϕ(x+ ε) + 0 .
(2.11)

Similarly, from {
ϕmn ≤ c− ε

}
⊆
{
ψ∗mn,n ≤ c

}
∪
{
|ψ∗mn,n − ϕmn| > ε

}
we have also the inequality

P
(
ϕmn ≤ c− ε | X1, . . . , Xn

)
≤ P

(
ψ∗mn,n ≤ c | X1, . . . , Xn

)
+ P

(
|ψ∗mn,n − ϕmn| > ε | X1, . . . , Xn

)
which implies that

P
(
ψ∗mn,n ≤ c | X1, . . . , Xn

)
≥ P

(
ϕmn ≤ c− ε | X1, . . . , Xn

)
− P

(
|ψ∗mn,n − ϕmn| > ε | X1, . . . , Xn

) P−→Fϕ(x− ε)− 0 .
(2.12)

Since ε > 0 was arbitrary and the distribution function Fϕ is continuous at the point
c, the statement follows from formulas (2.11) and (2.12).
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2 Some basic concepts

Theorem 2.7. Consider independent and identically distributed variables X1, X2, . . . ,
the related bootstrapped samples X∗1,n, . . . , X

∗
mn,n, n = 1, 2, . . . , and a statistic

ψ∗mn,n = ψ∗mn,n
(
X1, . . . , Xn, X

∗
1,n, . . . , X

∗
mn,n

)
.

Suppose that the underlying probability space provides identically distributed variables
ϕ1, ϕ2, . . . which are independent from the sequence X1, X2, . . . and∣∣ψ∗mn,n − ϕmn∣∣ P−→ 0 , n→∞ .

Fix an arbitrary value 0 < α < 1, and assume that the distribution function Fϕ(x),
x ∈ R, of the ϕi's is continuous at the points c(α) and d(α) de�ned in (2.6) Then, for
the quantile c∗n(α) of (2.7) we have

Fϕ
(
c∗n(α)

) P−→ 1− α , n→∞ .

Furthermore, if c(α) = d(α) then c∗n(α)→ c(α) in probability.

Proof. Choose any ε > 0 such that c(α)− ε and d(α) + ε are also continuity points of
Fϕ. Using Proposition 2.6 and the de�nition of c(α) in (2.6) we have

P
(
ϕmn ≤ c(α)− ε | X1, . . . , Xn

) P−→Fϕ
(
c(α)− ε

)
< 1− α ,

and from (2.7) it follows that

P
(
c∗n(α) < c(α)− ε

)
≤ P

(
P
(
ϕmn ≤ c(α)− ε | X1, . . . , Xn

)
≥ 1− α

)
P−→ 0 .

Similarly, by Proposition 2.6 we obtain the convergence

P
(
ϕmn ≤ d(α) + ε | X1, . . . , Xn

) P−→Fϕ
(
d(α) + ε

)
> 1− α ,

and we have

P
(
c∗n(α) > d(α) + ε

)
≤ P

(
P
(
ϕmn ≤ d(α) + ε | X1, . . . , Xn

)
≤ 1− α

)
P−→ 0 .

That is, we obtain that

P
(
c(α)− ε ≤ c∗n(α) ≤ d(α) + ε

)
→ 1 , n→∞ , (2.13)

and the monotony of the distribution function Fϕ implies

P
(
Fϕ
(
c(α)− ε

)
≤ Fϕ

(
c∗n(α)

)
≤ Fϕ

(
d(α) + ε

))
→ 1 .

Note that c(α) and d(α) are continuity points of Fϕ by assumption, which implies that
the distribution function is constant 1 − α on the interval [c(α), d(α)] by (2.6). Since
ε is an arbitrary positive value we immediately get that

Fϕ
(
c∗n(α)

) P−→ 1− α , n→∞ .

Similarly, if c(α) = d(α) then formula (2.13) implies the convergence c∗n(α)→ c(α) in
probability.

20



2.3 Stochastic integral processes

To summarize what we found consider the signi�cance level α and the quantiles
de�ned in (2.5)�(2.7). In a favorable case c(α) = d(α) and c(α) is a continuity point of
the distribution function Fϕ. Since ψn converges in distribution to ϕ by assumption,
the theory of statistics implies that for any sequence cn(α) satisfying (2.5) we have
cn(α)→ c(α) in probability. Also, in this case we have c∗n(α)→ c(α) in the same sense
by Theorem 2.7, and hence, the quantile c∗n(α) can be applied as an estimator of c(α)
and cn(α).

In the less favorable case, when Fϕ is continuous at c(α) and d(α), but it is not
sure, that these values are equal, then for any x in the interval [c(α), d(α)] we have

P (ψn ≤ x)→ P (ϕ ≤ x) = 1− α

in probability. That is, any element of the interval can serves as cn(α). By Theorem
2.7 the bootstrap quantile c∗n(α) asymptotically lies in [c(α), d(α)], and it can play the
role of cn(α), again.

Based on this concept in the following chapters we will construct such a represen-
tations of various bootstrapped empirical processes which provide approximations for
the processes, and using Theorem 2.7 we will apply the bootstrap quantiles c∗n(α) to
estimate the unknown critical values c(α) of some related statistics ψn.

2.3 Stochastic integral processes

Stochastic integration with respect to a local martingale on a �nite interval is an im-
portant and well investigated �eld of probability, but in our work we will face stochastic
integrals on the whole real line. In this section we provide an extension of the basic
theory. We prove a condition for the existence of the integral, and also, we investigate
processes de�ned as the integral of a bivariate deterministic function. (For a simple
introduction to stochastic calculus we recommend the book of Karatzas and Shreve
(1988). For a more general and deeper framework see Jacod and Shiryaev (2003).)

LetM(x), x ∈ R, be a local martingale with respect to a �ltration {Fx : x ∈ R} on
the underlying probability space. Suppose that M has pointwise mean 0 and càdlàg
trajectories, that is, with probability 1 the process is right-continuous and has left-side
limit at every point x ∈ R. Additionally, assume that M is locally square integrable,
which means that it has �nite second moment EM2(x) for any real x, and the second
moment is bounded on each �nite interval. The Doob�Meyer decomposition provides
an adapted process 〈M〉x, x ∈ R, which has non-decreasing and càdlàg trajectories,
such that M2(x)− 〈M〉x, x ∈ R, is a local martingale. (See Theorem 4.2 in Chapter I
of Jacod and Shiryaev (2003).) The process 〈M〉 is called the quadratic characteristic
of the local martingaleM , and its mean function E〈M〉x, x ∈ R, is also non-decreasing
and càdlàg.

Consider a real valued deterministic function f(x), x ∈ R, such that f is locally
bounded, that is, bounded on every �nite interval. Additionally, assume that f is left-
continuous and has right-side limit at every point x ∈ R. Then, for any �xed values
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2 Some basic concepts

T1 < 0 < T2 the stochastic integral∫ T2

T1

f(x) dM(x) (2.14)

is a well-de�ned random variable having mean 0 and variance

‖f‖2[T1,T2] = E

∫
[−T1,T2]

f 2(x) d〈M〉x .

Also, the covariance of the stochastic integrals of the functions f(x) and g(x) is

Cov

(∫ T2

T1

f(x) dM(x),

∫ T2

T1

g(x) dM(x)

)
= E

∫
[T1,T2]

f(x)g(x) d〈M〉x .

We say that the function f can be integrated on the real line with respect to the local
martingale M if the variable in (2.14) has limit in L2 sense as T1 → −∞ and T2 →∞.
In this case the integral is de�ned as∫ ∞

−∞
f(x) dM(x) = lim

T1→−∞
T2→∞

∫ T2

T1

f(x) dM(x) in L2 sense.

In our �rst statement we provide a condition for the existence of the integral.

Lemma 2.8. The integral
∫
R f(x)dM(x) is well-de�ned if and only if

‖f‖2R = E

∫
R
f 2(x) d〈M〉x <∞ .

In this case
∫
R f(x)dM(x) has mean 0 and �nite variance ‖f‖2∞.

Proof. If the integral
∫
R f(x)dM(x) exists then by de�nition it is the L2 limit of the

variables
∫ T2
T1
f(x)dM(x), which implies that

∫
R f(x)dM(x) has mean 0 and variance

lim
T1→−∞
T2→∞

‖f‖2[T1,T2] = ‖f‖2R <∞ .

Contrary, let S1, T1 → −∞ and S2, T2 →∞ such that T1 ≤ S1 < 0 < S2 ≤ T2, and let
1B(x), x ∈ R, denote the indicator function of the Borel set B. Then we have

E

[ ∫ T2

T1

f(x) dM(x)−
∫ S2

S1

f(x) dM(x)

]2
= E

[ ∫ T2

T1

f(x)
(
1− 1[S1,S2](x)

)
dM(x)

]2
= E

∫
[T1,T2]

f 2(x)
(
12 − 1

2
[S1,S2]

(x)
)
d〈M〉x

= ‖f‖2[T1,T2] − ‖f‖
2
[S1,S2]

≤ ‖f‖2R − ‖f‖2[S1,S2]
→ 0 ,

and hence, the integrals
∫ T2
T1
f(x)dM(x), T1 < 0 < T2, form a Cauchy system in the

Hilbert space of all square integrable random variables being de�ned on the underlying
probability space and having mean 0. This implies that they have �nite L2 limit as
T1 → −∞ and T2 →∞.
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In many applications the local martingale M(x) can be represented by the form
W (F (x)), x ∈ R, where W (u), u ≥ 0, is a standard Wiener process on the underlying
probability space and F (x), x ∈ R, is the right-continuous distribution function of an
arbitrary random variable X. In our next result we investigate the stochastic integrals
of functions f(x, t), x ∈ R, parametrized by the variable t.

Lemma 2.9. Consider a family of deterministic functions f(x, t), x ∈ R, parametrized
by t ∈ T ⊆ R, and assume that the integral

I(t) =

∫
R
f(x, t) dW

(
F (x)

)
exists for every t ∈ T. Then, I(t) is a Gaussian process with pointwise mean 0 and
covariance function

Cov
(
I(s), I(t)

)
=

∫
R
f(x, s)f(x, t) dF (x) , s, t ∈ T .

Proof. First, note that W (F (x)), x ∈ R, is a centered and càdlàg martingale for any
distribution function F (x), and it has the pointwise second moment and the quadratic
characteristic

EW 2
(
F (x)

)
=
〈
W (F )

〉
x

= F (x) , x ∈ R .

To show that the process I(t) is Gaussian on T �x an arbitrary integer d = 1, 2, . . .
and parameters t1, . . . , td ∈ T, and consider the d-dimensional vector valued function

fd(x; t1, . . . , td) =
(
f(x, t1), . . . , f(x, td)

)
, x ∈ R .

By the standard de�nition of the stochastic integral the integral of fd on [−T, T ] is∫ T

−T
fd(x; t1, . . . , td) dW

(
F (x)

)
=

(∫ T

−T
f(x, t1) dW

(
F (x)

)
, . . . ,

∫ T

−T
f(x, td) dW

(
F (x)

))
,

(2.15)

and the properties of the Wiener process imply that (2.15) has d-dimensional normal
distribution. Since each component of (2.15) converges in L2 sense to the corresponding
integral considered on the whole real line, the vector variable has the L2 limit(∫ ∞

−∞
f(x, t1) dW

(
F (x)

)
, . . . ,

∫ ∞
−∞

f(x, td) dW
(
F (x)

))
, (2.16)

as T →∞. Because the L2 convergence implies the convergence in distribution, and the
family of normal distributions is closed under the weak convergence, we immediately
obtain that (2.16) has normal law. Then, the process I(t), t ∈ T, has normal �nite
dimensional distributions, and hence, it is Gaussian.
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Using Lemma 2.8 it is clear that I(t) has mean 0 at every t ∈ T. Since the covariance
matrix of (2.15) converges to that of (2.16) it follows that

Cov
(
I(s), I(t)

)
= lim

T→∞
Cov

(∫ T

−T
f(x, s) dW

(
F (x)

)
,

∫ T

−T
f(x, t) dW

(
F (x)

))
= lim

T→∞

∫
[−T,T ]

f(x, s)f(x, t) d
〈
W (F )

〉
x

=

∫
R
f(x, s)f(x, t) dF (x) ,

with any s, t ∈ T. This completes the proof.

In our work a Gaussian process presented by the form I(t), t ∈ T, will acts as
the weak limit of some empirical process based on some sample variables. The main
goal will be to approximate some functional of the corresponding empirical process by
the same functional of the limiting process. In such an applications we will sometimes
face the problem that this functional of the Gaussian processes must have bounded
density function, or at least continuous distribution function. The following result is a
simpli�ed version of Theorem 1 of Tsirel'son (1975), and it will serve us well when we
will investigate the supremum functionals of Gaussian processes.

Theorem 2.10 (Tsirel'son, 1975). Consider variables X1, X2, . . . de�ned on the same
probability space having normal distribution with mean EXi ≥ 0, i = 1, 2, . . . . Assume
that not all of the Xi's are degenerate and they have supremum

S = sup
i∈Z+

Xi <∞ a.s.

Let FS(x) = P (S ≤ s), s ∈ R, denote the distribution function of S, and let

s0 = inf
{
s ∈ R : FS(s) > 0

}
∈ [−∞,∞)

stand for the left endpoint of the support of FS. Then, the distribution function FS
is absolute continuous on the interval (s0,∞), and its derivative is bounded on [s,∞)
with any s > s0.
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Chapter 3

Bootstrapped parameter estimated
empirical processes

3.1 Introduction and preliminary results

Consider a family F = {F (x, θ) : x ∈ R, θ ∈ Θ ⊆ Rd} of univariate distributions, and
let X1, X2, . . . be independent random variables having common distribution function
F (x, θ0), x ∈ R, where θ0 ∈ Θ is a �xed parameter. Let Fn(x), x ∈ R, stand for
the empirical distribution function of the sample variables X1, . . . , Xn, and applying
some estimation method let θ̂n = θ̂n(X1, . . . , Xn) be an estimator of θ0. The parameter
estimated empirical process based on the sample X1, . . . , Xn can be de�ned as

α̂n(x) = n1/2
[
Fn(x)− F (x, θ̂n)

]
, x ∈ R . (3.1)

The weak convergence of α̂n to a Gaussian processG(x), x ∈ R, in the spaceD[−∞,∞]
was showed by Durbin (1973), and a few years later Burke et al. (1979) proved a weak
approximation theorem for the process under similar regularity conditions as Durbin
used. This latter result is stated in Theorem 3.1 in the next section. Note that under
a wider set of assumptions Burke et al. (1979) provided almost sure convergence, and
also, they provided a rate for the convergence.

Since the famous result of Durbin (1973) statistical procedures based on the esti-
mated empirical process became widely used to test goodness-of-�t. These methods
usually are not distribution free, that is, the limiting process, and thus the asymptotic
critical values of the test statistics depend not only on F , but also on the unknown
parameter θ0, as well. Consequently, we can not test directly the original hypotheses
H0, just the �t of the sample to a �xed element of the distribution family. To make the
situation worse, there is no known theoretical way to calculate the distribution of non-
trivial functionals of the limiting process G, so the critical values can be determined
only by computer simulation separately for each θ0. To overcome these di�culties, we
can apply the bootstrapped version of the estimated empirical process, which requires
computer work, but provides distribution free procedures.
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3 Bootstrapped parameter estimated empirical processes

Let F̂n(x) be an estimator of F (x, θ0), x ∈ R, based on X1, . . . , Xn, and generate in-
dependent sample elements X∗1,n, . . . , X

∗
mn,n having distribution function F̂n. Consider

the corresponding empirical distribution function

F ∗mn,n(x) =
1

mn

mn∑
i=1

1{X∗i,n≤x} , x ∈ R ,

and let θ∗n be an estimator of θ0 based on the bootstrapped variables. The bootstrapped
estimated empirical process is the estimated empirical process pertaining to the gen-
erated sample, and it is de�ned by the form

ᾱ∗mn,n(x) = m1/2
n

[
F ∗mn,n(x)− F (x, θ∗n)

]
, x ∈ R . (3.2)

The resampling method is called parametric bootstrap if F̂n(x) = F (x, θ̂n), and the
method is called non-parametric bootstrap or Efron bootstrap if F̂n(x) = Fn(x), x ∈ R.
In the latter case the bootstrapped values X∗1,n, . . . , X

∗
mn,n are obtained by sampling

n times with replacement from the original observations such that for each of the n
selections, each Xk has probability 1/n of being chosen.

To understand the essence of the bootstrap technique, consider any continuous
functional ψ(α̂n) of the process α̂n as a test statistics for H0. Since α̂n converges
weakly to G, the asymptotic critical values of the statistics are the proper theoretical
quantiles of ψ(G). Whenever the bootstrapped process ᾱ∗mn,n converges in distribution
to the same limit G, the critical values can be replaced by the empirical quantiles of
ψ(ᾱ∗mn,n) based on a large number of independent sample generations, which process
can be made by using computers. The most important bene�t of this method is that
we do not need to specify the parameter θ0 in the algorithm.

The parametric bootstrap was introduced by Stute et al. (1993), and it was designed
directly to test goodness-of-�t for parametric distribution families. The idea behind
their method might be the Monte Carlo technique, with which one can investigate the
distribution of a random variable by generating large number of observations. Since
in the applications we do not know the parameter θ0, heuristically, it seems to be a
good idea to replace it with the estimator θ̂n, and generate realizations of the process
α̂n based on samples having distribution function F (x, θ̂n), x ∈ R. The parametric
bootstrap method works exactly this way. For a �xed sample size mn ∈ N consider
independent sample variables X∗1,n, . . . , X

∗
mn,n coming from the distribution F (x, θ̂n),

x ∈ R, and let
θ̂∗n = θ̂∗n(X∗1,n, . . . , X

∗
mn,n)

be an estimator of the parameter θ̂n. The parametric bootstrap estimated empirical
process is the parameter estimated empirical process based on the bootstrapped sam-
ple, and it is de�ned by the form

α̂∗mn,n(x) = m1/2
n

[
F ∗mn,n(x)− F (x, θ̂∗n)

]
, x ∈ R . (3.3)

The process was investigated by several researchers in the recent years. Stute et al.
(1993) and Babu and Rao (2004) proved that α̂∗mn,n converges to G in the case mn = n
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3.1 Introduction and preliminary results

for continuous distribution families under slightly di�erent groups of assumptions.
Henze (1996) showed the convergence of the non-negative integer valued version de�ned
by Zn(k) = α̂∗mn,n(k), k = 0, 1, 2, . . . , as a random element of the Banach space of all
real sequences converging to zero, endowed with the supremum norm. An interesting
and useful variant of the procedure was investigated by Genz and Haeusler (2006) for
processes under auxiliary information.

The non-parametric bootstrap of Efron (1979) originally was designed for estimat-
ing variance and for constructing con�dence intervals, not for testing goodness-of-�t.
Burke and Gombay (1988) were the �rst who de�ned a non-parametric bootstrap
based empirical process similar to the one in formula (3.4) as a tool for testing com-
posite hypothesis, and they proved the convergence of their process to G. Later, Babu
and Rao (2004), in the same paper where they investigated α̂∗mn,n, introduced the
non-parametric version of the process. To obtain a non-parametric bootstrap sample
having size mn select sample variables X∗1,n, . . . , X

∗
mn,n among the original observations

X1, . . . , Xn with replacement such that each Xk has probability 1/n of being chosen
each time. Let

θ̃∗n = θ̃∗n(X∗1,n, . . . , X
∗
mn,n)

be an estimator of θ0, and let F ∗mn,n(x), x ∈ R, stand for the bootstrapped empirical
distribution function. The non-parametric bootstrap estimated empirical process is

α̃∗mn,n = m1/2
n

[
F ∗mn,n(x)− F (x, θ̃∗n)

]
, x ∈ R . (3.4)

Babu and Rao (2004) found that the process does not converge to G in distribution,
because it requires bias correction, and they proved that in α̃∗mn,n− α̂n converges to G
formn = n in continuous distribution families. As a result, the critical values of a given
test statistics ψ(α̂n) can not be determined as the empirical quantiles of ψ(α̃∗n,n) as in
the parametric case, but the method works if we apply the functional ψ(α̃∗n,n− α̂n). For
more details see Babu and Rao (2004), where the parametric and the non-parametric
bootstrap procedure are illustrated in the uniform, the normal and the Cauchy family.

The aim of the chapter is to state and prove weak approximation theorems for the
parametric and the non-parametric bootstrapped estimated empirical process under
some general conditions, which contain the most important continuous and discrete
distribution families and estimation methods. That is, we will construct a representa-
tion of α̂∗mn,n and α̃∗mn,n, and copies Gn of the limiting process G, n = 1, 2, . . . , such
that the supremum distance between the bootstrapped processes and Gmn converges to
zero in probability. This implies the weak convergence of α̂∗mn,n and α̃

∗
mn,n in the space

D[−∞,∞]. We present our main results in Section 3.2 with a short discussion of the
conditions. The proofs can be found in Section 3.3. The approximations will be highly
valued later in Section 4.9, where we will introduce the related probability generator
processes, and we will apply the results of this chapter to prove their convergence. The
bootstrap test algorithm and its theoretical background for the Kolmogorov�Smirnov
type functional of the processes is provided in Section 3.4. Finally, in Section 3.5 we
check the validity of the assumptions of the method for the Poisson and for the normal
distribution, and in Section 3.6 we report on a simulation study in these families.

27



3 Bootstrapped parameter estimated empirical processes

3.2 Assumptions and results

Consider the distribution family F = {F (x, θ) : x ∈ R, θ ∈ Θ ⊆ Rd}, and let θ0 be a
�xed and let θ = (θ(1), . . . , θ(d)) be an arbitrary vector in the set Θ. Let X1, X2, . . . and
Y1, Y2, . . . be sequences of independent and identically distributed random variables
having distribution function F (x, θ0) and F (x, θ), x ∈ R, respectively. Also, consider
a statistical function

θn = θn(Y1, . . . , Yn)

as an estimator of the general parameter θ, and let θ̂n = θn(X1, . . . , Xn) be the estima-
tion of θ0 based on X1, . . . , Xn. Let mn be the bootstrap sample size, and based on the
bootstrapped sample let θ̂∗n and θ̃

∗
n denote the estimator of θ̂n in the parametric and of

θ0 in the non-parametric case, respectively. Unless otherwise speci�ed, all asymptotic
statements are meant as n→∞.

Assumption 1. We will use the following assumptions in our main results.

(a1) The vector

∇θF (x, θ) =

(
∂

∂θ(1)
F (x, θ), . . . ,

∂

∂θ(d)
F (x, θ)

)
of partial derivatives exists for all (x, θ) ∈ R×Λ, where the set Λ ⊆ Θ is a proper
neighborhood of θ0.

(a2) ∇θF (x, θ), x ∈ R, converges uniformly to ∇θF (x, θ0), x ∈ R, as θ → θ0.

(a3) ∇θF (x, θ0), x ∈ R, is bounded.

(a4) There exist Borel measurable functions l(θ0) : R → Rd and εn(θ0) : Rn → Rd

such that

θ̂n − θ0 =
1

n

n∑
i=1

l(Xi, θ0) + n−1/2εn(θ0) a.s.

holds with εn(θ0) = εn(X1, . . . , Xn, θ0).

(a5) There exist Borel measurable functions l : R × Λ → Rd and εn : Rn × Λ → Rd

such that

θn − θ =
1

n

n∑
i=1

l(Yi, θ) + n−1/2εn(θ) a.s.

holds with εn(θ) = εn(Y1, . . . , Yn, θ) for every θ ∈ Λ.

(a6) There exist a Borel measurable function εm,n(θ0) : Rn+m → Rd such that

θ̃∗n − θ̂n =
1

m

m∑
i=1

l(X∗i,n, θ0)−
1

n

n∑
i=1

l(Xi, θ0) +m−1/2εm,n(θ0) a.s.

holds with the function l de�ned in (a4), and with the non-parametric bootstrap
sample X∗1,n, . . . , X

∗
m,n, and with εm,n(θ0) = εm,n(X1, . . . , Xn, X

∗
1,n, . . . , X

∗
m,n, θ0).
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3.2 Assumptions and results

(a7) E l(Xi, θ0) = 0.

(a8) E l(Yi, θ) = 0 for every θ ∈ Λ.

(a9) M(θ0) = E l(Xi, θ0)
T l(Xi, θ0) is a �nite non-negative de�nite matrix.

(a10) M(θ) = E l(Yi, θ)
T l(Yi, θ) is a �nite non-negative de�nite matrix for every θ ∈ Λ.

(a11) The function M(θ), θ ∈ Λ, is continuous at θ0.

(a12) Each component of l(x, θ0), x ∈ R, is of bounded variation on every �nite interval.

(a13) l(x, θ) converges uniformly to l(x, θ0), x ∈ R, on every �nite interval as θ → θ0.

(a14) εn(θ0)
P−→ 0.

(a15) εmn(θ̂n)
P−→ 0.

(a16) εmn,n(θ0)
P−→ 0.

Throughout the chapter the primary notation of vectors refers to row vectors, and
V T and V (k) will stand for the transpose and the k-th component of a row vector V .
As further notation, M (j,k)(θ) will denote the element of the matrix M(θ) in the j-th
row and k-th column. Also, for a d-dimensional vector valued function g(x, θ) we use
the notation

g2(x, θ) =
(

(g(k)(x, θ))2, . . . , (g(k)(x, θ))2
)

The norm ‖ · ‖ on Rd is the usual Euclidean norm. The following theorem is due to
Burke et al. (1979).

Theorem 3.1. (Burke, Csörg®, Csörg® and Révész, 1978) Assume that the distribution
family F , the �xed parameter θ0 and the applied estimation method satisfy conditions
(a1)�(a4), (a7), (a9), (a12) and (a14). Then, on a suitable probability space, one can
construct independent random variables X1, X2, . . . , having common distribution func-
tion F (x, θ0), and a sequence of Brownian bridges B1, B2, . . . , such that the parameter
estimated empirical process α̂n(x), x ∈ R, based on the variables X1, . . . , Xn satis�es

sup
x∈R

∣∣α̂n(x)−Gn(x)
∣∣ P−→ 0 , n→∞ ,

with the process

Gn(x) = Bn

(
F (x, θ0)

)
−
[ ∫

R
l(x, θ0) dBn

(
F (x, θ0)

)]
∇θF (x, θ0)

T , x ∈ R .

As a consequence of Theorem 3.1 we obtain the well-known result of Durbin (1973),
the weak convergence of α̂n to the process

G(x) = B
(
F (x, θ0)

)
−
[ ∫

R
l(x, θ0) dB

(
F (x, θ0)

)]
∇θF (x, θ0)

T , x ∈ R , (3.5)
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3 Bootstrapped parameter estimated empirical processes

where B(u), 0 ≤ u ≤ 1, is an arbitrary Brownian bridge. Note that G is a mean-zero
Gaussian process having covariance function

Cov
(
G(x), G(y)

)
= F (min(x, y), θ0)− F (x, θ0)F (y, θ0)− J(x)∇θF (y, θ0)

T

− J(y)∇θF (x, θ0)
T +∇θF (x, θ0)M(θ0)∇θF (y, θ0)

T ,

for x, y ∈ R, with J(x) =
∫ x
−∞ l(z, θ0) dF (z, θ0). Now, we state our main results in the

subject of bootstrapped empirical processes. Theorem 3.2 deals with the parametric
and Theorem 3.3 is about the non-parametric case.

Theorem 3.2. Assume that the bootstrap sample size mn →∞, and assume that the
distribution family F , the �xed parameter θ0 and the applied estimation method satisfy
conditions (a1)�(a3), (a5), (a8), (a10)�(a15). Then, on a suitable probability space,
one can construct random variables Xi and Xi,θ, θ ∈ Θ, i = 1, 2, . . . , having distribu-
tion function F (x, θ0) and F (x, θ), respectively, and a sequence of Brownian bridges
B1, B2, . . . , such that the random variables X1, X1,θ, X2, X2,θ, . . . are independent for
every θ, and the parametric bootstrapped estimated empirical process of (3.3) based on
the variables X1, . . . , Xn and on the parametric bootstrap sample(

X∗1,n, . . . , X
∗
mn,n

)
=
(
X1,θ̂n

, . . . , Xmn,θ̂n

)
, n = 1, 2, . . . ,

satis�es
sup
x∈R

∣∣α̂∗mn,n(x)−Gmn(x)
∣∣ P−→ 0 , n→∞ ,

where G1, G2, . . . are de�ned by (3.5) based on B1, B2, . . .

Theorem 3.3. Assume that the bootstrap sample size mn →∞, and assume that the
distribution family F , the parameter θ0 and the estimation method satisfy conditions
(a1)�(a4), (a6), (a7), (a9), (a12), (a14) and (a16). Then, on a suitable probabil-
ity space, one can construct independent random variables X1, X2, . . . with distribu-
tion function F (x, θ0), and non-parametric bootstrap sample variables X∗1,n, . . . , X

∗
mn,n,

for n = 1, 2, . . . , and a sequence of Brownian bridges B1, B2, . . . , such that the non-
parametric bootstrapped estimated empirical process de�ned in formula (3.4) based on
the variables X1, . . . , Xn and bootstrap sample X∗1,n, . . . , X

∗
mn,n satis�es

sup
x∈R

∣∣∣α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x)−Gmn(x)

∣∣∣ P−→ 0 , n→∞ ,

where α̂n is the estimated empirical process of (3.1) and G1, G2, . . . are de�ned by (3.5)
based on B1, B2, . . .

Since the process Gmn have the same distribution as G for every n, we obtain the
following consequence of Theorems 3.2 and 3.3.

Corollary 3.4. Under the assumptions of Theorems 3.2 and 3.3 the processes

α̂∗mn,n(x) and α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x) , x ∈ R ,

converges weakly to G(x), x ∈ R, in the space D[−∞,∞].
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3.3 Proofs of Theorems 3.2 and 3.3

For the proofs of the theorems we drew inspiration from two papers. The construc-
tion of the random elements is based on the method of Csörg® and Mason (1989) who
introduced the idea of representing the original and the bootstrapped sample variables
on the product of two KMT spaces. Fortunately, this technique does not require any
regularity condition on the model. Also, we adopt the approximation method which
was applied for the non-bootstrapped process α̂n by Burke et al. (1979), from where
we inherit the conditions of Theorem 3.1 along with the technique. That is, we require
the existence and the smoothness of the function ∇θF (x, θ) in a neighborhood of θ0,
and we must also take some assumptions on the regularity of the applied estimation
method at the single point θ0. In the non-parametric bootstrap case we do not need
much more additional assumptions, we only need a similar sum representation for
the bootstrapped parameter estimator θ̃∗n as we already have in the non-bootstrapped
model. Contrary, in the parametric bootstrap case the bootstrapped sample comes
from the distribution F (x, θ̂n), x ∈ R, and hence, we must extend the assumptions
on the estimation method for a neighborhood of θ0, and we need uniformity for the
functions M(θ) and l(x, θ). Surveying the earlier proofs for the convergence of the
bootstrapped processes by Stute et al. (1993), Babu and Rao (2004) and the version
entertained by Henze (1996) we meet similar conditions.

3.3 Proofs of Theorems 3.2 and 3.3

The construction of the random variables and function of Theorems 3.2 and 3.3 is based
on the Hungarian construction presented in Theorem 2.2. This provides independent
variables U1,1, U1,2, . . . distributed uniformly on the interval [0, 1] and a sequence of
Brownian bridges B1,1(u), B1,2(u), . . . on an appropriate probability space (Ω1,A1, P1),
such that the related uniform empirical process β1,n(u), 0 ≤ u ≤ 1, de�ned in (2.1)
satis�es

sup
0≤u≤1

∣∣β1,n(u)−B1,n(u)
∣∣ = O

(
log n

n1/2

)
, a.s. (3.6)

Now, let (Ω2,A2, P2) be an other KMT probability space which carries the random
variables U2,i, empirical processes β2,i and Brownian bridges B2,i, i = 1, 2, . . . . De�ne
(Ω,A, P ) as the product probability space of (Ω1,A1, P1) and (Ω2,A2, P2), and consider
the random elements

Ui(ω) = U1,i(ω1) , U∗i (ω) = U2,i(ω2) , Bi(u, ω) = B2,i(u, ω2) , (3.7)

ω = (ω1, ω2) ∈ Ω1 × Ω2 = Ω, i = 1, 2, . . . . The empirical process based on the U∗i 's is
βn(ω) = β2,n(ω2), and (3.6) implies that

sup
0≤u≤1

|Hn(u)| = sup
0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ = O

(
log n

n1/2

)
(3.8)

holds with Hn(u) = βn(u)−Bn(u), 0 ≤ u ≤ 1.
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3 Bootstrapped parameter estimated empirical processes

Let Fn be the empirical distribution of the sample variables X1, . . . , Xn, and let

F−1(u, θ) = inf{x : F (x, θ) ≤ u} , F−1n (u) = inf{x : Fn(x) ≤ u} , 0 ≤ u ≤ 1 ,

denote the quantile function pertaining to F (x, θ) and Fn(x), respectively. Using the
elementary properties of the quantile function, the variables

Xi = F−1(Ui, θ0) , i = 1, 2, . . . (3.9)

are independent and have the same distribution function F (x, θ0), x ∈ R. Also,

Xi,θ = F−1(U∗i , θ) , i = 1, 2, . . . , θ ∈ Θ , (3.10)

are independent from each other and from theXi's, and they have the same distribution
function F (x, θ) for every θ ∈ Θ, that is, X1,θ̂n

, . . . , Xmn,θ̂n
is a parametric bootstrap

sample for every n. The conditional empirical process of the bootstrap sample with
respect to the variables X1, . . . , Xn is

m1/2
n

[
F ∗mn,n(x)− F (x, θ̂n)

]
= m1/2

n

[
1

mn

mn∑
i=1

1{Xi,θ̂n≤x}
− F (x, θ̂n)

]
= m1/2

n

[
1

mn

mn∑
i=1

1{U∗i ≤F (x,θ̂n)} − F (x, θ̂n)

]
= βmn

(
F (x, θ̂n)

) (3.11)

By similar reasons
X∗i,n = F−1n (U∗i ) , i = 1, . . . ,mn , (3.12)

are conditionally independent from each other and have conditional theoretical dis-
tribution function Fn(x), x ∈ R, given X1, . . . , Xn. Hence, X∗1,n, . . . , X

∗
mn,n is a non-

parametric bootstrap sample based on X1, . . . , Xn for n = 1, 2, . . . , and its conditional
empirical process is

m1/2
n

[
F ∗mn,n(x)− Fn(x)

]
= βmn

(
Fn(x)

)
. (3.13)

The rest is to show that the constructed variables and Brownian bridges satisfy the
statements in Theorems 3.2 and 3.3.

Throughout the proofs we may and do assume that Λ is a sphere with center θ0
and radius r > 0. Using (a2) and (a3) we can and do assume that the components
of the function ∇θF (x, θ) are bounded on R× Λ by a positive value M0. Also, in the
parametric bootstrap case by (a11) we can assume that the components of M(θ) are
bounded on Λ by the sameM0. In the proofs we often use the fact that if a real valued
random sequence An, n = 1, 2, . . . converges to 0 in probability, then there exists

pn → 0 such that P
(
|An| > pn

)
< pn , n = 1, 2, . . . (3.14)

Also, if En, n = 1, 2, . . . is a sequence of events such that P (En) → 1, and we have
P (|An| > ε|En)→ 0 for any ε > 0, then applying the complementer event Ēn = Ω\En
we �nd that

P
(
|An| > ε

)
= P

(
|An| > ε | En

)
P (En) + P

(
|An| > ε | Ēn

)
P (Ēn)

≤ P
(
|An| > ε | En

)
+ P (Ēn)→ 0 .
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3.3 Proofs of Theorems 3.2 and 3.3

That is,

P
(
|An| > ε | En

)
→ 0 , ∀ε > 0 , and P (En)→ 1 , imply An

P−→ 0 . (3.15)

Introduce the modulus of continuity of a deterministic or random function f(u),
0 ≤ u ≤ 1, by the formula

w(f, p) = sup
0≤u≤v≤1
v−u≤p

|f(v)− f(u)| ,

and observe that w(Bm, p), m = 1, 2, . . . have the same distribution as w(B, p) with
an arbitrary Brownian bridge B. It is known that based on a standard Wiener process
W (u) the random function B(u) = W (u)− uW (1), 0 ≤ u ≤ 1, is a Brownian bridge,
and Lévy's famous result for the modulus of continuity of the Wiener implies that

w(W, p) ∼
(
2p log(1/p)

)1/2
, p→ 0 , a.s.

We obtain that the modulus of continuity of the Brownian bridge is

w(B, p) = sup
0≤u≤v≤1
v−u≤p

∣∣∣(W (v)− vW (1)
)
−
(
W (u)− uW (1)

)∣∣∣
≤ sup

0≤u≤v≤1
v−u≤p

∣∣W (v)−W (u)
∣∣+ sup

0≤u≤v≤1
v−u≤p

∣∣vW (1)− uW (1)
∣∣ ≤ w(W, p) + p|W (1)| → 0 ,

almost surely as p→ 0, and it follows that

P
(
w(Bmn , pn) ≤ ε

)
→ 1 , ∀ε > 0 , n→∞ . (3.16)

Proof of Theorem 3.2. First, we examine the asymptotic behavior of the estimated
parameters θ̂n and θ̂∗n. From (a5) we obtain

∥∥θ̂n − θ0∥∥ ≤ d∑
k=1

∣∣∣∣∣ 1n
n∑
i=1

l(k)(Xi, θ0)

∣∣∣∣∣+ n−1/2‖εn(θ0)‖ =
d∑

k=1

|Sk,n|+ n−1/2‖εn(θ0)‖ .

where the terms l(k)(Xi, θ0), i = 1, 2, . . . , are independent and identically distributed
with �nite mean 0 and variance M (k,k)(θ0) by (a7) and (a9) for every k. The law of
large numbers implies that Sk,n → 0 almost surely, and by (a14) the second term
converges to 0 in probability, too. Hence,

‖θ̂n − θ0‖
P−→ 0 . (3.17)

Similarly, we have

∥∥θ̂∗n − θ̂n∥∥ ≤ d∑
k=1

∣∣∣∣∣ 1

mn

mn∑
i=1

l(k)(Xi,θ̂n
, θ̂n)

∣∣∣∣∣+m−1/2n ‖εmn(θ̂n)‖

=
d∑

k=1

|S∗k,n|+m−1/2n ‖εmn(θ̂n)‖ .
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Using (a8) and (a10) we �nd that E[S∗k,n | θ̂n] = 0 and

Var [S∗k,n | θ̂n] =
1

m2
n

mn∑
i=1

Var l(k)(Xi,θ̂n
, θ̂n) =

1

m2
n

mn∑
i=1

M (k,k)(θ̂n) ≤ dM0

mn

,

whenever θ̂n ∈ Λ, from which

E
[
S∗k,n | θ̂n ∈ Λ

]
= 0 and Var

[
S∗k,n | θ̂n ∈ Λ

]
≤ dM0

mn

.

Applying the Chebyshev inequality with the conditional mean and variance we have

P
(
|S∗k,n| > ε | θ̂n ∈ Λ

)
≤

Var
[
S∗k,n | θ̂n ∈ Λ

]
ε2

≤ dM0

mnε2
→ 0 ,

for every ε > 0. Since P (θ̂n ∈ Θ) → 1 by (3.17), the remark in (3.15) implies that
S∗k,n → 0 in probability. Then, using assumption (a15) we have

‖θ̂∗n − θ̂n‖
P−→ 0 , (3.18)

and formula (3.17) implies that P (θ̂∗n ∈ Λ) → 1 because Λ is a sphere with center θ0.
In the remaining part of the proof we work on the event En = {θ̂n ∈ Λ} ∩ {θ̂∗n ∈ Λ},
and prove that

P
(

sup
x∈R

∣∣α̂∗mn,n(x)−Gmn(x)
∣∣ > ε

∣∣En)→ 0 (3.19)

holds in case of any ε > 0. Since P (En) → 1, the convergence in (3.19) with (3.15)
implies Theorem 3.2.

Given En condition (a1) implies the one-term Taylor expansion

F (x, θ̂n)− F (x, θ0) = (θ̂n − θ0)∇θF (x, θn(x))T ,

where θn(x) lies in Λ for every integer n and real x. Then, we have

Sn = sup
x∈R

∣∣F (x, θ̂n)− F (x, θ0)
∣∣

≤
d∑

k=1

∣∣(θ̂n − θ0)(k)∣∣ sup
x∈R

∣∣∇θF (x, θn(x))(k)
∣∣ ≤ d‖θ̂n − θ0‖M0

P−→ 0 .
(3.20)

Let
T2,n = sup

x∈R

∣∣Bmn(F (x, θ̂n))−Bmn(F (x, θ0))
∣∣ ,

and consider a sequence pn → 0 satisfying (3.14) with An = Sn. By (3.7) and (3.9)
the random variables X1, X2, . . . are independent from the processes B1, B2, . . . , and
hence, we have

P (T2,n ≤ ε) ≥ P
(
w(Bmn , pn) ≤ ε, Sn ≤ pn

)
= P

(
w(Bmn , pn) ≤ ε

)
P (Sn ≤ pn) ,
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3.3 Proofs of Theorems 3.2 and 3.3

for any ε > 0. By (3.16) and (3.20) both probability on the right side converge to 1,
that is, T2,n → 0 in probability. Next, de�ne

Kn(x) = βmn(F (x, θ̂n))−Bmn(F (x, θ0)) .

Then, by (3.8) we have

Tn = sup
x∈R
|Kn(x)| = sup

x∈R

∣∣βmn(F (x, θ̂n))−Bmn(F (x, θ0))
∣∣

≤ sup
x∈R

∣∣βmn(F (x, θ̂n))−Bmn(F (x, θ̂n))
∣∣+ sup

x∈R

∣∣Bmn(F (x, θ̂n))−Bmn(F (x, θ0))
∣∣

= sup
x∈R

∣∣Hmn(F (x, θ̂n))
∣∣+ T2,n = sup

0≤u≤1
|Hmn(u)|+ T2,n

P−→ 0 .

(3.21)

Now we separate a crucial element of the proof in the following lemma.

Lemma 3.5. Let In =
∫
R l(x, θ0) dBmn(F (x, θ0)). Then∥∥m1/2

n (θ̂∗n − θ̂n)− In
∥∥ P−→ 0.

Proof. Let V (k)(y) denote the total variation of the component l(k)(x, θ0) on the interval
[−y, y], which is �nite for any y > 0 by (a12), and let V (y) = (V (1)(y), . . . , V (d)(y),
y > 0. We show that for the functions

L1,n(x) = l(x, θ̂n)− l(x, θ0) and L2,n(x) = l2(x, θ̂n)− l2(x, θ0) ,

we have
sup
−y≤x≤y

‖L1,n(x)‖ P−→ 0 , and sup
−y≤x≤y

‖L2,n(x)‖ P−→ 0 , (3.22)

with any �xed y > 0. The �rst convergence immediately comes from assumption (a13)
and (3.17). Also, if x lies in [−y, y], then∣∣l(k)(x, θ0)∣∣ ≤ ∣∣l(k)(x, θ0)− l(k)(0, θ0)∣∣+

∣∣l(k)(0, θ0)∣∣ ≤ V (k)(y) +
∣∣l(k)(0, θ0)∣∣ ,

which implies that

sup
−y≤x≤y

∣∣l(k)(x, θ̂n) + l(k)(x, θ0)
∣∣ ≤ sup

−y≤x≤y

[∣∣l(k)(x, θ̂n)− l(k)(x, θ0)
∣∣+ 2

∣∣l(k)(x, θ0)∣∣]
≤ sup
−y≤x≤y

|L(k)
1,n(x)|+ 2V (k)(y) + 2

∣∣l(k)(0, θ0)∣∣
is a bounded sequence for any �xed y and k. Hence,

sup
−y≤x≤y

‖L2,n(x)‖ ≤
d∑

k=1

sup
−y≤x≤y

[∣∣l(k)(x, θ̂n)− l(k)(x, θ0)
∣∣ ∣∣l(k)(x, θ̂n) + l(k)(x, θ0)

∣∣]
≤

d∑
k=1

sup
−y≤x≤y

∣∣L(k)
1,n(x)

∣∣ sup
−y≤x≤y

∣∣l(k)(x, θ̂n) + l(k)(x, θ0)
∣∣→ 0 .
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In the next step we show that there exists real valued sequence yn →∞ such that

Tn‖V (yn)‖ P−→ 0 , sup
−yn≤x≤yn

‖L1,n(x)‖ P−→ 0 and sup
−yn≤x≤yn

‖L2,n(x)‖ P−→ 0 . (3.23)

Such a sequence can be constructed in the following way. If limy→∞ ‖V (y)‖ is �nite
then the �rst convergence holds with arbitrary y1,n → ∞. Otherwise, consider pn of
(3.14) with An = Tn and let

y1,n = sup
{
y ≥ 0 : ‖V (y)‖ < p−1/2n

}
.

By (a12) the values y1,n are �nite, and y1,n →∞ because limy→∞ ‖V (y)‖ =∞. Since
we have P (Tn‖V (y1,n)‖ > p

1/2
n ) < pn for every n, the �rst convergence in (3.23) holds

with y1,n. From (3.22) we have

sup
−k≤x≤k

‖L1,n(x)‖ P−→ 0

for any �xed k = 1, 2, . . . , and hence, there is a strictly increasing integer valued
sequence nk →∞ for which

P

(
sup
−k≤x≤k

‖L1,n(x)‖ > 1

k

)
<

1

k
,

whenever n > nk. Letting y2,n = k, nk < n ≤ nk+1, k = 1, 2, . . . , the second conver-
gence in (3.23) follows with y2,n → ∞, and the third convergence can be guaranteed
with a sequence y3,n based on similar construction. Thus yn = min{y1,n, y2,n, y3,n} → ∞
is a suitable sequence for all three statements in (3.23).

Using (a5), (a8) and (3.11), we have

m1/2
n (θ̂∗n − θ̂n) = m1/2

n

[
1

mn

mn∑
i=1

l
(
Xi,θ̂n

, θ̂n
)
− E

[
l
(
X1,θ̂n

, θ̂n
)∣∣θ̂n]]+ εmn(θ̂n)

= m1/2
n

[ ∫
R
l(x, θ̂n) dF ∗mn,n(x)−

∫
R
l(x, θ̂n) dF (x, θ̂n)

]
+ εmn(θ̂n)

=

∫
R
l(x, θ̂n) dβmn(F (x, θ̂n)) + εmn(θ̂n) .

To prove the lemma, consider the decomposition

m1/2
n (θ̂∗n − θ̂n)− In =

∫
(−yn,yn]

L1,n(x) dβmn(F (x, θ̂n)) +

∫
(−yn,yn]

l(x, θ0) dKn(x)

+

∫
Rn

l(x, θ̂n) dβmn(F (x, θ̂n))−
∫
Rn

l(x, θ0) dBn(F (x, θ0)) + εmn(θ̂n)

with Rn = R \ (−yn, yn], and let I1,n, I2,n, I3,n and I4,n denote the four integrals,
respectively. We show that all of the terms converge to 0 in probability.
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3.3 Proofs of Theorems 3.2 and 3.3

De�ne the function fn(u) as L1,n(F−1(u, θ̂n)) on the interval (F (−yn, θ̂n), F (yn, θ̂n)]
and as 0 otherwise. From (3.23) we have

An = sup
0<u<1

‖fn(u)‖ = sup
−yn<x≤yn

‖L1,n(x)‖ P−→ 0 .

Consider pn of (3.14) with the sequence An and let E ′n = {sup0<u<1 ‖fn(u)‖ ≤ pn}.
Then, for any ε > 0 we have

P
(
‖I1,n‖ > ε | E ′n

)
= P

(∥∥∥∫
(0,1)

fn(u) dβmn(u)
∥∥∥ > ε

∣∣E ′n)
≤

d∑
k=1

P

(∥∥∥∫
(0,1)

f (k)
n (u) dβmn(u)

∥∥∥ > ε

d

∣∣E ′n) ≤ dC1 exp

(
− C2ε

2

d2p2n

)
P−→ 0 ,

where C1 and C2 are positive universal constants from Theorem 1 of Major (1988).
Since P (E ′n) → 1, it follows that I1,n

P−→ 0 by (3.15). Next, integrating by parts and
using the de�nition of the sequence yn in (3.23), we get

‖I2,n‖ ≤
∥∥∥l(yn, θ0)Kn(yn)− l(−yn, θ0)Kn(−yn)

∥∥∥+

∥∥∥∥∫
[−yn,yn)

Kn(x) dl(x, θ0)

∥∥∥∥
≤
[
‖l(yn, θ0)− l(0, θ0)‖+ ‖l(−yn, θ0)− l(0, θ0)‖+ 2‖l(0, θ0)‖

]
Tn + ‖V (yn)‖Tn

≤ 3‖V (yn)‖Tn + 2‖l(0, θ0)‖Tn
P−→ 0 .

(3.24)

By introducing a standard Wiener process W (u) on an arbitrary probability space
the process B(u) = W (u)− uW (1), 0 ≤ u ≤ 1, is a Brownian bridge, and using (a8),
(a10) and the elementary properties of the stochastic integral the k-th component of
I4,n has mean 0 and variance

Var I
(k)
4,n = Var

[ ∫
Rn

l(k)(x, θ0) dW (F (x, θ0))−W (1)

∫
Rn

l(k)(x, θ0) dF (x, θ0)

]
= Var

[ ∫
Rn

l(k)(x, θ0) dW (F (x, θ0))

]
+

[ ∫
Rn

l(k)(x, θ0) dF (x, θ0)

]2
VarW (1)

− 2

∫
Rn

l(k)(x, θ0) dF (x, θ0) E

[ ∫
Rn

l(k)(x, θ0) dW (F (x, θ0))

∫ ∞
−∞

1 dW (F (x, θ0))

]
=

∫
Rn

(
l(k)(x, θ0)

)2
dF (x, θ0) +

[ ∫
Rn

l(k)(x, θ0) dF (x, θ0)

]2
− 2

∫
Rn

l(k)(x, θ0) dF (x, θ0)

∫
Rn

l(k)(x, θ0) dF (x, θ0)

=

∫
Rn

(
l(k)(x, θ0)

)2
dF (x, θ0)−

[ ∫
Rn

l(k)(x, θ0) dF (x, θ0)

]2
≤
∫
Rn

(
l(k)(x, θ0)

)2
dF (x, θ0)→ 0 .

(3.25)
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3 Bootstrapped parameter estimated empirical processes

Hence, by the Chebyshev inequality,

P (‖I4,n‖ > ε) ≤
d∑

k=1

P
(∣∣I(k)4,n

∣∣ > ε

d

)
≤

d∑
k=1

(d
ε

)2
Var I

(k)
4,n → 0 (3.26)

with an arbitrary ε > 0, and thus, I4,n → 0 in probability. Also, using the conditional
independence of the variables X1,θ̂n

, . . . , Xmn,θ̂n
we obtain the mean

E

[ ∫
Rn

l(k)(x, θ̂n) dF ∗mn,n(x)
∣∣ θ̂n] =

1

mn

mn∑
i=1

E
[
l(k)(Xi,θ̂n

, θ̂n)1{Xi,θ̂n∈Rn}
∣∣ θ̂n]

=

∫
Rn

l(k)(x, θ̂n) dF (x, θ̂n) ,

(3.27)

and the variance

E2

[ ∫
Rn

l(k)(x, θ̂n) dF ∗mn,n(x)
∣∣ θ̂n] =

1

m2
n

mn∑
i=1

E
[(
l(k)(Xi,θ̂n

, θ̂n)
)2
1{Xi,θ̂n∈Rn}

∣∣ θ̂n]
+

1

m2
n

mn∑
i,j=1
i6=j

E
[
l(k)(Xi,θ̂n

, θ̂n)1{Xi,θ̂n∈Rn}
∣∣ θ̂n] E[l(k)(Xj,θ̂n

, θ̂n)1{Xj,θ̂n∈Rn}
∣∣ θ̂n]

=
1

mn

∫
Rn

(
l(k)(x, θ̂n)

)2
dF (x, θ̂n) +

mn − 1

mn

[ ∫
Rn

l(k)(x, θ̂n) dF (x, θ̂n)

]2
.

(3.28)

Applying (3.27) and (3.28) the variable I(k)3,n has conditional mean

E
[
I
(k)
3,n

∣∣ θ̂n] = E

[ ∫
Rn

l(k)(x, θ̂n) dβmn(F (x, θ̂n))
∣∣ θ̂n]

= m1/2
n E

[ ∫
Rn

l(k)(x, θ̂n) dF ∗mn,n(x)
∣∣ θ̂n]−m1/2

n

∫
Rn

l(k)(x, θ̂n) dF (x, θ̂n) = 0 ,

and conditional variance

Var
[
I
(k)
3,n

∣∣ θ̂n]
= mnE

2

[ ∫
Rn

l(k)(x, θ̂n) dF ∗mn,n(x)
∣∣ θ̂n]+mn

[ ∫
Rn

l(k)(x, θ̂n) dF (x, θ̂n)

]2
− 2mn

∫
Rn

l(k)(x, θ̂n) dF (x, θ̂n) E

[ ∫
Rn

l(k)(x, θ̂n) dF ∗mn,n(x)
∣∣ θ̂n]

=

∫
Rn

(
l(k)(x, θ̂n)

)2
dF (x, θ̂n)−

[ ∫
Rn

l(k)(x, θ̂n) dF (x, θ̂n)

]2
.

(3.29)
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This implies that

Var
[
I
(k)
3,n

∣∣ θ̂n] ≤ ∫
Rn

(
l(k)(x, θ̂n)

)2
dF (x, θ̂n) =

∫
Rn

(
l(k)(x, θ0)

)2
dF (x, θ0)

+

[ ∫
R

(
l(k)(x, θ̂n)

)2
dF (x, θ̂n)−

∫
R

(
l(k)(x, θ0)

)2
dF (x, θ0)

]
−
∫
(−yn,yn]

L
(k)
2,n(x) dF (x, θ̂n)−

∫
(−yn,yn]

(
l(k)(x, θ0)

)2
d
[
F (x, θ̂n)− F (x, θ0)

] P−→ 0 ,

because all of the four terms converge to 0 in probability. The �rst and the second
terms do that by (a12) and (a13). The third term follows by (3.23) and by the fact
that F (x, θ̂n) is of bounded variation on R. Finally, using the technique in (3.24), one
can show that the fourth term also goes to 0 in probability by (3.20) and (3.23). Now,
let pn be the sequence de�ned in (3.14) corresponding to

Mn = max
1≤k≤d

Var
[
I
(k)
3,n

∣∣ θ̂n] P−→ 0 .

Using again the Chebyshev inequality we have

P
(
‖I3,n‖ > ε |Mn ≤ pn

)
≤

d∑
k=1

P
(∣∣I(k)3,n

∣∣ > ε

d

∣∣Mn ≤ pn

)
≤

d∑
k=1

(d
ε

)2
pn → 0

for every ε > 0, and this implies that ‖I3,n‖ → 0 in stochastic sense by (3.15) because
P (Mn ≤ pn) → 1. The term εmn(θ̂n) also converges to 0 by (a15), that is, we have
(3.3), and the proof of Lemma 3.5 is completed.

Proof of Theorem 3.2, continued. Returning to the proof of Theorem 3.2, if En occurs
then by (a1) we can take the one-term Taylor expansion with respect to θ̂n:

α̂∗mn,n(x) = βmn(F (x, θ̂n))−m1/2
n [F (x, θ̂∗n)− F (x, θ̂n)]

= Bmn(F (x, θ̂n)) +Hmn(F (x, θ̂n))−m1/2
n (θ̂∗n − θ̂n)∇θF (x, θ∗n(x))T

= Gmn(x) +Hmn(F (x, θ̂n))−H2,n(x) ,

where θ∗n(x) lies in the sphere Λ for every x and n, and

sup
x∈R
‖θ∗n(x)− θ0‖ ≤ ‖θ̂∗n − θ̂n‖+ ‖θ̂n − θ0‖

P−→ 0 .

Using (a2), Lemma 3.5, the stochastic boundedness of In and the boundedness of the
function ∇θF (x, θ) on R× Λ we obtain the convergence

H2,n(x) =
[
n1/2(θ̂∗n− θ̂n)− In

]
∇θF (x, θ∗n(x))T + In

[
∇θF (x, θ∗n(x))−∇θF (x, θ0)

]T P−→ 0

uniformly in the variable x. Also, from (3.8) we get that

sup
x∈R
|Hmn(F (x, θ̂n))| ≤ sup

0≤u≤1
|Hmn(u)| → 0 a.s.

Hence, we have (3.19) and the proof of Theorem 3.2 is complete.
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Proof of Theorem 3.3. Consider the random variables de�ned in the preamble of the
section. Since Fn(x) is the empirical distribution function of the independent sample
variables X1, . . . , Xn having common theoretical distribution function F (x, θ0), x ∈ R,
the Glivenko�Cantelli theorem implies that

Sn = sup
x∈R

∣∣Fn(x)− F (x, θ0)
∣∣→ 0 a.s. (3.30)

Let
T2,n = sup

x∈R

∣∣Bmn(Fn(x))−Bmn(F (x, θ0))
∣∣ ,

and consider the sequence pn → 0 satisfying (3.14) with An = Sn. Using the fact that
the random variables X1, X2, . . . are independent from the processes B1, B2, . . . we
obtain from (3.16) and (3.30) that

P
(
|T2,n| ≤ ε

)
≥ P

(
w(Bmn , pn) ≤ ε

)
P
(
|Sn| ≤ pn

)
→ 1 ,

and hence, T2,n → 0 in probability. Also, introducing the function

Kn(x) = βmn(Fn(x))−Bmn(F (x, θ0)) , x ∈ R ,

and using (3.8) it follows that

Tn = sup
x∈R
|Kn(x)| ≤ sup

x∈R

∣∣βmn(Fn(x))−Bmn(Fn(x))
∣∣

+ sup
x∈R

∣∣Bmn(Fn(x))−Bmn(F (x, θ0))
∣∣ = sup

x∈R

∣∣Hmn(Fn(x))
∣∣+ T2,n

P−→ 0 .
(3.31)

The following statement is the non-parametric bootstrap version of Lemma 3.5, and
it says that m1/2

n (θ̃∗n− θ̂n) has the same asymptotic behavior as the related parametric
bootstrapped variable.

Lemma 3.6. Let In =
∫
R l(x, θ0) dBmn(F (x, θ0)) be the same as in Lemma 3.5. Then∥∥m1/2

n (θ̃∗n − θ̂n)− In
∥∥ P−→ 0 .

Proof. Let V (k)(y) be the same as in Lemma 3.5, that is, the total variation of the com-
ponent l(k)(x, θ0) on the interval [−y, y], and consider V (y) = (V (1)(y), . . . , V (d)(y)),
y > 0. Similarly to (3.23) one can construct a sequence

yn →∞ such that Tn‖V (yn)‖ P−→ 0 .

By assumption (a6) and (3.13) we can write

m1/2
n (θ̃∗n − θ̂n) = m1/2

n

[ ∫
R
l(x, θ0) dF

∗
mn,n(x)−

∫
R
l(x, θ0) dFn(x)

]
+ εmn,n(θ0)

=

∫
R
l(x, θ0)dβnm(Fn(x)) + εmn,n(θ0) .
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Let Rn = R \ (−yn, yn] and consider the decomposition

m1/2
n (θ̃∗n − θ̂n)− In =

∫
(−yn,yn]

l(x, θ0) dKn(x) +

∫
Rn

l(x, θ0) dβmn(Fn(x))

−
∫
Rn

l(x, θ0) dBmn(F (x, θ0)) + εmn,n(θ0) = I1,n + I2,n + I3,n + εmn,n(θ0) .

Our goal is to prove that all terms converges to 0 in probability. Although the sequence
yn may di�er from the sequence yn of the parametric bootstrap case, one can prove the
convergence of I1,n by using the same technique as in (3.24). Also, from the calculation
in (3.25) the variance of the k-th component of I3,n is

Var I
(k)
3,n =

∫
Rn

(
l(k)(x, θ0)

)2
dF (x, θ0)−

[ ∫
Rn

l(k)(x, θ0) dF (x, θ0)

]2
→ 0 ,

and the convergence of I3,n follows by applying the Chebyshev inequality just the same
way as in (3.26). With the computation method of (3.27)-(3.29) one can obtain the
conditional mean

E
[
I
(k)
2,n | X1, . . . , Xn

]
= E

[
I
(k)
2,n | Fn

]
= 0 ,

and the conditional variance

Var
[
I
(k)
2,n | X1, . . . , Xn

]
=

∫
Rn

(
l(k)(x, θ0)

)2
dFn(x)−

[ ∫
Rn

l(k)(x, θ0) dFn(x)

]2
=

1

n

n∑
i=1

(
l(k)(Xi, θ0)

)2
1{Xi∈Rn} −

[
1

n

n∑
i=1

l(k)(Xi, θ0)1{Xi∈Rn}

]2
=
n− 1

n2

n∑
i=1

(
l(k)(Xi, θ0)

)2
1{Xi∈Rn} −

1

n2

n∑
i,j=1
i 6=j

l(k)(Xi, θ0)1{Xi∈Rn}l
(k)(Xj, θ0)1{Xj∈Rn} .

Then, EI(k)2,n = 0 and using the independence of the variables X1, . . . , Xn we have

Var I
(k)
2,n = E

[
Var

[
I
(k)
2,n | X1, . . . , Xn

]]
+ Var

[
E
[
I
(k)
2,n | X1, . . . , Xn

]]
=
n− 1

n
E
[(
l(k)(X1, θ0)

)2
1{X1∈Rn}

]
− n− 1

n
E2
[
l(k)(X1, θ0)1{X1∈Rn}

]
=
n− 1

n

∫
Rn

(
l(k)(x, θ0)

)2
dF (x, θ0)−

n− 1

n

[ ∫
Rn

l(k)(x, θ0) dF (x, θ0)

]2
=
n− 1

n
Var I

(k)
3,n ≤ Var I

(k)
3,n → 0 .

Applying the Chebyshev inequality similarly as in (3.26) one can obtain the stochastic
convergence of I2,n. Finally, εmn,n(θ0) also converges to 0 by (a16), which completes
the proof of Lemma 3.6.
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3 Bootstrapped parameter estimated empirical processes

Proof of Theorem 3.3, continued. Now we examine the limit behavior of the estimated
parameters θ̂n and θ̂∗n. The sample variables X1, . . . , Xn and the parameter estimation
θ̂n are the same in the parametric and the non-parametric case, and using only (a4),
(a7), (a9), (a14) and the strong law of large numbers we already showed in the proof
of Theorem 3.2 that ‖θ̂n − θ0‖ → 0 in probability (see (3.17)). Since the stochastic
integrals In, n = 1, 2, . . . , de�ned in Lemma 3.6 have identical distribution, the term
m

1/2
n (θ̃∗n − θ̂n) is asymptotically normal, which implies that ‖θ̃∗n − θ̂n‖

P−→ 0. Working
on the event En = {θ̂n ∈ Λ} ∩ {θ̃∗n ∈ Λ} we will show that

P

(
sup
x∈R

∣∣∣α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x)−Gn(x)

∣∣∣ > ε
∣∣En)→ 0 (3.32)

holds for arbitrary ε > 0. Since P (En)→ 1 the convergence in (3.32) implies Theorem
3.3 by (3.15).

If En occurs then by assumption (a1) we can take the one-term Taylor expansion
with respect to θ̂n:

α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x) = βmn(Fn(x))−m1/2

n

[
F (x, θ̃∗n)− F (x, θ̂n)

]
= Bmn(F (x, θ0)) +Kn(x)−m1/2

n

(
θ̃∗n − θ̂n

)
∇θF (x, θ̃∗n(x))T

= Gmn(x) + Ln(x)−H2,n(x) ,

where θ̃∗n(x) lies somewhere between θ̂n and θ̃∗n for every x ∈ R and n = 1, 2, . . . Then,
θ̃∗n(x) ∈ Λ and supx∈R ‖θ̃∗n(x) − θ0‖ → 0 in probability. Using (a2), Lemma 3.6, the
stochastic boundedness of In and the boundedness of ∇θF (x, θ) on R×Λ we get that

H2,n(x) =
[
n1/2

(
θ̃∗n− θ̂n

)
−In

]
∇θF (x, θ̃∗n(x))T +In

[
∇θF (x, θ̃∗n(x))−∇θF (x, θ0)

]T P−→ 0

uniformly in x. Also, from (3.31) the sequence Kn(x) converges to 0 uniformly in
probability. Hence, we have (3.32), which leads to Theorem 3.3.

3.4 The bootstrap algorithm

Consider independent and identically distributed observations X1, . . . , Xn having an
unknown distribution function F (x), x ∈ R, and consider a distribution family

F =
{
F (x, θ) : x ∈ R, θ ∈ Θ ⊆ Rd

}
endowed with a parameter estimation θn : Rn → Θ. In this setup one can test the �t
of the sample to the family F , that is, the null-hypotheses H0 : F ∈ F by applying the
test statistics ψn = ψ(α̂n), where α̂n is the estimated empirical process de�ned in (3.1)
and ψ is a real valued functional on the space D[−∞,∞]. If ψ is continuous then the
weak convergence of α̂n to the limit process G implies that ψn converges to ϕ = ψ(G)
in distribution. If, additionally, the variable ϕ has continuous distribution function Fϕ,
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3.4 The bootstrap algorithm

then the theoretical quantiles of ϕ serves as asymptotically correct critical values for
ψn. That is, for a �xed signi�cance level 0 < α < 1 the (1− α) quantile

c(α) = inf
{
x ∈ R : Fϕ(x) ≥ 1− α

}
satis�es the convergence

P
(
ψn ≤ c(α)

)
→ 1− α , n→∞ ,

and one can reject or accept the null-hypotheses H0 by using the test statistics ψn
with the critical value c(α).

As we have speci�ed in the introduction of this chapter, the main di�culty with this
method is that the quantile c(α) can not be determined in theoretical way. However,
if the distribution family F and the estimation statistics θn satis�es the conditions of
Theorems 3.2 and/or 3.3 then one may obtain an asymptotically correct estimation
for c(α) by using the parametric and/or the non-parametric bootstrap technique. For
example, assume that the approximation

sup
x∈R

∣∣α̂∗mn,n(x)−Gmn(x)
∣∣ P−→ 0 , n→∞ ,

holds with the parametric bootstrap estimated empirical process α̂∗mn,n, and consider
the related statistics ψ∗pmn,n = ψ(α̂∗mn,n) and ϕn = ψ(Gn), n = 1, 2, . . . . If the functional
ψ is smooth enough then we have a good chance to prove the convergence∣∣ψ∗pmn,n − ϕn∣∣ P−→ 0 , n→∞ . (3.33)

Furthermore, Theorem 3.2 implies that the copies ϕ1, ϕ2, . . . are independent from the
Xi's, and the common distribution function Fϕ of the copies ϕ1, ϕ2, . . . is continuous
at the point c(α) by assumption. Then, it follows from Theorem 2.7 that the quantile

c∗pn (α) = inf
{
x ∈ R : P

(
ψ∗pmn,n ≤ x | X1, . . . , Xn

)
≥ 1− α

}
can be applied as an estimator of c(α), and it is an asymptotically correct critical value
for the statistics ψn. Also, if the conditions of Theorem 3.3 are satis�ed then we may
obtain the approximation∣∣ψ∗npmn,n − ϕn

∣∣ P−→ 0 with ψ∗npmn,n = ψ

(
α̃∗mn,n −

(mn

n

)1/2
α̂n

)
(3.34)

based on the non-parametric bootstrap estimated empirical process α̃∗mn,n, and Theo-
rem 2.7 ensures that the quantile

c∗npn (α) = inf
{
x ∈ R : P

(
ψ∗npmn,n ≤ x | X1, . . . , Xn

)
≥ 1− α

}
can replace c(α) in the applications.

The bootstrap method can be used to test the �t of the given sample X1, . . . , Xn to
the family F by using the following algorithm. Depending on which approximation of
(3.33) and/or (3.34) hold we can use the parametric and/or the non-parametric version
of the method. Note that the technique requires a massive amount of random genera-
tions and analytical calculations, so the application of a computer is recommended.
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3 Bootstrapped parameter estimated empirical processes

1. Calculate the estimator θ̂n based on the observations X1, . . . , Xn.

2. Calculate the test statistics ψn.

3. Generate independent parametric or non-parametric bootstrapped observations
X∗1,n, . . . , X

∗
mn,n having distribution function F (x, θ̂n) or Fn(x), respectively.

4. Calculate the estimator θ̂∗n or θ̃∗n based on the bootstrapped sample.

5. Calculate the bootstrapped statistics ψ∗pmn,n or ψ∗npmn,n.

6. Repeat the steps 3�5 R times, and let ψ∗n,1 ≤ · · · ≤ ψ∗n,R be the order statistics
of the resulting R values of ψ∗pmn,n or ψ∗npmn,n.

7. Let c∗n,α be the (1−α) empirical quantile of ψ∗pmn,n or ψ
∗np
mn,n, that is, the dR(1−α)e-

th largest order statistic, where dye = min{j ∈ Z : y ≤ j} for y ∈ R.

8. Reject H0 if ψn is greater than c∗n,α.

In Section 3.6 we provide simulation studies for the bootstrap test algorithm using
the Kolmogorov�Smirnov type statistics of the processes. To prove the theoretical base
of the method we must show that the assumptions of Theorem 2.7 hold with

ψ : D[−∞,∞]→ R , ψ(h) = sup
x∈R
|h(x)| .

Observe that the supremum functional ψ is Lipschitz, because for any elements h1 and
h2 of D[−∞,∞] we have the inequality∣∣ψ(h1)− ψ(h2)

∣∣ ≤ sup
x∈R

∣∣h1(x)− h2(x)
∣∣ .

Under the assumption that the distribution family F and the parameter estimation
statistics θn satisfy the conditions of Theorems 3.2 and/or 3.3, we obtain the desired
approximation for the parametric bootstrap statistic

|ψ∗pmn,n − ϕmn| =
∣∣ψ(α̂∗mn,n)− ψ(Gmn)

∣∣ ≤ sup
x∈R

∣∣α̂∗mn,n(x)−Gmn(x)
∣∣ P−→ 0 ,

and/or for the non-parametric bootstrap statistic

|ψ∗npmn,n − ϕmn| ≤ sup
x∈R

∣∣∣α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x)−Gmn(x)

∣∣∣ P−→ 0 ,

as n→∞. It only remains to prove that the common distribution function Fϕ of the
copies ϕ1, ϕ2, . . . is continuous.

Since the processW (u)−uW (1) is a Brownian bridge for any representationW (u),
0 ≤ u ≤ 1, of the standard Wiener process, the process B(F (x, θ0)), x ∈ R, has the
same distribution as

W
(
F (x, θ0)

)
− F (x, θ0)W (1) =

∫
R

[
1(−∞,x](y)− F (x, θ0)

]
dW
(
F (y, θ0)

)
, x ∈ R ,
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3.4 The bootstrap algorithm

where 1 stands for the indicator function of the interval appearing in the lower index.
Also, we have

ξ =

∫
R
l(y, θ0) dB

(
F (y, θ0)

) D
=

∫
R
l(y, θ0) dW

(
F (y, θ0)

)
−W (1)

∫
R
l(y, θ0) dF (y, θ0)

=

∫
R

[
l(y, θ0)−

∫
R
l(z, θ0) dF (z, θ0)

]
dW
(
F (y, θ0)

)
from which the limit process G(x), x ∈ R, has the same distribution than the process
de�ned by the stochastic integral∫
R

[
1(−∞,x](y)−F (x, θ0)+

[
l(y, θ0)−

∫
R
l(z, θ0) dF (z, θ0)

]
∇θF (x, θ0)

T

]
dW
(
F (y, θ0)

)
,

x ∈ R. Lemma 2.9 in Section 2.3 implies that G(x), x ∈ R, is a centered Gaussian
process, and one can obtain its covariance function presented in Section 3.2 by using
the general covariance function provided by the referred lemma. Since the variable
ξ has a d-dimensional normal distribution with mean 0, and ∇θF (x, θ0), x ∈ R, is a
deterministic function, the product ξ∇θF (x, θ0)

T can be equal to the term B(F (x, θ0))
at every point x ∈ R only with probability 0. That is, with probability 1 the process

G(x) = B
(
F (x, θ0)

)
− ξ∇θF (x, θ0)

T , x ∈ R ,

is not degenerate at every real x. Observe that we have the inequality

ϕ = sup
x∈R
|G(x)| ≤ sup

0≤u≤1
|B(u)|+ |ξ| sup

x∈R

∣∣∇θF (x, θ0)
T
∣∣ , (3.35)

where the absolute value of a vector is de�ned as the vector of the absolute values of
the components. Since the Brownian bridge has �nite supremum and ξ is normal, the
variable ϕ is almost surely �nite. If we additionally assume that ∇θF (x, θ0), x ∈ R, has
càdlàg components, then using Theorem 2.10 we obtain that the distribution function
Fϕ of

ϕ = ψ(G) = sup
x∈R
|G(x)| = sup

{
G(x),−G(x) : x ∈ Q

}
is continuous on the interval (s0,∞), where

s0 = inf
{
x ∈ R : Fϕ(x) > 0

}
∈ [0,∞)

is the left endpoint of the support of Fϕ. That is, by the referred theorem the distri-
bution function may have a jump at s0. However, we strongly believes that the value
s0 is equal to 0, but we could not �nd a way to prove our conjecture. Since the process
G is almost surely not degenerate on the whole real line, if one could show that s0 = 0
then it would follow that the distribution function Fϕ is continuous at every x ∈ R.

To strengthen the conjecture that s0 = 0 take a look at the inequality in (3.35). It
is known that for an arbitrary s > 0 the supremum of the Brownian bridge B is not
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3 Bootstrapped parameter estimated empirical processes

greater than s with a positive probability. Also, the variable ξ has normal distribution
with mean 0, and the function ∇θF (x, θ0), x ∈ R, is bounded by assumption (a3),
which imply that the second term on the right side of (3.35) can be arbitrary small, as
well. If the terms would be independent than we would obtain that for any s > 0 the
process G has a supremum smaller than s with a positive probability, and Theorem
2.10 would imply that the distribution function Fϕ is continuous at every point on
the real line. Unfortunately, we can not apply this idea to solve the present problem,
because there is a strong dependence between the Brownian bridge B and the variable
ξ. However, similar examples suggest that the value s0 seems to be equal to 0 for the
process G, as well.

3.5 Validity of the assumptions

In Section 3.6 we demonstrate the bootstrap method in simulation studies by testing
�t to the Poisson and the normal distribution family. We showed it in the previous
section that the Kolmogorov�Smirnov type statistics based on the parametric and the
non-parametric bootstrap estimated empirical process can be applied if the underlying
distribution family F and the applied estimation method satis�es the conditions of
Theorems 3.2 and 3.3. In this section we check the validity of the assumptions for the
Poisson and the normal family with the maximum likelihood estimation.

From the practical point of view, when we test the �t of a given sample to a family
F , we can not �x the parameter θ0, and we must check the conditions for every possible
θ0 in Θ. The validity of (a1)�(a3) must usually be veri�ed by direct calculations. The
most frequently used estimation methods satisfy (a4)�(a10), if the family has a �nite
second moment, and the estimator θn has an asymptotically normal distribution, but
sometimes we must choose a non-standard parametrization. Assumptions (a11)�(a13)
do not seem to be stringent either. The hardest conditions are (a14)�(a16). Burke et al.
(1979) showed the stochastic convergence of εn(θ0) under some analytical conditions
on the distribution family for the maximum likelihood estimation, and Chapter 5 of
van der Vaart (1998) investigates the same problem in case of M- and Z-statistics in a
much more general framework. For the convergence of the non-parametric bootstrap
error term εmn,n(θ0) Burke and Gombay (1991) provides similar analytic conditions as
Burke et al. (1979) in the non-bootstrap case. Also, Babu and Singh (1984) proved the
validity of the assumptions of the non-parametric bootstrap case for empirical quantile
type estimators and for L-statistics de�ned by the forms

n∑
i=1

Xi,n

∫ i/n

(i−1)/n
w(t) dt and

1

n

n∑
i=1

Xi,nw(i/n) ,

where X1,n ≤ · · · ≤ Xn,n is the ordered sample based on the observations X1, . . . , Xn

and w(t), 0 < t ≤ 1, is a su�ciently smooth weight function. Unfortunately, general
results for the limiting behavior of the bootstrap error terms are not available. In most
practical applications the most simple solution is to determine the error terms and to
check their convergence by direct considerations.
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3.5 Validity of the assumptions

If we apply the maximum likelihood estimation, then in many distribution families
the function

l(x, θ) = ∇θf(x, θ)I−1(θ) , x ∈ R , θ ∈ Θ , (3.36)

satis�es assumptions (a4)�(a6), where f(x, θ) is the density function of F (x, θ), x ∈ R,
with respect to a σ-�nite measure µ on the real line, that is, dF (x, θ) = f(x, θ)dµ for
every θ, and I−1(θ) is the inverse of the Fisher information matrix

I(θ) =

∫
R
∇θf(x, θ)∇θf(x, θ)T dF (x, θ) , θ ∈ Θ .

Although, in many families representations (a4)�(a6) with l(x, θ) of (3.36) provide
the asymptotic normality of the estimators θ̂n, θ̂∗n and θ̃∗n, in general we have no rate
of convergence, and the validity of assumptions (a14)�(a16) does not follow directly.
However, in many cases the convergence of the error terms can be guarantied by using
a simple trick.

Observe that the convergence of the error terms are obviously satis�ed if the family
F is parametrized by some of its moments and we apply the method of moments to
estimate the parameter. For example, if the k-th component of θ is the moment of order
α of the underlying distribution F (x, θ), x ∈ R, and if we estimate this component
with the empirical moment

θ(k)n =
Xα

1 + · · ·+Xα
n

n
,

then using a function l(x, θ) having k-th component l(k)(x, θ) = xα−θ(k), x ∈ R, θ ∈ Λ,
the corresponding components of the error terms in representations (a4)-(a6) vanish.
Of course, in general we prefer the maximum likelihood estimation, and in many cases
we can not use the method of moments either, because the family is not parametrized
only by its moments. However, if the parameter θ is a one-to-one function of some of the
moments, then the maximum likelihood estimation of the parameter is equivalent with
the estimation of the corresponding moments, and the maximum likelihood provides
the same estimation for the moments as the method of moments does. That is, in such
cases it is a good idea to choose a new, equivalent parametrization. For example, if we
consider the family of negative binomial distributions of order 1 parametrized by the
success probability p, then the maximum likelihood method provides the estimator

p̂n =
n

X1 + · · ·+Xn + n
.

At a �rst glance it is not clear not at all how we can represent p̂n in formula (a4),
and unfortunately, the function de�ned in (3.36) is provided in a very unfriendly form.
However, if we choose an equivalent parametrization, and we parametrize the family
with the expected value θ = 1/p of the distributions, then the maximum likelihood
estimator of θ is the sample mean, and the error terms in assumptions (a4)�(a6) are
constant 0. Similar tricks can be applied in many distribution families.
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3 Bootstrapped parameter estimated empirical processes

3.5.1 The Poisson distribution family

The Poisson family is a parametric collection of distributions F = {Po(λ), λ > 0} with
probability mass function and distribution function

p(k, λ) =
λk

k!
e−λ , k = 0, 1, . . . , F (x, λ) =

bxc∑
k=0

p(k, λ) , x ∈ R .

The distribution function can be di�erentiated with respect to the variable λ, and the
derivative is ∇λF (x, λ) = 0 for x < 0, while

∇λF (x, λ) = −e−λ +

bxc∑
k=1

[
λk−1

(k − 1)!
− λk

k!

]
e−λ = −λ

bxc

bxc!
e−λ , x ≥ 0 .

Since limx→∞∇λF (x, λ) = 0, the derivative is bounded by a real bound R(λ). Consider
arbitrary �xed values λ0 > 0 and x ≥ 0, and let k = bxc ≥ 0. If λ ≤ 2λ0, then∣∣∇λF (x, λ)−∇λF (x, λ0)

∣∣ ≤ λk

k!

∣∣e−λ − e−λ0∣∣+

∣∣∣∣λkk!
− λk0
k!

∣∣∣∣e−λ0
≤ (2λ0)

k

k!

∣∣e−λ − e−λ0∣∣+ |λ− λ0|
kλk−1∗
k!

e−λ0

≤ (2λ0)
k

k!
e−λ0

∣∣eλ0−λ − 1
∣∣+ |λ− λ0|

(2λ0)
k−1

(k − 1)!
e−λ0

≤ R(2λ0)e
λ0
∣∣eλ0−λ − 1

∣∣+ |λ− λ0|eλ0R(2λ0) ,

with a value λ∗ lying between λ and λ0 provided by the one-term Taylor expansion.
Hence, ∇λF (x, λ) converges to ∇λF (x, λ0) uniformly in x as λ → λ0, and conditions
(a1)�(a3) are satis�ed.

Let Y1, . . . , Yn be independent sample variables having distribution Po(λ) with an
arbitrary λ. The maximum likelihood estimation of the parameter is the sample mean

λn =
Y1 + · · ·+ Yn

n
.

Since λ is the expected value of the Poisson distribution, the method of moments
provides the same estimation. Based on our remark at the beginning of this section on
the method of moments with

l(x, λ) = x− λ , x ∈ R , θ ∈ Θ ,

the error terms vanish in representations (a4)�(a6), that is, we have (a14)�(a16). Note
that the formula in (3.36) provides the same function l(x, θ). It can be easily checked
that we have (a7)�(a9) and (a12)�(a13). Finally, the identity

M(λ) = El(Y1, λ)2 = E(Y1 − λ)2 = Var (Y1) = λ

implies (a11)�(a12), and all assumptions are satis�ed.
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3.5.2 The normal distribution family

The normal distribution family F = {N(θ), θ = (µ, σ2) ∈ Θ = R × (0,∞)} is de�ned
by the biparametric distribution function

F
(
x, µ, σ2

)
=

1

(2π)1/2

∫ x−µ
σ

−∞
e−t

2/2 dt =

∫ x−µ
σ

−∞
φ(t) dt , x ∈ R ,

where

φ(t) =
1

(2π)1/2
e−t

2/2 , t ∈ R ,

is the density function of the standard normal distribution N(0, 1). The vector of the
derivatives with respect to the variables µ and σ2 exists and it is given in the form

∇(µ,σ2)F
(
x, µ, σ2

)
=

(
− 1

σ
φ
(x− µ

σ

)
,−x− µ

2σ3
φ
(x− µ

σ

))
.

Since the functions φ(t) and |t|φ(t), t ∈ R, are bounded by 1/(2π)1/2 and 1/(2πe)1/2,
respectively, we have

∥∥∇(µ,σ2)F (x, µ, σ2)
∥∥2 ≤ ( 1

(2π)1/2σ

)2

+

(
1

(8πe)1/2σ2

)2

,

and the validity of assumption (a3) follows. For condition (a2) consider an arbitrary
�xed parameter θ0 = (µ0, σ

2
0) ∈ Θ and a value ε > 0. Observe that there exists a real

T > |µ0| such that ‖∇(µ0,σ2
0)
F (x, µ, σ2)‖ is increasing on (−∞,−T ] and decreasing on

[T,∞), and also, the norm is smaller than ε/2 on these intervals. Since the derivative
is a continuous function of the parameters, we have∥∥∇(µ,σ2)F (−T, µ, σ2)

∥∥ ≤ ε/2 and
∥∥∇(µ,σ2)F (T, µ, σ2)

∥∥ ≤ ε/2

if (µ, σ2) lies close enough to (µ0, σ
2
0), and also, we can assume that ‖∇(µ,σ2)F (x, µ, σ2)‖

is increasing on the interval (−∞,−T ] and decreasing on [T,∞). Hence, we have

sup
|x|≥T

∥∥∇(µ,σ2)F (x, µ, σ2)−∇(µ,σ2)F (x, µ0, σ
2
0)
∥∥

≤ sup
|x|≥T

∥∥∇(µ,σ2)F (x, µ, σ2)
∥∥+ sup

|x|≥T

∥∥∇(µ,σ2)F (x, µ0, σ
2
0)
∥∥ < ε ,

for every (µ, σ2) lying in a suitably small neighborhood of (µ0, σ
2
0). That is, we obtain

the convergence of the derivative ∇(µ,σ2)F (x, µ, σ2) to ∇(µ,σ2)F (x, µ0, σ
2
0) uniformly in

x on the set R\ [−T, T ] as (µ, σ2) goes to (µ0, σ
2
0). Since the derivative is continuous in

variable x in case of any parameter (µ, σ2), the function ∇(µ,σ2)F (x, µ, σ2) converges
uniformly to ∇(µ,σ2)F (x, µ0, σ

2
0) on the interval [−T, T ]. This implies and we have

uniform convergence on the whole real line, and assumption (a2) is satis�ed.

49



3 Bootstrapped parameter estimated empirical processes

For the remaining conditions note that the maximum likelihood estimators of the
mean µ and the variance σ2 based on an arbitrary sample Y1, . . . , Yn are

µn =

∑n
i=1 Yi
n

and σ2
n =

∑n
i=1(Yi − µn)2

n
. (3.37)

The bootstrap estimators µ̂∗n and µ̃
∗
n are the empirical means of the parametric and the

non-parametric bootstrapped variables, respectively, and σ̂2
∗
n and σ̃2

∗
n are the empirical

variances based on the corresponding bootstrapped samples. It can be easily seen that
representations (a4)�(a6) hold by applying the vector valued function

l
(
x, µ, σ2

)
=
(
x− µ, (x− µ)2 − σ2

)
, x ∈ R , µ ∈ R , σ2 > 0 .

We note that formula (3.36) provides the same function l(x, µ, σ2). If the Xi's have a
common distribution N(µ0, σ

2
0) then the non-bootstrapped error term

εn
(
µ0, σ

2
0

)
= εn

(
X1, . . . , Xn, µ0, σ

2
0

)
=
(

0,−n1/2(µ̂n − µ0)
2
)

P−→ 0

by the central limit theorem. Using the central limit theorem on the triangular array
of the bootstrapped variables one can prove stochastic convergence for the parametric
bootstrapped error term

εmn
(
µ̂n, σ̂2

n

)
= εmn

(
X∗1,n, . . . , X

∗
mn,n, µ̂n, σ̂

2
n

)
=
(

0,−n1/2(µ̂∗n − µ̂n)2
)
.

The representation of θ̂n − θ0 in (a4) and the identity θ̂∗n − θ̂n = (θ̃∗n − θ0)− (θ̂n − θ0)
lead to the non-parametric bootstrapped error term

εmn,n
(
µ0, σ

2
0

)
=
(

0,−n1/2(µ̃∗n − µ0)
2
)
− εn

(
µ0, σ

2
0

)
=
(

0,−n1/2(µ̃∗n − µ̂n)(µ̃∗n + µ̂n − 2µ0)
)
.

From the bootstrap central limit theorem of Bickel and Freedman (1981) we get the
convergence of the conditional distribution

L
(
n1/2(µ̃∗n − µ̂n) | X1, . . . , Xn

)
D−→N(0, 1) , n→∞ ,

and it follows that |µ̃∗n− µ̂n| converges conditionally to 0 in stochastic sense. Since the
condition can be omitted by Lemma 1.2 of Csörg® and Rosalsky (2003), and µ̂n goes
to µ0 by the law of large numbers, we obtain that µ̃∗n + µ̂n − 2µ0 converges to 0 in
probability. Hence, assumption (a16) is satis�ed.

It is obvious that the function l(x, µ, σ2) satis�es assumptions (a12)�(a13). If the
variable Y has distribution N(µ, σ2) then we obtain the mean El(Y, µ, σ2) = 0 and the
covariance matrix

M(µ, σ2) =

[
E(Y − µ)2 E(Y − µ)3

E(Y − µ)3 E
[
(Y − µ)2 − σ2

]2 ] =

[
σ2 0
0 2σ4

]
,

which satisfy assumptions (a7)�(a11).
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3.6 Simulation studies

We note that the maximum likelihood estimation (3.37) and the above method for
proving conditions (a4)�(a16) can be applied not just in the normal family but in many
other cases, when the distribution family is parametrized by the mean and the variance
of the elements and the members have �nite fourth moment. In general, the natural
parametrization of biparametric distribution families is not based on the moments,
but in most cases the family can be reparameterized. Since the di�erence between the
empirical variance σ̂2

n and its non-biased counterpart nσ̂2
n/(n−1) converges to 0 with

asymptotic rate O(1/n), one can also use the latter to estimate σ2.

3.6 Simulation studies

To demonstrate the non-parametric and the parametric bootstrap method in practical
applications, we made simulation studies in the Poisson and the normal distribution
family. As a parameter estimation method we used the maximum likelihood estimation,
which satis�es the conditions of Theorems 3.2 and 3.3 by our investigation in Section
3.5. We applied the Kolmogorov�Smirnov type statistics based on the parameter esti-
mated empirical processes, that is, we applied the algorithm presented in Section 3.4
with the non-bootstrapped, the non-parametric bootstrap and the parametric boot-
strap statistics

ψn = sup
x∈R

∣∣α̂n(x)
∣∣ , ψ∗npmn,n = sup

x∈R

∣∣α̃∗mn,n(x)− α̂n(x)
∣∣ and ψ∗pmn,n = sup

x∈R

∣∣α̂∗mn,n(x)
∣∣ .

We considered the sample size n = 50 and the bootstrapped sample size mn = n, and
we made R = 100 bootstrap replications.

3.6.1 Testing for the Poisson distribution

In our �rst simulation, we considered identically distributed random samples from the
negative binomial family {NB(r, p), r = 1, 2, . . . , 0 < p ≤ 1} having probability mass
function

p(k, r, p) =

(
k + r − 1

r − 1

)
(1− p)kpr , k = 0, 1, . . . ,

and we tested the �t for the Poisson distribution using both the non-parametric and
the parametric bootstrap method. We made the tests for every odd r between 1 and
41, and for each r we varied the parameter p between 0.2 and 0.99 by stepping 0.05. To
investigate the empirical power of the procedures, we generated variables and executed
the above algorithm N = 1000 times for each pair (r, p). To compare the e�ciency of
the bootstrap technique to other methods see Gürtler and Henze (2000), where large
scale simulation studies are presented for the Poisson distribution based on various
true distributions including members from the negative binomial family.

The bivariate empirical power function of the statistics ψ∗npmn,n and ψ∗pmn,n for signif-
icance level α = 0.05 can be seen in Figure 3.1, and Figure 3.2 presents the related
contour diagrams. In the contour charts the interval [0, 1] is divided into eleven equal
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Figure 3.1: The empirical power of ψ∗np
mn,n and ψ∗p

mn,n for the Poisson distribution
against negative binomial samples for signi�cance level α = 0.05.
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Figure 3.2: The contour diagrams of the functions plotted in Figure 3.1.

0.2 0.4 0.6 0.8 0.99
p

0.1

0.4

0.7

1

1 11 21 31 41
r

0.1

0.4

0.7

1

Figure 3.3: The empirical power of the tests for �xed r = 20 (on the left) and
for �xed p = 0.5 (on the right).
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subinterval, and the eleven tones of color gray indicates that the power is in a given
section. The deeper tone the lower power, that is, in the black area the power is below
0.09, and in the white region the power is above 0.91. In Figure 3.3 we plotted the
power for �xed order r = 15 (on the left) and for �xed p = 0.5 (on the right). The
continuous and the dashed curves represent the non-parametric and the parametric
power, respectively, and in both cases the upper curve belongs to signi�cance level
α = 0.1 and the lower curve belongs to α = 0.05. We found that the empirical power
depends mostly on the parameter p. Since NB(r, 0) is the degenerate distribution at
0, and it is an element of the Poisson family, we may expect that the empirical power
is close to the signi�cance level α if the parameter p is close to 1 for every r. This idea
is valid for large r's, but does not work if r is small. We can observe the latter fact
in the left side diagram of Figure 3.3 at the point p = 0.99, and the author cannot
explain it. The power grows if we lower p, and reaches 0.9 when p = 0.2 and α = 0.05
for every investigated r. This is because for small a p the variance of the negative bi-
nomial distribution is much greater than the mean, and hence, the negative binomial
samples are more distinguishable from the Poisson ones. While the empirical power
of the non-parametric and the parametric bootstrap method are close in case of large
p's, the parametric version has greater power for small values of p. In Figure 3.2 the
black parts approximately overlap each other, but the white region is much wider in
the parametric case. For a �xed p the power is slowly decreasing as r grows. Also, if
r → ∞ and p = pr → 1 such that r(1 − p) → λ > 0, then the distribution NB(r, p)
converges to Po(λ) by Bartko (1966). We represented this fact in Figure 3.4, where we
plotted the power of the tests based on negative binomial samples having parameters
r and p = 1 − λ/r, (for r = λ we chose p = 0.2.) On the left side λ = 1, and λ = 5
on the right, and the signi�cance levels are 0.1 and 0.05, again. We can see that the
empirical power goes to the theoretical signi�cance level as p grows in each case, but
for larger λ the convergence is slower.
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Figure 3.4: The empirical power of the tests against negative binomial samples
of order r and parameter p = 1−1/r (on the left) and p = 1−5/r (on the right).
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3 Bootstrapped parameter estimated empirical processes

3.6.2 Testing for the normal distribution

In our second Monte Carlo simulation we tested normality by generating location and
scale contaminated normal samples. We say that a variable has location contaminated
normal distribution having parametersm and p, if the observation is randomly selected
from the standard normal distribution with probability 1 − p and from N(m, 1) with
probability p. The scale contaminated normal distribution with parameters σ2 and
p can be de�ned similarly as the mixture of N(0, 1) and N(0, σ2). For comparative
simulation studies for the normal distribution see Gan and Koehler (1990).

First, we generated location contaminated normal samples. We raised the param-
eter m from 0 to 6 by stepping 0.5 and varied p between 0 and 1 by stepping 0.05.
We repeated the tests N = 1000 times for each (m, p). The power function of ψ∗npmn,n

and ψ∗pmn,n for signi�cance level α = 0.05 can be found in Figure 3.5, and Figure 3.6
shows the corresponding contour diagrams. Also, in Figure 3.7 we plotted the power
for �xed p = 0.5 (on the left) and for �xed m = 4 (on the right). Since the true distri-
bution of the generated samples is a mixture of two normals having equal variances,
the power function is symmetric for p = 0.5. Also, if p = 0 or p = 1 or m = 0, then
the generated variables have normal distribution, and the empirical power is close to
the signi�cance level. We can see that the power is very low, it is under 0.2 if m ≤ 2,
and then, it rises very steeply on the interval [2, 4] nearing to 1. Interestingly, in the
non-parametric bootstrap case the power function is approximately constant in p if
0.2 ≤ p ≤ 0.8, and what is more, in the parametric case the test has unexpectedly low
power for p = 0.5. The parametric bootstrap test has higher power for small and large
p's, but it is weaker than the non-parametric method if p is near to 0.5.

Finally, we generated scale contaminated normal samples. We scaled the parameter
σ logarithmically, namely, we made our tests for σ = 1.5s, where we raised s from −10
to 10. Again, we varied p between 0 and 1 by stepping 0.05, and we made N = 1000
repetitions. The bivariate empirical power function for signi�cance level α = 0.05 can
be seen in Figures 3.8 and 3.9, and Figure 3.10 shows the power for �xed p = 0.2
(on the left) and for �xed s = 5 (on the right) for signi�cance levels α = 0.05 and
α = 0.1. Since for p = 0, p = 1 and s = 0 the true distribution of the generated
sample is normal, the empirical power is approximately equal to the signi�cance level.
We found that excluding these cases the parametric bootstrap has higher power than
the non-parametric method.
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Figure 3.5: The empirical power of ψ∗np
mn,n and ψ∗p

mn,n for the normal distribution
against location contaminated samples for signi�cance level α = 0.05.
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Figure 3.6: The contour diagrams of the functions plotted in Figure 3.5.
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Figure 3.7: The empirical power of the tests for �xed m = 4 (on the left) and
for �xed p = 0.5 (on the right).
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Figure 3.8: The empirical power of ψ∗np
mn,n and ψ∗p

mn,n for the normal distribution
against scale contaminated samples for signi�cance level α = 0.05.
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Figure 3.9: The contour diagrams of the functions plotted in Figure 3.8.
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Figure 3.10: The empirical power of the tests for �xed s = 5 (on the left) and
for �xed p = 0.2 (on the right).
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Chapter 4

Empirical probability generating
processes

4.1 Introduction and preliminary results

LetX,X1, X2, . . . be a sequence of independent and identically distributed nonnegative
valued random variables having distribution function F (x), x ∈ R. Let

g(t) = EtX =

∫
R
txdF (x) and gn(t) =

1

n

n∑
j=1

tXj , 0 ≤ t ≤ 1 ,

be the common probability generating function and its empirical counterpart based
on the �rst n observations. Throughout this chapter the symbol 00 is interpreted as 1,
because we will need the continuity of the function tx in variable x. Then the empirical
probability generating process can be de�ned by

γn(t) = n1/2
[
gn(t)− g(t)

]
, 0 ≤ t ≤ 1 .

In the last two decades several authors examined the process γn and its parametric
versions in the case when the variable X has only non-negative integer values. The pa-
pers by Kemp and Kemp (1988), Kocherlakota and Kocherlakota (1986) and Nakamura
and Pérez-Abreu (1993a,b) were overviewed by Dowling and Nakamura (1997), while
Gürtler and Henze (2000) basically summarize the contents of Baringhaus, Gürtler and
Henze (2000), Baringhaus and Henze (1992) and Rueda, Pérez-Abreu and O'Reilly
(1991). The idea of the application of generating functions to solve various statistical
problems is not unusual, similar transformed processes based on empirical characteris-
tic and moment generating functions are well-known. (For example, see Csörg® (1981)
and Csörg®, Csörg®, Horváth and Mason (1986).) In each case the theoretical basis of
the method is the fact, that under appropriate conditions the transformed processes
converge in distribution in some function space. In the case of the empirical probability
generating process, Csörg® and Mason (1989) and Marques and Pérez-Abreu (1989)
independently and by di�erent methods proved that if X has �nite variance, then γn
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4 Empirical probability generating processes

converges in distribution in C[0, 1], the complete and separable metric space of all
continuous functions on the interval [0, 1] with respect to the supremum distance. The
limiting process is ∫

R
tx dB

(
F (x)

)
, 0 ≤ t ≤ 1 ,

where B(u), 0 ≤ u ≤ 1, is the Brownian bridge de�ned in Section 2.1. Remarkably,
Proposition 3.1 of Rémillard and Theodorescu (2000) states that no tail condition onX
is needed, and the empirical probability generating process converges in distribution
in C[0, 1] for every non-negative integer valued random variable X. This statement
is particularly striking in comparison to the asymptotic behavior of the empirical
characteristic function process, as described by Csörg® (1981). Unfortunately, there is
an oversight in the proof of Rémillard and Theodorescu (2000). In Section 4.5 we will
show that their basic idea is nevertheless good, their proof can be corrected, and so
their remarkable result is in fact true.

The aim of this chapter is to present a general approach to convergence problems
for probability generating functions and processes and their derivatives, for the param-
eter estimated version of the empirical probability generating process, and for their
bootstrapped analogues. Our results are general in the other sense, as well, that they
hold not only for an integer valued variable, but for an arbitrary non-negative valued
variable X. In Section 4.2 we investigate the existence of the generalized version of the
empirical probability generating process, and provide some useful inequalities for it,
which practically trivialize all the convergence problems by reducing them to conver-
gence problems for the corresponding empirical processes. This way it also becomes
possible to transfer rate of convergence and strong approximation results to empirical
probability generating processes. The applications of the general results can be found
in the later sections.

4.2 General results

In this section we investigate processes de�ned by the form I(t) =
∫
R t

xdK(x), where
K(x), x ∈ R, is some empirical type process (empirical or theoretical distribution
function, empirical bootstrapped and/or parameter estimated process) based on the
sample variables X1, . . . , Xn. Because in our case the sample comes from a distribution
having only non-negative values, the related empirical type processes vanish on the
negative half-line (−∞, 0). Also, these processes are càdlàg, that is, with probability 1
the trajectories are right-continuous and have left-side limit everywhere on the real
line. Hence, we can assume that K satis�es all of these criterions.

Throughout in the section we assume that K can be represented by the form

K(x) = M(x) + A(x) , x ∈ R , (4.1)

where M(x), x ∈ R, is a zero mean locally square integrable martingale adapted to
a �ltration F = {Fx : x ≥ 0} on the underlying probability space, and A(x), x ∈ R,
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4.2 General results

is a deterministic or random function which is of bounded variation on every �nite
interval. Furthermore, we will assume that both M and A are càdlàg on the real line
and vanish on (−∞, 0) with probability 1. By letting A+(x) and A−(x) be the positive
and the negative variation of A on the interval (−∞, x], x ∈ R, respectively, we also
have A = A+−A−. From the assumptions on A the processes A+ and A− are constant
0 on the negative half-line, and they are non-decreasing and càdlàg on the real line.

In Section 2.3 we have already investigated locally square integrable martingales,
and we introduced some of their basic properties. Since the choice of the �ltration F
is of no signi�cance during the applications of the later sections, we can choose a very
comfortable one, we will work with the augmentation of the generated �ltration

F0
x =

{
M(y) : 0 ≤ y ≤ x

}
, x ≥ 0 .

We recall that the process 〈M〉x, x ∈ R, is the quadratic characteristic of the local
martingale M . Since M is càdlàg on the real line and vanishes on the negative half-
line, the process 〈M〉x and its pointwise mean function E〈M〉x, x ∈ R, also have these
properties, and additionally, they are non-decreasing on the positive half-line.

If f(x), x ∈ R, is some locally bounded deterministic function, that is, it is bounded
on every �nite interval, then we de�ne its integral on the real line with respect to the
process K by the formula∫

R
f(x) dK(x) =

∫
R
f(x) dM(x) +

∫
R
f(x) dA(x) ,

and the integral is well-de�ned if both terms of the sum exist. The �rst term on the
right side is a stochastic integral, which was de�ned in Section 2.3, and in Lemma 2.8
we showed that it is well-de�ned if and only if

‖f‖2R = E

∫
R
f 2(x) d〈M〉x <∞ .

By technical reasons we consider the last integral in Lebesgue�Stieltjes sense, that is,
the integral exists if and only if f can be integrated with respect to both A+ and
A−. However, we will see that in our applications the integral is also well-de�ned in
Riemann�Stieltjes sense.

Our base goal is to investigate of the generalized probability generating process

I(t) =

∫
R
tx dK(x) ,

and its �di�erentiated� versions

Ir(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dK(x) , r = 0, 1, . . .

Observe that we have I(t) = I0(t). As we have already noted earlier, we de�ne the
expression 00 by 1, just because the continuity of the function tx in variable x is more
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4 Empirical probability generating processes

crucial than the continuity in t. It can be easily seen that the integral I(0) = K(0) is
�nite, and Ir(0) is not de�ned if r = 1, 2, . . . , but it is not a trivial question at all that
the integrals I(t) and Ir(t) exist or do not for any other t. Firstly, we investigate this
question. For this we need the following de�nition and a technical lemma.

De�nition. Consider a real valued random or deterministic function L(x), x ∈ R,
which is càdlàg on the real line and vanishes on (−∞, 0). Let E(L) be the set of those
outcomes ω ∈ Ω for which there exists a real constant δ = δ(ω, L) > 0 such that the
trajectory L(x) = L(x, ω), x ∈ R, satis�es

sup
m∈Z+

∣∣L(mδ)− L((m− 1)δ
)∣∣ <∞ or lim sup

m→∞

∣∣L((m+ 1)δ
)
− L

(
mδ
)∣∣∣∣L(mδ)− L((m− 1)δ
)∣∣ ≤ 1 . (4.2)

Also, let E1(L) ⊆ E(L) denote the set of those outcomes ω for which (4.2) holds with
δ = 1. We say that L has bounded or slowly growing increments if E(L) has a sub-
event having probability 1, and L has bounded or slowly growing increments on the
unit intervals, if the same holds for E1(L). Note that if L is bounded on the positive
half-line almost surely then it has bounded increments on the unit intervals.

Proposition 4.1. Consider a random or deterministic function L(x), x ∈ R, which
is càdlàg on the real line and vanishes on the negative half-line. Then, on the set E(L)
with δ = δ(ω, L) de�ned in the previous paragraph the series

Sr,δ,L(t) =
∞∑
m=1

mrtm−1
[
L
(
mδ
)
− L

(
(m− 1)δ

)]
converges absolutely for every −1 < t < 1. As a consequence, on the subset E1(L) the
series Sr,1,L(t) is also absolutely convergent with any −1 < t < 1.

Proof. Fix an arbitrary outcome ω ∈ E(L) and a real value −1 < t < 1, and consider
the deterministic trajectory L(x) = L(x, ω), x ∈ R. The increments of the function L
are either bounded and we �nd that

∞∑
m=1

∣∣∣mrtm−1
[
L
(
mδ
)
−L
(
(m−1)δ

)]∣∣∣ ≤ sup
m∈Z+

∣∣L(mδ)−L((m−1)δ
)∣∣ ∞∑

m=1

mr|t|m−1 <∞ ;

or the increments grow slowly, from which we have

lim sup
m→∞

[(m+ 1

m

)r |t|m
|t|m−1

∣∣L((m+ 1)δ
)
− L

(
mδ
)∣∣∣∣L(mδ)− L((m− 1)δ
)∣∣
]
≤ |t| < 1 ,

and using the ratio test we can obtain the absolute convergence of Sr,δ,L(t).
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Our next goal is to provide a su�cient condition under which the integral Ir(t)
exists. For any �xed 0 ≤ t ≤ 1 and r = 0, 1, . . . consider the decomposition

Ir(t) = IMr (t) + IAr (t) = IMr (t) + I+r (t)− I−r (t) ,

where IMr (t), IAr (t), I+r (t) and I−r (t) are the integrals of x(x−1) · · · (x−r+1)tx−r with
respect to M(x), A(x), A+(x) and A−(x), x ∈ R, respectively. Also, the r-th moment
of the process K can be considered by the form∫

R
xr dK(x) =

∫
R
xr dM(x) +

∫
R
xr dA+(x)−

∫
R
xr dA−(x) .

Then, the variable Ir(t) is �nite if and only if IMr (t), I+r (t) and I−r (t) are �nite, and the
integral

∫
R x

r dK(x) is well-de�ned if and only if all terms in its sum representation
exist. In the next two propositions we investigate the processes IAr and IMr .

Proposition 4.2. Assume that the processes A+(x) and A−(x), x ∈ R, have bounded
or slowly growing increments. Then, the integral IAr (t) is a well-de�ned and can be
di�erentiated at any point t of the interval (0, 1), and it has derivative IAr+1(t). Also,
the integral IA0 (t) is �nite and right-continuous at t = 0. Furthermore, IAr (1) exists
if and only if A(x), x ∈ R, has �nite r-th moment

∫
R x

rdA(x). In this case Ir−1(t)
have left-side derivative IAr (1) at t = 1, and IAr (t) is left-continuous at this point. (All
statements are understood with probability 1.)

Proof. Since A+ and A− have bounded or slowly growing increments it is enough to
prove the statement for a �xed outcome ω coming from the set E(A+) ∩ E(A−).

First, we prove the statement in the case of a non-decreasing A, that is, when
A− vanishes with probability 1. In this case the �xed trajectory A(x, ω) = A+(x, ω),
x ∈ R, has bounded or slowly growing increments. Fix any 0 < t ≤ 1 and r = 0, 1, . . . .
The factors of the product x(x− 1) · · · (x− r+ 1) has absolute value not greater than
r if 0 ≤ x ≤ r, and not greater than x if x ≥ r, which implies that∣∣IAr (t)

∣∣ ≤ ∫
R

∣∣x(x− 1) · · · (x− r + 1)
∣∣tx−r dA(x)

≤
∫ r

−∞
rrtx−r dA(x) +

∫ ∞
r

xrtx−r dA(x)

≤
(r
t

)r ∫ r

−∞
tx dA(x) +

1

tr

∫ ∞
0

xrtx dA(x) .

(4.3)

Since the process A has �nite values∫ r

−∞
tx dA(x) ≤

∫ r

−∞
1 dA(x) = A(r) <∞ , (4.4)

and (4.3) implies that IAr (1) is �nite if
∫
R x

rdA(x) exists. For the opposed direction
assume that the integral IAr (1) is �nite, and consider a real value y ≥ r such that
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xr ≤ 2x(x− 1) · · · (x− r + 1) holds for every x ≥ y. Then, the integral of the product
x(x− 1) · · · (x− r + 1) with respect to A is �nite on [y,∞), and we obtain that∫

R
xr dA(x) =

∫ y

−∞
xr dA(x) +

∫ ∞
y

xr dA(x)

≤
∫ y

−∞
yr dA(x) +

∫ ∞
y

2x(x− 1) · · · (x− r + 1) dA(x)

≤ yrA(y) + 2

∫ ∞
y

x(x− 1) · · · (x− r + 1) dA(x) <∞ .

Now, let 0 < t < 1 be arbitrary and consider the value δ = δ(ω,A) corresponding
to the outcome ω ∈ E(A) appearing in the de�nition of functions having bounded or
slowly growing increments. We have the inequality∫

R
xrtx dA(x) ≤

∫
{0}
xrtx dA(x) +

∞∑
m=1

∫ mδ

(m−1)δ
(mδ)rt(m−1)δ dA(x)

= 0rt0A(0) + δr
∞∑
m=1

mr(tδ)m−1
[
A
(
mδ
)
− A

(
(m− 1)δ

)]
= 0rA(0) + δrSr,δ,A(tδ) ,

and the series Sr,δ,A(tδ) is convergent by Proposition 4.1. Using this with formulas (4.3)
and (4.4) we obtain the existence of the integral IAr (t).

In the next step, we show that the function IAr−1 can be di�erentiated on the interval
(0, 1]. Consider any values 0 < s, t < 1. Then, there exists an s∗ = s∗(s, t, x−r) between
s and t such that

tx−r+1 − sx−r+1

t− s
= (x− r)sx−r∗ ,

from which we obtain the equation

IAr−1(t)− IAr−1(s)
t− s

=

∫
R
x(x− 1) · · · (x− r + 2)

tx−r+1 − sx−r+1

t− s
dA(x)

=

∫
R
x(x− 1) · · · (x− r + 2)(x− r + 1)sx−r∗ dA(x) .

Let s→ t and assume that t/2 < s < (t+1)/2. Then, s∗ → t and t/2 < s∗ < (t+1)/2,
as well. Since sx−r is a monotone function of the variable s on the positive half-line for
every �xed x− r, we �nd that

sx−r∗ ≤ max

{( t
2

)x−r
,
(t+ 1

2

)x−r}
≤
( t

2

)x−r
+
(t+ 1

2

)x−r
,

and the inequality remains valid if we multiply both sides by |x(x− 1) · · · (x− r+ 1)|.
Observe that after the multiplication the right side can be integrated with respect to
A because the expressions IAr (t/2) and IAr ((t+ 1)/2) are both �nite. Since s∗ → t the
dominated convergence theorem implies that

IAr−1(t)− IAr−1(s)
t− s

→
∫
R
x(x− 1) · · · (x− r + 1)tx−r dA(x) = IAr (t) .
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Furthermore, if the integral
∫
R x

rdA(x) is �nite, then IAr (1) exists and we can apply
the presented method for t = 1 with only some minor change. If s→ t = 1 such that
t/2 ≤ s ≤ 1, then the formulas remain valid if we replace (t + 1)/2 with the constant
1. We �nd that the inequality

sx−r∗ ≤
( t

2

)x−r
+ 1x−r (4.5)

holds, and we can prove the di�erentiability of IAr−1 at t = 1 by using the dominated
convergence theorem similarly as above. Note that inequality (4.5) is still valid if s∗ is
replaced by s, and by using the dominated convergence theorem again, we have

IAr (s) =

∫
R
x(x− 1) · · · (x− r + 1)sx−r dA(x)→ IAr (1) .

That is, IAr (t) is continuous at t = 1.
In the special case r = 0 it is obvious that the variable IA0 (0) = A(0) exists, and

we can apply our well-tried technique to prove continuity. By letting s → t = 0 such
that 0 ≤ s ≤ 1/2 we have sx ≤ (1/2)x for every x ≥ 0. Since the process IA0 is �nite
at the point 1/2, the function (1/2)x can be integrated with respect to A. Using the
dominated convergence theorem again, we have

IA0 (s) =

∫
R
sx dA(x)→

∫
R

0x dA(x) = IA0 (0) , s→ 0 ,

and the right-continuity of IA0 (t) at the point t = 0 follows. This completes the proof
of the proposition for a non-decreasing A(x), x ∈ R.

To handle the case of an arbitrary A observe that the processes A+ and A− are
non-decreasing, and hence, the statement of the proposition is valid for the functions
I+r and I−r . Since we have

IAr (t) = I+r (t)− I−r (t) (4.6)

for every possible r and t, the value IAr (1) is well-de�ned if and only if the integrals∫
R x

rdA+(x) and
∫
R x

rdA−(x) are �nite, which condition is equivalent with the exis-
tence of the r-th moment

∫
R x

rdA(x). The other statements immediately come from
the representation (4.6) and the results of the lemma for a non-decreasing A.

Note that if the integral IAr (t) exists for some �xed t and r in Lebesgue-Stieltjes
sense, then it is also well-de�ned as an improper Riemann�Stieltjes integral. To show
this fact consider any T1 < 0 and T2 ≥ r, and let 1B(x), x ∈ R, stands for the indicator
function of a given interval B. Also, let dLA(x) and dRA(x) denote integration with
respect to the process A(x), x ∈ R, in Lebesgue�Stieltjes and in Riemann�Stieltjes
sense, respectively. Assume that the integral IAr (t) exists in Lebesgue�Stieltjes sense.
Then, the function

f(x) = x(x− 1) · · · (x− r + 1)tx−r , x ∈ R ,
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4 Empirical probability generating processes

can be integrated with respect to A on (T1, T2] in Lebesgue�Stieltjes sense. Since f is
continuous, it follows that it can be integrated on [T1, T2] also in Riemann�Stieltjes
sense, and we have∫ T2

T1

f(x) dRA(x) =

∫ T2

T1

f(x) dLA(x) =

∫ r

−∞
f(x) dLA(x) +

∫ T2

r

f(x) dLA(x) .

Since f is positive on (r, T2], the monotone convergence theorem implies that∫ T2

r

f(x) dLA
+(x) =

∫ ∞
r

f(x)1(r,T2](x) dLA
+(x)→

∫ ∞
r

f(x) dLA
+(x) <∞ ,

as T2 →∞, and the same holds if A+ is replaced by A−. Hence we have∫ T2

T1

f(x) dRA(x) =

∫ r

−∞
f(x) dLA(x) +

∫ T2

r

f(x) dLA(x)→
∫
R
f(x) dRA(x) ,

as T1 → −∞ and T2 →∞. That is, the integral IAr (t) exists in Riemann�Stieltjes sense,
and it has the same value as in Lebesgue�Stieltjes sense. Unfortunately, the reverse
fails, because it is possible that

∫ T2
−∞ f(x)dRA(x) has �nite limit, but the integrals∫ T2

−∞ f(x)dLA
+(x) and

∫ T2
−∞ f(x)dLA

−(x) explode as T2 →∞. Of course, in such a case
one can not apply Proposition 4.2.

Proposition 4.3. Assume that the function E〈M〉x, x ∈ R, has bounded or slowly
growing increments. Then, the process IMr (t), r = 0, 1, . . . is well-de�ned and con-
tinuous in L2 sense on (0, 1), and it has a sample-continuous modi�cation ĪMr (t) on
this interval. In the case r = 0, the variable IM0 (0) is well-de�ned, and the processes
IM0 (t) and ĪM0 (t) are right-continuous at the point t = 0 in L2 sense. Also, the integral
IMr (1) exists if and only if M(x), x ∈ R, has �nite r-th moment

∫
R x

rdM(x). If this
condition is satis�ed, then IMr (t) and ĪMr (t) are left-continuous at t = 1 in L2 sense.
Furthermore, if K has �nite (r+ 1)-th moment, then we can choose a modi�cation ĪMr
which is continuous almost surely at t = 1.

Proof. First, we prove the �niteness of IMr (t). Using Lemma 2.8 the stochastic integral
IMr (t) is well-de�ned for �xed 0 ≤ t ≤ 1 and r = 0, 1, . . . if and only if

IEr (t) = E

∫
R

[
x(x− 1) · · · (x− r + 1)tx−d

]2
d〈M〉x <∞ .

For r = 0 and t = 0 we have

IE0 (0) = E

∫
R
t0 d〈M〉x = E

∫
{0}

1 d〈M〉x = E〈M〉0 <∞ ,

and hence, IM0 (0) exists. Now, consider any 0 < t ≤ 1 and r = 0, 1, . . . , and use the
same arguments as in formula (4.3) in the previous proof. That is, observe that the
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factors in the product x(x− 1) · · · (x− r + 1) has absolute value not greater than r if
0 ≤ x ≤ r, and not greater than x if x ≥ r. From this we obtain the inequality

IEr (t) = E

∫
R

[
x(x− 1) · · · (x− r + 1)tx−r

]2
d〈M〉x <∞

≤ E

∫ r

−∞
r2rt2(x−r) d〈M〉x + E

∫ ∞
r

x2rt2(x−r) d〈M〉x

≤
(r
t

)2r
E

∫ r

−∞
t2x d〈M〉x +

1

t2r
E

∫ ∞
0

x2rt2x d〈M〉x .

(4.7)

Since the mean E〈M〉x is �nite for every x ∈ R, it follows that

E

∫ r

−∞
t2x d〈M〉x ≤ E

∫ r

−∞
1 d〈M〉x = E〈M〉r <∞ . (4.8)

If the stochastic integral
∫
R x

rdM(x) is well-de�ned then it has variance

E

∫
R
x2r d〈M〉x <∞ ,

which implies the �niteness of IEr (1) and we obtain the existence of IMr (1). Contrary,
suppose that the integral IMr (1) is well-de�ned, and choose a value y ≥ r such that
2x(x− 1) · · · (x− r + 1) ≥ xr holds for every x ≥ y. We obtain that

E

∫
R
x2r d〈M〉x = E

∫ y

−∞
x2r d〈M〉x + E

∫ ∞
y

x2r d〈M〉x

≤ E

∫ y

−∞
y2r d〈M〉x + E

∫ ∞
y

[
2x(x− 1) · · · (x− r + 1)

]2
d〈M〉x

≤ y2rE〈M〉y + 4IEr (1) <∞ ,

from which the integral
∫
R x

rdM(x) exists.
Fix an arbitrary point 0 < t < 1 and consider the value δ = δ(E〈M〉) coming form

the de�nition of functions having bounded or slowly growing increments. Note that
E〈M〉 is deterministic, and hence, δ does not depend on the outcome ω. Since the
process 〈M〉 is non-decreasing, we have the inequality

E

∫ ∞
0

x2rt2x d〈M〉x ≤ E

[
∞∑
m=1

(mδ)2rt(m−1)δ
[
〈M〉mδ − 〈M〉(m−1)δ

]]

= δ2r
∞∑
m=1

m2r(tδ)m−1
[
E〈M〉mδ − E〈M〉(m−1)δ

]
= δ2rS2r,δ,〈M〉(t

δ) ,

and by Proposition 4.1 the series on the right side is convergent. Then, (4.7) and (4.8)
imply the �niteness of IEr (t), form which the stochastic integral IMr (t) is well-de�ned.
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4 Empirical probability generating processes

Let us examine the continuity of the process IMr on the interval (0, 1). By consid-
ering arbitrary values 0 < s, t < 1 there exists a constant s∗ = s∗(s, t, x − r) between
s and t such that

tx−r − sx−r = (t− s)(x− r)sx−r−1∗ .

From this we obtain the identity

E
(∣∣IMr (t)− IMr (s)

∣∣2) = E

[ ∫
R
x(x− 1) · · · (x− r + 1)(tx−r − sx−r) dM(x)

]2
= E

∫
R

[
x(x− 1) · · · (x− r + 1)(tx−r − sx−r)

]2
d〈M〉x

= (t− s)2E
∫
R

[
x(x− 1) · · · (x− r + 1)(x− r)sx−r−1∗

]2
d〈M〉x .

(4.9)

For a �xed integer n ≥ 2 let τ = (1/2)n, and assume that s, t ∈ [τ, 1 − τ ]. Then, the
value s2∗ lies between τ

2 and (1− τ)2, and we have

s2(x−r−1)∗ ≤ max
{
τ 2(x−r−1), (1− τ)2(x−r−1)

}
≤ τ 2(x−r−1) + (1− τ)2(x−r−1)

for every x ≥ 0. Multiplying this inequality by [x(x− 1) · · · (x− r)]2, integrating both
sides with respect to 〈M〉, taking the mean, and using (4.9) we get that

E
(∣∣IMr (t)− IMr (s)

∣∣2) ≤ (t− s)2
[
IEr+1(τ) + IEr+1(1− τ)

]
. (4.10)

Since the terms IEr+1(τ) and IEr+1(1 − τ) are �nite by the �rst part of the proof, the
right side of (4.10) converges to 0 as s → t, which implies the L2 continuity of IMr
at t. Since t is an arbitrary point in [(1/2)n, 1− (1/2)n], the process IMr is continuous
in L2 sense on this interval, and by letting n → ∞ we obtain the L2 continuity on
the whole (0, 1). Also, from (4.10) the Kolmogorov�Chentsov theorem (Theorem 2.8
of Karatzas and Shreve (1988)) implies that IMr has a sample-continuous modi�cation
ĪMr,n on [(1/2)n, 1− (1/2)n] for every n. Note that by the dyadic construction method of
the Kolmogorov�Chentsov theorem these modi�cations are expansions of each other,
that is, we have

ĪMr,n+1(t) = ĪMr,n(t) for every t ∈
[(1

2

)n
, 1−

(1

2

)n]
, n = 2, 3, . . .

From this we obtain that the process ĪMr (t), 0 ≤ t ≤ 1, de�ned by the equations
ĪM0 (0) = IM0 (0), ĪMr (1) = IMr (1),

ĪMr (t) = ĪMr,n(t) , t ∈
[(1

2

)n
, 1−

(1

2

)n]
, n = 2, 3, . . . (4.11)

is a sample-continuous modi�cation of IMr on the interval (0, 1).

66



4.2 General results

It only remains to prove the continuity of the processes at the endpoints of [0, 1].
Consider the case r = 0 and t = 0, and recall that the function tx = 0x is de�ned as 0
if x > 0 and as 1 if x = 0. Then, for any 0 ≤ s ≤ 1/2 we obtain that

E
(∣∣IM0 (s)− IM0 (0)

∣∣2) = E

[ ∫
R

(
sx − 0x

)
dM(x)

]2
= E

∫
R

(
sx − 0x

)2
d〈M〉x = E

∫ ∞
0

s2x d〈M〉x

≤ E

∫
R

(1

2

)2x
d〈M〉x = IE0 (1/2) <∞ .

Since s2x → 0 for every x > 0 as s → 0, it follows from the dominated convergence
theorem that

E
(∣∣IM0 (s)− IM0 (0)

∣∣2) = E

∫ ∞
0

s2x d〈M〉x → 0 ,

and we get the L2 continuity of IM0 (t) at t = 0. Similarly, let r = 0, 1, . . . be arbitrary
and assume that the integral IMr (1) exists. If s → t = 1 such that 1/2 ≤ s ≤ 1, then
we have∣∣1− sx−r∣∣ ≤ 1 + sx−r ≤ 1 + max

{
1x−r + (1/2)x−r

}
≤ 1 +

(
1 + (1/2)x−r

)
for every x ≥ 0, from which[

1− sx−r
]2 ≤ 4 + 4(1/2)x−r + (1/4)x−r .

After multiplying the inequality by [x(x−1) · · · (x−r+1)]2, integrating both sides with
respect to 〈M〉, and taking the mean we get the �nite sum 4IEr (1)+4IEr (1/2)+IEr (1/4)
on the right. Then, the second equation of (4.9) and the dominant convergence theorem
imply that

E
(∣∣IMr (1)− IMr (s)

∣∣2) = E

∫
R

[
x(x− 1) · · · (x− r + 1)

(
1− sx−r

)]2
d〈M〉x → 0 ,

because sx−r converges to 1, and hence, the function in the integral converges to 0 for
every x ≥ 0 as s→ 1. That is, we have obtained the L2 continuity of IM0 (t) and IMr (t)
at t = 0 and t = 1, respectively. Since ĪMr is a modi�cation of the process IMr , it also
satis�es these continuity properties.

Finally, assume that the processM has �nite (r+1)-st moment. For a �xed integer
n ≥ 2 let τ = (1/2)n and consider any values s, t ∈ [τ, 1]. We can repeat the compu-
tation presented in (4.9) and (4.10) with the minor change that 1 − τ is replaced by
the constant 1. Then, the Kolmogorov�Chentsov theorem provides sample-continuous
modi�cations on the intervals [(1/2)n, 1], and we can obtain a sample-continuous mod-
i�cation of IMr on (0, 1] by using the method presented in (4.11).
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We can summarize the results of Propositions 4.2 and 4.3 in the following theorem.

Theorem 4.4. Assume that the function E〈M〉x and the processes A+(x) and A−(x),
x ∈ R, have bounded or slowly growing increments. Then, the integral Ir(t) is well-
de�ned and the process Ir(t) has a sample continuous modi�cation Īr(t) on the interval
(0, 1) for any r = 0, 1, . . . . Also, Ī0(t) is right-continuous at the point t = 0 in stochastic
sense. Furthermore, Ir(1) is well-de�ned if and only if both M and A have �nite r-th
moment. If this condition holds, then Īr(t) is left-continuous at t = 1 in probability.

Proof. Working with the process ĪMr provided by Proposition 4.3 consider the random
function

Īr(t) = ĪMr (t) + IAr (t) ,

in case of every t and r for which the processes on the right side are de�ned. Then, Īr
is clearly a modi�cation of Ir, and all of the statements of the theorem immediately
follow from Propositions 4.2 and 4.3. The only harder question is the continuity of Īr
at those endpoints of the interval [0, 1], where it is de�ned. Since the processes ĪMr and
IAr are continuous at these points in L2 and almost sure sense, respectively, we can
state only stochastic continuity for the sum of them.

After we proved the existence of the process Ir in the following we investigate its
supremum on certain subintervals of [0, 1]. We will see that this supremum can be
bounded by a linear functional of the supremum K(x), x ∈ R, which will be crucial in
the applications later. Proposition 4.6 provides a pointwise inequality, and the main
result is stated in Theorem 4.7. But before that, we need a technical tool.

Proposition 4.5. If f(x), x ∈ R, is a continuous deterministic function of bounded
variation on every �nite interval, then for any a < 0 < b we have the integration by
parts formula ∫ b

a

f(x) dK(x) = f(b)K(b)−
∫ b

a

K(x) df(x) .

Proof. Consider the representation K(x) = M(x) + A(x), x ∈ R. Since we have∫ b

a

f(x) dK(x) =

∫ b

a

f(x) dM(x) +

∫ b

a

f(x) dA(x) ,

its enough to prove the statement for K = A and for K = M , separately. The process
A is of bounded variation on �nite intervals, and the integral of f with respect to A
is considered in Lebesgue�Stieltjes sense, so we can apply the standard integration by
parts formula for the second term of the sum. Because A vanishes on the negative
half-line we obtain∫ b

a

f(x) dA(x) = f(b)A(b)− f(a)A(a)−
∫ b

a

A(x) df(x)

= f(b)A(b)−
∫ b

a

A(x) df(x) .
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To obtain the formula for the stochastic integral let

M−(x) = lim
y↑x

M(y) , x ∈ R ,

be the left-continuous version of the process M . That is, M− and M have the same
value at the points, where M is continuous, and M− is equal to the left-side limit of
M at the points of discontinuity. The stochastic integration by parts formula provides
the equation∫ b

a

f(x) dM(x) = f(b)M(b)− f(a)M(a)−
∫ b

a

M−(x) df(x)−
[
M, f

]
b

= f(b)A(b)−
∫ b

a

M−(x) df(x)−
[
M, f

]
b
,

where the correction term [M, f ]b, b ≥ 0, is the so-called quadratic covariation of M
and f . Since the function f is deterministic and continuous, Theorem 4.52 in Chapter I
of Jacod and Shiryaev (2003) implies that the quadratic covariation vanishes for every
b. Also, the local martingale M is càdlàg which ensures that it has only countably
many points of discontinuity. Since f is continuous at every point of the interval [a, b]
we can replace M− with M in the integral on the right side, and we have∫ b

a

f(x) dM(x) = f(b)A(b)−
∫ b

a

M(x) df(x) .

Proposition 4.6. Assume that the integral I(t) exists for some �xed 0 ≤ t ≤ 1. Then,

|I(t)| ≤ sup
x∈R
|K(x)| a.s.

Furthermore, �x r = 1, 2, . . . and assume that Ir(t) is well-de�ned for some 0 < t < 1.
Then, we have

|Ir(t)| ≤ C0(t, r) sup
x∈R
|K(x)| a.s.

with the constant

C0(t, r) =
(2r + 4)xr0

td
, where x0 = x0(t, r) = max

{
r
(
r − ln t

)
2r

− ln t
, r

}
.

Proof. Since the �rst inequality requires more sophisticated technique than the second
one, we separate the proofs. Let t ∈ [0, 1] be an arbitrary value for which the integral
I(t) exists. If t = 0, then tx = 1 for x = 0, and tx = 0 for x > 0, and thus,

|I(0)| = |K(0)| ≤ sup
x∈R
|K(x)|.

Also, for t = 1 we have

|I(1)| =
∣∣∣ lim
x→∞

K(x)
∣∣∣ ≤ sup

x∈R
|K(x)|.
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Having the trivial boundary cases disposed of, let 0 < t < 1, and choose any a > 1
and b > 0. Using the fact that the process K vanishes on the negative half-line, the
integration by parts formula of Proposition 4.5 implies that∫ b

−∞
txdK(x) =

∫ b

logt a

tx dK(x) = tbK(b)−
∫ b

logt a

K(x) dtx .

Since tx is a decreasing function of the variable x, its total variation on the interval
[logt a, b] is equal to (a− tb). Whence∣∣∣∣ ∫ b

−∞
tx dK(x)

∣∣∣∣ ≤ tb|K(b)|+ (a− tb) sup
logt a≤x≤b

|K(x)| ≤ a sup
x∈R
|K(x)|.

If now a→ 1 and b→∞, we obtain the �rst inequality.
For the second statement �x any values 0 < t < 1 and r = 1, 2, . . . such that Ir(t)

is well-de�ned. Let

ht(x) =
[
x(x− 1) · · · (x− r + 1)

]
tx =

[
arx

r + ar−1x
r−1 + · · ·+ a1x+ a0

]
tx .

Since the constants in the product on the left side of the equation are all smaller than
r, the function ht(x), x ∈ R, is positive on the interval (r,∞). Also, the multinomial
theorem implies that if x ≥ r then

|ak| ≤
(
r

k

)
rr−k ≤

(
r

k

)
rxr−k−1 , k = 0, . . . , r − 1 ,

and we have ar = 1 ≤ r. The derivative of ht(x) with respect to the variable x is

h′t(x) =

[
r−1∑
k=0

ak+1(k + 1)xk

]
tx +

[
r∑

k=0

akx
k

]
tx ln t

=

[
xr ln t+

r−1∑
k=0

[
ak+1(k + 1) + ak ln t

]
xk

]
tx .

The factor ln t is negative, so for every x ≥ r we have∣∣∣∣ r−1∑
k=0

[
ak+1(k + 1) + ak ln t

]
xk
∣∣∣∣ ≤ r−1∑

k=0

|ak+1|(k + 1)xk − ln t
r−1∑
k=0

|ak|xk

≤ r2xr−1
r−1∑
k=0

(
r

k + 1

)
− rxr−1 ln t

r−1∑
k=0

(
r

k

)
≤ r
(
r − ln t

)
xr−12r .

From this, we �nd that the inequality

h′t(x) ≤ xr ln t+ r
(
r − ln t

)
2rxr−1 < 0

70



4.2 General results

holds if x > x0(t, r). That is, the function ht is positive and decreasing on (x0,∞). The
derivative h′t has at most r di�erent zero points, which implies that the function ht
has at most r local extremum points and they are positioned in the set (−∞, x0]. The
factors of the product x(x−1) · · · (x−r+1) have absolute value not greater than x0 if
x ∈ [−1, x0], so we have |ht(x)| ≤ xr0 on this interval. Now, consider the local extremum
points positioned on [−1, x0]. Since ht is bounded on this interval, its total variation
between two adjoining extremum points is not greater than 2xr0. Furthermore, 2xr0 is
an upper bound on the total variation between the smallest extreme on this interval
and −1, and also, on the total variation between the largest extreme and x0. Since the
function ht has at most r di�erent extremum points, its total variation on [−1, x0] can
not be greater than 2(r + 1)xr0.

Let b ≥ x0 be an arbitrary real value. Using Proposition 4.5 we obtain that∫ b

−∞
ht(x) dK(x) =

∫ b

−1
ht(x) dK(x) = ht(b)K(b)−

∫ b

−1
K(x) dht(x) .

The function ht is decreasing and positive on [x0,∞) from which its total variation on
[x0, b] is not greater than xr0. Summing up, the total variation of ht on [−1, b] can not
be greater than (2r + 3)xr0. Since 0 ≤ ht(b) ≤ xr0 we have∣∣∣∣ ∫ b

−∞
ft(x)t−d dK(x)

∣∣∣∣ ≤ xr0
td
|K(b)|+ (2r + 3)xr0

td
sup
x∈R
|K(x)| ≤ C0(t, r) sup

x∈R
|K(x)| .

If b→∞ then we obtain the desired inequality, and the proof is complete.

Theorem 4.7. Assume that the function E〈M〉x and the processes A+(x) and A−(x),
x ∈ R, has bounded or slowly growing increments, and consider any modi�cation Īr(t)
of the process Ir(t) which is sample-continuous on the interval (0, 1). Then, with Ī = Ī0
we have the inequality

sup
0≤t<1

|Ī(t)| ≤ sup
x∈R
|K(x)| a.s.

Also, if M(x), A−(x) and A+(x), x ∈ R, have �nite limit at in�nity with probability
1, then the approximation can be extended to the point t = 1. Furthermore, in case of
any 0 < ε < 1/2 and r = 1, 2, . . . we have

sup
ε≤t≤1−ε

|Īr(t)| ≤ C1(ε, r) sup
x∈R
|K(x)| a.s.,

where the constant in the formula is independent from K, and it is

C1(ε, r) =
(2r + 4)xr1

td
with x1 = x1(ε, r) = max

{
r
(
r − ln ε

)
2r

− ln(1− ε)
, r

}
.

Note that Theorem 4.4 provides a sample-continuous modi�cation of the process
Ir on the interval (0, 1) for every r = 0, 1, . . . , which can be applied in this theorem.
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4 Empirical probability generating processes

Proof. Using Proposition 4.6 and the fact that Ī(t) and I(t) are equal with probability
1 at any single point 0 ≤ t < 1 we have

sup
0≤t<1

|Ī(t)| = sup
t∈[0,1)∩Q

|Ī(t)| = sup
t∈[0,1)∩Q

|I(t)| ≤ sup
x∈R
|K(x)| a.s. (4.12)

Also, if M , A− and A+ have �nite limit at in�nity, then M and A have 0-th moments∫
R
x0 dM(x) = lim

x→∞
M(x) <∞

and ∫
R
x0 dA(x) =

∫
R
x0 dA+(x)−

∫
R
x0 dA−(x) = lim

x→∞
A+(x)− lim

x→∞
A−(x) <∞ ,

respectively, and Theorem 4.4 implies that I0(1) is well-de�ned. Then, using Proposi-
tion 4.6 again the supremum on the left side of (4.12) can be extended to the point
t = 1, as well.

For the second part of the statement �x any 0 < ε < 1/2 and r = 1, 2, . . . , and
consider an arbitrary value t in the interval [ε, 1 − ε]. Working with the constants
provided by Proposition 4.6 we �nd that

x0(t, r) ≤ x1(ε, r) and C0(t, r) ≤ C1(ε, r) ,

and we immediately get that

sup
ε≤t≤1−ε

|Īr(t)| = sup
t∈[ε,1−ε]∩Q

|Īr(t)| = sup
t∈[ε,1−ε]∩Q

|Ir(t)| ≤ C1(ε, t) sup
x∈R
|K(x)| a.s.

With this inequality the theorem is completely proved.

As we speci�ed earlier the goal of this section is provide a �exible theoretical base
what we can apply in the following sections. In the applicationsK(x), x ∈ R, will stand
for some empirical type process related to some non-negative integer valued random
variable X. We assumed thatK satis�es some conditions which are common properties
of these empirical type processes, but till now we did not make any assumptions
on the background variable itself. Since in most practical applications of probability
generating processes X is a non-negative integer valued variable, we must examine this
special case in detail.

If the variable X is integer valued, then the related empirical type processes are
constant on the intervals [m,m + 1), m = 0, 1, . . . , and hence, we can assume that
K(x), x ∈ R, also satis�es this additional condition. Then, K is of bounded variation
on every �nite interval, that is, we have K = A on the real line and we do not need
to bother about the martingale part M . Furthermore, if the integral It(t) exists then
it can be written in the sum formula

Ir(t) =
∞∑
m=0

m(m− 1) · · · (m− r + 1)tm−r
[
K(m)−K(m− 1)

]
.
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4.2 General results

Note that the convergence of the sum does not implies the existence of the integral
Ir(t) in Lebesgue�Stieltjes sense, but the �niteness of the related Riemann�Stieltjes
integral follows. By this motivation in our last statement we consider the integral Ir(t)
in the more general framework, in Riemann�Stieltjes sense. To distinguish this special
case in notation let

Jr(t) =
∞∑
m=r

m(m− 1) · · · (m− r + 1)tm−r
[
K(m)−K(m− 1)

]
, (4.13)

and

J(t) = J0(t) =
∞∑
m=0

tm
[
K(m)−K(m− 1)

]
.

Furthermore, let J+
r (t) and J−r (t) stand for the corresponding sums by replacing K(x)

with A+(x) and A−(x), x ∈ R, in (4.13).
To examine the existence of the sum Jr(t) consider the inequality

|Jr(t)| ≤
∞∑
m=0

mr|t|m−r
∣∣K(m)−K(m− 1)

∣∣ ≤ |K(0)|+ |t|1−rSr,1,K(t) . (4.14)

If the process K has bounded or slowly growing increments on the unit intervals then
Jr(t) converges absolutely for every −1 < t < 1 by Proposition 4.1. That is, in the case
of an integer valued variable X the Riemann�Stieltjes integral Jr(t) can be de�ned on
a much wider set than Ir(t) in the general setup. Additionally, if both A+ and A−

has bounded or slowly growing increments on the unit intervals, then applying the
same estimation as seen in (4.14) we obtain that the sums J+

r (t) and J−r (t) are also
absolute convergent for every −1 < t < 1. This immediately implies that the series
Jr(t) = J+

r (t) − J−r (t) converges absolutely and it agrees with the Lebesgue�Stieltjes
integral Ir(t) on the interval (−1, 1). Also, it can be easily seen that J(1) exists if and
only if K has �nite limit at in�nity with probability 1. If both A+ and A− has almost
sure �nite limit at in�nity, then the sums J+(1) and J−(1) are convergent, as well,
from which the Lebesgue�Stieltjes integral I(1) is de�ned, and it is equal to J(1).

We can summarize the results of our examination in the following statement.

Proposition 4.8. Assume that the process K(x), x ∈ R, is constant on the intervals
[m,m + 1), m = 0, 1, . . . If K has bounded or slowly growing increments on the unit
intervals, then Jr(t) is absolute convergent for any −1 < t < 1 and r = 0, 1, . . . Fur-
thermore, if both A+(x) and A−(x), x ∈ R, has bounded or slowly growing increments
on the unit intervals, then Jr(t) converges absolutely on (−1, 1), again, and it is equal
to the Lebesgue�Stieltjes integral Ir(t) on this interval. Also, if K has �nite limit at
in�nity with probability 1, then J(1) is �nite. Assuming that A+ and A− have almost
sure �nite limit at in�nity, the sum J(1) and the integral I(1) exist, and they are equal.

Our next statement is an inequality for the supremum of the process Jr, which
is similar to the result of Theorem 4.7. We also show that the function Jr(t) can be
di�erentiated in variable t.
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4 Empirical probability generating processes

Theorem 4.9. Assume that the process K(x), x ∈ R, is constant on each interval
[m,m+ 1), m = 0, 1, . . . , and it has bounded or slowly growing increments on the unit
intervals. Then, the series Jr(t) can be di�erentiated by the variable t on (−1, 1), and
its derivative is Jr+1(t) for any r = 0, 1, . . . . Furthermore, we have the inequality

sup
−τ≤t≤τ

|Jr(t)| ≤ C2(τ, r) sup
x∈R
|K(x)|

for any 0 < τ < 1, where the constant C2(τ, r), not depending on K, is

C2(τ, r) = 2
∞∑
m=r

m!

(m− r)!
τm−r ≤ 2

∞∑
m=r

mrτm−r <∞ .

Proof. With an arbitrary integer k ≥ r let us de�ne the sum

Jk,r(t) =
k∑

m=r

m(m− 1) · · · (m− r + 1)tm−r
[
K(m)−K(m− 1)

]
, −1 < t < 1 ,

and note that J ′k,r(t) = Jk,r+1(t) on the interval (−1, 1). From Proposition 4.8 it follows
that under the assumptions the power series Jr(t) is absolute convergent on (−1, 1).
This implies that the partial sums Jk,r(t) converges uniformly to Jr(t) as k → ∞ on
the subinterval [−τ, τ ] for any �xed value 0 < s < 1. Then, Jr(t) is also di�erentiable
and its derivative is Jr+1(t) on the same interval. Since τ is an arbitrary value we have
J ′r(t) = Jr+1(t) on the whole (−1, 1). For the second statement we have

sup
−s≤t≤s

|Jr(t)| ≤
∞∑
m=d

m!

(m− r)!
∣∣K(m)−K(m− 1)

∣∣sm−r ≤ C2(s, d) sup
x∈R
|K(x)| ,

completing the proof.

It deserves to point out that the constant C2(τ, r) is tight. Indeed, the supremum
of the function

K(x) =

{
(−1)m , m ≤ x < m+ 1 , m = 0, 1, . . .
0 , x < 0,

on the real line is 1, and we have the equation

Jr(−τ) =
∞∑
m=r

m(m− 1) · · · (m− r + 1)(−τ)m−r(−2)m = (−1)r C2(τ, r)

for any τ > 0 and r = 0, 1, . . .
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4.3 The empirical probability generating process

4.3 The empirical probability generating process

Using the general results of the previous section now we investigate the existence and
the continuity of the empirical probability generating process, its derivatives and some
corresponding Gaussian processes. Let X,X1, X2, . . . be a sequence of independent
non-negative valued variables having common distribution function F (x), and let Fn(x)
stands for the empirical distribution function based on the sample X1, . . . , Xn, x ∈ R.
Also, consider the empirical process

αn(x) = n1/2
[
Fn(x)− F (x)

]
, x ∈ R .

The theoretical and the empirical probability generating function corresponding to
the sample variables can be written in the integral forms

g(t) = EtX =

∫
R
tx dF (x) , gn(t) =

1

n

n∑
i=1

tXi =

∫
R
tx dFn(x) . (4.15)

Since F (x) and Fn(x), x ∈ R, are bounded on the real line, they have bounded or slowly
growing increments, and by Proposition 4.2 the functions g and gn are well-de�ned and
in�nitely many times di�erentiable on the interval (0, 1) with r-th derivative

g(r)(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dF (x) = E

(
X(X − 1) · · · (X − r + 1)tX−r

)
,

and

g(r)n (t) =

∫
R
x(x−1) · · · (x− r+ 1)tx−r dFn(x) =

1

n

n∑
i=1

Xi(Xi−1) · · · (Xi− r+ 1)tXi−r .

Also, g(t) and gn(t) are right-continuous at the point t = 0 without any regularity
condition on the variable X. The derivative g(r)(t) is left-continuous at t = 1 for some
r = 0, 1, . . . if and only if the function F has �nite r-th moment. Since the theoretical
distribution function have �nite limit as x → ∞, this condition is satis�ed for r = 0.
For any higher r the existence of the r-th moment of F is equivalent with the �niteness
of the expected value E(Xr). Also, the empirical distribution function has r-th moment∫

R
xr dFn(x) =

1

n

n∑
i=1

Xr
i <∞ ,

which implies that the function g(r)n (t) is left-continuous at t = 1 for any r = 0, 1, . . .
In the special case, when the random variable X has only non-negative integer

values, the theoretical and the empirical distribution function are constant on the
intervals [m,m + 1), m = 0, 1, . . . Since F (x) and Fn(x), x ∈ R, are bounded, they
have bounded increments on the unit intervals. Then, Proposition 4.8 and Theorem
4.9 imply that the theoretical and the empirical probability generating function can be
extended to (−1, 1], and they have r-th derivative g(r) and g(r)n on the interval (−1, 1).
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By (4.15) the empirical probability generating process can be written in the form

γn(t) = n1/2
[
gn(x)− g(x)

]
=

∫
R
tx dαn(x) ,

and the properties of the functions g and gn imply that γn exists and sample-continuous
on the interval [0, 1] for any non-negative valued random variable. Also, the process
has continuous r-th derivative

γ(r)n (t) = n1/2
[
g(r)n (x)− g(r)(x)

]
=

∫
R
x(x− 1) · · · (x− r + 1)tx−r dαn(x) (4.16)

on (0, 1) for any r = 1, 2, . . . , and γ(r)n (t) exists and it is continuous at t = 1 if and only
if X has �nite r-th moment. Furthermore, if the variable X is non-negative integer
valued, then the empirical probability generating process can be extended to (−1, 1],
and has r-th derivative γ(r)n on the interval (−1, 1) for any positive integer r. Also, we
have

γn(t) =
∞∑
m=0

tm
[
αn(m)− αn(m− 1)

]
= lim

k→∞

k∑
m=0

tm
[
αn(m)− αn(m− 1)

]
= lim

k→∞

[
k−1∑
m=0

(
tm − tm+1

)
αn(m) + tkαn(k)

]
=

∞∑
m=0

αn(m)(1− t)tm ,

(4.17)

for every −1 < t ≤ 1, since the process αn(x) has limit 0 as x→∞.
In the following section we will show that the weak limit of the empirical probability

generating process for an arbitrary non-negative valued variable X can be written in
the form

Y (t) =

∫
R
tx dB

(
F (x)

)
,

and we will also investigate the corresponding �di�erentiated� processes

Yr(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dB

(
F (x)

)
, (4.18)

where B(u), 0 ≤ u ≤ 1 is the Brownian bridge de�ned in Section 2.1. We must note
that the phrase �di�erentiated� is misleading in the sense that the process Y (t) can not
be di�erentiated at any t with probability 1. We use this word only to point out that
Yr(t) is de�ned by a similar integral as the di�erentiated process γ(r)n (t). Not motivated
by the applications but by curiosity, �rst we examine the related integral with respect
to the standard Wiener process W (u), u ≥ 0, that is, the process

Zr(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dW

(
F (x)

)
. (4.19)

First of all, observe that W (F (x)) is a martingale and has quadratic characteristic
〈W (F )〉x = F (x), x ∈ R. Since F vanishes on the negative half-line and the standard
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Wiener process is bounded on the interval [0, 1], the process W (F ) has bounded or
slowly growing increments. The quadratic characteristic 〈W (F )〉 = F also has bounded
or slowly growing increments, which implies that we can apply Proposition 4.3 for the
process Zr. We obtain that Zr is well-de�ned and has a sample-continuous modi�cation
on (−1, 1). Also, by the same proposition Z0(0) exists. Furthermore, Zr(t) is de�ned at
the point t = 1 if and only if the quadratic characteristic F has �nite 2r-th moment,
which condition is equivalent with the �niteness of the mean E(X2r). Of course, this
is satis�ed for r = 0.

By considering the processes

M(x) = W
(
F (x)

)
, A+(x) = 0 , A−(x) = W (1)F (x) , x ∈ R ,

the time transformed Brownian bridge can be represented by the form

B
(
F (x)

)
= W

(
F (x)

)
−W (1)F (x) = M(x) + A+(x)− A−(x) = K(x) , x ∈ R ,

and using the notation of Section 4.2 we have

Yr(t) = IMr (t) + I+r (t)− I−r (t) = Zr(t) + 0−W (1)gr(t)

That is, Yr(t) is well-de�ned if 0 < t < 1, and the sum on the right side has a sample-
continuous modi�cation on (0, 1). Note that applying Theorem 4.4 for the process Yr
we obtain exactly the same sample-continuous modi�cation. Also, Y (t) = Y0(t) exists
and continuous at t = 0 and t = 1 without any regularity condition on the distribution
function F .

If we suppose thatX is a non-negative integer valued variable then we can represent
the processes Zr in the form

Zr(t) =
∞∑
m=r

m(m− 1) · · · (m− r + 1)tm−r
[
W
(
F (m)

)
−W

(
F (m− 1)

)]
, (4.20)

and the sums exist and sample-continuous on (−1, 1) by Proposition 4.8 and Theorem
4.9. Since the Wiener processW (u) is continuous at u = 1, it follows thatW (F (x)) has
�nite limit as x→∞ almost surely. Using Proposition 4.8 again, we �nd that the sum
Z(t) is convergent at t = 1. We must note that this implies the existence of the integral
in (4.19) at t = 1 only in Riemann�Stieltjes sense. Obviously, the integral is de�ned in
Lebesgue�Stieltjes sense if and only if the series in (4.20) converges absolutely. Using
Kolmogorov's three series theorem in the case r = 0 one can show that this condition
is satis�ed if and only if the sum

∑∞
m=0[F (m+ 1)− F (m)]1/2 is �nite. By rearranging

the terms we get the identity

Z(t) = lim
k→∞

k∑
m=0

tm
[
W
(
F (m)

)
−W

(
F (m− 1)

)]
= lim

k→∞

[
k−1∑
m=0

(
tm − ti+1

)
W
(
F (m)

)
+ tkW

(
F (k)

)]
=

∞∑
m=0

W
(
F (m)

)
(1− t)ti ,

(4.21)
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which implies that the process Z(t) is continuous also at the point t = 1. Since in the
integer valued case the r-th derivative g(r) is continuous on (−1, 1], we obtain that
Yr(t) = Zr(t)−W (1)g(r)(t) is well-de�ned and continuous on this interval, as well. Of
course, in certain cases the integral Yr(1) can be considered only in Riemann-Stieltjes
sense. Using the method of formula (4.21) we have also that

Y (t) =
∞∑
m=0

B
(
F (m)

)
(1− t)ti . (4.22)

In the next sections we will consider the processes on some closed intervals where
they are continuous on, or at least have a continuous modi�cation. We can summarize
the results of our investigation in the next statement.

Proposition 4.10. The processes Yr(t) and Zr(t) are well-de�ned and have a sample-
continuous modi�cations on [a, b], where the interval [a, b] can be chosen as

• [ε, 1−ε] with any 0 < ε < 1/2, if X is an arbitrary non-negative valued variable;

• [−τ, τ ] with any 0 < τ < 1, if X is a non-negative integer valued variable;

• [0, 1], if X is a non-negative integer valued variable and r = 0.

Furthermore, Y = Y0 and Z = Z0 exist at t = 0 and t = 1 for any non-negative valued
variable, but at t = 1 the integrals might be considered only in Riemann-Stieltjes sense.
Also, the r-th derivative γ

(r)
n (t) exists and continuous on [a, b] in each case.

Since for a negative value t the function tx−r is not de�ned for every x ≥ 0, at a
�rst glance it seems that we can not apply the friendly integral forms (4.16), (4.18) and
(4.19) in the second case of Proposition (4.10). However, in this case the random or
deterministic measures corresponding to the functions F (x), W (F (x)) and B(F (x)),
x ∈ R, put mass only into the non-negative integers. Since at these points x the
function tx−r is de�ned for any negative t, we can still use formulas (4.16), (4.18) and
(4.19). Furthermore, for simplicity, in the following Yr(t) and Zr(t), a ≤ t ≤ b, stand
for the sample-continuous modi�cations provided by Proposition 4.10.

4.4 Properties of the process Yr

In the following sections we investigate Kolmogorov�Smirnov and Cramér-von Mises
type statistics based on the empirical probability generating process γn and its deriva-
tives. In these applications we must ensure that the statistics have bounded density
functions on certain subintervals of the real line. First, we show that Yr and Zr are
Gaussian processes with continuous covariance function on the interval [a, b] provided
by Proposition 4.10.
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Proposition 4.11. The random functions Yr and Zr are Gaussian processes on the
interval [a, b] with pointwise mean 0 and covariance functions

Cov
(
Zr(s), Zr(t)

)
=

∫
R

[
x(x− 1) · · · (x− r + 1)

]2
(st)x−r dF (x)

and

Cov
(
Yr(s), Yr(t)

)
=

∫
R

[
x(x− 1) · · · (x− r + 1)

]2
(st)x−r dF (x)− g(r)(s)g(r)(t) ,

where a ≤ s, t ≤ b.

Proof. Observe that the process de�ned by the form

B?(t) = W (u)− uW (1) , 0 ≤ u ≤ 1 ,

is a representation of the Brownian bridge, and the variable W (1) can be written as

W (1) =

∫
R

1 dW
(
F (x)

)
.

By introducing the function

hr(t, x) = x(x− 1) · · · (x− r + 1)tx−r ,

the processes Yr and Zr can be written in the stochastic integral forms

Zr(t) =

∫
R
hr(t, x) dW

(
F (x)

)
(4.23)

and

Yr(t) =

∫
R
hr(t, x) d

[
W
(
F (x)

)
− F (x)W (1)

]
=

∫
R
hr(t, x) dW

(
F (x)

)
− g(r)(t)

∫
R

1 dW
(
F (x)

)
=

∫
R

[
hr(t, x)− g(r)(t)

]
dW
(
F (x)

)
.

(4.24)

At this point we must recall our remark at the end of the previous section. Although
the function hr(t, x) is not de�ned in variable x on the whole positive half-line if t < 0,
the integrals (4.23) and (4.24) are valid for any a ≤ t ≤ b. This is because we consider
the processes Yr and Zr at a negative t only in case of an integer valued variable X,
and the function tx−r is well-de�ned at integer points x for any t.

Since Yr and Zr exist on the interval [a, b], Lemma 2.9 implies that they are Gaus-
sian processes on this set with pointwise mean 0. Also, we obtain the desired covariance
functions

Cov
(
Zr(s), Zr(t)

)
=

∫
R
hr(s, x)hr(t, x) dF (x) ,
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and

Cov
(
Yr(s), Yr(t)

)
=

∫
R

[
hr(s, x)− g(r)(s)

][
hr(t, x)− g(r)(t)

]
dF (x)

=

∫
R
hr(s, x)hr(t, x) dF (x) + g(r)(s)g(r)(t)

− g(r)(s)
∫
R
hr(t, x) dF (x)− g(r)(t)

∫
R
hr(s, x) dF (x)

=

∫
R
hr(s, x)hr(t, x) dF (x)− g(r)(s)g(r)(t) ,

for any a ≤ s, t ≤ b.

Proposition 4.12. The covariance functions of Yr and Zr are continuous on [a, b]2.

Proof. By Theorem 1.3.4 and Corollary 1.3.5 of Ash and Gardner (1975) the covariance
functions are continuous on [a, b]2 if and only if the processes Yr and Zr are continuous
in L2 sense on the interval [a, b]. Using formulas (4.18) and (4.19) with Proposition 4.3
we get that Y0 and Z0 are L2 continuous on [0, 1] for any non-negative valued X, and
Yr and Zr are continuous in the same sense on [ε, 1− ε] for any ε > 0 and r = 0, 1, . . .

It remains to investigate the case when the variableX has only non-negative integer
values and [a, b] = [−τ, τ ] with some 0 < τ < 1. Introduce the function

Jr(t) =

∫
R

[
x(x− 1) · · · (x− r + 1)

]2
tx−r dF (x) , −τ ≤ t ≤ τ .

Since the distribution function F is constant on the intervals [m,m+ 1), m = 0, 1, . . .
and it is bounded on the real line, we get that

|Jr(t)| =
∣∣∣∣ ∞∑
m=r

[
m(m− 1) · · · (m− r + 1)

]2
tm−r

[
F (m)− F (m− 1)

]∣∣∣∣ ≤ ∞∑
m=r

m2rτm−r .

The right side of the formula is convergent by the ratio test, and hence, the series Jr(t)
converges absolutely and uniformly on [−τ, τ ]. Since the terms of Jr(t) are all contin-
uous on this interval, we obtain the continuity of Jr(t), as well. Then, the continuity
of the derivative g(r) on [−τ, τ ] immediately implies that the covariance functions

Cov
(
Zr(s), Zr(t)

)
= Jr(st) and Cov

(
Yr(s), Yr(t)

)
= Jr(st)− g(r)(s)g(r)(t)

are continuous on the square [−τ, τ ]2.

Proposition 4.13. The process Y is degenerate at every point of the interval (0, 1)
if and only if the variable X is degenerate. Otherwise, Y is not degenerate at any
0 < t < 1. Also, for an arbitrary r = 1, 2, . . . the process Yr is degenerate on the whole
(0, 1) if and only if X is constant with probability 1 or P (X ∈ {0, . . . , r − 1}) = 1.
Otherwise, the points where the Yr is not degenerate are dense in (0, 1).
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Proof. Since Yr is a well-de�ned Gaussian process on [a, b] = [ε, 1− ε] with any values
0 < ε < 1/2 and r = 0, 1, . . . , it is Gaussian on the whole (0, 1) with the same mean
and covariance function. Using Proposition 4.11 the variance of the integral Yr(t) is

VarYr(t) =

∫
R

[
x(x− 1) · · · (x− r + 1)tx−r

]2
dF (x)

−
[ ∫

R
x(x− 1) · · · (x− r + 1)tx−r dF (x)

]2
= Var

[
X(X − 1) · · · (X − r + 1)tX−r

]
.

In the case r = 0 we have VarY (t) = Var tX . If X is constant with probability 1,
then the variable tX is also degenerate for every 0 < t < 1, which implies that Yr(t) has
variance Var tX = 0. Contrary, assume that X is not constant with probability 1 and
consider an arbitrary 0 < t < 1. Since tx is a strictly monotone function of the variable
x, the power tX is not constant, either. From this, it follows that VarYr(t) = Var tX is
strictly positive.

Let r = 1, 2, . . . be an arbitrary �xed integer, and consider the function

hr(t, x) = x(x− 1) · · · (x− r + 1)tx−r , 0 < t < 1 , x ∈ R .

If X is constant with probability 1 or P (X ∈ {0, . . . , r − 1}) = 1, then the variable
hr(t,X) is degenerate, and hence, VarYr(t) = 0 for every value 0 < t < 1.

For the opposite direction consider an arbitrary interval [a′, b′] ⊆ (0, 1). Suppose
that there exists a non-negative valued variable X such that P (X ∈ {0, . . . , r−1}) < 1
and Yr(X) is degenerate for every t ∈ [a′, b′]. Then, hr(t,X) is constant with probability
1 for any �xed t in [a′, b′]. By derivating hr(t, x) with respect to x we showed it in the
proof of Proposition 4.6 that hr(t, x), x ∈ R, has �nitely many extremum points, and
between them the function is strictly monotone. This implies that hr(t, x) has the same
value at most �nitely many points x ∈ R. Since hr(t,X) is constant the variable X
lies in a �nite set E = {x1, . . . , xk} ⊆ R almost surely. We assume that E is minimal
is the sense that we have P (X = xi) > 0 for any i = 1, . . . , k. Because hr(t,X) is
degenerate for every t, the function hr(t, x) is constant in variable x on the set E for
any a′ ≤ t ≤ b′. If any of the values 0, . . . , r−1 would lie in the set E, then the function
hr(t, x) would be constant 0 on E, which implies that hr(t,X) would be degenerate at
0. But, this alternative does not hold, because X has value in the set {0, . . . , r − 1}
with probability strictly smaller than 1, and hence, hr(t,X) is not constant 0. That is,
none of the values 0, . . . , r−1 lies in E, which implies that P (X ∈ {0, . . . , r−1}) = 0.

Consider any elements xi, xj ∈ E, and let t ≥ a′ and ε > 0 such that t+ε ≤ b′. Since
both hr(t, x) and hr(t+ ε, x) are constant in x on the set E, we have the derivatives

dhr(t, x1)

dt
= lim

ε↓0

hr(t+ ε, x1)− hr(t, x1)
h

= lim
ε↓0

hr(t+ ε, x2)− hr(t, x2)
h

=
dhr(t, x2)

dt
.

That is, the function

dhr(t, x)

dt
= x(x− 1) · · · (x− r + 1)(x− r)tx−r−1 , x ∈ R ,
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is also constant on E. Since E does not contain the values 0, . . . , r − 1, the fraction

dhr(t, x)

dt

/
hr(t, x) =

x(x− 1) · · · (x− r + 1)(x− r)tx−r−1

x(x− 1) · · · (x− r + 1)tx−r
=
x− r
t

is valid and constant on E for any t. This implies that E has only one element, and
hence, X is constant with probability 1. That is, if X is not degenerate, then there
exists a t ∈ [a′, b′] such that Yr(t) is not degenerate.

We note that by the proof of our Proposition 4.13 one can construct a variable X
which is not constant with probability 1 and also P (X ∈ {0, . . . , r−1}) < 1, but Yr(t)
is degenerate for a given 0 < t < 1 and r = 1, 2, . . . Just consider two positive values x1
and x2 not being equal to any of the integers 0, . . . , r−1 such that hr(t, x1) = hr(t, x2),
and let us de�ne the distribution of X by P (X = x1) = P (X = x2) = 1/2.

In the following statement we investigate the supremum functionals

Sr = sup
a≤x≤b

|Yr(t)| , S+
r = sup

a≤x≤b
Yr(t) and S−r = − inf

a≤x≤b
Yr(t) .

Depending on which case of Proposition 4.10 provides the interval [a, b], Theorem 4.7
or Theorem 4.9 provides us a �nite positive constant C = C(a, b, r) such that

Sr = sup
a≤x≤b

|Yr(t)| ≤ C sup
x∈R

∣∣B(F (x)
)∣∣ ≤ C sup

0≤u≤1
|B(u)| = CS ′ a.s.

Using this and the inequalities |S+
r | ≤ Sr and |S−r | ≤ Sr, we get that Sr, S+

r and S−r are
�nite with probability 1. Let Fr(s), F+

r (s) and F−r (s), s ∈ R, denote the distribution
functions of the variables, respectively. Consider the value

sr = inf
{
s ∈ R : Fr(s) > 0} ,

and similarly, let s+r and s−r denote the left endpoints of the supports of the functions
F+
r and F−r . Using the distribution function of S ′ provided by Kolmogorov we have

P
(
Sr ≤ s

)
≥ P

(
S ′ ≤ s/C

)
= 1−

∞∑
k=1

(−1)k+1 exp
(
− 2k2(s/C)2

)
> 0

with any positive s. From Sr ≥ 0, it follows that sr = 0, which clearly implies the
inequalities s+r ≤ 0 and s−r ≤ 0

Proposition 4.14. The distribution functions of Sr, S
+
r and S−r are absolute continu-

ous on the intervals (0,∞), (s+r ,∞) and (s−r ,∞), respectively. Also, they have bounded
density functions on [s1,∞), [s2,∞) and [s3,∞) with arbitrary values s1 > 0, s2 > s+r
and s3 > s−r .

Proof. If the process Yr(t) is degenerate at every point t on the interval [a, b], then it
is constant 0 on this interval. Hence, in this case Sr, S+

r and S−r is equal to 0 with
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probability 1, and the statement clearly follows. If the process is not degenerate at
every point on [a, b], then the continuity of Yr implies the identities

Sr = sup
{
Yr(t),−Yr(t) : a ≤ t ≤ b, t ∈ Q

}
,

S+
r = sup

{
Yr(t) : a ≤ t ≤ b, t ∈ Q

}
, S−r = sup

{
− Yr(t) : a ≤ t ≤ b, t ∈ Q

}
,

and we obtain the statement by using Theorem 2.10.

Finally, we prove a similar statement for the Cramér�von Mises type statistics of
the process Yr as we have in the previous proposition for the supremum functionals.
First, we present a general theorem for sample-continuous Gaussian processes having
continuous covariance function. Our result for Yr is stated as corollary.

Proposition 4.15. Consider a Gaussian process G(t), α ≤ t ≤ β, having pointwise
mean 0 and continuous covariance function on [α, β]2. If G is not degenerate at every
point of the interval [α, β], and its trajectories lie in the space L2[α, β] with probability 1,
then the integral

I =

∫ β

α

G2(t) dt

is absolute continuous and has bounded density function on the real line.

Proof. Let c(s, t), α ≤ s, t ≤ β, stand for the covariance function of the process G.
Using the results of Section 5.2 in Shorack and Wellner (1986) the Karhunen�Loève
expansion provides the representation

G(t) =
∞∑
k=1

λ
1/2
k ξkek(t) , α ≤ t ≤ β , (4.25)

where ξ1, ξ2, . . . are independent variables on the underlying probability space, the real
constants λ1, λ2, . . . are the eigenvalues of the Fredholm operator

Φ : L2[α, β]→ L2[α, β] , Φ(h)(t) =

∫ b

a

c(s, t)h(s) ds ,

and the deterministic functions e1, e2, . . . are the corresponding eigenvectors. Note that
e1, e2, . . . are continuous on the interval [α, β] and form an orthonormal basis for the
space L2[α, β]. Also, the series on the right side of (4.25) converges with probability
1 to the process G in the standard L2[α, β] norm. Since G is Gaussian, the variables
ξ1, ξ2, . . . have standard normal law, and not all of the coe�cients λ1, λ2, . . . are equal
to 0, because the process G is not degenerate at every point t on [α, β]. By applying
the properties of Hilbert spaces the representation in (4.25) immediately implies the
well-known almost sure identity∫ β

α

G2(t) dt =
∞∑
k=1

λkξ
2
k .
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Let the variable I denote the square integral of G on [α, β]. The variables ξ21 , ξ
2
2 , . . .

have χ2 distribution with degree of freedom 1, and we obtain the characteristic function
of I in the form

φI(t) =
∞∏
k=1

φξ2k

(
λkt
)

=
∞∏
k=1

(
1− 2iλkt

)−1/2
, t ∈ R .

The characteristic function has absolute value

|φI(t)| =

[
∞∏
k=1

∣∣1− 2iλkt
∣∣]−1/2 =

[
∞∏
k=1

(
1 + 4λ2kt

2
)]−1/4

,

and by using the multinomial theorem and keeping only the main term 1 and the terms
with factor t6 we have

∞∏
k=1

(
1 + 4λ2kt

2
)
≥ 1 + 43

∞∑
i,j,k=1

λ2iλ
2
jλ

2
kt

6 = 1 +Dt6 . (4.26)

Since the characteristic function of a �nite random variable is not constant 0 on the
whole set R\{0}, the absolute value of φI(t) is strictly positive for some t 6= 0. At this
point t the left side of (4.26) is �nite, which implies that the constant D is also �nite.
Using (4.26) the absolute integral of the characteristic function can be bounded by∫

R
|φI(t)| dt ≤

∫
R

(
1 +Dt6

)−1/4
dt ≤ 2

∫ D1/6

0

2−1/4 dt+ 2

∫ ∞
D1/6

(
2Dt6

)−1/4
dt ,

and the right side is clearly �nite. Then, the variable I is absolute continuous and its
density function fI(x), x ∈ R, can be obtained from the characteristic function φI by
the inverse Fourier transform. We get that

|fI(x)| = 1

2π

∣∣∣∣ ∫
R
e−itxφI(t) dt

∣∣∣∣ ≤ 1

2π

∫
R
|e−itx||φI(t)| dt =

1

2π

∫
R
|φI(t)| dt ,

and hence, the density function is bounded.

Corollary 4.16. Consider the interval [a, b] of Proposition 4.10. If X is not constant
with probability 1 and P (X ∈ {0, . . . , r− 1}) < 1, then the distribution function of the
variable ∫ b

a

Y 2
r (t) dt

is absolute continuous and has bounded density function on the real line.

Proof. Since Yr is sample-continuous on [a, b], it lies in the space L2[a, b] almost surely.
Also, by Proposition 4.13 the process is not degenerate at every point t on the interval,
and Proposition 4.11 implies that Yr has pointwise mean 0 and continuous covariance
function. Then, the statement follows from Proposition 4.15.
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4.5 Weak convergence

Let us consider independent and identically distributed variables X,X1, X2, . . . having
only non-negative values with distribution function F (x) and theoretical probability
generating function g(t). Also, let Fn(x), x ∈ R, and gn(t), 0 ≤ t ≤ 1, denote the em-
pirical distribution function and the empirical probability generating function based on
the sample X1, . . . , Xn. As we saw it in Section 4.3 the empirical probability generating
process can be written in the form

γn(t) = n1/2
[
gn(t)− g(t)

]
=

∫
R
tx dαn(x) ,

where αn(x), x ∈ R, is the empirical process corresponding to the given sample. Also,
by using the Brownian bridge B(u), 0 ≤ u ≤ 1, consider the process

Y (t) =

∫
R
tx dB

(
F (x)

)
.

By the results of Proposition 4.10, the processes γn and Y are well-de�ned and sample-
continuous on an arbitrary interval [ε, 1 − ε], ε > 0, and in case of an integer valued
X they exist and continuous on the whole [0, 1].

In statistical applications the most important question is the weak convergence
of the process γn in the space C[0, 1] for non-negative integer valued variables. The
convergence was �rstly proved independently by Csörg® and Mason (1989) and Mar-
ques and Pérez-Abreu (1989) for variables having �nite variance. Later, Rémillard and
Theodorescu (2000) generalized their results for arbitrary non-negative integer valued
variables, but unfortunately, there is oversight in their proof. However, their basic idea
is very interesting and the proof can be corrected, as we see in our next result.

Theorem 4.17 (Rémillard and Theodorescu, 2000). For an arbitrary non-negative
integer valued random variable X the empirical probability generating process γn con-
verges weakly to Y in the space C[0, 1] as n→∞.

Proof. Since the distribution of the de�ned processes is the same for any representation
of the sample variables X1, X2, . . . , we can assume without the loss of generality that

Xi = F−1(Ui) , i = 1, 2, . . . ,

where U1, U2, . . . are independent random variables on a suitable probability space
having uniform distribution on the interval [0, 1], and

F−1(u) = inf
{
x ∈ R : F (x) ≥ 0

}
, 0 < u < 1 ,

is the quantile function corresponding to the theoretical distribution function F . As
we saw it in Section 2.1, in this representation the empirical process of the variables
X1, . . . , Xn can be written in the form

αn(x) = βn
(
F (x)

)
, x ∈ R ,
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with the uniform empirical process βn(u), 0 ≤ u ≤ 1, corresponding to U1, . . . , Un.
Then, using (4.17) and (4.22) the empirical probability generating process and the
limiting process can be written as

γn(t) =
∞∑
i=0

βn
(
F (i)

)
(1− t)ti and Y (t) =

∞∑
i=0

B
(
F (i)

)
(1− t)ti , 0 ≤ t ≤ 1 .

Let C0 be the subspace of all functions in C[0, 1] which are vanish at the point 1. In the
original proof Rémillard and Theodorescu introduce the operator Ψ : C0 → C[0, 1],

Ψ(h)(t) =
∞∑
k=0

h
(
F (k)

)
tk(1− t) , 0 ≤ t ≤ 1 , (4.27)

and they show that Ψ is well-de�ned and continuous on C0. Since we have γn = Ψ(βn)
and Y = Ψ(B), and βn converges in distribution to the Brownian bridge B, the authors
conclude that γn converges weakly to Y . The mistake in this argument is obvious: the
process βn is not continuous, so it does not lie in the space C0. Hence, the weak
convergence of βn cannot be mapped to that of Ψ(βn) if Ψ is only de�ned on C0.

The oversight can be corrected if we extend Ψ properly and prove a more general
continuity property for it. Let D[0, 1] denote the space of all càdlàg functions de�ned
on [0, 1] endowed with the Skorohod metric. Under the generated topology the space
D[0, 1] is complete and separable, as described in Chapter 3 of Billingsley (1968). Let
D0 stand for the subspace of those elements of D[0, 1] which are continuous and vanish
at the point 1, and de�ne the operator Ψ on D0 with the formula (4.27). First, we
show that Ψ maps into C[0, 1], it is measurable on D0 and it is continuous on C0 ⊆ D0

with respect to the Skorohod topology.
Consider any element h of the subspace D0. Since h is continuous and vanishes at

the point 1, the sequence h(F (k)), k = 0, 1, . . . , is bounded and converges to 0. This
implies that the series Ψ(h)(t) is absolute convergent for any 0 ≤ t < 1, and hence,
the image Ψ(h) is continuous on the interval [0, 1). We show that the continuity holds
also at the point 1. For any �xed ε > 0 we can consider a positive integer m such that

sup
F (m)≤u≤1

|h(u)| < ε/2 .

Then, we obtain the inequality∣∣Ψ(h)(t)
∣∣ ≤ m−1∑

k=0

∣∣h(F (k)
)∣∣(1− t)tk +

∞∑
k=m

∣∣h(F (k)
)∣∣(1− t)tk

≤ sup
0≤u≤1

|h(u)|(1− t)
m−1∑
k=0

tk + sup
F (m)≤u≤1

|h(u)|(1− t)
∞∑
k=m

tk

≤ sup
0≤u≤1

|h(u)|(1− t)
m−1∑
k=0

1 + sup
F (m)≤u≤1

|h(u)|(1− t) tm

1− t

= m(1− t) sup
0≤u≤1

|h(u)|+ sup
F (m)≤u≤1

|h(u)| ≤ ε/2 + ε/2 ,

(4.28)

86



4.5 Weak convergence

for any 0 ≤ t ≤ 1 satisfying the condition

t > 1− ε

2m sup0≤u≤1 |h(u)|
.

Hence, Ψ(h) is an element of the space C[0, 1] for any h ∈ D0.
Consider functions h ∈ C0 and hn ∈ D0, n = 1, 2, . . . , such that hn → h with

respect to the Skorohod topology. Since the convergence to an element of the space
C[0, 1] in the Skorohod metric is equivalent with the convergence in the supremum
distance, it follows that hn converges uniformly to h on the interval [0, 1]. Using the
linearity of the operator Ψ inequality (4.28) implies that

lim sup
0≤t≤1

∣∣Ψ(hn)(t)−Ψ(h)(t)
∣∣ = lim sup

0≤t≤1

∣∣Ψ(hn − h)(t)
∣∣

≤ m lim
n→∞

sup
0≤u≤1

∣∣hn(u)− h(u)
∣∣+

ε

2
=
ε

2
.

Because ε is an arbitrary positive value, we obtain that Ψ(hn) converges uniformly to
Ψ(h), and hence, Ψ is continuous on the subspace C0 ⊆ D0. (Note that the argument
is delicate in that Ψ is not continuous at some functions in D0. See the counterexample
after the proof.)

Next, we show that the terms in the representation of Ψ in (4.27) are all measurable
operators D0 → C[0, 1], which implies that Ψ is also measurable. The inverse image
of an open ball in C[0, 1] with center at the function ϕ and radius ε given by the k-th
term of the series in (4.27) is{

h ∈ D0 : sup
0≤t≤1

∣∣h(F (k)
)
tk(1− t)− ϕ(t)

∣∣} =
⋂

t∈Q∩(0,1)

At(ϕ, ε) ∩D0 , (4.29)

where for a �xed t ∈ Q ∩ (0, 1) the set At(ϕ, ε) is de�ned by

At(ϕ, ε) =

{
h ∈ D[0, 1] :

ϕ(t)− ε
tk(1− t)

< h
(
F (k)

)
<
ϕ(t) + ε

tk(1− t)

}
.

While At(ϕ, ε) itself is generally not a Skorohod open set, it is measurable. For this
goal consider the projection

πu : D[0, 1]→ R , πu(g) = g(u) ,

with any 0 ≤ u ≤ 1, and note that πu is a measurable function by the argument on
page 121 of Billingsley (1968). This implies that the inverse image

At(ϕ, ε) = π−1F (k)

(
ϕ(t)− ε
tk(1− t)

,
ϕ(t) + ε

tk(1− t)

)
is a measurable subset of D[0, 1]. Using the standard de�nition of left-continuity the
set D0 can represented by the form

D0 =
⋂
ε∈Q+

⋃
δ∈Q+

⋂
t∈Q

1−δ<t≤1

π−1t (−ε, ε) ,
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which is measurable, as well. Hence, we conclude that the inverse image in (4.29) is a
measurable set, and the measurability of the operator Ψ : D0 → C[0, 1] follows.

Since the operator Ψ is continuous on the subspace C0 ⊆ D0 with respect to the
Skorohod metric, and the uniform empirical process converges weakly to the Brownian
bridge B in the Skorohod topology, and the process B lies in C0 with probability 1,
Corollary 1 to Theorem 1.5.1 in Billingsley (1968) implies the weak convergence of the
image γn = Ψ(βn) to Y = Ψ(B) in the space C[0, 1] as n→∞.

It is a crucial point in the proof of Theorem 4.17 that the operator Ψ is continuous
on C0 in the Skorohod topology. It is a naturally arising question if one can extend
this property for the whole subspace D0 or Ψ has some points of discontinuity in the
domain. Let

k1 = min
{
k ∈ N : P (X = k) > 0

}
be the smallest value of the non-negative integer valued random variables X. Also,
this is the smallest jumping point of the related distribution function F . We show
that Ψ is continuous on the whole domain D0 if and only if the background variable
is degenerate, that is, P (X = k1) = 1.

If X is degenerate then the distribution function F vanishes on (−∞, k1) and it is
equal to 1 on the interval [k1,∞). In this case Ψ can be written in the form

Ψ(h)(t) =
∞∑
k=0

h
(
F (k)

)
(1− t)tk =

∞∑
k=k1

h(1)(1− t)tk = h(1)tk1 , 0 ≤ t ≤ 1 .

By considering functions h, hn ∈ D0, n = 1, 2, . . . such that hn → h in the Skorohod
topology, the basic properties of the Skorohod metric implies that hn(1)→ h(1), and
the sequence Ψ(hn) converges to Ψ(h) in C[0, 1]. That is, Ψ is continuous on D0.

On the contrary, assume that X is not degenerate, and let k2 denote the second
smallest value of X, that is, let

k2 =
{
k > k1 : P (X = k2) > 0

}
.

Consider the functions

h(u) = 1[0,F (k1))(u) , hn(u) = 1[0,F (k1)+1/n)(u) , 0 ≤ u ≤ 1 .

where the notation 1 stands for the indicator function of the interval marked in the
lower index. It is clear that h and hn lie in D0 for every n and h→ hn in the Skorohod
metric. The image of the function h under the operator Ψ is

Ψ(h)(t) =
∞∑
k=0

h
(
F (k)

)
tk(1− t) =

k1−1∑
k=0

tk(1− t) = 1− tk1 , 0 ≤ t ≤ 1 ,

and if the integer n is large enough to satisfy the inequality F (k1) + 1/n < F (k2) then

Ψ(hn)(t) =
∞∑
k=0

hn
(
F (k)

)
tk(1− t) =

k2−1∑
k=0

tk(1− t) = 1− tk2 , 0 ≤ t ≤ 1 .
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Since k2 > k1, the sequence Ψ(hn) does not converge to Ψ(h) in C[0, 1], which implies
that h is a point of discontinuity in the domain of Ψ.

We note that the weak convergence of γn to the process Y in C[0, 1] can also be
proved in the usual way, by showing that the �nite dimensional distributions converge
and the sequence γn is tight. However, in comparison to the elegant idea of Rémillard
and Theodorescu (2000), the classical method is much more complicated since the
proof of the tightness requires a massive amount of calculations.

4.6 Strong approximations for the generating process

In this section we provide a uniform strong approximation for the empirical probability
generating process γn and its derivatives, and based on this result we investigate the
asymptotic behavior of some functionals of the processes.

Let X1, X2, . . . be independent non-negative valued variables with the same distri-
bution function F (x), x ∈ R, and for an arbitrary �xed r = 0, 1, . . . consider the r-th
derivative γ(r)n of the probability generating process and the corresponding Gaussian
process Yr represented by formulas (4.16) and (4.18). Note that the processes are well-
de�ned and sample-continuous on the interval [a, b] provided by Proposition 4.10, and
in the case r = 0 they exist also at t = 0 and t = 1 for any X.

Throughout the section we prove our statements by applying a suitable represen-
tation of the processes on the KMT probability space. Using the independent and
uniform variables U1, U2, . . . provided by Theorem 2.1 consider the random values

Xi = F−1(Ui) , i = 1, 2, . . . ,

with the quantile function F−1 of the distribution function F de�ned as

F−1(u) = inf
{
x ∈ R : F (x) ≥ u

}
, 0 < u < 1 .

In Section 2.1 we found that using this representation the related empirical process
can be written in the form

αn(x) = βn
(
F (x)

)
, x ∈ R ,

with the uniform empirical process βn(u), 0 ≤ u ≤ 1, appearing in Theorem 2.1. To
highlight the fact that this construction takes place on a unique probability space we
use a di�erent notation for the corresponding empirical probability generating process
and for its derivatives. The representation of γ(r)n based on the variables X1, . . . , Xn is
marked by γr,n. Then, using the general formula (4.16) we have the identity

γr,n(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dβn

(
F (x)

)
. (4.30)

Also, let us de�ne the independent and identically distributed variables X ′1, X
′
2, . . . as

X ′i = F−1(U ′i) , i = 1, 2, . . . (4.31)
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by applying the uniform variables U ′1, U
′
2, . . . of the second part of Theorem 2.1. If β′n

stands for the uniform empirical process of the sample U ′1, . . . , U
′
n as in the referred

theorem, then the empirical process and the derivative γ′r,n = γ
(r)
n based on X ′1, . . . , X

′
n

can be written in the forms

α′n(x) = β′n
(
F (x)

)
, γ′r,n(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dβ′n

(
F (x)

)
. (4.32)

Again, we use the notation γ′r,n instead of γ(r)n to point out that the process is con-
structed on the KMT space.

Let Bn(u), n = 1, 2, . . . , be the sequence of Brownian bridges and let K(u, y) be
the Kiefer process provided by Theorem 2.1, 0 ≤ u ≤ 1, y ≥ 0, and de�ne

Yr,n(t) =

∫
R
x(x− r) · · · (x− r + 1)tx−r dBn

(
F (x)

)
, 0 ≤ t ≤ 1 ,

and

Y ′r,n(t) = n−1/2
∫
R
x(x− r) · · · (x− r + 1)tx−r dK

(
F (x), n

)
, 0 ≤ t ≤ 1 . (4.33)

Since for any �xed integer n the processes Bn(u) and n−1/2K(u, n), 0 ≤ u ≤ 1,
are Brownian bridges, the integrals Yr,n(t) and Y ′r,n(t) exist exactly at those points
t ∈ R whereat Yr(t) is well-de�ned. That is, Yr,n and Y ′r,n are �nite and have sample-
continuous modi�cations on the interval [a, b] de�ned in Proposition 4.10. For simplic-
ity, in the following Yr,n and Y ′r,n stand for these modi�cations.

Our next results are uniform strong approximations for the processes γr,n and γ′r,n.
Recall that for a sequence of random variables V1, V2, . . . and a sequence of positive
constants a1, a2, . . . we write Vn = O(an), n → ∞, if there exists a universal real
constant C, not depending on the underlying distributions, such that

lim sup
n→∞

∣∣Vn/an∣∣ ≤ C , n→∞ , a.s.

Theorem 4.18. Consider the distribution function F (x), x ∈ R, of an arbitrary non-
negative valued random variable X. Then, for the processes de�ned on the KMT space
we have

sup
0≤t≤1

∣∣γ0,n(t)− Y0,n(t)
∣∣ = O

(
log n

n1/2

)
and sup

0≤t≤1

∣∣γ′0,n(t)− Y ′0,n(t)| = O
(

log2 n

n1/2

)
.

Also, for any r = 1, 2, . . . and 0 < ε < 1/2 it holds that

sup
ε≤t≤1−ε

∣∣γr,n(t)− Yr,n(t)
∣∣ = O

(
log n

n1/2

)
and sup

ε≤t≤1−ε

∣∣γ′r,n(t)− Y ′r,n(t)
∣∣ = O

(
log2 n

n1/2

)
.

Furthermore, if X has only non-negative integer values, then with any r = 0, 1, . . .
and 0 < τ < 1 we obtain

sup
−τ≤t≤τ

∣∣γr,n(t)− Yr,n(t)
∣∣ = O

(
log n

n1/2

)
and sup

−s≤t≤s

∣∣γr,n(t)′ − Y ′r,n(t)
∣∣ = O

(
log2 n

n1/2

)
.

All statements are understood almost surely as n→∞.
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4.6 Strong approximations for the generating process

Proof. By Proposition 4.10 the processes on the left sides of the equations exist at every
point of the intervals where we consider their supremums. Using the representations
(4.30) and (4.32) we have the identities

γr,n(t)− Yr,n(t) =

∫
R
x(x− r) · · · (x− r + 1)tx−r d

[
βn
(
F (x)

)
−Bn

(
F (x)

)]
and

γ′r,n(t)− Y ′r,n(t) =

∫
R
x(x− r) · · · (x− r + 1)tx−r d

[
β′n
(
F (x)

)
− n−1/2K

(
F (x), n

)]
.

Applying our Theorem 4.7 with the process

Kn(x) = αn(x)−Bn

(
F (x)

)
= βn

(
F (x)

)
−Bn

(
F (x)

)
, x ∈ R ,

and by the �rst formula of Theorem 2.2 we obtain the desired rate

sup
0≤t≤1

∣∣γ0,n(t)− Y0,n(t)
∣∣ ≤ sup

x∈R

∣∣Kn(x)
∣∣ ≤ sup

0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ = O

(
log n

n1/2

)
.

The third and the �fth equations of the statement can be shown similarly by using
Theorems 4.7 and 4.9, respectively. Also, with the choice

K ′n(x) = α′n(x)− n−1/2K
(
F (x), n

)
= β′n

(
F (x)

)
− n−1/2K

(
F (x), n

)
, x ∈ R ,

Theorem 4.7 and the second formula of Theorem 2.2 imply

sup
0≤t≤1

∣∣γ′0,n(t)− Y ′0,n(t)
∣∣ ≤ sup

x∈R

∣∣K ′n(x)
∣∣ ≤ sup

0≤u≤1

∣∣β′n(u)− n−1/2K(u, n)
∣∣ = O

(
log2 n

n1/2

)
.

One can prove the remaining equations just the same way by applying Theorems 4.7
and 4.9, again.

As a direct consequence of Theorem 4.18 we obtain the weak convergence of the
process γn and its derivatives. We note that, as a special case, the following statement
also contains Theorem 4.17, the result of Rémillard and Theodorescu (2000).

Corollary 4.19. Consider an arbitrary non-negative integer valued random variable
X de�ned on any probability space. The process γ

(r)
n converges in distribution to Yr in

the space C[a, b] as n→∞, where the interval [a, b] is provided by Proposition 4.10.

Proof. By Proposition 4.10 the processes γ(r)n and Yr lie in the space C[a, b]. Theorem
4.18 implies that the supremum distance of the processes γr,n and Yr,n constructed on
the KMT space converges to 0 almost surely. Since the representations γr,n and Yr,n
have the same distribution in C[a, b] as the general versions γ(r)n and Yr, respectively,
we obtain the weak convergence.
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A typical application of the weak convergence of the probability generating process
γn and its derivatives is testing the �t of a given sample X1, . . . , Xn to some hypothetic
distribution. Let g(r)H stand for the r-th derivative of the probability generating function
gH corresponding to the hypothetic distribution and consider the process

γ
(r)
n,H(t) = n1/2

[
g(r)n (t)− g(r)H (t)

]
, a ≤ t ≤ b .

Observe that γ(r)n,H is obtained from the formula (4.16) of γ(r)n by replacing the unknown
theoretical probability generating function g with gH. If we consider some continuous
functional ψ on the space C[a, b], then ψ(γ

(r)
n,H) serves as a test statistic, and we can

obtain critical values by determining the theoretical quantiles of the variable ψ(Yr).
The theoretical basis of the method is the fact that if the hypothetic probability
generating function is the true one, then the statistics ψ(γ

(r)
n,H) = ψ(γ

(r)
n ) converges

in distribution to ψ(Yr) as n → ∞. In the applications it is a crucial question that
how fast the quantiles of the statistics ψ(γ

(r)
n ) converge to those of ψ(Yr). The next

statement provides an answer for this problem, a uniform rate of convergence.

Theorem 4.20. Consider a non-negative valued variable X and an integer r = 0, 1, . . .
Let ψ denote a functional on the space C[a, b] satisfying the Lipschitz condition∣∣ψ(h1)− ψ(h2)

∣∣ ≤M sup
a≤u≤b

∣∣h1(u)− h2(u)
∣∣ , h1, h2 ∈ C[a, b] ,

with some �nite positive constant M , and assume that ψ(Yr) has bounded density
function on [s,∞) with some s ∈ R. Then we have

sup
x≥s

∣∣∣P(ψ(γ(r)n ) ≤ x
)
− P

(
ψ(Yr) ≤ x

)∣∣∣ = O
(

log n

n1/2

)
.

Proof. We adapt the ideas of Komlós, Major and Tusnády (1975) which were applied
in the proof of the related theorem for the uniform empirical process. (See Theorem 2.4
in our Section 2.1.) Since the statement is a property of the distributions of γ(r)n and
Yr in the space C[a, b], we can prove the theorem by using a suitable representation of
the processes. Of course, we will work with the versions γr,n and Yr,n constructed on
the KMT space in Section 4.6. First, we need a stronger version of the approximations
presented in our Theorem 4.18. By considering the process

Kn(x) = βn
(
F (x)

)
−Bn

(
F (x)

)
, x ∈ R ,

Proposition 4.10 with Theorems 4.7 and 4.9 implies that

sup
a≤t≤b

∣∣γr,n(t)− Yr,n(t)
∣∣ ≤ C sup

x∈R
|Kn(x)| ≤ C sup

0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ (4.34)

with a positive constant C = C(a, b, r). From the Lipschitz property of the functional
ψ we obtain the almost sure inequality∣∣ψ(γr,n)− ψ(Yr,n)

∣∣ ≤M sup
a≤t≤b

∣∣γr,n(t)− Yr,n(t)
∣∣ ≤ CM sup

0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ . (4.35)
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Consider the strictly positive constants c1, c2 and c3 of Theorem 2.1, and let

yn =
2

c3
log n and εn = CM

yn + c1 log n

n1/2
= O

(
log n

n1/2

)
.

The �rst statement of Theorem 2.1 with (4.35) implies that

P
(∣∣ψ(γr,n)− ψ(Yr,n)

∣∣ > εn

)
≤ P

(
sup

0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ > yn + c1 log n

n1/2

)
≤ c2 exp(−c3yn) = c2/n

2 .

Let M2 stand for a positive bound on the density function of ψ(Yr) on the interval
[s,∞), and observe that for any �xed x ≥ s we have{

ψ(γr,n) ≤ x
}
⊆
{
ψ(Yr,n) ≤ x+ εn

}⋃{∣∣ψ(γr,n)− ψ(Yr,n)
∣∣ > εn

}
.

Since the functional ψ(Yr,n) has the same distribution as ψ(Yr) for every n = 1, 2, . . .
it follows that

P
(
ψ(γr,n) ≤ x

)
≤ P

(
ψ(Yr,n) ≤ x+ εn

)
+ P

(∣∣ψ(γr,n)− ψ(Yr,n)
∣∣ > εn

)
≤ P

(
ψ(Yr) ≤ x

)
+ P

(
x < ψ(Yr) ≤ x+ εn

)
+ c2/n

2

≤ P
(
ψ(Yr) ≤ x

)
+ εnM2 + c2/n

2 .

Hence, we get the inequality

P
(
ψ(γr,n) ≤ x

)
− P

(
ψ(Yr) ≤ x

)
≤ εnM2 + c2/n

2 .

We can easily obtain a similar lower bound for the di�erence, as well. From the formula{
ψ(Yr,n) ≤ x− εn

}
⊆
{
ψ(γr,n) ≤ x

}⋃{∣∣ψ(γr,n)− ψ(Yr,n)
∣∣ > εn

}
.

it follows that

P
(
ψ(Yr,n) ≤ x− εn

)
≤ P

(
ψ(γr,n) ≤ x

)
+ P

(∣∣ψ(γr,n)− ψ(Yr,n)
∣∣ > εn

)
.

By rearranging the terms in the inequality we have

P
(
ψ(γr,n) ≤ x

)
≥ P

(
ψ(Yr,n) ≤ x− εn

)
− P

(∣∣ψ(γr,n)− ψ(Yr,n)
∣∣ > εn

)
≥ P

(
ψ(Yr) ≤ x

)
− P

(
x− εn < ψ(Yr) ≤ x

)
− c2/n2

≥ P
(
ψ(Yr) ≤ x

)
− εnM2 − c2/n2 ,

which leads to

P
(
ψ(Yr) ≤ x

)
− P

(
ψ(γr,n) ≤ x

)
≤ εnM2 + c2/n

2 .
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Since the term εnM2 has a slower rate of convergence than c2/n2 has, we get that∣∣∣P(ψ(γr,n) ≤ x
)
− P

(
ψ(Yr) ≤ x

)∣∣∣ ≤ εnM2 + c2/n
2 = O

(
log n

n1/2

)
,

and the proof is complete.

The best known and most important application of Theorem 4.20 is that when ψ
is a supremum functional on C[a, b], that is, one of

ψ0(h) = sup
a≤t≤b

|h(t)| , ψ+(h) = sup
a≤t≤b

h(t) and ψ−(h) = − inf
a≤t≤b

h(t) .

Observe that with any functions h1, h2 ∈ C[a, b] we have∣∣ψ+(h1)− ψ+(h2)
∣∣ ≤ ∣∣ψ0(h1)− ψ0(h2)

∣∣ ≤ sup
a≤u≤b

∣∣h1(u)− h2(u)
∣∣ ,

and a similar inequality holds for ψ−. Hence, the functionals ψ0, ψ+ and ψ− satisfy
the Lipschitz condition with M = 1. Also, in Proposition 4.14 we showed that the
functionals ψ0(Yr), ψ+(Yr) and ψ−(Yr) have bounded densities on certain subintervals
of the real line. As a result we can apply Theorem 4.20 for these functionals and we
obtain the uniform approximations presented in Corollary 4.21.

Corollary 4.21. Consider the values s+r ≤ 0 and s−r ≤ 0 of Proposition 4.14, and let
s1 > 0, s2 > s+r and s3 > s−r be arbitrary. Then, we have

sup
x≥s1

∣∣∣∣P( sup
a≤t≤b

∣∣γ(r)n (t)
∣∣ ≤ x

)
− P

(
sup
a≤t≤b

∣∣Yr(t)∣∣ ≤ x

)∣∣∣∣ = O
(

log n

n1/2

)
,

and the distribution function of

sup
a≤t≤b

γ(r)n (t) and − inf
a≤t≤b

γ(r)n (t)

converge with the same rate to that of

sup
a≤t≤b

Yr(t) and − inf
a≤t≤b

Yr(t)

on the intervals [s2,∞) and [s3,∞), respectively.

In the last result of this section we investigate the Cramér�von Mises type statistics
of the process γ(r)n , and we show that its distribution function converges uniformly to
the distribution function of the related statistics based on the limiting process Yr. In
the proof we apply a simpli�ed version of the method which was invented to prove the
corresponding statement for the uniform empirical process βn by Csörg® (1976). Our
theorem provides a rate of convergence O(n−1/2(log n)3/2), and it is a crucial point of
the justi�cation that the functional

ψ(Yr) =

∫ b

a

Y 2
r (t) dt
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has a bounded density function f(x), x ∈ R, by Corollary 4.16. Note that if one can
show that f(x)x1/2 is bounded, too, then using the original technique of Csörg® (1976),
the rate O(n−1/2 log n) can be achieved.

Theorem 4.22. We have

sup
x∈R

∣∣∣∣P(∫ b

a

(
γ(r)n

)2
(t) dt ≤ x

)
− P

(∫ b

a

Y 2
r (t) dt ≤ x

)∣∣∣∣ = O
(

(log n)3/2

n1/2

)
.

Proof. If the variable X is degenerate or P (X ∈ {0, . . . , r − 1}) = 1 then γ(r)n and Yr
vanish on the interval [a, b] by formula (4.18) and Proposition 4.13. Hence, the square
integrals of the processes are equal to 0 with probability one, and the statement follows.
In the remaining we assume that X is not degenerate and P (X ∈ {0, . . . , r− 1}) < 1.

Consider the processes βn, Bn, γr,n and Yr,n, n = 1, 2, . . . , de�ned on the KMT
probability space, and let

ψ(γr,n) =

∫ b

a

γ2r,n(t) dt , ψ(Yr,n) =

∫ b

a

Y 2
r,n(t) dt ,

and
Sn = sup

0≤u≤1
|Bn(u)| , Tn = sup

0≤u≤1

∣∣Bn(u)− βn(u)
∣∣ .

Depending on which case of Proposition 4.10 holds for the variable X and the
integer r, by using Theorem 4.7 or Theorem 4.9 we obtain the inequality

sup
a≤t≤b

|Yr,n(t)| ≤ C sup
x∈R

∣∣Bn

(
F (x)

)∣∣ ≤ CSn , a.s.

and (4.34) provides the approximation

sup
a≤t≤b

∣∣γr,n(t)− Yr,n(t)
∣∣ ≤ C sup

0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ = CTn , a.s.

with a positive constant C = C(a, b, r). By applying the elementary properties of the
supremum functional we obtain the almost sure bound on the distance of ψ(γr,n) and
ψ(Yr,n) in the form∣∣ψ(γr,n)− ψ(Yr,n)

∣∣ ≤ ∫ b

a

∣∣γ2r,n(t)− Y 2
r,n(t)

∣∣ dt ≤ (b− a) sup
a≤t≤b

∣∣γ2r,n(t)− Y 2
r,n(t)

∣∣
≤ (b− a) sup

a≤t≤b

∣∣γr,n(t)− Yr,n(t)
∣∣ sup
a≤t≤b

∣∣γr,n(t) + Yr,n(t)
∣∣

≤ (b− a) sup
a≤t≤b

∣∣γr,n(t)− Yr,n(t)
∣∣ [ sup

a≤t≤b

∣∣γr,n(t)− Yr,n(t)
∣∣+ 2 sup

a≤t≤b

∣∣Yr,n(t)
∣∣]

≤ (b− a)C2Tn
(
Tn + 2Sn

)
.

(4.36)

Consider the constants c1, c2 and c3 provided by Theorem 2.1 and the sequences

yn =
2

c3
log n , εn =

yn + c1 log n

n1/2
and δn = 3(b− a)C2εn(log n)1/2 .
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Applying the �rst statement of Theorem 2.1 we obtain the inequality

P
(
Tn > εn

)
= P

(
sup

0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ > yn + c1 log n

n1/2

)
≤ c2 exp(−c3yn) = c2/n

2 .

Also, by using the the well-known result of Smirnov for the supremum of the Brownian
bridge (formula (1.5.3) in Csörg® and Révész (1981)) it follows that

P
(
Sn ≥ (log n)1/2

)
= P

(
sup

0≤u≤1
|Bn(u)| ≥ (log n)1/2

)
≤ 2 exp(−2 log n) = 2/n2 .

If n is large enough to satisfy the inequality εn ≤ (log n)1/2, then from (4.36) we get

P
(∣∣ψ(γr,n)− ψ(Yr,n)

∣∣ ≥ δn, Tn ≤ εn

)
≤ P

(
Tn(Tn + 2Sn) ≥ 3εn(log n)1/2, Tn ≤ εn

)
≤ P

(
εn(εn + 2Sn) ≥ 3εn(log n)1/2

)
≤ P

(
Sn ≥ (log n)1/2

)
≤ 2/n2 .

Hence, we have

P
(∣∣ψ(γr,n)− ψ(Yr,n)

∣∣ ≥ δn

)
≤ P

(∣∣ψ(γr,n)− ψ(Yr,n)
∣∣ ≥ δn, Tn ≤ εn

)
+ P

(
Tn > εn

)
≤ (c2 + 2)/n2 .

Note that by Corollary 4.16 there exists a boundM on the common density function
of the variables ψ(Yr,n). One can complete the proof by applying the same method as
we used in the second part in the proof of Theorem 4.20. Consider an arbitrary real x.
Using the formula{

ψ(γr,n) ≤ x
}
⊆
{
ψ(Yr,n) ≤ x+ δn

}
∪
{
|ψ(γr,n)− ϕn| ≥ δn

}
,

one can obtain the inequality

P
(
ψ(γr,n) ≤ x

)
≤ P

(
ψ(Yr,n) ≤ x

)
+ δnM + (c2 + 2)/n2 ,

and {
ψ(Yr,n) ≤ x− δn

}
⊆
{
ψ(γr,n) ≤ x

}
∪
{
|ψ(γr,n)− ψ(Yr,n)| ≥ δn

}
,

implies that

P
(
ψ(γr,n) ≤ x

)
≥ P

(
ψ(Yr,n) ≤ x

)
− δnM − (c2 + 2)/n2 ,

just as in the proof of Theorem 4.20. From these we have

sup
x>0

∣∣∣P(ψ(γr,n) ≤ x
)
− P

(
ψ(Yr,n) ≤ x

)∣∣∣ ≤ δnM +
c2 + 2

n2
= O(δn) = O

(
(log n)3/2

n1/2

)
,

since δn has a slower rate of convergence than the term (c2 + 2)/n2 has.
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4.7 Law of the iterated logarithm

We continue our investigation on the empirical probability generating process by work-
ing in the same framework as in the previous section. The variables X,X1, X2, . . . are
independent and non-negative valued with the same distribution function F (x). Also,
αn(x), x ∈ R, and γ(r)n (t), a ≤ t ≤ b, are the empirical process and the r-th derivative
of the generating process γn being written up based on the sample X1, . . . , Xn. The
interval [a, b] is provided by Proposition 4.10. Also, let βn(u), 0 ≤ u ≤ 1, stand for the
uniform empirical process corresponding to the �rst n elements in the sequence of in-
dependent random variables U1, U2, . . . distributed uniformly on the interval [0, 1], and
let K(u, y), 0 ≤ u ≤ 1, y ≥ 0, denote the Kiefer process represented on an arbitrary
probability space.

The famous Smirnov�Chung law of the iterated logarithm (Theorem 5.1.1 in Csörg®
and Révész (1981)) states that

lim sup
n→∞

sup0≤u≤1 |βn(u)|
(log log n)1/2

=
1

21/2
a.s., (4.37)

and hence, the supremum of the uniform empirical process has the rate

sup
0≤u≤1

|βn(u)| = O
(

(log log n)1/2
)
, n→∞ .

This result can be generalized for a variable X having an arbitrary distribution. Simply
consider the quantile function F−1(u), 0 ≤ u ≤ 1, corresponding to the distribution
function F , and de�ne the sample variables by the form

Xi = F−1(Ui) , i = 1, 2, . . .

Just as in the previous sections the distributed function of the constructed Xi's is F ,
and their empirical process can be written as

αn(x) = βn
(
F (x)

)
, x ∈ R .

This and the special form of the law of the iterated logarithm presented in (4.37) imply

lim sup
n→∞

supx∈R |αn(x)|
(log log n)1/2

≤ lim sup
n→∞

sup0≤u≤1 |βn(u)|
(log log n)1/2

=
1

21/2
a.s., (4.38)

and we have equation if the distribution function F is continuous everywhere on the
real line. Since this inequality is a property of the distribution of the empirical process
αn in the space D[−∞,∞], the rate (4.38) is valid in case of any representation of
the variables X1, X2, . . . and the process αn. Also, based on Section 1.15 of Csörg®
and Révész (1981) one can show that the �normalized� Kiefer process y−1/2K(u, y),
0 ≤ u ≤ 1, has the same rate of convergence as y →∞, that is,

lim sup
y→∞

sup0≤u≤1 |K(u, y)|
(y log log y)1/2

=
1

21/2
a.s. (4.39)
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The �rst goal of this section is to present a law of the iterated logarithm for the
empirical probability generating process γn and its derivatives. Also, we investigate a
process which provides copies of the limiting process Yr(t), a ≤ t ≤ b, n = 1, 2, . . . .
Let K(u, y) stand for the Kiefer process and let

Yr(t, y) = n−1/2
∫
R
x(x− 1) · · · (x− r + 1)tx−rK

(
dF (x), y

)
, (4.40)

for a ≤ t ≤ b and y > 0. Fix an arbitrary value y > 0. Since y−1/2K(u, y), 0 ≤ u ≤ 1,
is a Brownian bridge, the integral Yr(t, y) is de�ned exactly at those points where
Yr(t) exists. Using Propositions 4.10 and 4.11 we get that Yr(t, y) is a well-de�ned
Gaussian process on [a, b] and it has a sample-continuous modi�cation in variable t
on this interval. In the following the notation Yr(t, y) stand for this modi�cation. Of
course, in general Yr(t, y) is not continuous in the parameter y, but we will not need
this property at all. Also, in the case r = 0 the process Yr(t, y) is de�ned at t = 0 and
t = 1, as well.

Note that if we consider Yr(t, y) based on the Kiefer process provided on the KMT
space by Theorem 2.1, then for any positive integer n we have

Yr(t, n) = Y ′r,n(t) , a ≤ t ≤ b ,

since the right side is de�ned by the form (4.33). The examination of the process is
motivated by the fact that using the covariance structure of Yr(t, n) one can investigate
the dependence between the identically distributed but not independent processes Y ′r,n,
n = 1, 2, . . . We can state the following law of the iterated logarithm for the introduced
processes.

Theorem 4.23. For any non-negative valued random variable X we have

lim sup
n→∞

sup0≤t≤1 |γn(t)|
(log log n)1/2

= lim sup
y→∞

sup0≤t≤1 |Y0(t, y)|
(log log y)1/2

≤ 1

21/2
a.s.

Also, with any r = 1, 2 . . . and 0 < ε < 1/2 it follows that

lim sup
n→∞

supε≤t≤1−ε |γ
(r)
n (t)|

(log log n)1/2
= lim sup

y→∞

supε≤t≤1−ε |Yr(t, y)|
(log log y)1/2

≤ C1(ε, r)

21/2
a.s.

Furthermore, if X is non-negative integer valued then with an arbitrary r = 0, 1, . . .
and 0 < τ < 1 we have

lim sup
n→∞

sup−τ≤t≤τ |γ
(r)
n (t)|

(log log n)1/2
= lim sup

y→∞

sup−τ≤t≤τ |Yr(t, y)|
(log log y)1/2

≤ C2(τ, r)

21/2
a.s.

The constants C1(ε, r) and C2(τ, r) are de�ned in Theorems 4.7 and 4.9, and they are
independent from the distribution of the variable X.
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Proof. Since the statements correspond to the distribution of the underlying processes
we can work with any suitable representation of them. Let us consider the variables
X ′1, X

′
2, . . . , and the related empirical process α′n(x), x ∈ R, and the generating process

γ′r,n(t), a ≤ t ≤ b, de�ned on the KMT space by formulas (4.31) and (4.32). Also, let
us de�ne Y ′r (t, y) with equation (4.40) by using the Kiefer process of the KMT space.

Note that all of the processes are well-de�ned on the intervals where we consider
their supremums. Using the �rst part of Theorem 4.7 we get that

sup
0≤t≤1

|Y ′0(t, y)| ≤ sup
x∈R

∣∣y−1/2K(F (x), y
)∣∣ ≤ y−1/2 sup

0≤u≤1
|K(u, y)| ,

and the law of the iterated logarithm for the Kiefer process in (4.39) implies that

lim sup
y→∞

sup0≤t≤1 |Y ′0(t, y)|
(log log y)1/2

≤ lim sup
y→∞

sup0≤u≤1 |K(u, y)|
(y log log y)1/2

=
1

21/2
. (4.41)

From the identity Y ′0(t, n) = Y ′0,n(t) and Theorem 4.18 it follows that

sup
0≤t≤1

∣∣γ′0,n(t)− Y ′0(t, n)
∣∣→ 0 , n→∞ , a.s.

Also, for every n = 1, 2, . . . we have

|γ′0,n(t)| =
∣∣Y ′0(t, n) +

(
γ′0,n(t)− Y ′0(t, n)

)∣∣ ≤ |Y ′0(t, n)|+
∣∣γ′0,n(t)− Y ′0(t, n)

∣∣ , (4.42)

and we get that

lim sup
n→∞

sup0≤t≤1 |γ′0,n(t)|
(log log n)1/2

≤ lim sup
n→∞

sup0≤t≤1 |Y ′0(t, n)|
(log log n)1/2

+ lim
n→∞

sup0≤t≤1 |γ′0,n(t)− Y ′0(t, n)|
(log log n)1/2

= lim sup
n→∞

sup0≤t≤1 |Y ′0(t, n)|
(log log n)1/2

+ 0 .

(4.43)

By changing the roles of γ′0,n(t) and Y ′0(t, n) in formulas (4.42) and (4.43) we obtain
that there is equation in (4.43), and the �rst statement of the theorem is showed.

One can prove the second and the third statement with the change that in formula
(4.41) one must apply the second part of Theorem 4.7 and Theorem 4.9.

Corollary 4.24. Working on the interval [a, b] provided by Proposition 4.10 we have

sup
a≤t≤b

∣∣γ(r)n (t)
∣∣ = sup

a≤t≤b

∣∣Yr(t, n)
∣∣ = O

(
(log log n)1/2

)
.

Also, for the representations γn,r and Yr,n de�ned on the KMT space we have the rates

sup
a≤t≤b

∣∣γ2n,r(t)− Y 2
r,n(t)

∣∣ = O
(

log n(log log n)1/2

n1/2

)
and ∣∣∣∣ ∫ b

a

γ2n,r(t) dt−
∫ b

a

Y 2
r,n(t) dt

∣∣∣∣ = O
(

log n(log log n)1/2

n1/2

)
.
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Proof. The �rst statement follows from Theorem 4.23. By using Theorem 4.18 and the
method of the previous proof we have

sup
a≤t≤b

∣∣γ2n,r(t)− Y 2
r,n(t)

∣∣ ≤ sup
a≤t≤b

∣∣γn,r(t)− Yr,n(t)
∣∣ sup
a≤t≤b

∣∣γn,r(t) + Yr,n(t)
∣∣

≤ sup
a≤t≤b

∣∣γn,r(t)− Yr,n(t)
∣∣[ sup

a≤t≤b

∣∣γn,r(t)− Yr,n(t)
∣∣+ 2 sup

a≤t≤b

∣∣γn,r(t)∣∣]
= O

(
log n

n1/2

)[
O
(

log n

n1/2

)
+O

(
(log log n)1/2

)]
= O

(
log n(log log n)1/2

n1/2

)
.

From this we obtain the rate∣∣∣∣ ∫ b

a

γ2n,r(t) dt−
∫ b

a

Y 2
r,n(t) dt

∣∣∣∣ ≤ ∫ b

a

∣∣γ2n,r(t)− Y 2
r,n(t)

∣∣ dt
≤ (b− a) sup

a≤t≤b

∣∣γ2n,r(t)− Y 2
r,n(t)

∣∣ = O
(

log n(log log n)1/2

n1/2

)
.

We saw it in Theorem 4.19 that γ(r)n converges in distribution to the process Yr in
the space C[a, b], but these results do not say anything about the limiting properties
for a �xed outcome ω of the underlying probability space. It is known that the uniform
empirical process βn may be convergent only on an event having probability 0, because
it is relative compact. We will see that γ(r)n behaves similarly.

Consider random elements ξ1, ξ2, . . . having values in some metric space X. We say
that the sequence ξ1, ξ2, . . . is relative compact in the space X with limit set Y ⊆ X if
there exists an event Ω0 having probability 1 on the underlying probability space such
that for every ω ∈ Ω0 the following three conditions hold.

1. Every subsequence ξn′(ω) of ξn(ω) has a further convergent subsequence ξn′′(ω).

2. If a subsequence ξn′(ω) of ξn(ω) converges then the limit lies in Y.

3. For each element y ∈ Y there exists a subsequence ξn′(ω) of ξn(ω) depending on
the outcome ω such that ξn′(ω) converges to y.

By the famous result of Finkelstein (1971) the uniform empirical process βn(u),
0 ≤ u ≤ 1, is relative compact in the space D[0, 1] with respect to the Skorohod metric.
The limit points are those functions h ∈ D[0, 1], which are absolute continuous, vanish
at the points 0 and 1, and have Radon�Nikodym derivative h′(u), 0 ≤ u ≤ 1, with
respect to the Lebesgue measure such that∫ 1

0

(
h′(u)

)2
du ≤ 1 .

Let Cβ ⊆ D[0, 1] denote the set of limit points, and for a �xed r = 0, 1, . . . consider

Cr[a, b] =

{∫
R
x(x− 1) · · · (x− r + 1)tx−r dh

(
F (x)

)
, a ≤ t ≤ b : h ∈ Cβ

}
=

{∫
R
x(x− 1) · · · (x− r + 1)tx−rh′

(
F (x)

)
dF (x) , a ≤ t ≤ b : h ∈ Cβ

}
.
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Our result for the process γ(r)n is the following.

Theorem 4.25. For an arbitrary non-negative valued random variable X and integer
r = 0, 1, . . . the process γ

(r)
n (t), a ≤ t ≤ b, is relative compact in the space C[a, b] and

the set of limit points is Cr[a, b].

Proof. We apply the variables X1, . . . , Xn with which we worked in the proof of The-
orem 4.23. By the referred result of Finkelstein (1971) the sequence βn constructed
on the KMT space is relative compact, and the set of the limit points is Dβ. Let Ω0

stand for the corresponding event in the de�nition of relative compactness. We prove
that for any outcome ω ∈ Ω0 the sequence γr,n(ω) satis�es all of the three conditions
of relative compactness with the limit set Cr[a, b].

First, we show that if an arbitrary subsequence βn′′(ω) of βn(ω) converges to an
element h of the limit set Cβ, then γr,n′′(ω) converges to

Ψr(h)(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dh

(
F (x)

)
, a ≤ t ≤ b .

It is important to note that the convergence of βn′′(ω) is understood in the Skorohod
topology, but since the limit function h is continuous on the interval [a, b] we also have
uniform convergence. Introducing the function

Kn′′(x) = βn′′
(
F (x), ω

)
− h
(
F (x)

)
, x ∈ R ,

we obtain that

sup
x∈R
|Kn′′(x)| ≤ sup

x∈R

∣∣βn′′(u, ω)− h(u)
∣∣→ 0 , n′′ →∞ .

Observe that under the �xed outcome ω the function

γr,n′′(t, ω)−Ψr(h)(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dKn′′(x) , a ≤ t ≤ b ,

is not random. Depending on which case of Proposition 4.10 holds for the given variable
X and integer r and provides us the interval [a, b], we can use the �rst or the second
part of Theorem 4.7 or Theorem 4.9. We get that

sup
a≤t≤b

∣∣γr,n′′(t, ω)−Ψr(h)(t)
∣∣ ≤ sup

x∈R
|Kn′′(x)| → 0 , n′′ →∞ .

Hence, γr,n′′(ω) converges in the space C[a, b] to the element Ψr(h).
For the �rst condition consider a subsequence n′ of the positive integers n = 1, 2, . . .

Using the relative compactness of the process βn there exists a further subsequence n′′

such that βn′′(ω) converges to some h ∈ Cβ. Using the previous paragraph we obtain
that γr,n′′(ω) also converges.

Now, assume that the subsequence γr,n′(ω) converges to some function ϕ in the
space C[a, b]. Since βn is relative compact we have a subsequence n′′ of n′ such that
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βn′′(ω) converges to an element h of Cβ, which implies that γr,n′′(ω) converges to Ψr(h).
Since n′′ is a subsequence of n′ we get that ϕ = Ψr(h), and hence, ϕ is an element of
Cr[a, b].

Finally, consider any function Ψr(h) in the set Cr[a, b]. Since h is a limit point of
the relative compact process βn, there is a subsequence n′ for which βn′(ω) converges
to the function h. With the sequence n′′ = n′ we obtain the convergence of γr,n′(ω) to
Ψr(h). This completes the proof of relative compactness.

4.8 Con�dence bands

The empirical and the theoretical probability generating function based on the �rst n
elements of the sequence of independent variables X1, X2, . . . having only non-negative
values and common distribution function F (x), x ∈ R, were de�ned as

gn(t) =
1

n

n∑
i=1

tXi =

∫
R
tx dFn(x) and g(t) = E(tX) =

∫
R
tx dF (x) ,

where Fn(x) is the corresponding empirical distribution function and X has the same
distribution as the Xi's. By the strong law of large numbers the function gn converges
pointwisely to g with probability 1 at every point t where the variable tX exists and has
�nite mean. As we saw it in Section 4.3 this condition is satis�ed for every −1 < t < 1.
The strong uniform consistency of the empirical probability generating function, as
an estimator of its theoretical counterpart, on the interval [0, 1] for any integer valued
variable X was already proved by Marques and Pérez-Abreu (1989) and Rémillard and
Theodorescu (2000). Note that one can obtain this result also by using the inequality
of Theorem 4.9 and the Glivenko�Cantelli theorem. However, thanks to our work in
the previous section, we already have a much stronger result for gn, and also, for its
derivatives. Applying Corollary 4.24 we obtain a uniform rate of convergence

sup
a≤t≤b

∣∣g(r)n (t)− g(r)(t)
∣∣ = n−1/2 sup

a≤t≤b

∣∣γ(r)n (t)
∣∣ = O

(
n−1/2(log log n)1/2

)
,

where the interval [a, b] comes from Proposition 4.10. Note that if X is integer valued
and r = 0 then we have the option to choose a = 0 and b = 1.

The main goal if this section is to construct asymptotically correct con�dence
bands for the probability generating function. For this, motivated by Efron (1979) and
Csörg® and Mason (1989), we apply the bootstrap technique. For a �xed n consider a
positive integer mn and the Efron type bootstrapped variables X∗1,n, . . . , X

∗
mn,n based

on the sample X1, . . . , Xn as described in Section 2.2. That is, choose values among
X1, . . . , Xn with replacement mn times such that at each selection each Xi has the
same probability of being chosen. Then, we can introduce the bootstrap empirical
process

α∗mn,n(x) = m1/2
n

[
F ∗mn,n(x)− Fn(x)

]
, x ∈ R ,
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by applying the empirical distribution function F ∗mn,n of the bootstrapped sample.
Observe that conditionally under the original observations X1, . . . , Xn the function
Fn is the theoretical distribution function of the bootstrapped variables, and hence,
α∗mn,n is the conditional empirical process. Then, the empirical probability generating
function and the conditional theoretical probability generating function of the X∗i,n's
can be written as

g∗mn,n(t) =
1

n

mn∑
i=1

tX
∗
i,n =

∫
R
tx F ∗mn,n(x) and gn(t) =

∫
R
tx dFn(x) . (4.44)

By using Propositions 4.2 and 4.8 and Theorem 4.9 for g∗mn,n just the same way as
we applied these results for gn in Section 4.3, one can show that the function g∗mn,n is
well-de�ned and has continuous r-th derivative

g∗(r)mn,n(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dF ∗mn,n(x)

=
1

n

mn∑
i=1

X∗i,n
(
X∗i,n − 1

)
· · ·
(
X∗i,n − r + 1

)
tX
∗
i,n−r

on the interval [a, b] provided by Proposition 4.10. Also, we can de�ne the bootstrap
empirical probability generating process

γ∗mn,n(t) = n1/2
[
g∗mn,n(t)− gn(t)

]
=

∫
R
tx α∗mn,n(x) ,

and we �nd that the process exists and has continuous r-th derivative

γ∗(r)mn,n(t) = n1/2
[
g∗(r)mn,n(t)− g(r)n (t)

]
=

∫
R
x(x− r) · · · (x− r + 1)tx α∗mn,n(x)

on the same [a, b]. By the bootstrap heuristics we expect that the process γ∗(r)mn,n has the
same asymptotic behavior, and hence, it has the same weak limit in the space C[a, b]

as its non-bootstrapped counterpart γ(r)n has. It turns out in the next result that this
is true under a slight condition for the sequence mn, n = 1, 2, . . .

Theorem 4.26. Consider the distribution function F (x), x ∈ R, of an arbitrary non-
negative valued random variable, and assume that there exist positive constants C1 and
C2 such that

C1 < mn/n < C2 , n = 1, 2, . . .

On a su�ciently rich probability space one can de�ne independent random variables
X1, X2, . . . having common distribution function F (x), x ∈ R, and bootstrapped sample
variables X∗1,n, . . . , X

∗
mn,n, n = 1, 2, . . . based on the Xi's, and copies Y ∗r,1, Y

∗
r,2, . . . of

the process Yr, such that

sup
a≤t≤b

∣∣γ∗(r)mn,n(t)− Y ∗r,mn(t)
∣∣ = O

(
max{l(mn), l(n)}

)
,
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with the function l(n) = n−1/4(log n)1/2(log log n)1/4 and with the interval [a, b] provided
by Proposition 4.10. Furthermore, the processes Y ∗r,1, Y

∗
r,2, . . . are independent from the

sequence X1, X2, . . .

Proof. Consider the variables X1, X2, . . . , the bootstrapped samples X∗1,n, . . . , X
∗
mn,n,

n = 1, 2, . . . , and the Brownian bridges B∗1 , B
∗
2 , . . . of Theorem 2.5. Also, consider the

bootstrap empirical process α∗mn,n(x), x ∈ R, and the bootstrap empirical probability
generating process γ∗mn,n(t), a ≤ t ≤ b, based on these variables. Let

Y ∗r,m(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dB∗m

(
F (x)

)
, a ≤ t ≤ b ,

and
Kn(x) = α∗mn,n(x)−B∗mn

(
F (x)

)
, x ∈ R .

Since in Theorem 2.5 the Brownian bridges are independent from the Xi's, the same
holds for the processes Y ∗r,1, Y

∗
r,2, . . . Depending on which case of Proposition 4.10 gives

us the interval [a, b] the �rst or the second part of Theorem 4.7 or Theorem 4.9 implies
that

sup
a≤t≤b

∣∣γ∗(r)mn,n(t)− Y ∗r,mn(t)
∣∣ ≤ C sup

x∈R
|Kn(x)| ,

with some constant C = C(a, b, r). By Theorem 2.5 the right side has the desired rate
of convergence.

Corollary 4.27. If there exist positive constants C1 and C2 such that

C1 < mn/n < C2 , n = 1, 2, . . . ,

then the process γ
∗(r)
mn,n converges weakly to Yr in the space C[a, b] as n→∞.

To construct con�dence bands for the probability generating function we use the
method of Csörg® and Mason (1989). We note that they illustrated their receipt by
applying it on the infamous horsekick sample of von Bortkiewitz, as well. We say that
on a given signi�cance level 0 < α < 1 the sequence of positive values c′n(α) provides
an asymptotically correct con�dence band for g on the interval [a, b] if we have

P
(
gn(t)− c′n(α) ≤ g(t) ≤ gn(t) + c′n(α), a ≤ t ≤ b

)
→ 1− α , (4.45)

as the sample size n→∞. By introducing the functional

ψ : C[a, b]→ R , ψ(h) = sup
a≤t≤b

|h(t)| ,

and the sequence cn(α) = n−1/2c′n(α), formula (4.45) can be written in the form

P

(
sup
a≤t≤b

∣∣gn(t)− g(t)
∣∣ ≤ c′n(α)

)
= P

(
ψ(γn) ≤ cn(α)

)
→ 1− α . (4.46)
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4.9 Parameter estimated generating processes

The goal is to provide an estimation of cn(α) based on the sample variables X1, . . . , Xn.
Observe that this is a special case of the problem faced in formula (2.5) and we �nd a
possible solution for it at the end of Section 2.2.

Introduce the variables ψ∗mn,n = ψ(α∗mn,n) and ϕ = ψ(Y ) with the process

Y (t) = Y0(t) =

∫
R
tX dF (x) , a ≤ t ≤ b .

Since α∗mn,n converges to Y in distribution and the functional ψ is continuous on
the space C[a, b], we immediately get that ψ∗mn,n converges weakly to ϕ as n → ∞.
However, we can obtain a much stronger result, a strong approximation for ψ∗mn,n, as
well. Using the representation of the processes γ∗mn,n and Y ∗n provided by Theorem
4.26 de�ne the copies ϕn = ψ(Y ∗n ), n = 1, 2, . . . of the variable ϕ. Since the supremum
functional ψ satis�es the Lipschitz condition∣∣ψ(h1)− ψ(h2)

∣∣ ≤ sup
a≤t≤b

∣∣h1(t)− h2(t)∣∣ , h1, h2 ∈ C[a, b] ,

we get that∣∣ψ∗mn,n − ϕmn∣∣ =
∣∣ψ(γ∗mn,n)− ψ(Y ∗mn)

∣∣ ≤ sup
a≤t≤b

∣∣γ∗mn,n(t)− Y ∗mn(t)
∣∣→ 0

almost surely as n → ∞. Also, in the current representation the variables ϕ1, ϕ2, . . .
are independent from the sequence X1, X2, . . .

Of course, our aim with the representation is to apply Theorem 2.7. For this end we
only need to check the last assumption of the theorem, the continuity of the distribution
function Fϕ(x), x ∈ R, of the variable ϕ. Observe that the distribution function Fφ is
continuous on the real line by Proposition 4.21. Using this with Theorem 2.7 and the
discussion at the end of Section 2.2, we �nd that the quantile

c∗n(α) = inf
{
x ∈ R : P

(
ψ∗mn,n ≤ x | X1, . . . , Xn

)
≥ 1− α

}
can play the role of cn(α) in (4.46).

From the practical point of view, one can determine c∗n(α) by direct calculations.
Since conditionally under the sample X1, . . . , Xn the statistics ψ∗mn,n has �nitely many
possible values, using combinatorical arguments one can obtain its exact conditional
distribution. Also, the quantile c∗n(α) can be estimated in arbitrary precision by using
a computer. Generating a large number of bootstrapped samples and calculating the
corresponding statistics ψ∗mn,n for each sample, one can obtain a good empirical estima-
tion for the conditional distribution of ψ∗mn,n under the given observations X1, . . . , Xn.
Then, the empirical quantiles of ψ∗mn,n provide a good estimation for c∗n(α), and hence,
for the desired value cn(α).

4.9 Parameter estimated generating processes

Consider a family F = {F (x, θ) : x ∈ R, θ ∈ Θ ⊆ Rd} of non-negative valued univariate
distributions, and also, a sample of non-negative values X1, . . . , Xn having empirical
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4 Empirical probability generating processes

distribution function Fn(x) and unknown theoretical distribution function F (x), x ∈ R.
Our aim is to test the �t of the sample to the family F , that is, the null-hypotheses

H0 : F (x) = F (x, θ0) , x ∈ R , for some �xed θ0 ∈ Θ .

As we sketched it in Section 3.1, one can test H0 by applying a proper measurable
functional ψ(α̂n) of the parameter estimated empirical process

α̂n(x) = n1/2
[
Fn(x)− F (x, θ̂n)

]
, x ∈ R ,

where θ̂n is a parameter estimation based on the sample X1, . . . , Xn. The theoretical
base of the method is that under H0 and the regularity conditions of Theorem 3.1 the
process α̂n converges weakly in the space D[−∞,∞] to the centered Gaussian process

G(x) = B
(
F (x, θ0)

)
−
[ ∫

R
l(x, θ0) dB

(
F (x, θ0)

)]
∇θF (x, θ0)

T , x ∈ R . (4.47)

In this formula B(u), 0 ≤ u ≤ 1, is a Brownian bridge, the function l(x, θ0), x ∈ R, is
de�ned by assumption (a4) in Section 3.2, and

∇θF (x, θ) =

(
∂

∂θ(1)
F (x, θ), . . . ,

∂

∂θ(d)
F (x, θ)

)
, x ∈ R . (4.48)

Unfortunately, there are distribution families whose parametric distribution function
F (x, θ), x ∈ R, θ ∈ Θ ⊆ Rd, are not provided in simple forms, and by this reason the
application of the parameter estimated empirical process α̂n can be di�cult. However,
in many cases the probability generating process can be written in friendly formulas.
For example, see the discrete stable, Linnik and Sibuya distributions in Rémillard and
Theodorescu (2000). Note that we can face this di�culty also in case of more com-
mon distributions. Since the distribution function F (x, θ) of a discrete variable is a
step function, in certain applications the use of the continuous probability generat-
ing function can be favorable. By this motivation we de�ne the parameter estimated
probability generating process

γ̂n(t) = n1/2
[
gn(t)− g(t, θ̂n)

]
=

∫
R
tx dα̂n(x) , (4.49)

where

gn(t) =
1

n

n∑
i=1

tXi =

∫
R
tx dFn(x) and g(t, θ) =

∫
R
tx dF (x, θ)

are the empirical probability generating function based on the sample X1, . . . , Xn and
the parametric generating function of the family F , respectively. Later in this section
we show that under some conditions γ̂n converges in distribution to

Ŷ (t) =

∫
R
tx dG(x) , (4.50)
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4.9 Parameter estimated generating processes

and hence, one can apply the process to test H0 in just the same way as the parameter
estimated empirical process α̂n can be used.

It is important to observe that the application of the process γ̂n can lead to an other
di�culty. As we detailed in Section 3.1, in most cases the critical values corresponding
to a test statistics ψ(α̂n) can not be determined by theoretical calculations, and these
statistics usually are not distribution free, either. Since the limit process Ŷ is de�ned as
an integral transformation of G, the same problems can arise for a functional ψ(γ̂n). As
a possible solution, we introduce the bootstrapped versions of the parameter estimated
probability generating process. For this end, consider a bootstrap sample size mn and
parametric or non-parametric bootstrapped variables X∗1,n, . . . , X

∗
mn,n as described in

Section 2.2. Let F ∗mn,n stand for the empirical distribution function of the bootstrapped
sample, and consider the corresponding empirical probability generating function

g∗mn,n(t) =
1

mn

mn∑
i=1

tX
∗
i,n =

∫
R
tx dFmn,n(x) .

Also, consider parameter estimators θ̂∗n and θ̃
∗
n based on the bootstrapped variables in

the parametric and the non-parametric bootstrap case, respectively. The parametric
bootstrap estimated generating process can be de�ned as

γ̂∗mn,n(t) = n1/2
[
g∗mn,n(t)− g(t, θ̂∗n)

]
=

∫
R
tx dα̂∗mn,n(x) , (4.51)

and its non-parametric variant is

γ̃∗mn,n(t) = n1/2
[
g∗mn,n(t)− g(t, θ̃∗n)

]
=

∫
R
tx dα̃∗mn,n(x) , (4.52)

where α̂∗mn,n and α̃
∗
mn,n are introduced by (3.3) and (3.4) in Section 3.1. If we can show

that under H0 the processes γ̂∗mn,n and/or γ̃∗mn,n converge to Ŷ then we can apply the
parametric and/or the non-parametric bootstrap method to obtain critical values for
ψ(α̂n) by using a simple variant of the algorithm presented in Section 3.4.

Consider a sequence of independent variables X1, X2, . . . having common distribu-
tion function F (x, θ0), x ∈ R, with some �xed θ0 ∈ Θ. First, we answer the question
which points t ∈ R are the corresponding generating processes de�ned at. It is clear
that the empirical functions gn(t) and g∗mn,n(t) exists and are continuous on the posi-
tive half-line. Since the distribution function F (x, θ), x ∈ R, has bounded increments
and �nite limit at in�nity for every θ ∈ Θ, Proposition 4.2 implies that g(t, θ̂n), g(t, θ̂∗n)
and g(t, θ̃∗n) are well-de�ned and continuous on [0, 1]. Then, clearly, the processes γ̂n(t),
γ̂∗mn,n(t) and γ̃∗mn,n(t) exist and are sample-continuous on this interval, as well. Further-
more, if the family F contains only non-negative integer valued distributions then gn(t)
and g∗mn,n(t) can be extended to the real line. Since in the integer valued case Propo-

sition 4.8 implies that g(t, θ̂n), g(t, θ̂∗n) and g(t, θ̃∗n) are well-de�ned and continuous on
the interval (−1, 1], the same holds for the processes γ̂n(t), γ̂∗mn,n(t) and γ̃∗mn,n(t).
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Assume that the components of the vector function ∇θF (x, θ0) are of bounded
variation on �nite intervals, and let ∇+

k (y, θ0) and ∇−k (y, θ0) be de�ned as the positive
and the negative variation of the k-th component ∂F (x, θ)/∂θk at θ = θ0 on the interval
(−∞, y]. Also, let lk(x, θ) denote the k-th component of the function l(x, θ), x ∈ R,
and consider the d-dimensional normal variable

ξ = (ξ1, . . . , ξd) =

∫
R
l(x, θ0) dB

(
F (x, θ0)

)
.

Observe that the process

A(x) = ξ∇θF (x, θ0)
T =

d∑
k=1

ξk
[
∇+
k (x, θ0)−∇−k (x, θ0)

]
, x ∈ R .

is of bounded variation on every �nite interval, and its positive and negative variation
on (−∞, y] can be written as

A+(x) =
d∑

k=1

ξk

[
1{ξk≥0}∇

+
k (x, θ0) + 1{ξk<0}∇−k (x, θ0)

]
, x ∈ R ,

and

A−(x) =
d∑

k=1

ξk

[
1{ξk≥0}∇

−
k (x, θ0) + 1{ξk<0}∇+

k (x, θ0)
]
, x ∈ R ,

respectively. Because the distribution function F (x, θ) vanishes on the interval (−∞, 0)
for every θ ∈ Θ, the derivative ∇θF (x, θ0) and its positive and negative variation
∇+
k (x, θ0) and ∇−k (x, θ0) are constant 0 on the negative half-line. This implies that the

processes A(x), A+(x) and A−(x) vanish on (−∞, 0). Furthermore, if the components
of ∇θF (x, θ0), x ∈ R, are càdlàg, then clearly A(x), A+(x) and A−(x) are càdlàg, too.
In the remaining part of the section we work under the following assumption.

Assumption 2. The function∇θF (x, θ0), x ∈ R, exists and its components are càdlàg
and of bounded variation on �nite intervals. Also, with some �xed δ > 0 the sequences

∇+
k

(
(m+ 1)δ, θ0

)
−∇+

k

(
mδ, θ0

)
, ∇−k

(
(m+ 1)δ, θ0

)
−∇−k

(
mδ, θ0

)
, m = 0, 1, . . . ,

are bounded for every k = 1, . . . , d.

Note that Assumption 2 holds for any δ > 0 if the function ∇θF (x, θ), x ∈ R, has
bounded components. The increment of A+(x) on the interval (x1, x2] is

A+(x2)− A+(x1)

=
d∑

k=1

ξk

[
1{ξk≥0}

[
∇+
k (x2, θ0)−∇+

k (x1, θ0)
]

+ 1{ξk<0}
[
∇−k (x2, θ0)−∇−k (x1, θ0)

]]
,

and the related increment of A−(x) can be written in a similar form. Hence, if the
assumption is satis�ed then A+(x) and A−(x), x ∈ R, have bounded or slowly growing
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increments, and if the assumption holds with δ = 1 then the processes have bounded
or slowly growing increments on the unit intervals.

From (4.47) we clearly have

Ŷ (t) =

∫
R
tx dB

(
F (x, θ0)

)
+

∫
R
tx dA(x) = Y (t) + IA(t) (4.53)

for every real t where both sides are de�ned at, and by Proposition 4.10 the process
Y (t) exists on the interval [0, 1] and has a continuous modi�cation on (0, 1). If A+(x)
and A−(x) have bounded or slowly growing increments, then Proposition 4.10 and
formula (4.53) imply that IA(t) and Ŷ (t) are well-de�ned on the interval [0, 1) and
has a modi�cation which is sample-continuous on (0, 1). In the following the notation
Ŷ (t), 0 ≤ t < 1, stands for this modi�cation. Additionally, if ∇+

k (x, θ0) and ∇−k (x, θ0)
have �nite limit at in�nity for every k = 1, . . . , d, then the processes A+(x) and A−(x)
have �nite 0-th moment, and IA(t) and Ŷ (t) exist at the point t = 1, as well.

If the law corresponding to the distribution function F (x, θ0) is non-negative integer
valued, then ∇θF (x, θ0) and the processes B(F (x, θ0)), A+(x) and A−(x), x ∈ R, are
constant on the intervals [m,m+ 1), m = 0, 1, . . . In this case the integral Y (t) can be
considered also in Lebesgue�Stieltjes sense, and by Proposition 4.10 the process Y is
well-de�ned and sample-continuous on (−1, 1). If A+(x) and A−(x) have bounded or
slowly growing increments on the unit intervals, then Propositions 4.9 and equation
(4.53) imply that IA(t) and Ŷ (t) can be de�ned in Lebesgue�Stieltjes sense on (−1, 1)
and they are continuous on this interval. Note that the investigation presented in
Section 4.3 highlighted that the integral Y (1) may be not de�ned in Lebesgue�Stieltjes
sense, and hence, Ŷ (1) do not exist for every possible background distribution F (x, θ0),
x ∈ R, in this sense.

We summarize what we found in the next result.

Proposition 4.28. Under Assumptions 2 the process Ŷ is de�ned and has a sample-
continuous modi�cation on the interval [a′, b′], where [a′, b′] can be chosen as

• [0, 1− ε] with any 0 < ε < 1, if F is an arbitrary non-negative valued family;

• [0, 1], if ∇+
k (x, θ0) and ∇−k (x, θ0) have �nite limit as x→∞ for k = 1, . . . , d;

• [−τ, τ ] with any 0 < τ < 1, if F is non-negative integer valued and Assumption 2
holds with δ = 1.

Also, γ̂n, γ̂
∗
mn,n and γ̃∗mn,n exists and continuous on [a′, b′] with probability 1.

In our following theorem we prove approximations for certain representations of the
parameter estimated generating processes γ̂n, γ̂∗mn,n and γ̃

∗
mn,n. For this end consider the

independent variables X1, X2, . . . provided by Theorem 3.1. The parameter estimated
probability generating process based on the sample X1, . . . , Xn can be written in the
form (4.49) with the estimated empirical process α̂n of the referred theorem. Let

Ŷn(t) =

∫
R
tx dGn(x) , n = 1, 2, . . . (4.54)
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be copies of Ŷ being de�ned by using the Gaussian processes G1(x), G2(x), . . . , x ∈ R,
of Theorem 3.1. Also, using the bootstrap samples of Theorem 3.2 the parametric boot-
strap estimated generating process γ̂∗mn,n can be represented by the equation (4.51) with
the bootstrap empirical process α̂∗mn,n of the theorem. Similarly, the non-parametric
bootstrap generating process γ̃∗mn,n based on the variables provided by Theorem 3.3 is

in (4.52) with the corresponding empirical process α̃∗mn,n. Finally, let Ŷ
∗
n (t) and Ỹ ∗n (t)

be de�ned with the integral (4.54) by applying the processes G1, G2, . . . of Theorems
3.2 and 3.3 instead of those of Theorem 3.1, respectively.

Theorem 4.29. Suppose that Assumption 2 is satis�ed. Under the conditions of The-
orem 3.1 we have

sup
0≤t<1

∣∣γ̂n(t)− Ŷn(t)
∣∣ P−→ 0 , n→∞ .

Also, if the assumptions of Theorem 3.2 and Theorem 3.3 hold then we have

sup
0≤t<1

∣∣γ̂∗mn,n(t)− Ŷ ∗mn
∣∣ P−→ 0 and sup

0≤t<1

∣∣γ̃∗mn,n(t)− γ̂n(t)− Ỹ ∗mn
∣∣ P−→ 0

as n → ∞, respectively. Additionally, if ∇+
k (x, θ0) and ∇−k (x, θ0), x ∈ R, have �nite

limit at in�nity for k = 1, . . . , d, then the approximations hold also at the point t = 1.
Furthermore, suppose that the all distributions in the family F are non-negative integer
valued and Assumption 2 is valid with δ = 1, and consider any value 0 < τ < 1. If the
conditions of Theorem 3.1 are satis�ed then

sup
−τ≤t≤τ

∣∣γ̂n(t)− Ŷn(t)
∣∣ P−→ 0 , n→∞ ,

and we have the approximations

sup
−τ≤t≤τ

∣∣γ̂∗mn,n(t)− Ŷ ∗mn
∣∣ P−→ 0 and sup

−τ≤t≤τ

∣∣γ̃∗mn,n(t)− γ̂n(t)− Ỹ ∗mn(t)
∣∣ P−→ 0

as n→∞ under the conditions of Theorem 3.2 and Theorem 3.3, respectively.

Proof. Observe that under the conditions all processes are de�ned on the intervals,
where the supremums are taken, and consider the process

Kn(x) = α̂n(x)−Gn(x) , x ∈ R ,

with the sequence G1, G2, . . . provided by Theorem 3.1. Applying the �rst inequality
of Theorem 4.7 and the approximation of Theorem 3.1 we obtain that

sup
0≤t<1

∣∣γ̂n(t)− Ŷn(t)
∣∣ = sup

0≤t<1

∣∣∣∣ ∫
R
tx dKn(x)

∣∣∣∣ ≤ sup
x∈R
|Kn(x)| P−→ 0 , n→∞ .

Furthermore, by Theorem 4.7 the supremum can be extended also to t = 1 if γ̂n and
Ŷn exist at this point, which additional condition is satis�ed if the functions ∇+

k (x, θ0)
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and ∇−k (x, θ0), x ∈ R, have �nite limit at in�nity for k = 1, . . . , d. In the integer valued
case Theorems 4.9 and 3.1 imply that

sup
−τ≤t≤τ

∣∣γ̂n(t)− Ŷn(t)
∣∣ = sup

−τ≤t≤τ

∣∣∣∣ ∫
R
tx dKn(x)

∣∣∣∣ ≤ C2(τ, 0) sup
x∈R
|Kn(x)| P−→ 0 , n→∞ .

The corresponding statements for the parametric and the non-parametric bootstrap
processes can be proved similarly by applying the approximations of Theorems 3.2 and
3.3, respectively.

Since the processes are sample-continuous on the interval [a′, b′] of Proposition 4.28,
Theorem 4.29 has the following consequence.

Corollary 4.30. Suppose that Assumption 2 holds, and consider the interval [a′, b′]
provided by Proposition 4.28. Under the conditions of Theorem 3.1 the process γ̂n
converges to Ŷ in distribution in the space C[a′, b′]. Also, γ̂∗mn,n and γ̃∗mn,n − γ̂n have
the same weak limit in C[a′, b′] if the assumptions of Theorems 3.2 and 3.3 are satis�ed,
respectively.

Based on the results presented in Theorem 4.29 and Corollary 4.30 one can test
the �t of a given non-negative valued sample X1, . . . , Xn to the family F by using the
bootstrap algorithm of Section 3.4. Assume that we have the approximations

sup
a′≤t≤b′

∣∣γ̂n(t)− Ŷn(t)
∣∣ P−→ 0 and sup

a′≤t≤b′

∣∣γ∗mn,n(t)− Y ∗mn(t)
∣∣ P−→ 0 ,

on some interval [a′, b′], where γ∗mn,n stands for γ̂
∗
mn,n in the parametric and for γ̃∗mn,n in

the non-parametric bootstrap case, and Y ∗mn is the corresponding copy of Ŷ provided
by Theorem 4.29. Also, suppose that the limit process Ŷ (t) is not degenerate at every
point t on the interval [a′, b′], because we can not obtain any statistical result based on
a constant limit distribution. Consider a continuous functional ψ : C[a′, b′] → R such
that the statistics

ψ∗mn,n = ψ(γ∗mn,n) and ϕn = ψ(Y ∗n ) , n = 1, 2, . . .

satisfy the assumptions of Theorem 2.7, that is, the common distribution function of
the ϕn's is continuous, and∣∣ψ∗mn,n − ϕn∣∣ P−→ 0 , n→∞ . (4.55)

Then, all conditions of the bootstrap algorithm hold, and we can apply the method in
the same way as in Section 3.4.

It can be easily seen that we have (4.55) if ψ is Lipschitzian, that is, if∣∣ψ(h1)− ψ(h2)
∣∣ ≤M sup

a≤t≤b

∣∣h1(t)− h2(t)∣∣ , h1, h2 ∈ C[a′, b′] ,
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with some constant M , because using the assumptions we obtain the convergence∣∣ψ∗mn,n − ϕn∣∣ ≤ sup
a′≤t≤b′

∣∣γ∗mn,n(t)− Y ∗mn(t)
∣∣ P−→ 0 .

Since the supremum functional is Lipschitzian, the Kolmogorov�Smirnov type statistics
of the processes satisfy (4.55). The other condition, the continuity of the distribution
function Fϕ on the whole real line or, at least, at certain points x ∈ R, requires di�erent
considerations for di�erent functionals. We investigate only the supremum functional

ψ(h) = sup
a′≤t≤b′

|h(t)| , h ∈ C[a′, b′] .

Observe that under the regularity conditions of Proposition 4.29 we can apply the
�rst or the second inequality of Theorem 4.7 or the inequality of Theorem 4.9 on the
interval [a′, b′] for the process Ŷ de�ned by formula (4.50), and it follows that

ψ(Ŷ ) = sup
a′≤t≤b′

|Ŷ (t)| ≤ sup
x∈R
|G(x)| . (4.56)

Since the right side of the inequality is �nite with probability 1 by our results in Section
3.4, we obtain that ψ(Ŷ ) is almost surely a �nite variable. Because the process Ŷ is
Gaussian and continuous on [a′, b′], and it is not degenerate at every point on this
interval, Theorem 2.10 implies that the distribution function Fϕ(x), x ∈ R, of variable

ϕ = ψ(Ŷ ) = sup
a′≤t≤b′

|Ŷ (t)| = sup
{
Ŷ (t),−Ŷ (t) : a′ ≤ t ≤ b′, t ∈ Q

}
is continuous on the interval (s0,∞), where

s0 = inf
{
x ∈ R : Fϕ(x) > 0

}
∈ [0,∞)

is the left endpoint of the support of Fϕ.
We suggest that s0 is equal to 0 and the function Fϕ is continuous at s0, as well, but

unfortunately, we can not prove our conjecture. Recall that we had a similar unproven
conjecture in Section 3.4 for the supremum of the process G(x), x ∈ R. Let

s1 = inf
{
x ∈ R : P

(
sup
x∈R
|G(x)| ≤ x

)
> 0
}
,

and note that (4.56) implies the inequality s0 ≤ s1. If one can show that s1 = 0, then
we immediately get that s0 = 0, and using the assumption that the Gaussian process
Ŷ is not degenerate at every point t on the interval [a′, b′], the continuity of Fϕ at s0
follows. Hence, Fϕ is continuous on the whole real line, and we can apply the bootstrap
method without any restriction.
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Summary

Introduction

In the thesis we investigate the asymptotic behavior of some empirical processes based
on independent and identically distributed random variables. In most cases we apply
the approximation method which means that on a suitable probability space we con-
struct a representation of the underlying variables and empirical processes, and also,
a sequence of copies of a Gaussian process such that the distance between the empiri-
cal process and the Gaussian processes converges to zero in almost sure or stochastic
sense as the sample size goes to in�nity. In this way, using the properties of the applied
Gaussian process, we can obtain information on the examined empirical process.

The thesis is organized as follows. In Chapter 2 we introduce some basic tools which
will be applied in our research. In Chapter 3 we investigate the parametric and the non-
parametric bootstrap versions of the parameter estimated empirical process de�ned on
a parametric family of distributions, and we demonstrate the bootstrap technique in a
simulation study. Finally, in Chapter 4 we provide an e�ective and �exible background
for the study of empirical processes based on probability generating functions of non-
negative valued variables. Using this framework we prove asymptotic results for the
empirical probability generating process and its derivatives, and for the corresponding
bootstrapped and/or parameter estimated versions.

Some basic concepts

In the chapter we introduce three concepts. The �rst one is the Hungarian construction
or so-called KMT approximation for the uniform empirical process βn(u), 0 ≤ u ≤ 1,
based on independent variables distributed uniformly on the interval [0, 1]. By the con-
struction one can de�ne the uniform variables on a suitable probability space carrying
a sequence of Brownian bridges B1, B2, . . . such that we have

sup
0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ = O

(
n−1/2 log n

)
, n→∞ , a.s.

This construction of Komlós, Major and Tusnády will be essential in our research.
The second tool is Efron's bootstrap method for estimating the distribution of some

statistics τn based on a given sample having n elements. Note that such an estimation
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can not be obtained by using only the standard statistical techniques, because having
only one set of sample variables we have only one observation for the variable τn. By the
bootstrap heuristics if we estimate the unknown distribution function F (x) of the sam-
ple variables with a function F̂n(x), x ∈ R, and consider conditionally independent vari-
ables X∗1,n, . . . , X

∗
mn,n having conditional distribution function F̂n with respect to the

original observations, then the corresponding statistics τ ∗mn,n = τmn(X∗1,n, . . . , X
∗
mn,n)

has �similar� distribution as τn has. Since the distribution of τ ∗mn,n can be obtained in
arbitrary precision by direct calculations or by applying Monte Carlo simulation, we
can get a better or worse estimation for the distribution of τn. We apply two versions
of the bootstrap technique, the parametric and the non-parametric bootstrap.

Finally, we need to extend the standard theory of stochastic integration on a �nite
interval with respect to a locally square integrable martingale to stochastic integration
on the whole real line. We provide a condition for the existence of the integral, and
we examine the distribution of processes de�ned as the integrals of bivariate functions
with respect to the one-dimensional standard Wiener process.

Bootstrap parameter estimated empirical processes

Consider a parametric collection of distributions F = {F (x, θ) : x ∈ R, θ ∈ Θ ⊆ Rd},
and independent variables X1, X2, . . . having common distribution function F (x, θ0),
x ∈ R, with a �xed θ0 ∈ Θ. If Fn(x), x ∈ R, stands for the empirical distribution
function of the �rst n elements of the sequence and θ̂n is an estimator of θ0 based on
this sample, then the corresponding parameter estimated empirical process is

α̂n(x) = n1/2
[
Fn(x)− F (x, θ̂n)

]
, x ∈ R .

Since Durbin proved the weak convergence of α̂n to a Gaussian process G(x), x ∈ R, as
the sample size n goes to in�nity, the parameter estimated empirical process became a
widely used tool to test goodness-of-�t to parametric distribution families. In general,
statistical methods based on the process are not distribution free, and the critical values
can not be calculated in theoretical way. However, one can avoid these di�culties by
applying the parametric or the non-parametric bootstrap technique.

Consider bootstrapped sample variables X∗1,n, . . . , X
∗
mn,n based on X1, . . . , Xn, and

let F ∗mn,n(x), x ∈ R, stand for the empirical distribution function of the bootstrapped
variables, and let θ∗n be a parameter estimator based on the bootstrapped sample. The
bootstrapped parameter estimated empirical process can be de�ned as the parameter
estimated empirical process based on the bootstrapped sample, that is, by the form

ᾱ∗mn,n(x) = n1/2
[
F ∗mn,n(x)− F (x, θ∗n)

]
, x ∈ R .

The process is denoted by α̂∗mn,n in the parametric and by α̃∗mn,n in the non-parametric
bootstrap case. The heuristics of the bootstrap method is that if α̂∗mn,n and/or α̃∗mn,n
converges in distribution to the same weak limit as α̂n does, then the critical values of
a test statistic ψ(α̂n) can be estimated by the empirical quantiles of the corresponding
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functional ψ(α̂∗mn,n) and/or ψ(α̃∗mn,n). It turns out that the convergence of α̂∗mn,n is in
fact true, but α̃∗mn,n requires bias correction.

In Sections 3.2 and 3.3 we show that, under certain conditions on the distribution
family F and the parameter estimation method, on a suitable probability space, one
can construct a representation of the original sequence and the bootstrapped variables
and copies G1, G2, . . . of the limiting process G such that we have the approximation

sup
x∈R

∣∣α̂∗mn,n(x)−Gmn(x)
∣∣ P−→ 0 , n→∞ ,

in the parametric and

sup
x∈R

∣∣∣α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x)−Gmn(x)

∣∣∣ P−→ 0 , n→∞ ,

in the non-parametric case. As a direct consequence we obtain the weak convergence
of the processes

α̂∗mn,n(x) and α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x) , x ∈ R ,

as n→∞ to the limit of α̂n, that is, to the Gaussian process G.
We present the bootstrap testing algorithm in Section 3.4, and we prove that the

method can applied for the Kolmogorov�Smirnov type supremum functionals on the
empirical processes. In Section 3.5 we discuss on the regularity conditions of the results,
and we check the validity of these assumptions for the Poisson and the normal distri-
bution family endowed with the maximum likelihood parameter estimation method.
To demonstrate the bootstrap technique in an application in the last section we report
on simulation studies. Using the parametric and the non-parametric bootstrap method
we test the �t of negative binomial variables having various parameters to the Poisson
distribution, and also, the �t of location and scale contaminated normal samples to
the normal family.

Empirical probability generating processes

LetX,X1, X2, . . . be a sequence of independent and identically distributed nonnegative
valued random variables having distribution function F (x), x ∈ R. Let

g(t) = EtX =

∫
R
txdF (x) and gn(t) =

1

n

n∑
j=1

tXj , 0 ≤ t ≤ 1 ,

be the common probability generating function and its empirical counterpart based
on the �rst n observations. Throughout this chapter the symbol 00 is interpreted as 1,
because we will need the continuity of the function tx in variable x. Then the empirical
probability generating process can be de�ned by

γn(t) = n1/2
[
gn(t)− g(t)

]
, 0 ≤ t ≤ 1 .
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The idea of the application of generating functions to solve various statistical prob-
lems is not unusual, similar transformed processes based on empirical characteristic
and moment generating functions are well-known. (See Csörg® (1981) and Csörg®,
Csörg®, Horváth and Mason (1986).) In each case the theoretical basis of the method
is the fact, that under appropriate conditions the transformed processes converge in
distribution in some function space. In the case of the empirical probability generating
process, Rémillard and Theodorescu (2000) state that γn converges in distribution in
C[0, 1] to the process

Y (t) =

∫
R
tx dB

(
F (x)

)
, 0 ≤ t ≤ 1 ,

for every non-negative integer valued variable X. Unfortunately, there is an oversight
in their proof, but we show that their basic idea is good, and the proof can be corrected.

The aim of the chapter is to present a general approach to convergence problems
for probability generating functions and processes and their derivatives, and for the
bootstrapped and/or parameter estimated versions of the empirical probability gener-
ating process. Our results are general in the other sense, as well, that they hold not
only for an integer valued variable, but for an arbitrary non-negative valued X.

In Section 4.2 we investigate processes de�ned by the integral

Ir(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dK(x) ,

where the function K(x) can be represented by the sum of a locally square integrable
martingale M(x) and a process A(x) being of bounded variation on �nite intervals,
x ∈ R. Also, we assume that M and A vanish on the negative half-line (−∞, 0) and
have càdlàg trajectories. In Propositions 4.2, 4.3 and 4.8 we provide conditions under
which the process Ir exists on certain subsets [a, b] of the interval (−1, 1]. The main
results of the section are Theorems 4.7 and 4.9 where we prove inequalities in the form

sup
a≤t≤b

|Yr(t)| ≤ C sup
x∈R
|K(x)|

with a constant C = C(r, a, b) not depending on the process K. In the following sec-
tions these inequalities trivialize the investigation of probability generating processes,
because we can obtain asymptotic results for them simply by applying the asymptotic
properties of the corresponding empirical processes.

In Section 4.3 we prove that the empirical probability generating process γn has
r-th (r = 0, 1, . . . ) derivative

γ(r)n (t) = n1/2
[
g(r)n (t)− g(r)(t)

]
=

∫
R
x(x− 1) · · · (x− r + 1)tx−r dαn(x) ,

where g(r)n and g(r) are the r-th derivative of the empirical and the theoretical probabil-
ity generating function of the variables X1, . . . , Xn, and αn(x), x ∈ R, is the empirical
process corresponding to the sample. Also, we investigate the process

Yr(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dB

(
F (x)

)
,
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with the Brownian bridge B. In Proposition 4.10 we found that γ(r)n is continuous and
Yr has a sample-continuous modi�cation on certain subintervals [a, b] of (−1, 1]. In
Section 4.11 we show that Yr is Gaussian with mean zero and continuous covariance
function. Also, we prove that the Kolmogorov�Smirnov type supremum functionals and
the Cramér�von Mises type integral functional of Yr have bounded density function.

As we speci�ed earlier, Rémillard and Theodorescu (2000) showed the convergence
of γn in distribution to Y for non-negative integer valued random variables, but there
is an oversight in their proof. However, the justi�cation method is interesting, and we
correct it in Section 4.5. In Section 4.6 we improve this result by proving uniform strong
approximations for the empirical probability generating process γn and its derivatives
not only in the integer valued case but in case of an arbitrary non-negative valued X.
We provide a rate of convergence, as well, and we show that representing the processes
γn and Yr on a suitable probability space we have

sup
a≤t≤b

∣∣γ(r)n (t)− Yr,n(t)
∣∣ = O

(
n−1/2 log n

)
, n→∞ , a.s.

The approximation immediately implies the weak convergence of γ(r)n to Yr in the space
C[a, b]. Additionally, we obtain the uniform convergence of the distribution functions
of the Kolmogorov�Smirnov type supremum functionals and the Cramér�von Mises
type integral functional of the process γ(r)n with rates of convergence.

In Section 4.7 we prove the law of the iterated logarithm

lim sup
n→∞

supa≤t≤b |γ
(r)
n (t)|

(log log n)1/2
≤ C

21/2
a.s.

with a constant C = C(a, b, r) not depending on the distribution of the variable X.
Furthermore, we show that the process γ(r)n is relative compact in the space C[a, b],
and we determine the set of limit functions.

In Section 4.8 we investigate the bootstrapped version of the probability generating
process γ(r)n , and we prove a strong approximation for it. Based on this result we show
how to construct con�dence bands for the unknown probability generating function
g(t), a ≤ t ≤ b, of the variable X. Finally, based on a parametric family of distributions
we de�ne the parameter estimated probability generating process and its parametric
and non-parametric bootstrap versions in Section 4.9. Applying the result of Chapter 3
we prove weak approximations for the processes, and we explain their application for
testing goodness-of-�t.
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Bevezetés

A disszertációban független és azonos eloszlású változók segítségével felírt bizonyos
empirikus folyamatok aszimptotikus viselkedését vizsgáljuk. A legtöbb esetben az app-
roximációs módszert fogjuk alkalmazni, ami azt jelenti, hogy a vizsgált változókat és
a kapcsolatos empirikus folyamatokat egy megfelel®en választott valószín¶ségi mez®n
konstruáljuk meg, valamint ezen a mez®n de�niáljuk egy megfelel® Gauss folyamat
reprezentánsait. Mindezt olyan módon tesszük, hogy az empirikus folyamat és a Gauss
folyamatok távolsága nullához konvergál, amint a mintaméret tart a végtelenbe. Ezáltal
az alkalmazott Gauss folyamat tulajdonságai alapján leírhatjuk a vizsgált empirikus
folyamat viselkedését.

A disszertáció a következ®képpen épül fel. A 2. fejezetben ismertetünk néhány
alapvet® eszközt, melyeket alkalmazni fogunk a vizsgálataink során. A 3. fejezetben
a paraméteres eloszláscsaládokon de�niált becsült paraméteres empirikus folyamat
paraméteres és nemparaméteres bootstrap változatát tanulmányozzuk, valamint egy
szimulációs tanulmány segítségével bemutatjuk a módszer gyakorlati alkalmazását.
Végül, a 4. fejezetben megteremtünk egy hatékony és rugalmas elméleti hátteret a
nemnegatív érték¶ valószín¶ségi változók valószín¶ségi generátorfüggvényei alapján
felírt empirikus folyamatok vizsgálatához. Ennek segítségével aszimptotikus tételeket
bizonyítunk az empirikus valószín¶ségi generátor folyamatra és deriváltjaira, továbbá
a kapcsolatos bootstrap és/vagy paraméterbecsült változatokra.

Néhány alapvet® fogalom

A fejezetben három elméleti fogalmat mutatunk be. Az els® a független, a [0, 1]
intervallumon egyenletes eloszlású változók segítségével felírt βn(u), 0 ≤ u ≤ 1, egyen-
letes empirikus folyamatra vonatkozó KMT approximáció. Eszerint egy alkalmasan
választott valószín¶ségi mez®n a valószín¶ségi változók de�niálhatóak olyan módon,
hogy Brown hidaknak egy alkalmas B1, B2, . . . sorozatára

sup
0≤u≤1

∣∣βn(u)−Bn(u)
∣∣ = O

(
n−1/2 log n

)
, n→∞ , m.b.

A konstrukció Komlós Jánostól, Major Pétert®l and Tusnády Gábortól származik, és
alapvet® lesz a munkánk során.

119



Összefoglalás

A második eszköz Efron bootstrap módszere, melynek segítségével megbecsülhetjük
egy n elem¶ mintára felírt τn statisztika eloszlását. Vegyük észre, hogy ilyen becslés a
szokásos statisztikai technikákkal nem adható, ugyanis egyetlen minta birtokában a τn
változóra csupán egy meg�gyelés áll rendekésünkre. A bootstrap alapötlete az, hogy
ha a mintaelemek ismeretlen F (x) eloszlásfüggvényét egy F̂n(x), x ∈ R, függvénnyel
becsüljük, és tekintünk az eredeti mintára nézve feltételesen független X∗1,n, . . . , X

∗
mn,n

változókat, melyek feltételes eloszlásfüggvénye F̂n, akkor τ ∗mn,n = τmn(X∗1,n, . . . , X
∗
mn,n)

eloszlása �hasonlít� τn eloszlásához. Mivel elméleti számítások vagy Minte Carlo szimu-
láció révén τ ∗mn,n eloszlása tetsz®leges pontossággal megkapható, ilyen módon egy jobb
vagy rosszabb becslést nyerhetünk τn eloszlására. Munkánk során a bootstrap módszer
két változatát alkalmazzuk, a paraméteres és a nemparaméteres bootstrapet.

Végül, ki kell terjesztenünk a véges intervallumon értelmezett lokálisan négyzetesen
integrálható martingálokra vett sztochasztikus integrált az egész valós egyenesen vett
sztochasztikus integrálra. Bizonyítunk egy állítást az integrál létezésére, és leírjuk az
olyan folyamatok eloszlását, melyek bizonyos kétváltozós függvényeknek a standard
Wiener folyamatra vett integráljaként állnak el®.

Bootstrap becsült paraméteres empirikus folyamatok

Tekintsük eloszlásoknak egy F = {F (x, θ) : x ∈ R, θ ∈ Θ ⊆ Rd} paraméterezett
családját, továbbá független X1, X2, . . . változókat közös F (x, θ0), x ∈ R, eloszlásfügg-
vénnyel, ahol θ0 ∈ Θ. Jelölje Fn(x), x ∈ R, a sorozat els® n elemének, mint mintának
az empirikus eloszlásfüggvényét, és legyen θ̂n az ismeretlen θ0 paraméter egy becslése.
Ekkor a becsült paraméteres empirikus folyamat

α̂n(x) = n1/2
[
Fn(x)− F (x, θ̂n)

]
, x ∈ R .

Mióta Durbin bebizonyította, hogy α̂n(x) gyengén konvergál egy G(x), x ∈ R, Gauss
folyamathoz, amint a mintaméret tart a végtelenbe, a becsült paraméteres empirikus
folyamat széles körben használt eszköz összetett illeszkedési hipotézisek tesztelésére.
Sajnos a folyamatra épül® statisztikai módszerek általában nem eloszlásmentesek, és
a kapcsolatos kritikus értékeket nem lehet elméleti úton meghatározni. Szerencsére
ezen nehézségek kiküszöbölhet®ek a paraméteres vagy a nemparaméteres bootstrap
módszer alkalmazásával.

Tekintsünk X∗1,n, . . . , X
∗
mn,n bootstrap mintaelemeket az X1, . . . , Xn meg�gyelések

alapján. Legyen F ∗mn,n(x), x ∈ R, a bootstrap változók empirikus eloszlásfüggvénye, és
legyen θ∗n paraméterbecslés a bootstrap mintaelemek segítségével. A bootstrap becsült
paraméteres empirikus folyamat a bootstrap mintaelemekre felírt becsült paraméteres
empirikus folyamat, tehát

ᾱ∗mn,n(x) = n1/2
[
F ∗mn,n(x)− F (x, θ∗n)

]
, x ∈ R .

A folyamatra a α̂∗mn,n jelölést használjuk a paraméteres és a α̃∗mn,n jelölést a nempara-
méteres bootstrap esetben. A bootstrap alkalmazásának motivációja az az ötlet, hogy
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ha α̂∗mn,n és/vagy α̂∗mn,n eloszlásban konvergál ugyanazon határfolyamathoz, mint α̂n,
akkor egy ψ(α̂n) statisztika kritikus értékei becsülhet®ek, mint a kapcsolatos ψ(α̂∗mn,n)
és/vagy ψ(α̃∗mn,n) funkcionál empirikus kvantilisei. Vizsgálataink során kiderül, hogy
α̂∗mn,n valóban konvergál, de a α̃∗mn,n folyamat esetében bias korrekcióra van szükség.

Tegyük fel, hogy teljesülnek bizonyos, az F családra és az alkalmazott paraméter-
becsl® eljárásra vonatkozó feltételek. A 3.2. és a 3.3. fejezetben megmutatjuk, hogy egy
megfelel® valószín¶ségi mez®n konstruálható az eredeti és a bootstrappelt valószín¶ségi
változóknak olyan reprezentációja, hogy

sup
x∈R

∣∣α̂∗mn,n(x)−Gmn(x)
∣∣ P−→ 0 , n→∞ ,

a paraméteres, és

sup
x∈R

∣∣∣α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x)−Gmn(x)

∣∣∣ P−→ 0 , n→∞ ,

a nemparaméteres bootstrap esetben. A G1, G2, . . . folyamatok a G Gauss folyamat
reprezentációi. Ezen eredményekb®l közvetlenül kapjuk a

α̂∗mn,n(x) és a α̃∗mn,n(x)−
(mn

n

)1/2
α̂n(x) , x ∈ R ,

folyamat eloszlásbeli konvergenciáját a G Gauss folyamathoz.
A bootstrap tesztel® algoritmus a 3.4. fejezetben található. Ugyanitt megmutatjuk,

hogy a módszer alkalmazható a vizsgált empirikus folyamatok Kolmogorov�Szmirnov
típusú szuprémum funkcionáljaira. A 3.5. fejezetben körbejárjuk a tételek regularitási
feltételeit, és bebizonyítjuk, hogy ezen feltételek teljesülnek a Poisson és a normális
eloszlásra és a maximum likelihood becslésre. Hogy bemutassuk a bootstrap technikát
egy gyakorlati alkalmazáson keresztül, az utolsó fejezetben ismertetjük egy szimulációs
tanulmány eredményeit. A paraméteres és a nemparaméteres bootstrap alkalmazásával
teszteljük negatív binomiális minták illeszkedését a Poisson családhoz, valamint lokáció
és skála kontaminált normális változók illeszkedését a normális eloszláshoz.

Empirikus valószín¶ségi generátor folyamatok

LegyenX,X1, X2, . . . nemnegatív érték¶ független és azonos eloszlású valószín¶ségi
változó F (x), x ∈ R, eloszlásfüggvénnyel, és legyen

g(t) = EtX =

∫
R
txdF (x) és gn(t) =

1

n

n∑
j=1

tXj , 0 ≤ t ≤ 1 ,

az els® n elem valószín¶ségi generátorfüggvénye és a generátorfüggvény empirikus vál-
tozata. A fejezetben a 00 szimbólum 1-nek van de�niálva, ugyanis szükségünk lesz a
tx függvény az x változóban való folytonosságára. Ekkor az empirikus valószín¶ségi
generátor folyamat

γn(t) = n1/2
[
gn(t)− g(t)

]
, 0 ≤ t ≤ 1 .
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A generátorfüggvények használata statisztikai problémák megoldására nem új ötlet,
a karakterisztikus és a momentumgeneráló függvényen alapuló hasonló transzformált
folyamatok ismertek. (Például, Csörg® (1981) és Csörg®, Csörg®, Horváth and Mason
(1986).) Ezen módszerek elméleti alapja az, hogy bizonyos feltételek teljesülése esetén
a transzformált folyamatok eloszlásban konvergálnak valamilyen függvénytérben. A
valószín¶ségi generátor folyamat esetében Rémillard and Theodorescu (2000) mondta
ki, hogy γn eloszlásban konvergál a C[0, 1] téren a

Y (t) =

∫
R
tx dB

(
F (x)

)
, 0 ≤ t ≤ 1 ,

folyamathoz minden nemnegatív egész érték¶ X változóra. Sajnos a bizonyításukba
belecsúszott egy hiba, de az alapötlet jó, és a bizonyítás javítható.

A fejezet célja kidolgozni egy olyan általános és rugalmas eszköztárat, melynek
segítségével vizsgálhatjuk az empirikus generátor folyamat és deriváltjai, valamint a
bootstrap és/vagy becsült paraméteres változatok aszimptotikus viselkedését. Az ered-
mények abban az értelemben is általánosak, hogy nem csak az egész érték¶ esetben
alkalmazhatóak, hanem tetsz®leges nemnegatív érték¶ változóra.

A 4.2. fejezetben olyan folyamatokat vizsgálunk, melyeket az

Ir(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dK(x)

integrál de�niál, ahol a K(x) függvény el®áll egy lokálisan négyzetesen integrálható
M(x) martingál és egy A(x) korlátos változású folyamat összegeként, x ∈ R. Emellett
feltesszük, hogy M és A elt¶nik a (−∞, 0) negatív félegyenesen, és a folyamatoknak
càdlàg trajektóriái vannak. A 4.2., 4.3. és 4.8. Állításban megmutatjuk, hogy bizonyos
feltételek mellett az Ir folyamat de�niált a (−1, 1] intervallum valamely [a, b] részhal-
mazain. Az általános rész f® eredménye a 4.7 és a 4.9 Tétel. Ezekben az Ir folyamatra
vonatkozó egyenl®tlenségeket bizonyítunk

sup
a≤t≤b

|Yr(t)| ≤ C sup
x∈R
|K(x)|

alakban, ahol C = C(r, a, b) aK folyamattól független konstans. Ezen egyenl®tlenségek
alkalmazásával a következ® fejezetekben a generátorfolyamatokra vonatkozó problémák
visszavezethet®ek a kapcsolatos empirikus folyamatok aszimptotikus tulajdonságaira.

A 4.3. fejezetben megmutatjuk, hogy a γn generátor folyamat r. deriváltja

γ(r)n (t) = n1/2
[
g(r)n (t)− g(r)(t)

]
=

∫
R
x(x− 1) · · · (x− r + 1)tx−r dαn(x)

alakban írható fel, r = 0, 1, . . . , ahol g(r)n és g(r) az empirikus és az elméleti valószín¶ségi
generátorfüggvény r. deriváltja az X1, . . . , Xn minta alapján, továbbá αn(x), x ∈ R, a
kapcsolatos empirikus folyamat. Emellett de�niáljuk az

Yr(t) =

∫
R
x(x− 1) · · · (x− r + 1)tx−r dB

(
F (x)

)
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folyamatot, aholB a Brown híd. A 4.10. Állításban megmutatjuk, hogy γ(r)n folytonos és
az Yr folyamatnak létezik mintafolytonos modi�kációja a (−1, 1] bizonyos [a, b] rész-
intervallumain. A 4.11. fejezetben belátjuk, hogy Yr Gauss folyamat nulla várható
értékkel és folytonos kovariancia függvénnyel. Továbbá bizonyítjuk, hogy a folyamat
Kolmogorov�Szmirnov típusú szuprémum funkcionáljai és Cramér�von Mises típusú
integrál funkcionálja abszolút folytonos változók korlátos s¶r¶ségfüggvénnyel.

Mint azt korábban már említettük, Rémillard and Theodorescu (2000) megmutatta,
hogy γn eloszlásban konvergál az Y folyamathoz tetsz®leges nemnegatív egész érték¶
változó esetén, de van egy kisebb hiba a bizonyításban. Mindazonáltal az alapötletük
érdekes, és a 4.5. fejezetben sikerül kijavítanunk a bizonyítást. A következ® fejezetben
továbbfejlesztjük ezt az eredmény, és bizonyítunk egy er®s approximációs tételt a γn
empirikus valószín¶ségi generátor folyamatra és deriváltjaira. Ez azt jelenti, hogy egy
alkalmas valószín¶ségi mez®n megkonstruáljuk a γn és a Yr folyamatok olyan reprezen-
tánsait, melyekre

sup
a≤t≤b

∣∣γ(r)n (t)− Yr,n(t)
∣∣ = O

(
n−1/2 log n

)
, n→∞ , m.b.

Az approximációból azonnal jön, hogy γ(r)n eloszlásban konvergál az Yr folyamathoz a
C[a, b] térben. Emellett bebizonyítjuk, hogy a γ(r)n deriválton értelmezett Kolmogorov�
Szmirnov típusú szuprémum és Cramér�von Mises típusú integrál funkcionálok elosz-
lásfüggvényei egyenletesen konvergálnak egy meghatározott rátával.

A 4.7. fejezetben igazolunk egy iterált logaritmustételt a γ(r)n folyamatra, megmu-
tatjuk, hogy

lim sup
n→∞

supa≤t≤b |γ
(r)
n (t)|

(log log n)1/2
≤ C

21/2
m.b.

valamely C = C(a, b, r) konstanssal, mely nem függ az X változó eloszlásától. Emellett
megmutatjuk, hogy γ(r)n relatív kompakt a C[a, b] térben, valamint meghatározzuk a
határfüggvények halmazát.

A 4.8. fejezetben az empirikus generátor folyamat bootstrap változatát vizsgáljuk,
és bizonyítunk egy er®s approximációs tételt a folyamatra. Ezen eredmény segítségével
megmutatjuk, hogyan lehet kon�denciasávot konstruálni az X változó ismeretlen g(t),
a ≤ t ≤ b, valószín¶ségi generátorfüggvényéhez. Az utolsó fejezetben, egy paraméteres
eloszláscsaládot alapul véve, de�niáljuk a becsült paraméteres valószín¶ségi generátor
folyamatot, valamint ennek paraméteres és nemparaméteres változatát. A 3. fejezet
eredményeit alkalmazva gyenge approximációt bizonyítunk a folyamatokra, és vázoljuk,
hogy a folyamatok hogyan alkalmazhatóak illeszkedési hipotézisek tesztelésére.
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