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INTRODUCTION 

 Salinity is one of the major stresses which can change the ion homeostasis of plant tissues and 

causes hyperosmotic stress. Tomato plants are usually grown in greenhouse in hydroponic culture. 

These plants are more sensitive to different biotic and abiotic stresses than the plants grown in soil. In 

tomato producing countries, for example in Spain or Israel, irrigation water has high salt content 

which can affect fruit quality. Therefore it is very important to investigate the mechanism of salt 

tolerance and discover some processes to increase salt tolerance of these plants. Pre-treatment with 

exogenous salicylic acid (SA) can be an efficient procedure to improve salt stress tolerance. 

 According to our earlier results, protective effect of exogenously applied SA against salt stress 

depends on the mode of application, the developmental phase of plants and the applied concentrations. 

Lower concentrations of SA can induce hardening process which can improve the tolerance to salt 

stress in tomatoes (Solanum lycopersicum Mill. L. cvar Rio Fuego) grown in hydroponic cultures. 

Long term treatment with 10
-4

 M SA can improve the salt tolerance of tomatoes, 10
-7

 M SA is not 

effective and higher concentrations of SA (>10
-3

 M) induce cell death. 

 The comparison of the biochemical and physiological background of different SA 

concentrations in time dependent manner during the “priming” has not been performed until now.

  

Therefore the main goal of my study was to investigate the most important biochemical and 

physiological factors during the “priming” and after 100 mM NaCl exposure in tomato (Solanum 

lycopersicum Mill. L. cvar Rio Fuego) at wide concentration range of SA (10
-7

-10
-2

 M). 

 

AIMS 

In my thesis the following questions have been raised about the SA-induced priming: 

1. Effects of SA pre-treatment applied in a wide concentration range during “priming”: 

 How can SA affect the stomatal conductance during long term pre-treatment? 

 What is the effect of SA-induced stomatal closure on the photosynthetic activity, on the 

primary photochemical processes, on the contents of photosynthetic pigment, and on the total 

sugar during SA pre-treatments? Is there any change in the photosynthetic activity during SA-

induced priming? 

 Can SA promote the accumulation of different polyamines during pre-treatment? Is there any 

relationship between the accumulation of polyamines and ethylene production? What is the 

role of these processes in “priming”? 

 How does SA influence the level of reactive oxygen species (ROS) and nitric oxide (NO) in 

tomato root tissues as a function of time? We are also interested in what is the role of ROS or 

NO in the hardening process. Is there any difference between the importance of ROS or NO in 

the induction of defence reactions? 
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 How can long term pre-treatment of SA affect the enzymatic antioxidant mechanisms like the 

activities of SOD and CAT as a function of time? 

2. Effect of SA pre-treatment on the improvement of acclimation against 100 mM NaCl: 

 Are there any differences in the photosynthetic activity between control and SA pre-treated 

plants during salt stress? 

 How can long term SA pre-treatment modify markers of stress resistance, chlorophyll a 

fluorescence induction parameters, photosynthetic pigment contents and the total sugar 

contents in the plants during salt stress? 

 How does long term SA pre-treatments affect the accumulation of various growth-regulating 

compounds such as ethylene production during salt stress? How can this process contribute to 

the successful acclimation against salt stress? 

 How can long term pre-treatment with SA influence ROS and NO levels during salt stress? 

 How can SA influence SOD and CAT activity in plants exposed to high salinity? 

 

3. Interaction of ROS and NO in mesophyll protoplasts: 

 Mesophyll protoplasts were prepared to investigate the effect of SA, 100 mM NaCl and their 

combination in a model system, at cell level. Using this model system, it was easy to detect 

the intracellular changes inside the cells. I investigated the effect of different concentrations of 

SA on the generation of intracellular ROS and NO and on the viability of cells exposed to 

various concentration of SA and 100 mM NaCl. The effect of different growth-regulating 

compounds, Put, Spd, Spm, ABA and ACC on the viability of protoplasts and the relationship 

between ROS and /or NO accumulation and cell viability were also revealed. We were also 

interested in whether plasma membrane (PM) localized NADPH oxidase contributed to the 

generation of ROS. 
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MATERIALS AND METHODS 

1. Experiments with intact plants: 

1.1 Plant material, applied treatments 

Tomato (Solanum lycopersicum Mill. L. cvar Rio Fuego) seeds were germinated at 26ºC for 3 days in 

the dark. Seedlings were placed into perlite for 2 weeks. The plants were placed into hydroponic 

culture and were grown under controlled conditions in greenhouse. Prior to being subjected to 100 

mM NaCl, the plants were pre-treated with 10
-7

-10
-2

 M SA for 3 weeks and then they were exposed to 

high salinity for 1 week. Samples were prepared 1 day, 2 days, 1 week, 2 weeks and 3 weeks after SA 

exposure and 1 week after 100 mM NaCl treatment. 

 

1.2 Determination of photosynthetic parameters 

1.2.1 Measurement of stomatal conductance 

Stomatal conductance was measured on abaxial and adaxial surfaces of the leaves with steady state 

porometer (PMR-2, PP systems, UK). 

 

1.2.2 Measurement of CO2 assimilation and chlorophyll a fluorescence 

Chlorophyll a fluorescence and the net photosynthetic rate were measured with a portable 

photosynthesis system (LI-6400, LI-COR, Lincoln, Nebraska, USA) with an infra red gas analyzer. 

 

1.2.3 Determination of photosynthetic pigment contents 

Determination of photosynthetic pigment contents were performed by the method of Sims et al. 

(2002). The extraction of chlorophyll was carried out with acetone in 2 phases. Optical density was 

measured with a KONTRON Double-Beam spectrophotometer at 470, 534 and 661 nm. 

 

1.2.4 Measurement of total sugar content 

Total sugar content was determined by the phenol-sulphuric acid method (Dubois et al. 1956). Optical 

density was measured with a KONTRON Double-Beam spectrophotometer at 490 nm. Total sugar 

contents were calculated on fresh weight basis. 

 

1.3 Determination of growth regulating compounds 

1.3.1 Determination of ethylene production 

1 g of plant tissues were collected and placed into ethylene sampling tubes. Samples were incubated 

for 1 hour in these tubes in the dark. Ethylene production was measured with gas chromatography 

(Hewlett Packard 5890 Series II.). 
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1.3.2 Analysis of polyamines 

Polyamines were determined as described by Flores and Galston (1982). Polyamines were separated 

by HPLC (JASCO, HPLC system, Japan) with a 45/55 (v/v) mixture of acetonitrile/water on a reverse-

phase column (Apex octadecyl, 5 µm; 250 mmx4.6 mm) and monitored with UV detector at 254 nm. 

 

1.4 Determination of the activities of antioxidant enzymes 

1.4.1 Measurement of superoxide dismutase (SOD) (EC 1.15.1.1) activity 

Plant tissues were homogenized in 50 mM phosphate buffer, pH 7.0, containing 1 mM EDTA, 1 mM 

phenylmethylsulfonyl fluoride and 1% polyvinyl-polypirrolidone and the homogenate was 

centrifuged. Reaction mixture contained enzyme extract, nitro blue tetrazolium (NBT) and riboflavin. 

SOD was measured with a KONTRON Double-Beam spectrophotometer at 560 nm. 

 

1.4.2 Measurement of catalase (CAT) (EC 1.11.1.6) activity 

Plant tissues were homogenized in 50 mM phosphate buffer, pH 7.0. Then the homogenate was 

centrifuged. Reaction mixture contained enzyme extract, phosphate buffer (50 mM, pH 7.0) and 1% 

H2O2. CAT was measured with a KONTRON Double-Beam spectrophotometer by following the 

decrease in absorbance between 1 and 2 minutes at 240 nm. 

 

1.5 Determination of ROS and NO and viability 

1.5.1 Detection of O2
.-
 production 

For the determination of O2
.-
, samples were stained with 3 mg/ml NBT. For the detection of O2

.-
,a 

Zeiss Axiowert 200M-type fluorescence microscope equipped with a high-resolution digital camera 

(Axiocam HR, HQ CCD camera, 1300x1030 dpi, Carl Zeiss, Jena, Germany) was used. 

 

1.5.2 Determination of H2O2 content 

H2O2 was measured spectrophotometrically according to Velikova et al. (2000). Fresh leaf or root 

tissues were homogenized in 0.1% trichloroacetic acid (TCA). After centrifugation 10 mM phosphate 

buffer and 1 M KI were added to the supernatant. The absorbance was measured with a KONTRON 

Double-Beam spectrophotometer at 390 nm. 

 

1.5.3 Detection of ROS and NO and the viability 

For the detection of ROS, the root segments were stained with 2,7-dichlorofluoresceine diacetate 

(H2DC-FDA). NO was detected with 4,5-diamonofluoresceine diacetate (DAF-2 DA) and fluorescein 

diacetate (FDA) was used as a probe for viability. For the detection of fluorescence intensity a Zeiss 

Axiowert 200M-type fluorescence microscope equipped with a high-resolution digital camera 

(Axiocam HR, HQ CCD camera, 1300x1030 dpi, Carl Zeiss, Jena, Germany) was used. 

 



 6 

2. Experiments with mesophyll protoplasts as model system: 

2.1 Protoplast isolation and treatment 

Protoplasts were prepared from the young, terminal leaves of untreated tomato plants. Leaf strips were 

digested with a solution containing 2% cellulase (Onozuka R-10) and 0.5% macerozyme (Onozuka R-

10). After isolation protoplasts were resuspended in a buffer containing 525.6 mM mannitol, 12.5 mM 

sodium acetate and 5 mM CaCl2. The protoplasts were then treated with different concentrations of SA 

(10
-7

-10
-3

) and or/with 100 mM NaCl. Growth regulating compounds were applied at 2.5 mM (Put, 

Spd and Spm) or at 10
-5

 M  (abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC)). 

 

2.2 Detection of ROS, NO and viability 

For the detection of ROS, the root segments were stained with 2,7-dichlorofluoresceine diacetate 

(H2DC-FDA). NO was detected with 4,5-diamonofluoresceine diacetate (DAF-2 DA) and fluorescein 

diacetate (FDA) was used as a probe for viability. For the detection of fluorescence intensity a Zeiss 

Axiowert 200M-type fluorescence microscope equipped with a high-resolution digital camera 

(Axiocam HR, HQ CCD camera, 1300x1030 dpi, Carl Zeiss, Jena, Germany) was used. 
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RESULTS 

 

Our aim was to investigate the changes in the biochemical and physiological parameters of 

tomato plants treated with SA during pre-adaptation period. We were also interested in how 10
-4

 M SA 

pre-treatment can induced tolerance to salt stress and how 10
-3

 and 10
-2

 M SA pre-treatment resulted in 

a decrease in the viability of the plants. 

 

Our results can be summarized as follows: 

1. Effect of SA pre-treatment on tomato plants during „priming” 

1.1 Role of photosynthetic activity in the SA induced hardening process 

SA applied at 10
-3

 M concentration decreased the stomatal conductance and resulted in a 

reduction of photosynthetic activity. Total sugar content in roots treated with 10
-3

 M SA was 

significantly reduced and in the absence of osmotically active carbohydrates the water 

retaining capacity of tissues declined. Lower concentrations of SA did not cause any 

difference in the contents of photosynthetic pigments, and in the primary photochemical 

processes of photosynthesis (Fv/Fm, ΦPSII, qp) compared to the control plants. Although lower 

concentrations of SA decreased stomatal conductance at the beginning of pre-treatment, after 

3-week-long pre-incubation stomatal conductance of SA treated leaves did not differ 

significantly from those of control plants. Pre-treatment with 10
-4

 M SA enhanced total sugar 

content of root tissues during the „priming” suggesting that sugar accumulation contributed to 

the osmotic adaptation in the root tissues of 10
-4

 M SA-treated plants. 

 

1.2 Effect of ethylene in the acclimation 

10
-3

 M SA caused considerable increase in ethylene production of tomato roots but the 

ethylene synthesis was inhibited by 10
-2

 M SA. Significant enhancement in ethylene 

production could lead to the death of root tissues at 10
-3

 M SA treatment. SA applied at 10
-2

 

M, triggered the cell death, but in this case the PCD did not depend on the ethylene 

production. Lower concentrations of SA caused a moderate ethylene production of the leaves, 

however, after three weeks 10
-4

 M SA did not result in change of the ethylene production of 

root and shoot tissues compared to the control.  

 

1.3 Accumulation of polyamines during pre-treatment 

Higher concentrations of SA (10
-3

 M and 10
-2

 M SA) affect the synthesis of growth-regulating 

compounds differently. In 10
-2

 M SA treated plants putrescine (Put) content was 5-fold greater 

and spermine (Spm) was 25-fold greater than in control plants. 10
-2

 M SA also diminished the 

ethylene production of leaf tissues. We can state that accumulation of polyamines also 

occurred at 10
-2

 M SA treatment .  
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10
-3

 M SA significantly enhanced the ethylene production and the accumulation of Put and 

Spd in root tissues. We can conclude that 10
-3

 M SA treatment induced the biosynthesis of 

polyamines and ethylene and this could result in a fast and considerable accumulation of 

reactive oxygen species causing oxidative stress. In contrast with higher concentrations of SA, 

10
-4

 M SA induced a transient increase in ethylene production and enhanced the concentration 

of Put in the leaves and Spd and Spm in the roots resulting a polyamine spectrum which 

characterizes halophytes. 

 

1.4 ROS or NO, or both 

It was demonstrated that higher concentrations of SA (10
-3

 M and 10
-2

 M) decreased O2
.-
 level 

considerably increased the activity of SOD and inhibited the activity of CAT resulting in high 

levels of H2O2 in the leaves and the accumulation of ROS in the roots. Both of 10
-3

 M and 10
-2

 

M SA concentrations could induce significant increase in NO production in the apical root 

tissues. Enhancement of ROS and NO production of  root apices caused a fast decrease in the 

cell viability. In root tissues 10
-4

 M SA did not increase SOD and inhibited CAT activity and 

enhanced ROS production in root apices. However, there were no differences in NO 

production between control and 10
-4

 M SA pre-treated plants during the hardening process. 

The small increases in ROS accumulation in root apices did not decrease the viability, on the 

contrary, it increased the antioxidant capacity of the plants and induced the defense 

mechanisms.  

  

2. Improvement of salt stress acclimation by SA pre-treatment 

2.1 Changes in photosynthetic activity in SA pre-treated plants during salt stress  

Decrease in stomatal conductance was considerable after exposure to 100 mM NaCl in 

tomato. Salt stress reduced the CO2 assimilation rate, the contents of chlorophyll a, 

chlorophyll b, carotenoids and anthocyanin of tissues. The primary photochemical processes 

of photosynthesis (ΦPSII, qp) of control plants also declined after exposure to high salinity. In 

contrast with untreated plants, 10
-7

 and 10
-4

 M, increased stomatal conductance and 

photosynthetic activity during salt stress. 10
-4

 M SA pre-treatment enhanced maximal CO2 

assimilation rate (Amax) and carboxylation efficiency (CE) resulting in more efficient CO2 

fixation. Lower concentrations of SA, (e. g. 10
-4

 M) increased the content of photosynthetic 

pigments and improved the primary photochemical processes of photosynthesis (ΦPSII, qp) 

compared to the salt stressed control.  

In control and 10
-7

 M SA pre-treated roots, total sugar content did not decline during 100 mM 

NaCl exposure, however, in the roots of 10
-4

 M SA pre-treated plants an enhanced sugar 

content could be detected under high salinity. Increase in soluble sugars of root under salt 
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stress could contribute to the osmotic adaptation resulting successful acclimation during salt 

stress condition. 

 

2.2 Changes in ethylene production of SA pre-treated plants during salt stress 

Salt stress enhanced the ethylene synthesis of the leaves, however SA pre-treatments, mainly 

10
-4

 M decreased the ethylene production during 100 mM NaCl exposure. In root tissues, 10
-4

 

M SA decreased the ethylene emanation after 3 weeks of pre-treatment. During salt stress 10
-4

 

M SA reduced further the ethylene synthesis contributing to a successful acclimation. 

 

2.3 Role of ROS and NO production in salt stress acclimation 

Salt stress enhanced SOD and diminished CAT activity inducing a high level of H2O2 in the 

leaf tissues and the generation of ROS in root apices. Salt stress significantly induced the 

production of NO in root tissues. A high amount of ROS (H2O2) and NO considerably 

decreased the viability of  root cells. SA pre-treatments also increased SOD activity in leaves 

during 100 mM NaCl exposure, but increased CAT activity in roots contributing to the 

elimination of salt stress inducing ROS (H2O2). During salt stress the level of NO and ROS 

decreased in the roots of SA pre-treated plants compared to the salt stressed controls 

improving the vitality of root cells. 

 

3. Interaction between ROS and NO in mesophyll protoplasts 

Both 10
-3

 M SA and 100 mM NaCl considerably increased the intracellular ROS and NO 

levels of the protoplasts and caused oxidative damage. Viability of the protoplasts decreased in 

response to 10
-3

 M SA treatment and salt stress, respectively, in parallel with high intracellular 

production of NO and ROS, which were effectively blocked by DPI, an inhibitor of NADPH 

oxidase. Salt stress induced ROS and NO were prevented in the presence of 10
-7

 M and 10
-4

 M 

SA and viability did not change significantly compared to control protoplasts. In intact tomato 

plants we could demonstrate that changes in the concentrations of different growth-regulating 

compounds can contribute to successful acclimation or to cell death. To investigate the effect 

of these compounds on ROS and NO production and cell viability we used protoplasts as a 

model system. Spd and Spm enhanced the levels of ROS and NO and caused a significant 

decrease in the viability of the cells. This suggests that polyamines may increase ROS 

production not only in the apoplast, though the activity of apoplastic polyamine oxidase 

(PAO), but also intracellularly. Since PAO may be localized in different compartments inside 

in the cells, for example in peroxisome, and these compartments could contribute to the 

generation of ROS. Put also increased the accumulation of NO, but it was smaller compared to 

the effects of Spm and Spd and did not decrease the viability of protoplasts. These results 

correspond with our earlier findings observed in plant tissues. ABA is a very important stress 
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hormone that controls the acclimation to high salinity. ABA enhanced both ROS and NO 

levels and decreased the viability in 2.5 hours however, after 5 hours of incubation ABA 

reduced ROS production and improved the cell viability. In contrast with ABA, ACC, the 

immediate precursor of ethylene significantly increased the accumulation of ROS and NO 

causing a significant decrease in the cell viability. 

 

Summarizing the results, we can conclude that higher concentrations of SA could decrease the 

efficiency of photosynthesis and cause oxidative damage. Both the levels of ROS and NO 

considerably increased by 10
-3

 and 10
-2

 M SA and resulted in desorganization of the root system. 

However 10
-4

 M SA could improve the efficiency of photosynthesis during salt stress. 10
-4

 M SA 

using in long term experiments, could increase total sugar content in the roots contributing to the 

osmotic adaptation, could decrease the ethylene production and could modify the polyamine spectrum 

during the”priming”. 10
-4

 M SA during the hardening process could enhance the ROS production of 

root apices. However during salt stress decreased ROS levels can be observed compared to the salt 

stressed control root tissues. In 10
-4

 M SA pre-treated root apices ROS production could contribute to 

a successful acclimation to oxidative stress, however NO was not involved in SA induced priming. At 

10
-3

 and 10
-2

 M SA application parallel accumulation of ROS and NO caused the death of cells. 
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