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Introduction

Fourier series were introduced by Joseph Fourier (1768 - 1830) for the
purpose of solving the heat equation in a metal plate. The heat equation
is a partial differential equation. Prior to Fourier’s work, no solution to the
heat equation was known in the general case, although particular solutions
were known if the heat source behaved in a simple way, in particular, if the
heat source was a sine or cosine wave. These simple soulutions are sometimes
called eigensolutions. Fourier’s idea was to model a complicated heat source
as a superposition of simple sine and cosine waves, and to write the solution
as a superposition of the correponding eigensolutions. This superposition or
linear combination is called the Fourier series.

Although the original motivation was to solve the heat equation, it later
became obvious that the same techniques could be applied to a wide array of
mathematical and physical problems, for example in electrical engineering,
vibration analysis, acoustic, optics, signal and image processing, quantum
mechanics, econometrics, etc.

The developement of the theory of Fourier series in mathematical analysis
began in the 19th century and it has been a source of new ideas for analysis
during the last two centuries, and is likely to be so in years to come. Many
basic notions and results in the theory of functions have been obtained using
Fourier or more generally trigonometric series. For example, the generally
accepted notion of function was first formulated by Dirichlet dealing with the
convergence of Fourier series, or the the definition of the Riemann integral

in its general form appeared in Riemann’s ”Habilitatinschrift” devoted to



trigonometric series. In more recent times many central notions of mathe-
matics were developed in close connection to Fourier series, just to mention
the theory of sets, the Lebesgue intergal and the theory of generalized fun-
tions (distributions).

Pointweise and uniform convergence are central problems in Fourier the-
ory. In the last century several results were published in connection of conver-
gence of Fourier series, among others the theorems of Bernstein and Zygmund
relatives to absolute convergence. These theorems gave sufficient conditions
for the absolute and so for the uniform convergence of the Fourier series of a
complex valued periodic function with period 27 in terms of moduli of con-
tinuity, of bounded variation and in he case when the function is absolutely
continuous. In [4] Gogoladze and Meskhia proved these theorems in a more
general framework. In the first part of our thesis we extend these results
from single to multiple Fourier series.

The Walsh functions form a complete orthonormal system whic can be
applied in many situation, The Walsh system can perform all the usual ap-
plications of trigonometric system mentioned above and can perform them
more efficiently. Also, they are easy to implemet on computers and can be
used with very little storeage space. This is due in part to the fact that the
Walsh functions take on only the values +1 and —1. The Walsh system is
also interesting from a theoretical point of view, as well. For more details,
see for example [10].

In the second part of our thesis we give sufficient conditions for the abso-
lute convergence of double Walsh-Fourier series. More generally, we extend

the results of F. Méricz [5] from single to double Walsh-Fourier series.



Chapter 1

Trigonometric Fourier series

1.1. Known results on single Fourier series

Let f = f(z) be a complex-valued periodic function with period 27w. We
recall that if f € L'(T), where T := [—, ) is the one-dimensional torus,

then the Fourier series of f is given by

f(x)~ ) fm)e™, weT,

meZ

where the Fourier coefficients f(m) are defined by

f(m) = %/Tf(x)e_imm dx, m€Z.

We recall that the integral modulus of continuity (in the norm of L) of

a function f € LP(T) for some 1 < p < 0o is defined by

W(f;6)p = sup { (% [ i@+ - s d:c) " o<nz 5} ;

while the ordinary modulus of continuity of a function f € C(T) is defined
by
w(f;0) :==sup{|f(x+h)— f(x)]:x €T, 0<h<4}.

Following the definition in [4], a sequence v = {v,, : m € N} of nonneg-

ative numbers is said to belong to the class 2, for some a > 1 if



(1.1) Z 7 1o < grd-e)/e Z Tm, M€ Ny,

meD, meD, 1

where
(1.2) Dy:={1}, D,:={2*"+1,2"""+2...,2"}, pueN,,

and the constans k does not depend on p. Without loss of generality, we

may assume that k > 1.

It is easy to check that
(1.3) Ao, C Ay, whenever 1< oy < g < 0.
If a sequence v = {7, > 0} is such that the inequality
(1.4) max{y, :m € D,} < kmin{~y,, :m e D,_1}, peNg,

holds, where « is a constant, then v € 2, for every a > 1. Such an inequality

was first considered by Ul'yanov [13]. Furthermore, if v = {7,,} is of the form
Ym = mPw(m), m e Ny,

where f € R and w : Ry — R, is a slowly varying function, that is

(1.5) lim L)

=1 forevery 0<\< oo,
00 w(x)

then v € A, for every a > 1.
We summarize the latest results related to the absolute convergence of
single Fourier series obtained in [4] by Gogoladze and Meskhia. We agree to

put

Vem = Ym, m € N,.



Theorem 1.1. Suppose f € LP(T) for some 1 <p <2. If

v ={7} € Ap)p—rpsr) for some 1€ (0,q),

where 1/p+1/q =1, then

>0 f)ei= 3 Gl fm)l < wC Yo 2T, (fi0)

jm|>1 1=0

where k is from (1.1) corresponding to « :==p/(p —rp+ 1), C is a constant,

(1.6) I, = Z Ym for weN, and T_y:=T¢={mn}

meD,,

Corollary 1.1. Under the conditions of Theorem 1.1, we have

> (i) < %C;O:lm"’/qvmwr (f; %)p

We denote by C' a constant whose value may be different at each occurrence.

In the case when 7, =1 and r = 1, it follows from Corollary 1 that
. > T
1; = fm)| <kC m’l/qw(f;—) .
CHIESWULELDY o)

In particular, if f € LP(T) for some 1 < p < 2 and

T Y 1
W(ﬂg)sz(m ) for some oz>]—97

then the Fourier series of f is absolutely convergent.

Let ,, = 1. Corollary 1.1 was proved by Bernstein [2] in the case when
f € Lip(a) for some a > 1/2 and r = 1; by Szész [12] in the case when



p=2and r > 2/(2a+ 1); and also by Szasz [12] in the case when 1 < p < 2
and r = 1. (See also in [19, Vol. I, pp. 240-243].)

We recall that the integral modulus of smoothness (in the norm of L?) of

a function f € LP(T) for some 1 < p < oo is defined by

1/p
“alfi0)p = S“p{(%[r|f<x+h>+f<x—h>—2f<x>|?dm) : 0<h§5};

while the ordinary modulus of smoothness of a function f € C(T) is defined

by
wa(f;0) :==sup{|f(x+h)+ f(x —h)—2f(x)|:x €T, 0<h <4}, §>0.

It is worth observing that Theorem 1.1 and Corollary 1.1 remain valid if
the modulus w of continuity is replaced by the modulus w, of smoothness in
them. The proof of this assertion hinges on the fact that the Fourier series

of the function f(xz + h) — f(z — h) — 2f(x) is of the form

f(x—i—h) —|—f<CL’— _2f Zf zma: eimh e—imh_Q] _

meZ
h
Zf e (2 cosmh — 2) :—4Zf “mxsm?mT, xeT.
meZ meZ

Next, we recall the notion of bounded s-variation, where s € R, . Let
(1.7) Pri—m=20<x1<To< < Tpy =7

be an arbitrary partition of the closed interval T := [—,7]. A periodic
function f is said to be of bounded s-variation, in symbols; f € BV,(T), if

m

Vi(f) = sup Y |f(ax) = flan-)] < oo,

k=1



where the supremum is extended for all partitions P; of T. We note that

Wiener [16] considered the case s = 2, and called the functions in BV,(T)
functions of bounded quadratic variation.

It is not difficult to see that

Vs, (T) C Vi, (T) whenever 0 < 53 < s9 < 00.

Theorem 1.2. Suppose f € C(T) N BVy(T) for some s € (0,2). If

¥ =A{Vm} € Azj2—r) for some r € (0,2),

then
D20 e S ROVID S T (7)),

where K is from (1.1) corresponding to oo == 2/(2 —r) and I, is defined in

(1.6).

Corollary 1.2. Under the conditions of Theorem 1.2, we have

S0 D) < ROV S m P (1, ).
m=1

™
; —
m

In the case when ~,, =1 and r = 1, it follows from Corollary 1.2 that

S (=Y |fm)| < kCVI(F) f: %w@—s)/z <f; i) .

m

In particular, if f € C(T) N BV(T) for some s € (0,2) and
™ —
w (f, —> =O0(m™®) for some « > 0;
m

or more generally, if

w(f;%)=0(<log%>ﬁ> for some B>%,



then the Fourier series of f is absolutely convergent.

Let 7., = 1. Corollary 1.2 was proved by Zygmund [17] (see also Salem [9])
in the case when f € Lip(a) N BV4(T) for some 0 < o < 1/2 and r = 1; by
Waraszkiewicz [15] and Zygmund [17] in the case when f € Lip(a) N BV (T)
for some 0 < o <1 and r > 2/(a+2). (See also in [19, Vol. I, pp. 241-243].)

Finally, the following theorem is also due to Zygmund [18].

Theorem 1.3. If f is absolutely continuous on T and f' € LP(T) for some

p > 1, then
S 1Fm)| < [FO)] + CV ()1

mMEZ

where the constant C,, is given by

1.2. New results on double Fourier series

Let f = f(z,y) be a complex-valued function periodic with period 27 in
each variable. We recall that if f € L'(T?), where T? := T x T, then the

double Fourier series of f is given by

y)~ DY flmn)elm e () € T2,

meEZ neZ

where the Fourier coefficients f (m,n) are defined by

f(m,n) 47r2// f(z,y)e ™M=t dady,  (m,n) € Z2.



We will introduce the notion of moduli of continuity for functions of two

variables. To this end, we use the notation
(1.8) Avi(fizys b, ho) =

f(x+h1,y—|—h2)—f(x,y—i—hQ)—f(x+h1,y)+f(x,y)

where (z,y) € T? and hy, hy > 0. The integral modulus of continuity (in the

norm of LP) of a function f € LP(T?) for some 1 < p < oo is defined by

1 1/17
O~’(f;51752)p = SUP{ (m// |A1,1f;937y; h17h2)|pd$dy) )
T2

O<h1§(51 and 0<h2§52}, 51,52>0.
It is easy to check that if f € LP(T?) for some 1 < p < oo, then
w(f;01,02), = 0 as max{dy,ds} — 0.

In the case when f € C(T?), the modulus of continuity of f is defined
analogously:
w(f;01,02) :=sup{|A11(f; 2,y ha, ho)| -
(z,y) € T?, 0 < hy <6, and 0 < hy < &}, 61,62 > 0.

Analogously to the definition for a single sequence {v,,} to be in 2, (see
(1.1) and (1.2)), we say that a double sequence y = {7y : (m,n) € N1} of

nonnegative numbers belongs to the class 2, for some a > 1 if the inequality

1/

(1.9) DD dom |  SwERINDEN TN,

meD, neD, meDy—1neDy 1

is satisfied for all p,v > 0, where D,, is defined in (1.2) for p > 0 and we

agree to put

(110) D_1 = DD {1}



For instance, if ¢ > 1 and v = 0, then inequality (1.9) is of the form

1/a

Do | Sw2O N T,

meD,, meD, 1

It is easy to check that inclusion (1.3) remains valid; and if a double

sequence Y = {7, > 0} is such that
max{Ymn : m € Dyyn € D,} < kmin{v,, :m € D,_1,n € D, 1}, (p,v) € N,

where x is a constant (cf. (1.4)), then v € 2, for every a > 1. Furthermore,

every double sequence v = {7, } of the form
Yo = M nPw (m)wy(n),  (m,n) € N2,

belongs to A, for every o > 1, where 31, B2 € R and the w; : Ry — R, are
slowly varying functions (see (1.5)) for j = 1,2.

For convenience in writing, we agree to put
- 2
(]-]-1) V—mn = Ym,—n = V—m,—n ‘= VYmn, (m7 TL) € N+-
After these preliminaries, our first main result reads as follows.
Theorem 1.4. Suppose f € LP(T?) for some 1 < p < 2. If

Y= {an} € Q[p/(pﬂ"pﬂ") for some r € (0, 9)7

where 1/p+1/q =1, then

(1'12) Z(V; f)r = Z Z 7mn|f<m7n)’r <

[m[>1 |n|>1

— —(ptv)r/ r 1 i
RO S r U, e (figng) |

pn=0 v=0



where k is from (1.9) corresponding to o :=p/(p —rp+r),
(1.13) L = Z Z Yn for p,v > —1,
meD, neD,

with the agreement (1.10) that

(]_]_4) F—l,u = FOV) Fu,—l = FMO fOT o, v Z O, and F—l,—l = FOO = {’711}.

Proof. Let hy, hy > 0 be given. Clearly, the Fourier series of
Ai(fsz,y;ha, ho) = f(x + hi,y + he) — f(@ — hy,y + hy)—

f(x 4 hi,y —hy) + f(x — hi,y — hy)

is given by

(1.15) Ai(f;z,y; ha, ha) ~ Z Zf(m,n)ei(m””y)x

meZ nel

il _

% [e’i(mh1+nh2) —mhi+nh2) _ ei(mhl—nhg) + ei(—mhl—nhg)] _

=—4 Z Z Fm,n)e ™) sinmhy sinnh,,  (z,y) € T2

mEZ neEZ

Since f € LP(T?) for some 1 < p < 2, we may apply the Hausdorff-Young
inequality (see, for example in [19, p. 178, where it is formulated in terms of

Fourier transform]), to obtain the inequality

1/q
4 <Z Z | f(m, n) sin mh, sinnh2]q> <

MEZ nEZ

1 1/p 1 1
S ) // |A1(fﬂ x, Yy, hl; h2)|pdxdy s where - + - = 1.
Am* ) e P g

Hence it follows that

Z Z |f(m, n) sinmhy sin nho|? < 479w f;2hy, 2hs),.

mEZ neZ



Setting

hy = —— and hy:= wveN,

™
u+l ov+1’

taking into account that

e <" for |m| € D,,,

(1.16) 2t < 5

<

N

and an analogous inequality for |n| € D,, we obtain
q q,.,d
(1.17) S S fmn)e<2 w(f,zu 2y).
|m|€D,, |n|€D,

Applying Holder’s inequality with the exponents

qg p q p
- _ T and — :
ro r(p—1) q—r p—rp+r

it follows from (1.11) and (1.17) that

(1.18) S =Y > malf(m,n)|" <

|m|€Dy, [n|€Dy

r/q (p—rp+r)/p
<| 2 X DI I aa <
|m|€D,, |n|€D, |m|€D,, In|€D,
(p—rp+r)/p
—r . P/P rp+r)
meD, neD,

If max{p, v} > 1, then we make use of (1.9) with o := p/(p —rp+r) and
(1.18) to obtain

-r, r ™ Q0 —T T — v)r
(1.19) Sy < K27w (f, o ?)p4(1> p+1)/p 9—(utv)r/p yty1 =

_ o 92-3r20/p o~ (utv)r/q r(r T 1)
=K2 2 FM—LV—l w (f7 2#7 ov » .
If p =v =0, then from (1.10) and (1.18) it follows immediately that

(1.20)  Soo := v (IF (LD + [f (=1, DI + [f(1, =D + |f(=1,-1)[") <



< PR W (fyw ).

Taking into account that
(1.21) D D dmlfmn)l =3 > S
m|>1 [n|>1 =0 v=0

and combining (1.19) and (1.20) yields (1.12) to be proved, with the constant
C =" . glp=rp+r)/p -

Corollary 1.3. Under the conditions of Theorem 1.4, we have

(1.22) (1 hHr <CH D (mn) My (f; % %) -

m=1 n=1 p
Proof. In case pu,v > 1, from (1.9) and (1.13) it follows that

—(utv)r/q rf e T 1)

< DD (mn) (f%g) :

meD,_1neD, 1 p

In case 4 > 1 and v = 0, from (1.10) and (1.13) it follows that

2—1““/!] FNfl,l/fl wr <f7 %a ’/T) S Z m—r/q Tm1 wr <fa %a 7T> .
p p

meD;, 1
In case 4 = 0 and v > 1, an analogous inequality holds; while in case

u=rv =0, we trivially have

F—l,—l WT(fQ T, 7T)p =71 WT(f% ™, W)p-

Combining these inequalities with (1.12) gives (1.22) to be proved. n

We recall that a function f € C(T?) is said to belong to the multiplicative

Lipschitz class Lip(ay, ) for some aq, ap > 0 if

(1.23) W(f:81,85) = O(85552).



It is worth formulating Theorem 1.4 in the particular case when f €

Lip(a1, ) and 7y, = 1.

Corollary 1.4. Suppose f € Lip(ay, ag) for some oy, a5 >0 and 1 < p < 2.

If
q
(1.24) 1 + gmin{ay, s} e
then
(1.25) Z Z |f(m,n)|" < co.

Im|>1 |n|>1
Proof. By hypothesis,

r,=2" T,=2" and w(f;27#,27"), <C27Fa7 2 veN,

where C'is a constant. It follows from (1.12) that

(1.26) > D fman)

m|>1 |n|>1

< k4TTC Z Z 2—(,u+1/)r/q2,u+1/—22—(ua1+ya2)r'

pn=0 v=0
By (1.24), we have

g <7r(l+qo;) orequivalently 1< r +a;r, j=1,2.
q

Therefore, both geometric series on the right-hand side of (1.26) converge.

This proves (1.25). n

Next, we formulate Theorem 1.4 in the particular case when v = mAin/?

and r = 1.



Corollary 1.5. Suppose f € Lip(ay, as) for some aq, 0 >0 and 1 < p < 2.
If By, B2 € R are such that

1
(127) Bj < a; — —, ] = 1,27
p
then
(1.28) Z Z mPn2| f(m,n)| < oc.
[m|>1|m|>1

Proof. Since {m"in®} € A, for all 81,8 € R and a > 1, by hypothesis,

we have
(129) Fu—l 1 < 02(,31+1)M+(,32+1)V

and

w(f;27#,277) < C2(@nten) -y e,

where C'is a constant. It follows again from (1.12) that

(1.30) > w0 f(m,n)|

|m|>1 |n|>1
< K42 Z Z 9~ (utv)/ag(Br+ Dt (Be+l)vg—(arptazy) v € N.
pn=0 v=0

By (1.27), we have
1 1 4
ﬁj—aj+1—gzﬁj—aj+5<0, ]:172

Consequently, both geometric series on the right-hand side of (1.30) converge.

This proves (1.28). n

Now, Theorem 1.4 and Corollary 1.3 were proved in [7] in the case when
Amn = 1, p = 2 and r = 1. In particular, in this case the double series on

the right-hand side of (1.12) is convergent if

f € Lip(aq,ay) for some g, s > 1/2.



Given a function f = f(z,y) and hy, hy > 0, we put
Ao(fy2,y; b, ho) i= f(o+ hy,y + ho) + f(x — ha,y + ho)+

+f(x+hi,y — hy) + f(x — he,y — ho) — 2[f(2 4 h1, y)+

+f(x —hi,y) + f(o,y + he) + f(2,y — ho)] +4f(z,y)

and define the integral modulus of smoothness (in the norm of LP) of a func-

tion f € LP(T?) for some 1 < p < oo by

1 1/17
wa(f;01,02)p := SUP{ (4—7T2// Ao (fs 2,y h17h2)|pd$dy) :
T2

0 < hy <0y, O<h2§52}§
while we define the modulus of smoothness of a function f € C(T?) by
wa(f;61,02) 1= sup{|Aa(f; 2, y; ha, he)| : 0 < hy < 61,0 < hy < 02}, 1,02 > 0.

It is worth observing that Theorem 1.4 and Corollary 1.3 remain valid if the
modulus of continuity is replaced by the multiplicative modulus of smooth-
ness in them. The proof of this assertion hinges on the fact that the double

Fourier series of the function Ay(f;x,y; hy, ho) is of the form
Ao(f3 2,95 ha,y ho) ~

~ Z Z f(m, n)ei(mx+ny) [eimhl + efimhl . 2] [einhg + efinhg . 2] _

meZ nel
. . h h
- 16 Z Z f(m, n)elme+ny) gin? % sin? %, (z,y) € T
meZ nel

We also note that

(1.31) wa(f;01,02) < dw(f;01,02),



due to the fact that
Ao(f;,y; b, ho) =

= [f(z 4+ hy,y + ho) — f(z,y + h2) — f(x + b1, y) + f(z, )]+
+[f(@ = b,y + he) — f(z,y+ he) = f(z — b1, y) + flz,9)]+
+Uf (@ +hy = ho) = f(z,y — ho) — f(@ + ha,y) + f(2,9)+
+f (@ = by — ho) = f(z,y — ho) — f(z — b, y) + f(z, )] =
= Ava(fs 2y has ho) + Ava(fs 2 — hayys by, ho)+
FA(f; 2,y — ho; hay ho) + Aqa(f; 2 — ha,y — ho; ha, hy).

A function f € C(T?) is said to belong to the multiplicative Zygmund
class Zyg(an, as) for some aj,as > 0 if condition (1.23) is satisfied with

wa(f;01,09) in place of w(f;d1,0d2). The inclusion
Lip(ai, az) C Zyg(au, a2)

follows immediately from inequality (1.31).

Next, we recall the notion of bounded s-variation (in the sense of Vitali)
for functions of two variables, where s € R, . We consider an arbitrary par-

tition P = P; x Py of the closed square TZ, where P; is given in (1.7) and

P is given by
Pg:—ﬂzyg<y1<y2<---<yn:7r.

A function f = f(z,y) periodic in each variable with period 27 is said to be
of bounded s-variation, in symbols: f € BVS(TZ), if
(1.32) Va(f) s=sup > > | fars ye) — f(@ro1,y0)—

k=1 (=1

_f(xk7y€—1) + f($k—17y€—1)|5 < 00,



where the supremum is extended for all partitions P of T, Tn the case when
s =1, see this definition for example in [3].

Now, our second main result reads as follows.
Theorem 1.5. Suppose f € C(T2) N BV,(T") for some s € (0,2). If

Y = {Vmn} € Azy2—r) for some r € (0,2),

then

(1.33) Z('ﬁ fr = Z Z ’Ymn|]?(m7n>’r <

m[>1|n|>1

§/<;C'VST/2(f)ii2 T Dy w72 (f 5 —>7

u’ Qv
pn=0 v=0
where K is from (1.9) corresponding to o := 2/(2 —r), Vi(f) is defined in
(1.32), and Iy, is defined in (1.13) and (1.14).

Proof. By the assumption of continuity and bounded s-variation, we have
2M 2N
D%y

( _|_£ >_f($+u +€_7r)_
Lo L ,y N Vi Y N

—f (x+%7y+w>+f($+(k;wl)’ﬂ,y+(6;\{1)71’)‘ <

<wrE (f; %, %) Vs(f) for all integers M, N > 1.
We integrate both sides of this inequality over T? with respect to x and
y, and observe that each of the integrals on the left-hand side in (1.34) is

equal to the following one:

o

<+7T +7T) f( s +7T>




2

(e i 3) 1 (o= = 75 de

As a result, we obtain the inequality

2

(1.35) Iun < —— <f7 %7 %) Vs(f)-

Applying the Parseval inequality (applied to the double Fourier series in
(1.15) with hy := 7/2M and hy := 7/2N) gives

2
(1.36) —IMN—16ZZ‘fmn sm—smE

2N
mEZ neZ

Combining (1.35) and (1.36) yields

mmT . nmw 1 <
sm—sm— =——Iwm <
2M 642
MmEZ neEZ
1 T T
< 2—s ( . _) .
<tovy Uapy) U

We put
M:=2" and N:=2" pu,veN,

in this inequality and take into account (1.16) to obtain
>3 1 < 272wt (fi o D) Vi)
|m|€Dy, |n|€Dy
Applying Hélder’s inequality with the exponents 2/r and 2/(2—1), hence
it follows that
w3 e 3 S Al fmm) <
|m|€D,, In|€D,

r/2 (2—r)/2

<| > > lmn) YD <

|m|€Dy [n|€Dy |m|€Dy [n|€Dy

< 2—27‘2—(p+u)r/2 (2—s)r/2 <f 2_u §> V*ST/2 Z Z ,y2/ (2—r)

meD, neD,

(2—r)/2



In case max{yu, v} > 1, we make use of (1.9) with « :=2/(2 — r) and (1.37)

to find that

(1.38) S < 2722 B2 (f)
o (2—9)/2 <f ; ;) 42-7)/2 . o= (utv)r/2 F“—Lu—l =
m22—37’ ‘/;T/Q(f)Z_(/H_V)T Fu—l,u—l LU (2—s)r/2 <f Q_M §> )

In case p = v = 0, from (1.37) it follows immediately that (cf. (1.20))
(1.39) Soo < 227 VIR (F) B (fr ).

Taking into account (1.21), and putting together (1.38) and (1.39) give
(1.33) to be proved, with the constant C' := 2275". |

Corollary 1.6. Under the conditions of Theorem 1.4, we have

(140) D21 ) S ROVIH(F) YN (mn) " 72 (£ 2,2

m=1 n=1

Proof. It is analogous to the proof of Corollary 3. |

We formulate Theorem 1.5 in the particular case when the function f €

BVS(TQ) N Lip(ag, ) and v = 1.

Corollary 1.7. Suppose f € Lip(ay, ay) N BV(T ) for some ay, a0 > 0 and
O0<s<2 If

1

(1.41) r> 1+ (1 — 5/2) min{Oél,CYQ},

then (1.25) is satisfied.

Proof. Let u,v € N. By hypothesis, we have

Dyotwo1 =272 and w(f;27,277) < C27romve



where C' is a constant. It follows from (1.33) that

(1.42) i i "< RATTCIVL ()] x

|m|>1 |n|>1

> ZZQ (p+v) routv— 22 (par+rvaz)(2— s)r/2'
pn=0 v=0

By (1.41), we have
—r+1—0a;(2-9r/2<0, j=12

Therefore, both geometric series on the right-hand side of (1.42) converge.

This proves (1.25). u

Finally, we formulate Theorem 1.5 in the special case when » = 1 and

TYmn = mﬁlnﬂQ, where ﬁl,ﬂg e R.

Corollary 1.8. Suppose f € Lip(ay, as) N BV,(T ) for some ay, a3 > 0 and
0<s<2 If

(1.43) B <(1—s/2)a;, j=1,2,
then (1.28) is satisfied.
Proof. Let u,v € N. By hypothesis, we have
Ty, < OOty ang o f;274,277), < C27(entazr),

where C'is a constant. It follows from (1.33) that

(1.4 ST ST e fnn)] < w47V

m[>1|n|>1

> Z Z 9—#=vo(Bi+1)ut(B2+1)vg—(a1ptazr)(2—s)/2.
n=0 v=0



Due to (1.43), both geometric series on the right-hand side of (1.44) converge.
This proves (1.28). u

Theorem 1.5 and Corollary 1.4 were proved in [7] in the case when 7,,, =
1, s =1 and r = 1. More generally, in this particular case the double series

on the right-hand side of (1.40) is convergent if
B B 2
w(f;ﬂ,z) :O(<log£> 1 <logz) 2) for some [y, By > ——.
m n m n 2—s

We recall (see, for example, [1]) that a function f defined on a rectangle
R :=[a, b] X [c, d] is said to be absolutely continuous, in symbols: f € AC(R),

if the following two conditions are satisfied:
(i) Given € > 0, there exists 0 = d(¢) > 0 such that
Z | f(bk, die) = f(an, di) — f(be, i) + f(an, cr)| <€
RreER
whenever R = { Ry := [ay, bg] X [k, dk]} is a finite collection of pairwise
nonoverlapping subrectangles of R with

Z (bk — ak)(dk — Ck) < 0.

RreR

(ii) The marginal functions f(-,¢) and f(a,-) are absolutely continuous as
functions of a single variable on the intervals [a,b] and [c, d], respec-

tively.

It is straightforward to check that (i) and (ii) together imply that f
is continuous and of bounded variation on the rectangle R in the sense of
Hardy and Krause, and each of the marginal functions f(-,yo) and f(zo,-) is
absolutely continuous in the single variable sense on the intervals [a, b] and

[c, d], respectively, where yo € [c,d] and zg € [a, ] are fixed.



The following characterization is proved in [1]: a function f is absolutely
continuous on R := [a,b] x [e¢,d] if and only if there exist functions g €

AC([a,b]), h € AC([c,d]) and ¢ € L'(R) such that

(1.45) f(z,y) = g(x) + h(y) + /m /y o(u,v)dudv, x € la,b], y € [c,d].

Clearly, in this case the mixed partial derivative of f exists and

62
0x 0y

(1.46) Joy = fxy) =9o(z,y) ae.

Now, in the special case when 7,,, =1 and r = 1 Theorem 1.5 yields the

folloving
Theorem 1.6. If f € AC(T) and fry € LP(T?) for some p > 1, then

(1.47) ST > Fman)| < GV el

[m[>1 " |n|>1

where the constant C,, is given by

1 (& Yy
T
CpiZZ(Z@) oty Tt

ot p 7

Proof. From the assumption f € AC(Tz) it follows that f € BVH(T2).
Furthermore, by (1.45), (1.46) and Holder’s inequality, we have

|f(x+hy,y+ho) — flz,y+ho) — f(z+hy,y) + flz,y)]

z+hy y+ha
fay(u,v) dudv
z+hy y+ho /P ,
< {/ / | foy(w, 0) | dudv} (hyhy)Y/P
x Yy
/ 1 1
< Wealler(rahe)' ', S 5 =1,

Applying Theorem 4 yields (2.7) to be proved. ]



Combining Theorems 1.1 and 1.4, Theorems 1.2 and 1.5 or Theorems 1.3
and 1.6, we can easily find sufficient conditions imposed on f, f; and f5 for
the convergence of the double series

SO Gl )l

mEZL nEL
As an illustration, it is worth to present some simple corollaries in the par-
ticular case when 7,,, = 1 and r = 1, these conditions ensure the absolute

convergence of the double Fourier series of f.
1.3. Absolute convergence of double Fourier series

Denote by A(T?) the collection of functions f € L!'(T?) whose double

Fourier series converge absolutely. It is clear that f € A(T?) if and only if

(1.48) £l a2y = Z > 1 f(m.n)| < oc.

Morever, each f € A(T?) is a continuous function, since it has a uniformly
convergent Fourier series.

We note that ||.[|4r2) is a norm. Since the mapping f — {f(m,n) :
m,n € N} is a one-to-one linear isometry from A(T?) to [', it is evident that
A(T?) is a Banach space. Similarly to the case of single Fourier series, A(T?)

is even a Banach algebra with respect to pointwise multiplication.

If a function f € L'(T?) is such that
(1.49) f(m,n) =0 whenever min{m,n} =0,

then each of the conditions (1.12) and (1.33) in case Yy, = 1 and r = 1,
condition (1.25) in case r = 1, and condition (1.28) in case 51 = B2 = 0 is

sufficient to conclude (1.48).



If condition (1.49) is not satisfied, we may proceed as follows. Observe

that
(1.50) f(m,0) = fi(m), where fi(z): /f z,y)dy, x € T,
and
(1.51) f(0,n) = fo(n), where foz): /f z,y)dx, y e T.

By Holder’s inequality, we have fi, fo € LP(T) whenever f € LP(T?) for

some 1 < p < oo. Analogously to (1.48), we may write that (see [19])

filaey =Y 1AiGm)l = 1f(m,0)]
m=0 MEZL

and

follary =D fo(m)l = D 1F(0,n)].
n=0

neL

Combining these with (1.48) gives

1 llacr) = ZZ m. )| + | fill acey + I fellacry = 1£(0,0)1.

Assume || f1||.ar) < 0o and || fa||acr) < oo, then the double Fourier series

n (2.6) is absolutely convergent if and only if

[o. SN o]
ZZ (m,n)| < oo.
m=1n—1

Combining Bernstein theorem for single Fourier series with our Corollary

1.3 for y =1 and r = 1 yields the following

Corollary 1.9. If a function f : T?> — R is such that f € Lip(ay,ay),
fi € Lip(as) and fo € Lip(ay) for some o; > 1/2, j = 1,2,3,4; where fi
and fo are defined in (1.50) and (1.51), then f € A(T?).



Proof. Since f € L?(T?), it is easy to check that fi, fo € L*(T). n

Combining Zygmund theorem for single Fourier series with our Corollary

14 fory=1,r =1 and s = 1 yields the following

Corollary 1.10. If a funtion f : T? — R is such that f € Lip(ay,az) N
BVH(TQ), f1 € Lip(a3)N BV(T) and f, € Lip(a) N BV(T) for some a; > 0,
j=1,2,3,4 and 0 < s, 1,59 < 2 ; where fi and fy are defined in (1.50) and
(1.51), then f € A(T?).

Proof. Since f € BVH(TQ), it is easy to check that fi, fo € BV(T). |

Combining Theorem 3 and Theorem 6 yields the following

Corollary 1.11. If f € AC(TQ); Joy € LP(T?), ¢ € LPY(T) and ' € LP*(T)
for some p,p1,p2 > 1, where the functions g and h occur in (1.45), then the

double Fourier series of f converges absolutely.

Proof. Due to Theorem 1.6, it remains to prove that

(152 S 1fm o)+ 3 1F0,m)] < oc.

[m[>1 In[>1

To this effect, we consider the functions f; and f; defined in (1.50) and (1.51),
respectively.

Since f € BVH(T2), it is easy to check that f; € BV(T). By (1.45)
(with @ = ¢ = —7), (1.46) and Holder’s inequality, we may estimate as fol-

lows:

z+h Py
F@+h) — f(2)] < lg(a+ B) — g(x)] + / " et vy

< 1/ [R5 41| fog oo (202) 7 < ClRYP, - po = min{p/, pi},

where the constant C' does not depend on x,y and h. Hence it follows

immediately that f; € Lip(1/pg). In an analogous way, we prove that f, €

BV(T) N Lip(1/po). Applying Theorem 1.3 yields (1.52). |



1.4. Extension to multiple Fourier series

Let f = f(x1,...,xy) be a complex-valued function periodic in each
variable with period 2w. We recall (see, e.g. [19, Vol. II. Ch. 17]) that the

multiple Fourier series of f € L'(TV) is given by
flxy,...,xN) ~

Z Z Flma, ... my)eltmovttmaen) ) e TV,

m1EZ my€EZ

where the Fourier coefficients f (mq,...,my) are defined by
fi )= oo I )x
my,...,my) = e Ti,...,T
17 Y N (27T)N TN 17 ) N
Xe—i(m1x1+~~+mzvz1\r)dxl c. dl’N, (ml, c. ,mN) € ZN.

We will introduce the notion of moduli of continuity for functions of

several variables. To this effect, we use the notation

(153) A1 ..... l(f;xla"wa;hl)"'vhN) =

1 1
= Z e Z (=1)MT N fzy 4+ mba, .. o+ b)),

m=0  nn=0
where (z1,...,xy) € TN and hy,...,hy > 0. The multiplicative integral
modulus of continuity (in the norm of LP) of a function f € LP(TV) for some

1 < p < oo is defined by

w(f301,. .., 0n)p 1=

1 1/p
= Sup{<<2ﬂ_)N/.../EN |A1 ..... l(f;.illl,...,;CN;hl,...,hN)|deE1...dIN) :

O<hj§5j, jzl,...,N}7 01,...,0n > 0.




It is easy to check that for every f € LP(TV),
w(f;1,...,6n)p =0 as max{dy,...,0n} — 0.

In the case when f € C(TY), the multiplicative modulus of continuity of

f is defined by

w(f;dla"'a(SN) = SUP{|A1 ..... 1(f;$17--',xN;hl,---,hN)‘ .

(x1,...,any) €TN, 0<h; <6, j=1,2,....N}, 01,...,05 >0.

Analogously to (1.1) and (1.9), an N-multiple sequence v = {7V, - - - » Yimy °
(ma,...,my) € N¥} of nonnegative numbers is said to belong to the class

A, for some a > 1 if there exists a constant x > 1 such that the inequality

1/«
(1.54) Do D T | S
m1€DM1 mTLEDMN
< /{2(M1+"‘+MN)(1_O‘)/O‘ Z .. Z Yma,...,my
m1€D,; 1 mNE€Dy -1

is satisfied for all 1, ..., un € N, where D, is defined in (1.2) for x> 0 and
D_1 = DO = {].}
Now, the extensions of Theorem 1.4 and Corollary 1.4 read as follow.

Theorem 1.7. Suppose f € LP(TY) for some 1 < p < 2. If

Y ={Vm1,mn } € Xp/p—rptr) for some r € (0,q),

where 1/p+1/q =1, then

(1.55) Y= D o D Yl f (. my)|” <

p1=0 un=0



where £ is from (1.54) corresponding to o :=p/(p — rp+r) and

(1.56) I N S /T

m1€DN1 mNEDMN

for py, ..., pun > —1 (cf. (1.9),(1.10),(1.13) and (1.14)).

Corollary 1.12. Under the conditions of Theorem 1.7, we have

Z(Vaf)r SKZC Z Z (ml"'mN>_r/q7m1 ,,,,, meT< ;mlla'--ymi]\f)p.

mi1=1 my=1

A function f € C(T%) is said to belong to the Lipschitz class Lip(ay, . . ., ay)

for some aq,...,ay > 0if

N
w(f;él,...,(SN):O(H(SJO-‘j), 517'-->6N>0-
j=1

Clearly, if Vm, . my =1, 7 € (0,2), and f € Lip(ay,...,ay) for some

.....

a;>(2-r)/2r, j=1,2,...,N,

then Y (v; f)r < 0.
Let s € R,. Motivated by (1.32), a function f = f(z1,...,2y) periodic

in each variable with period 27 is said to be of bounded s-variation (in the

sense of Vitali), in symbols: f € BVS(TN), if
(1.57) Vi(f) =

ri=1 ry=1

where the supremum is extended over all partitions P := P; x ... X Py of

the closed cube TN, where

Pj:—W:x?<x}<---<x;j:7r, s;>1, 5j=1,2,...,N;



the operator A; is defined in (1.53), and

TP i rj—1, _ Coi
hy =z’ —x’ 3 r;=12...,s8;5 j5j=12,...,N.

J J J

Now, the extensions of Theorem 1.5 and Corollary 1.5 read as follows.

Theorem 1.8. Suppose f € C(TV) N BV, (T ) for some s € (0,2). If

Y= {Vmq.... mN} S Ag/(g_r) for some r € (0,2),

then

S kO S S g

p1=0 pN=0

ST' Q
Tt (Fi g i)

where k is from 1.54 corresponding to o == 2/(2—r); while > (7v; f)ry Vi
and Vs(f) are defined in (1.55), (1.56), and (1.57), respectively.

7777 HUN >

Corollary 1.13. Under the conditions of Theorem 1.8, we have

S0 <revn 35 3 (Tl )

mi1=1 my=1
_s)r T T
Xfyml ..... my W(2 r/2 ( ) T _>
ma my
It follows that if 7, my =1, 7 € (0,2), s € (0,2), and f € Lip(a,...,ay)

with o > max{0,2(1 —7)/r(2 —s)}, j =1,2,..., N, then > (v; f), < 00



Chapter 2

Walsh-Fourier series

2.1. Background: the Walsh-Paley system

We consider the Walsh orthonormal system {w,,(z) : m € N} defined on
the unit interval I := [0, 1) in the Paley enumeration, where N := {0, 1,2, ...}.

To go into some details, let

1 ifzel0,3),

ro(z) =
' —lifz e [3,1);

and extend 7o (z) for the half-axis R, := [0, 00) with period 1. The Rademacher
orthonormal system {ry(x) : k € N} is defined by
re(z) == ro(2%2), k=1,2,...; v €L

Now, the mth Walsh function w,,(z) in the Paley enumeration is defined as
follows: If

m = kaQk, each mp =0or 1,
k=0
is the binary decomposition of m € N, then set
(2.1) Wy () := HrZ““(x), z el
k=0

Clearly, my = 0 except for a finite number of £’s. Thus, the right-hand side

in (2.1) is a finite product for each m € N. In particular, we have
wo(x) =1 and wom =1rp(xr), meN.
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It is well known that {w,,(z) : m € N} is a complete orthonormal system on
L.

Any z € I can be written in the form
T = Z:ka_k_l, each z, =0or 1.
k=0

For each z € T'\ @, there is only one expression of this form, where @ is the
collection of dyadic rationals in I. When x € () there are two expressions of
this form, one which terminates in 0’s and one which terminates in 1’s. Now,

the dyadic sum of x,y € I is defined by

e}

rtyi= Z |lop — g2
k=1

A remarkable property of the Walsh functions is that for each m € N, we

have
(2.2) Wi (21 + 22) = wp ()W (22), Ty el, z4+y¢ Q.

We recall that the dyadic topology of I is generated by the dyadic intervals
(2.3) I(k,m) :=[k27", (k+1)27™), 0<k<2™ and k,me€N.

A function f : I — R := (—o0,00) which is continuous from the dyadic
topology to the usual topology is called W-continuous. Clearly, every classi-
cally continuous function on I is W-continuous, but the converse statement
is not true. For example, every Walsh function w,,(z) is W-continuous. The
interested reader may consult the monograph [10, Ch.1, see especially pp.

8-15].
2.2. Known results on single Walsh-Fourier series

We briefly summarize the latest results related to the absolute conver-

gence of single Walsh-Fourier series obtained in [5] by F. Mdricz.



Given a function f : I — R, integrable in Lebesgue’s sense on I = [0, 1),
its Walsh-Fourier series is defined by
fl@)~ Y fm)wn(x),
meN

where
. 1
f(m) = / f(2,y)wn(z) dz, meN,
0

are the Walsh-Fourier coefficients of f.

Denote by Cyy (I) the collection of W-continuous functions on I.

The (global) dyadic modulus of continuity w(f,d) of a function f € Cy
is defined by

w(f,8) ={lf(x+y) = f&)] - €]0,1), 0<y < b},

and the dyadic LP-modulus of continuity w(f,d), of an f € LP[0,1) is defined

by 1 1/p
uf(f75)pi=sup{</0 If(fv+y)—f($)lp> :0§y<5}-

We note that for each n € N, the condition § < 27" implies w(wy,, d) = 0.

Thus, the inequality
W(f.26) < 20(f,8), 6> 0,

does not hold for all f € Cy. This is a sharp difference in comparison with
the classical modulus of continuity of continuous functions.
For a > 0, we denote by Lip(a, W) the collection of functions f which
satisfy
w(f,0) <C*, 0<d<1,

where C'is a constant which depends only on f. Analogously, for & > 0 and

1 < p < o0, we denote by Lip(c, L?) the collection of functions f € L?[0,1)



which satisfy
w(f,0), <C&*, 0<6<L

Clearly, if f € Lip(a, W) for some o > 0, then f € Cy; furthermore, for

any a > 0 and 1 < p < oo, we have
Lip(a, W) C Lip(a, W),,.

We note that the contrast to the classical Lipschitz classes, the dyadic Lips-
chitz classes Lip(a, W) and Lip(a, W), are not trivial for a > 1.

For each dyadic interval I and each f € Cy, the local dyadic modulus of
continuity w(f, I) is defined by

w(f, 1) :={lflz+y) = fl@)] - wel, 0<y <[]},

where by |I| we denote the length of the interval I. Moreover, for each
dyadic interval I and each f € LP, 1 < p < oo, the local dyadic LP-modulus

of continuity is defined by

1/p
w(f, I)p = Sup{(l%/llf(ﬂﬂ'-y)—f(wﬂp) t0<y< |f|}-

Roughly speaking, the dyadic local modulus of continuity is a measure of
the oscillation of f on the dyadic interval /. Thus, we say that a function f
is of s-bounded fluctuation for some 0 < soo on the whole interval [0, 1), in

symbols: f € BFj, if

n>1

on1 1/s
(2.4) FL(P) = sup (Z |w<f,1<k,n>>|s> < o
k=0

and Fl(f) is called the total s-fluctuation of f on [0,1). It is easy to check
that

BF,, C BF,, if 0< s <s9 < 00.



We note that every function of bounded variation (in the classical sense) on
the interval [0, 1] is also of s-bounded fluctuation for s = 1, but the converse
statement is false.

The first result is formulated in terms of the dyadic LP-modulus of con-

tinuity.
Theorem 2.1. If f € LP[0,1) for some 1 <p <2 and

(2.5) {vm} € Ap)p—rptry for some 0<r <gq,

where 1/p+1/q =1, then

D Al fm)[m <27 Y 27, fw(f, 27,
n=1

©n=0
where k is from (1.1) corresponding to o :=p/(p —rp+7r), I', is defined in
(1.6) and D,, is defined in (1.2).

The next result is formulated in terms of the local dyadic LP-modulus of

continuity.

Theorem 2.2. If f € L?[0,1) for some 1 < p < 2 and v, C R, satisfies
condition (2.5), where 1/p+1/q =1, then

o) oo 2K _—1 T/p
Do Amlfm)r<27RY 27HT, (Z w(f, I(k, u))p|”> :
m=1 ©n=0 k=0

where k is from (1.1) corresponding to o :=p/(p —rp+7), I', is defined in
(1.6) and I(k,u) is defined in (2.3).

The sufficient conditions above can be relaxed if f is of bounded fluctu-

ation.

Theorem 2.3. If f € Cy N BF; for some 0 < s < 2 and if

{vm} € ¥Uspo—py  for some 0<r <2,



then

Yl fm)|m S 2TRIFL(HIPEY 2T afw(f, 27 C2,
m=1

n=0
where where k is from (1.1) corresponding to o :== 2/(2—r), Fls(f) is defined
in (2.4) and I, is defined in (1.6)

2.3. New results on double Walsh-Fourier series

Given a function f : > — R, integrable in Lebesgue’s sense on the unit
square I? = [0,1) x [0,1), in symbols: f € L'(I?), its double Walsh-Fourier

series is defined by

(2.6) flay) ~ Y Y flm n)wn(@)wa(y),

meN neN

where the

(2.7) f(m,n) ::/0 /0 f(z, ) wy(x)w,(y) dedy, m,n €N,

are the Walsh-Fourier coefficients of f.
Denote by Cy(I?) the collection of W-continuous functions on I?, where

the dyadic topology on I? is generated by dyadic rectangles
(2.8) I(k,m;l,n) = I(k,m) x I(l,n)

= [k27™, (k+1)27™)x[127", (1+1)27"), 0<k<2™, 0<1<2" and k,I,m,n €N

(cf (2.3)). The (global) dyadic modulus of continuity of a function f € Cy (I?)
is defined by

w(f§51,52) = SUP{\Auf(any; hi, h2)’ : (5’3,3/) € H27



Oghj<5j,j:1,2}, 0<(5J§1

We recall that the difference operators Ay o, Ag; and A;; are defined in

the usual way:
Avof(z,yiha) = flz+ hi,y) = f(2,9),
AO,lf(may; h2) = f(xay + h?) - f(ilf,y),
and Al,l = AI,OAO,I = AO,1A1,07 that iS,

(2.9) Al,lf(%?J; hi,ho) = |f(z + hi,y + hy) — f(z,y + hs)

—flz+h,y) + fz,9).

Furthermore, the dyadic LP-modulus of continuity of a function f € LP(I)

for some 1 < p < oo is defined by

1,1 1/p
w(f;61,02), 1= sup { (/ / A f(z,y; hay ho) P d dy) :
0o Jo

Ogh]<5j,j:1,2}

For oy, s > 0, the dyadic Lipschitz class Lip(ay, as; W) is the collection
of those functions f € Cy(I?) which satisfy the inequality

W(f;81,00) < CO1852, 0< 81,05 < 1,

where C' is a constant which depends only on f. Analogously, for ay,as >0
and 1 < p < oo, we denote by Lip(aq, as; LP) the collection of functions

f € LP(I?) which satisfy the inequality
w(f;51,52)p§05‘1’15§‘2, 0 < 01,09 < 1.
For each dyadic rectangle

I(k,m;l,n) = I(k,m) x I(l,n) =1 x J,



where 0 < k < 2™, 0 <1 < 2" k,I,m,n € N (see (2.8)), the local dyadic

modulus of continuity of a function f € Cy (I?) is defined by
w(f; I x J) :=sup{|Ai1f(x,y; hi, he)| : (z,y) € 1 x J,

O§h1<’[|, 0§h2<|J|}7

where |I| = 27 and |J| = 27" are the length of the intervals I and J,
respectively. Morever, for each 1 < p < oo, the local dyadic LP-modulus of

continuity of a function f € LP(I?) is defined by

1 I/P
W(f§51752)p ‘= sup { (m ) U’ /I/J ‘Al,lf(x>y§ h1>h2)’p dxdy) :

0§h1<|[|, O§h2<‘J|}

Finally, we say that a function f : I> — R is of s-bounded fluctuation for
some (0 < s < oo, in symbols: f € BF,(I?), if

om_12n_1 1/s
(2.10) Fl,(f;I?) := sup sup (Z Z lw(f; I(k,m) x [(l,n))\s> < 00;

mzl nzl \ 420 =0
and Fl,(f;T?) may be called the total s-fluctuation of f over I?. It is easy to

check that

BF,, C BF,,, 0<s; <59 < 00.

Extend all the Walsh functions w,,(x) for Ry with period 1; in particular,
set

Wy (1) == w,, (0), m € N.

It is worth noting that every function of bounded variation in the sense of
Vitali (see, e.g., [3]) on the closed unit square [0, 1] x [0, 1] is also of s-bounded
fluctuation on I? for s = 1. The converse statement is false. There exists a

function f € BF;(I?) such that

fl2,1) = f(2,0),  f(Ly)=f(0,y) forall 0<uzy<1



(all the Walsh functions w,, (z)w,(y) are such ones), and f is not of bounded
variation in the sense of Vitali.

Let f : I — R be a function either in Cy (I*?) or in LP(I?) for some
1 < p < 2. Our aim is to give best possible sufficient conditions for the
finiteness of the double series
(2.11) D Al fmn),

m=1 n=1

where {7V} is a double sequence of nonnegative real numbers satisfying a
mild assumption and 0 < r < 2. The restriction r < 2 is explained by the
fact that if f € Cy (I?) or only f € L?*(T?), then by the Parseval formula we

have

iiV(m,”)P = /01 /01 |f(z,y)|? dz dy < co.

m=0 n=0

Our first result in this section is formulated in terms of the dyadic LP-

modulus of continuity.
Theorem 2.4. Suppose f € LP(I%) for some 1 <p < 2. If

1 1
(2.12)  {Vmn} € Apjprptr) for some 0<r <gq, where —+-=1,

p g
then

(2.13) Z Z'Ymnbg(mvn)'r

m=1 n=1

<4k Z Z 2—(u+u)r/qFM_1’V_1|w(f; 271 27), ",

pn=0 v=0

where  is from (1.9) correspondings to oo :=p/(p —rp+71),

(2.14) Tww = > Y Yom» m,VEN,

meD, neD,

and D, is defined in (1.2).



Proof. Fix u,v € Nand (hy,hy) € I(1,p+ 1;1,v 4+ 1) (see (2.8)). Set
(2.15) 9(@,y) == Diaf(z,y; b, ho),  (z,y) € P
(see (2.9)). It follows from (2.1) that

Wy (hy)=—-1 if meD, and hy€l(lu+1):=[27"1 27",
and

wp(hy) =—1 if neD, and hye€l(l,v+1):=[27""12™).

By (2.2), we find that

(2.16) §(m,n) = / / 9@, ) (@) (y) da dy

_ / / F @ y) wm(e + Bywn(y + ha) — w(@)wn(y + ho)
— W (T + h1)wi(y) + Wi (2)wn(y)} do dy
= {wm(h1)wn(he) — wy,(he) — wy(h1) + 1}f(m, n) = 4f(m, n).

By virtue of the Hausdorff-Young inequality (see, e.g., [19, Vol. II, pp.
101-103] in the case of single orthogonal series, but the scheme of its proof
easily applies for multiple orthogonal series; see also [11, p. 178], where
this inequality is formulated in terms of multiple Fourier integrals), for any

1 < p <2 we obtain that

1/q 1/q

e [ e =[S latmne

meDy, neD, meD, neD,

1 1,1 1/p
< 1 (/ / |A11 f(z,y; b, he)|P da dy>
o Jo



1 1
< <w(f;27#,27),, preN and —+4-=1

p 4q
Applying Holder’s inequality with the exponents

=] =

(2.18) K VY. QI S —

r o r(p—1) g—1r p—rp+r’

it follows from (1.9), (2.12) and (2.17) that

(2.19) S S vl fmm)l

meD, neD,

r/q (p—rp+r)/p

> Wm0 3w

meD, neD, meD, neD,

VAN

< gp4mro R o (2727, pr €N,

where I, is defined in (2.14).
Summing inequality (2.19) over u,v € N yields (2.13) to be proved. =

It is worth formulating Theorem 2.4 in the particular case when f €

Lip(az, ag; W), and v, = 1.

Corollary 2.1. Suppose f € Lip(ay, ag; W), for some ag, a0 > 0 and 1 <
p<2.1If

q
2.20 <r<
( ) 1 4+ gmin{ay, as} =9
then
(2.21) Z Z |f(m,n)|" < oo.

We note that Corollary 2.1 for p = ¢ = 2 is an extension of [10, Theorem
10 on p. 67] from single to double Walsh-Fourier series. In case p = ¢ = 2



and r = 1, condition (2.20) is satisfied whenever min{ay, as} > 1/2. On the

other hand, there exists a function ¢ : I — R such that
g € Lip(1/2,W) and ) |g(m)| = oo
m=1
(see [10, p. 68]). Now, define

flzy) =gla)gly), (z,y) el

then f € Lip(ay, ae; W) and condition (2.21) is not satisfied.

It is of interest to observe that if a function f belongs to the narrower
class Lip(ay, ag; W) instead of Lip(aq, as; W),, then the restriction r < ¢ in
(2.20) is superfluous. This is due to the fact that Lip(ay, ag; W) C L*(T?),

and by the Parseval formula, we have
{f(m,n) :m,n >0}y el forall r>2.

Next, we formulate Theorem 2.4 in the particular case when 7,,, =

mPinP2 and r = 1.

Corollary 2.2. Suppose f € Lip(ay, ag; W), for some ag, a0 > 0 and 1 <
p < 2. If 51, B2 € R are such that

1
(2.22) B <a;j——, j=1,2,
p
then
(2.23) Z Zmﬂlnﬁﬂf(m,nﬂ < 0.
m=1 n=1

We note that Corollary 2.2 for p = 2 is the extension of [10, Theorem 11
on p. 68 formulated with (—f) in place of 5] from single to double Walsh-

Fourier series. We also note that it is the dyadic analogue of the theorem of



was O. Szész proved for single trigonometric series (see, e.g., [19, Vol. I, pp.
243]).
Our second new result in this section is formulated in terms of the local

dyadic LP-modulus of continuity.

Theorem 2.5. Suppose f € LP(I?) for some 1 < p < 2. If {Vmn > 0}
satisfies condition (2.12), then

(2.24) D> vl f ()"

m=1n=1

26 _192v—1 1/p
S KZZQ u-‘,—urru 1y1<ZZ|WfIkM7l7V>>|> ’

1=0 v=0 k=0 1=0

where K is from (1.9) corresponding to o :== p/(p—rp+7), I'y_1,1 is defined
n (2.14), and I(k, p;1,v) is defined in (2.8).

Proof. Let p,v € N and (hy,hy) € I(1,1+ 1;1,v + 1). Proceeding as in
the proof of Theorem 1 (see (2.17)), we obtain that

(2.25) >N | f(mn))

meD, neD,

1 ! 1/p
<H([ [ 18t o dran)
0
- 12V y 1/p
( / / |Av1f(@,y; by ho) P d:vdy)
=0 I= I(k,pn) JI(lv)

| (2o 1/p
< (Z > 2w f; I(/ﬁu;l,V))pl”) :

k=0 =0

1/q

[\

1
4

Applying Hélder’s inequality with the exponents (2.18), it follows from
(1.9), (2.12) and (2.25) that

(2.26) Z Z an‘f(n% n)|"

meD, neD,



r/q (p—rp+7)/p

= Z Z |f<m,n)’r Z Z fyﬁl/ygpfrp+r)

meD, neD, meD, neD,
2r—12v—1 r/p
< RATTTERITT, (Z > 27l I (s s, v)>p|p>
k=0 1=0

oM_19v_1 r/p
= A2, (Z > |w(f;f(k,u;l,1/))p|p> :

Summing inequality (2.26) over ,u,kz/oe lNOyields (2.24) to be proved. n
We note that Corollaries 2.1 and 2.2 can also be deduced from Theorem
2.5. Furthermore, the special case when ~,,, = 1 and r = 1, Theorem 2.2
is an extension of [10, Theorem 9 on p. 64 formulated with w(f, I(k,u)) in
place of w(f, I(k,u)),] from single to double Walsh-Fourier series.
The sufficient conditions above can be relaxed if the function f : 12 — R

is of bounded fluctuation. Our third new result is the following

Theorem 2.6. Suppose f € Cy N BF,(I%) for some 0 < s < 2. If

(2.27) {@mn >0} € Aypo—yy for some 0 <1 <2,
then
(2.28) DD Al f ()l

m=1 n=1

< A7"K|FL(f; Hz) |r5/2 Z Z 2_(M+V)TF,U,7171/7]_ w(f; 27", 2—1/)|(1—s/2)r’

=0 v=0
where K is from (1.9) corresponding to o := 2/(2 —r), Fls(f) is defined in

(2.10) and Iy, is defined in (2.14).

Proof. Let p,v € Nand (hy, ho) € I(1, u+1;1,v+1). Making use of (2.15)

and (2.16), this time the Parseval formula (r = 2) gives
1/2 1/2

029) | X S P =1 X S latmn?

meD, neD, meD, neD,



1 e V2o Lorl 1/2
S - (/ / |g(l’7y)|2d$dy) = — (/ / |A1’1f(x’y; h17h2>|2 dxdy)
4 \Jo Jo 2\,

1 2k —12¥—1 1/2
= — ’Al,lf(xay; h17h2)|2dxdy
4 <Z Z /Iv(k,u) /Iv(l,u)

k=0 =0

| (2o 1/2
=1 (Z > 27 E(f; I(/f,u;l,V))|2> :

k=0 1=0
Next, applying Holder’s inequality with the exponents 2/r and 2/(2 —r),

it follows from (1.9), (2.27) and (2.29) that

(2.30) Z Z ’an‘f(m7 n)|"

meD, neD,
r/2 2-r)/r
<| > > Iftmn) DD "
meD, neD, meD, neD,
r/2
< g4t Z Z |f(m,n)|”
meD, neD,
Combining (2.29) and (2.30), we conclude that
(231) S gl fm,n)|r < wara iz,
meD, neD,
2191 r/2
XLy10-1 (2(#“) Z Z w(f; I(kaﬂ§laV))|2>
k=0 1=0
= KJ4_T2_(M+V)TF“_17V_1X
2m_12v_1 r/2
SS 10k, s )Pl I(k,u;l,V))!S>
k=0 1=0

S K4_T2_(#+V)TF#_LV_1|W(f; 2—u7 2_V)|(2_8)T/2|FZS(H2)|TS/2.
Summing inequality (2.31) over u,v € N yields (2.28) to be proved. |

We formulate Theorem 2.6 in the particular case when the function f €

BF,(I?) belongs to a dyadic Lipschitz class and v,,,, = 1.



Corollary 2.3. Suppose f € Lip(ay, ao; W) N BF,(T?) for some ay,ay > 0
and 0 < s < 2. If

1

(2.32) r= 1+ (1 —s/2)min{a;,as}’

then (2.21) is satisfied.

We note that Corollary 2.3 is an extension of [10, Corollary 4 on p. 67
formulated for r = 1 and 1 < s < 2] from single to double Walsh-Fourier
series.

Finally, we formulate Theorem 2.6 in the special case when r» = 1 and

TYmn = mﬂlnBQ, where 51,52 e R.

Corollary 2.4. Suppose f € Lip(ay, ag; W) N BF,(T?) for some ay,ay > 0
and 0 < s < 2. If

(2.33) B < (1-s/2a;, j=1.2,

then (2.23) is satisfied.

2.4. Absolute convergence of double Walsh-Fourier series

Denote by A(I?) the collection of functions f € L'(I?) whose double

Walsh-Fourier series converge absolutely. Since
|wp(7)] = [wa(y)| =1 forall m,neN and (z,y)€I?

it is clear that f € A(I?) if and only if

(2.34) 1l = S 3 1f(m, )| < oo.
m=0 n=0



Morever, each f € A(T?) is a W-continuous function, since it has a uniformly
convergent Walsh-Fourier series.

We note that |[|.||4m) is a norm. Since the mapping f — {f(m,n) :
m,n € N} is a one-to-one linear isometry from A(1?) to I!, it is evident that
A(I?) is a Banach space. Similarly to the case of single Walsh-Fourier series,
A(T?) is even a Banach algebra with respect to pointwise multiplication (see
details in [10, pp. 63-64]).

If a function f € L'(I?) is such that

~

(2.35) f(m,n) =0 whenever min{m,n} =0,

then each of the conditions (2.13), (2.24) and (2.28) in case G, = 1 and
r = 1, condition (2.21) in case r = 1, and condition (2.23) in case 3; = 2 =0
is sufficient to conclude (2.34).

If condition (2.35) is not satisfied, we may proceed as follows. Observe

that
X X 1
(2.36) f(m,0) = fi(m), where fi(x) ::/ flx,y)dy, xe€l;
0
and
R R 1
@31 fom =), whee )= [ faa)de yel

By Holder’s inequality, we have fi, fo € LP(I) whenever f € LP(I?) for some

1 < p < co. Analogously to (2.34), we may write that (see [10, p. 63])

Ifilla =Y 1A(m) =Y [f(m,0)]

and

1fellaw =Y 1fo(n)] = > 1£(0,n)].
n=0



Combining these with (2.34) gives

[f1l.aq2) = ZZ\ (m, )] + [ fallaey + 1f2llay — 1£(0, 0)].

m=1 n=1

Assume || f1||.a@y < oo and || fo|| 4@y < oo, then the double Walsh-Fourier

series in (2.6) is absolutely convergent if and only if

oo 0
ZZ (m,n)| < oo.
m=1n—1

Thus, in order to obtain sufficient conditions for the absolute convergence of
the double Walsh-Fourier series in (2.6), we have to combine the sufficient
conditions for the absolute convergence of single Walsh-Fourier series (see
[10, pp. 64-68]) with Theorems 2.1-2.3 and Corollaries 2.1-2.4 in the previous
section. As an illustration, we present two simple corollaries.

We recall that the dyadic analogue of Bernstein’s famous theorem for
trigonometric Fourier series (see [10, Corollary 3 on p. 65]) says that if a
function g : T — R is such that g € Lip(a; W) for some o > 1/2; then
g € A(I). Combining this theorem with our Corollary 2.1 for p = 2 and
r = 1 yields the following

Corollary 2.5. If a function f : 1> — R is such that f € Lip(ay, aq; W),
f1 € Lip(ag; W) and fo € Lip(ay; W) for some a; > 1/2, j =1,2,3,4; where
f1 and fy are defined in (2.36) and (2.37), then f € A(T?).

We recall that the dyadic analogue of Zygmund’s famous theorem for
single trigonometric series (see [10, Corollary 4 on p. 67]) says that if a
function ¢g : I — R is such that g € Lip(a; W) N BF,(I) for some a > 0 and
0 < s < 2, then g € A(I). Combining this theorem with our Corollary 2.3

for r = 1 yields the following



Corollary 2.6. If a funtion f : 1> — R is such that f € Lip(ay, ae; W) N
BF,(I?), f1 € Lip(az; W) N BF,, (1) and f, € Lip(ay; W) N BFE,,(I) for some
a;>0,7=1,23,4and 0 < s,s1,5 <2, then f € A(I?).



Summary

Our thesis is based on the classical results of Bernstein and Zygmund
giving sufficient conditions for the absolute convergence of the Fourier series
of a complex valued function with period 27. Namely, if the function f(x)
satisfies the Lipschitz condition of order a where o > 1/2, or is of bounded
variation and satisfies the Lipshitz condition of order o where v > 0, then
its Fourier series converges absolutely.

Many generalizations of these theorems were proved, for example by Szédsz
[12], Salem [9] and the latest one by Gogoladze and Meskhia [4]. In the first
part of our thesis we extend these results from single to double Fourier series.
Let f € LY(T?), where T? := [—7,7) x [—m, 7) is the two dimensional torus.

Consider the double series

(1) S5l fmm),

MEZ neZL

where ¥,,, is a double sequence, r € R, and the Fourier coefficients f (m,n)

are defined by

- 1

f(m7 n) = 4_7T2/ f(za y)e—i(mx—l—ny) dx dy? (m7 n) < ZQ‘
T2

We give sufficient conditions for the convergence of the series in (1) in
terms of moduli of continuity, of bounded s-variation in the sense of Vitali
or Hardy and Krause.

We give some corollaries as an application of our theorems in some par-

ticular case, for example, when ., = 1 or Y, = mPn? and r = 1.
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As to the Fourier coefficients f (m,n) in the special case when n = 0 and

m = 0, we proceed as follows

(2) f(m,0) = fi(m), where fi(x): /f z,y)dy, v €T,
and
(3) f(0,n) = fo(n), where fo(z): /f x,y)dz, y € T.

In the special case when 7,,, = 1 and r = 1 the conditions of our theorems
ensure the absolute convergence of the double Fourier series of f, hence the
extension of the theorems of Bernstein and Zygmund reads as follows.

If a function f : T? — R is such that f € Lip(as,az), fi € Lip(az) and
fa € Lip(ay) for some a; > 1/2, j =1,2,3,4; where f; and f, are defined in
(2) and (3), then the double Fourier-series of f converges absolutely.

If a function f : T2 — R is such that f € Lip(ai,as) N BVy(T), fi €
Lip(az) N BV(T) and f, € Lip(ay) N BV(T) for some o > 0, j = 1,2,3,4
and 0 < s,51,82 < 2 ; where f; and fo are defined in (2) and (3), then the
double Fourier-series of f converges absolutely.

In the last section of the first part we extend our results to multiple
Fourier series.

The second part of our thesis is about the Walsh system and the absolute
convergence of double Walsh-Fourier series. Let f € L!'(I?), where I? :=
[0,1) x [0,1). Consider the double series
(4) SN vl fmon)[”

m=0 n=0
where 7,,, is a double sequence, r € R, and the Walsh-Fourier coefficients

f(m,n) are defined by

f(m,n) ::/0 /0 f(z, ) wp, (2)w, (2) de dy, (m,n) € N?,



where w,,(z) is the mth Walsh-function. Refer to the work of F. Méricz [5]
on the absolute convergence of single Walsh-Fourier series, we give sufficient
conditions for the convergence of the series in (4) in terms of (either global
or local) dyadic moduli of continuity and bounded s-fluctuation of f.
According to (2) and (3), in the special case when n = 0 and m = 0, we

proceed as follows

(5)  f(m.0)=fi(m), where fi(z)= / fa.y)dy, @€l

(6) f(0,n) = fo(n), where fo(y) := /01 flz,y)dx, yel

In the special case when 7,,, = 1 and r = 1 the conditions of our theorems
ensure the absolute convergence of the double Walsh-Fourier series of f,
hence the extension of the dyadic analogue of the theorems of Bernstein and
Zygmund reads as follows.

If a function f : 12 — R is such that f € Lip(ay, as; W), fi € Lip(as; W)
and fo € Lip(ay; W) for some a; > 1/2, j = 1,2,3,4; where f; and f, are
defined in (2.36) and (2.37), then the Walsh-Fourier series of f converges
absolutely.

If a funtion f : I?> — R is such that f € Lip(ay, as; W) N BF,(1?), fi €
Lip(as; W) N BF,, (I) and fy € Lip(aq; W) N BE,(I) for some o > 0, j =
1,2,3,4 and 0 < s, 81,89 < 2, then the Walsh-Fourier series of f converges

absolutely.
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