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1- Bevezetés

az alakielismerés olyan módszerek, eljárások össze­
foglaló neve, amelyek segítségével bizonyos objektumok 

jellemzőik alapján adott kategóriák valamelyikéhez egyér­
telműen hozzárendelhetők. A kategóriákról (osztályokról) 

feltesszük, hogy eleve (a priori) léteznek. Az objektumo­
kat általában nem tudjuk direkt módon azonosítani, hanem 

jellemzőik (mérések, megfigyelési adatok) alapján.
A probléma a karakterek felismeréséből indult ki.

Itt egy kategóriát egy adott karakter "elméleti" képe je­
lent, a jellemzők megállapítása pedig egy karakter képé­
nek valamilyen módon történő digitalizálásával lehetsé­
ges. Ma már számos tudományágban használják az alakfelis­
merési módszereket: képek felismerése kapcsán pl. kromo­
szómák azonosítására (sejt-szövet analízis), ujjlenyoma­
tok (biológia, kriminalisztika), hangfelismerés, görbék 

osztályozására (EEG, EKG). Több ezer cikk tanúskodik az 

alakfelismerés orvos-diagnosztikai alkalmazásairól: itt a 

feladat egy paciens tünetei alapján a betegség felismerése.
E dolgozat célja egyes statisztikus alakfelismerési 

módszerek - különösen a lineáris diszkriminancia analízis 

és általánosításainak - áttekintése, valamint a módszerek 

orvos-diagnosztikai felhasználási lehetőségeinek bemutatá­
sa a külföldi és hazai irodalom áttekintése révén és 

ját esettanulmányok alapján.

Az alakfelismerés alapproblémája jellemzőik alapján

sa-
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objektumok hozzárendelése adott kategóriák valamelyikéhez. 

Egy objektumot N számú jellemzője alapján egy N dimenziós 

vektorral adhatunk meg. A hozzárendelést általában úgy 

adják meg, hogy a téves döntés valószínűsége, az ún. 
hibavalószínűség minél kisebb legyen. A minimális hibava­
lószínűségű döntést Bayes döntésnek nevezzük. Az első 

fejezetben definiáljuk a döntésfüggvényt, amelynek se­
gítségével egy vektor hozzárendelése elvégezhető, és meg­
adjuk a Bayes döntésfüggvény alakját általánosan és több­
változós normális eloszlás esetén.

A második fejezetben a statisztikus alakfelismerés 

modelljét tárgyalva megmutatjuk, hogy a döntésfüggvény 

megadásához szükség van az ún. tananyagra, amely nem más, 
mint egy olyan statisztikai minta, amelyben minden egyes 

mintaelemnek ismerjük a kategóriáját. A feladat első része­
ként meg kell határoznunk a döntésfüggvényt (tanulás), 

a
majd kapott döntési szabályt kell alkalmaznunk ellenőrzés­
re (tesztelés), majd ezután ismeretlen kategóriájú egye- 

dek osztályozására. Kitérünk a tananyag méretének megvá­
lasztásával kapcsolatos problémákra, azaz arra, hogy a 

jellemzők számát úgy kell meghatározni, hogy minél keve­
sebb számú jellemző minél több információt hordozzon. Az 

alakfelismerési feladat része lehet egy ún. lényegkiemelési 
transzformáció, amely az eredeti adatokat a legkönnyebben 

osztályozható formára hozza.

Az alakfelismerésben eddigi ismereteink szerint nin­
csenek "mindenható" módszerek, egy adott feladat esetén
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gyakran keresni kell azt a döntésfüggvényt, amely a leg­
jobb osztályozást adja. A harmadik fejezet így számos 

statisztikus alakfelismerési módszert ismertet és utal
e módszereknek a Bayes döntéshez való kapcsolatára.

Anderson (1974) alapján a Bayes döntésfügg-Megadjuk
vényt normális eloszlás esetén a paraméterek becslésé­
vel, amely egyenlő kovariancia mátrixok esetén a követ­
kező alakú:

*Cs)»W0-srwJrSi-4-(eíe h)\T r~V (0 f*)\
(1)

ahol a _.két osztály átlagvektorai, S pedig a kö­
zös kovariancia mátrix becslése. Igen egyszerű és szem­
léletes elv alapján működik a legközelebbi szomszéd 

módszer (Cover és Hart, 1967), amely egy adott tananyag 

esetén egy ismeretlen kategóriájú pontot a hozzá legkö­
zelebb eső mintapont osztályába sorol be. Különféle li­
neáris és szakaszonként lineáris algoritmusokkal zárjuk 

az ún. tanítóval való tanulás módszereinek bemutatását.
A lineáris diszkriminaneia analízis néven emlege­

tett alakfelismerési módszerekkel foglalkozik a harmadik 

fejezet. Bemutatjuk, hogy a sűrűségfüggvény-becsléskor 

kapott (1) formulához egy optimalizálási transzformáció 

útján is eljuthatunk (Fisher, 1936). Ennek általánosítá­
saként ismertetjük a Day-Kerridge (1967), illetve J. A. 
Anderson (1972) által tárgyalt logisztikus diszkriminan- 

cia analízist, amely nemcsak normális, hanem diszkrét 

eloszlású valószínűségi változókra is alkalmazható.

—• ■ i
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Ezek további változata az Albert (1981) által közölt pro- 

bit diszkriminancia analízis.
A negyedik fejezet a módszerek orvos-diagnosztikai 

alkalmazási lehetőségeiről ad áttekintést az általunk
feldolgozott nagyszámú nemzetközi és hazai közlemény alap- 

Saját tapasztalatainkat az újszülöttkori sárgaság,. оjan.
a hasnyálmirigy gyulladás és a gyermekkori légúti meg­
betegedések diagnosztizálása kapcsán mutatjuk be, melye­
ket a SZOPE Gyermekgyógyászati Klinika és az I. 

gyógyászati Klinika orvosaival együttműködve végeztünk, 
illetve végzünk ma is.

sz. Bel-

(Boda, 1971., 1972^ Boda és Pap j

1983).
A hasnyálmirigy gyulladás diagnosztizálásakor a 

feladat az volt, hogy egy paciens bizonyos enzim értéke­
inek ismeretében következtessünk a betegség fennállására. 

A problémát itt az jelentette, hogy egy beteg embernek is 

csak bizonyos enzim értékei mutatnak kóros elváltozást, 

míg más enzimek normálisak maradhatnak. Ezért nem lehet 

egptlen enzim alapján képet alkotni a hasnyálmirigy mű­
ködéséről, és ezért kézenfekvő az egyszerre több jellem­
zőt figyelembe vevő alakfelismerési módszerek alkalmazá­
sa. Különböző előkészítő tevékenységek és több alakfel­
ismerési módszer lefuttatása után a lineáris diszkrimi- 

náncia analízis adta a legjobb, 93 %-os helyes döntést, 

melyet az utólagos tesztek is megerősítettek. Ezek az 

eredmények orvosi szempontból is értékesek, és a diag­
nosztikai munkában segítséget nyújtanak az orvosnak.
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2. Az alakielismerés alapproblémája, módszerei

2Л. Az alakfelismerés alapproblémája

Az alakfelismerés témakörébe a gyakorlatban az olyan 

feladatok tartoznak, amelyekben korábban, tapasztalati 
úton megadott esetek, objektumok, helyzetek újabb elő­
fordulásának felismerésére kell eljárást konstruálnunk.
A felismerés úgy történik, hogy az objektumot adott ka­
tegóriák valamelyikébe besoroljuk. A kategóriákról fel­
tesszük, hogy véges számúak és létezésük eleve, a priori 
adott. Az objektumokról is feltesszük, hogy valamely 

kategóriához tartoznak. A probléma ott merül fel, hogy 

az objektumokat nem lehet általában direkt módon azono­
sítani, csak a róla végzett megfigyelések, mérések alap­
ján. A besorolás egy döntési sabály segítségével történ­
het, amelyet előzetes megfigyelések alapján alkothatunk 

meg.
az orvosi diagnózis felállításának 

problémáját: az orvosnak egy vizsgálatra jelentkező 

paciensről a panaszai, tünetei, laborvizsgálatok, stb. 

alapján el kell döntenie, hogy milyen betegsége van.
Az azonosítandó objektum tehát a paciens,

0

pedig a felmerülő lehetséges betegségek. A betegségek 

száma és a létezése ismert. Az azonosítás azonban csak 

a paciens vizsgálata után, a mérési eredmények, megfi-

Tekint sük

a kategóriák
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gyeiések birtokában lehetséges. A gyakorlatban az orvos 

ismereteire és tapasztalataira támaszkodik a döntésnél, 

ezek segítségével ismeri fel a betegséget a pillanatnyi 
mérési és megfigyelési eredmények alapján.

Látható, hogy az orvosi diagnózis felállítása pon­
tosan úgy formalizálható, ahogyan az alakfelismerési 

probléma.
A továbbiakban megadjuk az eddig vázolt probléma 

matematikai tárgyalását.
Legyen adott egy valószínűségi mező, és 

СЛ)...}Qezen egy teljes eseményrendszer, azaz
4 ~ \ I ;

4 Cc = Я ;c Сг‘ = 0 )

A C^-ket osztályoknak, kát egóriáknak vagy hipotézisek­
nek nevezzük. Legyen adott továbbá objektumoknak egy 

halmaza, amely objektumok a priori valamely kategóri­
ához hozzátartoznak; mi azonban nem tudjuk, melyikhez, 

mivel ezekről az objektumokról csak közvetett adatok, 

mérések, megfigyelések állnak rendelkezésre. Egy objek­
tumot így egy valószínűségi vektorváltozóval jellem- 

zünk, amelyről feltesszük, hogy az Ejj Ж dimenziós 

euklideszi tér egy vektora:
r1

\ szokásos elnevezései: megfigyelés, tünet-vektor,A

alakvektor.
^ -vei jellemzett 

otpktum hozzárendelése a kategóriák valamelyikéhez.
Az alakfelismerési feladat a
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Egy objektumról tett méréssel tulajdonképpen az

#-*£n (2.1)
leképezést hajtottuk végre, azaz egy adott to^ü-hoz

\ * (<*>) valószínűségi vektorváltozót rendeltünkegy 

hozzá.
Feltesszük, hogy ezzel a leképezéssel olyan 

halmazok álhak elő Ew-en, hogy oo € C£ akkor és csak
akkor teljesül, ha ^ Вг' C"1 Mi -"i ^ ^ *

2.1. Megjegyzés. Könnyen belátható, hogy ekkor a B± 

halmazok is diszjunktak, azaz

bt By - 0
olyan \ , amely | By f \

I

Ha ugyanis lenne akkor

^(to)é-By miatt oo € Cv és^ ( w)ú By u>€' C^-
lenne, ami ellentmond annak a feltevésnek, hogy a Ch-k

és

diszjunktak.
E transzformációt figyelembe véve jelölje

\ ~ Cc
azt a hozzárendelést, hogy a ^ 

a Q osztályba tartozik, azaz

, B^ halmazok alapján az alakfelismerési 
feladat, egy ismeretlen osztályú objektum adott kategó-

-hez tartozó objektum 

oo £ C-c ,

А В • • •X,

riához való rendelése megoldható oly módon, hogy | á 

esetén azt mondjuk, hogy ^~С±, i— 1,
A gyakorlatban a B^ halmazok megkeresése nem köny-

,H.• • «
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nyű feladat. Ismert kategóriájú objektumokról nyert mé­
rések (az ún. tananyag, pontos definíciója 2.2-ben) 

szolgáltatják az alapot ehhez. Ha a mérések diszjunkt 

halmazokat eredményeznek az euklideszi térben, nehéz a 

nagy dimenziószám és a nagy elemszám miatt e halmazokat 
megkeresni.

Az alakfelismerési feladat megoldása a gyakorlatban
úgy történik, hogy valamilyen módon (a tananyag alapján) 

az euklideszi téren Dr diszjunkt részhalmazokat, 
úgynevezett döntési tartományokat hozunk létre,

, • •. ,

és ^ Q Di

esetén a Ci döntést hozzuk (i=l H).,.. •,

2.1. Definíció. Egy olyan mérhető valós oL(x) függvényt, 
amely az euklideszi teret az^l 
le egyértelműen, döntésfüggvénynek nevezzük:

c*-(*)•* E w 0, ••• Л}
Az alakfelismerési feladat megoldását adott döntés­

függvény ismeretében a következő döntési szabály adja:
^döntést hozzuk. (i=l,...,

r| halmazra képezi, • •. ,

a ci{\) = i esetén a R).

2.2. Megjegyzés. A döntésfüggvény és a döntési tartomá­
nyok kapcsolatát a következő összefüggések szemléltetik: 

a/ Adott d(y)-hez a döntési tartományok:

W - 1 x é Ejj)
b/ Adott döntési tartományokhoz a <Цу) :

d = -W ^ & Dv

i= 1 R (2.2), • • •,

R,(2.3)i= 1 9 • • • 9

*
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Az objektumok, a megfigyelések és a döntési tartományok 

kapcsolatát szemlélteti a 2.1. ábra
A döntésfüggvényt - vagy a döntési tartományo­

kat - úgy igyekeztünk meghatározni, hogy a döntésük a 

lehető legjobban megegyezzen az objektum eredeti kategó­
riájával. Éppen ebben rejlik a gyakorlati alkalmazás 

számos proűLémája, egyrészt az E^ megfigyelési tér, más­
részt a döntésfüggvény olyan megválasztására törekszünk,
ahol a döntési tartományok a lehető legjobban megközelí­
tik a megfigyelések E^-beli csoportjait.

oAűtó-i
döntési 
törtöm а и << okmeWse-lc terei

E«2. Ui,
Werts \Uu>

^3Ca
B3 P-t

Cz, 3,Bz

2.1. ábra. Az objektumok, a róluk készített mérések és 

a döntési tartományok kapcsolata
Eddig lényegében az úgynevezett determinisztikus 

modellt ismertettük: egy adott E^-beli pontról a B^-k 

ismeretében egyértelműen megadható, hogy melyik osztály­
hoz rendelhető hozzá.

Sok gyakorlati esetben a mérések alapján az Ejj-ben 

az egy csoportba tartozó pontok halmazai nem diszjunktak. 

Ez úgy lehetséges, hogy a mérésekkel nem kaptunk meg
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minden információt, vagy kevés jellemzőt mértünk, vagy 

pedig nem elég informatív jegyeket. Ugyancsak nem kapunk 

szükségképpen diszjunkt halmazokat, ha a (2.1)-beli 
Ejj leképzésről nem tesszük fel, hogy kölcsönösen 

egyértelmű. Ekkor a halmazok közötti átfedés a vélet­
lentől függ. Egy Ejj-beli pontról nem állíthatjuk egyér­
telműen, hogy melyik osztályhoz tartozik, csak bizonyos 

valószínűséggel. A döntésünk tehát hibával jár. Ez a 

sztochasztikus eset. A statisztikus alakfelismerés fe­
ladata olyan döntési tartományok meghatározása, amelyek 

alapján a döntés hibájának a valószínűsége a lehető leg­
kisebb. A kösetkező fejezetben erre a problémára ad egy 

lehetséges megoldást.

5L-*

2.1.1. A Bayes döntés
mező,^Legyen adott egy (.2.Д(Р) valószínűségi 

a mezőn egy valószínűségi vektorváltozó, С^(д.=1,...,
)-n egy teljes eseraényrendszer. Olyan d(x) 

döntésfüggvényt keresünk, amellyel ^ osztályba 

lása, azaz valamely C^-hez való hozz Elrendelése bizonyos 

értelemben optimális, pl. a legkisebb hibával jár. Hibás 

az osztályozás akkor, had(|)^és i^CL, i£ j,
Vezessük be a következő jelöléseket:

Legyen р±= В(С±), i=l 

valószínűsége. Nyilván |p,;-0
^ megfigyelés C^-re vonatkozó feltételes sűrűségfügg­

vényét, azaz

ezen
R)

az

soro-

i.j-1 R., • •.,

R az i-edik osztály a priori• • •

ésZp£ = 4. Jelölje Z'QO a
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es ^$с{к) dy='p(\é-h Ю,^сЕц/. 
А

-f<(x)*o
} Б kJ

Az 4^(х)sűrűségfüggvények létezését általában semmi sem 

garantálja, de a legtöbb gyakorlati esetben ezt feltéte­
lezhetjük.

A fenti jelölésekkel a hibás osztályozás valószínű­
sége a következőképpen adható meg:

РаЧ ~ ^ (* ) íür > (2.4)
»3

ahol D. a <Kx)dön1Ó3függvényhez tartozó döntési tartomány. 
J

A hibás döntésekhez hozzárendelhetünk egy számot, a hi­
bás döntés költségét. Jelölje = Cc^ (d)^D СЦ

azt a költséget, (vagy veszteséget), amelyet a fenti 
esetben kapunk.

=0

2.2. Definíció. A cL^ct(y)döntésfüggvényhez tartozó feltételes 

veszteség a osztály esetén (tehát ^ esetén)

R Г
~ 'У_ \ Ctv ^ ^ (x) oOc
$«*

Lr) vektort veszteségvektornak neezzük.

R.
L; - Ц (d-bZ. íij ^ К .г'=- ^

)

i*í> (2.5)
l=(lAz 4 >•

Két döntésfüggvény a hozzájuk tartozó veszteségvek­
tor segítségével összehasonlítható; ehhez tekintsük a kö­
vetkező két definíciót:

d?Jx) két döntésfüggvény,2.3» Definíció. Legyen <£,(*) és 

és (L LR2 ) a hozzájuk tartozó vesz-14) •• • )L) ill. (L
teségvektorok. A gL, döntésfüggvénnyel megadott döntési 
szabályt jobbnak nevezzük, mint a á^-vel megadottat, ha

U é L ír > l'"l
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és legalább egy i-re Ha minden i-re egyenlő­
ség áll, a két döntési szabály ekvivalens.

2.4. Definíció. Egy d döntésfüggvénnyel megadott dön­
tési szabályt megengedettnek nevezünk, ha nem létezik 

nála - a 2.3» Definíció értelmében - jobb döntés.
Célunk bizonyos kritériumok alapján egy megengedett 

döntési szabály megtalálása. Aszerint, hogy az a priori 
valószínűséget ismerjük-e, két módon járhatunk el: 

a/ Ismert a priori valószínűségek esete
Egyszerű a megoldás abban az esetben, ha az a 

priori valószínűségeket ismerjük. Ekkor definiálhatjuk 

a feltétel nélküli várható veszteséget:

2.5« Definíció. A d döntésfüggvényhez tartozó kockázat, 
vagy várható veszteség:

L=LWs2lpil-c aZ p«:2. c*y V
■í-1 a-i - 0 (2.6)у = 1

2.6. Definíció. A (2.6)-ot minimalizáló - azaz a mini­
mális veszteséget hozó - döntést a p ~ (p/|, - - ( p>jja priori 
színűségekhez tartozó Bayes döntésnek, a hozzátartozó 

döntésfüggvényt Bayes döntésfüggvénynek nevezzük. A 

Bayes függvényt a továbbiakban c6*(x)-gal, a hozzátar- 

tozó döntési tartományokat [) .

való-

-gal fogjuk jelölni.

2.1. Tétel. Adott'p és mellett a (2.6) minimális, 

ha a döntési tartományok a következő alakúak:

Pfrti-k !<;(*)}) (2.?)
1/ -1 I t)

ükMiJ
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На а (2.7)-ben valamely indexekre az egyenlőség való­
színűsége 0 minden 4és ^ -re, akkor a minimalizálás 

egyértelmű egy 0 mértékű Halmaz kivételével.

Bizonyítás
Először bizonyltjuk, hogy a (2.7)-ben megadott D.d

tartományok minimalizálják (2.6)-ot. Helyettesítsük 

(2.6)-ban a P-- helyébe
J

(2.p-eU

L'Z pcL(*Z pc 2.t(í ( p

ahol most Dy , valamely cL{i) döntésfüggvényhez
tartozó döntési tartomány. (2.8)-at alakítsuk át a kö­
vetkezőképpen:

3

(2.8)í- Г'л-->

к г К л.
L= 2. Pv Z \ Cvi 4 C M ctv « 211- ) pi C*\ \ i (x) cLx - 
ihj. * ** ь-i ft D. J "

R r к-Z i z
Г' j). oi.

!pv Cij f f ) cU . (2.9)

Ebből az átalakításból látható, hogy adott pt- és Ccy 

-1,, R ) mellett L akkor lesz minimális,
Hífttra van még az egyértelműség bizonyítása.

ha bf-CfW.

begyen R
ly(x)r2 Pl Ccj ^-(k)

L = Z ^ *&»*(><) íbf » S ^-(x)c(x
|’=л Dy “ eN

ahol А.(к)- -Ц-(*)

(2.10)
Ekkor

?

, ha xé-Dy. Mivel a Bayes döntés
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-£!Дх) = YM*. 4г’ (.х)
'll

, igy egу tetszőleges d(xj -hez 

-hez tartozó veszteség-különbség:
szerint

сСДх)és a

ИШ-^Сг))лх=2 лк. Á-C (x)) ct/ О ♦ 

-Цу(х)= púk A/amdynek
•c= IEkJ Da

Egyenlőség csak akkor áll, ha 

valószínűsége a feltétel miatt. D
О a

2.3« Megjegyzés. Ha (2.7)-ben egyenlőség áll fenn va­
lamely indexekre, akkor tetszés szerint osztályozhatunk.

A továbbiakban vizsgáljuk azt a speciális esetet, 

amikor CtjM minden -re (
Ekkor (2.7) a következő alakú:

^’4, ...(r .1

-fc (x)~ 2. f=f H~,kPf (2.11)
<4i

amely 21 p^L-fx) kifejezéssel való egyszerűsítés után
i»i '

{xj x&E ItW-Pi&W] , ll) (2.12)M ) Pt

alakú. Ebben az esetben tehát a Dj* tartományba azok a 

pontok tartoznak, amelyekre p-j’l/íx) maximális.
írjuk fel a Bayes döntéshez tartozó kockázatot eb­

ben az esetben! (2.6) szerint

■

L*-LU*)»2L»t-2 [ \ .
t-Ч Í--I&

Ez nem más, mint a Bayes döntés hibavalószínűsége.
(2.13)\ai J
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Mivel a Bayes döntésről van szó, Pu'-fv(x) minimumát ír­
hatjuk, így (2.13) tovább alakítható:

L* -Z C ГКЛ*, pv .(Л*) <№ - f fluL pt- ^ i'U) djf - 

l’ г

f тл* pv (*) í>0f .
К v

í(x)cl előle st a \

t=( D?t

(2.14)
Ek; 1

megfigyelésVezessük be az

sűrűségfüggvényére, és jelölje

f.? Uh - P(Cvl^-x)Ш
a osztály a posteriori valószínűséget. Ekkor a Bayes 

döntés hibavalószínűsége a következőképpen is felírható:

\(d*)*L(d*)-[ VKut p-C $ 1
Ем v “ ew

'АЛ pc C^) -f ÍW cOc
(2.15)

b/ Ismeretlen a priori valószínűségek esete
Abban az esetben, ha az a priori valószínűségek 

nem ismertek, egy iaegengedett döntési szabály megtalá­
lásához más utat kell követni. Megengedett döntési sza­
bályok halmazából való kiválasztás elve a minimax elv: 

válasszuk ki azt a d^ döntési szabályt, amelynél a vár­
ható veszteségek maximuma mmimális, azaz

чМ,-,*LoUM)4 

VMX* (Le (ctM)) *
V d

Le (d)ITVUUÍ

vagy
rn.iL rvoo< Lt- (ít) ^ V''i ^ *

l

A megengedett döntési szabályok halmazát, tulajdon­
ságait és a Bayes döntéssel való kapcsolatát vizsgálta 

részletesen T. V. Anderson (1974), Rao (1973) és Wald (WO),
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Fő eredményeik a következők:
(1) A megengedett döntési szabályok osztálya teljes 

(sőt minimálisan teljes),
2.4» Megjegyzés» A teljesség és a minimális 

teljesség definíciói:
2.7« Definíció. Döntési s2abályok egy C osztálya 

teljes, ha minden C-n kivüli d döntési sza­
bályhoz tartozik egy olyan C-beli elem, amely jobb, 

mint d.
2.8. Definíció. Döntési szabályok olyan teljes 

osztálya, amely nem tartalmaz más teljes osz­
tályt, minimálisan teljes.

(ii) Minden megengedett döntési szabály egyúttal 
egy Bayes döntési s®. bály is.

(iii) Ha fc>0 > akkor a hozzá - mint a priori
valószínűségeloszláshoz tartozó - Bayes dön­
tés létezik és megengedett.

О
(iv) Létezik egy legkedvezőtlenebb p 

valószínűségeloszlás és egy
о

si szabály, amely megengedett és a p 

tartozó Bayes döntési szabály.
(v) Ha , létezik egy egyértelmű minimax

'

a priori 
minimax dönté-

-hoz

és megengedett döntési szabály, melyre
Ц(«1В)-4.(ЛМ).
Egyes esetekben tehát az egyébként nehéz vá­

lasztás könnyén végrehajtható. Konkrétan két osztály 

esetén a következő fejezetben mutatjuk be a minimax 

megoldás megkeresését.
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2.1.2. A Bayes döntég normális eloszlás esetén
normális eloszlású, és le-Tegyük fel, hogy

gyen

—~§"~7---- 71 °*РП (2Tl)Í|2vlv L4C ) i = 4| “M ^

(2.16)
*ahol ZV jelöli a kovariancia mátrixot,^ 

ható értékét a osztály esetén, ÍZ с 1
'V 'Лcia mátrix determinánsát, Zc

Az előző fejezőhez hasonlóan most is két esetet 

vizsgálunk.
a/ Ismert a priori valószínűségek esete

Tegyük fel először, hogy az a priori való-

vár-c a

a kovarian-
pedig az inverzét.

színűségek ismertek. Legyen továbbá c^sd minden v,y -re. 

Ekkor (2.7)-nek megfelelően a feladat olyan D. tartó-
U

mányok keresése, melykre ри^'Ы- vagy ami
ez$l ekvivalens - p7-ft'(x)-maximális.
Legyen

«.‘GO

(2.16)-t behelyettesitve

-1(xTS- 72; )*,• -
Mivel ^ locft 27C i-től független, elhagyható; és

T«5 И T-=r
^ — 6 Д* ~ X ^

alakul:

Zi _X + c Ц-i -~2_ 11 pt,*

<г> dr”

á 'Ц “27Г -

(2.17)

(2«: 17) a következőképpen

(2.18)
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Ekkor
i-fj,Dj*’ {x ) ie Én

rf'{í U6 Ev; «t-itGs)*is<n>'

);
vagy

(2.19)

itt d]Jx) a j és k-adik osztályt elválasztó felület 

egyenlete, amely esetünkben egy másodrendű felület.
Ha még feltesszük, hogy Z. t,e2 > , azaz a kova­

riancia mátrixok megegyeznek, akkor (2.19)-bői a másod­
fokú tag és az kifejezés is elhagyható:

)* i Pc = + ^
ahol

Ц/о * 2 ' p-i

tU'o 3

Bármely két osztályt elválasztó felület ekkor egy hi- 

persik:
•Ljji)* (ДГМ)Т?',г-1(|!‘/+/*‘-)Г ?■'* Í/*!j -/Üt) + И I; -

(2.20)= UrTX + UTe,

Ha még feltesszük, hogy akkor
Dg* = {x\l ) Qí-r/Cfc/?“<X ^ 4 OfSí “#*)}

fik b,j*L (2.21)
a C, osztályba soroláshoz a legjobb osztályozást adja.

U

b/ Ismeretlen a priori valószínűségek esete 

Tegyük fel, hogy az a priori valószínűségek 

nem ismertek. Ekkor a rainiraax elv szerint kell a meg­
felelő döntést kiválasztanunk. Tekintsük két osztály 

tehát legyen £=2. , és legyen f

ahol most ur =

üúo =

esetét, megfigyelés adott.
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Tekintsük az

It - ~2 - ! ^,'~Аг)
^ M(jU.-ii2) eloszlású,

(2.22)
akkorvalószínűségi változót. Ha

is normális eloszlású, ésa
E W-) = V/S ' í {^hyf 2'' (/< <'£') =

* ^ (ß*" 2. *'

1-^ (fí^^
(2.23)
(2.24)ahol

Az U varianciája
Vdr(u.)-E (ll-e(U)f’ е[(Л-<-^)т2~’| - ?'/!<]''

= E [(^-/кг)ТГ'1 (l-^Kb“')7?4 (,{.,'&)> 

•l/zriV Ef(b.)(!^')T24>,-A) ^-л/rY^O
^ w(M)

s «1
(2.25)

, akkor U. №Q<sí,*) eloszlású.
a másik osztályhoz

eloszlásúTehát ha
Hasonlóan látható be, hogy ha 

tartozó objektum jellemző vektora, tehát t\i(jU-г., <0 elosz*- 

lású, akkor
tartozó objektumot így a

'f

eloszlása ^ i*0 ) • A ^ -hez

I ■tíctorváltozó helyett az 

egydimenziós valószínűségi változóval vizsgálhat­ni
juk.

akkor a hibás osztályozás valószínűsége 
с-*/3-

На \ >

-&г

p „ * í Ш eг
(2.26)

— О
OLг- *ahol^alkalmasan választott konstans, és az 

helyettesítést alkalmaztuk.
, akkor

У f5Г

Ha

-á(^éf rOo

Vl^-
c ^

2 ^.

c +Wa (2.27)\fct
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c -t úgy kell választ ártunk,A minimax megoldáshoz

hogy *
cu 5 га? ^ ■ с'* J \4тг г 

(«£№ 
teljesüljön.

(2.28)v- Ö3

На feltesszük, hogy a hibás osztályozás költségei

, akkor a hibavalószí-c a Оegyenlők, azaz c24=qz és

-iá*nűség o°

í <4 e ”4;
(2.29)

amely a normális eloszlás táblázatából könnyen meghatá­
rozható.
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2.2 A statisztikus alakfelismerés modelljei, módszerei

2.2.1. A statisztikus alakfelismerés modellje
Az előző fejezetben a Bayes döntéssel megadtuk az

egy lehetséges megoldását. 
Eszerint a feltételes sűrűségfüggvények - és esetleg az 

a priori valószínűségek - ismeretében egy 

a legkisebb hibával tudjuk a megfelelő osztályhoz hozzá­
rendelni.

alakfelismerési feladat

megfigyelést

A feltételes sűrűségfüggvények pontosan a legrit­
kábban ismertek, szerencsés esetben az eloszlás típusá­
ról van feltételezésünk. Ezért a döntésfüggvény konstru­
álásához szükségünk van egy mintára, az ún. tananyagra.

2.6. Definició. A azonos eloszlású, 

teljesen független valószínűségi változósorozatot tan­
anyagnak nevezzük, ahol ^ *,6 £w és (i‘B^-»,^he^az i-edik

^-eket tanulópont oknak, a

r‘

osztályból származik. A
-eket tanításnak nevezzük.

A -ről feltételezzük, hogy úgy veszi fel az 

értékeket, hogy

a <*.(*) döntésfüggvény ^ ^
(2.30)

ahol pontbeli értéke. 

A tananyag tehát ismert kategóriájú vektorokból álló 

statisztikai minta, a döntésfüggvényt konkrétan ennek 

segítségével lehet meghatározni.
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A statisztikus alakfelismerő módszerek célja olyan
döntésfüggvény konstruálása a tananyag alapján, hogy a 

döntéshez tartozó hibavalószínűség a legkisebb legyen, 
azaz a döntés a lehető legjobban közelítse meg a Bayes 

döntést.
A döntésfüggvény meghatározása és alkalmazása több­

féleképpen történhet. Az egyik lehetőség a "felismerés 

előtti tanulás" (2.2. ábra). Eszerint adott tananyag alap­
ján megalkotjuk a döntésfüggvényt (tanulás), és egy új 
pontot a döntésfüggvény segítségével osztályozunk. A 

döntés "jóságának" ellenőrzésére szükség van egy újabb 

ismert kategóriájú ponthalmazra, a teszthalmazra, amely­
re a döntési szabályt alkalmazva és összehasonlítva 

az ismert kategóriával, a tévedések számából következ­
tetni lehet a hibás döntés valószínűségére. A másik le­
hetőség az "egyidejű tanulás és felismerés" (2.3. ábra).
A döntésfüggvény itt a hiba-detektor szerint módosul úgy, 
hogy minden egjss tanulópont beérkezése után a döntés 

javul vagy változatlan marad.

Tanulópontok > tanulás döntésfüggvény-^ osztályozás

uj mintapón

2.2. ábra

Tanulópont ok ^ döntés ^ osztályozás
5 £

döntés -í- 
módosító

hiba-detektor

2.3. ábra
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A döntésfüggvény meghatározásakor természetesen 

minél nagyobb méretű tananyagra törekszünk a megbíz­
ható döntés elérése érdekében.
A tя Tinnyag méretére vonatkozóan pontos ismereteink nin­
csenek. Pritz szerint az "H dimenziós térben történő ta-

I ^nuláshoz hozzávetőlegesen i\-Z nagyságú tananyagra van 

szükség". (Pritz /1974} 36.o./), ahol A konstans a 

tanuló algoritmustól és az eloszlásoktól függ. Ilyen 

nagy elemszámra tett követelmény a gyakorlatban ritkán 

teljesíthető. Ezért érdekes Hughes (1968) elméleti tanul­
mánya, mely szerint véges a mintaelemszám esetén létezik 

egy optimális N dimenziószám^ amely felett az osztályo­
zás sikeressége átlagosan csökkenhet, sőt Lachnnbruch 

(1969) szerint bizonyos módszereknél elegendő osztályon­
ként a koordinátaszám háromszorosa. Tapasztalataink szerint 

különösen az orvosi diagnosztikában kényes kérdés a min­
taelemszám. Kellő méretű tananyag előállítása gondot okoz­
hat egyrészt bizonyos betegségek ritkasága miatt, más­
részt a kontroll esetek számának növelése is nehéz, ha 

a szükséges vizsgálatok kockázatosak vagy akár csak kel­
lemetlenek. A gyakorlatban általában arra törekszünk, 

hogy a mintaelemszám sokkal nagyobb legyen, mint a di­
menziószám.

Egy másik, a döntést jelentősen befolyásoló előké­

szítő munka a mintaelemszám meghatározása mellett a figye­
lembe veendő jellemzők (koordináták) megválasztása, az 

ún. lényegkiemelés.
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Az osztályozandó objektumok: sokszor olyanok, hogy a ró­
luk származó megfigyelések esetleg nem is euklideszi tér 

pontjai. Lehetnek pl. függvények - EEG vagy EKG görbék: 
azaz az agyról illetve a szívről elvezetett elektromos 

jelek grafikonjai, vagy betűk. Tehát a vizsgált valószí­
nűségi változó eredetileg egy mérhető térből veszi
az értékeit. Az osztályozási feladat annál könyebben old­
ható meg, minél kevésbé ’’absztrakt” а X tér. Ezért a tu­
lajdonképpeni és az eddig tárgyalt alakfelismerési fel­
adatot ilyen esetben megelőzheti egy olyan transzformá­
ció, amely a megfigyelést egy egyszerű struktúrájú, 

leggyakrabban euklideszi térbe transzformálja. Ez a transz- 

formáció a lényegkiemelés. Az alakfelismerő rendszert
tágabb értelemben a 2.4. ábra szemlélteti, amely a 2.1. 

ábra bővítése.
\w

X (mintatér) 1-^Fizikai
rendszer

Я.
Llényegkiemelé

2.4. ábra

Ha az X eredetileg maga is véges dimenziós euklideszi 
tér, a lényegkiemelés célja lehet pl. 

csökkentése. A lényegkiemelésnél többnyire a következő 

szempontokat veszik figyelembe:

a dimenziószám
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a/ az osztályozás alacsony dimenziójú térben 

történjen lehetőleg.
b/ a jellemzők elegendő információt hordozzanak 

az alakzatra vonatkozólag, a dimenzió redukálás 

ne járjon tehát számottevő információveszteséggel. 
(Ez utóbbin itt az eredeti és a transzformált 

megfigyelésekhez tartozó Bayes döntések hibava­
lószínűségeinek eltérését értjük.)

с/ a lényegkiemelést rendszerint olyan kritérium 

alapján végzik, hogy az egyes osztályokba 

tartozó pontok a transzformáció után "közelebb" 

kerüljenek egymáshoz, az osztályok közötti 
"távolság" pedig növekedjék.

Á lényegkiemeléssel a továbbiakban nem kívánunk 

részletesen foglalkozni. Csupán néhány leggyakrabban 

használatos módszert említek, ezek:
- korrelációszámítás
- faktoranalízis (Harman /1976/)
- információelméleti módszerek (pl. Watanabe /1967/j 

Tou és Heydorn /1967/)

A konkrét lényegkiemelési módszer megválasztása 

az adott feladattól függ. A 4» fejezetben, amelyben 

saját tapasztalatainkról számolunk be, kitérünk az 

esetenként alkalmazott (igen egyszerű) lényegkiemelési 
módszerekre.
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2.2.2. Statiaztikua alakfelismerési módszerek
A 2.1.1. pontban a Bayes döntés az alakfelismerési fel­
adat megoldását adja: az a priori valószínűségek és a 

feltételes sűrűségfüggvények ismeretében a Bayes döntés 

végrehajtása igen egyszerű. Általában azonban ezek nem 

ismertek, Rendelkezésre áll viszont egy minta, a tan­
anyag, amelynek segítségével becsülhetjük e valószínűsége­
ket, a sűrűségfüggvényeket, vagy közelíthetjük magát a dön­
tésfüggvényt. Az egyes alakfelismerési eljárások abban 

különböznek egymástól, hogy a döntésfüggvényt hogyan 

állítják elő. Ebben a részben bemutatunk néhány statisz­
tikus alakfelismerési módszert, és kapcsolatukat a Bayes 

döntéssel.

a/ A legközelebbi szomszéd módszer
Az a priori valószínűségek és a sűrűségfüggvények 

ismeretének hiányában hfeurisztikus eljárások is konst­
ruálhatok egy pontnak egy adott tananyag alapján való 

osztályozására. Természetesen az a szerencsés, ha a 

heurisztikus algoritmusokról megállapítható a Bayes 

döntéshez való kapcsolatuk.
A Cover és Hart (1967) által leírt "legközelebbi 

szomszéd" (Nearest Neighbour - NN) algoritmus elve 

igen egyszerű és szemléletes:
Legyen adott

•*4-6 . t'--V-

tananyag, 

azaz т>д‘

) •’* í

I

tanulópont osztályának a sorszámát jelöli. Ez azt 
is jelenti, hogy P(Vj* = i = Х V pí (x ) y
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az i-edik osztály a posteriori valószínű- 

\ az osztályozandó vektor, és jelölje ^ 

valódi osztályának sorszámát *ü\
2.6 Definíció. Azt a

ahol
sége. Legyen

d;%i \ \

pontot, amelyre

vn\v\
C é K. (2.31)

ahol dist (» } . ) az E^-en értelmezett tetszőleges távol­
ságfüggvény, a ^ legközelfebi szomszédjának nevezzük.

Az Ш döntés eszerint: | -t abba a kategóriába
sorolja, amelynek a sorszáma éppen U** ,
Hibás a döntés akkor, ha ,

Adott véges elemszámú tananyag esetén a hibás dön­
tés valószínűsége maga is valószínűségi változó, amely 

a tananyagtól függ:

p(C>Íh IU--tf- =% (2.32))
V - I

(2.32) feltételes várható értéke rögzített ^ mellett.*

E(p(H„;i^))^E(2PU (2.33)i=i

A feltételes valószínűség definíciója szerint

• ?md■ < I\:y»pt- pc (p). ~ '(2.34)

(2.V3)~at a (2.34) felhasználásával a következőképpen
alakíthatjuk:

p *
Г VA/ ~E (P( H* 10 • E [Г (pc (^) ~ p3 (]) (p)\Q (2.35)

Cover és Hart (1967) bizonyította a következő tételt: 

Tétel: Ha az a posteriori valószínűségek folytonosak, 

akkor (i) a (2.35) feltételes várható értéknek
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létezik határértéke, és ez 

^MA/ “ ^ c - £ (i-1 1Й $>)
?iiu £ Ре(Л*)(2-^ hW),

(2.36)W. “>«ű

(ü)
(2.37)

?e (<£*) <ч (2,'tej-ben megadott Bayes hiba.
A : az ШТ módszer aszimplotikus átlagos hibája.
Bebizonyítható, hogy a P-^ határérték valóban jól becsüli 
a hibavalószínűség tényleges értékét. /Wagner (1971)/.

A tételben adott egyenlőtlenség áll, tehát а Ш 

módszer akkor is alkalmazható, ha a tanulópontok tere 

nem végesdimenziós, hanem tetszőleges szeparábilis met­
rikus tér. Ezért az Ш módszert többféle metrikával is

aho|

végrehajthatjuk. A nem euklideszi metrikák használatának 

a konkrét gyakorlati alkalmazások során van jelentősége.
j^tehát(2.37) azt is kifejezi, hogy 

az Ш módszer aszimplotikus átlagos hibája a Bayes 

hiba kétszeresénél nem lehet nagyobb. Az Ш módszer te­
hát kis Bayes hiba esetén jó eredményt ad.

Ezen előnyei indokolják, hogy az Ш módszer mind 

elméleti vizsgálatokban (Patrick, Bisher, (1979 Wagner 

(1971)) mind gyakorlati alkalmazásokban (lásd.a 4. feje­
zetet) széleskörűen elterjedt annak ellenére, hogy 

tógépes realizáláskor az egész tananyagot tárolni kell.
Az ШГ módszer változatai közül a k-EN módszer a leg- 

^ -hez legközelebbi 4r2&0+4 pontot 

és -t abba a kategóriába 

sorolja, ahova a többség tartozik. А к-Ш módszer 

mindig jobb a Ш-nél, lehet olyan példát találni, (Fritz 

(1974.)), melyre ^

számi-

ismertebb. Ez a 

vizsgálja U04,2, ...)

nem

Uh .
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b/ Súlypont módszer

2.1.2-ben megmutattuk, hogy a Bayes döntésfüggvény nor­
mális eloszlás és egyenlő kovariancia mátrixok esetén li­
neáris. Más lineáris döntésfüggvények is konstruálhatok a 

sűrűségfüggvények felhasználása nélkül. Ilyen az ún. súly­
pont módszer, amelynek elve a következő.

Legyen adott egy tananyag, melyről tegyük fel, hogy n
n. számú tanulópontot az egyes 

dszámú pontot tartalmaz, és 

kategóriákból.
Jelölje Ф г - ^ »tj j , R

a j-edik kategóriából származó i-edik tanulópontot. A to­
vábbiakban ezt a jelölést fogjuk alkalmazni a tananyagra.
Legyenm. a j-edik osztály (B.) súlypontja (áthgvektora). d d
Legyen a döntés az, hogy egy x pontot ahhoz az osztályhoz 

sorolunk, amelynek a súlypontjához a legközelebb esik, 

azaz amelyre a
оЦ - bv.(b))T (* ' ^(1°) * XT X- 2 vvv.(t)rx + »»>1

Mivel a minimalizálásnál az első tag nem játszik szerepet, 

eli^yható, így lineáris függvényt kapunk. A j-edik és k-adik 

osztályt elválasztó hipersik egyenlete:
ЛЛ(х)= (*«>-hJü)rx - í (tbll)TBs.,iLW°r -

Ez az elválasztási módszer akkor ad jó eredményt, 
ha a szórások megegyeznek. Pontosabban (2.39) a Bayes dön-

)

(2.38)

íj)- (2.39)

tés speciális esete normális eloszlás, egyenlő a priori 
valószínűségek és T.~ó2l esetén. Ugyanis

z4j (2.«)
«W'-á.u-fiT(í-bí0;

miatt mosti
alakú. Ezt a módszert Duda és Hart (1973) minimum-távolság 

osztályozásnak nevezi.
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с/ Két osztály lineáris döntésfüggvény segítségével

való szétválasztásához (szeparálásához) az együtthatók

meghatározására alkalmas iteratív algoritmus a következő; 

(£o$enb|Qtt;
Adott a tananyag

Feladat a á(x)= ur X-+
inak meghatározása. d(x) >0

döntés. Az iteratív algoritmus a következő:
cL 4x) = ur ur0

tésfüggvény (pl. Ur azonosan 0 vektor)
2. Tegyük fel, hogy eljutottunk 

vény n-edik közelítéséhez:
. к,r\ (*.)*oC U )= uy X **

^ 1 ••• ^ i ~ ^•

alakú döntésfüggvény együttható­
esetén C| egyébként a

))

tetszőleges kezdeti dön-1. Legyen

lépésben a döntésfügg-

(

Ekkor a d. (x) együtthatóit a következő "tanulási szabállyal" 

kapjuk: tа КХГ )
(O- (Д о

ahol Хн. a soron következő tanulópont , osztálytól függet­
lenül, és (O

ha (k G<) xK pontot jól osztályozta, 

ha dLtk)(*ú*- 0 Ú h

ha dL4(b)>0 <fs Xk é

°>
chf c) f

7
és c tetszőleges konstans. 

Állítás: ha az те , Г (in **ea{Xc J halmazokl» /

lineárisan szétválaszthatok, 

ges számú lépésben véget ér, 

hogy

akkor a fenti algoritmus vé- 

azaz van olyan ■& mi* szám,

Mí). x>%minden
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A bizonyítás, pld. Meyer-Brötz, Schürman (1972) könyvében 

megtalálható.

d/ Az előbbi algoritmus általánosítása az ún. Commitee 

Machine algoritmus (Hilsson, 1963)» amellyel szakaszonként 
lineáris döntésfüggvényt állíthatunk elő{2.g. a'brq)

- -+> 'X

— + -

■++->

+4--

2.£. ábra ,
Adott két osztály, a feladat a két halmaz

hipersíkkal történő szétválasztása, ahol ...
oU (x) * «г* x t

(x )* игг x 4- щ/г0

számú
előre

rögzített szám :
§

í

24,+ A^ 8 -■>CÍ X + Ur,2M1 -

A döntés "többségi elv” szerint történik: egy ismeretlen
X pontot abba az osztályba sorolunk, amelybe еЦ(х),,c(^x) közül 
a többség döntötte:

ot(x)-iign ^2.

A döntésfüggvények együtthatóinak meghatározása iteratív 

módon, a tanulópontok beérkezése utáni - az előző algorit­
mushoz hasonló - módosításokkal történik. Az algoritmus 

gyakorlati tapasztalatok szerint jól alkalmazható
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ellenére, hogy a konvergenciára nincs ismert bizonyítás.

e/ Cluster algoritmusok
Az eddig ismertetett módszereket szokás a "tanulás 

tanítóval" (supervised learning) közös néven emlegetni, 

mivel az osztályba sorolást, illetve a döntésfüggvény meg­
alkotását egy tananyag alapján lehet megadni. Az alakfel­
ismerési módszerek egy másik csoportjánál, a "tanító nél­
küli algoritmusok"-nál (unsupervised learning) a kiinduló­
pont is más: adott adathalmaz elemeiből kell valamilyen mó­
don "osztályokat", ún. clusterokat képeznünk. Az adathal­
mazról semmi előzetes ismeretünk nincs.

A 2.2 pontbeli tananyag definícióval összhangban 

tekintsük az adatokat most is független, azonos éLoszlású 

valószínűségi változósorozatnaW:

(Ez a sorozat a valóságban mindig véges)
inU-.tM •

változók

közös sűrűségfüggvényét jelölje . Tekinthetjük clus-
tereknek pl. az E^. tér olyan részhalmazait, amelyekben 

pontok koncentrációja viszonylag 

megadhatók olyan diszjunkt ^ 

hogy rajtuk az $(x)viszonylag nagy, rajtuk kívül pedig 

mijadenütt nagyon kicsi. Ac.uster algoritmusok nagy része 

az elemek között definiált "távolság" vagy "hasonlóság" 

fogalomra épül. így egycusterbe kerülnek azok a pontok, 
amelyek a "leghasonlóbbak", vagy a "legközelebb" vannak 

egymáshoz, mint más clusterbeli pontokhoz.

a j**. nagy, pl- ha 

halmazok az Ew-ben,D\ vs)
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Nagyon sok Cluster algoritmust írtak már le, a leg­

ismertebbek Hartigan (1975), Anderberg (1973)» illetve 

Duran-Odell (1974) monográfiákban megtalálhatók.
A cluster algoritmusok két nagy csoportja a hierarc­

hikus és dinamikus módszerek. A hierarchikus módszerek elve: 

kezdetben minden pont önmagában egy cluster. E pontok "ha­
sonlósága" alapján összevonjuk a "leghasonlóbb" clustereket. 

Az összevonást addig folytatjuk, míg végül egy clustért ka­
punk, amelybe az összes pont beletartozik. Az eredmény függ 

a hasonlósági mérték megválasztásától és az összevonás mód­
jától.

A dinamikus módszerek lényege az, hogy kezdeti kon­
figurációból indulnak ki - azaz előzetes feltevésünk van 

pl. a clusterek számáról, középpontjairól stb. Az - álta- 

- algoritmusok ahalmaz pontjai alapján 

módosítják a kezdeti konfigurációt.
A cluster módszerekkel nemcsak az adatok, hanem a 

változók is osztályozhatók, így a cluster analízis hasz­
nos lényegkiemelési módszer is lehet. Ilyen értelemben ro­
kon a faktoranalízissel.

Nem célunk a cluster algoritmusok részletes leírása.
E rövid kis ismertetéssel cssk az algoritmusok sokaságát, 
sokrétűségét kivántuk érzékeltetni és azt a bizonytalan­
ságot, amely a helyes módszer megválasztását és ennélfogva 

az eredmények interpretálását jellemzi.

Iában itérdiv
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3. Sűrűségfüggvénybecslés éa a lineáris diszkriminancia 

analízis

Ismeretlen a priori valószínűségek és sűrűségfügg­
vények esetén a Bayes döntésfüggvény közelítésének kézen­
fekvő módja adott tananyag alapján a feltételes sűrűség- 

függvények becslése. Erre igen sok eljárás ismeretes, 

mint pld. az egyszerű hisztogram-becslések vagy pedig a 

Parzen (1962) illetve Meisel (1972) által javasolt mód­
szerek, illetve ezek általánosításai. Számos eljárás, to­
vábbá a Bayes döntésfüggvényt közelítő iteratív tanuló 

algoritmus született ezek alapján, a legismertebb a 

Wagner-Tolverton (1967) illetve Specht (1967) féle po- 

linomális dnaskrimináló módszer. Ezek ismertetésére nem 

térünk ki, mivel alkalmazásukhoz igen nagy tananyag szük­
séges, amely a mi orvosi diagnosztikai célú vizsgálataink­
ban eddig nem állt rendelkezésre.

Részletesen foglalkozunk viszont azzal az esettel, 

amelyben feltesszük, hogy az eloszlás típusa ismert, pl. 

normális eloszlás. Ekkor a sűrűségfüggvény-becslés az 

eloszlás paramétereinek becslésére korlátozódik. Ez az 

eset azért is érdekes, mert ha még a 

mátrixok egyenlőségét is feltesszük,
kovariancia 

akkor a Bayes dön­
tésfüggvény - mint azt a 2.1.2-ben megmutattuk - line­
áris és a sűrűségfüggvény paramétereinek becsléseit be­
helyettesítve a kapott függvény megegyezik a Pisher féle 

lineáris diszkriminancia analízis döntésfüggvényével.
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Ennek bizonyítása kis eltérésekkel több helyen megtalál­
ható. /Anderson (1974), Kendall (1977)/. Azonban bizonyos, 
a Fisher féle diszkriminancia analízist részletesen tár­
gyaló könyvek erről nem tesznek említést. /Weber E. (1969), 
Kollau (1975)/. A Pisher féle diszkriminancia analízis 

kétféle módon való megközelítése igen tanulságos volt a 

hasnyálmirigy gyulladás diagnosztizálásával kapcsolatos 

vizsgálatainkban. (4.3 fejezet)

3.1 A súrűségfüggvénybecslés normális eloszlás esetén
Legyen adott egy tananyag. Jelölésére használjuk a 

2.2.2 b/-ben bevezetett jelölést, azaz legyen
lj * ^

a j-edik osztályból származó i-edik tanulópont. Tegyük 

fel, hogy

(i)
I ’ '* I V ;

eloszlásúegy

populációból vett statisztikai minta (j--^ О •

■h fa «4 I becslésére az^ - i± K(i)Ki -
(3.1)

és

2? - K(i’)Ts • 4 ip
(3.2)i-i <=<

formulákat használjuk. A 2.1.2. fejezetben láttuk, hogy

a legkisebb hibával járó döntési tartomány, ahol 

(2.19) illetve (2.20) szerint

*0

te ? í "i (д +fík.) ?■1 (fej 'jt.k) + b»^ h
Pfc. (3.3)
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На а (3*1) és (3*2) becsléseket (3»3)-be helyettesítjük, 

egyenlő a priori valószínűségek esetén a

Г (\ г f«) Ф (OVV-V (j) ft)\«^U) “(rty - ftv. ) b ^ У О \ Vvt - IK /

közelítést kapjuk. Ebben az első tag a Fisher által ja-
(3.4)

vasolt lineáris diszkriminancia függvény.
Felmerül a kérdés, vajon mennyit hibázunk, ha (3*3) 

helyett (3»4)-et használjuk döntésre. Mivel a (3«4)-gyel
egy olyan transzformációt adtunk meg, amely az E^ teret 

egy dimenzióba transzformálja, a hibát megadhatjuk, ha 

ismerjük a
ЩТС"'Г Ф (0\ ик. + ж Jo I ){ Qt} <*) (3.5)

valószínűségi változó eloszlását. Ehhez először az

= 2 + _ ír ÍA' ^ ^ (3.6)

eloszlását célszerű meghatározni. Hasonlóan a 2.1.2-beli
№ (г ^ki^’Oeloszlású,levezetéshez, belátható, hogy 

ahol (ßj)T J(Д -£i )

Mivel a (3.1) és (3*2) a^ és 2 konzisztens becslései, 

megmutatható /Anderson (1974)/, hogy лГ^ eloszlása 

megegyezik eloszlásával, igya 

függvénnyel való osztályba sorolásnál csak kis hibát 

követünk el.

határesetben

\
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3.2 A Fisher féle lineáris diszkriminancia függvény és
kapcsolata a Bayes döntésfüggvénnyel

Két osztály szeparálására Fisher (1936) javasolt egy 

úgynevezett lineáris diszkriminancia függvényt. Megmutat­
ható, hogy ez megegyezik (3*4)-gyei, bár Fisher más úton 

jutott el hozzá ( olyan lineáris függvényként, amely maxi­
malizálja az "osztályok közötti" és az "osztályon belüli" 

varianciák hányadosát). A Fisher féle diszkriminancia ana­
lízis rendkívül gyakori például az orvosi diagnosztikában 

alkalmazott módszerek között; magát az eljárást számos ta­
nulmány, könyv tárgyalja. Ezek egy része a Fisher féle vagy 

ahhoz hasonló koncepcióból indul ki, és nem is említi a Bayes 

döntéssel való kapcsolatát, amelyik pedig említi /Anderson 

(1974), Kendall (1976), Young (1974)/ ott a bizonyítások 

különböznek. Mi ezektől kissé eltérő módon mutatjuk be a 

két módszer egyezését, magát a diszkriminancia analízist 

pedig Weber (1969) könyve alapján, az ott tárgyalt esetnél 
általánosabban mutatjuk be.

Legyen adott tehát két osztály és egy tananyag:

{ }r«» (г)v 7ХКг К amelyről fel­
tesszük, hogy nem csupa azonos elemből áll osztályonként.

KC(i>

Km illetve>

Jelölje az átlagvektorokat:

KS<j' > 1 ZL &•KW,

(3.7)
v ÍO + (*)YW. tv*.Tegyük fel, hogy
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Keressük a két osztályt elválasztó függvényt
ol(x ) - Vx
") M

(3.8)
alakban, ahol & 3 ( &• meghatározása a11 •

feladat. Ad(x)-szel tulajdonképpen az E-^-et egy dimen-
vektorból kapott.Фzióba transzformáljuk. Jelöljük az 

számot Ji)
i -vei:

fi)Ji) = d(y/i))~ §*T*í
Célunk (3.8)-ban a b vektor olyan megválasztása,

(3*9)

hogy d(x) "jó" elvábsztó függvény legyen, azaz a transz­
osztályonként a lehető leg-formált értékek

jobban elkülönüljenek. Az elkülönülés annál jobb, minél 
távolabb esnek az átlagok és a szórások minél kisebbek. 

Tekintsük a
D2-Q- = (3.10)T

kifejezést, ahol

M)- fi) A s' . pl, 2 .)

Nyilván Q-Q(ír), és a két osztály között elkülönülés an­
nál nagyobb, minél nagyobb a Q. Feladat tehát olyan cL{x)-(/)( 

függvény keresése, melyre

Q(l)
T(tr)

maximális.

Természetesen а Ь-ФО megoldások érdekelnek, mivel &-0 

esetén transzformáció minden vektort a 0-ba transzformál.
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3.1 Definíció A (3.10)-et maximalizáló függvényt Fisher 

féle diszkriminancia függvénynek nevezzük.
A (3*10) szélső-ártékhelyének megkeresésében a 

-ek szerint differenciálva a következőt kapjuk:

! * (23D
dbt tzL I '

:>p 9Г 

T db
(•£ - 'I, j

(3.11) -at 0-val egyenlővé téve elegendő a második ténye­
zőt vizsgálni, mivel feltételeink szerint X csak &-=0 

esetén lehet egyenlő 0-val.
(3.11) -ből rendezés után kapjuk:

X ^5 _ 1 ЭГ 

D ~ г d\

. (3.11)

14,...,» , (3.12)I

Kiszámítjuk (3.12) bal- és jobboldalát:

Э P Э 

& db
dT _ d_ 

őít~ db

r hJ
(

L к-4

(г)\3 и) 
) ~ VK

M) (2-)

^4 ~ l

УíФk \ Kit ~ ^
t L-j-i a'-i ■I

V 4
Ф)( (Л «О.- Vn.fe У " "Ч

jp I -t- i

Ha bevezetjük a
г ку

ü) W)5*)(x te - "4С кь *^Ь
Г'1

jelölést, (3.12)-be behelyettesitve a következőt
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kapjuk:

2. Vcfe.£ ~ ^ (*4
А (З.13) egyenletrendszert megoldva kapjuk a b vektort. 

А СИ СьЛ. mátrix bevezetésével (3*13) a következő

)(г! •ы ^ (3.13)

(*) (г)
tu -IKС & -alakba írható:

(3.14)amiből / ✓ /■ 6)
V" — C ( M- — tty J

Mivel C a közös kovariancia mátrix maximum likelíkoöd

/(lásd 3.2)

(3.I2)/, így a megoldás létezik és egyértelmű.
( *4 +• ^ )becslésének vagy-szerese

Hátra van még annak belátása, hogy a (3»l6)-tal 

adott b vektor а (З.Ю)-пек valóban szélső értéke, még­

pedig maximuma. Ettől a számítások térjedelmessége miatt 

eltekintünk, megjegyezve, hogy végül a kovariancia mát­

rix pozitív definitségén alapul.

w}x) , akkor aEzzel megmutattuk, hogy ha 

(3*10)-et maximalizáló Ь-ФО vektor

4 Vm) s'44’- Ч1) (3.15)
összefüggéssel adott, ahol

X К/
s=—- у у í 1

г = , -V‘ • (3.16)

Látható, hogy (3*15) - konstanstól eltekintve - 

megegyezik a (3.4)-beli döntésfüggvényben szereplő együtt­

hatóval. Egyúttal tehát megmutattuk a Eisher féle diszkri- 

minancia analízis és a Bayes döntésfüggvény kapcsolatát 

is.
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A gyakorlatban ol(í)segítségével nyert döntéseknél 

egy konstans is szerepet játszik:
az értékek eloszlása alapján a minimax eljáráshoz ha­
sonlóan most is meg kell határoznunk azt a c küszöbszá­
mot, amelynél a hibás osztályozás valószínűsége a leg-

U) ,értékből cso-kisebb. A gyakorüatban ezt a számot az 

portonként készített két hisztogram alapján állapítják
и

meg. A c küszöbszám ismeretében 2. >c
I

esetén az x ponttal képviselt objektumot a Ci ^ egyébként a C*. 
osztályba soroljuk.

Ha ezt a konstanst például a következőképpen választ-
* r («) (»)\T j

^ / ~ ,

к- 1

juk:

akkor ezt d($) -hez adva
л / M) í, ft 7 ^\ТГ~Ч,(0 (7))oC(x)- (iK - rk, J C X - J (j С /

c =

(3.17)
alakú döntésfüggvényt kapjuk, amely a (3.4) két osztályra
érvényes esete. Tehát ugyanahhoz a diszkriminancia függ­
vényhez jutottunk, mint a Bayes döntésfüggvény normális 

eloszlás és egyenlő kovariancia mátrixok esetén. Természe­
tesen ezen az alapon történő osztályozás nem garantálja az 

osztályozás hibájának minimalizálását.

3»3 Logisztikus diszkriminancia analízis
Az eddig ismertetett módszerek többnyire folytonos 

valószínűségi változókra alkalmazhatók, vagy még inkább 

azt is feltételezik, hogy a mintacsoportok többdimenziós 

normális eloszlású populációból származnak. A gyakorlati 
életben azonban meglehetősen gyakran fordulnak elő olyan
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esetek, amikor diszkrét vagy éppenséggel lineáris válto­
zók alapján kell osztályozni, illetve a változók egyik 

része diszkrét, másik része folytonos (pl. kérdőívek ada­
tai) .

Diszkrét változókra vonatkozó diszkrimináló módszerek­
kel Linhart (1959)» Ccdaran és Hopkins (1961), majd Martin 

és Bradley (1972) foglalkozott. Ezek csak diszkét illetve 

dichctóm változókra alkalmas módszereket adtak meg. Ál­
talánosabb a Cox (1966) illetve Day és Kerridge (1967) ál­
tal bevezetett logisztikus diszkrimináció, anáLy diszkrét 

és folytonos változókra egyaránt alkalmazható. A Cox-Day- 

Kerridge modellnek számos általánosítása ismeretes. 

/Anderson (1972), Albert (1981)/
Az a posteriori valószínűségek logisztikus formában 

való megadását, valamint az optimális elválasztó függ­
vényre az általános elméleti modellt Day és Kerridge (1967)
a következőképpen tárgyalja:

Legyen adott két osztály, C, és legyenek és 

a két osztály átlagvektorai, A mátrix egy Wx/\) -es mátrix, 

ф(х) pedig tetszőleges 

vény.
integrálható nemnegatív skaiárfügg-

f cite te les
megfigelés sűrűségfüggvényének általános

\Ekkor
alakja:

*4 {"itCx-A; Ti'Xx-KL)] ^(x)P(x [Cc) (3.12)

ahol об,; normalizáló 

tani, hogy
konstans, melyet úgy kell válasz­

teljesüljön.í &{*)<№ - {

4. í



- 43 -

A (3.12) általános modellből a következő speciális esetek 

adódnak:

1. (i) $(x)S/í és 

(ii) 1 ; kovariancia mátrix 

Ebben az esetben ^'(x) a normális eloszlás sűrűség- 

függvénye.

2. (i) ha x minden komponense 0 vagy ly 

egyébként
az identitás mátrix 

A 2. fejezetben a Bayes döntésfüggvényt a posteriori 
valószínűségek segítségével adtuk meg, azaz:

)

(ii) A :

pu
Z p d 4 с б?)

pú (x)= HC'i 1^ - x)r (3.13)
t=lR=2 esetén

рн&Ог)
Ра4г(:?)Ía (*) t:

(3.14)IP A 4* l j)1 p2. 4zU)
Ebből a számlálóba a (3*12) helyettesítésével a követ­
kező kifejezést kapjuk:

P'1 Ф(>0ph<(s)
z:

P^ H (íXó" A''(s-/hv)) Ф GO
-- -Wp {-4(х-,д,)тЛ +-<0j hl'

)раХг,
tehát

-Cxf? (^ ^ ■+ c)

A -+ -ejcp ( Хт Лг+х )

Ь'' (дгДг,)
■| (ДгДи)+^

) (3.15)
ahol

)

fii«-*C -
(3.16)
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Ha 0(x)pontosan ismert lenne, a maximum

A becslésére, az

likelihood.

becsléseket alkalmazva

Y « ХЧ + c (3.17)
lineáris függvényt használhatnánk döntésfüggvényként. 
Ugyanis

XTt+c >0 , U IA(x)>pkM
és fordítva.

ф(х)=4) akkor (3.17) a Fisher féle lineáris disz- 

kriminancia függvényt adja meg a konstans tagtól eltekintve. 

На ф(х) ismeretlen, meg kell kassnünk a

Ha

l = ii p-i ) -T (3.18)At ^ Вл
likelihood függvény maximumát, ahol jelöli azon
értékek halmazát, amelyre az Xy vektor aC\ illetve Cz

populációból származik. 
(3.16) átalakítható:

41Г|_= ту
+ KiéBa í + (3.19)

(3.19) logaritmusát véve & és c alkalmas iteratív eljá­
rással (pl. Newton-Raphson) meghatározható.

Day és Kerridge eredményeit Anderson (1972) általá­
nosította. Megadta több osztály esetén az a posteriori 
valószínűségek logisztikus formában történő előállítását, 

amely az előző jelölésekkel:

-

P(CrIX)
Hqtxb Pix ■ I

A
r.1 X ) =■ pkx " (3.20)

>1+ r +<j)
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Az Anda*son által megadott likelihood függvényben az 

együtthatók becslése annyiban általánosabb, hogy feltesz- 

szük, hogy most a minták minden egyes populációtól külön- 

külön állnak rendelkezésre.

3.4 Probit diszkriminancia analízis
Az elnevezést Albert és Andbrson (1981) vezették be.

A módszer a 3<2 fejezetbeli módszerek további általánosí­
tása, lényege a következő:

Legyen adott két osztály és (Ж+l) dimenziós vektorok, 

mint tanulépontok: (xo/ yT ) , ahol 
és - & (a konstans) esetén a pontok 0- C4;

esetén pedig a G2 osztályhoz tartoznak.
Korábbi cikkükre hivatkozva a szerzők állítása szerint, 

ha X0 adott x melletti feltételes sűrűségfüggvénye 

^ (fa ^ ^ Ü i^) az — eloszlásától függetlenül, akkor az a 

posteriori valószínűségek
P (x. )•= ф (^v+oőTX )

alakban írhatók, ahol <£>(•) 

eloszlásfüggvénye:

X 1 ' *л/)

a standard normális eloszlás
4*

dJL )

.J? .oC

Az úío+oé1’X

függvénynek" nevezték. Az Anderson-féle (3.20) képlet

01Г
függvényt a "probit diszkriminancia

írhat é

? f X ) ~ Л ( ^ 0 £ ) alakban,
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j&ijp С*)Л. tó *ahol
4 -f -d**p (-t)

Albert és ChappeUe(1981) az oóD|á paraméterek becs­

lésére a feltételes likelihood függvényt
K.

lM;i )'J[{ <-Ф^+/Ь {ф (<„+/* )P'
t. - I

(3.21)

*♦ = * ) bft fo>CU.alakban adja meg, ahol *£ = 0 } ha Cb )

Mivel eloszlására semmiféle kikötés nincs, a mód­
szer tetszőleges valószínűségi változók esetén használ­
ható.
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4« Az alakfelismerés alkalmazási lehetőségei az orvosi
diagnosztikában irodalmi áttekintés és saját tapaszta­
latok alapján

4.1 A számítógéppel segített orvosi diagnosztika szük­
ségessége és módszerei

Az előző fejezetekben bemutatott módszereket sok más 

- e tanulmányban nem tárgyalt-módszerrel együtt elterjed- 

ten alkalmazzák orvosi diagnosztikai problémákra. Termé­
szetesen felmerül a kérdés, mi teszi szükségessé e módsze­
rek, illetve a rájuk alapozott számítógépes prcg^amok alkal­
mazását az orvosi diagnosztikában?

A gépek és az ilyen típusu módszerek szükségszerű 

felhasználását ezen a területen különféle objektív és 

szubjektív érvekkel támasztják alá. Igen meggyőzőek péL- 
dául azok az érvek, amelyek az emberi agy korlátozott in­
formációfeldolgozó kapacitását a számítógép elvileg kor­
látlan kapacitásával vetik össze /De Dombal (1972), Grémy 

és Goldberg (1977)/. Más szerzők arra mutatnak rá, hogy 

számítógépes diagnóziskészítés által felvetett problémák 

megoldása lényeges hatással van a "természetes" diagnózis­
készítésre is, mivel együtt jár az orvosi tudás további 

rendszerezésével és a diagnosztizáló folyamat tudatosabbá 

válásával.

Az orvos a diagnózis megállapításánál figyelembe veszi 
a betegről gyűjtött információkat, az orvosi ismeretanya-

a
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got és saját tapasztalatait. Az esetek egy részében nem 

sikerül a helyes diagnózist megadni. Szentgáli 1976-ben 

írt könyvében több betegség esetén ad számot irodalmi 
adatok alapján a hibás diagnózisok gyakoriságáról (csak 

egy kiragadott példa: a vakbélgyulladást az esetek 60 

%-ában sikerült csak helyesen diagnosztizálni!). A hibás 

diagnózisok okait a világon és hazánkban is többen vizs­
gálták. Ezek általában a következők:

- a diagnózis megállapításához szükséges infor­
mációk száma (betegségek, tünetek, a forgalomban 

lévő gyógyszerek stb.) egyre nő;
- ugyanakkor az emberi agy egyszerre csak viszonylag 

kisszámú információval tud dolgozni;
- bizonyos ritka Betegségek nem ismerese;
- a klinikai leletek, vizsgálatok rossz minősége;
- az orvos személyisége;
- alkalmatián aiagnosztiK.ua eljárások használata.
A számítógéppel segített orvosi diagnosztika módsze­

rei nem krlátozódnak csupán az alakfelismerés alkalmazásá­
ra, felhasználásuk információelméleti, logikai, algebrai 
(fuzzy halmazok) módszerek, és nagyon sok számítógépes 

diagnosztikáló rendszer működik"természetes" diagnózis­
készítés utánzásával, intuitív, heurisztikus algoritmu­
sokkal /például Shild és munkatársai (1978)/.
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4«2 A statisztikus alakfelismerési módszerek alkalmazása
az orvosi diagnosztikában

4.2.iVilágirodalmi áttekintés
Az alakfelismerés alkalmazása triviálisan adódik az 

orvosi diagnosztikában: a betegről (objektum) a tünetei 
alapján (jellemzők) el kell dönteni, hogy adott betegségek 

(kategóriák) valamelyikében szenved-e.
A valószínűségszámítás Bayes tételének alkalmazását 

Ledley és Lusted (1959) javasolta először. Alapötletüket 

és általánosításaikat igen elterjedten alkalmazzák 

/Bühovszkij (1961), Warner (1972), Fritz (1978), Fryback 

(1978), Sonnenberg (1982)/.

A statisztikus alakfelismerés módszerei közül igen 

gyakran szerepel a diszkriminancia analízis. Az írások 

egy része a "hagyományos" eljárásokat csupán alkalmazzák 

/Knapp (1977)/, másik része a meglevő eljárások finomí­
tását is célul tűzi ki, vagy a hibabecsléssel foglalko­
zik, illetve más statisztikai módszereket is használ 
mellette. A diszkriminancia analízis gyakoriságának több 

oka is lehet. Indokolhatja a biológiában gyakran előfor­
duló normális eloszlás. De másik oka lehet, hogy az is­
mert és világszerte elterjedt nagy statisztikai program- 

csomagokban (BMDP, SPSS stb.) igen jól kidolgozott prqg- 

ramjai állnak rendelkezésre. Ezeket a programokat számos 

betegség differenciál-diagnosztikájára alkalmazták. Pél­
dául Braks és munkatársai (1971) a BMDP stepwise diszkri­
minancia analízis programját alkalmazták érelmeszesedés-
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ben bekövetkező stádiumok szétválasztására jó eredmény­
nyel. A diszkriminancia analízis széles körű használatá­
ra utal, hogy például az epide^ mikológia témakörén belül 
is számos problémára alkalmazták, ezt elemzik Lachenbruch 

és munkatársai (1980) 36 irodalmat áttekintve.
A statisäikus módszerek alkalmazásának másik gyakori 

módja több módszer együttes alkalmazása. Ennek két fő célja 

lehet:
1. Lényegkiemeléssel egybekötött statisztikai alkal­

mazás (például faktoranalízis, osztályozó algoritmus előtt). 

Ilyen például Hott és Metton (1980) cikke: 13 folytonos i: 
változó alapján 10 betegre nézve 6 féle májbetegség fenn­
állásának lehetőségeit vi^gálták. Faktor és clusterana- 

lízist alkalmaztak a változók csoportosítására, majd az 

ezek alapján lényegesnek tartott változókon futtatták le
a diszkriminancia analízis programját.

2. A módszerek összehasonlítása - azaz ugyanazon a 

tananyagon több módszert is lefuttattnak. Az adathalmaz 

lehet valódi vagy szimulált. Igen érdekes ebből a szem­
pontból Rioux és Nakache (1979) cikke, amely a diszkri­
minancia analízis különböző módszereit, változatait ha­
sonlítja össze. Legkisebb hibájának a kvadratikus, leg­
gyorsabbnak pedig a lineáris diszkirminancia analízist

Duewer és munkatársai (1978) májbetegségek 

differenciáldiagnosztikája során többféle statisztikai 
módszert alkalmaztak, (normalizálás, Fisher-súlyok,
Karhunen-Loéve sorfejtés, к-Ш mócteer, SIMCA) A módszerek

találták.

/
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összehasonlítása adott klinikai adatbázisra vonatkozóan
történt.

A statisztikai módszerek diagnosztikai alkalmazásai 
között nem túl gyakori, de nem elhanyagolható rész a dus­
ter analízis felhasználása. Egyrészt lényegkjanelési mód­
szerként használják - változók clusterezésére - például 
Abott és Metton (1980) - másrészt önállóan - például 
Wong, Liu (1976) , akik új iteratív algoritmusokat szimu­
lációs és klinikai adatokon teszteltek.

A fejezethez megadott irodalomjegyzék nem teljes, 

de meg kell említenem, hogy számos bibliográfia létezik, 

például Wagner és munkatársai (1978) témakörök szerint 

csoportosítva több mint 800, Wilke (1978) 7000 irodalmi 
hivatkozást sorol fel, a Cacoullos által szerkesztett 

könyben S. M. Gupta, illetve a szerkesztő egy 547 cikkből 
álló bibliográfiát ad meg.

4.2.2 Hazai alkalmazások
Magyarországon a számítógéppel segített orvos-diag­

nosztikai kísérletek az 1960-as években kezdődtek. Kal­
már László már 1969-ben felhívta a figyelmet erre a lehe­
tősbe. /Kalmár (1969)/. A számítógépes onosi diagnosztika 

elterjedése azonban csak az 1970-es években indult meg 

a számítógépek számának növekedésével. Az elterjedés 

volt gyors, és nehezítette, hogy sokan kételkedtek benne, 
még azok is, akik egyébként magának a számítógépnek a 

szerepét az egészségügyben elismerték. A kisszámú alkal-

sem
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mazás nem volt elég átütő annoz, nogy ez a terület álta­
lánosan ismert legyen. Ezt szemlélteti az a tény, hogy 

például az Orvos és Technika folyóiratban 1972-74-ben 

megjelent "A számítógépek és orvosbiológiai alkalmazásuk" 

cánű sorozat 9 cikkéből csak egy említi a diagnosztikai lehe­
tőségeket /Eedina (1974)/, az is speciális esetben.

A hazai irodalomban fellelhető közlemények alapján 

egy tanulmányban /Boda (1980)/ foglaltuk össze a számító- 

gépes diagnosztika hazai helyzetét. Az információelméleti, 
logikai módszerek mellett főként a valószínűségszámítás 

és a statisztikus alakfelismerés módszereinek az alkalma­
zása a jellemző. A valószínűségszámítás Bayes tételét al­
kalmazta Győri (1979) a tünet információmértékének kidol­
gozásakor, Prónay és Hunya (1970) bélamoeh^asás differen­
ciáldiagnosztikájára. Kanyár és munkatársai (1972) négy 

pajzsmirigy betegség diagnosztizálásához alkalmazták a 

Bayes tételt. A feltételes valószínűségek becsléséhez a 

tünetek függetlenségét tételezték fel, az eredmény 92,
65, 51 és 9 /S_ban egyezett az orvosi véleménnyel.

Alakfelismerési módszrek legfontosabb alkalmazási
területei:

a/ EKG görbék automatikus kiértékelése terén Győrfi

elsősorban a po­
tenciálfüggvény es algoritmust használták fel, és 1971-ben 

egy kisszámítógépes EKG diagnosztikai raüszert dolgoztak 

ki /Battisting és munkatársai (1971), Bak és munkatársai 
(1971), Kobzos és munkatársai (1978)/. Később a KPKI-ben

és Csibi (1972) a tanuló algoritmusokat,
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TPA i 16 К kisszámítógépre terveztek egy görbekiértékelő 

és osztályozó programrendszert, ahol az alkalmazott mód­
szerek а MN, és egy cluster algoritmus /Szlávik és munka­
társai (1976), Bolyki és munkatársai (1978)/.

b/ A koraszülés okai, következményei, a koraszülöttek 

súlyát befolyásoló tényezők és mindezek előrejelzésének 

szükségessége többek részéről és egymástól függetlenül 
is felmerült. A SZOTÉ-n lineáris diszkriminancia analí­
zissel választottuk szét a vércserére kerülő és kontroll 
eseteket. /Boda és munkatársai (1970, 1971)/. Paksy és 

Győrfi (1973) a KSH adatokból véletlenszerűen kiválasz­
tott újszülöttek adatain futtatták le a Bayes döntésfügg­
vény közelítésére írt iteratív algoritmust annak érde­
kében, hogy eredményeiket szűrésre is felhasználják. Sebők 

és munkatársai (1974, 1976) a koraszülöttek koponyaűri 
vérzését befolyásoló tényezőket vizsgálták. A Kashyap-Ho 

féle gradiens algoritmus egy általuk kidolgozott gyorsí­
tott változatát és egy lineáris programozási módszert al­
kalmaztak.

с/ Légzésfunkciós vizsgálatokban főleg szűrővizs­
gálatok kidolgozása volt a cél. Például Csukás és munka­
társai (1975) faktoranalízis után futtatták le a módosí­
tott McQueen cluster algoritmust, amellyel jól elkülönülő 

betegség-osztályokat kaptak.

d/ EEG görbék alapján alvásfázisok elkülönülését vizs­
gálják Pál és munkatársai (1978) lineáris szeparálás, 

Committe Machine, MN és lineáris diszkriminancia analízis 

segítségével.

v —Ll ■
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е/ A kérdőívek alkalmazásával főleg tömeges szűrő­
vizsgálatokhoz nyerünk adatokat. A tömeges szűrővizs­
gálatok célja esetlegesen beteg elválasztása a biztosan 

egészségesektől. A kiszűrt lehetséges betegeket ezután 

tüzetesebb orvosi ellenőrzésnek vetik alá. A valószínű­
leg beteg személyek kiválasztásával az alakf elisrre rési 
módszerek újabb alkalmazási területe a szűrés. B. Nagy 

és munkatársai (1976, 1977) kérdőívek alapján tüdő- illet­
ve szívbetegek szűrésére, illetve pszichológiai vizsgálatok­
ban a neurotikusok felfedezésére alkalmazott tanuló al­
goritmusokat. Szilárd és munkatársai (1979) keringés­
rendszeri kérdőíves előszűrés modelljének kialakítá­
sáról számolnak be. A beteg és egészséges populáció 

szétválasztására a diszkriminancia analízist találták 

a legalkalmasabbnak. /Csébfalvi és munkatársai (1977)
Hunya és munkatársai (1980) neurotikus betegekről kér­
dőívvel gyűjtött adatokon faktor- és clusteranalízist 

végeztek./
f/ Az eddig felsoroltakon kívül egyedi jellegű 

alkalmazások történtek: például a leukoplákiás betegek 

osztályozása cluster analízissel /Fenyő és munkatársai 
(1975)^májbetegségek differenciáldiagnosztikája /Győri 
és munkatársai (1970)/. Számos képfelismeréssel kapcso­
latos kutatás folyik: Hajnal (1977), NaszLady és munkatár­
sai (1978), Csernay és munkatársai (1970, 1976).

Összefoglalva a magyarországi helyzetet, a leggyak­
rabban a differenciáldiagnózis felállítására és tömeges
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szűrés megvalósítására alkalmaztak főként alakfelismeré­
si módszereket. Ezek széles körű orvosi felhasználása 

egyes területeken már megindult.

'

V

-
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4.3 Saját tapasztalataink az alakfelismerési módszerek
orvosi diagnosztikai illetve szűrővizsgálati célokra
történő alkalmazásával

A Szegedi Orvostudományi Egyetemen több esetben me­
rült fel annak szükségessége, hogy tünetek, laboreredmé­
nyek birtokában a diagnózis meghatározását matematikai 
módszerekkel segítsük. Három orvosi probléma kapcsán szer­
zett tapasztalataink a következők:

1./ 1970-ben az újszülöttkori sárgaságot befolyásoló 

tényezőket vizsgáltuk 2000, a SZOTE Gyermekklinikáján 

vizsgált csecsemő adatai alapján. A súlyos esetekben az 

újszülötteken vércserét kellett végrehajtani, ami nem 

veszélytelen beavatkozás. Pelmerült az a kérdés, vajon 

lehet-e osztályozni az újszülötteket a sárgaságot befo­
lyásoló tényezők alapján úgy, hogy a vércsere szükséges­
sége a lehető legnagyobb biztonsággal eldönthető legyen. 

Orvosi és előzetes statisztikai (például korrelációszá­
mítás) meggondolások alapján az eredeti 13-ból végül 5 

tényező (jellemző) maradt. Ezek közül kettő, az Incompa- 

titivitás és a Coombs próba három, illetve két értékű 

változó volt. Ezeket úgy vettük figyelembe, hogy a 

kombinációknak megfelelően 6 csoportba osztottuk a beteg­
anyagot és csoportonként a megmaradt három folytonos para­
méter alapján diszkriminancia analízissel kíséreltük meg 

a vércserés és nem vércserés esetek szétválasztását
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/Boda és munkatársai (1971, 1972)/. A helyes döntések 

aránya 77,3 % - 89,8 % volt. A modellt újabb eseteken 

is leteszteltük, itt a helyes döntések aránya közel azo­
nos volt a tananyagon kapott százalékkal. A tesztanyagban
szerepeltek olyan esetek is, akiket vércsere helyett az 

újabban bevezetett "kékfénybesugárzással" kezeltek. A 

modell a besugárzás után az eseteket a "nem kell vér- 

csere" osztályba sorolta. A biztató kisérletek végül is 

nem kerülhettek gyakorlati alkalmazásra, mivel a kékfény- 

besugárzás veszélytelenebb, és csaknem helyettesítette a 

vércserét.

2. A hasnyálmirigy (-pancreas) különböző megbete­
gedéseinek diagnosztizálása hosszadalmas, sok laborató­
riumi vizsgálatot igénylő feladat. Ebben a pancreas-en- 

zimek vizsgálata az egyik legfontosabb tényező. A többféle 

sejttípus és a pancreas-enzimek nem párhuzamos szekréciója 

miatt egyes funkciók korábban károsodhatnak, miközben mások 

még normális értékűek maradnak. Egyetlen pancreas-funk­
ciós próba alapján a hasnyálmirigy működéséről nem lehet 

biztos véleményt alkotni; ezért minél több tényező együt­
tes értékelésére kell törekedni.

A pancreas különböző funkcióit jelző adatokat többen 

próbálták már matematikai-statisztikai úton értékelni és 

azt a hasnyálmirigy-betegségek diagnosztikájában haszno­
sítani, Schmidt és munkatársai (1977) szekvenciális sta­
tisztikai eljárásokat alkalmaztak. Durbec és munkatársai
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(1978) a kontingencia táblából nyert log kereszt-szorzat 

arányokra és a kölcsönös információs tulajdonságokra ala­
pított adatszűrést írtak le. Sarles (1970) illetve Capi- 

taine (1971) egy- és többváltozós módszereket alkalmaz­
tak a különböző hasnyálmirigy betegek és egészségesek 

diagnosztizálására. Mivel az enzimaktivítások eloszlása 

méréseik alapján lognormális, esetenként pedig normális 

volt, a Fisher féle diszkriminancia analízist nem tartot­
ták megfelelőnek, így helyette új analitikai módszert 
dolgoztak ki. Aparisi és munkatársai (1979) a széklet 

chyjaotripszin diagnosztikus értékének meghatározására 

sikeresen alkalmazták a lineáris diszkriminancia analí­
zist (a hibás osztályozás valószínűsége 0,39 % volt); 

Farini és munkatársai (1982) pedig biokémiai és klinikai 
adatok alapján próbálkoztak négy hasnyálmirigy-betegség 

és egy egészséges csoport elkülönítésével a lineáris disz­
kriminancia analízis módszerét alkalmazva. Összesen 97 

vizsgált személy adata állt rendelkezésükre, melyből 19 

volt a kontroll, csak a biokémiai jegyek alapján 57,1 % 

volt a helyesen "diagnosztizált" esetek aránya. Klinikai 
adatok hozzávételével ez az arány 75 %-ra nőtt. Konklú­
ziójuk éppen ez, a klinikai adatok hozzávétele megerő­
sítette a korrekt diagnózist.

Az általunk vizsgált paraméterek és összehasonlí-
tásuk

A mi vizsgálatainkat a SZOTE I. sz. Belgyógyászati
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Klinikáján fekvő hasnyálmirigy-betegeken illetve kont­
roll eseteken végzett mérések alapján végeztük. Az ada­
tok matematikai-statisztikai módszerekkel való feldolgo­
zása mintegy 6 éve kezdődött, Pap Á. és munkatársai 
(1977), legújabb eredményeinkről 1981-ben és 1983-ban 

számoltunk be /Boda és munkatársai (1981, 1983)/.
14 laboratóriumi paramétert vizsgáltunk, amelyeket a 

duodenum szondázással nyert három fő pancreas-enzim 

(amitáz, lipáz, tripszin) 3 x 10 perces frakciókban 

mért aktivitásából, továbbá a duodenum nedv térfogatá­
ból számoltunk - a frakciók maximumát, átlagát és össze­
gét véve alapul. A paramétereket, valamint 77 kontroll 
eset átlagát és szórását a 4.1 táblázat első két oszlopa 

szemlélteti.
Kezdetben/Pap Á.; (1977)/ a fenti paraméterek kóros 

és egészsé^s eseteken mért átlagait és szórásait t-illet- 

ve Wilcoxon próbával hasonlítottuk össze. A különbség 

- bár szignifikáns volt - nem adott az orvosnak újat 

a diagnózis felállításához - éppen a nempárhuzamos mű­
ködés miatt. A mért paraméterek pozitív számok, és mi­
nél kisebbek, annál inkább utalnak a kóros elváltozásra.
A non-parallel szekréció azt jelenti, hogy még egy panc­
reas -beteg embernek is lehetnek bizonyos paraméterér­
tékei normálisak. Az orvos szerint még az a meglepő 

tény is előfordul, hogy ugyanannak az embernek egy má­
sik alkalommal megmérve esetleg egy másik enzim értéke
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mutat kóros elváltozást, mint a korábban mért. Ez a tény 

igen megnehezíti a döntést a betegségről, és ezzel magya­
rázható az is, hogy hisztogramot készítve a normál és a 

kóros esetek eloszlásáról, az átfedés viszonylag nagy. 

(4.4 ábra)
A döntéshez először meg kell határozni azt a határt 

(küszöbértéket), amelynél kisebb érték kórosnak tekint­
hető. Ezt a számot normálértéknek nevezik.

A normálértékek meghatározása
Az irodalom szerint a szokásos gyakorlat /Sarles 

(19Ю) az, hogy a normálértéket valamely egészséges po­
pulációból származó minta alapján határozzák meg. Általá­
ban a mintának a logaritmikus transzformáció utáni átlagá­
ból a kétszeres standard de iációt levonjak:

N - -елр f - 2 S*) }
(4.1)

V ' Kí>ahol Xí , tИ,-.-(к. a mintaelemek )

*£*(?(»«;-5)*)/üa £ á' (ч
Ez az eljárás a paraméterek ferde - leggyakrabban log- 

normális - eloszlása miatt terjedt el.
Megvizsgáltuk a 77 kontroll eset eloszlását,^2 pró­

bával normalitásvizsgálatot végeztünk. A 4.1 táblázat 

3. oszbpa a kapott valószínűségeket mutatja. Látható,
hogy a paraméterek nagy részére a próba szignifikáns. A

г
logaritmikus transzformáció után újabb % próbával még mindig 

volt a szignifikáns eset. Tehát vizsgált paramétereink 

között volt normális, lognormális, sőt még ferdébb el-



Normál éytékÁtlag 2.5 %Paraméter neve + SEM P formulaperc

Átlagos aktivitás 

m Maximális aktivitás
I Összegezett output-. 
* Maximális output

IU/ml
IU/ml

IU/30min
IU/lOmin

+ 5.242 

+ 7.584
0.2272 

0.4952 

+1724.939 0.021
±1307.298 0.0006

99.81
141.60

39.4 38.9
58.5 53.4

8913.6 8660.924835.0
15234.1 4611.65174.2

+Átlagos aktivitás mIU/ml
3 Maximális aktivitás mIU/ml
- Összegezett output IU/30min 

Maximális output

231.623.042 0.7131 219.1521.82
+

37.197 0.5574 289.1300.7759.92
г» +

6.355 0.0084 45.4120.59 49.4
+IU/10min 75.01 5.242 0.0001 29.1 23.7

+Átlagos aktivitás 

Maximális aktivitás 

Összegezett output 

Maximális output

41.62.811 0.0169

3.329 0.1356
± 753.807 0.9409

548.262 0.0057

IU/ml 
IU/ml 

IU/30min 17868.19 

IU/10min 10601.04

41.581.31
+

66.0 61.0107.81
m

8792.6 7880.0
+j

3586.03728.0

+Összegezett térfogat ml/30min 

Maximális térfogat ml/10min
6.689 0.9409
6.053 0.0001

131.0229.22 141.0
+ 68.0 57.0127.90

Az alkalmazott paraméterek és 77 kontroll eset adataiból számított jellemzők.4.1 táblázat



- 62 -

oszlásból származó is. Ezért nem használhattuk a fenti 
képletet. Mivel az említett módszarel kapott érték az 

eloszlás 2.5 %-át hagyja figyelmen kívül, kiszámolt-uk 

a 2.5 % percentilis becsléseit is. A két módon kapott 

normálértékeket az 4.1 táblázat utolsó két oszlopa mu­
tatja. Nyilvánvalóan nem egyenlő mindig a két szám, 
konkrét beteg esetén az orvos azonban mindkét értéket 

figyelembe vette.

Alakfelismerési módszerek alkalmazása
Miután a paraméterenkénti vizsgálat nem vezetett 

eredményre, egy adott betegről való döntés esetén, tere­
mé szét es módon vetődött fel a több paramétert egyszerre 

figyelembe vevő alakfelismerési módszerek alkalmazása.
Három módszerrel is próbálkoztunk: a súlypont, a 

legközelebbi szomszéd és a lineáris diszkriminancia 

analízis módszerrel.
Az adatokat újabb 137 eset laboreredményei képez­

ték, ebből 67 volt a kontroll és 70 a beteg. Az adat­
halmaz egy része (30 + 30 eseti} szolgált tananyagul, 

a többin pedig a tesztet végeztük. Az eredményeket a 

4.2 ábra mutatja 14 jellemző alapján. Az egész számok 

a táblázatban a helyes döntések számát jelentik, a leg­
alsó sorban pedig az össz-esetszám van feltüntetve.
A 4. és 8. oszlopban álló törtszámok a helyes döntést 

fejezik ki az össz-esetszám százalékában. Például a
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TesztanyagTananyag

Kontroll Pancr. Ossz.Kontroll Pancr. Ossz. %%Módszer

3656 93,3326Diszkriminancia analízis 71 92.23530

26 6236Legközelebbi szomszéd 48 80.00 80.5223 25

66 85.71Súlypont 313553 88.3324 29

Összes esetszám: 60 7737 . 4030 30

4.2 táblázat Az osztályozás eredménye három módszerrel 14 Jellemző figyelembevételével.

1
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lineáris diszkriminancia analízissel a tananyagon 30 

kontroll közül 26 esetben, 30 beteg közül 30 esetben 

kaptunk helyes döntést. Ez összesen 56 eset, amely a 

60-nak 93*33 %-a. Látható a táblázatból, hogy ez egy­
úttal a legjobb eredmény a három módszer közül, melyet 
a teszthalmazon nyert helyes döntések aránya is meg­
erősít (92.2 %). A 4*1 ábrával szemléltetjük a módszert: 
a felső rész az egyik jellemző eloszlását mutatja kóros 

és normál esetben; az alsó rész pedig a lineáris diszkri­
minancia függvénnyel egy dimenzióba transzformált pontok 

eloszlását mutatja.

70.13 V.

t

93.33*/. '

m

4.1 ábra. a/ Egy jellemző, az amiláz maximális koncent­
ráció eloszlása kóros és normál (vonalkázott) 

esetben.

b/ A lineáris diszkriminancia analízissel egy

dimenzióba transzformált pontok eloszlása kóros 

(sima) és normál (vonalkázott) esetben.
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A 14 jellemzőből 7-7-et elhagytunk annak vizsgála­
tára, vajon mennyire romlik a döntés. Amint a 4-3 illet­
ve 4*4 táblázatból látható, hogy valamennyi esetben, ha 

jelentéktelenül is, de romlott a döntés biztonsága.
Tudomásunk szerint enzimértékek alapján lineáris 

diszkriminancia analízissel eddig nem értek el ilyen meg­
bízható döntést.

Sarles és munkatársai (1970) pedig nem is tartották 

adekvát módszernek az adataik ferde eloszlása miatt. A 

mi vizsgálatunkban is zavaró volt a ferde eloszlás, azon­
ban a módszer 3»1 pontbeli megfogalmazása - mely szerint 

a Fisher féle diszkriminancia függvény egy optimalítási 
kritériumnak eleget tevő transzformáció - alapján indo­
koltnak tartottuk az alkalmazást. Eredményeink is meg­
erősítik ezt, és további előnye a lineáris döntésfüggvé­
nyek alkalmazásának, hogy folyamatos tesztelésükhöz, a 

döntésfüggvény adott esetben történő helyettesítési érté­
kének a kiszámításához elegendő egy kis kézi számológép 

is.

A súlypont módszert egyszerűsége miatt végeztük el, 

tájékozódó jelleggel. A legközelebbi szomszéd módszerrel 
kapott kedvezőtlenebb eredményeink - véleményünk szerint - 

azzal magyarázhatók, hogy a programunk csak euklideszi
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távolsággal tud dolgozni (jelenleg).
Az eredményeinkről szóló cikk a Computers in Bio­

logy and Medicine c. lapban került elfogadásra és vár­
hatóan ez évben megjelenik.
Azóta még egy módszer programját futtattuk le adataink­
ban: a probit diszkriminancia analízissel az eredeti 
teszthalmazon teljes szétválasztást sikerült elérni.
Ha pedig a teszt- és tananyagot egyesítettük tananyag­
nak, összesen 5-öt tévesztett.

Eredményeink tesztelését folyamatosan végezzük; 
más vizsgálatok és orvosi paraméterek alapján tervezzük 

módszereink további alkalmazását.

Ts ,

* '

■
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Helyes döntés

Tananyag Tesztanyag

Kontroll Pancr. Ossz. Kontroll Pancr. Ossz.%Módszer %

28 55 91.67Diszkrirainancia analízis 69 89.6127 35 34

26 64legközelebbi szomszéd 24 50 83.33 35 29 83.12

Súlypont 6625 29 54 90.00 35 31 85.71

Összes esetszámi 30 6030 37 40 77

4.3 táblázat Az osztályozás háromféle módszerrel kapott eredménye 7 jellemző alapján 

(a maximumokat kihagyva).



Helyes döntés

TesztanyagTananyag

Pancr. Ossz.% %M ó d sz e r KontrollKontroll Pancr. Ossz.

55 91.6726 68 88.31Diszkriminancia analízis 29 37 31

3626 49 81.67 26 62 80.52Legközelebbi szomszéd 23

66 85.71Súlypont 29 53 88.33 35 3124

Összes esetszám: 603030 37 40 77

4.4 táblázat Az osztályozás eredménye háromféle módszerrel 7 jellemző alapján 

(a koncentrációk kihagyva).
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3. A légúti megbetegedések kimutatásának egyik fon­

tos módszere az úgynevezett flow-volumen görbe vizsgála­
ta. Ezt a görbét egy speciális műszer adja belégzés utáni 
erőltetett kilégzéskor. A görbére jellemző, hogy eleinte 

gyorsan emelkedik, majd többé-kevésbé meredeken csökken.
A görbéről - a csúcs helyéről, laposságáról stb. - 

a gyakorlott orvos sokszor ránézésre is felismeri 
asztmát vagy a felső légutak megbetegedését. Vannak azon­
ban olyan esetek, amikor ez nem egyértelmű.

A SZOTE Gyermekklinikán levő légzésfunkciós labora­
tóriumban egy kisszámítógéppel egybekötött készülék mű­
ködik, amely e görbét vizsgálja. Eelmerült e kisszámí- 

tógépbe szűrővizsgálati céllal olyan döntőkészülék be­
építése, amely a görbéből nyert paraméterek alapján jelzi 
a megbetegedésre gyanús eseteket.

Az első lépéseket tettük meg ezirányban, probléma 

ugyanis a figeiembe veendő jellemzők megválasztása.
Az irodalom nem egységes e téren, ma is sokan vizs­

gálják a görbe egyes jellemzőit illetve ezeknek a test- 

magasságtól való függését. Probléma a paraméterek "nor­
málértékeinek" meghatározása /Sahakian (1981)/.

Előzetes vizsgálatainkat /Gyurkovits, Boda (1981)/
24 kontroll és 39 asztmás beteg gyerek fújási görbéin 

végeztük. Az asztmások közül 20 a vizsgálat időpontjá­
ban tünetmentes volt, ezeket külön csoportnak tekintet­
tük. A vizsgált»paramétereket a 4.3 táblázat mutatja.

az
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testsúly
testmagasság
FEV4

1.
2.

- 1 sec. alatti térfogat 

összes térfogat
3.

FEtf4.
TIFF = FEV1/FE V x 100 

F MAX

5.
6. áramlási csúcssebesség 

sebesség a vitálkapacitás 75 %-ánál 

sebesség a vitálkapacitás 50 %-ánál 

sebesség a vitálkapacitás 25 %-ánál 

a görbe alatti terület

• F 357.
F508.

F259.

W)
ЬМАХ=T 25/FИАХ 

Ü45~ T25/F4S 

DSO - F15IF50

10.
11.
12.

13.
M 50 % és 75 % közötti meredekség

F50 alatti terület aránya az egész területhez
középáramlási max. sebesség

14.
T415.

16. M6FR

A paraméterek fele megegyezik a Sahakian (1981) által 
vizsgáltakkal, a többi is irodalmi adat. Az általunk be­
vezetett új paraméter a meredekség.

E paraméterek alapján lefuttattuk a lineáris disz- 

kriminancia analízis programot, először 16, majd. pedig 

az egymással korreláló tüneteket elhagyva, 9 tünet alapján.

.
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Eredményeinkát a 4.5 táblázat szemlélteti. A táb­
lázatban az egyes csoportok elnevezéseit rövidítettük: 

К-kontroll, Atm-asztmás, tünetmentes, Ast-asztmás, 
"státusban". A csoportokat páronként hasonlítottuk össze. 
Az eredményeket 2x2-es táblázatokban szemléltetjük, a 

sorokban az eredeti, az oszlopokban a döntött osztályok 

gyakoriságai állnak. Például az első táblázatban a 24 

kontroll esetből 23 esetet döntött a kontroll csoportba, 
és 1 esetet döntött a tünetmentes asztmásnak. A táblázatok 

alján a helyes döntések aránya található %-ban.

DöntöttDöntött
Ossz,Ossz.Atm Atm AstК •H

-P•H •S Atm ф _—- 
!ч Ast

24 19 1 20+> К (D
a> Atm

123
1 19 20 2 18 20г-qин
95.45 % 92.5 %

Döntött
OsszAstК•H

1*24 О 24а)
401 19st

97.72 %

4.5 táblázat 16 koordináta alapján lineáris diszkriminancia
analízissel kapott döntési táblázata és a helyes 

döntések aránya %-ban kontroll (K), tünetmentes 

asztmás (Atm) és asztmás (Ast) esetek vizsgála­
takor
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Döntött Döntött

Ossz. Ossz.Atm Atm AstК •H•H •p
® Atm
Ф ------
ä Ast

К 23 1 124 19 20о
Ű)
^ Atm 161 19 20 4 20

95-45 % 87.5 %

Döntött
Ossz.К Ast

•н
ф к 

^ Ast
24 О 24

гсз
2 18 20Н

95.45 %

I

4.6 táblázat 9 koordináta alapján lineáris diszkriminancia 

analízissel kapott döntési táblázatok és 

a helyes döntések aránya %-ban kontroll (K), 
tünetmentes asztmás (Atm) és asztmás (Ast) 

esetek vizsgálatakor.

A vizsgált jellemzők közül elhagytuk azokat, 

lyek között szoros összefüggés volt, így 9 jellemző ma­
radt. A diszkriminancia analízis eredményét a 4.6 táblázat 

mutatja.

ame-

Örvendetes az a tény, hogy a tünetmentes asztmáso­
kat is nagy biztonsággal sikerült a kontroll esetektől
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elkülöníteni. Természetesen további, nagyszámú eset 
szükséges a finomabb vizsgálatokhoz és a tesztelés­
hez, hogy a módszer szűrővizsgálatra is alkalmazható 

legyen.
В három példával kívántam szemléltetni azt, hogy az 

általunk beprogramozott - kisgépen is alkalmazható - 

alakfelismerési módszereket hogyan használtuk fel az 

orvosi diagnosztika különböző területein.
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5. Összefoglalás
E dolgozatban egyes statisztikus alakfelismerési mód­

szereket tekintettem át, valamint ezek orvos-diagnosztikai 
felhasználási lehetőségeit mutattam be irodalmi adatok és 

saját esettanulmányok alapján.
Az alakfelismerés alapproblémájának általános ismerte­

tése után - mely szerint az alapvető feladat objektumok­
nak bizonyos jellemzőik alapján adott kategóriák valame­
lyikéhez való hozzárendelése - leírom azt a döntést, amely­
nél a hozzárendelés hibájának valószínűsége a legkisebb 

(Bayes döntés). Ezután a dolgozat az úgynevezett tanító­
val való tanulás módszerei közül mutat be néhányat. Megmu­
tatom, hogy a Bayes döntésfüggvény normális eloszlás és 

egyenlő kovariancia mátrixok esetén lineáris, és e függ­
vény egy optimalizálási transzformáció útján is megkapha­
tó. Ez a Bisher féle diszkriminancia analízis. /Bisher,

Ennek általánosításait is ismertetem, 
melyek nem csak normális eloszlású valószínűségi válto­
zókra alkalmazhatók. /Anderson, S. A. (1972), Albert, A. 
(1981)/.

A dolgozat irodalmi adatok alapján áttekintést ad az 

alakfelismerés orvos-diagnosztikai felhasználásának lehe­
tőségeiről, kitérve a számítógéppel segített orvosi diag­
nosztika helyzetére külföldön és hazánkban.

R. A. (1936)/.

Végül leírom azokat a diagnosztikai célú vizsgálatokat, 

amelyeket a Szegedi Orvostudományi Egyetem orvosaival 
együttműködve végeztem. Egyik esettanulmányom a gyermek-

$S4!
&

1
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kori légúti betegségek vizsgálata, ahol bizonyos légzés- 

funkciós paraméterek alapján kellett következtetni az 

asztmás msgbetegedés fennállására. A másik probléma, a 

hasnyálmirigy gyulladás diagnosztizálásakor laborpara­
méterek (enzim értékek) alapján vizsgáltuk a betegség 

meglétét. A lineáris diszkriminancia analízissel kapott 

93 %-os helyes döntést az utólagos tesztek is megerősí­
tették, így a döntésfüggvény segítségével egy paciens­
ről nagy valószínűséggel megmondható, hogy egészséges-e 

vagy beteg. Eredményeink - melyekről több közlemény ad 

számot,-orvosi szempontból is értékesek, és az orvosi 
kutatást és gyakorlatot is segíthetik.
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sának az értekezés elolvasása kapcsán tett számos igen 

hasznos észrevételéért.
Köszönettel tartozom Dr. Pap Ákosnak és Dr. Gyurkovits 

Kálmánnak, a SZOTE adjunktusainak a felmerült orvosi vo­
natkozású problémák megoldásában nyújtott segítségéért.
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Függelék

A STASYS programrendszer és a benne levő statisztikus 

alakfelismerési módszerek programjainak ismertetése

A STASYS programrendszer R-10-es számítógépre ké­
szült statisztikai programrendszer. 1976-ban hoztuk 

létre TIM munkában a SZOTE Számítástechnikai Központ 
munkatársaival. /Boda és munkatársai (1980)/. A rend­
szer célja az egyetemen folyó orvos-biológiai kísérle­
tek adatainak kiértékelése matematikai-statisztikai mód­
szerekkel.

A STASYS rendszer vektorstruktúrájú adatok kiér­
tékelésére alkalmas, off-line rendszer. Alapegysége egy 

vektor, amely változó hosszúságú lehet, és amelynek 

egy sorszám az azonosítója. Egy vektor általában egy 

statisztikai mintának felel meg, de a feladattól függő­
en lehetnek gyakoriságok is az elemei.

A rendszer diszk-orientált, azaz a feldolgozandó 

vektorokat, valamint a programokat és egyes statiszti­
kai táblázatokat is diszken tárolja. A vezérlő program 

a rendszergenerálás után a diszken különböző zónákat hoz 

létre, majd biztosítja az adatok input-outputját és a 

programok batch-jellegű futtatását.
Az adatok ki- és bevitelét egy rendszerprogram 

végzi. Fő jellemzője, hogy egységes adatkezelést bizto­
sít az adatok mennyiségétől függetlenül. Az adatokat for-



- Pá­

rnát um nélkül, tetszőleges adathordozóról he lehet olvas­
ni, és a futás bármely fázisában a teljes vagy részleges 

rendszermentés megvalósítható.
A programok automatikus, batch jellegű futtatása egy 

egyszerű célnyelven megadott utasít ás-sorozat alapján 

valósítható meg. Egy másik rendszerprogram végzi e célnyelv 

feldolgozását és ellenőrzését.
•A STASYS rendszerhez az eddig említett rendszerprog­

ramokon kívül az úgynevezett feldolgozó programok tartoz­
nak. Ezek vagy valamilyen transzformációt hajtanak végre 

egyes vektorok elemein - ezáltal új rendszerbeli vektoro­
kat hoznak létre - vagy egy adott statisztikai módszert 
futtatnak le adott sorszámú vektorokon. A célnyelven tu­
lajdonképpen e programok sorrendje és paraméterei adha­
tók meg.

A rendszer egyik fontos tulajdonsága a programból 
programhívás lehetősége. Ez azt jelenti, hogy futó fel­
dolgozó program futását megszakítva egy másik rendszer­
beli programot indíthat el. Ezzel a statisztikai mód­
szerek egymásra épülése miatt fa-sianktúraszerűen elágazó 

feladatok is megoldhatók - viszonylag kis memória mellett.
A programok nyelve tetszőleges, az R-10-en használ­

ható nyelv lehet. A rendszerprogramok és egyes szubrutinok 

assembey nyelven készültek, a feldolgozó programok nyelve 

fortran.
A feldolgozó programok a diszket egy speciális /
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szübrutin-rendszer segítségével érhetik el. Ezek a szub­
rutinok valósítják meg a file-kezelést a diszken.

A STASYS rendszerről az évek folyamán bebizonyoso­
dott, igen jól alkalmazható rutinszerű feldolgozásoknál. 
Ugyanakkor nagyobb méretű, nem rutin feladatok is megold­
hatók benne, mivel új program rendszerbe illesztése igen 

egyszerű.
.

Az alakfelismerési módszereket igénylő feladatok nem 

gyakoriak és nem is rutin jellegűek. E módszerek program­
jait mégis a STASYS rendszerbe illesztettük, mivel itt

- az adatkezelés, file-kezelés megoldott,
- a--programból programhívás lehetősége jól felhasznál­

ható,

- a rendszerbeli eg^éb statisztikai programokra, transz- 

formáló programokra alakfelismerési problémák esetén 

is szükség van.
Az alakfelismerési programok rendszerbe illesztésé­

nél egyetlen problémát az jelentett, hogy itt egy egyedről 
készített méréseket volt célszerű vektorként felfogni. Ez 

a statisztikai programok felfogásával szemben - a vektor­
struktúra elve szerint - transzpolálást jelent. Ezt szem­

ábralélteti az E. 1.

1. mérés .... N.2. mérés mérés
!Y> X1. egyed

2. egyed

x
I

XX1 X

I :
t

XXX <n. egyed
E. 1. ábra
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Az alakfelismerési programok input adatai tehát 

egy egyedről készült mérések vektorai. Ha a vektor a 

tananyagba vagy a tesztanyagba tartozik, akkor a "taní­
tás" koordináta a vektor első eleme kell, hogy legyen,

R egész számokkal kódolva.1,2 , • • • ,

Az alakfelismerési programoknak három fő tevékeny­
sége :

1. / A tanuló anyag alapján a döntésfüggvény előállí­
tása,

2. / adott döntésfüggvény és tesztanyag alapján tesz­
telés ,

#
3. / adott döntésfüggvény alapján ismeretlen kategó­

riájú pontról döntés.
E leírásnak nem célja a programok működésének rész­

letezése, csupán a dolgozatban említett és az esettanul­
mányok futtatása során felhasznált módszerek programja­
inak rövid leírását ad~:uk meg.

/
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Súlypont módszer
Feladata: adott sorszámú oszlopok által meghatáro­

zott tananyagon döntésfüggvény készítés a súlypont mód­
szerrel; a döntésfüggvény tesztelése és adott sorszámú 

pontokról döntés.
Forrásnyelve:
Periféria igény: a szokásos rendszer-hozzárendelése­

ken kívül még M:EI-ről esetenként olvas
Input:
1. oszlopsorszámok. Többparaméteres program, az 

oszlopok egy-egy pontot határoznak meg (tanuló vagy teszt­
pont)

FORTRAN

2. konstansok:
= 1: tanulás
= 2: adott tanulópontok tesztelése output altáblában 

lévő súlyvektor segítségével 
= 3; döntés ismeretlen kategóriájú pontokról output 

altáblában lévő súlyvektor segítségével 
= 4: adott tanulópontok tesztelése M:EI-ről beolva­

sott súlyvektor segítségével 
= 5: döntés M:EI-ről beolvasott súlyvektor segítségé­

vel

3. Diszk input: KÉSZÍT program által kitöltött al-
táblák

4. Az M:EI-hez rendelt perifériáról 4-es és 5-ös 

konstans esetén a következőket olvassa be:
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(2110) formátummal koordináták és osztályok száma 

(4F205) formátummal a súlyvektor koordinátái osz­
tályonként. Minden osztály új kártyán 

(rekordban) kell, hogy kezdődjön!

Megkötések a méretre: koordinátaszám é 50

koordinátaszám x osztályok számáé.-500

Output
Sornyomtatón: két osztályt elválasztó hipersík egyen­

lete ,
a súlypontok koordinátái osztályonként, 
tesztelés eredménye (sorszám, eredeti 
és döntött osáály, döntési mátrix) 

döntés eredménye (sorszám, döntött osz­
tály)

A program működése:
A konstansok alapján diszkről (subroutine diszk) 

vagy kártyáról (subroutine kártya) beolvassa a koordináták 

összegét illetve az átlagokat, kiszámítja a hipersíkok egyen­
leteinek együtthatóit (subroutine hiper), majd tesztel 
vagy dönt (subroutine teszt). Lásd az E.2. ábrát!

Szubrutinok: YEZHI
DISZK
KARTYA
HIPER
TESZT
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Disz kr iminancia analízis
Feladata: adott saszámú vektorokon mint tananyagon a 

Fisher-féle lineáris diszkriminancia analízis elvégzése* 

azaz két osztály között bizonyos értefemben optimális line­
áris elválasztó függvény előállítása.

Forrásnyelve: FORTRAN
Periféria igény: a szokásos statisztikai rendszerbeli 

periféria hozzárendeléseken kívül esetleg még kártyaolvasó 

inputra kell számítani.
Program input;
1. oszlopsorszámok. Többparaméteres program. Az oszlop­

sorszámok által megadott vektorok jelenleg maximum 20 koor­
dinátásak lehetnek.

2. Konstansok.
1. konstans: tevékenységszám. Értékei:

= 1: tanulás adott tananyagon
= 2: tesztanyag tesztelése előző eredmény alapján

(azaz a döntésfüggvény e futás során készült vagy 

a 25. output altáblában van) /alapfeltételezés/.
= 3: teszt kártyáról beolvasott paraméterek segítségével
= 4: előző eredmény alapján ismeretlen kategóriájú 

egyedékről döntés

= 5: kártyáról beolvasott együtthatók alapján ismeretlen 

kategóriájú pontokról döntés
2. konstans: az első osztály tanítása, mely természe­

tes számmal lett kódolva (alapfeltétel: = 1)
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3. konstans: a második osztály tanítása, mely ter­

mészetes számmal lett kódolva (alapfeltételezés:

= 2)

3- Diszk input: a KÉSZÍT program által elkészített 4,6 

output altáblák
4. Kártya input: (1. konstans = 3 v 5 esetén)

13 formátummal a dLmenziószám (M)
5P16.8 formátummal M1=M+1 számú együtt­
ható. Az utolsó a konstans tag.

A program működése:
A program feltételezi, hogy a 4* és 6. output altábla 

ki van töltve, tehát előbb a KÉSZÍT programot fel kell 
hívni!

Beállítja M-ben a dimenziószámot (M=20). A forrás­
listában x-gal meg vannak jelölve azok a sorok, amelyeken 

a dimenziószám növelésekor változtatni kell.
A TKONST (7) tömbben tárolja a konstansokat.
TKOKÉT (1) = 1 esetén a 4. és 6 output altáblákból 

előállítja a 2. és 3* konstanssal megegyező tanítású osz­
tályokat figyelembe véve előállítja a döntésfüggvény 

együtthatóit, oszlopokat generál a döntésfüggvény segít­
ségével. A generált két oszlop a két osztály 1 dimenzióra 

transzformált pontjait tartalmazza. Ezek között az optimá­
lis elválasztó pont (az elválasztó függvény konstansa) 

megkereséséhez felhívja visszatéréssel a HISZT és a HISHAS 

programokat.
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TKONST (1) = 2 esetén a felsorolt oszlopsorszámok 

tesztpontokat jelentenek. Ezért megnézi, hogy a 25. al- 

táblában a döntésfüggvény együtthatói ott vannak-e. Ha 

nem, akkor a TKONST (1) = 1 esetnek megfelelően előállít­
ja azokat és kiteszi a táblába. Ha igen, akkor előállítja 

minden egyes pontra a döntésfüggvény értékét, és össze­
hasonlítja a döntést a tanítással. Mindezt ki is nyom­
tatja a pont sorszámával együtt, valamint a heljes dön­
tést %-ban.

TKONST (1) = 3 esetén a TKONST (1) = 2-nek megfelelő 

tevékenységet kártyáról beolvasott együtthatók alapján 

végzi.
TKONST (1) = 4 esetén a felsorolt oszlopsorszámok 

ismeretlen kategóriájú pontokat jelentenek, tehát a hoz­
zájuk tartozó vektorok tanítás koordinátát nem tartalmaz­
hatnak. A 25. output altáblából vett döntésfüggvény segít­
ségével kiszámolja annak értékét minden pontra, és azt a 

pont sorszámával együtt kinyomtatja. Ha a döntésfüggvény 

nincs az altáblában, akkor vége.
TKONST (1) = 5 eset megfelel a TKONST (1) = 4-nek, 

csak a döntésfüggvény kártyáról olvasandó be.

Program output:
1. Eredmények listázása sornyomtatón
2. Hibaüzenetek M:EO-hoz rendelt perifériára
3. Két új generált oszlop a generálás szabályainak 

megfelelő sorszámmal ellátva
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4. A döntésfüggvény együtthatói a 25. output 
altáblában.

Hívott szubrutinok; STDISK
STEXIT
ОС1КЖ1
TKON2

■

ELEVSZ
OSZGEN
HIHAHI

Hívott programok; HISZT

HISHAS

'

I
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B-ZO f kv\cix. cfíimieKiió beáll liclza )
f Л

SUBROUTINE OCIKW'I -vektorok sorsedmq ina к beolvaidsq.
konstansok

)
beállítási*

KONSrX v
kis <4?-- 2.

s
K4S4

КОЩ- ronst
rгч. 4 At r

döntt's

Ii esető nya^ tananya ej

M els аг eyyúfcthatdk 
beolva sásq

eqyCdt Hut dk beolvAScísq 
diszkre) I

VAU
W adat c\

d I se ke и

л
SUBROUTINE tkonz
d'öniífvfkqyentj «Vte'ke'nek 
nyonttatisa . Tes%t esete1 
fttakii'ta'st iS nyomtatja

V-ei^g \ u
t I,
Г

St
£

SUBROUTINE KOvSB 
гты *vj.10 C Sea!rnMafs.al

I
SUBROUTINE ELF VS?.
C 6 r *ьИ) “ >2viT> egyei^letrehgf- 
Seer megoldása

SUBROUTINE OSBG-EU 
k- két osataly роц-tjaibol 
kei új vektort gehe г л I

SUBROUTINE HiHAHl 
HlSET es HlSM AS pкод pa m о le 
Kiva'^Q , op-fcímóvlis, elv a'I a sat© 
pont. meykerese's-e

U^oifAtatci's

I F-3. oibr«. I
к ImeoKs oUszknTniba ncia analízis pkograwjanA к blokk dia^rciKYija
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Legközelebbi szomszéd
Feladata: adott sorszámú vektorokon a legközelebbi 

szomszéd módszer végrehajtása; adott tananyag tesztelése 

illetve döntés ismeretlen kategóriájú pontokról. Euklide­
szi távolsággal dolgozik. (Eritz: Az alaki elismerés sta­
tisztikus módszerei. MTA 1974»)

Forrásnyelv: FORTRAN 

Program input:
1. Oszlopsorszámok. Kétparaméteres program, a két 

oszlopsorszámmal az első és utolsó feldolgozandó 

vektort kell megadni. Ezért az egy menetben fel­
dolgozandó vektoroknak egymás utáni sorszámúaknak 

kell lennie, üres vagy nem létező oszlop ne 

legyen közben!
2. Konstansok.

1. konstans: a tanítás hányadik koordináta (ez 

a program megengedi, hogy ez ne csak az első 

legyen)
2. konstans: az értékes jellemzők honnan kezdőd­

nek (azaz a vektor koordinátáiból melyeket aka­
runk megtartani)

3. konstans: osztályok száma
4. konstans: dimenziószám (tanítás nélkül)
5. konstans: tevékenységszám.

= 1: alaphalmazon teszt
= 2: teszthalmazon teszt
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= 3: új halmazon döntés
6. konstans: a maszkvektor sorszáma
Alapfeltételezés a konstansokra: 1,2,2. összelem-
szám-1, 1,0
Program output: az eredmények listázása a sornyom­

tatón. Alaphalmazon és teszthalmazon teszt esetén a dön- 

tési mátrixot és döntés esetén a sorszámot és a döntést 
nyomtatja ki.

A program működése:
- Ha az 5. konstans = 2, akkor a következő két osz­

lopsorszám egy tesztanyagot határoz meg. Ekkor te­
hát a program még egy számpárt vár.

- Ha az 5. konstans = 3» akkor is még egy számpárt 
vár a prgram, amely most az ismeretlen osztályú 

pontok sorszámát adja meg.

A döntési halmaz pontjainak dimenziója 1-gyel kevesebb, 
mint az alaphalmazbelieké (a tanítás miatt). 

Szubrutinok: STDISK
STEXIT
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CALL V£22 (vektorsorszdmok, konstansok ) 
Lt-kezdß- L2Jvd<jso vektor sorszdma

\
Vegeк»

a* ± г
CAÍ.L vezzLH-- U I LL1-L2

I
Л -V StopIHIÖA t(5wb 

nulU'-ZASa £
H ibqjely's I wert lUj 
haimeut va'r

'К S'- M v
(г L3 I L1+ <яг <l*j kaimat 

kezdő'- «'s ve'qsd vektora/'n«k 
SOrSZO.mq

Г
Г

i
alaphaímazon -teszt.

/1
PCr d l=LLÁ\Lll~\ КГ=2 Уг

uj halmazon döntésOSZA = X-edi'k vektor tam'tdsq 

T4V ~ nagy szdm 

Der 2. ^ *1И ) LLZ
TAv»J*I-«diU és, 4-edi'k 
vektor tdvolscugq

itesztkalmazon
teszt

po- to t = L3,lí*1
TAV= nqgy SzelniLL d » L 3 

LLZ^L^ Dfr 2.0 4=Lt,LZ
N

tAVIJ C.MV TAv 0= I- edfk éS 
J-edi'k vektor- 
tdvol zagy

%
i

TÁV - TAVI J 
OSX 2 = J-edt'k 
vektor tam'ta'sq TAviJ 2tAV>>^-

г

H
2. COUTIVUE tav = tavij

PS2.2 - J-edi'k 
vektor tflnitűíso

^0 CoVTUv/Hg 4‘ -‘—1

SOUSíA'm (J) ek q
döntés (о£гг) nyomtatasq

IH \m (OS2M,OS22.); 
iHieu (oSzri,osz2)+ \

\ coivTiuue

í
1Н!ЬД matrix nyomfata'sa^ 
-fódfclőbeli elemek össeege,

oiönte's

*o cok/Tiiuiue

a helyes 
nyomtatása %- ban

T ^L

ТЛ. alorq .
A legközelebbi' seoms£ed módszer programjának blokk diagramjq
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LEGKÖZELEBBI SZOMSZÉD MÓDSZER

alaphalmazon TESZT

halmaz kezdőpontja:
HALMAZ VÉGPONTJA: 
OSZTALiYHOVATARTOZAS 
A VEKTOR! A 
KOORDINÁTÁK SZAMA: 
OSZTÁLYOK SZAMA: 
TEVEKENYSEGS'ZAM: 1

1
ьо

1 -DIK KOORDINÁTA
2 -ÓIK pozíción kezdődik

EE2Ü

14
:

±P=5g tsífe"

00NTE3I TABLAZA
!'■

25 7

255‘
f ;f -

HELYES DÖNTÉS 43

ROSSZ DÖNTÉS 12

ÜRES JELET TARTALMAZÓ OSZLOPOK SZAMA 0

HELYES OQNTES 3ZaZALEKBAN 80.00 
******************************

—
Ü;11

JL
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••••I—~ —Я*г

LEGKÖZELEBBI SZOMSZÉD MÓDSZER

TESZTHALMAZOM TESZT »-

HALMAZ KEZDŐPONTJAI 71 
HALMAZ VÉGPONTJAI 
oszt alíYhövat artqzas
A VPsíTns? Д
KOORDINÁTÁK SZAMA: 
OSZT/ALYOK SZAMA:

147
1 -ÓIK KOORDINÁTA 

2 -DIK POZÍCIÓN KEZDŐDIK
14

a
SS2 m •j±~дг~~

:
DÖNTÉSI TASLAZAT

I
36 1

14 26

HELYES DÖNTÉS 62
=rr^.x-

ROSSZ DÖNTÉS 15

ÜRES JELET TARTALMAZÓ OSZLOPOK SZAMA 0

HELYES DÖNTÉS SZÁZALÉKBAN 80.52 
********* *********** ********** V' Щ■ i, . • ' ■*»ill »■

f
■—



OSZT.BESOROLÁS 
SZÁMOLÁSI ÉRTÉK 
SEGITSESEVEL

ereoeti
OSZTÁLY

BESOROLÁS

SZÁMOLÁSI ÉRTÉKDSZw;0?
SORSZÁM

■?

p-tv.21-0,9177
0,8062

11,655a
18,8582
11,5583
10,0525
i.7iai
3.6326
3,6800
1.1039
2.0810

12,0953
а, 8539 
Q,a250 
5,0985
б. 099a

132
-i.i11133

11134
11135
1l13b :!Íf1137 1
1133 1
11139

Mi1140 1
Щ.11141 M11142

11145■

■'Ül1l144 >r;íí145
1 114b

11147
V.

AZ OSZLOPOK SZAMAS 77

i
■í; '•A HELYES OOMTEStK ARANYA SZÁZALÉKBAN 92.00

i



QSZT.BESOROLÁS 
SZÁMOLÁSI ÉRTÉK 
SPGITSEGEVEL

EREDETI
OSZTÁLY

BESOROLÁS

számolási értékOSZLOP
SORSZM -i;

■->

íf22-6,8890 
-2,6068 
"3,6843 
-4,1070 
-3.2120 
-2,8464 
-0,3424 
0,8469 

-1,0044 
-3.4659 
-7,7606 
-4,8957 
9.3425 

-3,3061 
-2,7140 
-3,0816 
0,5559 
1.2953 

“8,6060 
-3,5065 
-5,1077 
-5.9518 
-7,4065 
-1,6961 
-5.3439 
-5.2539 
-5,4673 
-0.4684 
-2.0945 
-3,9398 
-1.0593 
-0.7452 
-3,0670 
-1.3613 
-0,7175 
-6,3404 
-0,0339 
-3,7980 
-4,4128 
-5,5960 
10,1269 
-2.4799 
3,4063 
1.3028 
5,3354 
9,8439 

10.3920 
9,4467 
3.4234 

24.8470 
3.3539 
6,3438 
3,2266 
7.53И 
3.7563 
4.7561 
4.7729 
4,0669 
1.8343 
3.9598 
0.7063

71
í;2272 : -•••

•é2273
2274
275 ' i2
2276
227 7
1273

4«2279
*62290
itf2281
42292 !2 183
!# í228 4 iÜ

5 Í
■4'2285 и
42286 t í

2 137 i ?
■Щ2 133
42239
4 i2290 ti

2291
:t; j2292 í ;?•2 293 ’ ‘

mi .2294 ! *
>t I2 295

2 296 1
’ Щ2297

2293
2 299

22Ю0 ‘4
í #22Ю1
H|ÍJ 

4# 
4!iií ' 

: lijil': '

22102
2 ?103

22104
22105

2 2106
?2107
2103 2

412109 2
'4!#22110

1ill 1
< i2112 1

113 1 1
114 11

I Л-1115 1
4US 1 1

- 4117 11
ИЗ 11

:|4119 1 1
■lof!120 11
"'0'121 1 1
t'f122 1 1
4'123 1 1

124 1 1
4:125 1 1
al1126 1

127 11
123 1 141

■Ф#129 11
:150 11i

131 11 cl:



pancreatitis1983. 05. 05,

кет oszt a u ^ szetvalasztasa lineáris oiszkriminancia függvénnyel
■

• j í
c

1 •¥KONSTANSOK: 2 1 2
;
■ f(

ADOTT LINEARIS DISZKRIMINANCIA függvény TESZTELÉSE
I

AZ EGYÜTT КАТОК SZ MAS 14

A LINEARIS DISZKRIMINANCIA FÜGGVÉNY EGYÜTTHATÓI:
í '

«4
-0 f 0083 
-0.0579 
0.0002

0.0517
0.0158

0.0102 
O.0OQ4 

"0.0034

0,007b
■*0,0004
"0,0243

0.0000
0.006b
0.0228 -t. ;

A DISZKRIMINANCIA FGV, KONSTANSA: -8.2466
I-
H

? HHA A DISZKRIMINANCIA FGV. EGY OSZLOPON VETT ÉRTÉKÉ >=0.0 AKKOR 1 OSZTÁLYHOZ,

2 OSZTÁLYHOZ SOROLJUKHA < 0.0 AKKOR



A VÁLTOZOL НАГАЗА AZ ÁLTALÁNOSÍTOTT TÁVOLSÁG КIALA<ITASARAí 
ÖSSZES HATAS:

0.0572184570 
-5.2800223900 
-0.1925526500

0.2833957600
0.4389217500

0.0500319000
0.8241764400

-0.0232979120

О,042ЬЬЙЦ40 
0,0185662440 
0.1022253600

-0.24598116Q0 
-0.3804976300 
0.3052577900 f!

'IIDIREKT HAT A3»
P0.0194281460

1.3708151000
0.0058013906

0.2728180300
1.7873823000

0.0046430790
0.0136141360
0,0375583880

1.2591398000
0.5528486300
0.2204253600

I).0155396640 
5.2912953500 
0.2112469100

• t4
' i - V:i

■



1935. 05. 05. PANCREATITIS

КЕТ HISZTQGRAM OSSZEHASONUTASA, QSZLOPSüRSZAMOK: 201 202
l

i

l.OSZTAwV GYAKORISAGA:
050232308270000000000 
0 0

0 0 00
i

2.OSZTÁLY SYAKORISAGA:
00000000015113 0 5551222
0 1

0 0 0

AZ 0PTIMA.I3 ELVÁLASZTÓ PONT 
E38EN AZ ESETBEN A HELYES DÖNTÉS VALQSZINUSEGE 95.33*:

8,247

OSSZ ELEMSZAM 1,OSZTÁLY: 30 2.OSZTÁLY: 30

2,OSZTÁLY: 4

EGYÜTT: 60

■: '■’%HIBÁS DÖNTÉS t,OSZTÁLY: 0 EGYÜTT: « ■ ’ v ■ :

a lineáris diszkriminancia függvény együtthatói:
i í?

-

0,0078010638 
-0!. 0004235876 
-0.0242841220

0.0101563990
0.0004056420

-0.0034462345

0.0516631370
0.0158190490

0,0000362779
0.0065884221
0.0227745050

-0.0083386785
-0.0579397260
0.0002246369

A DISZKRIMINANCIA FGV, KONSTANSA: -8.2466472000
N

HA A DISZKRIMINANCIA FGV. EGY OSZLOPON VETT ERTEKE >=0.0 AKKOR

HA < 0.0 AKKOR

1 OSZTÁLYHOZ,

2 OSZTÁLYHOZ SOROLJUK

!*'
A SZÓRÁSOK 3ECSlESE11 

43.8543390000 
3391.8032000000 

50.4210330000

4999.8876000000
47.1405920000
22.6509270000

358.1965600000
34.1592430000

5563.2890000000

36.5306370000
7682.9493000000

58.8305350000

26.9114670000
224.9624100000

A MAHALAN33IS TaVDLSAG = felbontása:7.035373

ÖSSZES НАТАЗ:
•• í0,3022486600 

0,1315487600 
0,7243050900

0.4054141000
-1.9840634000
-1.5650161000

-1.7428684000
-2.6959676000
2.1628654000

0.3544947000
5.8395975000

-0.1650744000

2.0079649000
3.1099242000

DIREKT НАТАЗ: I í
0.0328979560
0.0964612370
0.2661151900

0.1101043200
2.0639360000
1.4987633000

6.9214820000
3.9171391000
1.5617961000

1.9330180000
12.6642770000

0.1376556700
9.7127378000
0.0411050550



1933, 05. 05, PANCREATITIS

HISZTQGRA1 KÉSZÍTÉS A 201-0IK OSZLOPRÓL
■ H

if"
REL(%)GYAK

0.000
0.403

0.000
1.192

0 0.00
1,976

0.000
2,759

0 0.00
3.543

0.000
4.327

0.000
5.111

0.000
5.B95

0.000
6.679

3.33XXX 1
7.463 xxxxxxxxxx 3 10.00
3.247

XXX 3.331
9.031

XXX 3.331
9.814

XXXXXXXXXX 3 10.00
10.598

0 0.00 "I it
r.|?11.382

XXXXXXXXXXXXXXXXX 16.675I

12.166
i *;xxxxxxxxxx 3 10.00

12.950
XXXXXXXXXXXXXXXXX 5 16.67

13.734
3.33XXX 1

14,513
6.67xxxxxxx 2

15.302
XXXXXXX 2 6.67

16.085
xxxxxxx 2 6.67

16.869
0 0.00

I -t17.653
0.000

■ -\'Л13.437
0,000

19,221
0.000

20.005
3.33XXX 1 ■1



PANCREATITIS1963. 05. 05.

HISZTQGRAN KÉSZÍTÉS A 202-DIK OSZUOPRQL
»■' !' "Ä V I .

GYAK RELÍ%)

0.000
0.403

1 ii- ;3 10.00XXXXXXXXXX
1.192

0.000
1.97b

2 6.67xxxxxxx
2.759

10.003xxxxxxxxxx
3.543

6.672xxxxxxx
4.327

3 10,00xxxxxxxxxx
5.111

0.000 , r.

5.895
26.678xxxxxxxxxxxxxxxxxxxxxxxxxxx

6.679
2 6.67xxxxxxx

7.463
23.337xxxxxxxxxxxxxxxxxxxxxxx

8.247
0,000

9.031
0.000

9,814
0.000

10,598
0.000

11.382
0.000

12.166
0 0.00

12.950
0.000 Ü*

13.734

T’i! !
0,000

14.513
0.000

I15.302
0.000

16.085
0 0.00

16,869
0.000

И17,b53
0.00О

18.437
0.00О

19.221
0.00О

20.005 I
• ■ Г 0.00о ■ í); •••V *



?PANCREATITIS1933, 05, 05.

кет oszTAi.iT szetvalasztasa linearis diszkriminancia függvénnyel :

' M i 4■, 4Л3 * f fe ■> V' ................................................■KONSTANSOK: i 1 2 ■

t:F-PR03A
5.8899F-ERTEK:SZA3A0SASI FOKOK: 14, 45 *

< $P-ERTEK: 0,000

A HIBASZA*: bA i I 3 A S STOISK TEV, SZAMA220
' Í : '• • : -

AZ EGYUTTiATvU SZA^Ai 14 г• • '
\



!. fejti
1983.05.(5. pancreatitis

4SÚLYPONT -IODSZER

2-dik osztályt elválasztó
8331.5QB*X( 2)
46.531*X( 8) 
47.900AXC14)

1-OIK £3 
53,337*XC П 

19,967*XC 7) 
9Ь28,3()1 *XC13)

HIPERSIK EGYENLETE:
34*. 904*XÍ 4) 

196.594*X(105

-435294740.00000 +
38.867*X € 5) 

56.257*X(11>
:■ (14683. 961*X( 61 

31,803*X(12)
209.0U*X( 3) 

14395.958AXC 9) v I

■Hfi

1"DlX OSZTAlY SÚLYPONTJA 
121,92661 
123.33330 

16967,44500

■ !>.12920.53400
95,10556

219,10000

9281.38670
79.65328

65.23924
465.31737

632.23314
21967.54800

106,66656
102,83256 t

I

2-DIK OSZTAlY SÚLYPONTJA 
68,53992 

103,36664 
7339.14440

• k4589.02720
48,57491

171.19998

4597,42610
47.84992

423.22242
7571.58570

30.33559
268.72337

67,79994
46,57593 ■45’

i

A TESZTELÉS 60-08 EMBEREN TÖRTÉNT, HELYES DÖNTÉSEK SZAMA: 53 ( 88.00 X )
24 6

И*1 29
I

1"DlК OSZTÁLY SÚLYPONTJA 
l21,92661 
123,33330 

18967,44500

9281,38670
79.65328

12920.53400
95,10556

219.Ю000

65.23924
465.31737

632.23314
21967.54800

106.66656
102.83256 N

-Й

2-DIK OSZTÁLY SÚLYPONTJA 
68,58992 

103.36664 
7339,14440

4597.42610
47.84992

4589,02720
48,57491

171,19998

67,79994
46.57593

30.33559
268,72337

423.22242
7571.58570

л #■

и

A TESZTELÉS 77-DB EMBEREN TÖRTÉNT, HELYES DÖNTÉSEK SZAMA: 66 ( 85.00 X )
35 2

*9 31 * *•*



301137. 702.12066. 1386090. 514151, 228506. 49108690. Ь^чьгь.
**********326303000, 76934701 . 52250594 , **********1 499491 30.

7489525. 1630230. 1107235,231959280. 3053933.
401825. 244303. 53995597, 703644.
201072. 42757091, 518320,

**********115174420,
1505999,

205989. 11545016, 1123694, 667Ц, 158975. 9377956. 211007. 147668. 19991970. 723075.
104422, 115058, 15637690, 344966,

90246375». 66377521, 5319998, 9507205,773731580. 16293091. 8368847.********** 43703538, 8074288, 
6932063.********** 26329583,

10729766, 658919. 998178. 62262237, 1318033. 770021.109433060. 6558865. 1017084. 723794,
10201597#, 2195877.

52532. 62376. 5222460, 106434. 46442. 8425757. 410341. 80934. 45585. 8079528,
176912.
16950#. 10661393, 202518, 111572, 15691888. 625427. 95725. 120149. 170401Ю. 336068,

89349246«-. 15695500, 6660245.********** 39550608. 7791034. 7704633.********** 25693667.
411446. 147322, 26921326, 840827, 168188. 139221. 24789888. 636517.
108628. 14723849, 503070, 72998. 81420. 11П7077. 243405.

********** 72751Ы7, 131537Q8. 11359286,********** 43654782.
4107725, 642814, 457941. 65108049, 1404252.
127943. 69813. 12318820, 277325.
87714. 12339002, 232897,

********** 40697104,
1014168.

.
I

5k, i
■i

■■ У

Й1, г;.:,



tOISSEN/BI

LUNQH

XDISGEN/OT

PRO SS A MN EV TABUAZAT

1 Э1s<si: G Cl * 1) КЗ P1 
<E3ZIT: S K2 PT
sut.,vas s ki PT
4M S S Кб P2 
SE?)

2
3
4
5

>
XEOD

.
XHIVGEN/

::830505PANCREATITIS,200í 
S KESZITCbF0R2,60C2,15) "
S SJLYA(l,FQR2#60Cll 71,FQR72,147)"
3 0I3KRICH FORb60Cl,l#2; 1» FOR71,1 47C2,1,2) "
S NN(b60Cl,2,2,7,1#0? 1#60C1,2,2,7,2#Ó| 71,147) 
«EOD

■ V1
2

• *3
Kr4 - i' í5

6 I

4Í5

ÖSSZEGEK 
10, 3658,

1396*. 3035,
5*. 2058.

8062. 1397,

13967,
509023,

12697,
220174.

387616, 
2390, 

157671 . 
1435,

1957.
6573.
910.

5136.

3715.3200. 278442. 2853, 659026.

1457. 227148.2034. 137923. 3116.

NÉGYZETEK
491662,********** 14077002, 
401825,
205989,902463730. 10729766, 
127943,

3*. 180111.
1505999,

52582.
1014168.

351743.********** 501133.

169500.893492460. 4Ц446.

301187,**********
7489525. 201072,**********

3 '. 108628.**********
4107725. 87714,**********

SZORZATOK
3 .

491662. 52106702, 2386564, 249188, 391891. 34722704. 448268'. 379928. 88525903, 1732969,
390252. 292921, 62775183, 804263,

**********254365640, 30812192, 41687965,********** 51041502. 41251522.**********191201210. 46112913, 
31105775.********** 88211328,
14077002. 1433132, 2047926,172666900. 2308165. 1878281.443378440. 10125339. 2236372. 1505509,

31125325;. 4103467,
180111. 212205. 19738609, 260170, 201624. 49268705. 1086960. 264180. 155017. 34250879,
444622.
351743. 30733338, 397551, 303653, 70240992. 1503250. 333565. 262300. 55837214. 702973,

********** 36393816. 27107632.**********128881630. 30243742. 23203534.********** 63030177.
501133. 353695, 83463871. 1726349. 397989. 291934. 64302850. 847985.
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