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1. Bevezetés

Az alakfelismerés olyan médszerek, eljdrdsok Ossze-
foglalé neve, amelyek segitségével bizonyos objektumok
jellemz8ik alapjén adott kategéridk valamelyikéhez egyér-
telmiien hozzdrendelhetd8k. A kategdridkrdl (osztdlyokrdl)
feltessziik, hogy eleve (a priori) léteznek. Az objektumo-
kat dltaldban nem tudjuk direkt médon azonositani, hanem
jellemzdik (mérések, megfigyelési adatok) alapjén.

A probléma a karakterek felismerésébdl indult ki.
Itt egy kategdridt egy adott karakter "elméleti" képe je-
lent, a jellemzdk megdllapitdsa pedig egy karakter képé-
nek valamilyen médon torténé digitalizdldsdval lehetsé-
ges. Ma mdr gzdmos tudoménydgban haszndljdk az alakfelis-
merési médszereket: képek felismerése kapcsén pl. kromo-
gzémédk azonositdsdra (sejt-ezdvet analizis), ujjlenyoma-
tok (biolégia, kriminalisztika), hangfelismerés, gorbék
osztdlyozdsdra (EEG, EKG). T6bb ezer cikk tamiskodik az
alakfelismerés orvos-diagnosztikai alkalmazdsairdl: itt a
feladat egy paciens tiinetei alapjdn a betegség felismerése.

E dolgozat célja egyes statisztikus alakfelismerési
médszerek - kiilondsen a linedris diszkriminancia analizis
és 4dltaldnositdsainak - dttekintése, valamint a médszerek
orvos-diagnogztikai felhaszndldsi lehetéségeinek bemutatd-
ga a kiilfoldi és hazai irodalom dttekintése révén g sa-
Jdt esettanulmdnyok alapjdn.

Az alakfelismerés alapproblémdja jellemz8ik alapjédn
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objektumok hozzdrendelése adott kategéridk valamelyikéhez.
Egy objektumot N szdmi jellemz8je alapjén egy N dimenzids
vektorral adhatunk meg. A hozzdrendelést dltaldban ugy
adjdk meg, hogy a téves dontés valdszinlisége, az uUn.
hibavaldszinliség minél kisebb legyen. A minimdlis hibava-
16szinlségld dontést Bayes dontésnek mnevezzilk. Az elsd
fejezetben definidljuk a dontésfiiggvényt, amelynek se-
gitségével egy vektor hozzdrendelése elvégezhetld, és meg-
adjuk a Bayes dontésfiiggvény alakjdt dltaldnosan és t6bb-
vdltozds normdlis eloszlés esetén.

A mésodik fejezetben a statisztikus alakfelismerés
modelljét tdrgyalva megmutatjuk, hogy a dontégfiiggvény
megaddsdhoz sziikség van az Un. tananyagra, amely nem més,
mint egy olyan statisztikai minta, amelyben minden egyes
mintaelemnek ismerjiik a kategéridjat. A feladat elsd része-
ként meg kell hatdroznunk a dontésfiiggvényt (tanulds),
majdakapott dontési szabdlyt kell alkalmaznunk ellendrzés-
re (tesztelés), majd ezutdn ismeretlen kategdéridji egye-
dek osztdlyozdsdra. Kitériink a tananyag méretének megvd-
lasztédsdval kapcsolatos problémékra, azaz arra, hogy a
Jellemz8k szémdt Ugy kell meghatdrozni, hogy minél keve-
sebb szdmi jellemzd minél tobb informdcidt hordozzon. Az

alakfelismerési feladat része lehet egy tn. lényegkiemelési

transzformidcidé, amely az eredeti adatokat a legkdnnyebben
osztdlyozhaté formédra hozza.
Az alakfelismerésben eddigi ismereteink szerint nin-

csenek "mindenhatdé"™ médszerek, egy adott feladat emetén
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gyakran keresni kell azt a dontésfiiggvényt, amely a leg-
jobb osztdlyozdst adja. A harmadik fejezet igy szémos
statisztikus alakfelismerési médszert ismertet és utal

e médszereknek a Bayes ddntéshez vald kapcsolatdra.
Megadjuk Anderson (1974) alapjdn a Bayes dontésfiigg-
vényt normédlis eloszlds esetén a paraméterek becslésé-
vel, amely egyenld kovariancia mdtrixok esetén a kovet-

kezé alaki:

) Ted 4) RUT ~~1 (2)
S E A (TS () o

w (2)

ahol w ,m a két ogztdly atlagvektorai, s pedig a ko-

z0s kovariancia médtrix becslése. Igen egyszerd és szem-
léletes elv alapjdn mikodik a legkozelebbi szomszéd
médszer (Cover és Hart, 1967), amely egy adott tananyag
esetén egy ismeretlen kategdridji pontot a hozzd legko-
zelebb esé mintapont osztdlydba sor61 be. Kiilonféle li-
nedris és szakaszonként linedris algoritmusokkal zdrjuk
az un. tanitéval vald tanulds médszereinek bemutatdsdt.
A linedris diszkriminanecia analizis néven emlege-
tett alakfelismerési médszerekkel foglalkozik a harmadik
fejezet. Bemutatjuk, hogy a siriségfiiggvény-becsléskor
kapott (1) formuldhoz egy optimalizdldsi transzformécid
utjan is eljuthatunk (Fisher, 1936). Ennek &ltaldnosité-
saként ism;rtetjﬁk a Day-Kerridge (1967), illetve J. A.
Anderson (1972) dltal tdrgyalt logisztikus diszkriminan-
cia analizist, amely nemcsak normdlis, hanem diszkrét

eloszlédsi valdészinlségi vdltozdkra is alkalmazhatd.
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Ezek tovédbbi vdltozata az Albert (1981) dltal kozd6lt pro-
bit diszkriminencia analizis.

A negyedik fejezet a médszerek orvos-diagnosztikai
alkalmazdsi lehet8ségeirdl ad dttekintést az dltalunk
feldolgozott nagyszdmi nemzetkdzi és hazai kozlemény alap-
jédn. Sajdt tapasztalatainkat az Ujsziilottkori sédrgasdg,

a hasnydlmirigy gyulladds és a gyermekkori léguti meg-
betegedések diagnosztizdldsa kapcsédn mutatjuk be, melye-
ket a SZOTE Gyermekgydgydszati Klinika és az I. sz. Bel-
gybgydszati Klinika orvosaival egyiittmikodve végeztiink,
illetve végziink ma is. (Boda, 1971., 1972, Boda és Pap ,
1983).

A hasnydlmirigy gyulladds diagnosztizdldsakor a
feladat az volt, hogy egy paciens bizonyos enzim értéke-
inek ismeretében kiovetkeztessiink a betegsédg fenndlldsdra.
A problémat itt az jelentette, hogy egy beteg embernek is
csak bizonyos enzim értékei mutatnak kdéros elvdlitozdst,
mig mds enzimek normdlisak maradhatnak. Ezért nem lehet
eggtlen enzim alapjén képet alkotni a hasnydlmirigy mi-
kodégérél, és ezért kézenfekvd az egyszerre t6bb jellem-
z0t figyelembe vevd alakfelismerési médszerek alkalmazd-
sa. Kiilonb6z6 el8készitd tevékenységek és t6bb alakfel-
ismerési médszer lefuttatdsa utédn a linedris diszkrimi-
nancie analizis adta a legjobb, 93 %-os helyes ddntést,
melyet az utdélagos tesztek is megerdsitettek. Ezek az
eredmények orvosi szempontbdl is ériékesek, és a diag-

nogztikai munkdban segitséget nyijtanak az orvosnak.
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2. Az alakfelismerés alapproblémédja, médszerei

2.1. Az alakfelismerés alapproblémdja

Az alakfelismerés témakdrébe a gyakorlatban az olyan
feladatok tartoznak, amelyekben kordbban, tapasztalati
Uton megadott esetek, objektumok, helyzetek djabb eld-
forduldsdnak felismerésére kell eljédrdst konstrudlnunk.
A felismerés gy torténik, hogy az objektumot adott ka-
tegéridk valamelyikébe besoroljuk. A kategdéridkrdél fel-
tesaziik, hogy véges szdmiak és létezésgiik eleve, a priori
adott. Az objektumokrdl is feltessziik, hogy valamely
kategéridhoz tartoznak. A probléma ott meriil fel, hogy
az objektumokat nem lehet dltaldban direkt médon azono-
gitani, csak a rdla végzett megfigyelések, mérések alap-
jén. A besorolds egy dontési smbaly segitségével tortén-
het, amelyet eldzetes megfigyelések alapjén alkothatunk
meg.

Tekintsilk az orvosi diagndzis feldllitdsdnak
problémédjédt: az orvosnak egy vizsgdlatra jelentkezd
paciensrél a panaszai, tiinetei, laborvizsgdlatok, stb.
alapjédn el kell ddntenie, hogy milyen betegsége van.

Az azonositandéd objgktum tehdt a paciens, a kategdridk
pedig a felmeriilSd lehetséges betegségek. A betegségek
szédma és a létezése ismert. Az azonositds azonban csak

a paciens vizsgdlata utdn, a mérési eredmények, megfi-
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gyelések birtokdban lehetséges. A gyakorlatban az orvos
ismereteire és tapasztalataira témaszkodik a dontésnél,
ezek segitségével ismeri fel a betegséget a pillanatnyi
mérési és megfigyelési eredmények alapjédn.

Lithatdé, hogy az orvosi diagnézis feldllitdsa pon-
tosan gy formalizdlhaté, ahogyan az alakfelismerési
probléma.

A tovédbbiakban megadjuk az eddig véazolt probléma
matematikai tdrgyaldsat.

Legyen adott egy (R,AP) valészinlségi mezd, és
CMHWCRezen egy teljes eseményrendszer, azaz

e Corll gl .2 3

UCi=8 5  CenCi=@ , <¥f 3 vyl R.

A C;-ket osztdlyoknak, kategéridknak vagy hipotézisek-

nek nevezziik. Legyen adott tovdbbd objektumoknak egy
halmaza, amely objektumok a priori valamely kategéri-
dhoz hozzdtartoznak; mi azonban nem tudjuk, melyikhez,
mivel ezekrdél az objektumokrdl csak kozvetett adatok,
mérések, megfigyelések dllnak rendelkezésre. Egy objek-
tumot igy egy valdszinlségi vektor-valtozdéval jellem-
ziink, amelyrdl feltessziik, hogy az Ey N dimenzids
euklideszi tér egy vektora:

E'*EﬂVWEN)T
A '§ szokéaos_elnevezései: megfigyelés, tiinet-vektor,
aléivektor.

~

Az alakfelismerési feladat a i-vel jellemzett

ohktum hozzdrendelése a C; kategéfiék valamelyikéhez.
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Egy objektumrdl tett méréssel tulajdonképpen az

9-E, (2.1)
leképezést hajtottuk végre, azaz egy adott wGR—hoz
egy é = g (w) valdszinliségi vektorvdltozdt rendeltiink
hozzé..— 7
Feltessziik, hogy ezzel a leképezéssel olyan Bl“"BR
halmazok dliek el§ Ey-en, hogy w€({ akkor és csak
akkor teljesiil, ha §(w)€ By (is4,.~R).

2.1. Megjegyzés. Konnyen beldthatdé, hogy ekkor a B,

halmazok is diszjunktak, azaz
Bb.(\ BA’=¢ ) 11#:3‘ ! 1")4‘:4)"'|Q'
Ha ugyanis lenne olyan % , amely %( w)e BL' ABA') akkor

% (wed, s tlwe By miatt weCy és we(,
l;me, ami elle;’amond eannak a feltevésnek, hogy a C;-k
diszjunktak.

E transzformdcidét figyelembe véve jeldlje

% e Gy

azt a hozzé.rendelés_t, hogy a E -hez tartozdé objektum
a Cz; osztdlyba tartozik, azaz Cin € Cp |

A Bl,"' ’ BR halmazok alapjén az alakfelismerési
feladat, egy ismeretlen osztdlyi objektum adott kategd-
ridhoz valdé rendelése megoldhaté oly médon, hogy E € B;
esetén azt mondjuk, hogy ENC:L’ o o ARy RT3 ;

A gyakorlatban a Bi'halmazok megkeresése nem kony-
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nyli feladat. Ismert kategdridjd objektumokrdl nyert mé-
rések (az Un. tananyag, pontos definicidja 2.2-ben)
szolgdltatjédk az alapot ehhez. Ha a mérések diszjunkt
halmazokat eredményeznek az euklideszi térben, nehéz a
nagy dimenzidszédm és a nagy elemszdm miatt e halmazokat
megkeresni.

Az alakfelismerési feladat megolddsa a gyakorlatban
igy torténik, hogy valamilyen médon (a tananyag alapjén)
az euklideszi téren Dysess, Dp diszjunkt részhalmazokat,
ugynevezett dontési tartomédnyokat hozunk létre, es\§é‘D

egsetén a E*'C dontést hozzuk (i=l,...,R).

2.1. Definicié. Egy olyan mérhetd valds o(x) fiiggvényt,

amely az euklideszi teret az{},...,R} halmazra képezi
le egyértelmien, dontésfiiggvénynek nevezziik:
dlx): By~ {4,..., 7\}
Az alakfelismerési feladat megolddsédt adott dontés-
fliggvény ismeretében a kovetkezd dontési szabdly adja:

a d(f)= i esetén a §~c, dontést hozzuk. (i=1,...,R).

2.2. Megjegyzés. A dontésfiiggvény és a dontési tartomd-
nyok kapcsolatdt a kovetkezd osszefiiggések szemléltetik:
a/ Adott d(X)-hez a dontési tartomdnyok:

Doz {x|xe€y, olx)=~}

b/ Adott dontési tartomdnyokhoz a d(x):

d(b)=1, ha feD, i

i= l,coo,R (202)

l,ooo ,R.(2.3)
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Az objektumok, a megfigyelések és a dontési tartomdnyok
kapcsolatdt szemlélteti a 2.1l. &dbra

A dontésfiiggvényt - vagy a dontési tartomdnyo-
kat - dgy igyekeztiink meghatdrozni, hogy a ddntésiik a
lehetd§ legjobban megegyezzen az objektum eredeti kategd-
ridjédval. Eppen ebben rejlik a gyakorlati alkalmazdés
szédmos prdiémdja, egyrészt az o megfigyelési tér, mds-
résgzt a dontésfiiggvény olyan megvédlasztdsdra toreksziink,

ahol a dontési tartomdnyok a lehetd legjobban megktzeli-

tik a megfigyelések Ey-beli csoportjait.

2.1l. édbra., Az objektumok, a réluk készitett mérések és
a dontési tartomdnyok kapcsolata

Eddig lényegében az tgynevezett determinisztikus
modellt ismertettilk: egy adott EN-beli pontrdl a Bi-k
ismeretében egyértelmien megadhatdé, hogy melyik osztdly-
hoz rendelhetd hozzi.

Sok gyakorlati esetben a mérések alapjén az Ey-ben
az egy csoportba tartozdé pontok halmazai nem diszjunktak.

Ez tgy lehetséges, hogy a mérésekkel nem kaptunk meg
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minden informdcidt, vagy kevés jellemzbt mértiink, vagy
pedig nem elég informativ jegyeket. Ugyancsak nem kapunk
sziilkségképpen diszjunkt B; halmazokat, ha a (2.1)=beli
S Ey leképzésrdél nem tessziik fel, hogy kélcsondsen
egyértelmi. Ekkor s B, halmazok kozotti dtfedés a vélet-
lent8l fiigg. Egy EN-beli pontrdl nem &llithatjuk egyér-
telmien, hogy melyik osztdlyhoz tartozik, csak bizonyos
valdégzinlséggel. A dontésiink tehdt hibdval jdr. Ez a
sztochasztikus eset. A statisztikus alakfelismerés fe-
ladata olyan dontési tartoményok meghatdrozdsa, amelyek
alapjdn a dontés hibdjdnaek a valészinlisége a lehetd leg-
kigebb. A kOetkezl fejezetben erre a problémdra ad egy

lehetgéges megolddst.

2.l.l. A Bayes dontés

Legyen adott egy Cﬂﬂﬂfﬁ valdészinlségi mez6,§ ezen
a mezdn egy valészinliségi vektorvdltozd, Ci(i=1,:;.,R)
az CRMLP)-n egy teljes eseményrendszer. Olyan d.(x)
dontésfiiggvényt keresiink, amellyel § osztdlyba soro-
ldsa, azaz valamely Ci-hez vald hoz;érendelése bizonyos
értelemben optimdlis, pl. a legkisebb hibdval jdr. Hibés
az ogztdlyozds akkor, ha.d@%jés E*vci, k], i dmllesl By

Vezesgsgiik be a kavetke;6 jeléiéseket:
Legyen p;= P(Ci), i=l...R az i—e%ik os3ztdly a priori
valészinlisége. Nyilvén p;20 és tZ=4P£=i° Jeldlje ﬁ;()f) a
E megfigyelés C;-Tre vonatkozdé feltételes slriségfiigg-

vényét, azaz
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2020, S 2bdx=l & Cheoae=P(EedlC), A<Ey,
e ) By A =

Az{kQ)sﬁrﬁségfﬁggvények létezégét dltaldban semmi sem
garantdlja, de a legtobb gyakorlati esetben ezt feltéte-
lezhet jiik.

A fenti jeldlésekkel a hibds osztdlyozds valdszinli-
gége a kavetkezéképpen adhatd meg:

H(*W oo mpsliniBie o ol

ahol D a dbddontﬁfuggvenyhez tartozdé dontési tartomdny.
A hlbas dontésekhez hozzdrendelhetiink egy szémot, & hi-
bés dontés koltségét. Jeldlje cuj =cCuy(d)20 ,v#f, ¢y =0
azt a koltséget, (vagy veszteséget), amelyet a fenti
esetben kapunk.

2.2. Definicid. A d.=d(x)dontésfiiggvényhez tartozd feltételes

veszteség a C; ogztdly esetén (tehdt S s C; esetén)

R R
L'L=Li, (d-).‘%' CCJ' ’PAT*Z_.' gc'-)' 4“()_()0()_( ) "';'1)"'(2 5
jH i (2.5)

Az L:U-h-w LR) vektort veszteségvektornak neezziik.

Két dontésfiiggvény a hozzdjuk tartozd veszteségvek-
tor segitségével Osszehasonlithatd; ehhez tekintsiik a ko-

vetkezd két definicidt:

2.3. Definicié. Legyen d,(x) és d,(x) két dontésrfiiggvény,

és (Ly,... L) 112. (Lyg, ..., Lg,) & hozzdjuk tartozé vesz-
teségvektorok. A d,dontésfiiggvénnyel megadott dontési

szabdlyt jobbnak nevezziik, mint a dl-vel megadottat, ha
Lf1éL\:l ) 1:_'41"'R )
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és legaldbb egy i-re Li44lq&o He minden i-re egyenls-

ség 411, a két dontési szabdly ekvivalens.

2+4. Definicidé. Egy d dontésfiiggvénnyel megadott don-

tési szabdlyt megengedettnek neveziink, ha nem létezik
nédla - a 2.3. Definicié értelmében - jobb dontés.

@unk bizonyos kritériumok alapjén egy meg engedett
dontési szabdly mégtalélésa. Aszerint, hogy az a priori
valdaziniséget ismerjiik-e, két médon jédrhatunk el:

a/ Ismert a priori valdszinlségek esete

Egyszeri a megoldds abban az esetben, ha az a
priori valdészinlségeket ismerjiik. Ekkor definidlhatjuk

a feltétel nélkiili varhatdé veszteséget:

2.5, Definicié. A d dontésfiiggvényhez tartozé kockdzat,

vagy véarhaté veszteség:

E4] (4] ZpLL Z PfZ cvy Py

,)it
2,6, Definicibd. A (2.6)-0t minimalizdldé - azaz a mini-

(2.6)

madlis veszteséget hozdé - dontést apm&hpu,pga priori vald-

szinlségekhez tartozd Bayes dontésnek, a hozzdtartozd

dontésfiiggvényt Bayes dontésfiiggvénynek nevezziik. A

Bayes fiiggvényt a tovébbiakban d¥(x)-gal, a hozzétar-
toz6 dontési tartomdnyokat £ﬁ? -gal fogjuk jeldlni.

2.1. Tétel. Adott- 1> és C% mellett a (2.6) minimdlis,
ha a dontési tartomanyok a kovetkezd alakiak:

D" {leGEmZpbcbb:ﬁ(x) Z pi ok 4e00f, 4otk sk, @3

4] 1#&
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Ha a (2.7)-ben valamely indexekre az egyenldség valé-
szintsége O minden kés /} -re, akkor a minimalizdlds

egyértelmi egy O mértékii halmaz kivételével.

Bizonyitéds

El8sz6r bizonyitjuk, hogy a (2.7)-ben megadott D,j

tartomdnyok minimalizdljak (2 6)-ot. Helyettesitsiik
(2.6)-ban a Pa* helyébe (2. %)-et'
L- szL zpbzcla u (x) dx
a= 4=

3
g
ahol most Da‘ y 334,--R valamely d(l) dontésfiiggvényhez

(2.8)

tartozdé dontési tartomdny. (2.8)-at alakitsuk 4t a ko-

vetkezbképpen:
R g
ng; P\.Z gCLA’.{ X>0LY ZZ_ g Py Cx)’é“j(_)ﬁ)o{/j{:
%h D") e :g#-‘L D?
R R ‘
ozn é L Pk s (2.9)

i
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EbbSl az dtalakitdsbdl léthatd, hogy adott pr és Cc)‘

(\.’,b'=4,w-» R) mellett I akkor lesz minimdlis, ha D;-=D;',3‘=4,,712.
Héitra van még az egyértelmiség bizony{tdsa.

Legyen !
‘?\, (X) Z pc C(,b ¥ ()() ) b‘:ﬂ,_..,?
b#)
R
L=Z § £y da = § hlodx
v by T ey 3

ahol A (x)~ by (x) » ha x¢Dy. Mivel a Bayes dontés

(2.10)
Ekkor
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szerint “»*(X>= “W\ &'(x) , igy egy tetszdleges () -hez
és a o(f(x) -hez ta.rtozo veszteség-kiilonbség:

S(k(x 2 () oy z@ (¢) - min e 9) dx 20 .

Egyenloseg csak akkor all ha &. x) ML amdynek O a

valdszinGsége a feltétel miatt. [J

2.3. Megjegyzés. Ha (2.7)-ben egyenléség 4ll fenn va-

lamely indexekre, akkor tetszés szerint osztdlyozhatunk.

A tovédbbiakban vizsgdljuk azt a specidlis esetet,
amikor ccf{ minden '\J.J‘ -re (C#d’), m‘,3‘=4, o R e
Ekkor (2.7) a kovetkezd alaki:

D7 {alietn, T pelso= 2, pebtel] b hgon e

(2.11)
t#J m#b
R
amely Z p.|.(x) kifejezéssel vald egyszertsités utén
=1
<# ik

Dg ={>_<.l>565~> pe fi (x) £ pg{g(ﬁ} L-4-R, ke, (2.12)

alakii. Ebben az esetben tehdt a Da'* tartomanyba azok a
pontok tartoznak, amelyekre p,{;(x) maximdlis.
Irjuk fel a Bayes dontéshez tartozd kockézatot eb-

ben az esetben! (2.6) gzerint

L (&) - ZPLZ gf{u(’”"f ZZ g PL.( (x) ol .
T3 \«(

== i {2.13)
VF /3 1

Ez nem mds, mint a Bayes dontés hibavalészim"isége.
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Mivel a Bayes dontésrdl van szé, p.{.(x) minimumét fr-
hatjuk, igy (2 13) tovdbb alakithaté:

v C min podoly) do= §,M or Lol0ds =
L'Dz v ;s

o A i pu‘-{c (x) o . (2.14)
Ey '

Vezessiik be az{L ng@elolest a \§ megfigyelés
=i

gliriségfiiggvényére, és jeldlje
“X Ao(x)
) BA. P(Ce[E=x)
{(x) i
a Gy 09ztdly a posteriori valdszinlséget. Ekkor a Bayes

dontés hibavalészinlisége a kdvetkezdképpen isg felirhaté:

RAGISL e D i pe et ] xRl 5,55

b/ Ismeretlen a priori valdsziniségek esete

Abban az esetben, ha az a priori valdszinlségek
nem ismertek, egy megengedett dontési szabdly megtald-
ldsdhoz méds utat kell kdvetni. Megengedett dontési sza-

bdlyok halmazédbdl vald kivdlasztds elve a minimax elv:

védlasszuk ki azt a d" dontési szabdlyt, amelynél a vdr-

haté veszteségek maximuma mimimdlis, azaz
Li ()& max  Lo(d) 2= hi o R
16 R
vagy ;
(L (™) = muw max L (d) s Al Ry
d v
A megengedett dontési szabdlyok halmazdt, tulajdon-

ségait és a Bayes dontéssel vald kapcsolatdt vizsgdlta

részletesen T. V. Anderson (1974), Rao (1973) és Wald (1950),
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F8 eredményeik a kovetkezlk:
(1) A megengedett dontési szabdlyok osztdlya teljes

(86t minimdlisan teljes),

2.4. Megjegyzés. A teljesség és a minimdlis
teljesség definicidi: '

2.7. Definicid. Dontési sz bdlyok egy C osztdlya

teljes, ha minden C-n kiviili d ddntési sza-
bdlyhoz tartozik egy olyan C-beli elem, amely jobb,
mint d.

2.8. Definicié. Dontési szabdlyok olyan teljes

ogztdlya, amely nem tartalmaz mds teljes osz-
tdlyt, minimdlisan teljes.

(ii) Minden megengedett dontési szabdly egyidttal
egy Bayes dontési sz bdly is.

(iii) Ha ;°0, ¢=|..R, akkor a hozzd - mint a priori
valdszinliségeloszidshoz tartozé - Bayes don-
tés létezik és megengedett.

(iv) Lgtezik egy legkedvezdtlenebb Po a priori
valdszinliségeloszlds és egy .;inimax donté-
8i szabdly, amely megengedett és a FO -hoz
tartozé Bayes dontési szabdly. ;

(v) Ha R=2 , létezik egy egyértelmi minimax
és megengedett dontési szabdly, melyre
L'\ (OLM) 5 Lz_ (OLM) :
Egyes esetekben tehdt az egyébként nehéz vi-

lagztds kdnnyen végrehajthaté. Konkrétan két osztdly

esetén a kdvetkezd fejezetben mutatjuk be a minimax

megoldds megkeresését.



2y

2.1.2. A Bayes dontés normdlis eloszléds esetén

Tegylik fel, hogy g normédlis eloszldsi, és le-
gyen :
2ol —— wp[~%()_(*f5‘»)TZ;1(’_“Miﬂ e

(2.16)

ahol 2 . jeldli a kovariancia métrixot, » e 8 E vér-

(217)” |zl >

haté értékét a C; osztdly eseten, I5.] a kovarian-
cia mdtrix determindnsit, _Z_g pedig az inverzét.

Az elé6z8 fejezmthez hasonldan most is két esetet
vizegdlunk.

a/ Ismert a priori valdszinliségek esete

Tegyiik fel elészdr, hogy az a priori valéd-
szinlségek ismertek. Legyen tovdbbd ¢y=4 minden 1:,3' -Tre.
Ekkor (2.7)-nek megfelelden a feladat olyan Dj tarto-
ményok keresése, (§:1,..,R) melykre p.f.(W- vagy ami
ezl ekvivalens - log pofilk)-maximélis.

Legyen
(3 o(x)= fﬂg pv ,( (x) vy R,

(2.16)-t behelyettesitve
g (x)= Log p - & Loy 20— 4 dog I2:] -

o ( ¥ 2 X

(X2 O3 a2 AT )

e & Pl
Mivel ¥ 50%21\. i-t81 fiiggetlen, elhagyhatd; é&s

- + ~1
X Z(’, M= My 270X ) (2217) a kovetkez8képpen

alakul:
-

T R R -
Gole)e X2 % + 2 x4 WE 3“3\2‘“&’3"’(2.18)
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Ekkor ‘ )
D {xlx6tn, grlx)s ‘}5(5)} h4j, kil R
vagy
Dﬁﬂ:{ﬁlleev) ijk(ﬁ)”}s(ﬂ‘%h(!)EO} (2.19)

itt d.ik()_c)a j és k-adik osztdlyt elvdlaszté feliilet
egyenlete, amely esetiinkben egy médsodrendd feliilet.

Ha még feltessziik, hogy _Z. g""_z_ y vsh..R |, azaz a kova-
riancia mdtrixok megegyeznek, akkor (2.19)-b8l a méasod-
foki tag és az é_loag kifejezés is elhagyhatd:
qo(8)e w"2 7% -4 W2 ek log o= WXt

ahol ek
We = 27 M

A __{i /‘MTZJ/‘:L‘ —(—lo% PL.

Bédrmely két osztdlyt elvdlasztd feliilet ekkor egy hi-

persik: 9
€ T
gy (x)° (g -pe) 2754 (v pee)” 27 g ) + oy 24
(2 20)
=Wl X

ahol most w=3"" (pj-Me)

-.-_l (/“J_'-/“)rz~ (/g -js) + Log B i
Ha még feltessaziik, hogy p4=. 2 PRs akkor

D} = { |x €€y, (ype) = "'x > 4 (,u,rr,ue) 3 ™ (-]

1k =4,.. wR, 4%k (2.21)
a ij osztdlyba soroldshoz a legjobb osztdlyozdst adja.

b/ Ismeretlen a priori valdszinliségek esete
Tegylik fel, hogy az a priori valdszinlségek
nem ismertek. Ekkor a minimax elv szerint kell a meg-

feleld dontést kivdlasztanunk. Tekintsiik két osztdly
esetét, tehdt legyen R=1 , és 1egyen§ megfigyelés adott.
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Tekintsilk az

e Gl 278 -4 (op) Tlpe) @22

valdszinlségi vdltozdt. Ha 'E N(,y,_Z) eloszlédsi, akkor

L is normdlis eloszlédsi, és

EW)= (o) 27y~ 4 (petma) 37 (uampo) =
=,i_(,ga—/ﬁ)7§_,“ (fa=pa) < 54* (2.23}

ahol o= (=g 7 (pa~pia) (2.24)

Az W varia.nciéjaz .
Ve ()- £ (- E0OF = E[ (i) 2= (g 5712
= B[ () 27 B -p) (B 27 ()] =
P
-.J}if'ffz) o 'E [ E /444) ‘[_M) Z _I(,“a"/‘z, *'/.(;) 2 (’Br/«; e

Tehat hakg fu,z) eloszldsi, akkor W N(ZQ. ) eloszlési.
Hasonldan lidthaté be, hogy ha Sf a médsik osztdlyhoz
tartozé objektum jellemzd vekto;a, tehdt N(fﬁz,Z) elosz«
1dsi, akkor M eloszlésa N(”g_od,eé). A k ~hez
tartozdé objektumot igy a E wktorvdltozd he‘lyett az

L egydimenzidés valdszinlségi vdltozdval vizsggdlhat-

a E C4 , akkor a hibds osztdlyozds valdszinlsége
<

-0 f2.
WA g R
P‘-§A AL I PR ¢
24_&” \[Z_TToL a2 \E:ﬁ' (2.26)
ae 2
ahol®alkalmasan vdlasztott konstans, és az 4° _‘I'E‘i
helyettesitést alkalmaztuk.
Ha ? ~(, , akkor : 5
S il AR e O
c zt= 4
12 rasiie da = = € :
\=T =n
e o c+¥lz Ag/ (2.27)
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A minimax megolddshoz ¢ -t dgy kell vdlasztanunk,

hogy o - 42 Y
RS se f / TR
€4 S = oy @ )Fpt Ty
&C—'ﬁ'f)/(z - o (20 28)
teljesiiljon.

Ha feltewzilk, hogy a hibds osztdlyozds koltségei

egyenl8k, azaz Cy=¢, és ¢=0 , akkor a hibavaldszi-

niség <S>‘° 4 __;42
—— f/
> oy )
\Zia (2.29)

amely a normdlis eloszlds tdbldzatdabdl konnyen meghatd-

rozhaté.
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2.2 A statisztikus alakfelismerés modelljei, médszerei

2.2.1. A statisztikus alakfelismerés modellje

Az eld8z8 fejezetben a Bayes dontéssel megadtuk az
alakfelismerési feladat = egy lehetséges megolddsdt.
Egszerint a feltételes slruségfiiggvények - és esetleg az
a priori valdszinlségek - ismer etében egy § megfigyelést
a legkigebb hibdval tudjuk a megfeleld osz’;élyhoz hozzé-
rendelni.

A feltételes sUriségfiiggvények pontosan a legrit-
kédbban ismertek, szrencsés esetben az eloszlds tipuséd-
rél van feltételezésiink. Ezért a dontésfiiggvény konstru-

dldsdhoz szilkségiink van egy mintdra, az Un. tananyagra.

2.6. Definicié. A (Emﬁﬂ,.., , (B 2,). azonos elosaidss,

teljesen fiiggetlen ;alészinﬁségi védltozdsorozatot tan—
anyagnak nevezaziik, ahol\é nEEy 68 Vit (vod. ,Q)hag;az i-edik

08zt4lybdél szdédrmazik. A % -eket tanuldépontoknak, a

e 5 il -eket tanitdsnak nevezzuk.

A VU -r8l feltételezziik, hogy gy veszi fel az
4,2,...,R értékeket, hogy

7"“5)’*%> (2.30)

ahol oL(‘g ) ol (x) dontésfiiggvény KE.,t_pcmtbel::. értéke.
A tananyag tehdt ismert kategdridji vektorokbdl 41146
statisztikai minta, a dontésfiiggvényt konkrétan ennek

gegitségével lehet meghaté&urni.
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A statisztikus alakfelismerd médszerek célja olyan

dontésfiiggvény konstrudlédsa a tananyag alapjédn, hogy a
dontéshez. tartozd hibavaldszinlség a legkisebb legyen,
azaz a dontés a lehetd legjobban kozelitse meg a Bayes
dontést.

A dontésfiiggvény meghatdrozdsa és alkalmazdsa t6bb-
féleképpen torténhet. Az egyik lehetdség a "felismerés
eldtti tanulds" (2.2. dbra). Eszerint adott tananyag alap-
jédn megalkotjuk a dontésfiiggvényt (tanulds), és egy 4j
pontot a dontésfiliggvény segitségével osztdlyozunk. A
dontés "jésdgdanak" ellendrzésére sziikség van egy ujabb

ismert kategdéridju ponthalmazra, a teszthalmazra, amely-

re a dontési szabdlyt alkalmazva és Osszehasonlitva

az ismert kategéridval, a tévedések szdm#ZbSl kovetkez-—
tetni lehet a hibds dontés valdszinlsdgére. A mdsik le-
hetlség az "egyideji tanulds és felismerés" (2.3. &bra).
A dontésfiiggvény itt a hiba-detektor szerint médosul ugy,
hogy minden eges tanuldépont beérkezése utdn a dontés

Jjavul vagy vadltozatlan marad.

Tanuldpontok > tanuléds > dontésfiliggvén, osztélyozéé

| uj mintapon

2.2. ébra
Tanuldpontok > dontés osztdlyozds
r v
dontés hiba-detektor
médositd

2.3. dabra
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A dontésfiiggvény meghatdrozdsakor természetesen
minél nagyobb méretd tananyagra toreksziink a megbiz-
haté dontés elérése érdekében.

A tananyag méretére vonatkozdéan pontos ismereteink nin-

csenek. Fritz szerint az "N dimenzids térben torténd ta-
nuldshoz hozzivetilegesen A‘ZN nagysiglu tananyagra van
gziikkség". (Fritz /1974, 38.0./), ahol A konstans a
tanulé algoritmustdél ég az eloszldsoktdl fiigg. Ilyen
nagy elemszdmra tett kovetelmény a gyakorlatban ritkéan
teljesithetd. Ezért érdekes Hughes (1968) elméleti tanul-
ménya, mely szerint véges a mintaelemszém esetén létezik
egy optimdlis N dimenzidszdm, amely felett az osztédlyo-
zds sikeressége dflagosan csokkenhet, sét Lachenbruch
(1969) szerint bizonyos médszereknél elegendd osztédlyon-
ként a koordindtaszdm hdromszorosa. Tapagsztalataink szerint
kiilondsen az orvesi diagnosztikédban kényes kérdés a min-
taelemszdm. Kelld méretﬁ tananyag elfdllitdsa gondot okoz-
hat egyrészt bizonyos betegségek ritkasdga miatt, mds-
részt a kontroll esetek szdmdnak novelése is nehéz, ha
a sziikséges vizsgdlatok kockdzatosak vagy akdr csak kel-
lemetlenek. A gyakorlatban dltaldban arra toreksziink,
hogy a mintaelemszédm sokkal nagyobb legyen, mint a di-
menziészém.

Egy mdsik, a dontést jelentdsen befolydsold eldké-
sz1t6 munka a mintaelemszdm meghatdrozdsa mellett a figye-
lembe veendd jellemzdk (koordindték) megvélasztdsa, az

in. lényegkiemelés.
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Az os8ztdlyozandd objektumok sokszor olyanok, hogy a ré-
luk szdrmazé megfigyelések esetleg nem is euklideszi tér
pontjai. Lehetnek pl. fiiggvények - EEG vagy EKG gorbék:
azaz az agyrél illetve a gzivrdl elvezetett elektromos
jelek grafikonjai, vagy betik. Tehdt a vizggdlt valdszi-
nligégi vdltozd eredetileg egy (X,f\f&)mérhetc‘i térbll veszi
az értékeit. Az osztdlyozdsi feladat anndl kdnyebben old-
haté meg, minél kevésbé "absztrakt" a X tér. Ezért a tu-
lajdonképpeni és az eddig tdrgyalt alakfelismerési fel-
adatot ilyen esetben megeldzheti egy olyan transzformd-
cié, amely a megfigyelést egy egyszerd strukturijdi,
leggyakrabban euklideszi térbe transzformédlja. Ez a transz-

formdcié a lényegkiemelés. Az alakfelismerd rendszert

tdgabb értelemben a 2.4. dbra szemlélteti, amely a 2.1.

&bra bdvitése.

Fizikai
rendszer

2.4. ébra

Ha az‘x eredetileg maga is véges dimenzids euklideszi
tér, a lényegkiemelés célja 1ehetApl. a dimenzidszdm
csokkentése. A lényegkiemelésnél tobbnyire a kivetkezd

szempontokat veszik figyelembe:
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a/ 8z osztélyozds alacsony dimenzidju térben

torténjen lehetdleg.

b/ a jellemz8k elegendd informécidét hordozzanak
az alakzatra vonatkozélag, a dimenzié redukdlds
Be jarjon tehdt szdmottevd informdcidveszteséggel.
(Ez utébbin itt az eredeti és a transzformdlt
megfigyelésekhez tartozdé Bayesdontések hibava-
18szinliségeinek eltérését értjiik.)

¢/ a lényegkiemelést rendszerint olyan kritérium

alapjén végzik, hogy az egyes osztdlyokba
tartozd pontok a transzformdcid utédn "kEzelebb™
keriiljenek egymdshoz, az osztdlyok kozotti
"tdvolsdg" pedig novekedjék.

A lényegkiemeléssel a tovdbbiakban nem kivdnunk
részletesen foglalkozni. Csupén néhany leggyakrabban
haszndlatos médszert emlitek, ezek:

- korreldcidszdmitas

- faktoranalizis (Harman /1976/)

- informdcidelméleti mdédszerek (pl. Watanabe /1967/;

Tou és Heydorn /1967/)

A konkrét lényegkiemelési médszer megvdlasztdsa
az adott feladattdl fiigg. A 4. fejezetben, amelyben
sajat tapasztalatainkrdél szsdmolunk be, kitériink az

egetenként alkalmazott (igen egyszerld) lényegkiemelési

médszerekre.



it D et

5.2.2. Statisztikus alakfelismerési médszerek

A 2.1.1. pontban a Bayes dontés az alakfelismerési fel-
adat megolddsdt adja: az a priori valdsziniliségek és a
feltételes silriségfiiggvények ismeretében a Bayes dontés
végrehajtdsa igen egyszerd. Altalédban azonban ezek nem
ismertek, Rendelkezésre 4ll viszont egy minta, a tan-
anyag, amelynek segitségével becgiilhetjiik e valészinlisége-
ket, a slriségfiiggvényeket, vagy kozelithetjiilk magdt a don-
téafiiggvényt. Az egyes alakfelismerési eljdrdsok abban
kiilonboznek egymdstdl, hogy a dontésfiiggvényt hogyan
d41l1itjék el8. Ebben & részben bemutatunk néhdny statisz-

tikus alakfelismerési médszert, és kapcsolatukat a Bayes

dontéssel.

a/ A legktzelebbi szomszéd mddszer

Az a priori valdszinliségek és a suriségfiiggvények
ismeretének hidnydban hturisztikus eljdrdsok is konst-
rudlhatdék egy pontnak egy adott tananyag alapjdn valéd
osztdlyozdsdra. Természetesen az a gzerencsés, ha a
heurisztikus algoritmusokrdl megédllapithatd a Bayes
dontéshez valdé kapcsolatuk.

A Cover és Hart (1967) dltal leirt "legkdzelebbi
gzomszéd" (Nearest Neighbour - NN) algoritmus elve
igen egyszeri ég szemléletes:

Legyen adott CN={(E4,">‘4)) }\\EMV.)]S tananyag,
‘1771~e{,{\...‘12"3 e ¥ , azaz Vy “Ed
tanuldépont osztdlydnak a sorszdmdt jelsli. Ez az;.

is jelenti, hogy P(ﬁkeilga-:)_():\o? (3 Al s
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A
ahol 10&(2) az i-edik osztdly a posteriori valdszini-

gége. Legyen E az osztdlyozandd vektor, és jeldlje f

-

valddi osztdlydnak sorszamat V.

2.6 Definicid. Azt a E € {E .n,E»»E pontot, amelyre
mw:_\‘z\” dist (%; ,E) dist (E.. f E) (2595

ahol dist (.). ) az Ey-en ertelmezett tetszéleges tédvol-
ségfiiggvény, a AE, legkozeldbbi szomgzédjdnak nevezziik.

Az NN dﬁnté; eszerint: ? -t abba a kategdridba
sorolja, amelynek a sorszdma gbpen ‘Vh*.
Hibds a dontés akkor, ha +% ¥a*,

Adott véges elemszdmi tananyag esetén a hibds don-
tés valdszinlisége maga is valdszinlségi vdltozd, amely

a tananyagtdl %?gg:
h
(HNN ): Z P(‘””'\,’) "'K:x#'l. \gw) . (2.32)
L

(2.32) feltételes vérhaté értéke rogzitett m mellett:
R
E(Puu:@;»=E(§f(v:%»:#4gwgngk3,

A feltételes valészinuseg definicidja szerint
P(w=rv, 7 eilC, E) Pw~va$HPvﬁn&£3
=P (%, qu P(»#0[E)) ) (4~ pit l‘w ; (2434)

(233)~at o (234) felhasznalasaval a kdvetkez&képpen
alakithatjuk:

Pur £ (P 16 E[ZE D - DRG] ceoom

Cover ég Hart (1967) bizonyitotta a kovetkezd tételt:

Tétel: Ha az a posteriori valdszindségek folytonosak,

akkor (i) a (2.35) feltételes vérhatd értdknek
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1létezik hatdrértéke, és ez

TS g e =E(4-§ s (p))

k=0 WY & - (2.36)

(13 R #

b (df)¢ Puw £ Peld¥)(2-35 Peld )), (2.37)

aho|  Pe(d*)a(245)-ben megadott Bayes hiba.
A Pyy ¢ az NN médszer aszimplotikus dtlagos hibdja.
Bebizonyithatd, hogy a Pyw hatdrérték valdban joél becsiili
a hibavaldszinliség tényleges értékét. /Wagner (1971)/.

A tételben adott egyenl8tlenség 411, tehdt a NN
médszer akkor is alkalmazhatdé, ha a tanuldépontok tere
nem végesdimenzids, hanem tetszdleges szepardbilis met-
rikus tér. Ezért az NN médszert tobbféle metrikdval is
végrehajthat juk. A nem euklideszi metrikdék haszndlatdnak
a konkrét gyakorlati alkalmazédsok sordn van jelentSsége.

(2.37) azt is kifejezi, hogy PNuéZPe("c‘))tehét
az NN médszer aszimplotikus dtlagos hibdja a Bayes
hiba kétszeresénél nem lehet nagyobb. Az NN mdédszer te-
hét kis Bayes hiba esetén jé eredményt ad.

Ezen eldnyei indokoljék, hogy az NN médszer mind
elméleti vizsgdlatokban (Patrick, Fisher, (1979))Wagner
(1971)) mind gyakorlati alkalmazdsokban (ldsd.a 4. feje-
zetet) széleskOriien elterjedt annak ellenére, hogy szdmi-
togépes realizdddskor az egész tananyagot tdrolni kell.

Az NN médszer védltozatai koziil a k-NN médszer a leg-
ismertebb. Ez a E -hez legkdzelebbi £:2bo+{ pontot
vizsgdlja (&o=h27-u) és E -t abba a kategéridba
sololja, ahova a t0bbség ta;tozik. A k-NN médszer nem
mindig jobb a NN-nél, lehet olyan példdt taldlni, (Fritz
(1974)), melyre Tyy & Th-w
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b/ Stlypont médszer

2.1.2-ben megmutattuk, hogy a Bayes dontésfiiggvény nor-
mdlis eloszléds és egyenld kovariancia madtrixok esetén li-
nedris. Mds linedris dontésfiiggvények is konstrudlhatdk a
slrigégfiiggvények felhagzndldsa nélkiil. Ilyen az un. sily-
pont mdédszer, amelynek elve a kovetkezdl.

Legyen adott egy tananyag, melyrdl tegyiik fel, hogy n
gzami pontot tartalmaz, és nj szdmi tanuldpontitaz egyes
kategéridkbdl.

Jelslje _)_(t.u) y TAhaang ;o 434, R

a j-edik kategdridbdl szidrmazdé i-edik tanuldépontot. A to-
vadbbiakban ezt a jelolést fogjuk alkalmazni a tananyagra.
Legyen;gj a j-edik osgztdly (Bj) sulypontja (athgvektora).
Legyen a dontés az, hogy egy X pontot ahhoz az osztdlyhoz
sorolunk, amelynek a sulypontjdhoz a legkdzelebb esik,

azaz amelyre a

NWT Y ()" ©T (k) :
dy =(x-m') (x-m) = X = 2™ x4+ 0™ > min (2.38)

Mivel a minimalizdldsndl az elsd tag nem jdtszik szerepet,
ellsgyhatd, igy linedris fiiggvényt kapunk. A j-edik és k-adik
osztdlyt elvdlasztdé hipersik egyenlete:

dyp (x)= ('_wm-m“"))r} -4 (T g D 7 ) =

—

¥ T 4 ‘;
:Ul"“)” E’uc))r?S Y ,12( b”)* !h(u)(&u )4 Ll )) oo}

—

Ez az elvdlasztdsi médszer akkor ad jé eredményt,
ha a szérdsok megegeznek. Pontosabban (2.39) a Bayes don-
tés specidlis esete normédlis eloszlds, egyenld a priori
valdészinliségek €= ;Z=631 esetén. Ugyanis
Ztggl miatt (2.42) most
9 (=L, (5 ) (51"

alaki. Ezt a médszert Duda és Hart (1973) minimum-tévolsédg
osztdlyozdsnak nevezi.
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c/ Két osztdly linedris dontésfiiggvény segitségével
vald szétvdlasztdsdhoz (szepardldsdhoz) az egylitthatdk

meghatdrozdsdra alkalmas iterativ algoritmus a kovetkezd:
(Rosenblatt, {964):
Adott a ta.nanyag {Y,' S , v )4}472 3

Faladat a d(x)= _l{r X+ Wo alaki dontésfiiggvény egyiitthaté-

inak meghatdérozdsa. d(x) >0 eseténQ egyébként Ca a
dontés. Az iterativ algoritmus a kovetkezd:

0 x. @ (0) i
l. Legyen o Q()“Ef Xt Wo tetszlleges kezdeti don-

tésfiiggvény (pl. W azonosan O vektor)
2. Tegyiik fel, hogy eljutottunk 1lépésben a dontésfiigg-
vény n-edik kozelitéséhez:
T )
o(_k'(é): @: ) _X"’ Wb(’\.
(wt) . ; . 5 : .
Ekkor a 4 (x) egylitthatéit a kdvetkezd "tanuldsi szabdllyal™

kapjuk: (ntt) (&)

ahol X. & soron kovetkezd tanuldpont , osztdlytdl fiigget-
leniil, és
[
0 i d Q) a3 X, pontot jél osztdlyozta,
Gl ¢ ma AMRI40 4 - wk E
- ha, o(.m(&)>o ey € By,

ds ¢ tetsz8leges konstans.

n
A11itéds: ha az {l(im}ﬁ: é { mjb_, halmazok

linedrisan szétvdlaszthaték, akkor a fenti algoritmus vé-
ges szdmi lépésben véget ér, azaz van olyan ‘gmu Szdm,
hogy ( ) |

e+ £ i
")= OL (1‘ minden 4>4 uar
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A bizonyitds, pld. Meyer-Brétz, Schiirman (1972) konyvében
megtaldlhaté.
d/ Az eldébbi algoritmus dltaldnositdsa az un. Commitee

Machine algoritmus (Nilsson, 1963), amellyel szakaszonként
linedris déntésfiiggvényt dllithatunk e18{2.5 dbr)

2.5.dbra
Adott két osztdly, a feladat a két halmaz 2Lt1  gzdmd
hipersikkal torténd szétvébsztdsa, ahol L=042,... eldre
T
rogzitett szdm: oba(x)= uy % + Wyo

da(x)> wa' x + Wy

A
dzud(.’f) s Won¥ ¥ WQLH)o

A dontés "tobbségi elv" szerint torténik: egy ismeretlen

X pontot abba az osztdlyba sorolunk, amelybe 0(4(5), -‘-.dz,_‘ig) koziil

a tObbség dontotte: st

ol(x)=sign [Z; g n dg(})}
A dontésfiiggvények ‘eés‘riittha’céinak meghatidrozdsa iterativ
médon, a tanuldpontok beérkezése uténi - az eldz8 algorit-
mushoz hasonlé - médositdsokkal toérténik. Az algoritmus

gyakorlati tapasztalatok szerint jél alkalmazhatdé annak



T
ellenére, hogy & konvergencidra nincs ismert bizonyités.

e/ Cluster algoritmusok

Az eddig ismertetett médszereket szokds a "tanulds
tanitéval" (supervised learning) kozds néven emlegetni,
mivel az osztdlyba soroldst, illetve a dontésfiiggvény meg-
alkotdsdt egy tananyag alapjén lehet megadni. Az alakfel-

ismerési médszerek egy mésik csoportjédndl, a "tanité nél-
kiili algoritmusok"-ndl (unsupervigsed learning) a kiindulé-
pont is mds: adott adathalmaz elemeibdl kell valamilyen mé-
don "osztdlyokat", Un. clusterokat képezniink. Az adathal-
mazrdél semmi eldzetes ismeretiink nincs.

A 2.2 pontbeli tananyag definicidéval ©sszhangban
tekintsiik az adatokat most is fiiggetlen, azbnoseﬂoszlésﬁ

valészinliségi vdltozdsorozatnak:

E4)§2\~JEM“.GEN .

(Ez a sorozat a valdsdgban mindig véges). A;%E«!% védltozdk

=1

k6z0s striségliiggvényét jelslje 4(x) . Tekinthetjiik clus-
tereknek pl. az Ey tér olyan fészhalmazait, amelyekben
a §n pontok koncentrécidja viszonylag nagy, pl. ha
megadhatdk olyan diszjunkt Di,..,Ds halmazok az Ey-ben,
hogy rajtuk az f(x)viszenylag nagy, rajtuk kiviil pedig
mimdeniitt nagyon kicsi. Acluster algoritmusok nagy része
az elemek kozott definidlt "tdvolsdg" vagy "hasonlésdg”
fogalomra épiil. Igy egy clusterbe keriilnek azok a pontok,
amelyek a "leghasonlébbak", vagy a "legkSzelebb" vannak

egymdshoz, mint mds clusterbeli pontokhoz.
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Nagyon sok €luster algoritmust irtaek mar le, a leg-
ismertebbek Hartigan (1975), Anderberg (1973), illetve
Duran-0dell (1974) monogréfidkban megtaldlhatdk.

A cluster algoritmusok két nagy csoportja a hierarc-
hikus és dinamikus mdédszerek. A hierarchikus mdédszerek elve:
kezdetben minden pont Onmagdban egy cluster. E pontok "ha-
sonlésdga" alapjén dsszevonjuk a "leghasonldébb" clustereket.
Az Oszevondst addig folytatjuk, mig végiil egy clustert ka-
punk, amelybe az Osszes pont beletartozik. Az eredmény fiigg
a hasonlésdgi mérték megvdlasztdsdtdl és az Osszevonds méd-
jatél.

A dinamikus médszerek lényege az, hogy kezdeti kon-
figurdcidébdl indulnek ki - azaz eldzetes feltevésiink van
pl. a clusterek szdmdrdl, kozéppontjairdl stb. Az - dlta-
ldban iterddv - algoritmusok a{hjhalmaz pontjai alapjan
médositjédk a kezdeti konfiguréci%t.

A cluster médszerekkel nemcsak az adatok, hanem a
védltozdk is osztdlyozhatdk, igy a cluster analizis hasz-
nos lényegkiemelési médszer is lehet. Ilyen értelemben xo- .
kon a faktoranalizissel.

Nem eélunk a cluster algoritmusok részletes leirdsa.

E rovid kis ismertetéssel cssk az algoritmusok sokasdgdt,
gokrétiségét kivdntuk érzékeltetni és azt a bizonytalan-
sédgot, amely a helyes médszer megvédlasztdsdt és ennélfogva

az eredmények interpretdldsdt jellemzi.
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3. Stridségfiiggvénybecslés és_a linedris diszkriminancia

analizis

Ismeretlen a priori valdszinliségek és sliriségfiigg-
vények esetén a Bayes dontésfiiggvény kozelitésének kézen-
fekvé médja adott tananyag alapjén a feltételes slriség-
fiiggvények becslése. Erre igen sok eljdrds ismeretes,
mint pld. az egysgzerd hisztogram-becslések vagy pedig a
Parzen (1962) illetve Meisel (1972) &ltal javasolt méd-
gzerek, illetve ezek dltaldnositdsai. Szdmos eljdrds, to-
védbb4d a Bayes dontésfiiggvényt kozelitd iterativ tanuléd
algoritmus sziiletett ezek alapjdn, a legismertebb a
Wagner-Yolverton (1967) illetve Specht (1967) féle po-
linomdlis dimkrimindlé médszer. Ezek ismertetésére nem
tériink ki, mivel alkalmazdsukhoz igen nagy tananyag sziik-
séges, amely a mi orvosi diagnosztikai céli vizsgdlataink-
ban eddig nem Allt rendelkezésre.

Részletesen foglalkozunk viszont azzal az esettel,
amelyben feltessziik, hogy az eloszlds tipusa ismert, pl.
normdlis eloszlds. Ekkor a slriségfiiggvény-becslés az
eloszlds paramétereinek becslésére korldtozddik. Ez az
egset azért is érdekes, mert ha még a kovariancia
médtrixok egyenl8ségét is feltessziik, akkor a Bayes ddn-
tésfiiggvény - mint azt a 2.l1.2-ben megmutattuk - line-
dris és a slrdségfiiggvény paramétereinek becsléseit be-
helyettesitve a kapott fiiggvény megegyezik a Fisher féle

linedris diszkriminancia analizis dontésfiiggvényével.
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Ennek bizonyitdsa kis eltérésekkel tobb helyen megtaldl-
haté. /Anderson (1974), Kendall (1977)/. Azonban bizonyos,
a Figher féle diszkriminancia analizigt részletesen tar-
gyaldé konyvek errdl nem tesznek emlitést. /Weber E. (1969),
Nollau (1975)/. A Pigsher féle diszkriminancia analizis
kétféle médon vald megktzelitése igen tanulsdgos volt a
hasnydlmirigy gyulladds diagnosztizdldsdval kapcsolatos

vizsgédlatainkban. (4.3 fejezet)

3.1 A striségfiiggvénybecglés normdlis elomzlds esetén

Legyen adott egy tananyag. Jelolésére haszniljuk a

2.2.2 b/=ben bevezetett j?%6lést, azaz legyen
i

ot L liaing, gk
a j-edik osztdlybdl szdrmazdé i-edik tanuldpont. Tegyiik

Wy ™ g
fel, hogy Xy }1,"4 egy N(&&,Z} eloszlasu

populdcidébdl vett statisztikai minta (X=4w»,k)-

f {*éb €s 2 becslésére az

s 4 Q '\J. ) Q) i T
4 I“'.- ¢ ‘(é)- (J')
S=, ) le 2 (e ) (5= nY) (3.2)

formuldkat haszndljuk. A 2.1.2. fejezetben léttuk, hogy

a ¥
Yo X € » ) .
D/b ‘{\_(.)_( EN) d’&h(l‘)>o.g ’3»".‘1,'",'&)3#[(
a legkigebb hibdval jard dontési tartomédny, ahol
(2.19) illetve (2.20) szerint

Oy Yo (1o« Tt —i i Fawsid 3 ‘
e U)o (g ) B () + o B

(3.3)
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Ha a (3.1) és (3.2) becsléseket (33)-be helyettesitjiik,

egyenld a priori valdsziniségek esetén a

|L( H () rz))g x—i(f” (k)) S~4 (i) (U) b

kozelitést kapjuk. Ebben az elsd tag a Fisher dltal ja-

vasolt linedrig diszkriminancia fiiggvény.

Pelmeriil a kérdds, vajon mennyit hibdzunk, ha (3.3)
helyett (3.4)-et haszndljuk dontésre. Mivel a (3.4)-gyel
egy olyan transzformiciét adtunk meg, amely az EN teret
egy dimenzidba transzformdlja, a hibadt megadhatjuk, ha

ismerjﬁk a

o )R- A (0P T () 6o

—

valdésziniségi v&ltozé eloszlésdt. Ehhez eldszér az

wye[ ¥ 4 G i) | 27 (o-pan) (3.6)

—_—

eloszldsdt célszerd meghatdrozni. Hasonldam a 2.l.2-beli

levezetéshez, beldthatd, hogy “a'h V (% O‘& ,M&)eloszlésﬁ,
i A T =l V-~
ahol Ol)k-' (/_@d /_‘_45. ) Z (/‘_4’ /ié)

Mivel a (3.1) és (3.2) a i és 2 konzisztens becslései,
megmutathaté /Anderson (1974)/, hogy VL eloszlédsa
hatéresetben megegyezik #y eloszldsdval. Igy a djk(ﬁ

fliggvénnyel valé osztdlyba soroldsndl csak kis hibdt
kovetiink el.
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3.2 A Figher féle linedris diszkriminancia fiiggvény és

kapcsolata a Bayes dontésfiiggvénnyel

Két osztdly szepardldsdra Fisher (1936) javasolt egy
ugynevezett linedris diszkriminancia fiiggvényt. Megmutat-
haté, hogy ez megegyezik (3.4)-gyel, bér Fisher mds uton
jutott el hozzd ( olyan linedris filiggvényként, amely maxi-
malizdlja az "osztdlyok kozotti" és az "osztdlyon beliili™
variancigk héﬁyadoséf} A Figher féle diszkriminancia ana-
lizis rendkiviil gyakori példdul az orvosi diagnosztikdban
alkalmazott mddszerek kozott; magdt az eljdrdst szdmos ta-
nulmdny, konyv térgyalja._Ezek egy része a PFigher féle vagy
ahhoz hasonld koncepciébdl indul ki, és nem is emliti a Bayes
dontéssel vald kapcsolatdt, amelyik pedig emliti /Anderson
(1974), Kendall (1976), Young (1974)/ ott a bizonyitdsok
kiilonboznek. Mi ezektdl kissé eltérd mddon mutatjuk be a
két médszer egyezését, magdt a diszkriminancia analizist
pedig Weber (1969) konyve alapjdn, az ott tdrgyalt esetnél
dltaldnosabban mutatjuk be.

Legyen adott tehdt két osztdly és egy tananyag:

{ v {a) m} ! () @)
L SR Xy N 111etve-(zq ¥ A%y Eka L amelyrdl fel-
tessziik, hogy nem csupa azonos elembd8l 411 osztdlyonként.
i () () D\T
Jdeldlje m =(m1‘ ).h)yw~u> az atlagvektorokat:
ln
() bW
ated 2 kT i)
Ry <=1 (3.7)

Tegyiik fel, hogy w Mz wm ' .

— S
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Keressiik a két osztdlyt elvdlasztd fiiggvényt
A(x)= ' (3.8)
alakban, ahol 4=(b,, .., &,)" meghatdrozdsa a
feladat. A.d(é)'—szel tulajdonképpen az EN—et egy dimen-
zidba transzformdljuk. Jeldljik az X; )vektorbol kapott
szdmot «950) -vel:

Célunk (3.8)-ban a b vektor olyan megvdlasztdsa,

()
(349)

hogy dix) "jo" elvdkszté fliggvény legyen, azaz a transz-
formilt értékek (agg“ L) osztdlyonként a lehets leg-
jobban elkiiloniiljenek. Az elkiiloniilés anndl jobb, minél
tdvolabb esnek az atlagok és a szdrdsok minél kisebbek.

Tekintsiik a

iy (5% 5@) %
i _‘F " Z_ (%1(4) (n)) 4 i (% (2) -(z>)

kifejezést, ahol

(3.10)

y ky

":—; b 3’1)2
Nyilvin Q=Q(b), és a két osztdly kozott elkiiloniilés an-
ndl nagyobb, minél nagyobb a ). Feladat tehdt olyan d(x):!&

fliggvény keresése, melyre

Q(y)- 2

T(¢6)

maximalis.
Természetesen a L #0 megolddsok érdekelnek, mivel 4 =0

esetén transzformdcid minden vektort a O-ba transzformil.



iy - B

3.1 Definicié A (3.10)-et maximalizdld filiggvényt Fisher

féle diszkriminancia filiggvénynek nevezziik.
A (3.10) széls8-értékhelyének megkeresésében a {p

-ek szerint differencidlva a kovetkezdt kapjuk:

o 2 OF 20D - pdl
= T2 [ D'"— - a&cl T ( ) L (3.

(4~—4,.‘.,A/)
(3.11)-at O-val egyenldvé téve elegendd a mdsodik ténye-
z6t vizsgdlni, mivel feltételeink szerint = csak =0
esetén lehet egyenld O-val.
(3.11)-b81l rendezés utdn kapjuk:
T DD 4@1— L= N
D afr L 08, ! il (3.12)

Kiszdmitjuk (3.12) bal- és jobboldaldt:

s :
gé; 52 XZ‘ be (m&m‘ "wm)]: mem~me(2)
R
5 122 2 [htud w0 -
() () : _
22t z—z (ot m )36 02 0 )

Ha bevezetjiik a
L
ot : .
Cw?__ - (Xc»y\“ mm)(Xw,U)~ mﬂ(a))
5:' V=

jelolést, (3.12)-be behelyettesitve a kdvetkezdt
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kapjuk: " 2 %
T A 2
I:Z'%Cu . 5 ("’\@ el ) b N (3.13)

A(3.13) egyenletrendszert megoldva kapjuk a b vektort.
A G {.Cb.@‘g mdtrix bevezetésével (3.13) a kovetkezs
L

0 R
alakba irhaté: 9?_7’ Gl . TAR

amib81l ~4 (v (2) (3.14)
Lot -t )

Mivel _(_:- a kozos kovariancia métrix maximum likelihood
becslésének (n4+m,_—l) —szerese/(lésd 3.2) vagy
(3.12)/, igy a megoldds létezik és egyértelmi.

Hatra van még annak beldtdsa, hogy a (3.16)-tal
adott b vektor a (3.10)-nek valdéban szélsé értéke, még-
pedig maximuma. Ett8l a szamitdsok terjedelmessége miatt
eltekintiink, megjegyezve, hogy végiil a kovariancia mat-
rix pozitiv definitségén alapul.

Ezzel megmutattuk, hogy ha "__\.m* m:(w) , akkor a
(3.10)-et maximalizdlé & #0 vektor

i ) (4)
e (VT he=2) S (< w1 (3159
osszefliggéssel adott, ahol

) N\
ZZ ()((J ())(X{(J)_pr

'\»4 ’\.Z'Z a,' v3) N T e >' (3'16)

Lathatdé, hogy (3.15) - konstanstél eltekintve -
megegyezik a (3.4)-beli dontésfiiggvényben szerepld egyiitt-
hatéval. Egyuttal tehdt megmutattuk a Fisher féle diszkri-

minancia analizis és a Bayes dontésfiiggvény kapcsolatit

ig.
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A gyakorlatban d(f)segitségével nyert dontéseknél
egy konstans is szerepet jadtszik:
az %g)értékek eloszldsa alapjdn a minimax eljdrédshoz ha-
sonléan most is meg kell hatdroznunk azt a c kiiszobszda-
mot, amelynél a hibds osztdlyozds valészigﬁsége a leg-
kisebb. A gyakorlatban ezt a szamot az %;“) értékbdl cso-
portonként készitett két hisztogram alapjédn dllapitjak

N
meg. A c kiiszdbszdm ismeretében = brXy Zc
k=1

esetén az x ponttal képviselt objektumot a C4)egyébként 1y
osztdlyba soroljuk.

Ha ezt a konstanst példdul a kovetkezdképpen védlaszt-

¢ e () (A)\T
Jul: c:-4(m ™) 6 |

akkor ezt d(x) -hez adva

~ (1 (\T , ~4 ) GNT -/ () (27

)= (W' W) -4 (" ") O (w7 ) (.11
alaki dontésfliggvényt kapjuk, amely a (3.4) két osztdlyra
érvényes esete. Tehdt ugyanahhoz a disgzkriminancia fiigg-
vényhez jutottunk, mint a Bayes dontésfiiggvény normdlis
eloszlds és egyenld kovariancia matrixok esetén. Természe-

tesen ezen az alapon t0rténd osztdlyozds nem garantdlja az

osztdlyozds hibdjdnak minimalizdldsdt.

3e3 Logisztikus diszkriminancia analizis

Az eddig ismertetett mddszerek tobbnyire folytonos
valdsziniségi vdltozdkra alkalmazhatdk, vagy még inkdbb
azt is feltételezik, hogy a mintacsoportok tébbdimenzids
normdlis eloszldsu populdcidbdl szdrmaznak. A gyakorlati

életben azonban meglehet8sen gyakran fordulnak eld olyan
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esetek, amikor diszkrét vagy éppenséggel linedris vélto-
z8k alapjdn kell osztdlyozni, illetve a vdltozdk egyik
része diszkrét, mdsik része folytonos (pl. kérdéivek ada-
tai).

Digzkrét vdltozdkra vonatkozd diszkrimindld mdédszerek-
kel Linhart (1959), Cahran és Hopkins (1961), majd Martin
és Bradley (1972) foglalkozott. Ezek csak diszkét illetve
dichctdém vdltozdkra alkalmas médszereket adtak meg. Al-
taléanosabb a Cox (1966) illetve Day és Kerridge (1967) al-
tal bevezetett logisztikus diszkrimindcid, amdly diszkrét
és folytonos vdltozdkra egyarént alkalmazhatdé. A Cox-Day-
Kerridge modellnek szdmos dltaldnositdsa ismeretes.
/Anderson (1972), Albert (1981)/

Az a posteriori valdszinliségek logisztikus formdban
valé megaddsdt, valamint az optimdlis elvdlasztd fiigg-
vényre az dltaldnos elméleti modellt Day és Kerridge (1967)
a kovetkezlképpen tdrgyalja:

Legyen adott két osztdly, C esC,legyenek ,uo és /4{2
a két osztdly.dtlagvektorai, A mdtrix egy NXN -es mdtrix,

qxg)pedig tetszblleges integrdlhatd nemnegativ skaldrfiigg-

vény.
| _ felteteles
Ekkor E megfigelés slrliségfiiggvényének dltaldnos

—

alakja:
{olx )= P(x(C:) =a; &P{’i(zﬁ/gu A () H)(x (3.12)

ahol ol normalizdle konstans, melyet uUgy kell védlasz-

tani, hogy §-£c(§\dx o | teljesiiljon.
: = .
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A (3.12) dltaldnos modellbd8l a kovetkezd specidlis esetek

addédnak:
1. (1) $(x)=1 és
e i g kovariancia matrix

Ebben az esetben {&})a normdlis eloszlds slrlség-
fliggvénye.
@ {) ha x minden komponense O vagy 1,
( { egyébként
Cld) & s az identitds matrix
A 2. fejezetben a Bayes dontésfiiggvényt a posteriori

valdészinlségek segitségével adtuk meg, azaz:

) P(c I\§ pu ﬁo (x)

2 Z Pb“ (X) (1)
R=2 esgetén G
A 94%(5)
= P dely)
pa (%) = o (3.14)
P’L4z(!)

EbbSl a szdmldldba a (3.12) helyettesitésével a kbvet-

A H)x)
A (- )y O (x)
{“i &)A<‘ﬂz}+% e

kez8 kifejezést kapjuk:
padq(x) o Py L‘P{ i( ~ ft0)
podalx) Pa&y va{ -4 ( /U.

- etpl(-4(cui) A

tehdt

axp (XL + C)
01()( P(C \§ ) A+ e (XTH() (3:15)

-

ahol :
e (/‘4“/‘42)

2 - Pass
i (/4.4“'/“2) A (/u‘l /"("') LO 10202, (3.16)
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Ha Q(x)pontosan ismert lenne, a maximum likelihood

becsléseket alkalmazva ﬂﬂ)ﬂg)ﬂ»becslésére, az

Y=X"&+c (3.17)

linedris fliggvényt haszndlhatnénk dontégfliggvényként.

Ugyanis

v
Wh+coU o b i)t oo
és forditva.

Ha ¢(Xh§4) akkor (3.17) a Fisher féle linedris disz-
kriminancia fiiggvényt adja meg a konstans tagtdl eltekintve.

Ha q%xl_ismeretlen, meg kell keesniink a

e \F Yoty ) - P(X:1Ce
L 7\1‘:684P4 (% \C>XEB}P2 (% lC) (3.18)

likelikood filiggvény maximumdt, ahol By, By jeldli azon
értékek halmazdt, amelyre az X. vektor aC.illetve &
populdcidébdl szdrmazik.
(3.16) atalakithatd:
up(XCT(T+C> A
L= W ‘TT‘ ¥ o L3y
Reh T eep (Xi'd+e)  qoer, 14 2p (X H+e)

(3.19) logaritmusdt véve & és ¢ alkalmas iterativ eljd-
réssal (pl. Newton-Raphson) meghatdrozhaté.

Day és Kerridge eredményeit Anderson (1972) dltald-
nositotta. Megadta tobb osztdly esetén az a poSteriori
valdszinliségek logisztikus formdban torténd elddllitdsdt,
amely az eldzd jelolésekkel:

PICiLK )= pjy= 2202809
- 2 P(Cr1X)

P(CrlX)=pry = HA (3.20)

Th . i
A+ 2 ep(fh +q)
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Az Anderson dltal megadott likelihood fliggvényben az
egylitthatdk becslése annyiban dltaldnosabb, hogy feltesz-
gziik, hogy most a mintdk minden egyes populdcidtdl kiilon-

kiilon allnak rendelkezésre.

3e4 Probit diszkriminancia analizis

Az elnevezést Albert és Andrson (198l) vezették be.

A médszer a 3.2 fejezetbeli mddszerek tovabbi dltaldnosi-
tdsa, lényege a kovetkezd:

Legyen adott két osztdly és (N+l) dimenzids vektorok,
mint tanuldpontok: (xo,f), ahol X =(Xp,--» x,,/)T
s Xo< & (a konstans) esetén a pontok o (4,

Ko >G esetén pedig a Cs osztdlyhoz tartoznak.
Kordbbi cikkiikre hivatkozva a szerzdk &dllitdsa szerint,
ha X, adott x melletti feltételes slriségfiiggvénye
AI(@o'f@TX Tn) az X eloszldsdtdl fliggetleniil, akkor az a

posteriori valdszinliségek
P(X )= (b(&o“‘o(. X)
alakban irhatdk, ahol @(-) a standard normdlis eloszlds

eloszldasfliggvénye: y w
e <
D (w) 2:1rg
0

—oL

Co

0Go " T )

d£
w= L
- T

Az ¢o+£71 fliggvényt a "probit diszkriminancia
fliggvénynek" nevezték. Az Anderson-féle (3.20) képlet

irhatd

P(x )= S (%o +2L'x)

alakban,
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i zgp (£)
ahol _A_('ﬁ)- 4+0“PH?)

Albert és Chappelle(1981) az olpd paraméterek becs-
lésére a feltételes likelihood fliggvényt

h
# ¥ A- = T 2,
Lo E[{“‘b(‘o*i‘ xi )3 {47 (ot ¥ )} ] (3.21)
.alakban adja meg, ahol %;=0 , ha Y.€a , 2:214 ,ha X>a.
Mivel eloszldsdra semmiféle kikotés nincs, a méd-

szer tetszdleges valdszinlségi vdltozdk esetén haszndl-

hatd.
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4. Az alakfeligsmerés alkalmazdsi lehetlségei az orvogi

diagnosztikdban irodalmi adttekintés és sajat tapaszta-

latok alapjan

4.1 A szémitégéppel segitett orvosi diagnosztika sziik-

ségesgége és mddszerei

Az eldz8 fejezetekben bemutatott mddszereket sok més
- e tanulmdnyban nem tdrgyalt-mdédszerrel egyiitt elterjed-
ten alkalmazzdk orvosi diagnosztikai problémdkra. Termé-
szetesen felmeril a kérdés, mi teszi sziikségessé e mddsze-
rek, illetve a rdjuk alapozott szdmitdgépes preramok alkal-
mazdsdt az orvosi diagnosztikdban?

A gépek és az ilyen tipusu médszerek sgziikségszerd
felhaszndlédsdt ezen a teriileten kiilonféle objektiv és
szubjektiv érvekkel tdmasztjdk ald. Igen meggydzbek pil-
ddul azok az érvek, amelyek az emberi agy korlatozott in-
formécidfeldolgozb kapacitédsdt a szdmitdgép elvileg kor-
latlan kapacitésévai vetik Ossze /De Dombal (1972), Grémy
és Goldberg (1977)/. lMgs szerzdk arra mutatnak rd, hogy a
szémitdégépes diagndziskészités dltal felvetett problémdk
megolddsa lényeges hatdssal van a "természetes" diagndzis-
készitésre is, mivel egyiitt jér az orvosi tudds tovébbi
rendszerezésével és a diagnosztizdld folyamat tudatosabbi
valdsédval.

Az orvos a diagndzis megdlldpitdsdndl figyelembe veszi

a betegrdl gyljtétt informdcidkat, az orvosi ismeretanya-
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got és sajdt tapasztalatait. Az esetek egy ®szében nem
gsikeriil a helyes diagndzist megadni. Szentgdli 1976-ben
irt konyvében tobb betegség esetén ad szdmot irodalmi
adatok alapjdn a hibds diagndzisok gyakorisdgdardl (csak
egy kiragadott példa: a vakbélgyulladdst az esetek 60
%-édban sikeriilt csak helyesen diagnosztizdlni!). A hibds
diagndzisok okait a vildgon és hazdnkban is t&bben vizs-
gédltdk. Ezek dltaldban a kovetkezdk:

- a diagndzis megdllapitdsdhoz sziikséges infor-
macidk szama (betegségek, tiinetek, a forgalomban
1lévdé gydgyszerek stb.) egyfe nd;

- ugyanakkor az emberi agy egyszerre csak viszonylag
kiggzami informacidval tud doigoznij;

- bizonyos ritka betegségek nem ismerése;

- a klinikai leletek, vizsgdlatok rossz minbsége;

- az orvos személyisége;

- alkalmatian diagnosziikus eijardsok haszndlata.

A szédmitdgéppel segitett orvosi diagnosztika mdédsze-
rei nem larldtozddnak csupdn az alakfelismerés alkalmazdsd-
ra, felhaszndldsuk informdcidelméleti, logikai, algebrai
(fuzzy halmazok) mdédszerek, és nagyon sok szamitdgépes
diagnosztikdldé rendszer mikodik"természetes" diagndzis-
készités utdnzdsdval, intuitiv, heurisztikus algoritmu-

sokkal f/példdul Shild és munkatdrsai (1978)/.



CTY 2 B

4.2 A statisztikus alakfelismerési mdédszerek alkalmazasa

az orvogi diagnosztikdban

4.2, ]Vildgirodalmi dttekintés

Az alakfelismerés alkalmazdsa trividlisan adddik az
orvosi diagnosztikdban: a betegrdl (objektum) a tiinetei
alapjén (jellemzdk) el kell donteni, hogy adott betegségek
(kategodridk) valamelyikében szenved-e.

A valdszin(iségszdmitds Bayes tételének alkalmazdsat
Ledley és Lusted (1959) javasolta eldszbr. Alapdtldiiket
és dltaldnositdsaikat igen elterjedten alkalmazzdk
/Biihovszkij (1961), Warner (1972), Fritz (1978), Fryback
(1978), Sonnenberg (1982)/.

A statisztikus alakfelismerés moédszerei koziil igen
gyakran szerepel a diszkriminancia analizis. Az irdsok
egy része a "hagyomdnyos" eljdrdsokat csupdn alkalmazzgk
[Knapp (1977)/, mdsik része a meglevd eljdrdsok finomi-
tdsdt is célul tdzi ki, vagy a hibabecsléssel foglalko-
zik, illetve mads statisztikai mdédszereket is haszndl
mellette. A diszkriminancia analizis gyakorisdgdénak tobb
oka is lehet. Indokolhatja a bioldgidban gyakran eldfor-
dulé normdlis eloszléds. De mdsik oka lehet, hogy az is-
mert és vildgszerte elterjedt nagy statisztikai program-
csomagokban (BMDP, SPSS stb.) igen jdél kidolgozott prog-
ramjai dllnak rendelkezésre. Ezeket a programokat szdmos
betegség differencidl-diagnosztikdjdra alkalmazték. Pél-
déul Braks és mumkatdrsai (1971) a BMDP stepwige diszkri-

minancia analizis programjdt alkalmaztdk érelmeszesedés-
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ben bekdvetkezd8 stddiumok szétvdlasztdsdra jé eredmény-
nyel. A diszkriminancia analizis széles kord haszndlaté-
ra utal, hogy példdul az epide-mi-oldgia témakdrén beliil
is szémos probléméra alkalmaztdk, ezt elemzik Lachenbruch
és munkatdrsai (1980) 36 irodalmat attekintve.

A statisdikus mddszerek alkalmazdsdnak mdsik gyakori
médja tobb mddszer egylittes alkalmazdsa. Ennek két £6 célja
lehet:

l. Lényegkiemeléssel egybekotott statisztikai alkal-
mazds (példdul faktoranalizis, osztdlyozd algoritmus eldtt).
Ilyen példdul Hott és Mettoh (1980) cikke: 13 folytonos =
vdltozd alapjdn 10 betegre nézve 6 féle médjbetegség fenn-
dlldsdnak lehet8ségeit vizgdltdk. Faktor és clusterana-
lizist alkalmaztak a vdltozdk céoportositéséra, majd az
ezek alapjén lényegesnek tartott vdltozdkon futtattdk le
a diszkriminancia analizis programjat.

2. A médszerek Osszehasonlitdsa - azaz ugyanazon a
tananyagon tobb mddszert is lefuttattnak. Az édathalmaz
lehet valddi vagy szimuldlt. Igen érdekes ebbdl a szem-
pontbdél Rioux és Nakache (1979) cikke, amely a diszkri-
minancia analizis kiilonbozd8 mdédszereit, vdltozatait ha-
sonlitja Gssze. Legkisebb hibdjénak a kvadratikus, leg-
gyorsabbnak pedig a linedris diszkirminancia analizist
taldltédk. Duewer és munkatdrsai (1978) médjbetegségek
differencidldiagnosztikdja sordn tobbféle statisztikai
médszert alkalmaztak. (normalizdlds, Fisher-sidlyok,

Karhunen-Loéve sorfejtés, k-NN médmer, SIMCA) A mddszerek



Z¥EY B

Ssszehasonlitdsa adott klinikai adatbdzisra vonatkozdan
tortént.

A statisztikai mdédszerek diagnosztikai alkalmazdsai
k6zott nem tul gyakori, de nem elhanyagolhatd rész a clus-
ter analizis felhaszndldsa. Egyrészt lényegkimelési mdd-
szerként haszndljdk - vdltozdk clusterezésére - példaul
Abott és Metton (1980) - mésrészt ondlldan - példaul
Wong, Liu (1976), akik Uj iterativ algoritmusokat szimu-
lécids és klinikai adatokon teszteltek.

A fejezethez megadott irodalomjegyzék nem teljes,
de meg kell emlitenem, hogy szdmos bibliografia létezik,
példdul Wagner és munkatdrsai (1978) témakdrck szerint
csoportositva tobb mint 800, Wilke (1978) 7000 irodalmi
hivatkozdst sorol fel, a Cacoullos &dltal szerkesztett
konygben S. M. Gupta, illetve a szerkeszt8 egy 547 cikkbdl
4llé bibliografidt ad meg.

4.2.2 Hazai alkalmazdsok

Magyarorszdgon a szamitdgéppel segitett orvos-diag-
nosztikai kisérletek az 1960-as években kezdddtek. Kal-
mdr Ldszld mdr 1969-ben felhivta a figyelmet erre a lehe-
tésgre. /Kalmar (1969)/. A szdmitégépes omosi diagnosztika
elterjedése azonban csak az 1970-es években indult meg
a szamitdgépek szdmdnak novekedésével. Az elterjedds sem
volt gyors, és nehezitette, hogy sokan kételkedtek benne,
még azok is, akik egyébként magénak a szamitSégépnek a

szerepét az egészségligyben elismerték. A kisszdmi alkal-
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mazés nem volt eldg &tiité ahnoz, nogy ez a teriilet dlta-
l4nosan ismert legyen. Ezt szemlélteti az a tény, hogy
példdul az Orvos és Technika folydiratban ;972—74-ben
megjelent "A szdmitdgépek és orvosbioldgiai alkalmazdsuk"
cimi sorozat 9 cikkébdl csak egy emliti a diagnosztikailehe-
t8ségeket /Fedina (1974)/, az is specidlis esetben.

A hazai irodalomban fellelhetd kozlemények alapjdn
egy tanulmanyban /Boda (1980)/ foglaltuk Ossze a szamitd-
gépes diagnosztika hazai helyzetét. Az informdcidelméleti,
logikai médszerek mellett f£dként a valdszinlségszamités
és a statisztikus alakfelismerés médszereinek az alkalma-
zédsa a jellemzl. A valdszinlségszamitds Bayes tételét al-
kalmazta GySri (1979) a tiinet Iformicidmértékének kidol-
gozdsakor, Prdénay és Hunya (1970) bélamoeb.agis differen-
cidldiagnogztikdjdra. Kanydr és munkatdrsai (1972) négy
pajzsmirigy betegség diagnosztizdldsdhoz alkalmaztdk a
Bayes tételt. A feltételes valdszinlségek becsléséhez a
tinetek fiiggetlenségét tételezték fel, az eredmény 92,

65, 51 és 9 % _ban egyezett az orvosi véleménnyel.

Alakfelismerési modszrek legfontosabb alkalmazdsi

teriiletei:

a/ EKG gérbék automatikus kiértékelése terén Gydrfi

és Cgibi (1972) a tanuld algoritmusokat, elsdsorban a po-
tencidlfiiggvényes algoritmust haszndltdk fel, és 1971l-ben
egy kisszdmitégépes EKG diagnosztikai redszert dolgoztak
ki /Battisting és munkatdrsai (1971), Bak és munkatédrsai
(1971), Kobzos és munkatdrsai (1978)/. Késébb a KFKI-ben



G

TPA i 16 K kisszdmitdgépre terveztek egy gorbekidrtékell
és osztdlyozd programrendszert, ahol az alkalmazott mdd-
szerek a NN, és egy cluster algoritmus /Szlavik és munka-
tdrgai (1976), Bolyki és munkatdrsai (1978)/.

b/ A korasziilés okai, kovetkezményei, a korasziilottek

sulyédt befolydsold tényezdk és mindezek ellrejelzésének
sziikségessége t6bbek régzérdl és egymastdl fiiggetleniil

is felmeriilt. A SZOTE-n linedris diszkriminancia anali-
zigssel védlasztottuk szét a vércserére keriild és kontroll
eseteket. /Boda és munkatdrsai (1970, 1971)/. Paksy és
GySérfi (1973) a KSH adatokbdl véletlenszerien kivdlasz-
tott Ujsziilottek adatain futtattdk le a Bayes dontésfiigg-
vény kozelitésére irt iterativ algoritmust annak érde-
kében, hogy eredményeiket szlirésre is felhaszndljdk. Sebdk
és munkatdrsai (1974, 1976) a korasziilottek koponyadri
vérzését befolydsold tényezdket Vizsgélték. A Kashyap-Ho
féle gradiens algoritmus egy &ltaluk kidolgozott gyorsi-
tott valtozatdt és egy linedris programozdsi mdédszert al-
kalmaztak.

¢/ Légzésfunkcids vizsgdlatokban fdleg szlrivizs-

gélatok kidolgozdsa volt a cél. Példdul Csukds és munka-
tdrsai (1975) faktoranalizis utdn futtattdk le a mdédosi-
tott McQueen cluster algoritmust, amellyel jdél elkiiloniild

betegség-osztdlyokat kaptak.

d/ EEG gorbék alapjdn alvdsfdzisok elkiiloniilését vizs-

gdljék P4l és munkatdrsai (1978) linedris szeparslds,
Committe lMachine, NN és linedris diszkriminancia analizis

segitségével.
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e/ A kérdbivek alkalmazdsdval fdleg tomeges szlird-

vizsgédlatokhoz nyeriink adatokat. A tOmeges szlirdvizs-

gdlatok célja esetlegesen beteg elvdlasztdsa a biztosan
egészségesektdl. A kiszlrt lehetséges betegeket ezutdn
tlizetesebb orvosi ellendrzésnek vetik ald. A valdszini-
leg beteg személyek kivdlasztdsdval az alakfelisme rési
médszerek Ujabb alkalmazdsi teriilete a szlirés. B. Nagy

és munkatdrsai (1976, 1977) kérdéivek alapjén tiidé- illet-
ve szivbetegek szlrésére, illetve pszicholdgiai vizsgdlatok-
ban a neurotikusok felfedezésére alkalmazott tanuld al-
goritmusokat. Szildrd és munkatdrsai (1979) keringés-
rendszeri kérddives eldszlirés modelljének kialakitd-

sdrdl szamolnak be. A beteg és egészséges populdcid
szétvdlasztdsdra a diszkriminancia analizist taldlték

a legalkaimasabbnak. /Csébfalvi és munkatdarsai (1977)
Hunya és munkatdrsai (1980) neurotikus betegekrdl kér-
déivvel gyldjtott adatokon faktor- és clusteranalizist
végeztek./

f/ Az eddig felsoroltakon kiviil egyedi jellegd
alkalmazdsok torténtek: példdul a leukopldkids betegek
osztdlyozdsa cluster analizissel /Feny8 és munkatdrsai
(1975) /méjbetegségek differencidldiagnosztikdja /Gydri
és munkatdrsai (1970)/. Szdmos képfelismeréssel kapcso-
latos kutatds folyik: Hajnal (1977), Nasflady és munkatér-
sai (1978), Csernay és munkatdrsai (1970, 1976).

Osszefoglalva a magyarorszigi helyzetet, a leggyak-

‘rabban a differencidldiagndzis feldllitédsdra és tomeges
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gzlirés megvaldsitdsdra alkalmaztak féként alakfelismeré-
si médszereket. Ezek széles kord orvosi felhaszndldsa

egyes teriileteken mdr megindult.
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4.3 Sajdt tapasztalataink az alakfelismerési médszerek

orvosi diagnosztikai illetve szilrdvizsgdlati célokra

torténd alkalmazdsaval

A Szegedi Orvostudomdnyi Egyetemen t6bb esetben me-
rilt fel annak sziikségessége, hogy tiinetek, laboreredmé-
nyek birtokdban a diagndzis meghatdrozdsat matematikai
médszerekkel segitsiike Harom orvosi probléma kapcsdn szer-

zett tapasztalataink a kovetkezlk:

l./ 1970-ben az Ujsziilottkori sdrgasdgot befolydsold
tényezlbket vizsgdltuk 2000, a SZOTE Gyermekklinikdjén
vizsgdlt csecsem8 adatai alapjdn. A sulyos esetekben az
Ujsziilotteken vércserét kellett végrehajtani, ami nem
veszélytelen beavatkozds. Felmeriilt az a kérdés, vajon
lehet-e osztdlyozni az Ujsziilotteket a sdrgasdgot befo-
lydsolo tényezdk alapjdn Ugy, hogy a vércsere sziikséges-
sége a lehetd legnagyobb biztonsdggal eldonthetd legyen.
Orvosi és el8zetes statisztikai (példdul korreldcidszi-
mitds) meggondoldsok alapjdn az eredeti 13-bSl végil 5
tényezd (jellemzd8) maradt. Ezek koziil kettd, az Incompa-
titivitds és a Coombs prdba hdrom, illetve két értékd
vdltozd volt. Ezeket Ugy vettilk figyelembe, hogy a
kombindcidknak megfelel8en 6 csoportba osztottuk a beteg-
anyagot és csoportonként a megmaradt hdrom folytonos para-
méter alapjdn diszkriminancia analizissel kiséreltiik meg

a vércserés és nem vércserés esetek gzétvdlasztdsit
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/Boda és munkatdrsai (1971, 1972)/. A helyes dontések
ardnya 77,3 % - 89,8 % volt. A modellt Gjabb eseteken

is leteszteltilk, itt a helyes dontések aranya kozel azo-
nos volt a tananyagon kapott szédzalékkal. A tesztanyagban
szerepeltek olyan esetek is, akiket vércsere helyett az
Ujabban bevezetett "kékfénybesugdrzdssal' kezeltek. A
modell a besugdrzds utdn az eseteket a "nem kell vér-
csere" osztdlyba sorolta. A biztaté kisérletek végil is
nem keriilhettek gyakorlati alkalmazdsra, mivel a kékfény-
besugdrzds veszélytelenebb, és csaknem helyettesitette a

vércserét.

2. A hasnydlmirigy (-pancreas) kiilonbozd megbete-
gedéseinek diagnosztizdldsa hosszadalmas, sok laboratd-
riumi vizsgdlatot igénylsé feladat. Ebben a pancreas-en-
zimek vizsgdlata az egyik legfontosabb tényezd. A tobbféle
sejttipus és a pancreas-enzimek nem péarhuzamos szekrécidja
miatt egyes funkcidk kordbban kdrosodhatnak, mikdzben mésok
még normdlis értékiiek maradnak. Egyetlen pancreas-funk-
cidés prdba alapjdn a hasnydlmirigy mikodésérdl nem lehet
biztos véleményt alkotni; ezért minél t6bb tényezd egyiit-
tes értékelésére kell torekedni.

A pancreas kiilonb6zdé funkcidit jelz8 adatokat tobben
prébaltdk midr matematikai-statisztikai dton értékelni és
azt a hasnydlmirigy-betegségek diagnosztikdjdban haszno-
sitani, Schmidt és munkatérsai (1977) szekvencidlis sta-

tisztikai eljdrdsokat alkalmaztak. Durbec és munkatirsai
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(1978) a kontingencia t8blébdl nyert log kereszt-szorzat
ardnyokra és a kolcsonds iformdcids tulajdonsdgokra ala-
pitott adatszlrést irtak le. Sarks (1970) illetve Capi-
taine (1971) egy- és tobbvdltozds mdédszereket alkalmaz-
tak a kiilonbozd hasnydlmirigy betegek és egészségesek
diagnosztizdldsdra. Mivel az enzimaktivitdsok eloszlédsa
méréseik alapjdn lo8normdlis, esetenként pedig normdlis
volt, a Fisher féle diszkriminancia analizist nem tartot-
tédk megfeleldnek, igy helyette Uj analitikai mdédszert
dolgoztak ki. Aparisi és munkatdrsai (1979) a széklet
chymotripszin diagnosztikus értékének meghatdrozdsdra
gikeresen alkalmaztdk a linedris diszkriminancia anali-
zist (a hibds osztdlyomds valdszinlsége 0,39 % volt);
Farini és munkatdrsai (1982) pedig biokémiai és klinikai
adatok alapjdn prébdlkoztak négy hasnydlmirigy-betegség
és egy egészséges csoport elkiilonitésével a linedris digz-
kriminancia analizis médszerét alkalmazva. Osszesen 97
vizsgdlt személy adata 411t rendelkezésiikre, melybdl 19
volt a kontroll, csak a biokémiai jegyek alapjén 57,1 %
volt a helyesen "diagnosztizdlt" esetek ardnya. Klinikai
adatok hozzdvételével ez az ardny 75 %-ra ndétt. Konkli-
zidjuk éppen ez, a klinikai adatok hozzdvétele megerd-
gitette a korrekt diagndzist.

Az &dltalunk vizsgdlt paraméterek és Osszehasonli-

tdsuk

A mi vizsgdlatainkat a SZOTE I. sz. Belgydgydszati
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Klinikéjén fekvd hasnydlmirigy-betegeken illetve kont-
roll eseteken végzett mérések alapjdn végeztiike Az ada-
tok matematikai-statisztikai mdédszerekkel vald feldolgo-
z4sa mintegy 6 éve kezd8ddtt, Pap A. és munkatédrsai
(1977), legijabb eredményeinkrdl 198l-ben és 1983-ban
szédmoltunk be /Boda és munkatdrsai (1981, 1983)/.

14 laboratdriumi paramétert vizsgdltunk, amelyeket a
duodenum szonddzdssal nyert hdrom f£f4& pancreas-enzim
(amitdz, lipdz, tripszin) 3 x 10 perces frakcidkban

mért aktivitdsdbdl, tovdbbad a duodenum nedv térfogati-
bdl szdmoltunk - a frakcidk maximumdt, Adtlagdt és Ossze-
gét véve alapul. A paramétereket, valamint 77 kontroll
eset dtlagdt és szdrdsdt a 4.1 tdblidzat elsd két oszlopa
szemlélteti.

Kezdetben /Pap A.,(l9777/a.fenti paramgterek kéros
és egészsées eseteken mért dtlagait és szdrdsait t-illet-
ve Wilcoxon prdébaval hasonlitottuk Ggsze. A kiilonbség
- bdr szignifikdéns volt - nem adott az orvosnak Ujat

a diagnézis feldllitdsdhoz - éppen a nemparhuzamog mi-

kdés miatt. A mért ' paraméterek pozitiv szdmok, és mi-
nél kisebbek, anndl inkdbb utalnak a kdéros elvdltozdsra.
A non-parallel szkrécid azt jelenti, hogy még egy panc-
reag -beteg embernek is lehetnek bizonyos paraméterér-
tékeli normdlisak. Az orvos szerint még az a meglepd
tény is eldéfordul, hogy ugyanannak az embernek egy ma-

gik alkalommal megmérve esetleg egy mdsik enzim értdéke
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mutat kdéros elvédltozdst, mint a kordbban mért. Ez a tény
igen megneheziti a dontést a betegségrdl, és ezzel magya-
rédzhatd az is, hogy hisztogramot készitve a normdl és a
kéros esetek eloszldsdrdl, az atfedés viszonylag nagy.
(4.2 &bra)

A ddntéshez el8szdr meg kell hatdrozni azt a hatért
(kiiszobértéket), amelynél kisebb érték kdérosnak tekint-

het8. Ezt a szdmot normalértéknek nevezik.

A normdlértékek meghatdrozisa

Az irodalom szerint a szokdsos gyakorlat /Sarles
(1970 ) az, hogy a normélértéket valamely egészséges po-
puldcidbdl szérmazé minta alapjdn hatdrozzdk meg. Altald-
ban a mintdnak a logaritmikus transzformidcid utdni atlagd-

b6l a kétszeres standard de idcidt levonjuk:

N 7 —QvaJ (%,— 230(’) )
ahol Xy, €24, 0 . @ mintaelemek , Y = Log x;,
= A Z Y ) s0=(Z (4o~ 99 (w-1)

Ez az eljards a paraméterek ferde - leggyakrabban log-

(4.1)

normdlis - eloszldsa miatt terjedt el.

Megvizsgaltuk a 77 kontroll eset eloszlését,yz pré-
bdval normalitdsvizsgdlatot végeztiink. A 4.1 tdbldzat
3. oszbpa a kapott valdszinlségeket mutatja. Lathatd,
hogy a paraméterek nagy részére a prdba gzignifikdns. A
logaritmikus transzformicid utdn djabb Xeprébéval még mindig
volt a szignifikédns eset. Tehdt vizsgdlt paramétereink

kozott volt normdlis, lognormdlis, s8t még ferdébb el-
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TRIPS2IN

L1Pdz

Normdl érték

Paraméter neve Atlag + SEM P 2.5 % perc Z.1) formula

Atlagos aktivitds TU/ml 99.81 £ 5,240 0000 39.4 38.9

Meximdlis aktivitds  IU/ml 141.60 T 7.584  0.4952 5845 5344

Osszegezett outpus.  IU/30min 24835, 0 317245933  0Q.0cl 8913.6 8660.9

Maximdlis outpub 1U/10min 15234.1 +1307.298 0.0006 517442 4611.6

ftlagos aktivitds  mIU/ml 521,82 T T23.042 G.iT1 231.6 219.1
+

Maximdlis aktivitds mIU/ml 759.92 = 37,197 - €.5574 300.7 289.1
+

Osszegezett output IU/30min 120.59 B 6.355 0.0084 49.4 45.4

Maxidelis outpht IU/10min 75.01 T 5,242 0.0001 29,1 23.7

£tlagos aktivitds TU/ml 81.31 t 2,811 0.0169 41.5 41.6
+

Maximdlis aktivitds IU/ml 107.81 = 30329 =06:1356 66.0 61.0

Osszegezett output IU/30min 17868.19 t 753,807 0.9409 8792.6 7880.0
+

Maximdlis output IU/10min  10601.04 = 548.262 0,0057 3728.0 358640

Osszegezett térfogat ml/30min 229,22 - 6.689 0.9409 141.0 131.0

Maximdlis térfogat  ml/lOmin 127.90 ¥. .6.,0537:0,0001 68.0 5740

4,1 tébldzat Az alkalmazott paraméterek és 77 kontroll eset adataibdl szdmitott jellemzdk.
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08zldsbdl szdrmazd is. Ezért nem haszndlhattuk a fenti
képletet. Mivel az emlitett mddszerel kapott érték az
elogzlds 2.5 %-at hagyja figyelmen kiviil, kiszdmoltuk
a 2.5 % percentilis becsléseit is. A két mdédon kapott
normdlértékeket az 4.1 tablazat utolsd két oszlopa mu-
tatja. Nyilvénvaldan nem egyenld mindig a két szdm,
konkrét beteg esetén az orvos azonban mindkét értéket

figyelembe vetke.

Algkfelismerési mdédszerek alkalmazdsa

Miutén a paraméterenkénti vizsgdlat nem vezetett
eredményre, egy adott betegrdl valdé dontés esetén, ter~
mészetes médon vetddott fel a tobb paramétert egyszerre
figyelembe vevd alakfelismerési médszerek alkalmazdsa.

Harom mdédszerrel is prdébalkoztunk: é sulypont, a
legkSzelebbi szomszéd és a linedris diszkriminancia
analizis médszerrel.

Az adatokat Ujabb 137 eset laboreredményei képez-
ték, ebb8l 67 volt a kontroll és 70 a beteg. Az adat-
halmaz egy része (30 + 30 eset) szolgdlt tananyagul,

a tobbin pedig a tesztet végeztilk. Az eredményeket a
4.2 dbra mutatja 14 jellemzd8 alapjdn. Az egész szdmok
a tdbldzatban a helyes dontések gzdmdt jelentik, a leg-
alsé sorban pedig az Ossz-esetszdm van feltiintetve.

A 4., és 8. oszlopban 4llé tortszdmok a helyes dontést

fejezik ki az Ossz-esetszdm szdzalékdban. Példdul a



L 69

Tananyag

Tesztanyag

Médszer Kontroll Pancr. Ossz. % Kontroll Pancr. Ossz. %
Digzkriminancia analizis 26 30 56 193,39 35 36 71 92.2
Legktzelebbi szomszéd 23 25 48 80,00 36 | 26 62 80.52
Sdlypont 24 29 5358833 20 34 66 85.71
Osszes esetszdm: 30 30 60 3% 40 %7

4,2 tdbldzat Az osztdlyozas

eredménye hdrom mdédszerrel 14 jellemzd figyelembevételével.
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linedris diszkriminancia analizissel a tananyagon 30
kontroll koziil 26 esethen, 30 beteg koziil 30 esetben
kaptunk helyes dontést. Ez Osszesen 56 esget, amely a
60-nak 93.33 %-a. Lathatdé a tdbldzatbdl, hogy ez egy-
uttal a legjobb eredmény a hdrom mddszer koziil, melyet

a teszthalmazon nyert helyes dontések ardnya is meg-
erdsit (92.2 %)« A 4.1 dbrdval szemléltetjiilk a médszert:
a fels8 rész az egyik jellemz8 eloszlasdt mutatja kdros
€és normidl esetben; az alsé rész pedig a linedris diszkri-
minancia fliggvénnyel egy dimenzidba transzformadlt pontok

eloszldsat mutatja.

———

70.13°%

my
il
1

I,zwm%
t

4.1 édbra. a/ Egy jellemz8, az amildz maximédlis koncent-
ridcid eloszldsa kéros és normdl (vonalkizott)

esetben.

b/ A linedris diszkriminancia analizissel egy
dimenzidba transzformdlt pontok eloszldsa kdros

(sima) és normdl (vonalkdzott) esetben.
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A 14 jellemz8b8l 7-T-et elhagytunk annak vizsgdla-
tdra, vajon mennyire romlik a dontés. Amint a 4.3 illet-
ve 4.4 tdblidzatbdél ldthatd, hogy valamennyi esetben, ha
jelentékteleniil is, de romlott a dontés biztonsdga.

Tudomdsunk szerint enzimértékek alapjén linedris
diszkriminancia analizissel eddig nem értek/el ilyen meg-
bizhatdé dontést.

Sarles és munkatdrsai (1970) pedig nem is tartottdk
adekvat médszernek az adataik ferde eloszldsa miatt. A
mi vizsgdlatunkban is zavard volt a ferde eloszlds, azon-
ban a mdédszer 3.1 pontbeli megfogalmazdsa - mely szerint
a Figher féle diszkriminancia fliggvény egy optimalitdsi
kritériumnak eleget tevd transzformdcid - alapjdn indo-
koltnak tartottuk az alkalmazdst. Eredményeink is meg-
erSsitik ezt, és tovdbbi eldnye a linedris ddntésfiiggvé-
nyek alkalmazdsdnak, hogy folyamatos tesztelésiikhdz, a
dontésfiiggvény adott esetben torténd helyettesitési érté-
kének a kiszdmitdsdhoz elegendl egy kis kézi szdmoldgép
ise

A silypont médszert egyszerisége miatt végeztiik el,
tdjékozddd jelleggel. A legkdzelebbi szomszéd médszerrel
kapott kedvezltlenebb eredményeink - véleményiink szerint -

azzal magyardzhatdk, hogy a programunk csak euklideszi
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tdvolsdggal tud dolgozni (jelenleg).

Az eredményeinkrdl szdld cikk a Computers in Bio-
logy and Medicine c. lapban keriilt elfogaddsra és vir-
hatdan ez évben megjelenik.

Azéta még egy mdédszer programjiat futtattuk le adataink-
ban: a probit diszkriminancia analizissel az eredeti
teszthalmazon teljes szétvdlasztdst sikeriilt elérni.

Ha pedig a teszt- és tananyagot egyesitettiik tananyag-
nak, Ssszesen 5-0t tévesztett.

Eredményeink tesztelését folyamatosan végezziik;
mds vizsgdlatok és orvosi paraméterek alapjdn tervezziik

médszereink tovdbbi alkalmazdsidte.
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Tananyag Tesztanyag
Méddszer Kontroll Pancr. Ogssz. % Kontroll Pancr, Ossz. %
Digzkriminancia analizis i § 28 59 91.67 35 34 69 89.61
Legkozelebbi szomszéd 26 24 50 83.33 35 29 64 83.02
Sulypont 25 29 54 90.00 35 21 66 85.71

Qgszes egetgzdm: 30 30 60 37 40 77

4.3 tdblazat Az osztdlyozds hiromféle mddszerrel kapott eredménye 7 jellemz8 alapjédn

(a maximumokat kihagyva).



Helyes dontés

4.4 tdblédzat Az osztdlyozds eredménye haromféle médszerrel 7 jellemzd alapjén

(a koncentrécidk kihagyva).

Tananyag Tesztanyag
MSédszer Kontroll ©Pancr. Osez. % Kontroll Pancr.; Uemz. = %
Diszkriminancia analizis 29 26 55 - 93467 37 5.0 68 88. 31
Legkozelebbi szomszéd T 26 49 81.67 36 26 62 804,52
Sllypont 24 29 53 88.33 35 3% 66 8571
Ogszes esetszdm: 30 30 60 37 40 7
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3. A 1égiti megbetegedések kimutatdsénak egyik fon-

tos médszere az ugynevezett flow-volumen gorbe vizsgdla-
ta. Ezt a gorbét egy specidlis mlszer adja belégzés utdni
er8ltetett kilégzéskor. A gorbére jellemzl, hogy eleinte
gyorsan emelkedik, majd tobbé-kevésbé meredeken csdkken.

A gorbérél - a csics helyérdl, lapossdgardl stb. -

a gyakorlott orvos sokszor rédnézésre is felismeri az
asztmdt vagy a felgsd légutak megbetegedését. Vannak azon-
ban olyan esetek, amikor ez nem egyértelmi.

A SZOTE Gyermekklinikdn levd légzésfunkcidés labora-
tériumban egy kisszamitdégéppel egybekotott késziilék mi-
kodik, amely e gorbét vizsgdlja. Felmeriilt e kisszami-
tdgépbe szlrdvizsgdlati céllal olyan dontdkésziilék be-
épitése, amely a gorbébd8l nyert paraméterek alapjan jelzi
a megbetegedésre gyanus eseteket.

Az els8 lépéseket tettilk meg eziranyban, probléma
ugyanis a figelembe veendd jellemzd8k megvalasztdsa.

Az irodalom nem egységes e téren, ma is sokan vizs-
gdljédk a gorbe egyes jellemzbit illetve ezeknek a test-
magassdagtél vald fliggését. Probléma a paraméterek "nor-
mélértékeinek" meghatirozdsa /Sahakian (1981)/.

Eldzetes vizsgdlatainkat /Gyurkovits, Boda (1981)/
24 kontroll és 39 asztmds beteg gyerek fujdsi gorbéin
végeztilkk. Az asztmdsok koziil 20 a vizsgdlat id8pontja-
ban tiinetmentes volt, ezeket kiilon csoportnak tekintet-

tilkke A vizsgdlt.paramétereket a 4.3 tdblédzat mutatja.
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testeuly
testmagassag
FEVA - 1 sec. alatti térfogat

FEV 6sszes térfogat
TIFF = FEV1/FEV x 400

F MAX dramldsi cslcssebesség

-F35 sebesség a vitdlkapacitds 75 %-dndl
F50 sebesség a vitdlkapacitds 50 %-&ndl
F25 sebegség a vitdlkapacitds 25 %-dndl
T(F¥V) a gorbe alatti teriilet
DMAYX = ¥25/FMAX

pI5= F25/F35
beQs F25/F50

M 50 % és T5 % kozotti meredekség
T4 F50 alatti teriilet ardnya az egész teriilethez
MEFR kozéparamldsi max. gebesség

A paraméterek fele megegyezik a Sahakian (1981) &dltal

vizsgdltakkal, a tobbi is irodalmi adat. Az dltalunk be-

vezetett Uj paraméter a meredekség.

E paraméterek alapjdn lefuttattuk a linedris disz-

kriminancia analizis programot, eldszdr 16, majd pedig

az egyméssal korreldld tiineteket elhagyva, 9 tiinet alapjédn.
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Eredményeinket a 4.5 tdbldzat szemlélteti. A tdb-
ldzatban az egyes csoportok elnevezégeit roviditettiik:
K-kontroll, Atm-asztmds, tinetmentes, Ast-asztmds,
"gtdtusban". A csoportokat pdronként hasonlitottuk Ossze.
Az eredményeket 2x2-es tdbldzatokban szemléltetjilk, a
gorokban az eredeti, az oszlopokban a dontott osztalyok
gyakorisdgai &allnak. Példdul az elsd tablazatban a 24
kontroll esetbdl 23 esetet dontétt a kontroll csoportba,
és 1 egetet dontott a tiinetmentes asztmdsnak. A tdbldzatok

aljdn a helyes dontések ardnya taldlhaté %-ban.

Dontott Dontott
K Atm | Ossz., & Atm | Ast | Ossz.
wiw g 24 S atm 19 el (T
'g)Atm 1 [19 20 é’ lat ko 1Laa | ag
=
95445 % 92:5 %

Dontott :
Pt K ASt OSSE
3o
%K 24 0 24
HAl1 | 19 20

QTT2 %

4.5 tdblézat 16 koordindta alapjdn linedris diszkriminancia

analizissel kapott dontési téblézata és a helyes
dontések ardnya %-ban kontroll (K), tiinetmentes
asztmds (Atm) és asztmds (Ast) esetek vizsgdla-

takor
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Bredeti

Dontstt Dontott
K Atm Ossze o [Atm Ast | Ossz.
4
K23 1 24 S Atm| 19 1 20
(O]

Atm| 1 |19 20 HoANEl A L3600 28
95.45 % 87.5 %
Dontott

K Ast Ossz.
U
@ KT 24 0 24
D
e TR SR T 20
£
95445 %

4.6 tadblazat 9 koordindta dhapjdn linedris diszkriminancia

analizissel kapott dontési tdbldzatok és
a helyes dontések ardnya %-ban kontroll (K),
tlinetmentes asztmds (Atm) és asztmds (Ast)

esetek vizsgdlatakor.

A vizsgdlt jellemzd8k koziil elhagytuk azokat, ame-
lyek kozott szoros Ogszefiliggés volt, igy 9 jellemzd ma-
radt. A diszkriminancia analizis eredményét a 4.6 tdbldzat
mutatja.

Orvendetes az a tény, hogy a tiinetmentes asztmiso-

kat is nagy biztonsdggal sikeriilt a kontroll esetektdl



S5

elkiiloniteni. Természetesen tovdbbi, nagyszami eset
gziikséges a finomabb vizsgdlatokhoz és a tesztelés-
hez, hogy a médszer szlrdvizsgdlatra is alkalmazhatd
legyen.

E hédrom példéval kivantam szemléltetni azt, hogy az
dltalunk beprogramozott - kisgépen is alkalmazhatd -
alakfelismerési médszereket hogyan hasznéltuk fel az

orvosi diagnosztika kiilonbozd teriiletein.
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5. Osszefoglaléds

E dolgozatban egyes statisztikus alakfelismerési mdd-
szereket tekintettem at, valamint ezek orvos-diagnosztikai
felhaszndldsi lehet8ségeit mutattam be irodalmi adatok és
sajdt esettanulmanyok alapjan.

Az alakfelismerés alapproblémdjdnak dltaldnos ismerte-
tése utdn - mely szerint az alapvetd feladat objektumok-

nak bizonyos jellemz8ik alapjén adott kategdridk valame-

lyikéhez +valdé hozzdrendelése - leirom azt a dontést, amely-

nél a hozzarendeléds hibdjdnak valdszinlsége a legkisebb
(Bayes dontés). Ezutédn a dolgozat az ugynevezett tanitd-
val valdé tanulds médszerei koziil mutat be néhényat. Megmu-
tatom, hogy a Bayes dontésfliggvény normdlis eloszlds és
egyenld kovariancia matrixok esetén linedris, és e fiigg-
vény egy optimalizdldsi transzformdcid Uutjan is megkapha-
t6. Ez a Fisher féle diszkriminancia analizis. /Fisher,
R. A. (1936)/. Ennek dltaldnositdsait is ismertetem,
melyek nem cgak normdlis elosgzldsu valdszindségi vdlto-
zékra alkalmazhatdke. /Andrsbn, Se.ibe (19T72); A1bert, A,
(1981)/.

A dolgozat irodalmi adatok alapjén attekintést ad az
alakfelismerés orvos-diagnosztikai felhaszndldsdnak lehe-
t6ségeirdl, kitérve a szdmitSgéppel segitett orvosi diag-
nosztika helyzetére kiilfoldon és hazankban.

Végiil leirom azokat a diagnosztikai célu vizsgdlatokat,
amelyeket a Szegedi Orvostudomanyi Egyetem orvosaival

egyldttmiikodve végeztem. Egyik esettanulmdnyom a gyermek-

Wp 7 \
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kori légiti betegségek vizsgdlata, ahol bizonyos légzés—
funkciés paraméterek alapjan kellett kovetkeztetni az
asztmds megbetegedés fenndlldsdra. A madsik probléma, a
hasnydlmirigy gyulladds diagnosztizdldsakor laborpara-
méterek (enzim értékek) alapjdn vizsgdltuk a betegség
meglétét. A linedris diszkriminancia analizissel kapott
93 %-o0s helyes ddntést az utdlagos tesztek is megerdsi-
tették, igy a dontésfiiggvény segitségével egy paciens-
rél nagy valdszinliséggel megmondhatd, hogy egészséges-e
vagy beteg. Eredményeink - melyekrdl tobb kdzlemény ad
szadmot ,-orvosi szempontbdél is értékesek, és az orvosi

kutatdst és gyakorlatot is segithetik.
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Pliggelék
A STASYS programrendszer és a benne levd statisztikus

alakfelismerési mddszerek programjainak ismertetése

A STASYS programrendszer R-1lO-es szdamitdégépre ké-
gziilt statisztikai programrendszer. 1976-ban hoztuk
létre TIM munkdban a SZOTE Szamitdstechnikai Kozpont
muﬁkatérsaival. /Boda és munkatdrsai (1980)/. A rend-
szer célja az egyetemen folyd orvos-bioldgiai kigérle-
tek adatainak kiértékelése matematikai-statisztikai mdd-
szerekkel.

A STASYS rendszer vektorstruktirdji adatok kiér-
tékelésére alkalmas, off-line rendszer. Alapegysége egy
vektor, amely vdltozd hosszisdgi lehet, és amelynek
egy sorszam az azonositdja. Egy vektor dltaldban egy
statisztikai minténak felel meg, de a feladattdl fiiggl-
en lehetnek gyakorisdgok is az elemei.

A rendszer diszk-orientdlt, azaz a feldolgozandd
vektorokat, valamint a programokat és egyes statiszti-
kai tdbldzatokat is diszken tdrolja. A vezérld program
a rendszergeneridlds utdn a diszken kiilonboz8 zdéndkat hoz
létre, majd biztositja az adatok input-outputjdt és a
programok batch-jellegld futtatdsdt.

Az adatok ki- és bevitelét egy rendszerprogram
végzi. F6 jellemz8je, hogy egységes adatkezelést bizto-

sit az adatok mennyiségét8l fiiggetleniil. Az adatokat for-
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madtum nélkiil, tetszbleges adathordozdérdl be lehet olvas-
ni, és a futds bérmely fédzisdban a teljes vagy részleges
rendszermentés megvaldsithatd.

A programok automatikus, batch jellegl futtatdsa egy
egyszeri célnyelven megadott utasitds-sorozat alapjdn
valdésithaté meg. Egy mdsik rendszerprogram végzi e célnyelv
feldolgozdsdt és ellendrzését.

A STASYS rendszerhez az eddig emlitett rendszerprog-
ramokon kiviil az udgynevezett feldolgozd programok tartoz-
nak. Ezek vagy valamilyen transzformdcidét hajtanak végre
egyes vektorok elemein - ezdltal Uj rendszerbeli vektoro-
kat hoznak létre - vagy egy adott statisztikai mddszert
futtatnak le adott sorszdmi vektorokon. A célnyelven tu-
lajdonképpen e programok sorrendje és paraméterei adha-

t Sk meg.

A rendszer egyik fontos tulajdonsdga a programbdl
programhivds lehetlsége. Ez azt jelenti, hogy futd fel-
dolgozd program futdsadt megszakitva egy mdsik rendszer-
beli programot indithat el. Ezzel a statisztikai mdéd-
szerek egymdsra épiilése miatt fa-stmktiraszerden eldgazd
feladatok is megoldhatdk - viszonylag kis memdéria mellett.

A programok nyelve tetszlleges, az R-1l0-en haszndl-
hatdé nyelv lehet. A rendszerprogramok és egyes szubrutinok
assembey nyelven késziiltek, a feldolgozd programok nyelve
fortrane.

A feldolgozdé programok a diszket egy specidlis
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szubrutin-rendszer segitségével érhetik el. Ezek a szub-
rutinok valésitydk meg a file-kezelést a diszken.

A STASYS rendszerr8l az évek folyamdn bebizonyoso-
dott, igen JjOl alkalmazhatdé rutinszerd feldolgozdsokndl.
Ugyanakkor nagyobb méretl, nem rutin feladatok is megold-
hatdék benne, mivel Uj program rendszerbe illesztése igen
egyszerd.

Az alakfelismerési mdédszereket igényld feladatok nem
gyakoriak és nem is rutin jelleglek. E mddszerek program-
jait mégis a STASYS rendszerbe illesztettiik, mivel itt |

- az adatkezelég, file-kezelés megoldott,

- arprogrambdl programhivds lehetdsége jél felhaszndl-
hato,

- a rendszerbeli egy¥b statisztikai programokra, transz-
formdld programokra alakfelismerési problémédk esetén
is szilikség van.

Az alakfelismerési programok rendszerbe illesztésé-
nél egyetlen problémdt az jelentett, hogy itt egy egyedrdl
készitett méréseket volt célszerd vektorként felfogni. Ez
a statisztikai programok felfogdsdval szemben - a vektor-

struktira elve szerint - transzpoldldst jelent. Ezt szem-

lélteti az Pe l. dbra

l. mérés 2. mérés .. N. mérés
[P
l. egyed jX: S S
24 egyet | VA X il -
t ‘ .
. 11‘ : .
N '
n. egyed N X gl
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Az alakfeligmerési programok input adatai tehdt
egy egyedrdl késziilt mérések vektorai. Ha a vektor a
tananyagba vagy a tesztanyagba tartozik, akkor a "tani-
tds" koordindta a vektor elsd eleme kell, hogy legyen,

1ly25000y R egész szamokkal kdédolva.

Az alakfelismerési programoknak hdrom f& tevékeny-
sége:
1./ A tanulé anyag alapjdn a ddntésfiiggvény eldédlli-
tdsa, ‘
2./ adott dbntésfﬁggvény és tesztanyag alapjdn tesz-
telés,
3./ adott dontésfiliggvény alapjéan iémeretlen kategd-
ridju pontrdl dontés.
E leirdsnak nem célja a programok mikodésének rész-
letezése, csupdn a dolgozatban emlitett és az esettanul-

ményok futtatdsa sordn felhaszndlt médszerek programja-

inak révid leirdsdt adjuk meg.
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Sulypont médszer

Feladata: adott sorszdmi oszlopok altal meghatdro-
zott tananyagon dontésfiiggvény készités a sulypont mdd-
szerrel; a dontésfiiggvény tesztelése és adott sorszdmi
pontokrdl dontés.

Forrasnyelve: FORTRAN

Periféria igény: a szokdsos rendszer-hozzdrendelése-

ken kiviil még M:EI-r8l esetenként olvas

Input:

l. oszlopsorszdmok. Tobbparaméteres program, az
oszlopok egy-egy pontot hatdroznak meg (tanuld vagy teszt-
pont)

2. konstansok:

l: tanuléds

1l

]

2: adott tanuldpontok tesztelése output altdbldban
1évé sulyvektor segitségével
= 3; dontés ismeretlen kategdridju pontokrdl output

altdbldban 1év8 sulyvektor segitségével

]

4: adott tanuldpontok tesztelése M:EI-r8l beolva-
sott sulyvektor segitségével
= 5: dontés M:EI-rél beolvasott sulyvektor segitségé-
vel
3. Diszk input: KESZIT program altal kitoltott al-
tdbldk
4. Az M:EI-hez rendelt periféridrdl 4-es és 5-0s

konstans esetén a kovetkezb8ket olvasgsa be: s



(2IIP) formdtummal koordindtdk és osztdlyok szdma
(4F2¢5) formdtummal a sulyvektor koordindtdi osz-
tdlyonként. Minden osztdly Uj kdrtyén

(rekordban) kell, hogy kezdddjon!

Megkotések a méretre: koordindtaszam £ 50

koordindtaszam x osztdlyok szdma <500

Qut put
Sornyomtatdn: két osztdlyt elvdlasztd hipersik egyen-

lete,

a sulypontok koordindtdi osztdlyonként,
tesztelds eredménye  (sorszdm, eredeti
és dontott os#ddly, dontési matrix)
dontés eredménye (sorszam, dontott osz-

taly)

A program mikodése:

A konstansok alapjén diszkrdl (subroutine diszk)
vagy kartyardl (subroutine kértyé) beolvassa a koordinatik
Guzegét illetve az dtlagokat, kiszdmitja a hipersikok egyen-
leteinek egylitthatdit (subroutine hiper), majd tesztel

vagy dont (subroutine teszt). Lédsd az F.2. dbrit!

Szubrutinok: VEZNI

DISZK
KARTYA
HIPER
TESZT



M=50 (max. dimenzié beallitdsa)

|22

Vs

SUBROUTINE VEZ2W4 (vektorsorszamok beolvasdsa)
konstansok beallitdsa

|
tawnulas T e SUBROUTIVE KARTYA
(eqqufthq{ok ovasasq (:Wd‘“a{asiaw\ osztalqok
diszkrd| 2vunq, eq ththatdk beolva-
r = I sa'sq Kilsd™ adat hordozdvd )
SUBROUTINE Hiper| | tesat déntes l \
(dtlagok € o tesat dAdute's
h\peV‘Slkok
e,g uﬁika‘wmqk
knsadmntas«)
Ny omtatdg
) \

SUBROUTIVE TES2T
oz adott vektorokvdl a domtés~
{uggvemj Mekeuek k\s-zamrtam
(dontes), teset eseten a tanitassal
valg gss2ehasonlitds

F2 obra. A sd\g‘)ont modgzer Proyamjo'nak b\okkd(aﬁraqu
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Diszkriminancia analizis

Feladata: adott somzdmi vektorokon mint tananyagon a
Fisher-féle linedris diszkriminancia analizis elvégzése;
azaz két osztdly kozott bizonyos érteemben optimédlis line-
dris elvdlasztd fiiggvény elddllitdsa.

Forrdsnyelve: FORTRAN

Periféria igény: a szokasos statisztikai rendszerbeli

periféria hozzdrendeléseken kiviil esetleg még kdrtyaolvaséd
inputra kell szamitani.

Program input:

l. oszlopsorszamok. Tobbparaméteres program. Az oszlop-
sorszdmok altal megadott vektorok jelenleg maximum 20 koor-
dindtdsak lehetnek.

2. Konstansok.

1. konstans: tevékenységszdm. Ertékei:
= 1l: tanulds adott tananyagon
= 2: tesztanyag tesztelése eldz8 eredmény alapjdn
(azaz a dontégfiiggvény e futds sordn késziilt vagy
a 25. output altdbldban van) /alapfeltételezés/.

= 3: teszt kartydrdl beolvasott paraméterek segitségével

= 4: eldzd8 eredmény alapjdn ismeretlen kategdridju

egyedekrdl dontés

= 5: kédrtydrdl beolvasott egylitthatdk alapjén ismeretlen

kategdridju pontokrdl dontés
2. konstans: az elsd osztdly tanitdsa, mely természe-

tes szdmmal lett kdédolva (alapfeltétel: = 1)
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3. konstans: a mdsodik osztdly tanitdsa, mely ter-
mészetes szdmmal lett kdédolva (alapfeltételezés:

2)

3. Diszk input: a KESZIT program altal elkészitett 4,6
output altabldk
4. Kédrtya input: (l. konstans = 3 v 5 esetén)

I3 formdtummal a dimenzidszam (M)

5F16.8 formdtummal Ml=M+l szami egyiitt-—

haté. Az utolsé a konstans tag.

A program mikodése:

A program feltételezi, hogy a 4. és 6. output altabla
ki van toltve, tehdt eldbb a KESZIT programot fel kell
hivni!

Bedllitja lM-ben a dimenzidszdmot (M=20). A forris-
listdban x-gal meg vannak Jeldlve azok a sorok, amelyeken
a dimenzidszdm ndvelésekor vdltoztatni kell.

A TKONST (7) tombben tdrolja a konstansokat.

TKONST (1) = 1 esetén a 4. és 6 output altdbldkbdl
elédllitja a 2. és 3. konstanssal megegyez8 tanitdsdi osz-
tdlyokat figyelembe véve elddllitja a dontésfiiggvény
egylitthatéit, oszlopokat generdl a dontésfiiggvény segit-
ségével. A generdlt két oszlop a két osztdly 1 dimenzidra
transzformdlt pontjait tartalmazza. Ezek koz6tt az optimd-
lis elvédlaszté pont (az elvdlasztd fliggvény konstansa)
megkereséséhez felhivja visszatéréssel a HISZT és a HISHAS

programokat.
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TKONST (1) = 2 esetén a felsorolt oszlopsorszdmok
tesztpontokat jelentenek. Ezért megnézi, hogy a 25. al-
tdbldban a dontésfiiggvény egyiitthatdéi ott vannak-e. Ha
nem, akkor a TKONST (1) = 1 esetnek megfelelden eld8allit-
ja azokat és kiteszi a tdbldba. Ha igen, akkor eldallitja
minden egyes pontra a dontésfliggvény értékét, és Ossze-
hasonlitja a dontést a tanitdssal. Mindezt ki is nyom-
tatja a pont sorszdmaval egylitt, valamint a helps don-
tést %-ban.

TKONST (1) = 3 esetén a TKONST (1) = 2-nek megfeleld
tevékenységet kartydrdl beolvasott egylitthatdk alapjdn
végzi.

TKONST (1) = 4 esetén a felsorolt oszlopsorszamok
ismeretlen kategdridju pontokat jelentenek, tehdt a hoz-
zajuk tartozd vektorok tanitds koordindtdt nem tartalmaz-
hatnak. A 25. output altdbldbdl vett dontésfiiggvény segit-
ségével kiszdmolja annak értékét minden pontra, és azt a
pont sorszamaval egylitt kinyomtatja. Ha a dontésfiiggvény
nincs az altdbldban, akkor vége.

TKONST (1) = 5 eset megfelel a TKONST (1) = 4-nek,

csak a dontésfliggvény kdrtyardl olvasandd be.

Program output:

l. Eredmények listdzdsa sornyomtatdn
2. Hibalizenetek M:EO-hoz rendelt periféridra
3. Két Uj generdlt oszlop a generdlds szabdlyainak

megfeleld sorszdmmal elldtva
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4. A dontésfliggvény egylitthatdéi a 25. output
altébldban.

Hivott szubrutinok: STDISK
STEXTIT

OCIKN1
TKON2
ELFVSZ
OSZGEN
HIHAHT
Hivott programok: HISZT
HISHAS




A
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M=20 (max. dimenzid bedllitdsa)
£
SUBROUTINE OCIKNA - vektorok sorszdmqinak beolvasdsa,

konstansok beadllitdsq

KOVST

b

tesatanyaqg tananyaq

|

equutt hotdk beo(vasasq
dis2kr S|

van
adat a
du'stzkcu

dénte’s

!

M €s az eqyutthatdk
beolva sasq

SUBROUTIVE TKOMZ
dontésfigqueny ertdkenek
nyomtat ga Tesat eseten
atanltast is nyomtatig

Ve%e Y '
't )

by

\

A
SUBROUTIVE KOVSZ
@l "“, ¢ szamita'sq

Mo e
v

SUBROUTIVE ELFVS2
g g - vbr“)’ Vl\,h') eggch'd’-rchd-
szev  wmegoldasa

[

SUBROUTIVE OS2GEN '
b két oszatdly pontjaibol
ket uj vektort general

|

linearis

SUBROUTIVE HIHAH]
HIS2T e's HISHAS programok
hivasa Optmmllg e valqsato

pont w\egkerese se

T
Vyom+tatds

F.2.abrq.
disskriminancia analiz(s

Programjol‘na k blokk d\dg rq mja
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Legkozelebbi szomszéd

Feladata: adott sorszami vektorokon a legktzelebbi
szomszéd médszer végrehajtdsa; adott tananyag tesztelése
illetve dontés ismeretlen kategdridju pontokrdél. Euklide-
szi tdavolsdggal dolgozik. (Fritz: Az alakfelismerés sta-
tigztikus médszerei. MTA 1974.)

Forrasnyelv: FORTRAN

Program input:

l. Oszlopsorszamok. Kétparaméteres program, a két
ogszlopsorszammal az elsd8 és utolsd feldolgozandév
vektort kell megadni. Ezért az egy menetben fel-
dolgozanddé vektoroknak egymds utdni sorszémiaknak
kell lennie, lires vagy nem létezd oszlop ne
legyen kozben!

2. Kongtansok.

l. konstans: a tanitds hanyadik koordindta (ez
a program megengedi, hogy ez ‘ne csak az elsd
legyen)

2. konstans: az értékes jellemz8k honnan kezddd-
nek (azaz a vektor koordindtdibdl melyeket aka-
runk megtartani)

3. konstans: osztdlyok szdma

4. konstans: dimenzidszédm (tanitds nélkiil)

5. konstans: tevékenységszdm.

l: alaphalmazon teszt

2: teszthalmazon teszt
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= 3: Uj halmazon ddntés

6. konstans: a maszkvektor sorgzdma
Alapfeltételezés a konstansokra: 1,2,2. Osszelem-~

SZé.m—l, l’¢

Program output: az eredmények listdzdsa a sornyom-

tatén. Alaphalmazon és teszthalmazon teszt esetén a don-
tési matrixot és dontés esetén a sorszdmot és a dontést
nyomtatja ki.

A program miikodése:

- Ha az 5. konstans = 2, akkor a kovetkezd két osz-
lopsorszéam egy tesztanyagot hatdroz meg. Ekkor te-
hét a program még egy szdmpért vir.

- Ha az 5. konstans = 3, akkor is még egy szdmpart
Vdr a pmgram, amely most az ismeretlen osztdlyud

pontok sorszamat adja meg.

A dontési halmaz pontjainak dimenzidja l-gyel kevesebb,
mint az alaphalmazbelieké (a tanitds miatt).

Szubrutinok: STDISK

STEXIT
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CALL VEZ2 (vektorsorsadmok, konstansok )
L4 =kezdS- L2+véqso vektor sorszdma

N

v N
L= LA LL2=L2] caLL VEZ22
IHIBA ¢Smb
nulldzdsq I

K5=4 N
: L3, Lk az & halmaz
s

alaphalmazon teszt

¥

DO 4 I=zLiALL2-4

0524= I-edik vektor tanitdsq
T4V = nagy szdm

Do 2 3 =1#1,LL2

TAvi) = I-edik ds 4-edrk
vektor tdvolsaagq

<A £ TR

I

TAV = TAVL)
0$2 2 = J-edik
vektor tanitasa

<o

2 COMVTIVUE

H B4 (05214,0822) =
[H(BA (0%21,0%22)+ 4

A COMTINUE

(

[HIBA wmatrix ijmtatd sa,
] 3 -
fédtiobeli elemek Osszege,
a helyes dSntels
nqoy.d:at«‘sq %- ban

Hiije\zc's, mert Gy
halmaat vdr

sorszdmq

kexdd- €s veqsd vektorainak

teszthalmazon

u j halmazon dontes

!

teset

Y

LL4=L3
LL2=Lk

Do 40 L =L3 LY
TAV= nagy swl;l

D6 20 4=04,L2

TAVI)= l-edik €5
J-edik vektor
tdvol sa'qa

! u
TAV=TAVI]
0s22 = J-edik

vektor tanitdsa
20 chvEW ,

SorSzAM (I) €< a
dSntes (0c22) nyomtata'sq

19 CownTIMuUE

&

t.% abrq .
A legkozelebbr szomszed wodszer Programjo:nak blokk diagramja
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08Z_ PP SZAMOLAST ERTEK EREDETI 0SZT,BESOROLAS

SORSZAM 0SZTALY SZAMOLASI ERTEK
BESORNLAS SEGITSEGEVEL
132 =0,9177 1 2
133 0,8062 1 1
134. 11,6554 1 1
135 18,8582 1 1
1356 11,5583 1 1
137 10,0325 1 1
133 1,7141 1 1
139 3,6326 1 1
140 3,6800 1 1
141 1,1039 1 1
142 | 2,0810 1 1
143 4 12,0953 1 1
144 4,8539 1 1
145 0,4250 1 1
145 5,0985 1 1
147 6.0994 1 1

AZ 0SZLOPOK SZAMA: 77

A HELYES DOVTESEK ARANYA SZAZALEKBAN 92,00 -



DSZ 0P
SORSZAM

109
110

112
15

& -
1

124
128
126
127
1238
129
130
131

SZAMDLASI ERTEK

~6,8890
?2.6068
=3,.6843
“4,1070
=3.,2120
~2.,8484
=0,3424
0,8489
=-1,0044
=5,4659
'7.7606
-4,8957
9.3425
-3,3061
=2,7140
=3,0816
0,5559
1.2953
=8,6060
=3.5065
5.1077
=5,9518
=7.,40865
=1.,6961
=5,3439
=5,2539
®5.,4673
=0,4684
=2,.0945
'3.9393
*1.0593
=0,7452
=3,0670
»1.,3613
=0,7178
=6,3404
*0,0339
«3:7980
=4,.,4128
=5,5960
10,1269
=2.4799
3,4063
1.3028
5,3354
9.8439
10,3920
9, 4467
24,8470
3.3539
b,3438
3,2266
1:5311
3,7583
4,7561
4,7729
4,0669
1.8343
3,9598
0,7063

EREDETI
OSZTALY

BESOROLAS

o ek ek e e e ek ek e e e b b ek e A ek ek b s s YNV UV UM O VOOV I VIO NN VN M e T O

0827 ,BESOROLAS
SZAMOLASI ERTEK
SEGITSEGEVEL

e bk el e el e b el ek e e e h ek ek e e A Y PNV NVNNVNNNNS, = NN =YV VNN NN,NONNON NN



19685, 08, 08, PANCREATITIS

KET OSZTALY SZETVALASZTASA LINEARIS DISZKRIMINANCIA FUGGVENNYEL
KONSTANSOK: 2 1 2
ADOTT LINEARTIS DISZKRIMINANCIA FUGGVENY TESZTELESE

AZ EGYUTTHATIK SZ MA: 14

A LINEARIS DISZKRIMINANCIA FUGGVENY EGYUTTHATOI:

0,0076 0.0000 =0,0083 0,0102 0,0517
=0,0004 ~ 0,0066 =0.0879 0,0004 0.0158
=0,0243 0.0228 : 0.0002 ~0,0034

A DISZKRIMINANCIA FGV, KONSTANSA: _ . =B,2466

WA A DISZKRIMINANCIA FGV, EGY OSZLOPON VETT ERTEKE ¥=0,0 AKKOR 1 OSZTALYHOZ,

HA & 0.0 AKKOR 2 NSZTALYHOZ SOROLJUK



A VALTOZOK HATASA AZ ALTALANOSITOTT TAVOLSAG KIALAKITASARA:

OSSZES HATAS:

0,0572184570
=0,2800223900
=0, 1925526500

DIREKT HATAS:
0,0155396640
542912953500
D.2112469100

0,0426581140
0,0185662440
0.,1022253600

0,0046430790
0.0136141360
0,03755838480

=0).2459811600
=0,3B804976300

0.3052577900

1.2591398000
0.5528486300
0.2204253600

0.0500319000
0.8241764400
-0.0232979120

0.0194281440
1.3708151000
0.0058013946

0,2833957600
0,4389217500

0,2728180300
1,7873823000



1983, 05, 05, ' PANCREATITIS

KET MISZTOGRAM 0SSZEMWASONLITASA, OSZLOPSORSZAMOK: 201 202

1,08ZTALY GYAKORISAGA: ]
¢ - S 2 3 2 3 0 8 - 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0

2,08ZTALY GYAKORISAGA:
0 0 0 0 0 0 0 0 0 1 3 1 i 3 - g 3 5 1 2 2 2 0 0 0
0 i

AZ OPTIMALIS ELVALASZTO PONT 8,247 ;
EBBEN AZ ESETBEN A HELYES DONTES VALOSZINUSEGE 93,33%

0SSZ ELEMSZAM 1,0S8ZTALY: 30 2,08ZTALY: 30 EGYUTT: 60
HIBAS DONTES 1,0SZTALY: 0 2,082TALY: 4 EGYUTT: 4

A LINEARIS DISZKRIMINANCIA FUGGVENY EGYUTTHATOI:

0,0076010638 040000362779 =).00B3384785 0.0101563990 0.0516631370
=0,0004235876 0,0065884221 ~0,0579397260 0.0004056420 0.0158190490
=0,0242641220 0,0227745050 0.000224AK349 =0,0034462345

A DISZKRIMINANCIA FGV, KONSTANSA: -B,2466472000

HA A DISZKRIMINANCIA FGY, EGY OSZLOPON VETT ERTEKE ¥=0.0 AKKOR 1 0SZTALYHOZ,
HA & 0.0 AKKOR 2 NDSZTALYHOZ SODROLJUK

A SZORASOK BECSLESEI:

43,5543890000 4999,6876000000 358,1965600000 36.5306370000 26,9114670000
3391.5032000000 47.1405920000 34,.1592430000 7682.9493000000 224,9624100000
5044210830000 22,6509270000 5563.2890000000 58.8305350000
A MAHALANQBIS TAVOLSAG = 7,085373 FELBONTASA:
OSSZES HATAS: ¢
D.4054141000 0,3022486600 =1.7028684000 0,3544947000 2.0079649000
=1,9840634000 041315487600 =2.6959676000 5.8395975000 3,1099242000
~1,35650161000 047243050900 2.1628654000 =0.1650744000
DIREKT HATAS:
0.1101043200 0.0328979560 8.9214820000 0,1376556700 1,9330180000
2.0639360000 0,0964612370 3,9171391000 9,7127378000 12,6642770000

1.4957533000 0.2661151900 1.5617961000 0.0411050550



1983,.08,.08, PANCREATITIS

HISZTOGRAM KESZITES A 201=DIK O0SZLDPROL

GYAK REL (%)

0,408 0 0,00
1,192 0 0,00
igas 0 0,00
. 0 0,00
3,543 0 0,00
4,327 0 0,00
oo 0 0,00
ke 0 0,00
AR 0 0,00
XXX
7.463 | : ok
XXXX XX XXX X
8,247 . o
XXX
XXX
T ‘ 1 3,33
XX XX XX XX XX ,
10,598 3 10,00
11,382 0 0,00
| XXKXKXXXXXX XXX XXX
v 5 16,67
XXXX XX XXX X
12,950 3 10,00
XXXXXKXX XXX XXX XXX
13,734 5 16,67
XXX
14,518 1 3,33
XX XX XXX
15,302 2 6,67
XXXX XXX
164085 2 6,67
, XXXX XXX
16,869 2 6,67
17,653 0 0,00
i 0 0,00
19,221 0 0,00
sitie 0 0,00

XXX
1 3.33



196835, 05, 08,

‘HISZTOGRAM KESZITES A

0.408

1.192

1,976
2.759
3,543
4,327
Se111
5,895
64679
7.463
8,247
9.031
9,814
10,598
11.382
12,166
12,950
13,734
14,518
15,302
16,085
16,869
17,653
18,437
19,221

20,005

XXXX XX XX XX

XX XX XXX
KXXXXXXX XX
XX KX XXX

XXXXXXXXXX

XXEXXXXXXXXXXXXXXXXXXXX XXX X
XXXX XXX

KXAXXXXXKXXXXXXXXX XX XXX

202=DIK 0SZLOPROL

PANCREATITIS

GYAK

W N W N o

~N N ® O

REL (%)
0,00

10,00



1983, 05, 08,

KET OSZTALY SZETVALASZTASA LINEARIS DISZKRIMINANCIA FUGGVENNYEL

KONSTANSOKE 1 1 2

F=PRO3A
SZABADSAGI FDOKOK: 14, 45 F=ERTEK: 5.8899

P=ERTEKS 0,000
A HI3AS STDISK TEV, SZAMA220 A HIBASZAM: 6

AZ EGYUTTHATOK SZAMA: 14

PANCREATITIS



1983,05,65, PANCREATITIS

SULYPONT MODSZER

1=0IK ES 2=DIK OSZTALYT ELVALASZTO HIPERSIK EGYENLETE?: =435294740,00000 +
53.337%%¢ 1 ¥ 8331 ,508xx( 2) 209,011%X( 3) 34.904xX( 4) 38,867*xXL S) 4683,961%X( 6)
19,967%xC 70 46,531%xX( 8) 14395,958%X( 9) 196 _59U%xX(10) 56,257%X(11) 31,803%xX(12)
9628,3p1%xX(13) 47,900%X(14)

1=DIK OSZTALY SULYPONTJA

121,92661 12920,53400 632,23314 65,.23924 106,66656 9281,38670
123,83330 95.10556 21967,54800 465,31737 102,83256 79,.65328
16967,44500 219,10000

2=DIK OSZTALY SULYPONTJA

68,358992 . 4589,02720 423,22242 30,33559 67,79994 4597,42610
103,86664 48,57491 7571,.,58570 268,72337 46,57593 47,.84992
7339,14440 171,19998

A TESZTELES 60=DB EMBEREN TORTENT, HELYES DONTESEK SZAMA: $3 ( 88,00 % )
24 b
1 29

1=DIK OSZTALY SULYPONTJA

121,92661 12920,53400 632,23314 65.23924 106,66656 9281,38670
123,83330 95,10556 21967,54800 465,31737 102,83256 79,65328
15967,44500 219,10000

2=DIK OSZTALY SULYPONTJA

68,38992 4589,02720 423,22242 30,33559 67,.79994 4597,42610
103,85664 48,57491 7571,58570 268,72337 46,57593 47,.84992
7339,14440 171,19998

A TESZTELES 77=DB EMBEREN TORTENT, HELYES DONTESEK SZAMA: 66 ( 85,00 % )
35 {
9 31



201187, 70212006,
kkkkkkxXk%x325805000,
7489525, 15630230,
401825, 244303,
201072, 42737091,
Kkkkkkxkkkx1151753420,
1505999,
38, :
205989, 11546016,
104422, 115058,
202463738, 66377521,
6932063, khkkkkkAKK K
10729766, 558919,
10201597®, 2195877,
52582, 52376,
176912,
16950@.
893492468,
4114486,
108628,
KhkAkkRKkKKX
4107725,
127943,
87714,
KkKkKKKKKKR

1014168,

10664393,
15593500,
147322,
14723849,
72751617,
642814,
59813,
12339002,
405697104,

147668,

19991970,

BI68BU47 knkxkxkixx 43703538,

6558865,
80934,

120149,

1017084,
45585,
17040110,

T70U633 xkxkkakixx 25693447,

15860%0, 214101, ecBi06, 49108690, 0eEYDT 3,
76934701, 52250594 , *anxkxaxxxx149949130,
1107235,231959280, 3053933,
53995597, 703644,
518320,
1123694, 66711, 158975, 9377956, 211007,
15637690, 344966,
5319998, 9507205,773731580, 16293091,
26329583, - :
998178, 62262237, 1318033, 770021,.109433060,
5222460, 106434, 46442, B425757, 410341,
202518, 111572, 15691888, 625427, 95725,
6660245 , xxxkxxkxkx 39550608, 7791034,
26921326, 840827, 168188, 139221, 247R9RRA,
503070, 72998, 81420, 11117077, 243405
13153708, 11359286, xxxxnxaknkx 43654782,

457941, 65108049, 1404252,
12318820, 277325,
232897,

636517,

723075,
8074288,
723794,
8079528,
336068,



ZDISGEN/BI

LUNDH

ZOISGEN/PT

PIRIOIG R AMNEY T-A- PR A Z5ASY

1 DTSXRI; GC1,1) K3 P1
2 KESZIT: S K2 PT
3 SULFALT $& Ki PT
4 NN S K& PR
5 ZEQD
%EOD
%XHIVBEN/
1 ::830505PANCREATITIS,200;
2 S KESZIT(1,FOR2,60C2,15)"
3 3 SULYA(1,FOR2,60C1; 71,FOR72,147)"
4 G5 DISKRI(13 FOR1,60C1,1,2; 13 FOR71,147C2,1,2)"
5 8. NNC1,60C1,2,2,7,1,05 1,60C1,2,2,7,2,03 71,147)
6. ¥EDD
 DSSZEGEK ¢
Sg. 3658, 387616, 18967, 1957, 3200, 278442, 3715, 2853, 659026,
1396, 3085, 2390, 509023, 6573, : .
3%, g058. 137e7Y, 12697, 910, 2038, 137923 3116, 1457, 227148,
8062, 1397, 1435, 220174, 5136,
NEBYZETEK

3, 491662, kxrxxkrxxkx 14077002, 180111,
7489525, 401825, 201072 ,kxxkxxnkxkx 1505999,

38, 205989,902463730, 10729766, 52582,

4107725, 127943, B7714 *xxxxnxkxkx 1014168,

SZORZATOK

38,
491662, 52106702, 2386564, 249188, 391891,
390252, 292921, 62775183, B04263,
KAkAkRKKXAAX2343635640, 30812192, 41687965, xxxanxxaxkx 51041502, 41251522:**********191201210. 46112913,
31105775  xxxxkkxxxx 88211328, _ ,
1“07700@. 1438132, 2047926,172666900, 2308165,
31125325@#, 4108487,
180111, 212205, 19738609, 260170, 201624,
444622,
351743, 30788338, 397551, 303653, 70240992,
KXKRKAKAKX 356398816, 27107632 . xxkkxxkx*xx128881630,
501133, 35%695, 83463871, 1726349, 397989,

351703 kkkkkkkrkk 501133, B011B7 hkkkkkkhkk

169500,893492460,  4114de, 108628 , kkkkkkkkkk

34722704,  44B2AB. 379928, 88525903, 1732969,

1878281 ,443378440, 10125339, 2236372, 1505509,
49268705, 1086990, 264180, 155017, 34250879,
1503250, 333545, 262300, 55837214, 702973,

30243742, 23203534 xxxxkxxxxx 63030177,
291934, 64302850, B47985,



%J03
/ 0/ 0 7 0 /744

%ZME 184=ES MSZ=QT AZ A=RA
%C/MTAS/BI/3N/A
MTAS 00¢1
6CBs HCBA HELA
A=D33
XAS/M:EQ,TsTY, AN
%AS/M3EI,T2CR, AN
%ME IT2KV,A3

AME





