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1. BEVEZETÉS

-

Egy rugóra függesztett m tömegű golyó súrló­

dásmentes közegben való mozgását az
••V

f

I /• •í x + f (x) * о
.

egyenlet Írja le. Az f(x) rugóerő a kitéréssel ellen­

tétes irányú (xf(x^>0 ha x^ 0) , de általában 

nem-lineáris. Előfordul, hogy a rugalmassági együtt­

ható időben változik, A mozgásegyenlet ekkor:
i .

(El) x + q (ti f Cx) = 0 ,
V

J ?cahol q (t) > 0 ,

Ha az impulzus az időtől explicit módon is függ, 

akkor a pont az

(E2) (p(t)x) + q(t]f(x)aO (p(t) > o) ,

■ r>< .ha még külső erő is hat, акког az

í
(e2*) (p(t)x) •+ q(t)f(x)» e(t,x,x)

■: \

egyenlet szerint mozog. Ilyen alakú a változó fonal—
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hosszúságú matematikai inga mozgásegyenlete is:

(шФ) ’+ ghtíeinf - о >

melyben £(t) az inga pillanatnyi hossza, g a 

nehézségi gyorsulás, ^f(t) pedig a függőlegestől való 

eltérés szöge.

A valóságban azonban súrlódás mindig hat a moz­

gó testre. Ha az elsőként tekintett golyó valamilyen 

inhomogén surlódó köziben rezeg, akkor ezt az

■

у
f

ií

• • • ♦
X + g(t ,x,x)x + f (x) = 0(S3)

V.
egyenlet, ha pedig külső erő is hat, akkor az

• • # •
g(t,x,x)x + f(x)=* e(t,x,x)(нз ’) • •

x +

*)* o)W
egyenlet szerint teszi (g(t,x,x

A fenti egyenletek mind speciális esetei az .
-<

* •У a i. ■

'

(p(t) x) + g(t, x,x) x + q (t) f (x) -0(h)
4

?■

illetve az
* ,

*
Сй*) (p(t)x) + g(t,x,x)x + q(t)f(x)= e (t, x, x)

V .

differenciálegyenleteknek. hoben a dolgozatban azznl
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az igen gazdag irodalommal rendelkező problémával 

foglalkozunk, hogy az (e) vagy (e ) egyenlet szerint 

mozgó test milyen körülmények között közeledik minden 

határon túl az x=*0 egyensúlyi helyzetéhez, miközben 

a t idő a végtelenbe tart, vagyis, milyen feltéte­

lek mellett teljesül minden megoldásra a limt_^^x tí3 =0 

reláció.
■h v
/ /

- .
Az első eredmények a lineáris . S

*
• •

(Е11Л q(t) x я 0X + I

i

egyenletre vonatkoztak, ezért ebben a speciális eset­

ben tekintsük át röviden, mikor várható a lim, x (t) =0 

reláció teljesülése, négyén x(t) megoldás, az

A

■í t

/
21 .2

S(t) - x(t) + x(t)
qCt)

energiafüggvény deriváltja .%

I.
q(t) .2 ' é:

E (t) = — x (t) , »
i q (t)

q (t) ^ 0 *amelyről leolvasható, hogy számunkra csak a 

eset a kedvező ( ugyanis általában csak étkor tudjuk

(t) megoldások korlátosságát biztosítani [o,»-»)-n).

U
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limWco4(t)
szükségéé az összes megoldás О-hoz tartásához. De

Az is nyilvánvaló, hogy a feltétel= OO

V»

nem elegendő, mint ahogyan azt De Kleine [8] példája 

is mutatja, áőt 1966-ban Willett [25] bebizonyította,
r

" nogy minden pozitiv nem-csökkenő b (t) függvényhez 

létezik olyan q(t) , hogy (SÍ l)q (z) ^ b(t) es az

egyenletnek van О-hoz nem tartó megoldása, 

iviilloux 1949-ben megmutatta [12J , hogy a
:

q (t^ = с» feltétel, ha minden megoldásra nem is,

x (t) = 0 telj e-

lim,t-*>
de legalább egyre biztosítja lim^ 

sülését. Kzt a tételt a 2.4 fejezetben általánosítjuk .

az (á) egyenletre.

V/illett tételéből sejthető, hogy a megoldások 

0-hoz tartása szempontjából nem a q(ti növekedése 

sebességének, hanem szabályosságának van jelentősége.

A hires Armellini-Sansone-Tonelli tételben ez a nzaba­

log q (t) "reguláris növekedése" [23] .

[lbj 1965-ben bebizonyította, hogy 

úgy tart monoton nőve a végtelenbe, hogy köbben

>

’V-
iЫ

i

‘

:

lyosság a

0 (t)h'iLazer

■ii

t

o."1) " * [ ) -en, akkor is biz-[o,<~korlátos
*v‘

0

tositott (Eli) minden megoldására x (t) = 0 !lim
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teljesülése.

19ó6-ban ivic Shane gyengítette a reguláris növekedés 

feltételét [le] .
A nem-lineáris (El) ill. (В2] egyenletek vizsgála­

tánál a lineáris esetben bevált módszerek többségét 

nem lehetett alkalmazni. Az uj módszerek segítségével 

számos eredmény született, melyek sokszor a lineáris 

egyenletekre is többet mondtak a már ismerteknél (fWeir, 

Willett és Wong [l9,26] , Burton és Írimmer [5], Hat­

vani [14], Scott [20,2l] ) . Ezen egyenleteket a 3.4 

fejezetben tárgyaljuk.

A g(t,x,x)x fékezés a vizsgálatokban az 50-es 

években jelenik meg. Az

i

í

í

.

s
f

■ t

2.2
E(t) = x (t) + x (t)

»

energia deriváltja az ' f

(E3L) X + g(t)x + X a 0 ( :(t)^ 0 )
f

*
egyenlet megoldásai mentén ; .

.2 :
E(t)» -2g(t) X (t)

г-'о , akkorAzonnal látható, hogy ha g.< DO*

egy megoldása se tart ü-hoz [3]. Az (Eli) egyenletnéz

feltétel
‘Г

>0
hasonlóan igaz azonban, hogy az g =00
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csupán О-hoz tartó megoldás létezését biztosítja 

(Hartman [12]), Most tehát a

kell eléggé szabályosan növekedni. Ha a növekedés 

túl gyors,egy uj jelenséggel találkozunk. Ükkor lé­

tezhet olyan megoldás, amely nem jut el az x=0 egyen­

súlyi helyzetig. ‘Például az

r( t) int egrál j ának

*
%■

\

u -\
/;

(t +1 + 2\ •
- I X + X = O
t 1

• • >
X +

f,

X (t) = 1 + — f ü 3v c ny m e 3 oldása.egyenletnek az %t
özek szerint minden megoldás csak akkor tarthat O-hoz, 

g(t) elegendően, de nem túlságosan gyorsan nevek-

»

ha
i

szik.
i, 19őO-ban I.J. Levin ез о.A. ílchel [17J bebizonyí­

tották, hogy (КЗ!) minden megoldására

(x(t) ,x(t)) =(0,0) teljesül,ha

■

"

4
■ i

"/■ .*lim >

rД ...
0 < ci ^ g(t) ^ c2

Hmith aláobi két eredménye (l96l, £22]) lénye-
l

gében egészen a mai napig .nem túlhaladott,és jól jel- 
> *

lemzi a vizsgálatok korlátáit. лЪЬап a két elkülönülő 

esetben tudta biztosítani a megoldások О-hoz tartás-t, 

g(t) mindig pozitiv konstans fölött, illetve 

alatt marad. Nevezetesen bebizonyitótta, hogy ha

*h«A.í.
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vagy
(

О

О < a (t) ^ g(t) - , a (t) ^[ü,*»")-1) en és а = о- ;

■ vagy

iáг) С<ср ^ gtt) ^ b(t) , b (t) f [o,°°)-en és

О
// :akxor az (üJ3L) egyenlet triviális megoldása globálisan 

aszimptotikusan stabilis.

R.J. Hallieu és K. Peiffer 1977-ben [з] általá­

nosították bmith eredményeit a nem-lineáris (ЕЗ) 

egyenletre. Hatvani L. [l3] a nagy fékezés esetén

g(t)^ c2 feltételt az

g(t)^P(x,x)x + fCx)= О

t ...
!

^ ■

gyengítette a ...

• •x +
í ■

..
I

egyenletre nyert eredményében, helyettesitve a

t +<f

S
t

cT>0 számra )g >0lim
t— OO

•>
■■■> ■'

: .

feltétellel, melyet az "integrálisán" konstansnál 

nagyobb függvények elégítenek ki (pl.

A 3.3 fejezetben olyan tételt bizonyltunk, amely a 

homogén egyenletek esetén nem kivárja meg a nagy ill. 

a kis csillapítás megkülönböztetését, opeciálisan

2 €
sin t ,, 1, t) .

• • r

4
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nyerjük, hogy az (j33l) egyenlet minden megoldására 

(x (t) ,x(.t)) = (0,0) teljesül, ha a g (t) csil­

lapítási együttható "integrálisán" egy pozitív nem- 

-növő a(t) és egy nem-csökkenő b(t) függvény között

1/b =e° ■ Megjegyezzük,

limt

<t

ío fváltozik, melyekre a = *
0

;hogy az inhomogén egyenletek esetén a "nagy" és "kis" 

fékezés megkülönböztetése továbbra is szükséges (3.2 

fej ezet ) .

a dolgozatban vizsgált egyenleteket jelölésükkel 

együtt az 1. függelékben felsoroljuk.

v,
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2. DEFINÍCIÓK, ALAPLEMMÁK «-

4

2.1. Jelölések, általános -feltételek, definíciók

A dolgozatban R a valós számok, R a nem-negativ
2valós szamok halmazát jelöli és R RxR . Valamely 

a£R esetén [a] + a szám pozitiv, [a]~ a szám nega-

I

1l

tiv része, vagyis [a]+= max(o,a), [a] = max(ü,-a) .

ü*[a,b)-vel jelöljük az [a,b)-n értelmezett i-szer 

folytonosan differenciálható valós értékű függvények
»

v

halmazát.

az (e) és (E’) egyenletekben szereplő függvények 

alábbi tulajdonságai közül bizonyosak teljesülését 

tételeink feltételezik (ezeket a tulajdonságokat a 2. 

függelékben is összefoglaljuk) :

l

s', Jt
>■

P.q € C1[t0,o-») ; p(t),q(t)>0
<;

(I) ha t >t0 ’ v;

{ s. ■

*(il) f(x) € c(-»»,oe) ; xf(x)>ü (x á C) ;

f >:
(

чк

).(xF(x):= 2 f, OO oo

0
►

V 1<•
(ill) U * a(t)lp(x,y) ^ g(t,x,/2Y y)* b(t)Y(x,y) ,

P \

■<.

■

*- ;-
■
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a,b,f,Yahol nem-negativ folytonos függ- 

Ф(х,у) 0 ha у t 0 ;vények és

|e(t,x,y)| = гх(t) + r2(t} IУ

- 1 í r1(r2Éc[t0,oo); r1(t) ,r2(t) 5*

(ív)

l0 ar

£ éoo 2! r2 íqГ1(v) /_ < oo *
Jr

< OO ;I il ы',р'о*оы 4

i

.

i a (t) (Pq)
(Vx) (t) dt <: oo f2k +

P Ct) pq í •

*o '(■

V

iv +■

Фи,у) .ahol к * inf
x,yé R

*

*

Azt mondjuk,hogy az (s) egyenlet triviális magold ésa

(i) stabilis, ha bármely t -hoz és positiv £ szár­

hoz Van olyan pozitiv cT(£,t^) , hogy ha 

akkor Ix Ct)I + I x (t)| <£ teljesül, h csak t^t^ ;

(ii) stabilis x-ben, ha bármely t. -hoz és pozitiv £ 

számhoz van olyan pozitiv cP(£,f^ ) , hogy na

lx(tL)| + Ix(t0)|<<T, akkor

(iii) globálisan aszimptotikusan stabilis (r.a.o.) , 

ha stabilis, és minden x(t) megoldásra 

limt

. -

|x(tc)|+ |x(t^|<<T I fi
"-.'í

‘
' V*

(x(t)(< £ hacsak t >*t L ’

(x(t) ,x(t)) = (0,C) »oo

r?

»4 fr u
f
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(iv) aszimptotikusan stabil i3 

ha stabilis x-ben és minden x(t) megoldásra

o. 3c(t) * 0.

Ljapunov függvényként az

fi

1 im «t
v

ьP (t) .2
Sít) - x (t) + F (x (t)) i

q ít) !

=2Í>ü

■

energiafüggvényt használjuk, ahol F(x): f . ■ v

л megoldások viselkedésére az S(t) viselkedéséből 

következtetünk. A (ll) feltétel miatt az x (+Л meg­

oldás korlátossága azonnal adódik. Attraktivitási té­

teleinkben azt fogjuk bebizonyítani, hogy ha xlt) a^, 

(S ) megoldása, akkor lim^. 

feltétel alapján kapjuk, hogy

i

V

• »
r. ■E (t) = 0 . Ebből a (ll)

oe

P (t) .2 X:

x (t) = lim xCt) * 0 .lira
q(t)t to-o

t.

*

F (x) <oo , telje-Iviégj,egyezzük, hogy a lim^ 

sülne, akkor állításaink csak a korlátos megöliásódra

4. ./>o *
f

£ s

vonat koznának.

í*.

4- •• к

%
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2.2. A megoldások korlátossága, néhány tulajdonsága

Az aszimptotikus viselkedés vizsgálatának csak

olyan megoldások esetén van értelme, melyek léteznek

■) intervallumon. Attraktivitási téte-
*
.

valamely [t

leink általában minden megoldásra vonatkoznak, ezért 

szükségünk van egy az összes megoldás valamely [t

0» t: ■ -

tt
í

í
■)-en0*:

való létezését biztositó lemmára.
V*

2.1. LJ3ÍMA. Tegyük fel, hogy az (E’) egyenletben 

szereplő függvények rendelkeznek az (i) - (él) tu- 

la.j donságokkal. Ekkor az (e’) egyenlet minden meg-

*

í

oldása létezik, az S(t) függvény korlátos változásu 

[t, ,o°) -en. Emiatt létezik a. lim, 3 (t) =* Д. véges 

határérték, az egyenlet minden x(t) megoldása és a 

x^(t) függvény Korlát ős ik [t ( ,©-«») -en,P Ш *2 *•-*q Ct j у
•

Bizonyítás. Legyen x (t) az (B.1) egyenlet

létezik a

intervallumon. Az E(t^ deriváltjára az alábbi össze­

függés nyerhető:

megoldása. Tegyük fel, hogy x(t)
! ■

■ ' -
?

' ■ ' ' '

■

g(t ,x (t) ,x (t)) . (pq)x b) - > I ^^2, \— (t) X (t) +(2.l) É(t) = -2. v ;

q (t^ q.

\V •« S

t ,
* : : /W.v-

ÜTr . /M.

r
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(pq) *a (t) P Ct) . 2• N 1 •
2e (t ,x (t) ,x Ct)) -----xft):é (t) x (t) +2k

q (t) p(t) pq q U)

£
2 . 1/P(t)

(ti ----- x (t) + 1
\ q ( t)

wíirl r •22(t) +2 4±7?. 1/2(pq),(pq) IP

! s ■7' a (t) (pq) ’ 

P (t)
Г^—(t) + г2 (t)X(t) fí(t)2 к + 2+ 1/2(рчР (pq)pq

■

i г

М“м)X t♦

?. , •'
*í .

*P(x (t) ,x (t)) Aahol k= inf
[t0.tl)

Az általánosított Bellman lemma segítségével 

(halanay [ll], 1.3 fejezet, 1.6 lemma) kapjuk, hogy

x(t),x(t) is korlátos 

ha t^Coo, ami lehetetlen.

A pozitív rész definícióját felhasználva, mivel 

(2.1) jobboldala nem negativ, kapjuk:

■ :

‘

*"'■■■ '

E (t) és igy -en Щ
■ í /■ ;■

.'a-

Ezért szükségképpen tj = o*> .
л

. * . - v

a (t) (pq) # v 

p (t)

>r
[Étt)] sf 1(t) E (t) +2 7 (t) + r2k 1/2i(pq) ; :fpq

t >

.1* ■
í y\ ■

*
V

i

?
. и• I к• . .
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tt) - (t) U(t)+ 1)2 i ..+ ;172 k-tpq) p

fitt) >0 miatt pedig
i

t t
f [s(tr)] \ fü(f fdt ^ 3 (t ,Л + áV0
t t /0 0 //

í

adódik. Az (v) és (Vl) feltételek biztosítják a fen-

tiek alapján, hogy E(t) korlátos változásu jt^,©-»J -en. 

HZ x(t) és
p tt) *2

x tt) függvények korlátosságaq tt)
‘

í tx)lim alapján nyilvánvaló.= 0-0
X Л,

К

lihegj egy zés, ha az ett,x,y) függvény (I \f) 

lésében ^31, akkor a tvi) és

oecs- *

4 ' •< .*
■

♦

*OP
V

f1 2
< PO

V i,

t 0 r i •

.*
V•* feltételek helyett az

í ж .
■i

í a ti) (pq) ’
2k----- + ------

ptt) pq

(0 Ф(х,у) )r;* (ct> -2 ic= inf .d t<cx>
Р tt). x, у € H

t:•5 0
«

feltételt elegendő megkövetelni.
j

f
> .í

■

• ‘‘

л-
Vvbг . »y.

v * »
■ ■ h-.
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Az (e) és (S’) egyenletek megoldásainak jelvál­

tásuk, monotonitás! tulajdonságaik szerinti osztályo­

zása nagymértékben megkönnyíti aszimptotikus visel­

kedésük vizsgálatát. Ennek lehetőségét teremti meg 

az alábbi három lemma.
- •

2.2. LEMMA. Teljesülnek az (i) - (ill) feltételek. 

Legyen x(t) a_homogén (e) egyenlet nem-triviális 

megoldása. Ha t ^, t p az x(t) szomszédos zéróhelyeij 

akkor létezik olyan t G (t^,t^) >ogy x (t)= 0 .

В i z о n у t á s. Helyettesítsünk az (fí) 

egyenletbe t helyére t-^ -et,

p (t x (t ^ + q Ct ^ f (x (t ^) =0

..
íi '
. л

• >, •
f-

-

1

t2 -t:

A

(i - 1,2) . !
V ■

x(t) szomszédos zérohely^i és : VMivel t-ptg az

f(xCt^) »0 (i * 1,2) , kapjuk hogy sign(x (t-j)) Ф 

sign(x(t2)) . Szükségképpen sign(x(t-j)) ф sign (> (t ^)) •

- Щ
‘ ' ft

Г -4 Ezek után T, az x(t) folytonossága miatt létezik.!

?
2.3. LEMMA. Teljesülnek az (l)- (Vl) feltételek^

ri W
*

Л ■ * •
i

=* 0 .és tegyük fel,_hop;y lim.t-

Legyen x (t) az [&*) sgy£nl£i_ülyaű_m3gűld£SR^_Di5.1yre

az i (t) elegendően
* .

E (t) >0 . Ha tl»t2limt (X>
1

í•; v

* ■ a • ►
4



ItaJL
Ф- * #

*
i

л

- 16 -
•í

*
c

;»*
nagy szomszédos zéróhelyei, akkor létezik olyan 

t6(t1(t?) , hogy x(t)
». '

»- О .
i

A 2.2 Lemma szerint minden megoldás, a 2.3 Lemma 

szerint minden О-hoz nem tartó megoldás vagy ősz­

en, vagy t elég nagy értékeire mo-

-■

)-cillál [t OO0’
■ ''

/noton.
f

Bizonyít ás. Legyen x (t} az (E*) egyen- 

E(t) > 0 tulajdonságú megoldása. Le-
OO

az x(t) olyan szomszédos zéróhelyei,

• . -tlet lim^ 

gyenek t1,t2 

hogy ha t-^ , akkor

.
»

Гг IT) 1 •; l
4 .

< f (x
q (T>

teljesüljön. Ha ilyen t-^tp nem létezik, akitor kész 

a bizonyítás. Az egyenletbe t^-t (i = 1,2) helyet­

tesítve kapjuk:

-r^tj) < P CtjJ x (tj + q (t^ f (x (íj)) -

eC^i.xCtJ ,x(t±)) < rx(tJ .

*

! *

i

i
V

0
.K

*

Л
sign(x (t^) i 

sign(x(t2^j , amiből sign(x(t-,^ / sign(x(t2)) ős

t-, ,t0 megválasztásából adódik, hogy
.ii:

i:

t létezése következik.
i

л чr.

i

r * .
■ \

Aí
■
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2.4. LEMMA. Teljesülnek az (i) - (vi) feltételek.

'Legyen x (t) az (E’) egyenlet olyan megoldóRaf melff-

rs lira. E(t) »/V > 0 létezik.——

Ekkor :

a) ha x(t) -nek végtelen sok zéróhelye létezik bár­

mely [tpO°)-en ( t^ * t^) , akkor oszcillál is

rt0,o^) -en;
b) ha ft^,t^J olyan

t^ (n— ti+1

-

!
!

intervallurasorozat, hogy
>*n » ^n)“ Х(*п)= 0 

minden n-re |x(t)| > 0 ft^t^

'
90

. . *'

1 ~n» akkor
• •

Ю -4Ш- 0 éslim x
n Oö

♦

p i2 (tiJ TP1 V ' = о ;liraJ К

• t— o- , t € LJ [t1
n=l

c) ha |x(t)| >0 valamely [t

2t
n’^n

í
fi

) intervallumon ■

OO1»
1/2- C« P (x «Я., akkor limtя О" O-о

) У <
•i

...
A feltételek még пега biztosítják a megoldások 

2.3 Lemraában leirt tulajdonságát. Vizsgálatainkban 

azonban gyakran elegendő lesz erre a leraraára hivat- 

- koznunk.

t

. ■

■

*

f

t,
■i -■

i. I
Y

4
r

*
; .у .

■V
,т- ■f.ia

'■« >

íw * ;
’ 1 - •
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Bizonyítás, a) Legyen (tn\ az x (t) zé­

róhelyeinek olyan sorozata, hogy limn

x2(tn) = X, amiből adódik, hogy

t »<>•о- n
* (ln) • 

— q pjEkkor lirnn

*2 (tn) > о
j eltartó.

b) Az állitás azonnal adódik abból, hogy ha ^ 

az x(t) zéróhelyeinek egy sorozata (lini t
' jl ^ о® П

limn u ^ í1 C^c C"t ) «Я, továbbá ha t^ 

az x(t) olyan szomszédos zéróhelyei, hogy [t\t2] -n

, ha n elég nagy, vagyis x (t) nem lehet

яа~) »

t2ésakkor

x (t) jeltartó, akkor P(x(t1)) ^ F(x(t)) ^ F(x(t2))
p(x(t1)) ^ P(x(t)) ^ F(x(t2)) ha t éjt^t2] .

c) Ha xCt) -nek van zéróhelye bármely ttp,°°) -en 

(tg-ti) , akkor az állitás b)-ből következik. Ha 

nincs, akkor x(t) monoton az elég nagy t értékekre, 

ezért létezik a lim^ m r_ F (x Ct)1 “/^ határérték.

Ha jjl < Я f akkor létezik olyan Б" >0 , hogy

vagy

/2> e(a[ (t) ha t elég nagy. De integrálás

után ellentmondásba kerülünk x (t) korlátosságával. 

A lemmaf teljesen bebizonyítottuk.

/V *
i*T-i L I* .
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Vizsgálatainkban ki fogjuk használni a megoldások 

oszcillációs viselkedésének szabályosságát. Ezért most 

a 0 -hoz nem tartó oszcilláló megoldások zéró- illetve 

szélsőérték-helyeinek elhelyezkedésére vonatkozóan bi­

zonyltunk be néhány állitást.

2.5. LEJúMA. Tegyük félj hegy az ÍE») egyenlet ren- 

deltcezik az (l) - (VI) tulajdonságokkal, hegyen x (t)

az (e’J egyenlet olyan oszcilláló megoldása, melyre

0 ^ < £2 < A . Ekkor
t2>ti , F(xCt]))*-€1 ,

^ E (t) =Я>0 .limt

létezik <f? > 0 , hogy ha

E (x (t2^)™ t2 » . |x(t)|>Ü rt-| .t21-nt akkor

t2
1

P
*1

1/2C(s)Az állításból azonnal látszik, hogy ha

О-hoz nem tartó oszcilláló megoldás,
lemmadeli tulajdonságú [t^,t2l

í: (sr-.
kapunk alsó becslést.

aktcor nincs

mert csak véges sok 

intervallum létezik. Ha pedig 

akkor a zéróhelyek távolságára

U-.
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Speciálisan adódik, hogy az ilyon megoldások zéró­

helyei véges T pontban nem torlódhatnak, ugyanis 

akkor

T 1

í (f ^ lim 
1 n*O* > n = OO

oo

t0

lenne, ami ellentmond (i) -nek.

В i z о n у it ás. Nyilván

p(t) .2я-г2< x(t)» В Ы - F(xCt)) - К (t-^^t^t^)

E(t) . feltehetjük, hogy x(t)>0ahol К = sup
D*0* °°)

n. Integrálással a

■!

[ti,t2]-
t2

x(tl) -fT ( ff* x(t2) -

*1

(T-^ ásegyenlőtlenséghez jutunk. Most már

létezése azonnal adódik fCx) folytonosságából és 

x(t) korlátosságából.

A szélsőértéií-helyek távolságára felső becslés is 

adható. Az összefüggések bonyolultsága miatt a becs-
■

£ > .
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lést csak két speciális esetben végezzük el.

2.6. LiüvliAA. legyük fel, hogy (e*) rendelkezik az 

(i) - (ív) , (vi) tulajdonságokkal^ b (t) з 1,

0<q1 * q (t) - q2 , 0<p1 * p (t) p2 [ t Q, =en_és

= 1,2) . Legyen_ x (t) az (e’) olyan( r-±<*® (i
3tO

osz-

E Ct) * Л > 0. EkkorPO --------- —cilláló megoldása, melyre 1im^ 

léteznek olyan сГ, Д pozitiv számok, hogy ha t-^, t2

x (t^ szomszédos zéróhelyei, akkoraz

<T<|t2 - t1| < Д .

Bi zonyitás. Tegyük fel először, hogy 

lim^ ^^Ti (t) = 0 . Legyen TQ olyan, hogy ha
I E (t) -Л|<^ . Legyenek t^ az 

T^-nál nagyobb szomszédos zéróhelyei. A 2.3 Lemma 

x(t) jeltartó, feltehetjük, hogy pozitiv,

д г1<г2
úgy (t1,t2)-ben, hogy F(x (t^)) = F(xC^2))= 3 

jesüljön.^A 2.5 Lemma miatt léteznek olyan 

számok,hogy <T2 > t2 "^Г1> ^~i>ü • №ost becsüljük 

felülről Ctg,12 J hosszát. [T2,t2]-n 

к < x (t)<TK, k<f(x(t))<K valamely csak Я-tol 

függő k,L

x (t)t>T^ , akkor

miatt
számokat válasszuk megezen a szakaszon.

tel-

<r í >01» 2 u

x (t) ^ 0 ,

számokkal. Ezért

Ж - * * и.»* *
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(p(t)x(t)) € e (t,x (t) ,x(t))- q(t)k £

-q-^k + r1Ct)+ (l2 + l)r2(t^ ,

l x (t)l . ^2’^2^”n va^° integrá-ahol L = sup 

lássál kapjuk, hogy

Innen

/2 *2

>Uqxk(t2 “ ^2) = P2l + r1 + (n2 + 1

Г2 T2

Az r-^és r2 függvények [t^,oo)_en való integrálha­

tósága miatt (t2 - ТГ2 ) еоУ csa^ x(.t) -tői függő 

korlát alatt marad, ha ugyanezt belátjuk - t-^) -re

x(t) szom-

távolságának korlátossága innen

is, akkor kész a bizonyitás, ugyanis az 

szédos zéróhelyei 

már következik.

[t rj'-en 0<k1<-x(t)< Kx , k] < -f (x(tl) < Kx
valamely t-^-től független k-^,iv^ pozitiv számokkal.

1/2
Y(x(tb(E) (t)i(t)) .Legyen.- R - sup tíkkor

■0>°°

(p(t)x(t))= -g (t ,x (t) ,x (t)) x(t) - q (t) f (x(t)) + 

e (t ,x(t) ,x (t))

„'A* r
»* .
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Integráljunk ft^t ]-n (t^t^) ;

7/
- dt+

t t
g

p(t)X(t) = q(Tr)f (x(TT))exp-exp,
P P

*1 tl h
t Лt \ t-H (• (5.
J p

(TT,x(Tr^,xCti) exp - át .exp

L tx j tx

Innen rutin számolással:

гr t % t / ’
-( —) í expjíi .dT -

> PlJ í 1PlL J г1 Vktl

kl^lx(t^ exp
P2

r i (■+ (b2+ l)r2(T) -JT)
p2rP2 t

t
- í +(l£ +

r/'
-«(t l)r2Ct)) ít.-tl) -- exp -

Pl 2 h
Ha t-^ eléggé nagy, a második integrál tetszőlegesen 

adott pozitiv £ -nál kiseooé válik. Legyen £ <.--------
РЛк1
P2R

-i. ii ♦ • *
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[t^Tj-en integráljuk a fenti egyenlőtlenséget:

рЛк1( e)$i - *1)pi^ikiK1>x(rtT1) - xCt-^
P2H p2r

hogy -t^) t-^-tőladódik, ahonnan már látható, 

és "t^-tol független korlát alatt marad.

Ha a lim^ ш r-^Ct) - 0 feltételt elhagyjuk, 

akkor legyenek 6M <C 6^ az x (t) szomszédos zéró­

helyei. t^ legyen az x(t) 6^ utáni,

utáni első zéróhelye. Most ugyanjs nem tudjuk, 

hogy x(t) szélsőérték-nelyei közt jelet vált. ha 

elég nagy, (t-^,t2)-ben létezik pontosan egy 

F CxCT^)) = Fix C^2)) = ^ 

b) része) . Nyilván [ , 12]-n

kozó becslések elvégezhetők. A 

zott eljárás akkor is végrehajtható, ha ott

t2 pedig a

«к
ri

és T2 az 

(2.4 Lemma

tulaj donsággal

x lt)

re és [*t^,t23-re vonat-jeltartó, ezért a

-en alkalma-

x(t)

jelet vált.

A lenímát bebizonyítottuk.
•• г ■

2.7. LiM'iA. Tegyük fel, hogy az (.32) ejyenletre 

Cl) , (il) , Wl} fhIi£Í£leÍ£i_klL<L“í2 * Ct)

az (E2) olyan oszcilláló megoldása, melyre
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It) = Л > 0 . gkkor léteznek olyan *1^, ©

x Ct 1 bár-

^1' ^2

HxCty) - p(x(lr2)) -f)

limt
© Ü4 ©2» 2’ 3» 3 ’

mely_két_szomszédos

helyekre (t-^<T.j<,tr2<t

1»
pozitív számok, bogy

tl» ±2 zéróhelyére és a

2»

teljesülnek az alábbiak:

T1 *,

J-J piti J
< q(r)dtdt<(91 ,1

4 4
%

2 1 IC r < ©
2 ’

^2<

г
1

12 *2
V; <( — ( 

3 x ]
q{%) iTdt < © .

2

A bizonyítás a 2.6 Lemma bizonyításának ismere-
/'

у

tében könnyen elvégezhető.

A fenti állitás a lineáris

• •
q(t)x = 0-« x +

r

*9± XI

*



■

- 26 -

И)egyenletre ismert (doppel [7J 50. oldal,

t , n+1

Atkinson

4 q1/2 = 0lim
n OO

“n

összefüggés (E2)-re vonatkozó általánosításának te­

kinthető ( |tn] az 

nek a sorozataj , amely a 

tel mellett teljesül (l

x(t) megoldás szélsőérték-helyei- 

q(t)= о (q^^tt)) felté-

).

»•

2.3. A megoldások 0-hoz tartásának szükséges 

feltételei

A bevezetőben vázlatosan szóltunk azokról a 

feltételekről, melyek szükségesek minden megoldás .

О-hoz tartásához, fizt a kérdéskört részletesen meg-

(tí*) egyenletek esetén.vizsgáljuk az (fi) illetve az 

Ha - áz
✓

(fi) (p(t)x) + g(t,x,x)x q(t)f(x)= 0

p(t) , q (t) "megköze-egyenletben g(t,x,x) '‘kicsi" és

■t, .a

t
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litően konstans", акког az egyenlet a csillapitat- 

lan rezgést leiró
£

X + fCx)= ü

egyenletre emlékeztet. Azt várjuk ekkor, hogy a meg­

oldások csillapitatlanul oszcillálnak [4^,»°)- 

Ezt a sejtésünket igazolja az alábbi tétel.

en.

2.1. TÉTEL. Tegyük fel, hogy (i) - (ill) , (vi)

“ У ooP < ’

(e) minden megoldására lim^ E Ct) >• 0, ёз ha 

, akkor a megoldások oszcillálnak i3.

l(pqjlГfoo b
Jto pq— < о® , akkorteljesülnek. Ha

r<4 = Do

Bizony it ás. Legyen x (t) az (e) megol­

dása. A (2.1) képlet alapján a következő egyenlőt­

lenséghez jutunk:

b(t) |(pq) I4^ (t) > (t) kt)4-
p Ы pqУ

1

^у(хЫ ,^-j (t)x(t)jahol К = sup
[bQ»00

*
~äf\i * .

i
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tí(t) >0 .ooEzt integrálva adódik, hogy lim^

Most bizonyítsuk be a második állitást! Az egyen­

let kétszeri integrálása után a

Xt
[2.2) x (t) - x(t0)+ p (tQ) j" .( fU't-

> p

x(to)
exp 1

P(t)
*0 *0

X Trt

í
r 3f * \L$; f (x (s)) q(s) exp , | -1 - Idsd'trexp

Ptt)
L to Lt0*о

egyenlőséghez jutunk. Tegyük fel, hogy x(t) jeltar­

tó, például pozitiv [t0,o°)-en. Mivel lim^^^ECt) >0,

, hogy f (x(t))>á~ )-<r számvan olyan pozitiv 

x(t) felülről becsülhető:

en.

t X

í W) í
t1 — 
) pC't)

dtr - <r q (.s) dsd^ .xlt) < L

*0tü/

(~l<pq) 1

^1»^2

v
tulajdonság miatt léteznek olyan

pozitiv számok, hogy ha t > tQ akkor

kx < p (t) q (t) < k2

-9 r * ■

t .



- 29 -

x (t) -t igy tovább becsülhetjük:

t
- ( ■>kl l mxo

x (t) < x (t^) +

ГJtü
q = <vo miatt na t elég nagy akkor a jobboldal

negatívvá válik, ami ellentmond annak, hogy x (t) 

jeltartó. Következésképpen (e) minden megoldása 

oszcillál [íq,-en«

E (t) > 0 relá-limt
ció ugyanígy bizonyítható az (E*) egyenletre is,

Mégj egyezzük, hogy a

ha telj esülnek a (ív) és (v) feltételek.

g Ct, x, x)
gyorsan nő, az ellenkező eset valósul meg. A meg­

oldások "beragadnak", vagyis nem oszcillálnak és

létezik a lim. Ix(t)| >0 határérték. Ezt az
x •♦■«e

esetet Írja le a

p(t)qCt) függvény túlHa a vagy a

2*2. TÉTEL. Tegyük fel, hogy (i) - Cili) , 

(Vl) teljesülnek, és (x,y)= 1 . Ha

■

•*> к
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°\tü expf( ;]{ q(t,exp{í ;}
*о J t0 Lt0 J

dTTdt <oo,

akkor_az (e) egyenletnek van olyan ncm-oszcilláló 

megoldása, melyre lim^ ^^Ix^t)! >0 .

Bi zonyit ás. Legyen x (t) olyan megol­

dás, amelyre a pillanatban x(t^)= 1, x(t^= 0

teljesül. A (2.2) képlet szerint ha t >t akkor1»

ГГt

-I -í rí1 f(xCa)) q(s) Xx (t) = 1 exp
PC?)

h Jhti

;X exp ■ , dsáTT

Ltl

Az |f(x(t))l függvény kisebb valamely К szómnál,

x(t-j) , X (t-^amely nem függ t^-tol, csupán az 

értékektől (lásd a 2.1 Lemma bizonyításában E(t)

felső becslését) . Ezért

/*?Л & • *
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too r t s

j -1 a
x(t) > 1 - К decit *q (s) expexp -

p(t) P
v t tl tl1

Ha most -et úgy választjuk, hogy a jobboldalon

levő integrál ^r— -nál kiseiob legyen, akkor

adódik, ami állításunkat igazolja.

x(t) >*j

A bizonyítás egyszerűen átvihető az (fi’)

ha az e(t,x,x) (ív) becslésében szereplő

egyen­

letre , 

r^,r£ függvényekre az

i

(Ь+ r4)) < ®°

*0

feltétel teljesül.

A tétel elég bonyolultnak tűnő feltétele telje­

sül például akkor, ha
1/2ítjp) <o- , vagy a

q (t) (t > t0)
( 1

esetben,ha a(t) mono-ü< m * ^ MP Cw
ton nem-csökkenő és í; [24] .5

0
A fenti két tétel alapján ésszerű tehát felten­

nünk vizsgálataink során, hogy 

rendelkezzenek az alábbi tulajdonságokKal:

(áj és (a’)

•r

ч: ГЬ. " *
V *3áj

:>I
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o^>

■
(-•

J \ p pq
(pq)

“ ;

*0

тг✓ t л tH =1 (1 4) J

1 b(m) q {4?) exp<R' dtT dtexp = 00 ,
) P (t) P

*00 I.

0 < R*< sup YCx,y)ahol
x,y € R

iViint ahogyan a bevezetőben érzékeltettük, ezek a 

feltételek még nem garantálják minden megoldásra

E(t)=0 téljesülését. A következő két részbenlimt

azt vizsgáljuk meg, mit tudunk mondani a megoldások-
o°

ról ezek ismeretében.

oo
(pq)a

=oo feltétel nem elegendő2- +2.4. Az
Р pq

*0
■

Az előző pontban megmutattuk, hogy az b

»
(pq)a

2- + — oo
pqp

о

- * *

\



- 33 -

teljesülése szükséges ahhoz, hogy (fi) minden meg­

oldása О-hoz tartson ha t-*-o®. Most egy uj bizonyí­

tást adunk az

(fib) (p(t)x) + a(t)x + q(t)x = 0

egyenlet esetén Hartman ismert tételére [l2], amely 

0-hoz tartó megoldás létezését biztosítja.

2.3. TÉTEL. Tegyük fel, hogy teljesülnek az (i), 

(Vl) feltételek, ha

»■

OO

í (zl ♦ ™ ) =
) \ p pq /
*0

akkor létezik az (SL) egyenletnek olyan megoldása,

E (t) => 0 .
T

melyre lim^

Bizo nyit á s, Transzformáljuk az (BL) 

egyenletet az

1

X =

p
(läL*)

1
a (fc) 1 (pq)

P Ct)
Cw+У = .2 pq,P

•r

IL ,.~é:
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rendszerré. Az E (t) függvény most

2(t)E (t) = y2(t) + x

alakú lesz.

Legyen üq = ^x2 + у 2 ^ 1^ , a határa,

(EL*) megoldásai menténpedig legyen H^-nak az 

vett képe a t pillanatban. Tekintsük a
/

s0
függvényt, amely az (^»Уд) kezdeti értékekhez a 

E(t) számot rendeli. Belátjuk, hogylimt
folytonos S^-on. Ehhez elegendő bebizonyítani, hogy 

minden pozitiv £-hoz van olyan pozitív hogy ha
*•

Uj - xo’l< ^ és
esetén ^(tjt^, x^, y^) - x (t; t^, x”, уи’’)\^£. és 

|y(t; t0, xj, у») - y(t; t0, x”, y’’)\^£ , vagyis

(EL*) minden megoldása stabilis. Ez pedig

I «Г, akkor mindenUo “ yÓ’ t > tQ

hogy

(EL*) linearitása és a (vi) feltétel miatt teljesül,

ugyanis (EL*) triviális megoldása stabilis, ekkor pe-

, II,fejezet, 6§,([9]dig minden megoldás stabilis 

1.Tétel).

(vagyis min-Ha minden pontjára Ф(х0,у0)> 0

limt r ü(.t) > 0 ) teljesül, akkorden megoldásra 

Ф folytonossága miatt létezik egy > 0 szám,

minden pontban. Ez azt jelenti,bogy vp(xü»y0)>6'

-í.. V* .
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hogy minden t esetén tartalmazza az

halmazt.

Ugyanakkor Liuville tétele szerint ([9]

3.§ )

{x2 + y2 < }
, II.fejezet

í ex? j- í -Ho 1 '0 P
/*Ы*- ( a 1 (pq)* 

2 pq
dxdy * •d*0dy0 ■

Ht .

{- (.e • )}•1 (pqV
2 pq

= ХГ exp

ahol yu(t) а területe. A tétel feltétele szerint

Jű-(t) =» 0 , amiből következik, hogy Пн+
00 ' i>to

limt

nem tartalmazhat pozitiv sugaru gömböt. Következés­

képpen létezni kell olyan (хо»Уо) pontnak Sq 

hogy a belőle induló (x(t), yCt)^ megoldásra

E(t) * 0 teljesül. A tételt bebizonyitottuk.

-on,

llmt 00

A fenti bizonyitás változtatás nélkül végigvihe­

tő általános lineáris rendszerek esetén is, csupán 

E (t) „helyett kell a megfelelő Ljapunov függvényt hasz­

nálni.
Most egy olyan példát ismertetünk, amely azt iga­

zolja, hogy a fenti tételben többet nem állíthatunk.

& » V 4
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Az
(B3l) • •

x + g(t}x + x *0

egyenletben g (t) -t úgy definiáljuk, hogy J 

teljesül, de lesz 0 -hoz nem tartó megoldása. 

Legyen

3 »
to

■ i

1
t e fo.t-j]í 0 ha t +----  í t í t

n n+l n+1
vagy

gCt) ■
1

*a < * < V. 1 ha
n+l

Ы sorozatot az alábbiak szerint határoz-ahol a

zuk meg.

Tekintsük az

x + x « 0

x(o) = 1 , x(ü) =* 0 kezdeti feltételekhez 

tartozó x-^(t) megoldását. Legyen t^ 

utáni első szélsőértékhelye. A

lumon folytassuk x^(t) -t differenciálható módon az
.. •
X + X + X a 0

egyenlet

az x^t) 0

interval-b]К .Í.+ 5

/
[t^Jj, t2] -n újra azegyenlet megoldásával, majd a

• •
X + X s* Ü

t-^+íy utáni első szélsőér-megoldásával, ahol t2 a 

tékhely, és igy tovább a kétféle folytatás váltakozzon,í
- utáni első szélsőértékhely.és tn legyen a tn_1+H

* V
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Nyilván az igy nyert függvény megoldása lesz az (ЕЗхЛ 

egyenletnek.

Most bebizonyítjuk, hogy a megkonstruált megoldásra

M E Ы > 0.limt
Végezzük el az (E3l) egyenletben az

xtt) = r Ct) COS Ф Ш 

x(t) * -гЫ sin $(t)
'

transzformációt. Az alábbi rendszert kapjuk; 

Ф = 1 - |g(t) sin2f 

-g(t)sin2lPr .r =

°° ^n+n+l sin2 4^.
r2(t) ■ E (t) és r (ex») »exp Z_T~\

n=i ! 
xn

ahol

a К ,1}п+п+11 intervallumon kapjuk, hogy
2

l-^g^sitó^Ct)) dH <si^fCtX^PCt) -tP(tn))2 »
tn

*

- 0
Innen

{-2 2 L * n»x ] *
ír l •*! > exp > 0.(n+l)3

-

f

Ук*V и*
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Ugyanakkor

í 1 .g - n
0

g(t) függvény egy [0,0-») -en 

integrálható függvénnyel kiaimitható, ez azonban az 

egyenlet fent bizonyított tulajdonságát nem befolyá­

si 6. fejezet ) .

'Megjegyezzük, hogy a

/

^ lásdsolj a Bellmann

2.5# Az (E*) egyenlet nem-oszcilláló megol­

dásainak 0 -hoz tartása

A 2.3 pontban feltételét adtuk annak, hogy az (e*) 

egyenletnek legyen 0 -hoz nem tartó nem-oszcilláló 

megoldása. Meg fogjuk mutatni, hogy ha ennek ponto­

sam az ellentettje, nevezetesen az (,Wl) feltétel tel­

jesül, akkor a nem-oszcilláló megoldások , amennyiben 

léteznek,"mind 0 -hoz tartanak, ha t 

tást az egyszerűség kedvéért csak az (e) egyenlet­

re fogalmazzuk meg. A bizonyítás az (Е*) egyenletre

függvény (ív)

00. Az álli-

e(t ,x,y)egyszerűen átvihető, ha az

v vж
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i;becslésében szereplő rn <o° ésrl’r2 -re 1
0lC-«' e® telj esül.

2.4. TÉTEL. Tegyük fel, поду tel,jesülnek az .

£(i) - Cin) , (VI) feltételek és q =» о® . Ha min-

ü

den 0<rVsup V(x»y) számra 
x,y6R

Уt \ t/

Cm) j 1 1И
to J t0

- • dtdtq(Tr) exp<R*exp<-R = po ,
pft) P

t0t 0

akkor az (E) egyenlet minden nem-oszcilláló megoldá-

xCt) * 0 .sára lim^

Bi zonyt ás. Legyen x(t) az 

nek nem-oszcilláló megoldása. Tegyük fel, hogy

oe

Ce) egyenlet-

V

lx Ct)l > 0. Feltehető, hogy x Ct) pozitiv. 

f (x(t)) > 1c > 0.
lin4
Ekkor " lim^.

A (2.2) egyenlőség alapján

\
** \ AJ
'U - \ í

.’ i
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Гt
x(to)+K \ ш

\ i

-í f0< x(t) ^ r dTT —exp

t0 *0

г-

П f}dsdr •
ltoI q (.a) exp

t 0
/

= g(t,x(t) , xCtl) . Az (m) feltétel miattahol g

t ^ T
- is ■ (

^ ^0 ^ ^0

t
f -1

oo ) P Clr)

a
S Vdsdtrq is) explim

t — exp 1 aoo ,

t0 0

Az egyenlőtlenség jobb oldala -ex» -be tart, ha t-^-ex»,

ami ellentmond x(t) >0 -nak. Az ellentmondást a

x(t^ ф 0 feltételezés okozta. A tételt be-lim.U

bizonyítottuk.

Az (E2) egyenletre a 

mondhatjuk JjL4J , hogy a nem-oszcilláló megoldások 

az (i) , (il) és (Vl) feltételek teljesülése mellett

2.2 és 2.3 tételek alapján

akkor ез csak akkor tartanak 0 -hoz, ha

(рта íqtT) dtTdt = 00 .

*0 *0

• 4
V» V* >%; V •

г*
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г q = о® reláció most a feltételből adódik.Az
0

b (t)Most tegyük fel, hogy

tv°°) -
nem-csökkenőP(t) q(t)

en. Ekkor '

-v ^ г /t

í 1
s

“R’í I ' 1 4(s)
‘o J *0

* ( b 
) p

• dsd^ 5?exp (Rexp •p ít)
*0 *0

НГ ,

-*• I Hййг, »•

to

) haahol a jobboldal oo -be tart Ct
*

í§ • Speciálisan az (ез) egyenletre adódik= o°

t0

R,J Ballieu és K. Peiffer eredménye [3J , mely sze­

rint a nem-oszcilláló megoldások 0 -hoz tartanak, ha

a gCt,x,y) £ b Ct>Y(x,.y) becslésben b Ct) nem-csökke-/
Oö

í 1nő és = ®« .Б
t 0

JÄ-.W к .• •«
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3. ATTRAKTIVITÁSI TÉTELEK

3.1. Bevezetés

A dolgozat fő fejezetében olyan tételeket bizonyl­
tunk, melyek biztosítják, hogy az (e) illetve az (E’)

eeECt)= 0 telje­egyenletek minden megoldására lim 

süljön.

Mindenekelőtt emlékeztetünk rá, hogy az (i) - (vi) 

feltételek teljesüléséből következik, hogy az (E’) meg­

oldásai léteznek valamely [t^,«*») intervallumon és lé­

tezik a
-•

P Ct) • 2 wi)lim E (t) = lim í
t-—о» t ♦сх» \

X W+ P (x
q (t)

véges határérték (2.1 Lemma) . Az (m)feltétel biztosít­

ja a nenv-oszcilláló megoldások О-hoz tartását (2.3 Té­

tel) . A bizonyitásókban ki fogjuk használni, hogy ha

= о» , akkor a О-hoz nem tartó oszcilláló meg-
1/2

f.®
oldások séróhelyei nem torlódhatnak véges értékhez (2.5

1/2•ír®Lemma). Belátható, hogy reláció (M)-ből= OO

: iív
r *
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következik.

Attraktivitási tételeinket három külön részben fo­

galmazzuk meg. Először az (e’) olyan eseteit vizsgál-

-g(t,x,x)x csillapitás befő­jük, melyekben vagy a 

lyásolja döntően a megoldások viselkedését, vagy a 

-g(t,x,x)x és a p(t),q(t) hatása egyaránt lényeges 

(3.2 pont ) . Ugyanezekben az esetekben fogalmazunk meg I '

globális aszimptotikus stabilitási tételeket a homogén 

(e) egyenletre (3.3 pont), melyek a homogenitást kihasz­

nálva lényegesen gyengitik az inhomogén esetre megfogal­

mazott tételek feltételeit. A -g(t,x,x)x csilla­

pitás pCtK^Ct)

»•

hatásához viszonyt tott elhanya­

gol hat ósága egy más irányú fejlesztést tesz lehetővé 

(3.4 pont). Eredményeinket összehasonlitjuk egymással.

V;

3.2. Attraktivitási tételek az (e’) egyenletre

Eredményeink megfogalmazásához szükségünk lesz 

az alábbi definiciókra.

í

rv~)3.1. DEFINÍCIÓ [14]. Az 

függvény integrálisán pozitiv, ha

a :

..
M
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!
a = о«»

H
oo

utt;,r4 halmazon, aholminden olyan H =
n=l

Tn

<T>0 , hogy - 'trj > <T .

és létezik olyan“ oo

Belátható Q14J , hogy egy a (t) függvény akkor és

£>0csak akkor integrálisán positiv, ha minden 

számra

t+ £

lim 1
t-^oo )

t
a > 0.

) —— R+ f! i vgvé ny1.2. DEFINÍCIÓ. Az a : [t 

.gyengén integrálisán poritiv, ha

>000

í a = 00

H
00

U [T1,**]n ’ nn=l
minden olyan halmazon, aholЫ =

ТГ1
nК < 4 < vLi

olyan <T , ZV>0 számok, hogy > íT és

r^+i - ^ < д .

= 00 és léteznek, lim’ n

♦•V •
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Könnyű belátni, hogy a definíció tartalma nem 

T1+1 - ТГ^ < Л helyett a 

- 'Ъ'2 <Д tulajdonságot követeljük meg a H

változik, ha

г1n+1 

halmaztól.

Egy a(t) függvény gyengén integrálisán positiv,
. '

ha létezik olyan OC(t) pozitív nem-növő függvény, 

СЛ =<у» , hogy minden £ > 0 számrarJto
melyre

t+ £
1 S

t

a > 0.lim
t — (XCt)

U tt-i.rz]
n=l n n

и, д
T^xTn

egy a defi-Valóban. legyen = H *

).nicióban szereplő halmaz -val Ekkor

T2n
o<o

[ ■ - Z ( -) n=l )
Z> = ?a

■ti Г1nH

ahol ©>0 a feltétel miatt létezik.
2

sin t integrálisán positiv, az 

gyengén integrálisán positiv, de nem integráli-

Pé1dául a
^sin2t 

sen pozitív.

■ ■ %

.
itt ♦•V#

T
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TÉTEL. Teriik fel. hogy tel.ie Gülne к az3.1.
1/2ír (?)J X0

(l) - (Vl) feltételek és . Ha a= O0

(pq)’ +. a (q 1(t)) +21c 1/2L ÍP4) pq
/1/2(qW= ((2) Ifüggvény integrálisán pozitiv .

fCx.y) )M’-ar - 0 < к <. sup , akkor azx,y€ R
ÍE'J egyenlet minden oszcilláló megoldására 

lim. E (t) = 0 .
X . oo

Bizonyítás. Tegyük fel, hogy x (t) olyan 

oszcilláló megoldás, melyre lim. E (t) =/\. >0.

A (2.l) összefüggés miatt

- +
a(t) (pq)

(t) XE t sr -
p(t) pq J

1 a(t) (pq) 

P (t)
P ft) 2(p(x(t),/l)-(t)kt))x2(t) + ft) КX +
q(t) pq

г
qY22

(t) (К + l) ,1(t)+ r2(t)+ (^4)
ahol К az E(t)egy felső korlátja. Az (v) és fvi)

P

Ф* v
V ,
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feltételek miatt a jobboldali második*és harmadik

tag integrálja korlátos [tQ, «*=»)-

= -[ t : F(x(t)) ^ } • A
H = ü

I 11 11n=l

en.

2.5 Lemma

ft1<v2<rt1 _ ,n n n+1 ’

Legyen H

, aholmiatt

f U (?) 1/2
>ó valamely positivOr1liBVi-

-val. Nyilván

e sn =°° /

/
1

pCt)\2P (t) xCtljés inf^P^x(t)x2Ctb \inf-------
H q (t)

= k^ 0.' U ы3

A fentiek alapján egy megfelelő L > 0 ssám mellet

(Pl)a ;E (t) < L - ^ 2k - + У

нП ft0,t] pi

ahol a jobboldal - o& -be tart ha t-^-o» a tétel fel­

tétele szerint. Es ellentmond annak, hogy E(t). minden 

t_ esetén pozitív. Az ellentmondást a 

telesés okozta. A tételt bebizonyítottuk.

Я>0 félté-

A fenti tétel általánosítja Hatvani L. [íj]

p(t)= q(t) = 1 , e(t,x,x)s о
egy a

e setre vonat];ózó eredményét. 

A bizonyításban nem használtuk ki ( И halmaz ) , 

hogy az x(t) zéróhelyeineí: távolsága felülről is be-

£■V* • **



т

- 48 -

сsülhető. А 2.6 Lemma alkalmazásával a fentihez ha­

sonlóan bizonyítható a

3.2. TÉTEL. Teavük fel, hoav tel;iesülnek az
[i) - • (Vl) feltételek, b (t) a 1 , о < * q (t^ ^ q2 ,

a (t)és 0 < px =í p (t) ^ p2 [tQ,oo) _

függvény gyengén integráljsan pozitiv. akkor az (e*J
en. Ha az

^(x (t) , x (t)) =(o,o),egyenlet minden megoldására lim^ 

e (t, x, x) s- о e setben a triviális me goi dó.s g.a.saz • •

H

Tételeink szerint az

(EBI’) x + g(t)

egyenlet minden megoldására lim^^^Jx lt) ,x(t)) =(o,o) , 

Jel<«*» és az alábbi feltételek egyike teljesül:

e (t)x + x =

ha (°*

К
t+£

„í
t

(V £> o) és О * g(t)^ ct ;a) lim g > o *

/
t+£

t

g > O (^ £ > o) és О - g(t)^ C .b) lim
t

Látható, hogy az inhomogén esetben me..gmara.dt a 

na.gy és kis csillapítás Sraith-től [22] származó

& • A



- 49

megkülönböztetése (lásd 1. fejezet )

Л következő részben megmutatjuk, hogy az a) és 

b) -szerű esetek szétválasztására az (E3) homogén 

egyenletnél nincs szükség.

3.3. Az (e) egyenlet triviális megoldásának globális 

aszimptotikus stabilitása

.
A fejezet fő tétele a következő:

1.

3.3. TÉTEL. Tegyük fel, hogy teljesülnek az (i) - 

- (ill) és (Vl) feltételek. lf(x,y)>0 (x,y€ r) .

Ha létezik eg/- (X : [tQ, 00) 

giti az alábbiakat:
függvény amely kielé-

(o) oc = 00 ;

• ✓
Ü CZ R2(i) minden kompakt halmaz esetén a

b (t) (pq) P (t)
V(x*y) + 0((t)(t)2

P (t) q (t)pq

[t0,o~)-en;függvény felülről korlátos l)X

-

it*/ *
3Ű,■V r
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1
(ii) да CXCt) í-] (t) fllg/rvénv nen-növő ftQ,«**=») -en;

q

o< B*^i(iii) létezik ест
k,V (o<V<

Ф(х,у))

szám, ия-у hogy над-

supRNß)i FCx)/xf (x),den

számraк > infx,y 6 I?

гt v-l t
Г a(f) 1 (pq) 

+ "" -----
pCt) 2 pq

&ír)cXlira
t &o

*0u00

■\

~ (l + УdTT - = уиь(к,У) < 1 - ,

Ce) egyenlet triviális megoldásaaldcor az g.a.s. x-ben.

A tételt először az önmagában is érdekes

• •
g(t,x,x)x + f(x)= 0

• •
(ез) x +

egyenletre bizonyltjuk be. ■ »

r‘

3.4. TÉTEL. Tegyük fel, hogy teljesülnél: a (jl) , 

(ill) feltételek. Ha létezik egy (X: ft^, oe) 

nern-nö vő függvény, amely rendel ezik az álé bői tulaj —

«
■

R .
•vT

• iá

dón ságokkal:

oo

f CX = oo .to) J

l0

* 9
.»_



51 -

o((t)bCt) korlátos [t^,**3) -en:

6" (o < 6"* l)

(i)

(ü) szám úgy. hogy min­ié te zik eg’-

k,V (o< V < PCx)/xf(x) ,den sup R x &\
ФС*,у))к > inf szanrax,ye в

г- — 9

7- (i+Y)<*W dtj=ka (Tr)
j ■

О

= /дк,У) <1-6’ ,

(зз) egyenlet triviális megoldása g.a.sakkor as • •

V
В i z о n у i t á s. A 2. 3 Tétel alapján elegen­

dő azt bebizonyítanunk, hogy (i22) minden oszcilláló 

megoldására lim^

Tegyük fel ennek az ellenkezőjét. Legyen :c(t) 

olyan oszcilláló megoldás melyre Я>0. P.J. ásott [20] 

észrevette azt az egyszerű tényt, hogy x(t) korlátos-

^ в (t) = Я = о .

sága miatt,adott positiv £-hoz található olyan У

(о < V < F C: )/xf (x) A boy/sup szám, ™5У»
H \ [0 ’j

p(xCt)) - у x(t)f (x(t)) < £ (t >t0 )

Emi att

, 1« *•» ■fi
»• Г4» » SL
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= x Ct) + (F (xCt)) = (l +V)x Ct) - Vg(t ,x Ct) ,x Ct)) X 

X x (t) x (t) - V (xx) Ct) + F (x (t)) - Vx Ct) f (x Ct)) <

(1 + V) x Ct) - V g (t ,x Ct) ,xCt)) xCt) x(t)-Vcxx) Ct) + E.

fi (t)

fc4A WCt) : = fiCt) CX függvény deriváltjára igaz az

alábbi becslés: I

t
^ oC +

t

• • • 2 (3.1) w(t)^ -2gCt,xCt) ,xCt)) x Ct)

0

(1 + V)cxCt) x2Ct) - ^o(Ct)(xx) Ct) -

Vs (t ,x(t) ,x (t)) CK Ct) x Ct) x (t) + £o<Ct)

Legyen {tn\ az 

Ctn /** ba n-^eo, 0<B(t1) - Л<£)* (3.l) [tlttn]-en

való integrálásával kapjuk:

xCt) zéróhelyeinek a sorozata

t t n,n
- 'Vl 0< (xx) +(3.2) w(tn)<w(tx) + £loC

4
t Iх \ 

xCTl)) jX CTt) g( tr jxC'T), -(1 +v)o((Tr) dTr-

tl 0

7 V1
\ o( oC Ct)x (t) + x Ct) dT =

t

X (T) g Cb, X CT), X CT))

tl

a ■ 1 ■i ■

i V'i
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ttn

+ £\0( - V\CX(xx) += wCt^

41

megválasztásából adódóan *

tfnT / ^\+ £) 'j lcaCt)[fo<j
Ь 'V

!
I_(i +V)o(Ct) at,ICti,tn)< (Л

$x(t) ,x(t))>0 x tt) és xCt)ahol fe = inft >t0 »

korlátossága miatt. Parciális integrálással nyerjük

t t

yjoUxi)' =yj
t-,

xxd(^<VKIV ,

tl 1

|xCt)l , V pedigahol К = stip lx(t)| , I = sup 
[t0,H

az CX teljes változása [t,^, **=>} -en. 

Ha megmutatjuk, hogy [j (t-j , t^)] +

IV“)

hi *= О

(3-2) -t [Ч -val osztva, és az n —o-» ha-akkor
.

1

tárátmenetet végrehajtva a következő egyenlőtlenség­

hez jutunk:

V

->»Л* «'•

i*» A . • v
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A< £+/*-(kfV)(X+£) <£+(i-^)(a+£)

Ha £. elegendően kicsi, akkor a baloldal nagyobb a 

jobboldalnál, am ellentmondás. Ezt а Л > 0 feltevés 

okozta.
■^]+= ° ((+“*)Be kell még bizonyítanunk, hogy £j(t

~). Legyen
ta (?n<tn<6'! 

t5n,tn]-en és x(.t)ht^ 0 [t , 5n+1]-

1 I

az x(t) zéréhelyeinek a soroza- 

) . A 2.2 lemma szerint x(.t)xCt}^ 0

en. Ezé rt

(n ■

n+1

.

J Ct-^, tn^

x (ffk) =Mivel (X(t) , E(t) korlátosak és

(б^,< < t és egy <T szám (o ^ < Я.)

úgy, hogy

0 ,

Í1A= oo f létezik egy sorozat

1

-1

t £ ft ,tkl,Lt) <o-хЫ у x Ct) CX (t) + x

|f(xW)| = <r.é s min
••

J(tl,tn) <Ж7 J ( ^k’ ^k) *Ezért

U1 * : :
.
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Most vizsgáljuk meg a J ( $)y, TT^} (к = 1> 2 

integrálok viselkedését! Feltehető, hogy t6T^, ЧГ^1-п 

x(t)^ О , x (t) < 0 . A forditott eset hasonlóan kezel­
hető.

)• • •

Az (ЕЗ) egyenlet integrálásával x (t)-re 't^l-n
az alábbi egyenlőség adódik: :

V

>:
t t

rí(з.з) ife) = f (xrt)) Xg(s,x (s) ,x(s)) ds-exp <

кк

T
^ si■

s,x (s ),x(s )) ds Idl^X ex?
\

,.

Definiáljuk az M,N szánokat úgy,hogy II ;> b Ct)
N>^ (x(t) ,x(t)) legyen ['b}»00)“ -és en . Ekkor

-ra

t yj>

• í ечЧ I <*MNMN
x(t)><Texp dTT =

О 6-6"< ккк

í t

I.— CX(t) 11 - exp 1
MN *

Ш ък

Г *

.•*4
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Most majorálhat juk J ТГ,^) -t :

г-k

<Г • X(3.4) J (9^» 'Ц-)- х Стг) g СТг, х (г), х et)) с4 et)
ш

1о

t г I

X dt .

■:

^ megválasztása miatt а 2.5 Lemma biztosítja olyan 

<$^>0 létezését melyre

te
-( —(>4

) (Л 1
4c J

(,k = 1,2 )1 - exp ■ • • •

teljesül. Ezért ha к elég nagy, akkor létezik olyan 

rtr£ é (6j_, , mely kielégíti az alábbiakat:

4 ri-1
Vkiín I Ш

, é s= 1 exp«Г
«1Ct01

f ( T/IN) VKMN / 7 \N-Mä (t-• 4 1 - exp

4.?•( •fi *
* * .
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definíciójából következik, hogy

©кГ14 -14
-^<нл«уИ<*Hí(3.?) ígyé sex

^k *0t0

egy megfelelően választott fi számmal.

Majoráljuk J ( 0y, T^J-t, ha csak 

integrálunk:

/

K- И -*
.

**k
» '

bCc^Cfc)d'tr<’VKш(1г» - *ok) .J

%

(3.5 ) felhasználásával nyerjük

%
-1

J(ti»tn)<VKLMN dhfe - §:)*Vklknh g]íX(\) ^í

^0

41,» 00). A tételt bébizo-(nahol a jobboldal

nyitottuk.

- ■
r.

»: -y

44 ViSL
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Л 3.3. Tétel bizonyítása. Az ti) fel­

tételből következik (jVl) teljesülése. Ennek bizonyítá­

sa analóg a 2.3 Tételt követő meggondolásokkal, (jí)-ből
1/21/2 ■ í:®ni)

uü
= o- adódik. А ТГpedig

transzformáció végrehajtása után az egyenlet (ЕЗ) ala­

kúvá válik. Teljesülnek a 3.4 Tétel feltételei és 

ezzel a bizonyítás kész.

Most tekintsük az (ЕЗ) egyenletet. Legyen 

(X(t) = min ( at'fc) , 1/bCt)) . A (ll) és (ill) feltéte­

lek mellett ha aCt) nem-növő, b (t) nem-csökkenő és

, akkor a 3.4 Tétel feltételei telje-

( <* = 

ho
sülnek. Nyilván CXCt) nem-növő, és

(X(t)'b(.t) korlátos. A Cii) feltétel következik az 

alábbiakból:.

г
oU - (i + У)*(т0 ^ oiCt) /к Ы -(i + y)j,к a (t)

к*o

-ra már pozitiv, ezért a feltétel­ami elég nagy 

ben levő határérték 0 . Ezzel Smith tételeinek [22] 

kö zö s általáno sitását kaptuk (lásd 1. fejezet) .

.

d
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Eredményeink lehetőségei még nem merültek ki. 

Megmutatjuk, hogy a korlátozó feltételek mellett 

(e(t,x,y) = 0 , Ф(х,у)>0 ha x,y €■ fíj többet

’’tudnak" a 3.1 és 3.2 Tételeiméi.
Legyen £ >0 adott, és definiáljuk az (e3i) 

egyenletben gCt^ -t a következőképpen:

t £ [2n-l+ £(n-l) ,n(2+£.)]Г 1

(3.6 ) g (,t) := <

+ ^íT’n(2+f) +1-ztt1t £ [n(2+£ )0

kimaradó részén g -t definiáljuk lineárisan, 

hogy folytonos legyen. Láthatóan gCt) nem gyengén 

integrálisán pozitiv , azonban a 3.4 Tétel alkalmaz- 

ható. Valóban. Legyen (X(.t) = -jf . Az (i) feltétel 

triviá.lisan teljesül, a (ii) pedig az alábbiak miatt 

igaz:

H+

S [ecr,([;dE
to Nto 1

dX< 2^ __ df ,2

r
Ht

U [д(2+ £} ,n(2+ £.) +l] ,ahol Ht = n (2+£) < t

továbbá

■

Л*•* ■ k
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t -1 »
21 e- = í -dV 2

2 +£tr 2 +£
*0

-vei megismétel-^ helyettA fenti levezetést
■ .

ve adódik a
,

■

t

3.5. KD VETKEВДЕНУ. Tegyük fel. hogy teljesülnek a 

(ll),(m) feltételek. 44x,y)>0 (x,y6I?) , b(/fc)
f 60 1

4

/

■

ne m-csökkenő és . Haь - 00

t \ -1 
(; ;< 1

lim
t —О-» 1 +v

uo Ht

minden 0 <. V <2 s\’.p Ftx)/xf(x) számra
H\Í0\

(Hj. := jb"€ [t_Q, t] : alt-) l/b(X) |j, akkor az (ь’З) 

let triviális megoldása g.a.s

e m/en-

• •

Hasonló alakú következmény a 3.3 Tételből is 

nyerhető.

A 3.3 tétel bizonyítása az általánosabb (P esetére

(<P(x»yJ >0 ha у ^ 0 )

vihető át (kis csillapitás esete )

b(t)= 1 megkötés mellettcsak a

.V*''/ a.. . ■*
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Még igy is érdemes az állítást megfogalmazni, hiszen 

mint láttuk, az alsó becsiére vonatkozó feltétel keve­

sebbet követel, mint a gyengén integrális pozitivitás 

feltétele.

3.6. TÉTEL. Tegyük fel, hogy teljesülnek az (i) - 

- Cin) feltételek. 0 < q1 ^ q(t)*r q.2 ,

О < P-, - p(t)^ pp . Ha létezik olyan nem-növő, pozitív 

CX (t) függve ny, ne lyre 

Tétel (iii) feltételét, akkor az (s) egyenlet trivi- 

ális megoldása g.a.s

/
*

ГJ t <* és kielégíti a 3.3

• •

Bizonyítás. Csak az (S3) egyenletre bi­

zonyítunk, az állítás (e) -re ugyanúgy adódik, mint a 

3.3 Tétel esetén.

A 3.4 tétel bizonyítását finomítjuk. Először meg­

mutatjuk, hogy tetszőlegesen adott <£>0 számhoz lé-

o°) halmaz és £, > 0tezik szám úgy,egy Г

hogy

/ tí -1

Г«2X(l + V)(X(3.7) lim
П-~~ ^n[ti,tnl 4

és <P(x(t) ,::Ct))>^ [tl’°°) . Valóban, b (t) = 1 

miatt a sorozat korlátos ( 2.6 lemma) .

-n

л ^ &•i* *■ '*■
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(3.7) tulajdonságú

Sőt olyan választan is lehetséges, hogy valamely <T 

\^l - Bk|>^>° és [f (x {X(i= 1,2

k= 1,2... ) teljesüljön. Ekkor (3.3)-ból következik 

olyan <T, létezése, melyre \x(ТГ;1)|^i = 1,2 ; 

к = 1,2 ...) . ф(х,у) tulajdonságai alapján 

létezése ezek után következik.

Most tekintsük az I (t-j ,t^) integrált V'Ct/

becsiésében:

Ezért létezik a halmaz, amely

alakú

számmal ;

!

tn- / X \
+ £) I аСЬ)ф(::Ы,хН| + У)<хПг) <**< 

V ' ■*
!(ti,tnU (X

■

< (x+ £) Ci + У) ct +

Q ^ [V*n1

t * ,

+ f) I aCTr)£i/j
ti \

_ (i + y)<XUr)♦ U dX .

A bizonyitás a 3.4 Tétel bizonyításához hasonló­
an folytatható.

+ *‘*« » •
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;Nem nehéz belátni, hogy az

. ,-3
g (t) x

• • + x = 0x +

egyenletre, melyben g(t) (3.6) szerint van éefini- 

álva, nem alkalmazható a 3.2 Tétel, de triviális megoldása 

legutóbbi eredményünk szerint g.a.s

láttuk, hogy a 3.3 Tétel (iii) feltétele az a(t')

• •

és &&^^ (t) függvényektől milyen keveset követel. Fel­

merül a kérdés, hogy ez, vagy egyilyen jellegű feltevés

(e’) egyenletre. Egy vá-átmenthetó-e az inhomogén 

la.szt a következő részben adunk meg, ahol a most tár-
.1

gyalt módszer egy más irányú fejlesztését kapjuk.

a
3.4. Akis g(t,x,x) esete í

1

:
Ebben a részben az inhomogén (ej) egyenlet azon

eseteire fogalmazunk meg attraktivitási tételeket,

csillapítás hatása elhanya-melyekben a -g(t,x,x)x 

golható a p(t),q(t)

(e’) egyenlet a megoldások О-hoz tartása szempontjá­

ból betettesithető az

hatásához képest, vagyis az

/

4 ' *
# 4.V .

V;-
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(p(t)x) + q It) f Cx) = e(t,x,x)CE2’)

egyenlettel. Tekintettel kiemelt jelentőségűidre, 

állításokat fogalmazunk meg az (E2’) és az

• »
Ct)(El’) q (t) f (x) = ex +

%

egyenletekre is.

Eredményeink alapja a
..

.

3.7. TÉTEL. Tegyük fel. hogy teljesülnek az
b(t)

Ha. létezik olyan abszolút folytonos, nem-negativ 0((X) 

függvény, mel.yre az alábbiak teljesülnek:

(i) - (Vl) feltételek és lim^^ ■ = О . i

оо

(о) & — be t

*0
■*

1
(«./Р\2 

o((t) I —
\q

) ;(t)(i) (t-*-= о

4?-

t 1
§■■2o( ) Ilii) (t(pc) = о

q
tO

*

*

■V.-

• '•s-'. *4%
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fél(iü) szám, hogy mindenvan olyan 0 <>

0< V < sup Ftx)/xf(x) szám esetén
R\ÍOt

/t \-l t - . jt V

L $> $ Щ«)Ntn > t L \bn /
~(i + У)<*сг) cft=yo(v)<i -fr,lira

t»

akkor az (E ) egyenlet minden megoldására lim
t-^- 00

E(t)= 0.
f.

3 i z о n v i t á s. A bizonyítás ugyanúgy kezdő­

dik mint a 3.4 Tételé. Tegyük fel, hogy xCt) olyan 

nef oldás, melyre lim^^^SCt) =A >0. Le gyen £.>0 

adott. létezik oljran V > 0 , hogy

F (x (t)) - V x tt) f (x Ct)) < € ,
J

ha t>tQ • Az E (t) függvény most igy mai о ráiható:

*
V

P (t) . 2 P Ct) . 2
x (t)+ F(x(t)) = (l +)>)E (t) = x (t) -*

q Ct) q ct) .
■»

P Ct) *2 .
x (t)-

1 .
— (p Ct) X ct) xCt)j + F(xtt)) = (l +)?)-У?

q (t) q Ct)

g (t, x (t) , x (!)j ■O «
e(t,xtt) ,xtt)) -- Vx(t)xtt) +

qCt) q tt)

»4V* t-
j ( к
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i

Vо • •
- Vx(t) f(xCt)) + F(x(t))-------- r(p(t)xCt) xCt)) -

qtt)

b Ct)p (t) . 2
x (t)-----— ( p Ct) x Ct) x Ct)) + V KLRÄ U +V) V2lt) +

q(t)q (t) (pq). r

i
(riu) + e , t :+ r

q(t)
1

. S
-) (t)\x Ct) I ,ahol К = sup |xCt)l , L = sup

ft0»H [t о > H Vq
1

P\2 P«Jt0
(t)xCt)) . На ’V Ct)Y(xCt), - E(t) C* ,R = sup

ft0,Oe)
akkor a .fentiek é s a(2. l) ö sszefüg^é s alapián

: =
q

■

oUt)P (t) X2 Ct)o((t)-V(3.8) V7Ct)^(l +V) (p Ct) xCt) xCt)) +
q Ct) q (t)

(t)+ +
ъ (t)c< Ct)---- —— + у----

(pq)J/4t) qCt)
c4t) (ri?klr

. V/
p (t) (РЧ)✓

:c2Ct) (<*£ oUtl- Ct) +
q Ct) pq

*.

i tí ■_ %-*Q\2ь / гх (t) ь(t) I (pepit)‘wl;+ r
J- ^

Vq>
«■» Ä.
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Válasszuk meg a T számot úgy, hogy ha t> T,

akkor

l

i sM-1T

t1 2rl < £тп 9 (■

(pq)
T i

г

ь (t) \ E (t) - X l ^ £<£ és
(pq) 1/2 Ct)

teljesüljenek. Integráljuk (3.8) -at [T,tJ-n:

tte)o(Ct) p (t)w (t) ^ wfcr)- V X Ct) X (t) + V pxx +
q Ct)

1
*

íi*+y j * ^
T T

#') •
Vklr£ + r

bt'

*)££ C* +lCi + L +

TT

t

(x+f)í
T

г4 л

(pq) í*
t

- (l +?)c*Or)(ТГ) dir ^
pq

о

!

1-T-

*» • «
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1 t
(X (pq)1/2 +^ WCí) + V KL 0< (ti (t) + )^h.L
q

T

í. t
*P\2 ■V(i + l£)£ + (Vklk + l + LhÁ+ (Ásup ]0(f- 

fT.t] lq
+

T

t

(Я+£) [
t •-

-(i + V)* Пг) dt .

т
'i'г.jto

Most o< -val osztva és a t-*-®° határátmenetet

végrehajtva kapjuk, hogy

A. *£. (YKLR + L + L + 1) £ + (l — ^")( Л + £) •
í

Ha £ ele0end.ően kicsi, akkor a jobboldal kisebb 

mint a bal, ami lehetetlen. Az ellentmondást a A. > 0 

feltétel okozta. A tételt bebizonyítottuk.

1978-ban F.J. Scctt két tételt bizonyított a .

(p(t)x) + q(t)fCx) = e(t)
■я

E Ct) = 0 tulaj d onsé- 

got biztosítják. Az egyikben [2l] a 3.7 létei (iii)
egyenletre, melyek a lim^ ^

V .
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feltételénél többet kivánó

(pq) 1
Ct) > оlim

<X(t)t-*- oo pq

feltétel szerepelt* A másikban [20] pedig az

1 t
/P\2 1d 1/2(t) ,c*Ct) (pq)

q
to

függvények korlátosságára volt szüksége. így a 

3.7 Tétel ezen eredmények közös általánosítása.

ú égj egyzés* Ha az cX és д függvényre további 

differenciálhatósági feltételek teljesülnek, акког a .

У/- I (t) (pxx) (t)
q

kifejezést parciálisán integrálhatjuk. Ezért a 3.7 

Tétel (ii) feltétele az alábbiakkal helyettesithető:

t t
(A(ü V (t — ;= oP
q

*0 4

t
*■

~) •(t9 9

(ü) p (t) =

v '-n '*
«. . V
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IA eg,j egyzÓ3. iia a tétel állitása csak. az oszcillá­

ló megoldásokra vonatkozik, akkor a (.ii) 

e(t,x,x)= 0 esetben az (i) feltétel elengedhető. 

Valóban, ha x(t) oszcilláló megoldás, akkor legyen 

a zéróhelyek sorozata ha n

Elegendő- a [l’,tl helyett a intervallumon

integrálni. De ekkor

9 9
és az

!
f

*
2 tn tnoCV x Ы

V - pxxés= 0 = 0p-
2q q

4 4
- £

i

to’)most vizsgáljuk meg, hogy eredményünk az

egyenlet mely eseteire alkalmazható hatásosan. Le-

p(t) = qk(t) (ktk)

q Ct) = 00 . Feltehető továbbá, hogy cx(t)

és tegyük fel, hogygyen 

limt
korlátos [t ^, oo ) -

O*»

en. Az

k+1 # ____
Ct) q ^ Ct) = C*Ct) q c Ct) - o<Ct) q Ct) q " Ct)

k-3k-1

■ Vazonosság alapján látnató, hogy (ii) akkor és csak 

akkor teljesül, ha k<l . Azt kaptuk, hogy p Ct) 

növekedése lassúbb kell hogy legyen mint a qCt) 

növekedése.

■4 •

4

. í.
,*-♦ £, . •*

r
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Csi ) egyenletet.Tekintsük a speciális 

számolással adódik a

némi

3.8. KÖVETKEZMÉNY. Tegyük fel, hogy teljesül az (l) , 

(II) félté telj q (t) /*>*» (t-*-oq), ÍZ- ^ <

létezik olyan abszolút folytonos függvény crf(t) , mely- 

c>< = «*=> , C^Ct) - 0 és a 3.7 Tétel Ciii) felté-re f **,
JtO

■

i
■ 4-

tele teljesül. Ha vagy
P

létezik ß < £ szám, hogya)

)(t-o< ;

to 0 I
4 ■

>

й4 ' U) l= °(H
t0 %

(t -^tx>) ,bj C*(t) =* о »
. ■

i

/

akkor az (El ) egyenlet minden megoldására lim 3(t)= 0*
t C>o

Bizonyítás. A 3.7 Tétel (д) feltétele 

triviálisan teljesül, (ii) -t bizonyítandó, az a)

I
.

V

Y*:
1M. . V
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esetben

í ier * I»)' *
t

/ q
P-2 q41/2 + (1- I» q-P+3/2

‘o *0 *0
*

miatt elegendő belátni, hogy a jobboldali második
t

integrál о ha t , Növeljük ezt az i rí­tt

*0 *

tegrált áz alábbi módon:
tts-: q

ß q-№/2
*0

Innen (ii) teljesülése azonnal adódik, 

A b} esetben (ii) az

i-

t

(Ш1 * \ Hex 1/2 Vq * "3/2
*оХч *0*0

i
b

egyenlőtlenségből következik. 

Az állitást bebizonyítottuk.
\

*

t!

i■■

'••V' *■ xL
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;

A ß* 0 esetet érdemes kiemelnünk. Ugyanis itt 

látszik leginkább, hogy a megoldások akkor tartanak 

О-hoz, ha 3(t) egy [t^,«*») -en nem integrálható, de 

ott korlátos változásu függvénynél "nagyobb" ha

. A (iii) feltétel nyilván teljesül, ha 2(t)xX(t) 

(Burton, • Orimmer [бj). А 3.2 és 3.3 pontok tételei­

vel ellentétben a 2 (t) függvényt felülről nem kell
tI

korlátoznunk, hiszen most az (M) feltétel triviáli­

san teljesül.

A 3.8 Következményből C?(Ct) konkrét választásával 

további állítások nyerhetők.

A 2.1 Tétel bizonyításában használt meggondolá­

sokhoz hasonlóan belátható, hogy az (jSl) egyenlet meg­

oldásai oszcillálnak Гь^,00) -en. Ezt a tényt és a 

3.7 Tétel utáni megjegyzéseket használjuk az alábbi-

. /

»

-

4-

akban.
'V

3.9. KÖVETKEZMÉNY. í'(x) klelé-

(il) feltételt, q (t) /<** ha t 

qCt) abszolút folytonos. Ha

ésСКЭgiti a.

o(log ql+O) (t—— ).
'

\

* •:*
Ä.
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akkor (El) E (t) = 0 .minden megoldására

3.10. KÖVETKEZNI ÉN Y. Tegyük fel, hogy f(.x) kielé­

gíti a (II) feltételt. F (?) e V xf (?) Ы e R), q (t) / 00 

ha t —o-, és q (t) abszolút folytonos [tr , «*>) -en. Ha
I

\ [(q-Vkv+U)-]\ 0(ql/(V^(t))

*0

E(t)= 0.а к cor az (El) egyenlet minden megoldására lim^ ^ ^

Bizonyít ás. Elegendő észrevennünk, hogy 

feltételeink mellett az 

lyettesités alkalmazható.

rtCt) - q ttl q- he- .

A fenti állitás általánosítja és egyben élesiti 

A.ü. Lazer [lő] f (?) 

nyét, melyben az

esetre vonatkozó ercdmé-э X

t
( l(q-1/2)-|

* 1

*0

korlátossága biztosítja a megoldások ü-hoz tartá­

sát, hacsak q (t) nem-csökkenő.

fc;

. , í*
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láttuk, hogy a 3.1 és 3.3 

CS2’) és (E2) egyenletek 

vizsgálatában. A különbségeket már érzékeltettük,

Azt már korábban

íét elek is hasznosak az

ezeket most nénány példával szemléltetjük, 

att) = ^ sin2tl) Legyen . Az
t Лt 1

8LX) ía(exp - x = О+ exp -
L11

egyenletre ot(tJ = ^ 

jesülnek, de a 3*7 Tétel Cii) feltétele nem telje­

sül egyetlen (0>) , (l) , Cili) feltételeket kielégitő 

o( -val sem.

2) iviost legyen

-vei a 3.3 Tétel feltételei tel-

*

;

[n'ri+?]„3 te \

з)в(t) = * t €О .n+a
*

1
>

rt ^

Í3• •
egyenletre a 3.3 TételAz x = Оx + exp1 <

L1
Ci) feltétele nem teljesül egyetlen nem-növo i:CX = oo

tulajdonságú o^-val sem, de a megoldások а 3.& Követ-

1

у
и*:» i. í
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kezmény szerint О-hoz tartanak ha t

Ez a két példa jellemzi a 3.1 és 3.7 Tételek kapcso­

latát is. dsak most az egyenletek inhomogének is le-

a me­hetnek. Például az 1) példában e(.t) * 1tlog t *
sodikban e (t) =* 1 megengedhető.

A 3.1 és 3.3 Tételek kapcsolatáról a 3.3 pontban 

mondottak az (E2^ egyenlet esetén is helytállóak. ■

}>
'
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■ t ?
■

r -
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1. FÜGGELÉK

A dolgozatban vizsgált egyenletek

(p(t)x) + g(t,
■5

x,x)x + q(t)f(x) = 0Ce)

p(t)x + a(t)x + q(t)x = О 

(p(t)x) + gQt,x,x)x + q (t) f (x) = e(t,x,x) 

x + q(t) f (x) = О

(el)
. <

(e’) !

(ED)
i-

• *
(Eli) x + q(t)x 1»О=

(E3 ’) x + q (t) f (x)= e (t)

(p(t)x) + qtt)f(x)= О(E2)
v-

(E2j) (p(t)x) + q(t)f(x)= e (t, x, x)
*

i...

(E3) x + g(t,x,x)x + f(x)= О >

• •(e3l) * g(t) X + X AОx ==
. } :

>
(КЗ’) X + g(t,x,x)x + f(x)= e (t,x,x ) 

(33L’)

‘4 /-■

-»a«

(t)g (t) X + X ex + =
if «■

J:>
V ,V

1l

a-

»-
Ä.
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2. FÜGGELÉK

/italánоs feltételek *'

*
• 'f- /

*.
'p,qéC1ft0,^) ;(I) p (t) ,q(t) > 0 ha t >t^;

К.Л -j
V- .

f (x) € c(-«о,00) ; xf(x)>0 U ^ 0) }(II) . í- *.

X

íf ■

);(xF(x) := 2
у

0
*

»1
q\2 , -t 

■(£)ф(х,у)- g(t (t) y) - b(t)Y(x,y) ,(Hl) 0 * a ,x,
P

*P , V nem-negativ folytonos függ­

vények és (x,у) / 0 ha у £ 0 ;

:ahol a,b,

i|e(t,x,y)|- r-,(t)+ rc.(t)|y| ,
JL ti

Oíbl ! rl>r?e °tt

(IV)

); г (t) ,г„(ь)&фOO

0*
i

i i
00 0*3

2 i-

[
Г,I Г XJ1 q(v) < ©о< о*0 ;T/2 4T/2(pq)(pq) p •4tt 00 >

f.

.

4 *

•í4V.~» i4L
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V

ÖO

aCt) (pali(VT) Ct)2k dt < ,+
p (t) pq

t о i

‘Pfe.y)inf
x,ye R

ahol к ísr

i..
V?

C") minden 0<R*< sup Y(x,y) számra
x,yfi R

írt tOO \ ••

j-í 1 ”■( ; Ьq (Tr) exp J R* - dT dtexp’ — Oo

p(t)
't t t tо 0 00

i

r'.i-

>
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. 4V *f
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