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1. BEVEZATES

Egy rugdéra fiiggesztett m tomegl golyd surléd-

ddsmentes kozegben vald mozgdsdt az

.x'+ f(x)=0

egyenlet irja le. Az f(x) ruzderd a kitéréssel ellen-
tétes irdnyu (xf(x\>'0 ha x#()), de altaléban
nem=linedris, BEl6fordul, hogy a rugalmasségi egylitt-

haté id6ben vdltozik. A mozgdsegyenlet ekkor:

(Bl X+ qt)f&x)=0,

ahol q(t)>0 .
Ha az impulzus az iddt81 explicit mddon is fiizg,

akkor a pont az

(E2) (p(tYx) + a(t) £(x)=0 (pt) >0) ,

ha még kilss erd is hat, akkor az

(£2") (@) x) 4 q@t)£(x)= elt,x,x)

egyenlet szerint mozog. Ilyen alaku a vAltozd fonal-



hosszusdgu matematikai inga mozgdsegyenlete is:

(‘82(17)‘.?) + glt)sin® =0,

melyben = 4&(t) az inga pillanatnyi hossza, g a
nehézségi gyorsulds, P(t) pedig a fﬁg;élegestél vald
eltérés szige. ‘

A valdsdgban azonban surlddds mindig hat a moé—.
g6 testre., Ha az elsdként tekintett golyd valamilyen

inhomeogén surlédé kozezben rezegz, akkor ezt az
(B3) ¥ + glt,x,x)x + £0x)= 0

ezyenlet, ha pedig kiilsd erd is hat, akkor az
(EBU X + g(t,;,;); + £(x)= e(t,x,%)

ecyenlet szerint teszi ( z(t,x,x)2 O) .

A fenti egyenletek mind specidlis esetei az
(E) (p(t) X).+ g(t,x,}.();( + q(t) £(x) =0
illetve az
(EW (p(t)x).+ g(t,x,i); + qt) £{x)= e(t,x,;)

differencidlegyenleteknek. Lbben a dolgozatban azzal




87 igzen gazdag irodalommal rendelkezd problémdaval
foglalkozunk, hogy az (El vagy (E’)eqyenlet szerint
mozgzS test milyen koriilmények kozott kbzeledik minden
hatédron tul az x=0 egyensulyi helyzetéhez, miktzben

a t 1id6 a végtelenbe tart, vagyis, milyen feltéto-
lek' mellett teljesiil minden mégoldésra a limg _ _ xt)=0
reldcid.

Az elsl eredmények a linearis

(1) X + q(t)x = O

ezgyenletre vonatkoztak, ezért ebben a specidlis eszet-
ben tekintsiik 4t roviden, mikor vdrhaté a lim, x (t) =0
-0

reliécid teljesiilése, Legyen x(t) mezoldas. az

5 - 2
B(t) = —— x(t) + x(t)
q (t)

enerpiafiiggvény derivaltja

-~

; qlt) .2
E(t)= - .c.l_.(_’.x(t) age
q(t) -

amelyr3l leolvashatd, hogy szémunkra csak a q(t) 20
eset a3 kedvezd (ugyanis altalaban csak eckor tudjuk

az x(t) megolddsok korlatossdgdt biztositani [U,oo)—n).



A4z is nyilvanvald, hogy a 1lim ooq(t)zoo feltétel

1 -
sziikséges az Osszes megoldds O-hoz turtdsdhoz. De
nem elegendd, ;int ahogyan azt De kleine [8] példéja
is mutatja. 56t 1966-ban Willett [25] bebizonyitotta,
‘hogy minden pozitiv nem-csitkkenf b(t) finzvényhes
1létezik olyan q(t), hogy ‘&(i)é o(t) és az (ElL)
egyenletnek van O-hoz nem tartd megolddsa.
iiilloux 1949-ben megmutatta [12] , hogy a

lim ’oq(t\=o° feltétel, ha minden mezolddsra nem is,

-
de legaldbb egyre biztositja 1imt*_°_x(x)= O telje-
siilését. Bzt a tételt a 2.4 fejezetben éltulénogitjuk
az (2) esyenletre.

Willett tételébdl sejthetd, heozgy a mezolddasok
O-hoz tartdsa szempontjdbél nem a q(t) ndvekedése
sebességének, hanem szabdlyossdganak van jelentlasérse.
A hires Armellini-Sansone-Tonelli tételben ez a ozaba-
. lyossdg a 1log qlt) "rezuldris novekedése" [23] .

Lazer l}6] 1965-ben bebizonyitotta, hozy hs a(t)

ugy tart monoton néve a végtelenbe, hogy kozben

t
gl(q—l)...l korlatos E),oo) -en, akkor is bpiz-
0

tositott (ElL) minden megoldasara 1imtq_°°x(t)= 0



teljesﬁlése.

1966-ban ic Shane gyengitetteiiréguléris novekedés
feltételét [18] .

A nem-linedaris {El) 111, (EZ) egyenletek vizsgala-
t4andl a linedris esetben bevdlt médszerek tobbségét
nem lehetett alkalmazni. Az uj mddszerek segitségével
szadmos eredmény sziiletett, melyek sokszor a linedrics
egyenletekre is tobbet mondtak a mar ismerieknél (Meir,
Willett és Wong [19,26] , Burton és Grimmer [5], Hat-
vani [14], Scott [20,21]) o Ezen ezyenleteket a 3.4
fejezethben targyaljuk.

A g(t,x,%); fékezés a vizsgdlatokban az 50-es

években jelenik meg. Az
A 2

B(t) = x(t)+ x(¢)
energia derivdltja az
(E3L) X + g(t)xv+ x =0 o z(t)2 U)
esyenlet megolddsai mentén

. : .2

Blt) = —2z(t) x(t) .

: it o
Azonnal ldthatd, hogy ha S g oo , akkor (;J)L)
‘ 9]

egy megolddsa se tart O-hoz [3]. Az (ElL) esyenletnez

A ; oo ¢
hasonloan igaz azonban, hogy az ( g =oo feltetel
6



csupan 0-hoz tartd megolddas létezését biztositja
‘(dartman.[ﬁZ]). Most tehdt a nt) integrdljdnak

kell elézszé szabdlyosan novekedni. Ha a nivekedés

tul gyors,egy uj jelenséggel taldlkozunk, iwkkor 1é-
teznet olyan megoldds, amely nem jut 21 az x=0 egyen-

sulyi helyzetig. ‘Pé1lddul az

oo : 2 . 2
X + (t + t + —-) XX ®)

t

&
b
szek szerint minden megzoldds csak akkor tarthat C-hoz,

egyenletnek az x(t): 1 + fliszvény mesoldisa,

ha £{) elegendBen, de nean tulsdgosan gyorsan novek-
szik.

1960-ban I.J. Levin és J.A. Nohel [17] bebizonvi-
tottak, hogy (EBL) minden m2zolddsdra

1im (x () ,x(t)) =(00) teljesiil,hna

1, - 0o
P z
0 Lcy £ g(t) # cy .

{.A. Smith aldobi két eredménye (1961,[22]) 1énye-
gében egészen a mai hapig,hen tulﬁaladott,és JA1 jel-
'
lemzi a vizsgdlatok korldtait. sabban a két elkiiloniils
esathen tudta biztositani a me;oldasok O-hoz tartasat,

mikor gft) mindig pozitiv konstans folstt, illetve

alatt marad. Nevezetesen bebizonyitotta, hogy na



vazy ' oo
5 0 < alt) € g(t) = cy » a(ﬂ‘\&u°°)-en és ga:zo-;
0
vagy o
1
2) O<c:9 < slt) £ b(t) g b(t) o [U,w)-—en ég g— = oo
A b
0

ak&orlaz (83L) esyenlet trividlis magolddsa globilisan
aszimptotikusan stabilis,

R.J. Ballieu és K. Peiffer 1977-ben [3] Altald-
nositottdk Smith eredményeit a nem-linedris (E3)
egyenletre, Hatvani L.‘[13] a nagy fékezés esetén

gyenzitette a  gl(t) > Co feltételt az
¥+ g@)Plx,x)x + £x)= 0

egyenletre nyert eredményében, helyettesitve a

t+4 ;
lin g g >0 (V §>0 szdmra)
1, —-— 0

t

feltétellel, mclyet az "intesrdlisan" konstananal
13 o
oA
nagyobb filizgvények elézitenek ki (pl. sin t, 1, t) .

o

A 3.3 fejezetben olyan tételt bizonyitunk, amely a
homogén egyenletek esetén nem kivdnja mez a nagy ill,

a kis csillapitds megkiilonboztetését, opecidlisan



nyerjiik, hosy az (EBL) egyenlet minden megolddsara

1i (x ) ,xt)) =(00) teljesiil, ha a z(t) csil-

;nt__”
lapitéasi egylitthatdé "integrdlisan™ egy pozitiv nem-
-nové alt) &és egy nem-csskkend b(t) fiizgvény kozott

' . ”
valtozik, melyekre jp.a = I. 1/b =ee , Wegjegyezriik,
, 0 O

hogj az inhomogén egyenletek esetén a “"nagy" és "kis"
féxezés megkiilonboztetése tovdbbra is szilkséges (3.2
fejezet ) . |

| A dolgozatban vizsgdlt egyenleteket jelolésiikkel

egyutt az 1. fiigzelékben felsofoljuk.



2. DEFINICIOK, ALAPLEMAK

2.1, Jeltlések, altalanos feltételek, definicidk

A dolgozatban R a valésnséémok, R+'a nem=-negativ
valbe mikmok halmazdt jeloli és R w xR Valamaly
a€R esetén [c]* a szdm pozitiv, [a]” a szdm n=2ga-
tiv része, vagyis [a]*= max(0,a), [a] = max(0,-a) .
¢1fa,p)-vel jelsljik az [a,b)-n értelmezett i- szer
folytonosan differencidlhatdé valds értékii fiiogvények
halmazdt. ‘ | ‘

az (E) és (B’ egyenletekben szerspld fiiizvények
aldbbi tulajdonsdgai koziil bizonyosak teljesililését

tételeink feltételezik (ezeket a tulajdonsdgokat a 2,

fiigzeldkben is Osszefoglaljuk) :
£1) b4 e'cl[to,oa); p(t) ,qlt) >0 ha t>t, ;

(11) f(x) €cl-oe,00) ;3 xf(x)>0 (5 # C) ;

X
F(x)y:=.2 g Tt O (X—-—oo)
0]

1

(i11) 0 = a(®)P(x,y) = g(t,x,(g)zylé e f¥ilx,5)

P



0w

ahol a,b, (P,\V nem-negativ foclytonos filigg-

vények és (P(x,y) #0 ha y # 0 ;

(xv) e (t,x,y)]| ry (t)+ rg(t\ [ylle
0=b<1: rl,rzéc[to,oo); rl(t) ,rz(t)é 0

-

(vi)

ahol k = inf ‘-P(x,y) t
X, Y& K
Azt mondjuk,hogy az (E) ezyeniet trividlis megolddaa
(i) stabilis, ha bdrmely t,=hoz és poritiv £ arvém-
hoz van olyan pozitiv' A'(E,tu) , hogy ha |:-:(‘;,O)|+ l'\ (tu\l< J,
:

-akkor fx(t)] + [x(t)| <€ teljesiil, hicsak t>%, ;

(ii) spabilis x-ben, ha bdrmely ¢t ,~hoz és pozitiv €

szamhoz van olyan pozitiv J-(E,to) , hogy ha

‘X(to)l + lx(t0)|<5‘, akkor [x(t)|<€ hacsak t2>t_ ;

\
"~

(1ii) globdlisan aszimptotikusan stabilis (z.a.s.),

ha stabilis és minden x(t) mejolddsra

1im,__ (6] ,x($))=(0,0) ;



o 1

(iv) globdlisan agszimptotikusan stabilis x~ben,

- ha stabilis x-ben és minden x(t) megoldésra

lim x(t)= 0, ,

t——.oo
Ljapunov fiiggvényként az

=

) .2
2(t) = b x(t)+ F(x())

q (t)

' 3
energiafiiggvényt haszndljuk, ahol F(x):=2f 5
O

4 megolddsok viselkedésére az 1(t) viselkedésébsl

kovetkeztetink. A (II) feltétel miatt az x @) rez-

’

0ldéds korlatossdga azonnal adddik., Attraktivitdsi té-
teleinkben azt fogjuk bebizonyitani, hosy ha x(t) az

(2’) asegolddsa, akkor 1lim E(t)= 0 . Ebb3l a (II)

{, —e= 0

feltétel alapjédn kapjﬁk, hogy

p(t) .2
1lim x(t)= 1im x(t)= O .
t oo q(t) L egs

£

Megjegyezziik, hogy a 1lim,. ., _ _F x)<oo , telje-

siilne, akkar 411itdsaink csak a korldtos megdldésokra

vonatkozninak,
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2.2. A megolddsok korldtosséga, néhiny tulajdonsédga

Az aszimptotikus viselkedés vizsgdlatdnak csak
olyan megoldésok esetén van értelme,'melyek léteznck
valamely fto,o-) intervallumon. Attraktivitdsi téte-
leink 4ltaldban minden megoldasra vonatkoznak, ezért
szilkségilink van egy az ©6sszes megoldds valamely [to,oo)—en

vald létezését biztositd lemmdra.

2.1. LEMA. Tegyiik fel, hozy az (E’) ezyenletben

szerepld filizgvények rendelkeznek az (I) - (VI) tu-

lajdonségokkal, Ekkor az (E’) egyenlet minden meg-—

clddsa létezik,laz E(t) fiiggvény korlatos valtozdsu

[to,oe) ~en. Bniatt létezik a 'lim, _ _E(t) = A véges

w

hatdrérték, az esyenlet minden x(t) magolddsa és
P (t) 32
q (t)

Oe

(t) fizgvény korldtosak [to,°‘) =g

Bizonyitds., Lezyen x(t)az (E’) ezyenlet

megolddsa. Tegyiik fel, hozy x(t) 1létezik a [to,tl)

intervallumon, Az £(t) derivdltjdra az aldbbi Ussze-
filiggés nyerheté:
glt,x($),x ) 5o (pa)

(2.1) Blt)= -2 AT A S
q (t) q”
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. 1 . a ( St :
2e (t,x(t),x (£)) — xtt)<| 2k i +(pq) (t) e xz(t)+

q (f:) pld)  pq q (t)

)[_p_@ éz(t\ + 1) %

q (t)

2} a(ﬂ+ i .(t)] -“(t) 2( . (t)' ce (+) X
< + R S . B
b (5) % : J172 i 170

Pq (pPc (pa)
aq
X[}
p

(t)) (u;(t)+ 1) ok

ahol k= inf (P'(x(t),;c(t)‘) i

[t(')’tl)

Az dltaldnositott Bellman lemma segitségdvel

2
r r 2
o sl (e 2 ()(9-) )

‘

P4
2

(nalanay [ll], 1.3 fejezet, 1.6 1emma) kapjuk, hogzy
glt) és izy =x(t),x(t) is korlédtos [to,tl) -en

ha t,<oco,ami lehetetlen. Lzért sziliksézképpen t,=ee .

1
A pozitiv rész definicidjdt felhaszndlva, mivel

(2.1) jobboldala nem negativ, kapjuk:

; (t i
[E(t)]+ “| ok = ) +(pO‘) (t)y| B8() + 2
plt) pg (pa)



R e

/4

+ ——T7—r2 = (t) (E) (t)) () + 1)
P

E(t) >0 miatt pedig

t - %
A [Eee)] et s+ |\ 2] ar
" 0
% o
adédik. Az (V) és (VI) feltételek biztositjék a fen-

tiek alapjdn, hogy E(t) korldtos vdltozdsu [to,eo) -en.
p(t) -2

az x(t) és mx(t) fligcgvények korlitossdga
lim "(x)=ee alapjédn nyilvanvald.

X i >

Megjegyzés, Hha az e(At,x,y) fiiggvény (IV) Lecs-

lésében @ =1 , akkor a (VI) ¢és

oo : /4

I . s {a 2 3
!/ @Q)jJZ(P)

0

(t)
{[2 ?_(-E).*. SEE.). 4 1“2 t] 1+ L oo (1(: inf : \p(}(,_‘{))
plt pq p (t) z,y € R
e

feltételt elegendd megkdvetelni.

'
’



P

Az (B) és (&) ezyenletek megolddsainak jelval=-
“tdsuk, monotonitdsi tulajdonsdgaik szerinti osztalyo-
zésa nagymértékben meskdnnyiti aszimptotikus visel-

kedésiik vizsgdlatédt., Ennek lehetdségét teremti meg

az aladbbi hdrom lemma,

2.2, LAMMA, Teljesiilpnek az (I)- (III) feltételek.

Legyen =x(t) a_homogén (E) egyenlet nem-trividlis

megoldédsa, Ha tl’ t, az i(t) szomszédos zérohelyei,

akkor létezik olyan 1t € ﬁdft2) , hogy x(t)=o0.

Bizonyt as, Helyettesitsiink az ()

egyenletbe t helyére t, -et, %, -t
p(t,) x(s,) +‘q(ti\f(x'('ti\) =0 {1 = 1,2},

Mivel ty,t, az x(t) szomszédos zérohelyei és
f(X(ti” = 0 (i = 1,2) , xapjuk hogy sign(%(tﬂ) #
sign(i(tzn-~. Szilkkségképpen eign(x(tﬂ) ¢ sign(x(tzn .

Bzek utdn T az x(t) folytonossdga miatt létezik.

2.3.  LBUMA. Teljesiilnek az (I)-(vI) feltételsk,

r, (t)

és_tegyiik fel, hogy 1lim, - - (£\ = 0%

Lezyen x(t) az (B’) egyenlet olyan megoldésa, melyre

lim, _ _ B(t) >0 . Ha t,,%, 2z %(t) elegendden
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nagy_szomszédos_zérdhelyei, akkor létezik olyan

'—b.é(tl,tz) , hogy =x(t) = 0.

A 2,2 Lemma szerint minden megoldds, a 2.3 Lemma
szerint minden O-hoz nem tarté megoldds vagy 08z—
cillal Fto,w)-en, vagy t elég nagy értékeire mo-

T NnoLons

83izonyditds. Legyen x(t) az (E’) egyen-

let 1limg BElt) > 0 tulajdonsdgu megolddsa, ILe-
o 0O

8yenek tl,"tz az x(t) olyan szomszédos zérdhelyei,
hogy ha t, <T, akkor

rl('t')

—— < £(x(T)

q (T)
“teljestljon, Ha ilyen t,,%t, nem 1étezik, akxor !cé.qz
a bizonyitds. Az egyenletbe t.-t (i ='1,2) helyet

" tesitve kapj_ulc:
-—rl(ti)< p(fi) .X.(ti) + q(ti\f(x (tl)) -
{ ;

g
sign(%(t,)) , amib6l sign(x(t;)) # sisn x(t,)) és

1étezdse kbvetkezik.,

t, megvdlasztdsdbdl adddik, hogy S_i.-'{;n(ii(tl)) #

ct



2.4. LRMMA, Teljesiilnek az (I) -(VI) feltételek.

Lezyen x(t) az (BE’) egyenlet olyan megolddsa, mely-

re lim, ~__EG®) =A >0 1&tezik.
Ekkor : '

av) ha x (t) =nek végtelen sok zérdhelye 1étezik bdr-

mely- [tl,oo)-_e_a_n_ (tl 2 to), akkor oszcillédl is
[totw) =-cn; 4
348 :
b) ha [tn,tn olyan j.nt;ervallum_svorozati hogy

tg oo lames), b > 0], 2g)= x(3)- 0 g

minden n-re Ix()] > o [t}_’l,ti] -n, akkor

1im [x(s2) =x(t2) [ = 0 o

nN-e=oo :
. %) 22 s
lim a 2B (t)= o
' (%) ’
. tw=—oce , t€ |J [tn’tn] q
n=]1
¢) ha lx(t)‘, > 0 valamely [tl,w) intervallumon,

(O
)]

1/2

oo

g (%) =oe , akkor lim, _ Plx@))=A.
5 ;

0 :

« A feltételek még nem biztositjdk = mezoldédsok

' 243 Lemmdban leirt tulajdonsdgdt. Vizsgdlatainkban
azonban gvakran elegend5 lesz erre a lemmdAra hivat-

koznunk,



e, -

Bizonyitéds. a) Legyen {ﬁ i az xlt) zé-

rohelyeinek olyan sorozata, hogy 11m t =0

n) 2
N ~=pe q(’t )

xz(tn)>>0 y, ha n elég nagy, vagyis =x(t) nem lehet

Ekkor 1lim (t) A, amib8l addédik, hogy

~ jeltarté,

b) ‘Az 411it4s azonnal adédik abbdl, hozy ha {tnﬁ
ootn -”) y
2

az ;(t).Zéréhelyeinek egy sorozata (limn*_
akkor 1im __ _ F(x(t)) =2, tovébbs ha t' és +t
az  x(t) olyan szomszédos zérdhelyei, hogy [tl t2] o
x(t) jeltarts, akkor F(x(t)) < #(x()) ¢ P(x(+2))

vagy F(x (tl)) > P(x (t“ > F(x (t‘?n ha ¢t é[tl,tzlh .

- ¢) Ha ;(t) -nek van zérdéhelye barmely [t2,°°) -en

(tzétl) s akkor az 411itds b)-bdl kdvetkezik. Ha
nincs, akkor x(t) monoton az elég nagy t értékekre,

ezért létezik a lim F(x(t)) =p hatdrérték,

t ~e= 0o

Ha m <A , akkor létezik olyan b >0 , hogy

. ' v/2
|x(t)|:> Gi(gf (t) na t elég nagy. De integrdlés

utdn ellentmondédsba keriilink x(t) korldtossdgdval.

A 1emméf/teljesen bebizonyitottuk.
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Vizsgdlatainkban ki fogjuk haszndni a megolddsok
o0szcilldcids viselkedésének szabdlyossagat, Ezért most
a O -hoz nem tartd oszcillald megolddsok zéro- illetve
szélsbérték~helyeinek elhelyezkedésére vonatkozdan bi-

zonyitunk be néhdny 4llitést,

2.5. LEMMA, Tegyiik fel, hozy az (52) ezyenlet ren-

delkezik az (I) - (VI) tulajdonsdgokkal. Le-yen x (t)

az (Eﬂ egyenlet clyan oszcilldldé megolddsa, melyre

lim

TS E(t)=A>0 . Lesyen O < 81 - €2<7\ . Ikkor

ts

&
of (-4
p

t

1

oo 1/2
Az &dllitAdsbol azonnal latszik, hozy ha 5 (%) L 0o,

R

akkor piﬁds U-hoz nem tarté oszcillald megoldas,

mert csak véges sok lemmabeli tulajdonsagu [tl,tzl

A . : oo 1q)1/2
intervallum létezik. Ha p=dig g (p) = oo ,
t

akkor a zérdhelyek tdvolsagidra kagunk alsd becslést.



S

Speciéliéan addédik, hogy az ilycn megolddsok zérd-
- helyei véges T pontban nem torldédhatnak, ugyanis

akkor

: ‘3 %
q ) -
. oe >g (-—) > J-llim ‘n = oo
+

0

lenne, ami ellentmond (I) -nek.

Blizonyit ds, Nyilvén

51 s
A€, &)= B - P €k (5, €4 € 1)

q (t)

ahol K = sup E(t) . Peltehetjilkk, hogy x(t)>0
[tos°°)

[tl,tzl—n. Integraldssal a

e o 5 o
7 5 e - [
s %3

egyenl6€1enséghez jutunk. Most mar 51 és é;
létezése azonnal adddik #(x) folytonossdgdbdl és

x(t) korlatossagabol.

A B82élsbértéx-hzlyek tavolsdgara felsl becslés is

adhaté. Az Osszefiiggések bonyolultsédza miatt a becs=—



A (o

1lést csak két specidlis esetben végezziik el.

2.6, LAUMA, tezyiik fel, hoey (E’) rendelkezik az

(1) - (zv), (vI) +tulajdonsigokkal, b(t) = 1,

g ry<ee (1 = 1,2) . Legyen_ x(t) az (2°) olyan_osz-

t

0 :

cilléld megolddsa, melyre limt_._ooﬂ(t) =A> 0. Ekkor
léteznek olyan f, A pozitiv szdmok, hogy ha tl, t2

az x(t) sZomszédos_zérdhelyei, akkor

Bizonyitds, Tegyilk fel elészor, hogy

lim (t)= 0 , Legyen T. olyan, hogy ha

t oo 1 0

o » akkor \E(t)--':ﬂ(%L . Legyenek t,, t, az x (t)

To-nél nagyobb szomszédos zérdhelyei. A 2.3 Lemma

miatt =x(t) jeltartd, feltehetjiik, hozy pozitiv,

t>T

ezen a szakaszon, A Tl < 'tz szamokat vélasszuk meg
ugy (tl,tz)—ben, hogy F(x ('t’l)) - F(x('tzn= %‘ tel-
jesiiljon., A 2.5 Lemma miatt léteznek olyan ‘5_1, 52>O
szémok;ﬁogy J2> 72 ;Tl> 6~1>O . Most becsiiljiik
felirsl [T,,t,] hosszét. [T,,t,]-n x)> o0,

k< x(t)<K, k< f(x¢)) <X valumely csax A -tol

fiigg6 k,K sSzdmokkal. Ezért
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(BIe8)) ” wiale S10- 200) - alihic &
-1k + Tl(t)+ O 1)r2(t\ :
ahol L = sup \;(t)‘. Innen Prz,tzl-n valdé integra-

[t()’°°)
léssal kapjuk, hogy

5. s
a k(t, - 't'2) = poL + ‘ ry i 1) g o
T; 4

Az rlés T, fliggvények [to,oo)-en vald integralha-
tésdga miatt (t2-772) egy csak x(t) -t81 fiiggs
korldt alatt marad. da ugyanezt beldtjuk (Ti - tl)-re
is, akkor kész a bizonyitds, ugyanis az x(t) szom-
szédos zérohelyei tdvolsagdnak korlatossdzga innen
mar kovetkezik.

[tl’.’tl-}‘-en O<Kl<—X(t)<r&1 ’ kl< -f(i(t‘)< hl
valamely tl-t61 fliggetlen kl,hL pozitiv szamokkal.

Legyen R = sup “V(x(t),(g)l/%t);(t)) . Ekkor

6 °°)

(p (t) ;{(t))‘= -z (t,x(t) ,;c(t)) }.C(t)- q(t) £ (x(t)) +

e(t,x(t),x(t)) .
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Integraljunk [t ,t]-n (:47T)) :

t t T
¢ g o
p(t)x(t) = -exp -g - X a(T)f (x(Texp jt: aT +
. p p
b ] %y
% % T
g . g
exp -'-S - [e(T’,x(ﬁ,x(’t’” exp j- ar
p P
LFE "
Innen rutin szdmoléassal:
t i1
. kiq R R
x(t) > 1 lexp —g_ f exp g— FE gl
P Py Py
| t

t
1l D K
e S(TI(T) +(L2+ l)rz(l') d't'é_]:q_l.i.]_ &
bt e poR

ty

+ :
g (rl(T)+(l,2 + l)rz('t)) d'r.
t

1

= dplei (s
—exp{ - — it - tl) e
Py >

s T B

elézgé nagy, a masodik integrédl tetszllezesen
Py91Ky
<
sz

Ha tl

adott pozitiv E-nél kiseboé valik, Legyen

m™m




R

[tl,rl] -en integrdljuk a fenti eryenldtlenséget:

2

plqlk pP,q,k
£ FRUEY -l ) (_f_l_g)(tl ) o Jatih
PR PR
adédik, ahonnan mdr lAathaté, hogy (Tl -tl) tl-té'l

és T -tb1 fiigzetlen korldt alatt marad,

Ha a' lim r.(t)= 0 feltételt elhazyjuk,

t—=oo
akkor legyenek 60<,6'1 az x(t) szomszédos zérd-
helyei, t, legyen az x (t) 50 utdni, %, pedig a
6'1 utdni elsl zérdhelye, HMost ugyanis nem tudjuk,
hogy x(t) szélsbérték-nelyei kdzt jelet vilt. Ha
5—1 elég nazy, (tl,tz)-ben 1étezik pontosan egy Tl
és 72 az F(X(Tl)) = F(x(,'tg))=% tulajdonsédgsal
(2.4 Lemma b) része ) . Nyilvén [T ,tgl-n x (t)
jeltartd, ezért a [Tl,r,z]—re és [7:2,1:2]-1‘9. vonat-
kozd bzcslések elvégezhetlk. A [tl,’rll—en alkalma-
hott ljdbde akkemds vésvehnlth ko, ha oit “xth)
jelet valt.

A }eaimét bebizonyitottuk.

az (E2) olyan oszcilldld megolddsa, melyre



L

Timy o n,(t) =A>0 . Bkkor léteznek olyan 17‘ @

: \)‘, ® 5 t), 69 , pozitiv szdmok, hogy x(t)  Dbér-

mely két szomszédos t, b5 zérdhelyére és a ’tl, i

——— ——— . 2

nelyekre (1,<T,<T,<t,, Flx(®) = B(x(T,)) = 2)

N

teljesiilnek az aldbbiak:

5 v |
\) <S e a(T) d'tdt<@l ,
5 ¥
T2 %
q
O .
T
1
t
1
e ’T) { S e

A bizonyitds a 2.6 Lemme bizonyitdsdnak ismere-

tében konnyen elvégezhetd,

A fenti 4l1litds a linedris

X + q(t)x = 0
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egyenletré ismert (Goppel f?] 50. oldal, Atkinson [2])

tn+1

nm. (Tl'-g /2 la o

I = oo

n

6sszefﬁggés (E2) -re vonatkozd &ltaldnositéssnak te-
kinthet6‘({?n} az x(t) megoldds szélsbérték-helyei-
nek a sorozata) , anely a é(t)= o (q3/2(t)) felté-
tel mellett teljesiil (t-=oo),

2.3, A megolddsok O-hoz tartdsanak szilkséges

feltételei

A bevezetlben vdzlatosan szdltunk azokrdl a
feltételekr8l, melyek szilkségesek minden mcgoldds
O=hoz tartdsdhoz. Ezt a kérdéskdrt részletescen meg-
vizegaljuk az (B) illetve az (&’) egyenletek esetén.

Hafﬁé
@) (plt)x) + g(,x,x)x + qlt)f(x)= O

egyenletben glt,x,x) "kicsi" és p(t),q &) "megkoze-
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litéen konstans", akxor az egyenlet a csillapitat-

‘lan rezgést leird
X+ flx)= 0

égyenletre emlékeztet. Azt varjuk ekkor, hogy a meg-
olddsok csillapitatlanul oszcilldlnak [to,°°) -en.

Ezt a sejtésiinket izazolja az aldbbi tétel.

2.1. TETEL. Tegyilk fel, hozy (I) - (111), (vI)

oo
teljesiilnek., Ha f 2« oo I l(Pg)‘l < oo , akkor
t

0

(E) minden megolddsdra lim, _ _B (ﬂ > 0, és_ha

o°
I q =0 , akkor a megolddsok oszcilldlnak is,
t

0

Bizonyitds. Legyen x(t) az (&) megol-

dasa. (2 1) képlet alapjdn a kovetkezd ezyenlét—

lenséghez jutunk:

5 (t) ;-(x 4 + Iea) l(t))E(t]

p (t) oLe}

ahol K = sup Y(x(t),(zr(t);c(t)) :

[to,oo



- DB
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Ezt integrdlva adddik, hogy 1imt_._”m‘(t) >0 .
Most bizonyitsuk be a mdsodik 4llitdst! Az egyen-

let kétszeri integréldsa utdn a

t

(2.2) ‘x(.t)- x(t0)+ p(to) ( x((t)OZaxp {-

p(T
tU

ot
o2 BV
2
1

10y

dsdT

O 1 0]

t T s
&
— exp{- £ (x(s)) q(s) exp (
p(T) P
tO to tO to

egyenléséghez jutunk, legyiik fel, hogy x(t) jeltar-
t6, példdul pozitiv [to,oo)-en. Mivel 1lim. _  E(t) >0,
van olyan pozitiv d szédm, hogy f(x(t))>3 [to,c‘)-en.

x(t) feliilr8l becsiilhets:

, : t t T
1 1
x(t) < x(to‘ﬁ Lj PSR, i A‘( g qle) dsal .
e t,

p(r) p(t)
o 0
oo, .
A J I(gg) ‘ tulajdonsig miatt léteznek olyan
{7
kl,k2 pozitiv szdmok, hogy ha ¢ >t akkor

ky < plt)qlt) <k, .



- g

x(t) -t igy tovdbb becsiilhetjiik:

t o2
L 1
x(t) < x(t,) + - g eiwm q :
It k
g <%
0 0

‘ q =% miatt ha 1t elég nagy akkor a jobboldal
N ;
C :

negativvd vdlik, ami ellentmond annak, hogy x(t)
jeltartdé. Kovetkezésképpen (E) minden megoldésa

oszcilldl [tO,OO) -eN,

Megjegyesziik, hogy a limt_.“E(t) >0 reld-
cié ugyanigy bizonyithaté az (E’) ezyenletre is,
ha teljesiilnek a (IV) és (V) feltételek.

Ha a g(t,x,;:) vagy a plt)qt) fiisegvény tul
gyorsan nd, az ellenkez8 eset valdsul meg. A meg=-
olddsok "beragadnak", vagyis nem oszcillAlnak és
létezik a limt__“lx(t)l > 0 hatdrérték. Ezt az

egsetet irja le a

242. TETEL, Tegyilk fel, hogy (I) - (1II),

(vi) teljesiilnek, és P (x,y)= 1 . Ha
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oo : t t T
1 a a
exp —g - q(T) exp - 3dTas <oo,
p (t) P p
to tU to tO

- akkor az (E) esyenletnek van olyan nem-o0s8zcilldld

:negold:glsa.4 melyre limt__oo\x(t)'>0 7

Bizonyitds., Legyen x(t) olyan megol-

dés, amelyre a t; pillanatban x(tl)= 1, x(t)=0

teljesiils A (2.2) képlet szerint ha t >t,, akkor

t T T |

X
x(t)= 1 - S exp —g - I £ (x(s)) q(s) X

p () p

1 by iy

s

Xexp g . dsdt .
tl i

Az lf(x(t)“ fligzvény kisebb valamely K szémndl,
amely nem fiigg t%,-t6l, csupdn az x(tl) " x(tl)
értékektsl (1dsd a 2.1 Lemma bizonyitésdban Elt)

felsd becslését) . Lzért



)

g - T s
1 a a
x{t) >3 KS exp -j - g q (8) exp I - »dedT ,
p(T) P p
' gy L1

Ha most tll -et ugy vdlasztjuk, hogy a jobboldalon

levd integral 2%— -n3l kiseob legyen, akkor x(t) >%

adédik, ami dllitdsunkat igazolja.

A bizonyitds egyszeriien dtvihetd az (g’) esyen-
letre, ha az el(t,x,x) (IV) becslésében szerespld

TysTs fiiggvényekre az

g;(rl ; rz(g)g) o

feltétel teljesiil,
‘A tétel elég bonyolultnak tiing feltétele telje=—

oo 1/2
siil példaul akkor, ha f (9) Loo s VARYy a
t \P

0< m e/p(t) dy s> t()) esetben,ha a(t) mono-

& . il
ton nem-cstkkend es S e [24] .
o
O

A fenti két tétel alapjén ésszerii tehdt felten-
niink vizsgdlataink sorén, hogy (8) és (&?)

rendelkezzenek az aldbbi tulajdonsdgokkal:
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cﬂ"’\%
—
no
i o> i) S
&
'ol’*'c?
Q el
S®
—
]

O - + =
3 b b
(m) i exp { - - q(T)exp{R| -y dTdt =ee,
p(t) : p / ; o

0 6 0 0
ahol O0< R'<sup W(x,y) £
X, yER
Mint shogyan a bevezetdben érzékeltettiik, ezek a
feltételek még nem garantdljdk minden megolddsra -
Lim, oo E (t)=0 teljesiilését, A kivetkezl két részben
azt vizsgdljuk meg, mit tudunk mondani a megolddsok-

rdl ezek ismeretében. .

. OO

a  (pg) : 5
2.4. Az 2- + =pe feltétel nem elegendod
P Pq -

to

7

Az el18z8 pontban megmutattuk, hogy az

(23 + (pQ) )=oo
p pPq

0
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teljesiilése sziikséges ahhoz, hogy (E) minden meg-
‘0lddsa O-~hoz tartson ha teoce, lMost egy uj bizonyi-

tdst adunk az
(L) (_p(t);c).+ alt)x + qt)x = 0

egyenlet esetén Hartman ismert tételére [12], amely

O-hoz tartd megoldéds 1létezését biztositja.

2.3. TETEL, Tegyiikk fel, hogy teljesiilnek az (I),

(Vi) feltételek. Ha

(2 22)-en
P pPq

akkor létezik az (BL) egyenletnek olyan megolddsa,

melyre lim, _ _E(t)= 0.

1 ——

Bizonyitas, Iranszformédljuk az (iL)

egyenletet nz

e

i}
—
i B Yo
N —

A

~~

ct

e

<5

&G .
i
i
——
1 Q
—————
f‘\‘\)'
ct
S
4
|
—
©
~
N
I
)
0
—
F P
S
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rendszerré. Az E (t) filggvény most

E(t) = y2(t)+ x°(¢)

alaku lesz,
Legyen Hy = {xz + y2 € 1} » S5 a hatdra, Hy

pedig legyen HU-nak az (EL*) megoldésai mentén

vett képe a t pillanatban, Tekintsik a P: 5 —=R,

fliggvényt, amely az (xo,yo) kezdeti értékekhez a
e E(t) szdmot rendeli. Beldtjuk, hogy CP
folytonos S,-on. inhez elezendd bebizonyitani, hogy
minden pozitiv &€ =hoz van olyan pozitiv d, hogy ha

\x(’) - x(’)’|< J és |y6 - y(’)’|<J~, akkor mindan t > t,
esetén Ix(’c;to, x5y 3oF ~mBT b, 22 yu”)\ée és
Lades 6o mdy b)) - U855 Wy YN SE . vazrie
hogy (EL.!) minden mezoldasa stabilis, 3z pedig
(EL*®) 1inearitdsa és a (VI) feltdtel miatt teljesiil,
ugyanis (EL’) trividlis megolddsa stabilis, ekkor pe-
dig minden megoldds stabilis ([9] , I1,fejezet, 6§,
1.7étel)s
Ha 8, minden pontjédra Lp(xo,yo)> 0 (vagyis min-
den megolddsra 1imt__°..‘&‘(t) > 0 ) teljesiil, akkor
‘P folytonossdga miatt létezik egy & > 0 szém,

hogy \P(xo,yo) > & minden pontban. Ez azt jelenti,



Y

hogy Ht minden it esetén tartalmazza az

{;2 + y2 < 5'} halmazt,
Ugyanakkor Liuville tétele szerint ([9], II.fejezet
3.4 )

Sy e o ok Be TRt
#'(t)'..lgtddy éo p{ £Op+2pq dxody, =
i Y B ey
oo {- { (3B}
0

ahol /u,(t) a H, teriilete. A tétel feltétele szérint
1imt___°‘/u~(t) = 0 , anib8l kovetkezik, hogy 10&*5
nem tartalmazhat pozitiv sugaru gombot. Kovetkezés-—
képpen létezni kell olyan (xo,yo) pontnak SO -0on,
hogy a beldle induld (x(t), y()) megolddsra

lim E(t) = 0 teljesiil, A4 tételt bebizonyitottuk,

t = 0o

A fenti bizonyitds vAltoztatds nélkiil végigvihe-
t5 4ltaldnos linedris rendszerek esetén is, csupan
E(t),héiyett kell a megfeleld Ljapunov fiizgvényt hasz-
hélni.
Most egy olyan példat ismertetiink, amely azt iga-

zolja, hogy a fenti tételben tobbet nem &llithatunk,



e

Az
i (EBL) X+ glt)x + x =0
egyenletben g(t) -t ugy definidljuk, hogy f :°g - i
teljesiil, de lesz O -hoz nem tarté megoldésa?
| Legyeﬁ
/ . 1
Q- 'ha ¢ ¢ &Lt ] vagy tn+;:I $t®1t
S(t) =
< 1
1l ha tn £t tn+;;?

ahol a {tn} sorozatot az aldbbiak szerint hatdroz-
Zuk mege
Tekintsiik az

X+ Xx=0
egyenlet x(0) =1 , x(0) = 0 kezdeti feltételekhez
tartozéd xl(t) megolddsdt., Legyen t, az xl(t) 0
utdni elsd szélsbértékhelye. A [tl,tl+ %] interval-
lumon folytassuk xl(t) -t differenciélhaté médon az

e .
X + X+ xXx =20

7
-

egyenléf megolddsdval, majd a [tl+%’ t2] -n ujra az
X+ X =0

megolddsdval, ahol t, a tl*% nténi elsd szélsGér-

tékhely, és igy tovdbb a kétféle folytatds vAltakozzon,

T l z Y ” ’ ” s 7’
es tn legyena tn—l+ﬁ utdni elsd szélsdértékhely.
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Nyilvdn az igy nyert fiiggvény megolddsa lesz az (E3L)
. egyenletnek,

Most bebizonyitjuk, hogy a megkonstrudlt megolddsra
Vi BG) 2 0,
Végezzik el az (E3L) egyenletﬁen az
x(t) = r ) cos P ()
x(t) = -r(t) sin P ()
transzformdciét, Az aldbbi rendszert kapjuk:
¢

: oy

“1im

e %g (t) sin2?f

-z (t) sinz(P i

e

++l

smch}.

n=1

g
ahol r2(t) = E(t) és r(o=) =exp{z g
t

A [t tn+n—-3fi] intervallumon kapjuk, hogy

_ e 2
s1n?P(t) <[P (t) -‘D(tn))2 = (g(l-%g('t)sinZtP(T))df) <

tn

// - 2
Z %(t - tn\

Innen

I‘(oﬂ) B exp{ ZZE%TE—}>O.
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Ugyanakkof
o
gg— E %304.
0 “s

‘Megjegyezziik, hogy a g(t) fiiggvény ezy [0,05) -en
integrdlhaté fiiggvénnyel kisimifhaté, ez azonban az
egyenlet fent bizonyitott tulajdonségdt nem befolyéd-
solja (1ésd Bellmann [4] 6. fejezet ) .

2¢5.: A2 (Eﬂ egyenlet nem-0szcilléld megol-

ddsainak O ~hoz tartéasa

A 2.3 pontban feltételét adtuk annak, hogy az (E’)
egyenletnek legyen O -hoz nem tarté nem-oszcilldld
megoldédsa, Meg fogjuk mutatni, hogy ha ennek ponto-
sanvaz elientéttje; nevezetesen az (1) feltétel tel-
jesiil, akkor a nem-o0szcilldlé megolddsok , amennyiben
léteznek, mind O -hoz tartanak, ha t-so0°. Az d11li-
tést az egyszeriiség kedvéért csak az (E) egyenlet-
re fogalmazzuk meg, A bizonyitds az (E2) egyenletre

egyszeriien dtvihet8, ha az el(t,x,y) fiigevény (IV)
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becslésében szerepld Ty sT, -Te jo.rl L oo és

| o
oo

S r2(§)2<oo teljesiil,
b -

'-2.4..'1‘ETEL. Tegyiik fel, hoé;y teljesiilnek az

(1) - (z1I) , (VI) feltételek és r'q =oe , Ha min-
¥
den 0<R<sup VYix,y) szémra
X,yER
b o % t
() gp—]'(—ﬂexp -R*g g E a(T) exp R" f—g atdat =oo ,
%o Vo ) 8G o

akkor az (E) egyenlet minden nem-oszcilldld megoldd-

sdra 1lim x(t) = 0.

t —»00

Bizonytds., Lezyen x(t) az (E) egyenlet-

nek nem-o0szcilldldé megolddsa. Tegyilik fel, hogy
lim, "\x @) > 0. Feltehetd, hogy x(t) pozitiv,
Ekkor ~lim, __, flx(t)) >k >o0.

A (2.2) egyenldség alapjén



A0 w

t T
o< x(t) £ x(to)+K g E%?) exXp 4 = g g atT -~
: to tO
' t 4 ‘ T s
..1; fﬁl(‘_ﬂ exp {- fg} sq(s) exp {g %}dsd'ﬁ’ .
o o )Ny tg

ahol g = gft,x (), x(t) . az (M) feltétel miatt

: 4 5 T s
ol g P exP{ ép ) q(s) exp g B o
0

%o 0 0

Az egyenl8tlenség jobb oldala =-oe —be tart, ha t-eoe,
ami ellentmond x(t) > 0 -nak., Az ellentmonddst a
lim, _ _ x(t) # 0 feltételezés okozta, A tételt be-
bizonyitottuke

Az (E2) egyenletre a 2,2 és 2,3 tételek alapjédn
mondhatjuk [14] ,v hogy a nem~o0szcillédldé megolddsok
az (1), (1I) és (VI) feltételek teljesiilése mellett

akkor é8 csak akkor tartanak O -hoz, ha

(- -4

+
gi)"l(ﬂ! alT) datdt = oo,
o 0



il -

o
Az I q =o° reldcid most a feltételbdl adbdik.

%

Most tegyiik fel, hogy pb (t)q G nem-csokkend
~[to,°°) -en. Ekkor

t : 3 T 8

T (1 JO
Sﬁ-mexp R 5 qls) exp (R 2 dsdl =
tO tO to t

ahol a jobboldal oe -be tart (t-=oee) ha

oo
f g =oo , Specidlisan az (83) egyenletre adddik

o
R.J Ballieu és K. Peiffer eredménye [3] , mely sze-
rint s nem-o0szcilldlé megolddsok O -~hoz tartanak, ha

a glt,x,7) < bWIW(x,y) becslésben b(t) nem-cstkke-
= |
né és g % =00 ,

*o
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3. ATTRAKTIVITASI TETELEK

3.1. Bevezetés

A dolgozat f8 fejezetében olyan tételeket bizonyi-—
tunk, mélyek biztositjdk, hogy az (E) illetve az (E?)
egyenletek minden megoldédsira limt___”E(t)= 0 telje-
stiljon.

Mindenekel8tt emlékeztetink rd, hogy az (I) - (v1)
feltételek teljesiilésébdl kivetkezik, hogy az (E’) meg-
oldédsai léteznek valamely [to,oo) intervallumon és 1é-

tezik a

1im BE®)= 1im

t—=o0e t --oce

D) .2

(__ x (t)+ F(x(t)))
q (t)

véges hatérérték (2.1 Lemma ). Az (M) feltétel biztosit-

ja a nem-oszcilldld megolddsok O-hoz tartédsit (2.3 Té-

tel) « A bizonyitésokban ki fogjuk haszndlni, hogy ha

oo, \1/2 !
g (g) =oe , akkor a O0O-hoz nem tarté oszcilldld meg-
t

0

olddsok zérdhelyei mem torlédhatnak véges értékhez (2.5

ERR
Lemma). Beldthatd, hogy a f (-‘1) =oe relécié (i1)-bsl

» AD
o
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KSvetkezik.

Attraktivitdsi tételeinket hdrom kilon részben fo-
galmazzuk meg. El6szor az (Eq olyan eseteit vizsgdl-
juk, melyekben vagy a -g(t,x,x)x csillapités befo-

lydsolja dﬁntden a megoldésok“viselkedését, vagy.a
-g(t,x,;); és a pl(t),qlt) hatésa egvarént lényeges

{1, 2 pont) . Ugyanezekben az esetekben fogalmazunk meg
globalis aszimptotikus stabilitési tételeket a homogén
(r) egyenletre (3.3 pont), melyek a homogenitast kihasz-
nédlva lényegesen gyengitik az inhomogén esetre megfogal-—
SAEath Chtetal Pertsiataty. 1 Salb e il ol

pitds p(t),alt) hatdsihoz viszonyitott elhanye-
golhatésdga epgy méds irényu fejlesztdst tesz lehetdvé

(3.4 pont). Eredményeinket Osszehasonlitjuk egyméssal,

3.2. Attraktivitési tételekr az (B’) egyenletre

Eredményeink megfogalmazdsdhoz sziikségink lesz
az aldbbi definicidkra.
3.1. DEFINICIC [14]. 2z 2 : [ty,o=)—= R,

fligevény integrédlisan vpozitiv, ha



R

gab=o°
H

o0
minden olyan H = U [T;Ll, Tfﬁ] halmazon, ahol
n=1

Ti<‘t§<"ci+l g ddme T! =oe 45 1étezik olyan

2 i 4
J~>o,_hogy Tn-'tn>a' .

Beléthatd [14], hogy ezy alt) fligevény akkor és
csak akkor integrdlisan poritiv, ha minden £€>0

szamra

t+ €

ot

[~ =]

im g a > 0.
.t

ot

3.2, DEFINICIC. Az 2 : [to,oc)-—-R+ fiicovény

gyvensén integrdlisan voritiv, ha

)
. ] halmazon, ahol

[~ =]
minden olyan H = U '[Ti, Tz
=l

Tg‘l < Tl’zl <T:31+1 oA Trll =00 ég léteznek

olyan 8 , A>0 szdmok, hogy T:l - "ti>d’ &a

i 1
Tn+1 5 ’tn <L .
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Ksnnyli beldtni, hogy a definicié tartalma nem
valtozik, ha Ti+l - T’; Z/\ helyett a
’txj:ml - "C'rzl LA tulajdonsdgot koveteljik meg a H
halmaztdl.

Egy -a(t) fligevény gyengén integrdlisan pozitiv,
ha 1étezik olvan OX(t) pozitiv nem-novd fiigovény,

melyre f AR =02, hogy minden £ > 0 szémra

iF

-
[u
B

ot
o)
\Y
O
.

o
Valéban. Legyen U [Tlll,'td] H egy a defi-
i

nicidban szerepld halmaz (6-, D —val ) . Ekkor

T§ T'gﬁd_
fo-2z (| o2 | o > ootl) o,
H rtl 'tl

n n

ahol ® >0 a feltétel miatt 1dternil.
i 2 o i
Példsul & sin t integrdlisan pozitiv, az
%811'121; gvengén integrédlican pozitiv, de nem intesgrdli-

sen pozitiv.
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3.1. TETEL. Tegyiik fel, hogv teljesiilnek az

_ 1/2
(1) - (vI) feltételek és (” (I%) —eo , Ha a
.t

0

=+

i |

i 2]{(-327:72— ( s (t)) + (p ( l(t'))
2R :
‘ (2) 1/2

figevény integrdlisan pozitiv ( Q)= f

o 0<k < su @ (x,y) ¥l
(:)= 7% > Py,yer YY) | » aklor az
(5’) egyenlet minden oszecilldld mesolddsira

lim, _  E()=0.

Bizonyitd s, Tegyik fel, hogy x(t) olyan

oszcilléld megoldés, melyre lim, slt)=A >o0.
—— OO

A (2.1) ©eszefiigeés miatt

B & A o+
e : al) (o) ]
e[ o (o) 28 1] X
£

(;-0—)—17272-(7)-( ('t)+ I’ ('t) (g—) (’t)) K 4+ 1) ’

anol K az E(t)egr felss korldtja. az (v) és (v1)

J

(t) (t)) a(t)+ (pn)(t) K
p(t) pq

o ] e

(t).
. perre 2() + Z‘P(x(t) (

alt)



il

feltételek miatt a jobboldali mécodikeés harmadik
tag integrélja korlatos [to,w) ~en.

legyen H = {t : P(x(t) = %’} . A 2.5 ILemma
ey B e ; 1 2 1
m:.att' H = ngl [Tn, n] , ahol Tn<’t’n<'tn+l '

1 3 n 1/2
11,% T' =00 és d) © >§ valamely pozitiv
i e s ta\p

& —val. Nyilvdn

H oft bl
A fentiek alapjén egy megfeleld I 2 0 szém mellet
( ). + :
a pa
() < L-% f 2k - + ;
b bq

Hﬂ[to,t]

ahol a jobboldal - oe —=be tort ha teeee o tétel fel-

ct

étele szerint. Bz ellentmond annak, hogy B(t) minden
+ esetén pozitiv. Az ellentmondést a A>D felté-

telezés okozta, A tételt bLebizonyitottulk.

A fenti tétel altalsdnositia Hatvani 1. [13] egy a
> { .
p(’c)E'/q(t)Z—: 1, elt,x,x)= 0 esetre vonatlozd eredményét.
A bizonyitdsbon nem hasznéltuk ki ( H halmaz ) '

hogy az x(t) zérdhelyeinelr tivolsdzn feliilrdl is be-
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ceiilhetd. A 2.6 Iemma alkalmazisdval e fentihez ha—

sonldan bizonyithatd a

el TETEL., Teeovilc fel, hosv teliesiilnelr a-

) - (v1) feltételek, b(h= 1, 0 <aq =g = s s

s O <pl =p(t) € Py [to,oa) -en. Ha az alt)

i ’ & P * & b
fiicoveny gvengen integréalisan pozitiv, akkor az (3)

ecvenlet minden megolddsira 1i_r1t__°.(x (t) 5% (t)) = (0,0) '

.
az e(t,x,x)s O esetben 8 trividlis mego0ldds £.8.5..

Tételeink szerint az
(E3I.’) X+ glt)x + x = e (%)

esyenlet minden megolddcéra limt_’“(x ) ,x(t)) —_—.(o,o) g

oo
ha f lel<ee s az aldbbi feltételek egyike teljesiils
t

0
t+€
a) lin [ g>0 (v‘£>o) és 0 = g(t)=z et ;
to—oe
-
T t+&€
W L ’G[ g>0 (Y€ >0)¢és 0=3g@tlzc .
T oo
%

14thaté, hogy 2z inhomogén esetben mesmaradt a

nagy €s kis csillapités Smith-t351 [2?] szérmazd
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megkiilonbozteté se (14=a 1. fejezet) %
A kovetkez8 részben megmutetjuk, hogy az a) és
b) —szerii esetek szétvilasztdsira az (®3) homogén

egyenletnél nincs sziikség.

. i Az_.(,E) egyenlet trividlis megoldédsdnak globdlis

aszimptotikus stabilitésa

A fejezet f& tétele a kbvetkezd:

3.3. TETEL. Tegyiik fel, hogv teljesiilnek az (I) -

¥ Arre) és (VvI) feltételek, kP(x,y)>O (x,ve % 1o

Ha létezik eey X @ [to,oo)-—}.‘{+ flugevény amely kielé—

giti az eldbbiakat:

(o) I'd = 00 ;
%
(i) minden U RZ kompakt halmaz esetén a
b () pa) p (1)
p) Ylx, 3} ( (1:)) ok ()
p (%) pa a (t)

fliggvény feliilrél korldtos UX [to,oo) —en;
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‘ 1
: o) 1) !
(1) az o) (—) (t) fieavény nemnovs [t,,o=)-ens
a
(1ii) 18tezik ecv o< 6<1  szdm. uev hosv min-

den k,Y (O<V< supp\foj FV/*xL(x),

k> lnfx,ye - (P(x,,v)) szémra

' 4 -1 % ) ).
MR a(t 1 (pa
im = A ( (l’ + —Cp ( )) fO‘ -
t —e— 0o p(¥) 2 pq
0 b 0

_(1.,.)))0((77) Qv =/A,(k,)’)< 1—8.,

akkor az (E) egyenlet trividlis megolddsa m.2.8. X=-ten.

A tételt eldszor az dnmagdban is érdekes
(#3) x + glt,x,x)x + £(x)= 0
egyenletre bizonyitjuk be.

3.4. TETEL. Tegylik fel, hoemr teljesiilnel: a (II) ,

(I11) feltételek. Ha Iétezik eoy ok: [ty o0)-= R,

nem=nve Liggvény, amelv rendel ezik az aldibbi tulaji-—

donssdcokkal s

oo
(o) gd:OO;
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G)  ott)blt) korldtos [t,,°e) zen;

(ii) 1étezik ecr B (0< 6'51) szdm ver, hosv mine

den l-:,v (O<V < SupR\i_O'; Bix) /2t tx) ,

kD> inf:{’yé n (P(X,y)) szinre,

bt £ asl % 5 -
lim go( g [I:a (™) Jo( e e V)o(('t) at)=
%

4.

0 0 0
i QQY) <1~ 6 y

akkor az (E}) egvenlet trividlis megoldisa Se2eSes

Bizonvyitads, A2.3 Tétel alapjén elegen~—

a8 azt bebizonyitanunk, hozy (#3) minden oszeilldls
megolddoira lim, LBl =XEl0
Tegyik fel ennek az ellenkezdidt. Iesyen x(%)

olyan oszcilléld megoldds melyre A >0, '.J. Scott [20]

v

észrevette azt az egyszeri tényt, hogy x(t) korldtos—
séga miatt,adott pozitiv € =hoz taldlhatd olyan Y
(O<\7/< sup F(x)/xf (x) sztm, ugy, hogy

RN {0}

Fixt)) - YxWexw) <€ (5 >1t,) ;

Emiatt
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: .2 ;
E(t) = xz(t)+(F(x(t)) = (1 +V)x () -Vg,x) ,x &)X
X x &) x(t) - ¥ (xx) (8)+ Plx () - Vxlt) £(x &) £
o) B YaG i Gy S st Tk o B

, t
A Wt):= EG) I A fiiggvény derivdltjdra igaz az
aldbbi becslés:

b
(3.1 W)€ 220, x ) ,x ) X0 g 8k
t
0
@ + V)o@ x-(8) - VoK@ Gex ) (8) -
yg(t,x(t),;t(t))O((t)x(t)).((t)+ Et(t)

Legyen {tng az x(t) zérdhelyeinek a sorozata
(tn foo ha nameo, O<E(t)) - A<€). (3.1) [tl,tn]-en

vald integrdlasaval kapjuk:

0-2) wie)<ne) vElo - Voo
b ! |
tn,- : ' < 4 T
S () [g('t’,x('t'),;c(t')) So() 4 .} +v)om~)J A
tl t()
b i T x=-l
Sﬂi(’t)gw,xm,;m\(lgo‘) (V(§o<) o (T)x(T) + ;("t)) dT =
t1 0 0
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t t
n

= wlty) + E\Ok - V\ okGxx)” + Tloy,8,) + 3 (6y,18,).

1 21

£, megvédlasztisdbdl addddan

ik
a5 1:n T -
I(tlgtn)<(ﬁ+£) S k 2(T) gd 5 + V)a(®) at
t B

5 0

ahol k= inf, . \Rx(t),;c(tn>o, xlt) és xt)
0

korldtossiga miatt. Parcidlis integrdlissal nyerjik

4 t
13 igl

-de(x;{). =\7S xx AR VXLV ,
% b

ghol K= sup IxU)l, L = sup [Ix()l , v pedig

az X teljes viltozasa ['to,oo)-en.

Ha megmutatjuk, hogy [J (t] ,t“)]"' = o(f
5 L i1 _b

o

& O‘) n ————oo)’
1

: t
akkor (3.2) -t ( no( -val osztva,és az n -eoe ha-
.t
1

térdtmenetet végrehajtve a kivetkezd esyenldtlensé z-

hez jutunk:
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A<l ol £) e €, (o Bl (RGE) .

Ha € elegendden kicsi, akkor a baloldal nagyobb a
jobboldalndl, ami ellentmondéds. Ezt a A > 0 feltevés
.okozta,

t
. Be kell még bizonyitanunk, hogy [J(’cl,tn)]+= o(( lqo()
i ty
(n = 00). Iegyen {61:1} az x(t) zérdhelyeinek a soroza-

o 3 : £
ta (S'n < tn< B'm_l) . A 2.2 Lemma szerint x(t)xW) < o
[Sn’tn] -en és x@)x(@)> 0 [tn, ﬁm_l]-en. Ezért

n
Jy,t) < k% gl 0,80 .

Mivel oX(t) ’ E{t) korldtosak és ;‘:(Sk) = 0 4
;cz(tk)= A [”O(= oo, létezik egy {'h’klx sorozat
(6'k< Tk < tk) és egy 9 szém (O ¢ d < l)

ugy, hogy
i _
-x (t) Y go( k) + x ) |<o téf’fik,tk],
J 5
&s min £ 6N =40 .

t€ [Gk’ Tk]
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Most vizsgéliuk meg a (G, T,) (x=1,2...)
integrélok viselkedésétl Feltehets, hogy (6, T,1-n
x)> 0, xt) € 0. A forditott eset hasonldéan kezel-
‘het6.

Az (E3) egyenlet integrildsdval x (t) =re [Bk’ "Ckl—n

az aldbbi egyenldség adddik:

t
(3-3) ;C(t)= -eXp { — 3(39}((5)7;((3))‘35 gf(x(tnx
]

k

4

T
K exp SS(S,X(S),;{(S))ds G

%

Definidljuk az WM,N szdmokat uzy,hogy 11 > b ) (t)
s N>'\|) (x(t),}.c(t)) legyen [tl,w)—en . Fkkor
té[ﬁkftk]”—ra

t t T
. o33 I!TN’ y "T‘:\"l'
x(t)>d exp —( o S exp g— av =
(o] & o
61{ 61{ k
t
MN
= -i-o&(t) 1 - exp —g ‘
MN
61_ (o8

-y =~
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Most majordlhatjuk J (6 ,"C'k) -t
c iy

(3.4) J(éfk, 'L”k)éé: *(B) & (T, x (¥, x (T)) A (T) got o
5 M
t

o)

e . .
y KN [ f Y

>< ot -1 =exp{- arv .
&

o
to 2

=

’t'k megvilasztésa miatt a 2.5 Lemma biztositja olyan

6\1>O létezését melyre
'tk
I\IN' .
1l - exp —S — 76\1 (k=1,2---)

teljestil. Ezért ha Xk elég nagyr, akkor létezik olyan

e e

T €(6,,T,) , mely kielégiti az aldbbiakat:

Tk y -1 Tk
Y ki gd g VN
——— =1 = exp<{=- AR A i g
8 X
tO 61{
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T? definicibjdbdl kovetkezik, hogy

k

Ti: T Gy
~ 1
3.5) g ;(R go( és igy 'U]’{ - 6'1{ < RO((Gk) go‘

d *o _ 2

egy megfelellen valasztott R szammal.
I."[ajbréljuk J(G’ 4 '['k)-.t, ha csak 61{’ 'tl’f] -n
integrilunk:
Th
5 (6, T,) < Vraw g p®aAa®)aT < Yrum (T2 -G, ) .
Bhe

(3.5) felhasznédlésdval nyerjik

8 a
n n ‘¢
3(6y s t,)< Vi 2T - 6) < Viwam S x@®)| \ot] |
; g
t
ahol a jobboldal o(g n<>() (n+o0). A tételt bebizo-

¥o
nvitottulk.
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A:2.3. Tétel b i zonvitésa #z i)fel-

" tételbbl kovetkezik (1) teljesiilése. IMmel bizonyité-
sa analég a 2.3 Tételt kdvetd meggondoldsokkal. (11)-bsl

pedig L“(%)l/2 =oe adédik. A T= f (g 1/2
_ b

transzformicié végrehajtisa utén az egvenlet (B3)ala-
kuvd védlik. Teljesiilnek a 3.4 Tétel feltételei és

ezzel a bizonyitéds kész.

Most tekintsik az (E3) egyenletet. Legyen

() = mn( a (t), 1/b(t)) . A (I1) és (I1I) feltéte-
lek mellett ha a(t) nemnsvé, b(t) nem—csskkend és
oo ° 5

a = § =0° , ekkor a 3.4 Tétel feltételei telje—
1 t

0o e

siilnek, Nyilvdn OQA(t) nem-nsvé, S ok =02 és

tO

Alt) b(t) korldtos. A (ii) feltdtel kivetkezik az

aldbbiakbdls .
i , v
ka(t). 50& = (1 + VaA(®) > a®) [ gd -G
4 | 2

ami elég nagy T ~ra mér pozitiv, ezért a feltétel-
ben levé hatérérték O . Ezzel Smith tételeinek [22]

kozos dltaldnositésdt keptuk (14sa 1. feqezet)
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Eredményeink lehet8ségei még nem meriiltek ki.
Megmutatjuk, hogy a korlatozd feltételek mellett
(e t,x,9)= 0, P(x,y)>0 na x,ve R) tobbet
"tudnak" a 3.1 és 3.2 Tételeknél,

Tegyen £ >0 adott, és definidljuk az (E3L)

egyenletben o) -t a ksvetkezSképpen:

i 621+ Elnall n (2+€) ]
(3.6) g :=

1 d
0 te[n(2+£)+—nT3-’n(2+£--)+1_ n+3]

R kimaradé részén g -t definidljuk linedrisan,
hogy folytonos legyen. Léthatdan g(t) nem gyengén
integrédlisan pozitiv , azonban a 3.4 Tétel alkalmaz-
haté. Valéban. Legyen O(t)= § . Az (i) feltétel

trividlisan telijesiil, a (ii) pedig az aldbbisk miatt

igaz:
t T -
i 2 : i
t'o ‘to Ht
ahol H, = u h(o+ €) ,n(2+£)+1] .
n(2+€£)<t

tovabhd
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A fenti levezetést % helyett 171&7 ~vel megismétel-
ve addédik a

3.5. KOVETEEZIENY. Tegyiilc fel, hosy teljesiilnek a

(1), (x11) feltételek, P(x,¥)>0 (x,y€r) , blt)

nem—csokkend és g” % =oe . Ha

to
t a4
s : 1 3
lim - - <
t —-—oe b e R
ty H,

minden 0 < Y < sup T(x)/xf(x)

szamra
R\{0}

(Ht :={7—’6 [‘b‘o,t]: alt) < 1/v(t) }), akkor az (LB) egyen—
let trividlis megoldésa

o o
2 oaouoc

Hasonlé alaku kovetkezmény ‘a 3.3 Tételbdl is

nyerhetd.

A 3.3 tétel bizonyitésa az d1ltaldnosabb P esetére
(‘P(XyY) >0 ha y # O)csak

a b(t)= 1 megkittés mellett

vihetd 4t (xis csillapités esete)
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Még igy is érdemes az &llitdst megfogalmazni, hiszen
mint lattuk, az alsd becslére vonatkozd feltétel keve-
sebbet k‘dve‘tel, mint a gyengén integrdlis pozitivités

feltétele.

3.6. TETEL. Tesviik fel, hosv teliesiilnek az (I) -

- (111)  feltételek, 0 < qy £ alt)=q, ,

0<py = p(t)= p, . Ha létezik olvan nem-novs, pozitiv

oo
X (t) fiesvény, melyre I A =00 ég kieldeiti a 3.3
i 7

e ’r O . -
Tétel (iii) feltételdt, akksr az (E) ecvenlet trivi—

£lis megoldisa £.8.5..

S
td

3) egvenletre bi-

Bisonwgiteé s Cpoka

zonyitunk, az 41litds (E) -re ugyanugy adédil, mint a
3.3 Tétel esetén.

A 3.4 tétel bizonyitdsdt finomitjuk. Eldszdr meg-
mitat juk, hogy tetszdlegesen adott £>0 szdmhoz 14—
tezik egy "QC[tl,w) halmaz és E_L> 0 szém ugy,

hogy

n -1

(3.7) 1im g oA(1 + V)k go( et

N~ co
QO kel 5

' és (P(x(t),xtt)bq [tl,oo) -n . Valéban. bl(tl= 1

miatt a {Bk+l - Gk]‘ sorozat korldtos (2.6 I_emma) .
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Ezért 1étezik a (3.7) tulajdonsdgu Q halmaz, amely
oo

1 2 1 2
kszl [t1,v2) aon e, e T oo a2l ).
36t olyan vélasztds is lehetséges, hogy valamely &
szérmal [’t; - Gk|>é\>o és |£(x (Tli())le (i= 1,2 ;
k= 1,2.... ) teljesiiljon. Ekkor (3.3)-bdl ibvetkezik
olyan 6'1 1étezése, melyre \}:("C';;)|>5]' (1w 1.2 3
k=1,2 ...) . ip(x,,v) tuvlajdonsdgai alapjén 81

1étezédse ezek utén kovetkezik.

Most tekintsitk az I(t] yt,) integrdlt - wit)
becslésébhen:
t - E
I(‘tl,tn)< (}\+£‘) S [a(’t)‘-P(::(‘t\,x(‘t)) So‘ -(1 +P)AT)| ar<
31 Ty |

<(+€) Q@ +y) S ol +

'tn ; T s
¢ (A £) S 2(RE, Jd S eV | v,
t]_ to

’

A bvigonyitids a 3.4 Tétel bizonyitésdhoz hasonld-

an folytathats.
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Nem nehéz belétni, hogy az

“ *3
x + glt)x 4+ %50

egyenletre, melyben g() (3.6) szerint van defini-
dlva, nem alkalmazhaté a 3.2 Tétel, de trividlis megoldasa
legutdébbi eredményiink szerint g.&8.S8..

I4ttuk, hogy a 3.3 Tétel (iii) Feltétele az alt)

és %ﬁ%l(t) Tliggvényektdl milyen keveset kdvetel. Fel-
meriill & kérdés, hogy ez, vagy egyilven jellegli feltevés
dtmenthetd—e az inhomogén (E7) egyenletre; Egy vé-
laszt a kovetkezd részben adunk meg, ahol a most tér-—

gyalt médszer egy més irdnyu fejlesztését kapjuk.

3.4, Akis gU,x,x) esete

Ebben a részben az inhomogén (8’) egvenlet 2zon
eseteire fogalmazunk meg attraktivitisi tételeket,
melyeﬁ%en a, fg(t,x,%); csillapités hatdsa elhanva-
golhaté a p(t),a(t) hatdsdhoz képest, vagyis az
(=’) egyenlet a megolddsolk O-hoz tartésa szempontjs-

bél helyettesithetd az
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(£2') (p(t)}.c). +aW) FE = elt,x,x)

ecvenlettel. Tekintettel kiemelt jelentdséglikre,

4111 t4cokat fogalmazunk meg az (22°) és az
(£2)) x + qW) £ = elt)

egyenletekre is.

Eredményeink alapja a

3.7. TETEL. Tegyilk fel, hogy teljesiilnek az

(1) - (V1) feltételek és limt__”(;—l;-]%—)z—_)- =0 .
q ¢t :

He 1étezik olyan abszolut folytonos, nem-negativ OX(t)

fissvény, melyre az al4bbialk teljesiilnek:

(o]
(O) oA = oo ;
LT
% t
a P weof (a] e
. . a A
y : 1 T
(ii) f ,(9_‘) (pc_)? = 0 {0( (to=)
: 1
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(iii) van olvan 0 < 6' <1 szém, hogy minden

0< Y <sup F&x)/xf(x) szém esetén

R\{0}
Ty (pa) |
lim o & | -0 + V) efb-:/j(yk 180D,
5. pq
t, % b

akkor az (E,) egvenlet minden megolddsdra lim E(t): 0.

Bizonyitd s, Abizonyitds ugyanugy kezdl-

dik mint a 3.4 Tételé. Tegyiikk fel, hogy x(t) olven
mecoldéds, melyre limt__wE(t)=7\ >0.legyen £ >0
adott. Iétezik olyan ¥Y>o s hogy

F(x®) - ¥YxW)f(xk)) <&,

ha t>to o Az E((t) fliggvény most igy majordlhatd:

DLt .- £] .
Bls)= ———)xz(t)+ Flx(t)) = (1 +v)p( )*cz(t) -
q(t a (%)

p(t).2
% (1) =

1 s
-V — @) xt) x(t). + Fxw) = (1 +y)
a (t) q (t)

. elt,x @) ,x &) :
MmN Y
a () a (t)
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Y

- Vx(1) £x(t) + F(x(t)) - -———(r ) x (1) ‘c( ) &
a (t)

p) .2 ’ b &)
1 4+yY)— x (t)- Yo () x () (B YKIR —=75—
iy .)o(t)x a(t) (p XU ) i (pq)l/cuz)
| :

' q
+ qft) (rl(?)+ rz(t)(;) (+) L) e,
3
<
ahol K = sup Ix(t), L = sup (-) (Y= Wl ,
[to,w) [‘bo,oo) a

"

R = sup "I’(X(t),(?-)d(t);c(t)) . Ha, W)= n(t)g A,
0

'tO,OO) q

ekkor a fentiek és alt.1) Osszefiiggds alapjién

(3.8) Twe=@ N2 (&) 5 (8) % (1))

(t)

2
b () A () () a\2 )
I’CLR(pq)l/z(t)a-Vo(ﬂ ( (t) + 12(ﬂ (;) (t) T )+

CEe ‘7§ (? )(t)
q (t) ; pQ

0

, 2
L< rq (t) + r, (+) (E) (t) I;I)(pq) “ ) \ex
b

ct

8 N

ck
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Vdlasszuk meg a T széamot ugy, hogy ha t> T,

akkor
t % V)
—'m< ’ it ’
) (@a) g 172 (p)
Ll 4
b (t)
7r— <& ¢s lE@) - Al <&
(ra) (t)

teljesiiljenek. Integrdljuk (3.8) -at [T,t]-n:

t

ollt) p (t) ; =
Wt) W@ = V——x ) x(t) + VS(‘-’-‘) pXX +
- q(t) i q
1 t g
YiLRE gd + Y S » (IH + rz(g) bLl) b
e P
i P

\__——\ﬁ

i

PQ

t i o
(l*'f)g[gﬂ('t) gd - (l +)7)o(("t)} ar

t

v

T
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1
2
) (t) + VL\.L

2

p
v (rq) Toeve,

§

r

< %) +YKL A (ﬂ(

()

q

g ,
p\2
sup {u(‘-) Y+ HE + (Yxir + 1+ L 2)E So( +

(Tt} Y4
" 2
t ° ‘t—
(0q) 4
(;ua)( pim gd G IR i
P 2 tO

% :
Most I A -val osztva és a t-e=ee hatdridtmenetet
végrehajtva kapjuk, hogy

A <(YKLR + L + LB4+ NE. .+ b oW e ] -,

Ha € ele,endbfen kicsi, akkor a jobboldal kisebb
mint a bal, ami lehetetlen, Az ellentmonddst a A > C

feltétel okozta. A tételt bebizonyitottuk.

1978~ban PF,J. Scott két tételt bizonyitott a
(o) x) + qlt) &)= e (k)

esyenletre, melyek a 1lim, _ _ Elt)= 0 tulajdonsi-

got biztositjAk. Az egyikben [21] a 3.7 iétel (iii)
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feltételéndl tobbet kivand

et
lim (pq)(t) >0

t-=oe pq X (t)

feltétel szerepelt., A masikban [20] pedig az
(d).
q

fligzvények korlatossdgdra volt sziikséze, Igy a

4

i t
A(t) (I—)) & (
q

t

(pq)l/E

0

3.7 1étel ezen eredmények kozos dltaldnositésa.

mepjegyzés., Ha azoX és g fiiggvényre tovinbi

’

differencidlhatdsdgi feltételek teljesiilnek, axkor a

V(f) ) (pxx) ()
q

kifejezést parcidlisan integrdlhatjuk., Ezért a 3.7

Tétel (ii) feltétele az aldbbiakkal helyettesithetd:

wr [ (fe) e
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liegjezyzés. Ha a tétel Adllitdsa csak 2z oszcillé-

‘16 megolddsokra vonatkozik, akkor a (ii)’, és az
e(t,x,;t)'i O esetben az (i) feltétel elengedhetd.
Valdéban, ha x(t) o0szcilldldé megoldds, akkor legyen
{tn'ﬁ a zéréhelyek sorozata (tn—-oo ha n —= o),
Elegendd a [r,t] helyett a [ty,t,) intervallumon

integrélhi. De ekkor

bl

Most vizsgdljuk meg, hogy eredményiink az (E3 )

egzyenlet mely eseteire alkalmazhaté hatdsosan, Le-
gyen p(t)= qk(t) (kéfa és tegyiik fel, hogy

lim q(tl =ee ., Feltehets tovabbd, hozy ok(t)

1 - 0o

korlatos [tO,GO)-en. Az

R < 5 s ey k-3
(-) (t)q € @)= AW) qT(t)' - o) qlt) g 2 (%)
q/ .

agonossdg alapjédn 1ldtnatdé, hogy (ii) akkor £s csak
akkor teljesiil, ha k<1 . Azt kaptuk, hozy p &)
novekedése lassubb kell hozy legyen mint a q(t)

novekedése,
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: ’
Tekintsiik a specidlis (E1) egyenletet, Némi

" szémoldssal adddik a

3.8. KOVETKEZMENY. Tegyiik fel, hogy teljesiil az (1),

létezik_olyan abszolut_folytonos fiiggvény oX(t), mely-

re f"a =00 , AL 2 0 és_a 3.7 Tétel (iii) felté-
.
0

tele teljesiil. Ha vagy

a) 1létezik (3<% szam, hogy

4 . t
o
—_— = o] \ (t - o< s
J(@)1- <]
K 0
vagy
sihik % : £
A
= A . e-sie v B 1 o t o) ,
b) *(t)= o § 9(q1/2) s t( ( )

0 0 0

&3 - Id ” 12 vy .
akkor az (El ) egyenlet minden megoldasara lim E(t)= 0.
R o t - oo

Ril'sione & €8 a. & 3,7 Tepel (i) feltétele

trividlisan teljesiil. (ii) -t bizonyitanddé, az a)
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esetben
& ; t s t i
| fl(37] 2 oon 5
g | (q) - ) -1 ?) ) P P/
o 0 o)

miatt elegendd beldtni, hogy a jobboldali mdsodik
: $ ,
integridl o So& ha t-==o2 | Noveljilk ezt az in-

to

tegrélt az alabbi médon:

t ° ;
o q 8. 2 iz .y Perr2
S qP q—l3+3/ 2 iigl’) t]( o 1_2(5<3 (6 ) -2 ().

tO _
Innen (ii) teljesiilése azonnal adédik,

A Db) esetben (ii) az

ccyenldtlenségbSl kovetkezik,

Az d4llitést bhebizonyitottuk,
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A {3=‘O egsetet érdemes kiemelniink. Ugyania itt
1latszik leginkdbb, hogy a megolddsok akkor tartanak
U-hoz, ha g(t) egy [t.,®e —en nem intcgrédliatd, de
ott korlédtos vdltozdsu filiggvénynél "nagyobb" ha
tomeo . A (1ii) feltétel nyilvén teljesiil, ha %(t)m(t)
(Bﬁfton,'Grimmer [6]).VA 3.2 és 3.3 pontok tételei-
vel ellentétben a %Cﬂ fiiggvényt feliilrdl nem kell
korldtoznunk, hiszen most az (M) feltétel trividli-
san teljesiil.

A 3.8 Kovetkezményb8l Al) konkrét véalasztdsdval
tovéabbi dllitdsok nyerhetdk.

A 2.1 Tétel bizonyitdsdban hasznédlt meggondolé-
sokhoz hasonléan beldthats, hogy az (£1) egyénlet meg-
dlddsai oszcilléalnak [tU,°°)—en; Fzt a tényt és a
3.7 1iétel utdni megjesyzéseket husznaljuk az aldbbi-

akban.

3.9. KOVETKEZAIENY, woryiik fel, hogy f(x) kielé-

7

gitia (1I) feltételt, qlt)fee ha t-=o= és

q¢t) abszolut folytonos. Ha

%
g[(q-l) ]+ = of1ozg alt)) (b —=se),

¥
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akkor (El) minden megolddsdra 1lim E(t)= 0 .

t oo

3.10. KOVETKSZUENY, Tegyilk fel, hogy f(x) kielé-
giti a (II) feltételt, FX)=Vxf(x) (x€R), qlt) fee

ha . t=es¢s q(t) abszolut folytonos [t}o,“):en.__l'_{g

: +
S [(q-V/(Vu))'" ] . O(ql/(y+].)(t)) (t—-”),

t

ak<or az (El) ezyenlet minden mezolddsira 1imt_’°°ELt)= G

Bizonyit ds, Elegendd észrevenniink, hogy

q- Y/Oll‘-l)(t) he-

feltételeink mellett az A(t)= ;1(t

lycttesités alkalmazhato.

A fenti d11itds dltaldnositja és exyben élesiti
A.C., Lazer [16] feala x esetre vonatkozd erodmé-

nyét, melyben az

korlatossdga biztositja a megolddsok O-=hoz tarti-

st hacsak q(t] nem-cstkkens.
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Azt mdr kordbban  lattuk, hogy a 3.1 és 3.3
. Pételek is hasznosak az (B2’) és (§2) egyenletek
vizsgdlatdban, A kiilonbségeket mar érzékeltettiik,

ezeket most néndny példAval szemldéltet iiik,
\ 2

1) Lezyen alt)s=s % 8in“t . Az
b o t
(exp f a J.{). + exp ga X ()
1 1

egyenletre O (t)= % ~vel a 3.3 Tétel feltételei tel=-
jesiilnek, de a 3.7 Tétel (ii) feltétele nem telje-
siil ezyetlen (0), W), (1ii) feltételeket kieldgitd

X -val sem, .

2) wost legyen

f n3 t€ [n,n+-l—ZJ
7
' 1 1
alt)=4 0 t € [a+ n+.—3)
fo sefoho
1
ool € [n+3,n+l)
t
Az X + exp ga x =0 e;yenlzatre a 3.3 Tétel

1 s

oo
(i) feltétele nem teljesiil ezyvetlen nem-nivd, JIO(=°°

tulajdonsdsu d-val sem, de a megoldésok a 3.6 KOvet-
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kezmény szerint O-hoz tartanak ha t-wse,

"‘Ez a két példa jellemzi a 3.1 és 3.7 Tételek kapcso-

latét is. Usak most az egyenletek inhomogének is le-
Id s ’ Id l s

betnek. £eld§ul az 1) példdban e(t)aszg¥-, a_ma—

sodikban e(tl= 1 megengedhetd,

A 3.1 és 3.3 Tételek kapcsolatdrdl a 3.3 ponthan

mondottak az (E2) egyénlet esetén is helytdlldak.
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1. FUGGELEK

A dolgozatban vizsgdlt egyenletek

() (p‘(t)%)'+ g(t,x,}.c);c +qlt)fx)= 0

(Ei) Cp)x o+ al)x + qlt)x "= 0

(") (Wx)+ gt,x,x)x + )&= elt,x,x)
(1) x + q(t) £(x)= 0

‘(Mm1) x+ql)x=0

(') x+ ak)f&)= elt)

(52) @ (t):})'f q(t)fcx); 0

(z2’)  ()x) + qlt)£(x)= elt,x,x)

(z3) * o+ glt,x,x)x + f(x)= 0

(B31) Xe elt)x + x =0
(EB') x4 g lyx,x)x o+ £(x)= elt,x;x)

(E3L’) x + g(t); +.x = el(t)
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2. FUGGELEK
f1talénos feltételek
(1) p,qéCl[tO,w) $ p(t)n,Q(t\ >0 ha t>t0;

(1)  f)€ec(-m,ee) ; x£>0 (x#0) ;

x
P(x) = ZSf —moe (x wmo=);
0

. o
2
(r11) - a(t)LP(x,v)_ (t x,( ) (t) )= vW)VY(=, ) ,
ahol a,b, ‘P,‘P nen=-nezativ folytonos fi,i,.g,}—
vények és P {x, v} £ O ha Tl

(xv) le(t;x,7)| £ v  (t)+ 1*5_.(*&)!7"!2

el ooy ol =) ot 0hs

-

(v) °f 3l
I (0q)/ 2 )
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T[ at) (pa) J‘
(v1) 2k + )| dat<ee,
p (t) Pq

ahol k = inf "p(x,y) ;

X, Y€ R
(1) . minden O<R"<sup VY&,y) szédmra
X, y&€ R
“w + + 78
i i b » b
— exp{-R*| - a(t) exp( R i
o (%) P P

‘to tO. tO tO

AT dt = o=
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