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Chapter 1

Semiovals contained in the union
of three non-concurrent lines

1.1 Introduction

In this chapter we summarize some results on semi quadratic sets and
semiovoids, and later we discuss the properties of semiovals contained in
three non-concurrent lines. Semiovals �rst appeared as special examples of
semi-quadratic sets. Let Π be a projective space and Q = (P ,L) be a pair
consisting of a set P of points of Π, and a set L of lines of Π. A tangent to
Q at P ∈ P is a line ` ∈ L such that P is on `, and either ` ∩ P = {P},
or ` ∈ L. Q is called a semi quadratic set (SQS), if every point on a line of
L belongs to P , and for all P ∈ P the union TP of all tangents to Q at P
is either a hyperplane or the whole space Π. A lot of attempts were made
to classify all SQS, but the problem is still open in general. For the known
results about SQS we refer to [12] and [29].

An SQS Q = (P ,L) is called a semi-ovoid (or semioval if dim Π = 2), if
L = ∅ and P contains at least 2 points. The complete characterization of
semi-ovoids was given by J. Thas [46]. Using elementary double counting
arguments, he proved the following results.

Theorem 1.1.1.

• The only semi-ovoids of PG(3, q) are the ovoids (set of q2 + 1 points,
no three of them are collinear).

• In PG(n, q), n > 3, there are no semi-ovoids.

In the planar case the situation is much more complicated. It is easy to
see, that the following simpler de�nition of semiovals is equivalent to the
previously given one.

4



De�nition 1.1.2. Let Π be a projective plane of order q. A semioval in
Π is a non-empty pointset S with the property that for every point P in S
there exists a unique line tP such that S ∩ tP = {P}. This line is called the
tangent to S at P .

The classical examples of semiovals arise from polarities (ovals and uni-
tals), and from the theory of blocking sets (the vertexless triangle). The
study of semiovals is motivated by their applications to cryptography [4],
too.

It is known that q+ 1 ≤ |S| ≤ q
√
q+ 1 and both bounds are sharp [46],

[28].
For planes of small order the complete spectrum of the sizes and the

number of projectively non-isomorphic semiovals are known. For q = 2 and
q = 3 we give the complete description:

q = 2 : Because of the bounds on the cardinality, each semioval consists
of three points, and these points are not collinear, hence semiovals are ovals.

q = 3 : If a semioval S is not an oval, then there is a line ` which contains
three points of S, say A,B and C. There are four lines through each of these
points, one of them is the tangent, but the others must meet S. Hence S
contains at least two points not on `. Let D,E ∈ S \ `. If F is the fourth
point of the line `, then tD ∩ ` = tE ∩ ` = F, thus DE ∩ ` 6= F. Without loss
of generality we may assume, that DE ∩ ` = A. This implies that S must
contain a sixth point G, otherwise there would be two tangents through
A. But 6 is an upper bound of the cardinality of S by Theorem 1.1.1. If
G = BD ∩ CE, then it is easy to check that the set {A,B,C,D,E,G}
is a semioval. These points form the vertices of a complete quadrilateral.
Hence we proved that there are two projectively non-isomorphic classes of
semiovals in PG(2, 3).

From now on in the rest of the chapter we suppose that q > 3.
Because of the huge diversity of semiovals, the complete classi�cation

is hopeless. To reduce the number possibilities we will assume some extra
properties.

A semioval is said to be regular with character a if all nontangent lines in-
tersect S in either 0 or a points. Regular semiovals were studied by Blokhuis
and Sz®nyi [10], and Gács [22], who proved that in PG(2, q) each regular
semioval is either an oval or a unital.

Semiovals with large collinear subsets were investigated by Dover [20].
He proved the following properties of the semioval S:

• |S ∩ `| ≤ q − 1 for any line ` of Π.
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Figure 1.1: The q = 3 case

• If S has a (q − 1)-secant, then 2q − 2 ≤ |S| ≤ 3q − 3.

• If S has more than one (q− 1)-secant, then S can be obtained from a
vertexless triangle by removing some subset of points from one side.

It is trivial that a line `, or any proper subset of ` is not a semioval, because
the number of tangent lines at each of its point is greater than 1. A semioval
S could not contain a whole line `, because if P ∈ S\`, then any line through
P meets `, hence there is no tangent to S at P. In PG(2, 2) and PG(2, 3)
there are semiovals containing q (that is 2 or 3, respectively) collinear points.
But for q > 3 the size of the largest collinear subset in a semioval is at most
q − 1, we give a di�erent proof from the original one due to Dover.

Theorem 1.1.3. Let S be a semioval in Πq, q > 3. Then for any line ` the
intersection S ∩ ` contains at most q − 1 points.

Proof. Suppose that |S ∩ `| = q. Then there is a unique point T ∈ ` \ S. If
P ∈ S \ `, then tP must meet ` in T. Hence |S \ `| ≤ q, because the tangents
at distinct points are distinct lines, there are q+ 1 lines through T, but one
of them, `, could not be a tangent line. On the other hand, if R ∈ ` \ {T},
then there are q + 1 lines through R, one of them is `, one of them is tR,
but each of the remaining q − 1 contains at least one point of S \ `, thus
|S \ `| ≥ q − 1.

Suppose that |S \ `| = q− 1, and let P1 and P2 be two distinct points in
S \ ` (they exist because q > 3). If P1P2 ∩ ` = T, then there is no tangent
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line to S at P1 (and at P2). If P1P2 ∩ ` = R 6= T, then there are more than
one tangent lines at R, both of these are contradictions.

If |S \ `| = q, then let S \ ` = {P1, P2, . . . , Pq}. Now no line of type PiPj
meets ` in T, because we have already seen, that tPi

= PiT. Consider the
q(q − 1)/2 pairs of points {Pi, Pj} for all i 6= j. Each pair corresponds to a
line PiPj. Suppose, that {Pi, Pj} 6= {Pk, Pl} and PiPj ∩PkPl = R ∈ ` \ {T}.
Then there would be more than one tangent line at R, hence the lines
corresponding to distinct pairs meet ` \ {T} in distinct points. This implies

q(q − 1)

2
≤ q, so q ≤ 3.

This contradiction �nishes the proof.
There are several results about sets which are contained in the union of

three lines and have some other properties. For example Cameron [13] and
Sz®nyi [45] gave complete description of minimal blocking sets of this type.

The aim of the �rst two chapters is to characterize the semiovals which
are contained in the union of at most three lines. We will use the following
notation throughout this chapter: Π is a projective plane of order q, S is
a semioval in Π, if Q is a point of S then tQ is the unique tangent to S at
Q, PQ is the pencil of lines with carrier Q, `1, `2 and `3 are the three lines
whose union contains S, Li = S ∩ `i for i = 1, 2, 3, and Pi = `k ∩ `j where
{i, j, k} = {1, 2, 3}.

1.2 Preliminaries

It follows from the de�nition that a semioval could not be contained in
one line. Suppose now that S is contained in the union of two lines, `1 and
`2. Among the elements of PP3 there exist (q + 1) − 2 = q − 1 lines which
are tangent to S at P3, so if q > 2 then P3 6∈ S. Let us choose an arbitrary
point Q ∈ L1. Then q − 1 out of the q lines of PQ \ `1 must intersect `2

hence |L2| = q − 1, and because of the symmetry |L1| = q − 1. If Qi ∈ `i
are arbitrary points (i = 1, 2), then the pointset `1 ∪ `2 \ {P,Q1, Q2} is a
semioval, because for each Ri ∈ S the unique tangent tRi

is the line RiQj

where {i, j} = {1, 2}. Hence we proved the following:

Proposition 1.2.1. Let S be a semioval in a projective plane of order q > 2.
If S is contained in the union of two lines `1 and `2, then |S| = 2(q − 1)
and S = `1 ∪ `2 \ {`1 ∩ `2, Q1, Q2} where Qi ∈ `i for i = 1, 2.

If S is contained in the union of three lines, then there are much better
bounds on the size of S than the general ones.
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Proposition 1.2.2. Let S be a semioval in a projective plane Π of order q.
If S is contained in the union of three lines then

3(q − 1)

2
≤ |S| ≤ 3(q − 1).

Proof. We may assume that q > 4 because if q ≤ 4, then the bounds of
Hubaut are sharper than the bounds of our proposition. The upper bound
is a trivial consequence of 1.1.3.

In the case of the lower bound we distinguish two possibilities. If `1, `2

and `3 are concurrent, then their point of intersection P1(= P2 = P3) does
not belong to S, because P1 ∈ S would imply that there were (q+1)−3 > 2
tangents to S at P1. Let now Q ∈ Li be any point of S. Among the
q + 1 lines of PQ there are two exeptional ones, tQ and `i, each of the
remaining q− 1 lines meets either Lj or Lk where {i, j, k} = {1, 2, 3}. Thus
|Lj| + |Lk| ≥ q − 1. This holds for all the three possible pairs (j, k), hence
|L1|+ |L2|+ |L3| ≥ 3(q − 1)/2.

If `1, `2 and `3 form a triangle, and Pi /∈ S then the same argument shows
that |Lj| + |Lk| ≥ q − 1. If Pi ∈ S then |Li| ≥ q − 2, because among the
lines of PPi

there is only one, tPi
, which does not contain some other points

of S. Let Q ∈ Li be an arbitrary point. Now we get |Lj| + |Lk| ≥ q − 2.
Hence in both cases |Li|+ |Lj|+ |Lk| ≥ 3(q − 1)/2.

1.3 Semiovals contained in the sides of a tri-
angle

In the rest of the chapter semiovals in PG(2, q) which are contained in
the union of three lines are studied. We assume that S is not contained
in the union of two lines, thus Li \ {Pj, Pk} 6= ∅ for {i, j, k} = {1, 2, 3}. In
Section 1.3 a complete classi�cation is given when the lines form a triangle.
We prove that each semioval belongs to one of the following three classes.

1. S has a (q − 2)-secant and two (t + 1)-secants for a suitable t. A
semioval in this class exists if and only if q = 4 and t = 1, q = 8 and
t = 4 or q = 32 and t = 26.

2. S has two (q− 1)-secants and a k-secant. Semiovals in this class exist
for all 1 < k < q.

3. S has three (q − 1 − d)-secants. Semiovals in this class exist if and
only if d|(q − 1).

Proposition 1.3.1. S contains at most one point from the set {P1, P2, P3}.
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Proof. If Pi ∈ S then |Li \ {Pj, Pk}| = q − 2. Thus {P1, P2, P3} ⊂ S
implies |Li| = q, contradicting to the previously cited theorem of Dover.
Suppose now that P1, P2 ∈ S and P3 /∈ S. Then |L1| = |L2| = q − 1. Let
Ei (i = 1, 2) be the unique point of `i which is not in Li and di�erent from
P3. For each A ∈ L1 tA must be the line AE2, hence AE2 ∩ `3 /∈ S, so L3

contains exactly three points: P1, P2 and E1E2 ∩ `3 = E3. But at E3 there
are two distinct tangents to S, the lines E3P3 and E3E1. This contradiction
proves the statement.

Theorem 1.3.2. A semioval in PG(2, q) which is contained in the sides of
a triangle and which contains one vertex of this triangle has a (q−2)-secant
and two (t+ 1)-secants where t is a suitable integer. This type of semiovals
exists if and only if q = 4 and t = 1, q = 8 and t = 4 or q = 32 and t = 26.

Proof. If S contains P3 then Proposition 2.1 implies that neither P1

nor P2 are in S and |L3| = q − 2. Hence there exists a point Q such that
`3 \ L3 = {P2, P3, Q}. Let us choose the system of reference such that

P1 = (1, 0, 0), P2 = (0, 1, 0), P3 = (0, 0, 1), Q = (1, 1, 0).

Let
A1 = {a ∈ GF ∗(q) : (a, 0, 1) ∈ S}

and
A2 = {a ∈ GF ∗(q) : (0,−a, 1) ∈ S}.

First we show that A1 = A2. If R ∈ Li is an arbitrary point (i = 1, 2) then
tR is the line RPi hence RQ contains at least two � and so exactly two �
points of S. But the points Q = (1, 1, 0), (a, 0, 1) and (0,−a, 1) are collinear.
Thus (a, 0, 1) ∈ S if and only if (0,−a, 1) ∈ S. Let now t = |A1| = |A2|.

If 1 6= m ∈ GF ∗(q) then M = (m, 1, 0) ∈ L3 ⊂ S. Consider the elements
of PM . The line `3 is a (q − 2)-secant of S, tM is a tangent, each of the
remaining q − 1 lines is either a 2-secant or a 3-secant of S. Each 2-secant
contains one point of L1 ∪ L2 while each 3-secant contains one point of L1

and one point of L2. The cardinality of L1 ∪ L2 is 2t + 1, so if the number
of 3-secants is λ, then 2λ + (q − 1 − λ) = 2t + 1. Hence there are exactly
λ = 2t+ 2− q 3-secants of S in PM .

A 3-secant contains the points (b, 0, 1), (0,−c, 1) and (m, 1, 0) if and only
if m = c/b. Hence S is a semioval if and only if for all 1 6= m ∈ GF ∗(q)
there exist exactly λ = 2t + 2 − q pairs of elements (b, c) of A1 × A1 for
which m = c/b hold. This means that A1 is a di�erence set in GF ∗(q)
with parameters v = q − 1, k = t, λ = 2t + 2− q. For the basic facts about
di�erence sets we refer to the survey of Baumert [5] .
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If a (v, k, λ)-di�erence set exists, then its parameters satisfy the equation
k(k − 1) = (v − 1)λ, hence in our case

t(t− 1) = (q − 2)(2t+ 2− q).

Solving this equation and using t < q we get the parameters of the di�erence
set:

v = q − 1, k = q − 3 +
√

4q − 7

2
, λ = q − 1−

√
4q − 7.

Thus if n = k − λ then

n2 + n+ 1 =
4q − 7− 2

√
4q − 7 + 1

4
+

√
4q − 7− 1

2
+ 1 = q − 1,

so the di�erence set is a planar one.
If q is odd then 4q − 7 ≡ 5 (mod 8), hence 4q − 7 is not a square. Thus

this type of di�erence set does not exist for q odd. So semiovals belonging
to this class could exist only for q even. If q is even then 4q − 7 is a square
if and only if 4q = 2r and the diophantine equation 2r = x2 + 7 has a
solution. This equation was solved by Nagell [40]. He proved that there
are �ve solutions, namely the pairs (r, x) = (3, 1), (4, 3), (5, 8), (7, 11), and
(15, 181).

If r = 3 then q = 2, contrary to our assumption q > 2. If r = 4
then q = 4 and λ = 0, so there is no three-secant, the semioval contains
�ve points, it is an oval. If r = 5 then q = 8 and the di�erence set has
parameters v = 7, k = 4 and λ = 2. A di�erence set with these parameters
exists, this is the complementary di�erence set of the well-known (7, 3, 1)-
di�erence set belonging to the Fano plane. The corresponding semioval in
PG(2, 8) consists of 15 points, it has two 5-secants and one 6-secant. If
r = 7 then q = 32 and the di�erence set has parameters v = 31, k = 25
and λ = 20. Such di�erence set exists, this is the complementary di�erence
set of the (31, 6, 1)-di�erence set which belongs to the projective plane of
order q = 5. Hence the semioval appears in PG(2, 32). It has 81 points, two
26-secants and one 30-secant. If r = 13 then q = 8192 and the parameters
are v = 8191, k = 181, λ = 91 and n = 90. There is no planar di�erence set
with these parameters, because it is known (see [24]) that for n < 2, 000, 000
the order of each cyclic projective plane is a prime power.

Now consider the cases when S does not contain any point from the set
{P1, P2, P3}. The vertexless triangle T is a semioval belonging to this class.
Let D be any set of points on one side of T. If 0 < |D| < q − 2, then it is
easy to show that the set T \D is a semioval. These semiovals form Class 2.
If we delete points from more than one side of T, then the semioval belongs
to Class 3.
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Theorem 1.3.3. If a semioval S in PG(2, q) is contained in the sides of a
triangle T , does not contain any vertex of T and has at most one (q − 1)-
secant, then S has exactly three (q − 1 − d)-secants where d is a suitable
divisor of q − 1.

Proof. Let us choose the system of reference such that the lines `1 and
`2 are not (q − 1)-secants. Then we may assume that P1 = (1, 0, 0), P2 =
(0, 1, 0), P3 = (0, 0, 1), and the points (1, 0, 1) and (0, 1, 1) are not in S. Let

A = {a ∈ GF ∗(q) : (a, 0, 1) /∈ S},

B = {b ∈ GF ∗(q) : (0, b, 1) /∈ S}

and
C = {c ∈ GF ∗(q) : (−c, 1, 0) /∈ S}.

We prove that A = B = C. If Qi ∈ Li then tQi
is the line QiPi for i = 1, 2, 3.

Thus if two points, U and V from two distinct sides of T are not in S, W
denotes the point of intersection of the line UV and the third side of T,
then W could not be in S because the line UV would be another tangent
throughW. The points (a, 0, 1), (0, b, 1) and (c, 1, 0) are collinear if and only
if a = bc. Hence a ∈ A and b ∈ B imply a/b ∈ C, a ∈ A and c ∈ C imply
a/c ∈ B, and c ∈ C and b ∈ B imply bc ∈ A. So 1 ∈ C, because 1 ∈ A ∩B.
But this means that A ⊂ B and B ⊂ A, hence A = B. In the same way we
get A = C. Hence a ∈ A and b ∈ A imply ab ∈ A, and 1 ∈ A and a ∈ A
imply 1/a ∈ A. This means that A is a subgroup of GF ∗(q).

If G 6= GF ∗(q) is an arbitrary subgroup, then the pointset

{(h, 0, 1), (0, h, 1), (−h, 1, 0) : h ∈ GF ∗(q) \G}

is a semioval with cardinality 3(q−1−|G|), because the lines with equation
X1 = hX3, X2 = hX3, X1 = −hX2 are the unique tangent lines at the
points (h, 0, 1), (0, h, 1), (−h, 1, 0), respectively.

1.4 A possible generalization

A generalization to the concept of semiovals, namely semiarcs were stud-
ied by B. Csajbók and Gy. Kiss in [15]. Semiarcs are the natural generaliza-
tions of arcs. Let Πq be a projective plane of order q. A non-empty pointset
St ⊂ Πq is called a t-semiarc if for every point P ∈ St there exist exactly t
lines `1, `2, . . . `t such that St ∩ `i = {P} for i = 1, 2, . . . , t. These lines are
called the tangents to St at P . If a line ` meets St in 1 < k points, then `
is called a k-secant of St. If t = 1 examples for semiarcs are the semiovals.

In [15] similar results are proved for semiarcs.
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The following lower bound on the cardinality of t-semiarcs is trivial
consequence of the de�nition.

Proposition 1.4.1. If St is a t-semiarc in Πq, then q − t+ 2 ≤ |St| .

This bound is sharp, because any (q − t+ 2)-arc in Πq is a t-semiarc.
For the cardinality the following upper bound holds:

Theorem 1.4.2. If St is a t-semiarc in Πq, then

|St| ≤ 1 +

⌊
q(t− 1 +

√
4tq − 3t2 + 2t+ 1)

2t

⌋
.

They also proved better bounds for semiarcs with long secants. For the
case when the semiarc is contained in 3 lines and not contained in any two
lines we will refer later in Chapter 2.

12



Chapter 2

Semiovals contained in the union
of three concurrent lines

2.1 Introduction

The aim of this chapter is to investigate semiovals which are contained
in the union of three concurrent lines but are not contained in the union of
any two of these lines. In the previous chapter we discussed the case when
the semioval is contained in two lines.

There are only two known examples of this type. First, an in�nite family
arising from Baer subplanes of PG(2, q), where q is an even power of a prime
[32]; a detailed description is given in Example 2.2.3. And second, a sporadic
example in PG(2, 5), where S is an irreducible conic and the intersection of
the three lines is any inner point of it.

The semiovals of the above in�nite family have an additional property
de�ned below. To this end let us �rst introduce some standard terminology
and notation, to be used throughout the rest of this chapter. For a point Q
of a semioval S in a projective plane Πq of order q, we let tQ be the unique
tangent to S at Q, and PQ the pencil of lines with carrier Q. Further, we
let `1, `2 and `3 be the three concurrent lines whose union contains S, we
denote by C the common point of these three lines and by L the union of
`1, `2 and `3. And �nally, we let Li = S ∩ `i (i = 1, 2, 3). Now, a semioval
S is strong if, for any point K ∈ L \ (S ∪ {C}), the number of two-secants
of S passing through K is independent of K.

In Section 2.2 we give an improved upper bound for the size of semiovals
in Πq (see Theorem 2.2.2), and show that this bound is sharp (see Exam-
ple 2.2.3). In Section 2.3 we give an algebraic description of semiovals in
PG(2, q). Finally, Section 2.4 is devoted to the study of strong semiovals.
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We present some necessary conditions for the existence of such objects and
give a complete classi�cation of strong semiovals in PG(2, p) and PG(2, p2),
p an odd prime.

2.2 Bounds on the size of S

The following lower bound for the cardinality of S was proved in the
previous chapter.

Theorem 2.2.1. If a semioval S in PG(2, q), q > 9, is contained in the
union of three concurrent lines, then |S| > 3(q − 1)/2.

On the other hand, the best known upper bound for the size of S is
3(q − 1). This follows from a result of Dover which says that a semioval in
Πq cannot contain more than q − 1 collinear points [20]. In Theorem 2.2.2
below we improve this bound. As shown in Example 2.2.3, the bound is
sharp.

Theorem 2.2.2. If a semioval S in Πq, q > 3, is contained in the union
of three concurrent lines, then |S| ≤ 3dq −√qe.

Proof. Let ai = |Li| for i = 1, 2, 3. First we prove that a1 = a2 = a3. Let
P1 ∈ L1 be an arbitrary point. Let s2 and s3 be the number of lines of PP1

meeting S in two and three points, respectively. Then s2 + s3 = q − 1 and
s2 + 2s3 = a2 + a3, and hence

s3 = a2 + a3 − (q − 1).

This means that the total number of lines meeting S in three points equals

a1a2 + a1a3 − (q − 1)a1.

If we count the three-secants of S in the same way, but starting from a
point P2 ∈ L2 or a point P3 ∈ L3, then we get that the total number of the
three-secants equals

a2a1 + a2a3 − (q − 1)a2

and
a3a1 + a3a2 − (q − 1)a3,

respectively. Using these three expressions for the total number of lines
meeting S in three points, we have that for {i, j, k} = {1, 2, 3} pairwise
distinct,

(ai − aj)
(
ak − (q − 1)

)
= 0. (2.1)
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If q > 3 and S is not contained in the union of two lines, then C /∈ S,
because otherwise there would be at least 2 tangent lines through C. With
the assumption C /∈ S, we prove that ak − (q − 1) 6= 0. For this let us
suppose that a1 = q − 1. This implies that there exists a unique point M
on `1 di�erent from C not in L1. If we choose an arbitrary point N from
L2 the unique tangent line through N should be the line determined by the
points N and M . The intersection of this line and `3 can not be in S. If
we choose N1 from L2 di�erent from N the line MN1 will intersect `3 again
in S \ L3. If these N 's run over the set L2 we get q − a3 ≥ a2 (see Figure
2.1). On the other hand from the previous calculations it is obvious that
a2 +a3 ≥ q−1. Hence a2 +a3 can only be q or q−1. This shows that for any
P ∈ L1 the value of s3 is 0 or 1 which means that the total number of three
secants (which is a2a3 now) is at most q − 1. With these two conditions
for a2 and a3 we deduce that one of them is 1 which leads to contradiction
because through this point in L2 (or symmetrically in L3) there would be 2
tangents.

M
l1

l2

l3

N1

N

£1

£2£3

C

Figure 2.1: q − a3 ≥ a2

Thus, (2.1) implies a1 = a2 = a3. Let us denote this number by a. Then
|`i \ (Li ∪{C})| = q− a for i = 1, 2, 3. So there are at most (q− a)2 tangent
lines to S at the points of Li. Hence (q − a)2 ≥ a, and thus q ≥ a +

√
a.

From this inequality we get
√
a ≤ −1 +

√
1 + 4q

2
<
√
q −√q + 1.
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Hence
a ≤ dq −√qe.

This bound is sharp as the following example shows.

Example 2.2.3. Let q = s2 and let `1, `2, `3 be three concurrent lines in
PG(2, q). Choose Baer sublines `1 ⊂ `1, `2 ⊂ `2, and `3 ⊂ `3 in such
a way that, for any triple of distinct i, j, k ∈ {1, 2, 3}, the Baer subplane
Bj,k = 〈`j, `k〉 meets the line `i only in the common point C. Then S =
(`1 \ `1) ∪ (`2 \ `2) ∪ (`3 \ `3) is a semioval which has 3(q −√q) points.

For distinct i, j, k ∈ {1, 2, 3}, the line `i is tangent to the Baer subplane
Bj,k. Hence s + 1 lines of Bj,k pass through C, and exactly one line of Bj,k
passes through each other point of `i. So for each point Q ∈ Li there is
a unique line of Bj,k which passes through Q. This line is tQ, because any
other element of PQ does not belong to the set of lines of Bj,k, and hence it
meets (`j \ `j) ∪ (`k \ `k) = Lj ∪ Lk in at least one point.

We can construct such a semioval in the following way. Let ξ be a root
of an irreducible quadratic polynomial of GF (s)[X]. Consider GF (q) as
the extension of GF (s) by ξ. The equations of the lines are as follows:
`1 : X2 = 0, `2 : X1 = 0 and `3 : X2 = ξX1, and the Baer sublines are

`1 = {(a, 0, 1) : a ∈ GF (s)} ∪ {(1, 0, 0)},
`2 = {(0, b, 1) : b ∈ GF (s)} ∪ {(0, 1, 0)},
`3 = {(1, ξ, cξ + c) : c ∈ GF (s)} ∪ {(0, 0, 1)}.

Let us remark that not all strong semiovals of PG(2, q) can be con-
structed this way. For instance, this follows from our description of all
strong semiovals of PG(2, p2) (see Theorem 2.4.5).

2.3 An algebraic description

From now on we restrict ourselves to considering semiovals in the plane
PG(2, q), where q > 3 odd. Such a semioval S allows an algebraic descrip-
tion in terms of an ordered triple (R, S, T ), where R, S, and T are certain
subsets of GF(q). Namely, let us choose a system of reference for PG(2, q) in
such a way that the lines `1, `2, and `3 have equations X1 = −X3, X1 = 0,
and X1 = X3, respectively. Then C = (0, 1, 0) /∈ S because q > 3. Let

R = {r ∈ GF (q) : (−1, r, 1) ∈ L1},
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S = {s ∈ GF (q) : (0, s,−2) ∈ L2},

T = {t ∈ GF (q) : (1, t, 1) ∈ L3}.

If we denote the size of Li by a, then |R| = |S| = |T | = a. Consider the sets
R, S and T as subsets of the additive group of GF (q), call it E for short.
For a subset A ⊆ E we put −A = {−u : u ∈ A} and Ac = E \ A. Now
r + s + t = 0 if and only if the points (−1, r, 1), (0, s,−2) and (1, t, 1) are
collinear. Thus, S is a semioval if and only if

|Sc + u ∩ −T c| = 1, if u ∈ R,
|T c + u ∩ −Rc| = 1, if u ∈ S,
|Rc + u ∩ −Sc| = 1, if u ∈ T.

But for every u ∈ E,

|S + u ∩ −T |+ |S + u ∩ (−T )c| = |S + u| = a,

|S + u ∩ −T c|+ |Sc + u ∩ −T c| = | − T c| = q − a.

Further, if u ∈ R then |S + u ∩ (−T )c| = |S + u ∩ −T c|, and so |Sc + u ∩
−T c| = 1 amounts to |S + u ∩ −T | = 2a − q + 1. Similarly, if u ∈ S then
|T c +u∩−Rc| = 1 amounts to |T +u∩−R| = 2a− q+ 1 and if u ∈ T then
|Rc + u ∩ −Sc| = 1 amounts to |R + u ∩ −S| = 2a − q + 1. Therefore the
above system of equations is equivalent to the following one:

|S + u ∩ −T | = 2a− q + 1, if u ∈ R,
|T + u ∩ −R| = 2a− q + 1, if u ∈ S, (2.2)
|R + u ∩ −S| = 2a− q + 1, if u ∈ T.

2.4 Strong semiovals

Let S be a strong semioval in PG(2, q) and let S,R, T be subsets of E
which are induced by S in the way described in the previous section. Let
a = |R| = |S| = |T |. Since S is a strong semioval, there exists a natural
number k such that the number of two-secants of S passing through each
point in `i \ (Li∪{C}) is equal to k. (Example 2.2.3 gives a strong semioval
with k = (

√
q−1)2.) So instead of (2.2) we have the following re�ned system
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of equations

|S + u ∩ −T | =

{
2a− q + 1, if u ∈ R,

k, if u /∈ R,

|T + u ∩ −R| =

{
2a− q + 1, if u ∈ S,

k, if u /∈ S, (2.3)

|R + u ∩ −S| =

{
2a− q + 1, if u ∈ T,

k, if u /∈ T

We call k the parameter of S. This parameter depends on q and a, as seen
below.

Proposition 2.4.1. Let S be a strong semioval in PG(2, q) with parameter
k. If S consists of 3a points, then

k = a− a

q − a
.

Proof. Consider the �rst condition of (2.3). For a given u ∈ E, the number
of pairs (s, t) ∈ S × T such that s+ t = −u is equal to 2a− q + 1 if u ∈ R,
and is equal to k otherwise. Therefore, the total number of such pairs (s, t)
is (2a− q+ 1)|R|+ k|Rc|. From this we have (2a− q+ 1)a+ k(q− a) = a2,
and so k = a− a

q−a .

Proposition 2.4.1 shows that (q− a) divides a, and hence (q− a) divides
q. Thus, if q = pm then a = pm − pl, and from Theorem 2.2.2 we have
|S| = 3(pm − pl) where m/2 ≤ l < m. In particular, we get the following
corollary.

Corollary 2.4.2. There is no strong semioval in PG(2, p) if p is an odd
prime.

A triple of subsets R, S, T of E for which |S| = |R| = |T | = a satis-
fying (2.3) is called a semioval-triple of E. Semioval-triples with maximal
cardinality are closely related to factorizations of E. Let G be an additive
group. The nonempty subsets A1, ..., An of G induce a factorization of G,
if every g ∈ G can be uniquely written in the form g = a1 + a2 + · · · + an,
ai ∈ Ai. This will be expressed as G = A1 + A2 + · · · + An. For more on
factorizations of abelian groups, we refer the reader to [44]. We have the
following necessary and su�cient condition.

Proposition 2.4.3. Let q = p2l, p an odd prime. If the subsets S, R and
T of E having cardinality p2l − pl form a semioval-triple of E, then E has
factorizations E = Sc + T c = Rc + T c = Rc + Sc.

On the other hand, if E = A1+A2 = A2+A3 = A1+A3 are factorizations
such that |A1| = |A2| = |A3|, then the sets Ac1, A

c
2 and Ac3 form a semioval-

triple of E.
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Proof. Assume �rst that R, S and T of E have cardinality p2l−pl and that
they form a semioval-triple of E. Then k = (pl − 1)2, by Proposition 2.4.1.
Also 2a− q + 1 = (pl − 1)2 = k, and hence (2.3) reduces to

|S + u ∩ −T | = |T + u ∩ −R| = |R + u ∩ −S| = (pl − 1)2, if u ∈ E.

Then

(pl−1)2 = |T +u∩−S| = |T +u|− |T +u∩−Sc| = p2l−pl−|T +u∩−Sc|,

from which we get |T ∩ −Sc − u| = |T + u ∩ −Sc| = pl − 1. Thus

|T c+u∩−Sc| = |T c∩−Sc−u| = |−Sc−u|−|T∩−Sc−u| = pl−(pl−1) = 1.

In other words, for every u ∈ E, we have s+ t = −u for unique s ∈ Sc and
t ∈ T c, so that E = Sc + T c. The factorizations E = Rc + T c = Rc + Sc

follow in the same way.
Conversely, let E = A1 + A2 = A2 + A3 = A1 + A3 be such that

|A1| = |A2| = |A3|. Clearly, |A1| = |A2| = |A3| = pl. Now one only has to
reverse the previous argument to deduce that the sets Ac1, A

c
2 and Ac3 form

a semioval-triple.
The following classical result on factorizations is due to Rédei [42].

Theorem 2.4.4. [44, Theorem 1.4.1] Let G = A1 + · · · + An be a factor-
ization of the �nite abelian group G such that for the identity element 0 of
G, 0 ∈ Ai and |Ai| is a prime for each i, 1 ≤ i ≤ n. Then at least one of
the factors A1, ..., An is a subgroup of G.

Combining together Theorem 2.4.4 and Proposition 2.4.3 we obtain a
complete characterization of strong semiovals in PG(2, p2), p an odd prime.

Theorem 2.4.5. If S is a strong semioval in PG(2, p2), p an odd prime,
and S is contained in the union of lines `1, `2 and `3, then L \ S can be
described as the point set{

(−1, a, 1), (0, b, 1), (1, i, ci+ f(c)) : a, b, c ∈ GF (p)
}
∪
{
C
}
, (2.4)

where C = (0, 1, 0), i2 = ε for a non-square element ε of GF (p), GF (p2) is
the extension of GF (p) by i, and eventually, f is a permutation of GF (p).

Proof. Let S be a strong semioval in PG(2, p2). As in Section 3 let us
choose the system of reference in such a way that the lines `1, `2 and `3

have equations X1 = −X3, X1 = 0 and X1 = X3, respectively, and let S, R
and T be the corresponding subsets of E induced then by S. Coordinatize
the plane in such a way that the identity element 0 of E belongs to 0 ∈
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Rc∩Sc∩T c. By Proposition 2.4.3 the statement that S is a strong semioval
is equivalent to saying that E has the following factorizations:

E = Rc + Sc = Rc + T c = Sc + T c, |Rc| = |Sc| = |T c| = p.

By Theorem 2.4.4 it follows that at least two of the sets Rc, Sc and
T c coincide with a subgroup of E of index p. We may assume that these
are Rc and Sc. Moreover, Sc and Rc may be identi�ed with GF(p) and
GF(p)i, respectively. Clearly, E = Rc + Sc. We are going to show that
E = T c +Rc = T c + Sc if and only if

T = {g(c)i+ c : c ∈ GF (p)} (2.5)

for some permutation g of GF (p). It is easy to check that if T is of the form
given above, then E = T c +Rc = T c + Sc.

Conversely, assume that E = T c+Rc = T c+Sc. Let a1i+b1 and a2i+b2

be two elements of T , with ai, bi ∈ GF (p). If a1 = a2 and b1 6= b2, then
a1i = (a1i+b1)+(−b1) = (a2i+b2)+(−b2), which contradicts T c+Sc = E.
Thus {a ∈ GF (p) : ai+b ∈ T} = GF (p). We also have {b ∈ GF (p) : ai+b ∈
T} = GF (p), which follows from the assumption T c + Rc = E by a similar
argument. These imply (2.5).

Also, we obtained that (`1 ∪ `2 ∪ `3) \ S can be described as the point
set {

(0, b, 1), (−1, ai, 1), (1, c+ g(c)i, 1) : a, b, c ∈ GF (p)
}
∪
{
E2

}
.

Let ψ be the collineation of PG(2, p2) de�ned as ψ : (X1, X2, X3) 7→ (X1,
X2, X3)M , where

M =

1 i
2

0
0 0 i
0 i

2
0

 .

Then the above set is mapped by ψ to the set{
(0,

i

2
, bi), (−1, 0, εa), (1, i, ci+ εg(c)) : a, b, c ∈ GF (p)

}
∪
{

(0, 0, i)
}
.

Note that this point set coincides with the one given in (2.4), after the
substitution f = εg.

Recall that, by Theorem 2.2.2, the size of a semioval S in Πq, q >
3, contained in the union of three concurrent lines, is bounded above by
3dq−√qe. In the rest of the section we consider strong semiovals S satisfying
|S| < 3(q−√q). For the existence of such a semioval we have the following
divisibilty condition.
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Theorem 2.4.6. If S is a strong semioval of cardinality |S| = 3(pm − pl),
m/2 < l < m, in PG(2, q), q = pm odd, then

(p− 1)(p2l−m − 1)2 | (pm−l − 1). (2.6)

Proof. We are going to reformulate (2.3) in the language of the group
algebra QE. Recall that QE consists of formal sums

∑
u∈E auu, where

u ∈ E and au ∈ Q, with addition∑
u∈E

auu +
∑
u∈E

buu =
∑
u∈E

(au + bu)u,

and multiplication∑
u∈E

auu ·
∑
u∈E

buu =
∑
u∈E

∑
v∈E

(avbu−v)u.

For α =
∑

u∈E auu ∈ QE, the multiplication of α by a scalar a ∈ Q is
de�ned as aα =

∑
u∈E(aau)u. We let α> =

∑
u∈E au(−u), where −u is the

inverse of u in E. For a subset A ⊆ E, the symbol A will also denote the
group algebra element

∑
u∈A u.

Let R, S, and T be the sets of the semioval-triple induced by S. Observe
that (2.3) can then be reformulated in the language of QE as follows (where
R> = {α> : α ∈ R}, S> = {α> : α ∈ S} and T> = {α> : α ∈ T} form the
counterparts of −R, −S and −T in QE, respectively):

S · T = (pm−l − pl)R> + (pm − pl − pm−l + 1)E,

T ·R = (pm−l − pl)S> + (pm − pl − pm−l + 1)E, (2.7)
R · S = (pm−l − pl)T> + (pm − pl − pm−l + 1)E.

For an irreducible character χ of E, the symbol χ will also denote its nat-
ural extension to QE de�ned as χ(α) =

∑
u∈E auχ(u), for α =

∑
u∈E auu.

This is an algebra homomorphism of QE into Q(ξ), where ξ is a complex
primitive p-th root of unity. Apply now a non-principal character χ of E
to (2.7). (The de�nition of a non-principal character, and all facts from
character theory which are used here can be found, e. g., in [1].) This
yields

χ(S)χ(T ) = (pm−l − pl)χ(R>),

χ(T )χ(R) = (pm−l − pl)χ(S>), (2.8)
χ(R)χ(S) = (pm−l − pl)χ(T>).

Since m/2 < l we have pm−l − pl 6= 0. Thus, from (2.8) it follows that
χ(R) 6= 0 implies χ(R · R>) = (pm−l − pl)2. Therefore, χ(R · R>) = 0 or
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χ(R ·R>) = (pm−l − pl)2 for every non-principle character χ of E. Assume
that χ(R · R>) = (pm−l − pl)2 for exactly s non-principal characters. Now
χ(R · R>) = (pm−l − pl)2 implies χi(R · R>) = (pm−l − pl)2 for all i ∈
{1, 2, . . . , p− 1}. Thus, p− 1 divides s. Set s = s′(p− 1).

Let R · R> =
∑

u∈E ruu in QE. Note that r0 = pm − pl, where 0 is the
identity element of E. Denote by E∗ the set of all irreducible characters of
E. Then ∑

χ∈E∗
χ(R ·R>) = (pm − pl)2 + s(pm−l − pl)2.

Since
∑

χ∈E∗ χ(u) = pm, if u = 0 (the identity of E), and it is equal to 0
otherwise, we also have∑

χ∈E∗
χ(R ·R>) =

∑
χ∈E∗

∑
u∈E

ruχ(u) =
∑
u∈E

ru
∑
χ∈E∗

χ(u) = pm(pm − pl).

From these we obtain

s′ =
p4l−2m(pm−l − 1)

(p− 1)(p2l−m − 1)2
,

and(2.6) follows.
For a given p, the numbers m, l satisfying (2.6) can be described explic-

itly.

Lemma 2.4.7. Let p be an odd prime, and let m and l be natural numbers
such that 1

2
m < l < m. Then

Np,m,l =
pm−l − 1

(p− 1)(p2l−m − 1)2

is a natural number if an only if

m = (2tp,λ,τ + 1)τ and l = (tp,λ,τ + 1)τ,

where λ and τ are natural numbers and

tp,λ,τ =

{
1
2
λ(p− 1)(pτ − 1), τ odd and p ≡ −1 (mod 4)
λ(p− 1)(pτ − 1), otherwise.

Proof. If Np,m,l is a natural number, then pm−l − 1 must be divisible by
p2l−m − 1, and by a well known result from number theory, m− l must be
divisible by 2l −m; that is, m − l = t(2l −m) for some natural number t.
For convenience, set τ = 2l −m. Then

m = (2t+ 1)τ and l = (t+ 1)τ,
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and Np,m,l takes the form

Np,τ,t =
ptτ − 1

(p− 1)(pτ − 1)2
.

The original question � when is Np,m,l a natural number � has now reduced
to an equivalent one: if p is an odd prime and τ and t natural numbers,
when is Np,τ,t a natural number. Now Np,τ,t can be written in the form

Np,τ,t =
1

p− 1

[
p(t−1)τ − 1

pτ − 1
+ . . .+

pτ − 1

pτ − 1
+

t

pτ − 1

]
.

If Np,τ,t is a natural number, then the number in brackets must be a natural
number. So t = z(pτ − 1) for some natural number z. Observe that Np,τ,t

now takes the form

Np,τ,z =
1

p− 1

[
p(t−2)τ + 2p(t−3)τ + . . .+ (t− 2)pτ + (t− 1) + z

]
=

[
p(t−2)τ − 1

p− 1
+ 2

p(t−3)τ − 1

p− 1
+ . . .+ (t− 2)

pτ − 1

p− 1

]
+

+

[
t(t− 1)

2(p− 1)
+

z

p− 1

]
.

The original problem has thus reduced to the question � for which natural
numbers t and z is N := t(t−1)

2(p−1)
+ z
p−1

a natural number. We split the analysis
into two cases.

First, let τ be even. Writing N in the form

N = z
pτ−1 + . . . p+ 1

2
(t− 1) +

z

p− 1
,

we see that N is a natural number if and only if z = λ(p − 1) for some
natural number λ. This gives m and l in terms of p, τ and λ as stated.

Suppose now that τ is odd. Writing N in the form

N =

[
z
pτ−1 + . . . p

2
(t− 1) + z2p

τ − 1

2
− z
]

+

[
z

2
+

z

p− 1

]
we see that N is a natural number if and only if u = z

2
+ z

p−1
is a natural

number. Thus,

z = 2u− 4u

p+ 1
,

which brings us to considering the congruence class of the odd prime p
modulo 4. If p = 4s + 1, then z = 2u − 2u

2s+1
. So u = λ(2s + 1) and
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consequently, z = λ(p − 1). This gives m and l as stated in the lemma.
Finally, let p = 4s− 1. Then z = 2u− u

s
. Hence u = λs and consequently,

z = 1
2
λ(p−1). Again, this givesm and l as stated, and the proof is complete.

Observe that, with the notation of Lemma 2.4.7, we have tp,λ,τ ≥ 1
2
(p−

1)2 for p ≡ −1 (mod 4), and tp,λ,τ ≥ (p − 1)2 for p ≡ 1 (mod 4). Thus, if
Np,τ,t is a natural number then m ≥ (p − 1)2 + 1 for p ≡ −1 (mod 4), and
m ≥ 2(p − 1)2 + 1 for p ≡ 1 (mod 4). We conclude the paper with the
following corollary of the divisibilty condition of Theorem 2.4.6.

Corollary 2.4.8. If S is a strong semioval in PG(2, pm), where p is an odd
prime, and

m ≤
{

(p− 1)2 p ≡ −1 (mod 4)
2(p− 1)2 p ≡ 1 (mod 4),

then |S| = 3(q −√q).

Recently B. Csajbók and Gy. Kiss in [15] using a bit more complicated
arguments from additive group theory could generalize our non-existance
results. They proved the following:

Theorem 2.4.9. Let S be a strong semioval in PG(2, pr), p an odd prime.
Then the followings hold.

1. If r = 2l, then S contains 3(p2l − pl) points.

2. If r = 2l+ 1 and p > 7, then there is no strong semioval in PG(2, pr).

3. If r = 2l+ 1 and p = 3, 5 or 7, then S contains 3(p2l+1− pl+1) points.

Combining the results of 2.4.9 and 2.4.6 one can easily see the following

Theorem 2.4.10. Let S be a strong semioval in PG(2, pr) where p is an
odd prime and r is odd. Then p = 3, and r = 4t+1 or p = 5, and r = 32t+1
or p = 7, and r = 36t+ 1, where t is a positive integer.

Proof. Assuming that p is an odd prime and r is odd the only three pos-
sibilities are p = 3, 5 or 7, and the divisibility condition in 2.4.6 gives the
following:

(p− 1)3 | p
r−1
2 − 1.

Substituting a = p− 1 and k = r−1
2

the condition to be checked turns into
the condition a3 | (a + 1)k − 1. Using the binomial theorem it gives the
necessary divisibility conditions for r.
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These results, our example for strong semiovals 2.2.3 altogether and the
fact that in the third case of Theorem 2.4.9 there is no known example
supports our concluding conjecture.

Conjecture 2.4.11. The projective plane PG(2, q), q odd, contains strong
semiovals if and only if q is a square.
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Chapter 3

Large Cayley graphs of given
degree and diameter

3.1 Introduction

A simple �nite graph Γ is a (∆, D)-graph if it has maximum degree ∆,
and diameter at most D. The (∆, D)-problem (or degree/diameter problem)
is to determine the largest possible number of vertices that Γ can have.
Denote this number by n(∆, D). There is a straightforward on n(∆, D).
Trivially, if ∆ = 1 then D = 1 and n(1, 1) = 2; in what follows we therefore
assume that ∆ ≥ 2.
Let v be a vertex of the graph Γ and let ni, be the number of vertices at
distance i from v. Since a vertex at distance i ≥ 1i from v can be adjacent
to at most ∆−1 vertices at distance i+1 from v, we have ni+1 ≤ (∆−1)ni,
for all 1 ≤ i ≤ D − 1. Since n1 ≤ ∆, it follows that ni ≤ ∆(∆ − 1)i−1, for
all 1 ≤ i ≤ D.
Therefore if ∆ > 2, then

n(∆, D) =
D∑
i=0

ni ≤
∆(∆− 1)D − 2

∆− 2
(3.1)

The bound was named after E. F. Moore who �rst proposed the problem,
as mentioned in [27] . A graph whose order is equal to the Moore bound is
called a Moore graph; such a graph is necessarily regular of degree ∆.
The study of Moore graphs was initiated by Ho�man and Singleton. Their
pioneering paper [27] was devoted to Moore graphs of diameter 2 and 3.
In the case of diameter D = 2, they proved that Moore graphs exist for
∆ = 2, 3, 7 and possibly 57 but for no other degrees, and that for the �rst
three values of ∆ the graphs are unique. For D = 3 they showed that the
unique Moore graph is the heptagon (for ∆ = 2).
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It turns out that no Moore graphs exist for the parameters ∆ ≥ 3 and
D ≥ 3. This was proved by Bannai and Ito in [3].

The study of large graphs of given degree and diameter has often been
restricted to special classes of graphs. If in addition Γ is required to be
vertex-transitive, then the only known general lower bound is given as

n(∆, 2) ≥
⌊∆ + 2

2

⌋
·
⌈∆ + 2

2

⌉
. (3.2)

This is obtained by choosing Γ to be the Cayley graph Cay(Za×Zb, S),
where a = b∆+2

2
c, b = d∆+2

2
e, and S = { (x, 0), (0, y) | x ∈ Za \ {0}, y ∈

Zb \ {0} }.
Here we recall the concept of a Cayley graph:

De�nition 3.1.1. Let G be an additive group and S ⊆ G such that 0 /∈ S,
and S = −S := {−x | x ∈ S}, the Cayley graph Γ(G,S) is the graph having
vertex-set G, and edges {x, x + s}, x ∈ G, s ∈ S. The set S is called the
connection set of the graph.

If ∆ = kD+m, where k,m are integers and 0 ≤ m < D, then a straight-
forward generalization of this construction results in a Cayley (∆, D)-graph
of order ⌊∆ +D

D

⌋D−m
·
⌈∆ +D

D

⌉m
. (3.3)

Throughout this chapter we will refer these graphs as GCCG-graphs (Gen-
eral Construction from Cyclic Groups). For special values of the parameters,
(3.2) and (3.3) have been improved using various constructions. For more
on the topic, we refer to [49, 39].

In this chapter we restrict our attention to the class of linear Cayley
graphs. We present some constructions where the resulting graphs improve
the lower bounds (3.2) and (3.3). For small number of vertices these are
also compared to the known largest vertex transitive graphs having the same
degree and diameter.

Let V denote the n-dimensional vector space over the �nite �eld Fq of
q elements, where q = pe for a prime p. For S ⊆ V such that 0 /∈ S, and
S = −S := {−x | x ∈ S}, the Cayley graph Cay(V, S) is the graph having
vertex-set V , and edges {x, x+s}, x ∈ V , s ∈ S. A Cayley graph Cay(V, S)
is said to be linear, [23, pp. 243] if S = αS := {αx | x ∈ S} for all nonzero
scalars α ∈ Fq. In this case S ∪ {0} is a union of 1-dimensional subspaces,
and therefore, it can also be regarded as a point set in the projective space
PG(n−1, q). Conversely, any point set P in PG(n−1, q) gives rise to a linear
Cayley graph, namely the one having connection set {x ∈ V \{0} | 〈x〉 ∈ P}.
We denote this graph by Γ(P). Given an arbitrary point set P in PG(n, q),
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〈P〉 denotes the projective subspace generated by the points in P , and
(P
k

)
(k ∈ N) is the set of all subsets of P having cardinality k. The degree and
diameter of linear Cayley graphs are given in the next proposition.

Proposition 3.1.2. Let P be a set of k points in PG(n, q) with 〈P〉 =
PG(n, q). Then Γ(P) has qn+1 vertices, with degree k(q − 1), and with
diameter

D = min
{
d | ∪X∈(Pd)〈X 〉 = PG(n, q)

}
. (3.4)

Proof. Let Γ = Γ(P). It is immediate from its de�nition that Γ has qn+1

vertices and that its degree is equal to k(q−1). Now let V denote the (n+1)-
dimensional vector space over Fq. Being a Cayley graph, Γ is automatically
vertex-transitive, and so its diameter is the maximal distance δΓ(0, x) where
0 ∈ V , and x runs over V . By δΓ we denote the usual distance function of
Γ.

Let x ∈ V \{0}, and let P = 〈x〉 be the corresponding point in PG(n, q).
It can be seen that δΓ(0, x) = k where k is the minimal number of indepen-
dent points P1, . . . , Pk ∈ P such that P ∈ 〈P1, . . . , Pk〉. Now, (3.4) shows
that δΓ(0, x) ≤ D for every x ∈ V , in particular, the diameter of Γ is at
most D.

On the other hand, by (3.4), there exists a Q ∈ PG(n, q) for which
Q /∈ 〈P1, . . . , PD−1〉 for any P1, . . . , PD−1 ∈ P . Thus if y is an element of V
with 〈y〉 = Q, then δΓ(0, y) ≥ D. Therefore, the diameter of Γ cannot be
less than D, which completes the proof.

Once the number of vertices and the diameter for Γ(P) are �xed to
be qn+1 and D, respectively, our task becomes to search for the smallest
possible point set P for which

∪X∈(PD)〈X 〉 = PG(n, q).

A point set having this property is called a (D-1)-saturating set. In order to
have proper graphs for our purposes in our following constructions we will
use saturating sets of projective spaces.

3.2 The constructions

If D = 2, then a 1-saturating set P is a set of points of PG(n, q) such
that the union of lines joining pairs of points of P covers the whole space.
Assume that n = 2. If P contains k points, then the graph has degree
k(q − 1) and the number of vertices is q3. Hence this is better than the
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general lower bound (3.2) if and only if q3 > (k(q − 1) + 2)2/4, which is
equivalent to

2
√
q +

2
√
q + 1

> k. (3.5)

There are two known general constructions for 1-saturating sets in the plane:
complete arcs and double blocking sets of Baer subplanes.

If q is a square, and Π√q is a Baer subplane of PG(2, q), of order
√
q,

then each point of PG(2, q) \ Π√q is incident with exactly one line of Π√q.
A double blocking set of a plane meets each line of the plane in at least two
points. Hence a double blocking set of Π√q is a 1-saturating set of PG(2, q).
The cardinality of a double blocking set of Π√q is at least 2(

√
q + 4
√
q + 1).

This is greater than the bound given in (3.5), hence we cannot construct
good graphs from these sets.
It turned out that another structure from �nite geometry is more useable
for us.

De�nition 3.2.1. A pointset K is a k-arc if it is a set of k points such that
no three of them are collinear. It is a complete k-arc if moreover there is
no (k + 1)-arc containing K.

Thus a complete k-arc K is a 1-saturating set, because if a point P
would not be covered by the secants of K, then K∪{P} would be a (k+ 1)-
arc. The cardinality of the smallest complete arc in PG(2, q) is denoted by
t2(2, q). For the known values of t2(2, q) we refer to [18]. The general lower
bounds are t2(2, q) >

√
2q + 1 for arbitrary q and t2(2, q) >

√
3q + 1/2 for

q = pi, i = 1, 2, 3. But unfortunately the known complete arcs have bigger
cardinality. The inequality

t2(2, q) < 2
√
q +

2
√
q + 1

is satis�ed only for q = 8, 9, 11 and 13. Table 1 gives the corresponding
values of t2(2, q) and the parameters of the graphs arising from these arcs.

q t2(2, q) D ∆ number of
⌊

∆+2
2

⌋
·
⌈

∆+2
2

⌉
.

vertices of Γ

8 6 2 42 512 484
9 6 2 48 729 625
11 7 2 70 1331 1296
13 8 2 96 2197 2116

Table 1
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Besides complete arcs and double blocking sets of Baer subplanes an-
other class of small 1-saturating sets in PG(2, p) was examined by computer.
These point sets are contained in 3 concurrent lines. For small prime orders
p = 11, 13, 17, 19, using a simple back-track algorithm we found 1-saturating
sets of this type with cardinality 10, 11, 13 and 14, respectively. The corre-
sponding graphs do not improve the bound in (3.2).

Now let n > 2. Then a set of k points such that no three of them are
collinear is called k-cap. A k-cap is complete, if it is not contained in any
(k + 1)-cap. Hence complete caps in PG(n, q) are 1-saturating sets. For
the sizes of the known complete caps we refer to [26]. There is one in�nite
series which gives better graphs than the GCCG-graphs. Due to Davydov
and Drozhzhina-Labinskaya [17], for n = 2m − 1 > 7 there is a complete
(27·2m−4−1)-cap in PG(n, 2). This gives a graph of degree 27·2m−4−1 and of
order 22m. It has much more vertices than the corresponding GCCG-graph,
because

22m = 1024·22m−10 > 729·22m−10+27·2m−5 =
⌊27 · 2m−4 + 1

2

⌋
·
⌈27 · 2m−4 + 1

2

⌉
.

Hence we proved the following theorem.

Theorem 3.2.2. Let ∆ = 27 · 2m−4 − 1 and m > 7. Then

n(∆, 2) ≥ 256

729
(∆ + 1)2.

There are sporadic examples, too. For n = 3 and q = 2 there is a
complete 5-cap in PG(3, 2). The corresponding graph has degree ∆ = 5 and
the number of vertices is n = 16. The best known graph of degree 5 and
diameter 2 has 24 vertices, and the best known Cayley graph has 18 vertices
[2], so in this case there are bigger graphs. For q = 3, 4 and 5 the smallest
complete caps in PG(3, q) have 2(q + 1) points. The corresponding graphs
have the same parameters as the GCCG-graphs.

For n = 4 and q = 2, 3, 4 there are complete caps in PG(4, q) with
cardinalities 9, 11 and 20, respectively. For n = 5 and q = 2, 3 there are
complete caps in PG(5, q) with cardinalities 13 and 22. The corresponding
graphs have more vertices than the previously known examples. Table 2
gives the parameters of the graphs arising from these caps.
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projective size of the D ∆ number of
⌊

∆+2
2

⌋
·
⌈

∆+2
2

⌉
.

space complete cap vertices of Γ

PG(4, 2) 9 2 9 32 30
PG(4, 3) 11 2 22 243 144
PG(4, 4) 20 2 60 1024 961
PG(5, 2) 13 2 13 64 56
PG(5, 3) 22 2 44 729 529

Table 2

In PG(3, q), q > 3, the smallest known 1-saturating set has 2q+1 points
[16]. Let π be a plane, Ω be an oval in π, P be a point of Ω, for q even let
N ∈ π be the nucleus of Ω, for q odd let N ∈ π be a point such that the line
NP is the tangent to Ω at P, and �nally let ` be a line such that `∩π = {P}.
Then it is easy to check that (Ω ∪ ` ∪ {N}) \ {P} is a 1-saturating set in
PG(3, q). The corresponding graph has degree ∆ = 2q2 − q − 1, and the
number of its vertices is q4 > (∆ +

√
∆/2 + 5/4)2/4. Hence we proved the

following theorem.

Theorem 3.2.3. Let q > 3 be a prime power and let ∆ = 2q2− q−1. Then

n(∆, 2) >
1

4

(
∆ +

√
∆

2
+

5

4

)2

.

Let `1 and `2 be two skew lines in PG(3, q). If P is any point not on
`1 ∪ `2, then the plane generated by P and `1 meets `2 in a unique point
T2, and the line PT2 meets `1 in a unique point T1. Hence the line T1T2

contains P, so the set of points of `1 ∪ `2 is a 1-saturating set in PG(3, q).
The corresponding graph has degree ∆ = 2(q2 − 1), and the number of its
vertices is q4 =

(
(∆ + 2)/2

)2
. Hence this construction gives graphs having

the same parameters as the GCCG-graphs.
A straightforward generalization of the skew line construction is the

following. Let `1, `2, . . . , `m be a set of m lines whose union spans PG(2m−
1, q). Then the set of points of ∪mi=1`i is an (m − 1)-saturating set and
the corresponding graph has parameters D = m, ∆ = 2m(q2 − 1), and
the number of its vertices is q2m. These parameters are the same as the
parameters of the GCCG-graphs.

Another class of examples for (D− 1)-saturating sets in PG(D, q) is the
class of complete arcs. These objects are generalizations of the planar arcs.
A point set K is a complete k-arc in PG(D, q) if no D points of K lie in
a hyperplane, and there is no (k + 1)-arc containing K. The corresponding
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graph has degree k(q− 1) and the number of vertices is qD+1. Hence this is
better than the known general lower bound if and only if

qD+1 >

(
k(q − 1) +D

D

)D
, that is k <

D(q D
√
q − 1)

q − 1
. (3.6)

The typical examples for complete arcs are the normal rational curves, and
almost all of the known complete arcs are normal rational curves, or subsets
of these curves. There is only one known complete k-arc which satis�es (3.6).
This is a normal rational curve in PG(4, 3). The corresponding graph has
degree ∆ = 15, diameter D = 3 and the number of its vertices is 256.
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Chapter 4

Rose window graphs underlying
rotary maps

4.1 Preliminaries

4.1.1 Maps

A mapM is an embedding of a �nite connected graph Γ into a surface
so that it divides the surface into simply-connected regions, called the faces
of M. To each face f there is associated a closed walk of Γ with edges
surrounding f , to which we shall also refer as a face ofM. An automorphism
ofM is an automorphism of Γ which preserves its faces. Following [48],M
is called rotary if it admits automorphisms R and S with the property
that R cyclically permutes the consecutive edges of a face f (as a one-step
rotation of f), and S cyclically permutes the consecutive edges incident to
some vertex v of f (as a one-step rotations of the neighbors of v). In this
case the automorphism group Aut(M) ofM acts transitively on the vertex
set, edge set, and face set. We remark that the existence of R ensures that
the boundary cycle of f is a so called consistent cycle of Γ, for details about
this concept we refer the reader to [6, 14, 38].

If a rotary map also contains an automorphism T which `�ips' an edge
e of f , and preserves f , then we say that M is re�exible. On the other
hand, if no such automorphism T exists, then M is called chiral. Equiv-
alent terminologies are orientable-regular and regular, see [21]. Namely, a
rotary map is a map that is either orientable-regular or regular, whereas a
re�exible map is regular map. One of the central questions regarding maps
is the following: which graphs admit an embedding onto some closed surface
as a rotary map (see [7, page 130]).
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Throughout this chapter graphs are simple, �nite and undirected. Given
a graph Γ, we let V (Γ), E(Γ), A(Γ) and Aut(Γ) be the vertex set, the edge
set, the arc set and the automorphism group of Γ, respectively. For adjacent
vertices u and v in Γ, we write u ∼ v and denote the corresponding edge by
uv, and the arc from u to v by (u, v). If u, v ∈ V (Γ) then NΓ(u) denotes the
set of neighbors of u and dΓ(u, v) denotes the distance between u and v in
Γ. For a subset U of V (Γ) the subgraph of Γ induced by U will be denoted
by Γ[U ]. For a partition W of V (Γ), we let Γ/W be the associated quotient
graph of Γ relative to W , that is, the graph with vertex set W and edge set
induced naturally by the edge set E(Γ). In the case when W corresponds
to the set of orbits of a subgroup N of Aut(Γ), the symbol Γ/W will be
replaced by Γ/N . A subgroup G ≤ Aut(Γ) is said to be vertex-transitive,
edge-transitive or arc-transitive provided it acts transitively on the set of
vertices, set of edges or set of arcs of Γ, respectively. The graph Γ is said
to be vertex-transitive, edge-transitive, or arc-transitive if its automorphism
group is vertex-transitive, edge-transitive or arc-transitive, respectively.

Let Γ be a graph and G ≤ Aut(Γ). A walk ~D = (u0, . . . , ur) in X is
called G-consistent (or just consistent if G = Aut(Γ)) if there exists g ∈ G
such that ugi = ui+1 for i ∈ {0, 1, . . . , r − 1}. The automorphism g is called
a shunt automorphism for ~D. If ~D is a simple closed walk then we say that
~D is a G-consistent oriented cycle. The underlying nonoriented cycle of ~D
is called a G-consistent cycle and is denoted by D. The following result
of Conway [14] implies that an arc-transitive group G of automorphisms of
a quartic graph has exactly three orbits in its action on the set of all G-
consistent oriented cycles. A written proof of this result is given by Biggs
in [6] (see also [38]).

Proposition 4.1.1. [6, 14] Let G be a group of automorphisms of a d-valent
graph Γ (d ≥ 2). Assume that G is arc-transitive. Let Ω be the set of all
G-consistent oriented cycles in Γ. Then G has exactly d − 1 orbits in its
action on Ω.

The following proposition gives a criterion of embeddings of graphs onto
orientable surfaces as rotary maps in terms of their automorphism groups.

Proposition 4.1.2. [21, Theorem 1] A connected graph Γ of valency at
least 3 underlies a rotary map on an orientable surface if and only if there
exists K ≤ Aut(Γ) satisfying the following properties.

1. K is transitive on the set of arcs of Γ.

2. The vertex stabilizer Kv of a vertex v of Γ is cyclic.
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The graph Γ with the group K in the above proposition gives rise to a
rotary mapM in the following manner (see the proof of [21, Theorem 1]).
Let v be a �xed vertex of Γ. For u ∈ V (Γ) choose an automorphism α ∈
K such that u = vα. The conjugate subgroup Kα

v = α−1Kvα cyclically
permutes the arcs emanating from u, which as a cycle in Sym(A(Γ)) does not
depend on the choice of α. Denote this cycle by Ru, and let the permutations
R and I of the arc set A(Γ) be de�ned by

R =
∏

u∈V (Γ)

Ru and I =
∏

uv∈E(Γ)

((u, v), (v, u)).

Then the face boundaries of M are given by the orbits of RI. It follows
that K ≤ Aut(M). Further, conditions (i) and (ii) imply that K is regular
on the arc set A(Γ), so we have |K| = |A(Γ)|. Now the mapM is re�exible
if and only if |Aut(M)| = 2|K| = 2|A(Γ)|. Eventually observe that any
conjugate subgroup Kβ of Aut(Γ) satis�es the conditions (i) and (ii); and
further that the map induced byKβ is re�exible if and only ifM is re�exible.
The analogous criterion of embeddings of graphs onto surfaces as re�exible
maps is the following.

Proposition 4.1.3. [21, Theorem 3] A connected graph Γ of valency at
least 3 underlies a re�exible map if and only if there exists K ≤ Aut(Γ)
satisfying the following properties.

1. The subgroup K is transitive on the set of arcs of Γ.

2. The vertex stabilizer Kv of a vertex v of Γ is a dihedral group in which
the cyclic subgroup of index 2 acts regularly on the arcs emanating
from v.

3. The edge stabilizer Ke of an edge e of Γ is a dihedral group of order
4.

4.1.2 Coverings and voltage graphs

A graph Γ̃ is called a covering of a graph Γ with a projection p : Γ̃→ Γ,
if p is a surjection from V (Γ̃) to V (Γ) which is locally bijective, that is,
p|N(ṽ) → N(v) is a bijection for any vertex v ∈ V (Γ) and ṽ ∈ p−1(v). The
graph Γ̃ is also called a covering graph and Γ is the base graph. A covering
Γ̃ of Γ with projection p is said to be regular (or K-covering) if there is a
semiregular subgroup K of Aut(Γ̃) such that Γ is isomorphic to the quotient
Γ̃/K, say by h, and the quotient map Γ̃→ Γ̃/K is the composition ph of p
and h. If Γ̃ is connected, then K is also called the covering transformation
group; moreover if K is cyclic then Γ̃ is also called a cyclic covering of Γ.
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A combinatorial description of a K-covering was introduced through a
voltage graph by Gross and Tucker [25]. Let Γ be a graph and K be a �nite
group. By x−1 we mean the reverse arc of an arc x ∈ A(Γ). A voltage
assignment (or, a K-voltage assignment) of Γ is a mapping ζ : A(Γ) → K
with the property that ζ(x−1) = ζ(x)−1 for any x ∈ A(Γ). The values of ζ
are called voltages, and K is the voltage group. The voltage graph Γ ×ζ K
derived from a voltage assignment ζ : A(Γ)→ K has vertex set V (Γ)×K,
and edges of the form (u, g)(v, ζ(x)g), where x = (u, v) ∈ A(Γ). Clearly,
Γ ×ζ K is a covering of Γ with the �rst coordinate projection. By letting
K act on V (Γ ×ζ K) as (u, g)g

′
= (u, gg′), (u, g) ∈ V (Γ ×ζ K), g′ ∈ K,

we obtain a semiregular group of automorphisms of Γ ×ζ K, showing that
Γ×ζ K can in fact be viewed as a K-covering. Given a spanning tree T of
Γ, the voltage assignment ζ is said to be T -reduced if the voltages on the
tree arcs equal the identity element. In [25] it is shown that every regular
covering Γ̃ of a graph Γ can be derived from a T -reduced voltage assignment
ζ with respect to an arbitrary �xed spanning tree T of Γ.

Let Γ̃ be a K-covering of Γ with a projection p. If α ∈ Aut(Γ) and
α̃ ∈ Aut(Γ̃) satisfy α̃p = pα then we call α̃ a lift of α, and α the projection
of α̃. If the covering graph X̃ is connected then the covering transformation
group K is the lift of the trivial subgroup of Aut(Γ). Note that a subgroup
G ≤ Aut(Γ̃) projects if and only if the partition of V (Γ) into the orbits of
K is G-invariant.

The problem of determining whether an automorphism α of Γ lifts or
not can be grasped in terms of voltages as follows. Observe that a voltage
assignment on arcs extends to a voltage assignment on walks in a natural
way. We de�ne a function ᾱ from the set of voltages of fundamental closed
walks based at a �xed vertex v ∈ V (Γ) to the voltage groupK by ᾱ(ζ(C)) =
ζ(Cα), where C ranges over all fundamental closed walk at the base vertex
v, and ζ(C) and ζ(Cα) are the voltages of C and Cα, respectively. Note that
if K is abelian then ᾱ does not depend on the choice of the base vertex, and
the fundamental closed walks at v can be substituted by the fundamental
cycles generated by the cotree arcs of Γ. The next proposition is a special
case of [35, Theorem 4.2].

Proposition 4.1.4. [35] Let Γ ×ζ K be a connected K-covering. Then an
automorphism α of Γ lifts if and only if ᾱ extends to an automorphism of
K.

The following result may be deduced from [36, Corollary 3.3].

Proposition 4.1.5. [36] Let Γ̃1 = Γ×ζK and Γ̃2 = Γ×ζ′K be two connected
K-coverings of a graph Γ where ζ and ζ ′ are T -reduced voltage assignments.
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Then Γ̃1 and Γ̃2 are isomorphic if and only if there exist an automorphism
γ ∈ Aut(K) and an automorphism g ∈ Aut(Γ) such that γ(ζ(C)) = ζ ′(Cg)
for every fundamental cycle C with respect to the spanning tree T in Γ.

4.2 Rose window graphs

Introduced by Wilson [47], the rose window graphs are de�ned in the
following way.

De�nition 4.2.1. Given natural numbers n ≥ 3 and 1 ≤ a, r ≤ n− 1, the
rose window graph Rn(a, r) has vertex set {xi | i ∈ Zn} ∪ {yi | i ∈ Zn} and
edge set:

{{xi, xi+1} | i ∈ Zn}∪{{yi, yi+r} | i ∈ Zn}∪{{xi, yi} | i ∈ Zn}∪{{xi+a, yi} | i ∈ Zn}.

Figure 4.1: R12(2, 1) and R10(2, 3) rose window graphs

Wilson's initial interest in rose window graphs arose in the context of
graph embeddings into surfaces. In particular, the following three open
questions about rose window graphs are posed in [47].

Question 4.2.2. [47] Given natural numbers n ≥ 3 and 1 ≤ a, r ≤ n− 1,

(i) for which n, a and r is Rn(a, r) edge-transitive;
(ii) when Rn(a, r) is edge-transitive, what is the order of its automorphism

group;
(iii) for which n, a and r is Rn(a, r) the underlying graph of a rotary map?
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Wilson [47] identi�ed the following four families (a)-(d) of edge-transitive
rose window graphs Rn(a, r) given below and conjectured that these graphs
exhaust the whole class of edge-transitive rose window graphs. The conjec-
ture was con�rmed by Kovács, Kutnar and Maru²i£ [33].

(a) Rn(2, 1);
(b) R2m(m− 2,m− 1);
(c) R12m(3m+ 2, 3m− 1) and R12m(3m− 2, 3m+ 1);
(d) R2m(2b, r), where b2 = ±1 (mod m), 2 ≤ 2b ≤ m, and r ∈ {1,m− 1}

is odd.

Observe that family (a) is contained in family (d) and that each graph
Rn(a, r) in families (a)-(d) satis�es the condition 1 ≤ a, r ≤ n/2. The
latter is is a natural restriction by the following easy observations (see also
[47]):

Rn(a, r) ∼= Rn(n− a, r) and Rn(a, r) = Rn(a, n− r).
Furthermore, there are examples of isomorphic rose window graphs in fam-
ilies (a)-(d) which have di�erent parameters. For instance, the two graphs
in family (c) are isomorphic if m is divisible by 4.

The main goal of this chapter is to con�rm this conjecture by proving
the following theorem.

Theorem 4.2.3. Let Γ = Rn(a, r) be a rose window graph underlying a
rotary mapM, 1 ≤ a, r ≤ n/2. Then one of the following holds.

1. M is re�exible, and

(a) Γ = Rn(2, 1), gcd(n, 12) > 2,

(b) Γ = R2m(m− 2,m− 1), gcd(m, 60) > 3,

(c) Γ = R12m(3m + 2, 3m − 1) or R12m(3m − 2, 3m + 1), m ≡ 2
(mod 4).

2. M is chiral, and Γ = R2m(2b, r), m > 2, 2 ≤ 2b ≤ m, b2 ≡ −1
(mod m), and r = 1, or r = m− 1 and m is even.

4.3 Automorphism groups of edge-transitive
graphs Rn(a, r)

Let Γ be the rose window graph Rn(a, r). Then it can be seen that the
permutations ρ and µ of V (Γ),

ρ = (x0, x1, . . . , xn−1)(y0, y1, . . . , yn−1) and µ =
n−1∏
i=0

(xi, xn−i)(yi, yn−i−a),
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are always automorphisms of Γ. In addition, the group 〈ρ, µ〉 is isomorphic
to the dihedral group Dn of order 2n. Observe also that the automorphism
µρ reverses the edge x0x1, which implies that Γ is edge-transitive if and only
if it is arc-transitive. Occasionally, when we wish to emphasize that ρ and
µ are automorphisms of a particular graph Γ, we shall also write ρΓ and µΓ

instead of ρ and µ.
We use the following notation. Let E = 〈ε0, ε1, . . . , εl−1〉 ∼= Zl

2 be the
elementary abelian 2-group. Then for a divisor d of l, and for a sub-
set S of {0, . . . , d − 1}, εd,S denotes the element of E given as εd,S =∏(l/d)−1

i=0

∏
j∈S εid+j.

In the following four subsections automorphism groups of graphs in each
of the four families of edge-transitive rose window graphs are determined.

4.3.1 Family (a)

Let Γ be the edge-transitive rose window graph Rn(2, 1) belonging to
family (a). Then Γ can be written as the lexicographical product (also called
the wreath product) Cn[Kc

2] of the n-cycle Cn with the empty graph Kc
2 on

two vertices. It is well known that with the exception of Γ = R4(2, 1) =
K4,4, in which case Aut(Γ) = Z2 o S4 is of order |Aut(Γ)| = 2(4!)2, the
automorphism group Aut(Γ) of Γ is the wreath product Dn o S2. For an
explicit description consider the partition of V (Γ) into the sets {xi, yi−1},
i ∈ Zn. This partition is Aut(Γ)-invariant, and the kernel of Aut(Γ) acting
on the corresponding classes is generated by the involutions εi = (xi, yi−1),
where i ∈ Zn. Let E = 〈ε0, . . . , εn−1〉. Then clearly, E is normal in Aut(Γ),
E ∼= Zn

2 , and Aut(Γ) = Aut(Wn) = E o 〈ρ, µ〉.

4.3.2 Family (b)

Let n = 2m and let Γ = R2m(m + 2,m + 1) be the edge-transitive rose
window graph which is isomorphic to the graph R2m(m−2,m−1) in family
(b). In [47] the automorphism group Aut(Γ) is obtained as follows. It is
proved that the partition of V (Γ) into the sets {xi, xi+m, yi−1, yi−1+m}, i ∈
{0, . . . ,m− 1}, is an Aut(Γ)-invariant partition and that the corresponding
kernel of Aut(Γ) acting on these partition sets is generated by involutions
εi = (xi, yi−1)(xi+m, yi−1+m)(xi+1, yi+m)(xi+1+m, yi), i ∈ {0, . . . ,m− 1}. Let
E = 〈ε0, . . . , εm−1〉. Then, it can be seen that E ∼= Zm

2 and Aut(Γ) =
E o 〈ρε0, µρ

m〉 ∼= Zm
2 oDm.

4.3.3 Family (c)

Throughout this subsection let n = 12m and let Γ be the edge-transitive
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rose window graph R12m(3d + 2, 9d + 1), where d = m or −m, that is,
Γ = R12m(3m + 2, 9m + 1)} = R12m(3m + 2, 3m − 1) or Γ = R12m(9m +
2, 3m+ 1) ∼= R12m(3m− 2, 3m+ 1), respectively. De�ne the permutation σ
of V (Γ) by

xσi =


xi if i ≡ 0 (mod 3)
yi−1 if i ≡ 1 (mod 3)
yi+1−a if i ≡ 2 (mod 3)

and yσi =


x1+i if i ≡ 0 (mod 3)
xi−1+a if i ≡ 1 (mod 3)
yi+6d if i ≡ 2 (mod 3)

,

and if m ≡ 2 (mod 4) then de�ne τ by

xτi =


xbi if i ≡ 0 (mod 3)
ybi−b if i ≡ 1 (mod 3)
xb+bi−1 if i ≡ 2 (mod 3)

and yτi =


x1+bi if i ≡ 0 (mod 3)
y4+bi−4b if i ≡ 1 (mod 3)
yb+bi−1 if i ≡ 2 (mod 3)

,

where b = d+1. (Note that a = 3b−1, r = 4−3b and 3b2 ≡ 3 (mod 12m).)
It was shown in [47] that σ ∈ Aut(Γ), and if m ≡ 2 (mod 4) then also
τ ∈ Aut(Γ). We will show that Aut(Γ) = 〈ρ, µ, σ, τ〉 when m ≡ 2 (mod 4)
and Aut(Γ) = 〈ρ, µ, σ〉 otherwise (see Proposition 4.3.4). The following
lemmas are needed in this respect.

Lemma 4.3.1. Let H = 〈ρ3m〉. Then the orbits of H form an Aut(Γ)-
invariant partition.

Proof. If m ≤ 4, then one can calculate directly, we used the package
MAGMA [11], that H is normal in Aut(Γ), which implies the lemma. Thus
below we assume that m > 4. Let Π be the partition of V (Γ) into the orbits
of H and let Γ2 denote the distance-2-graph of Γ, that is, the graph with
the same vertex set as Γ, and u ∼ v in Γ2 if and only if dΓ(u, v) = 2. Let
Si = {x3lm+i+1, y3lm+i | l ∈ {0, 1, 2, 3}}, where i ∈ {0, . . . , 3m − 1}, see the
local picture of the graph drawn in Figure 4.2 below.

First, observe that Γ2[Si] = K4,4 for each i ∈ {0, . . . , 3m − 1}. The
partition of V (Γ2) into the bipartition sets of all Γ2[Si] is equal to Π. We
complete the proof by showing that if S ⊂ V (Γ2) such that Γ2[S] = K4,4,
then S = Si for some i ∈ {0, . . . , 3m − 1}. Because of this Π is Aut(Γ2)-
invariant, and hence Aut(Γ)-invariant as well.

Let S ⊂ V (Γ2) such that Γ2[S] = K4,4. We see that Γ2 has degree 12,
and a vertex u ∈ Si has exactly 2 neighbors from each H-orbit contained in
both Si−2 and Si+2, and exactly 4 from Si. Using this and that m > 4 we
�nd that for i, j ∈ {0, . . . , 3m− 1}, if two vertices u ∈ Si and v ∈ Sj share
more than 2 pairwise nonadjacent neighbors in Γ2, then |i− j| = 2. Thus

S ⊂ Si ∪ Si+2 for some i ∈ {0, . . . , 3m− 1}.
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Figure 4.2: The rose window graph Γ = R12m(3d+ 2, 9d+ 1), where d = m
or −m.

Now choose two vertices u and v in S from the same H-orbit. Let w1, . . . , wk
be those vertices in S which belong to the same H-orbit, and are adjacent
to both u and v in Γ2. It can be checked directly (see Figure 4.2) that k > 1
forces that

{u, v, w1, . . . , wk} ⊂ Sj, where j ∈ {i, i+ 2}.

Using this observation it is not hard to show that either S = Si or S = Si+2,
and by this the proof is completed.

Clearly, the subgroup H, given in Lemma 4.3.1, is of order 4, and it acts
semiregularly on the vertex set V (Γ). In addition, the corresponding quo-
tient graph belongs to family (a), in particular Γ/H = R3m(2, 1) = W3m,
and since, by Lemma 4.3.1, the orbits of H form an Aut(Γ)-invariant parti-
tion, the whole automorphism group Aut(Γ) of Γ projects to a subgroup of
Aut(W3m). On the other hand, the graph Γ can be viewed as an H-covering
graph (that is, Z4-covering) of W3m, and it can therefore be derived from
W3m through a suitable voltage assignment. To �nd this voltage assignment
�x the spanning tree T of W3m as the one consisting of the edges xiyi and
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xjxj+1, where i, j ∈ {0, . . . , 3m − 1} and j 6= 3m − 1 (see also Figure 4.3,
where e = 3m). Then the required T -reduced voltage assignment ζ is given
by the following lemma.

Figure 4.3: The voltage assignment ζ, where e = 3m.

Lemma 4.3.2. Let α, β ∈ Z4 be such that (α, β) = (1, 3) and (3, 1) for,
respectively, d = m and d = −m, and let ζ : A(W3m)→ Z4 be the T -reduced
voltage assignment with voltages of cotree arcs as shown in Figure 4.3. Then
W3m ×ζ Z4

∼= Γ.

Proof. The mapping φ : V (Γ)→ V (W3m×ζZ4), de�ned by xφ3mj+i = (xi, j)

and yφ3mj+i = (yi, j), where i ∈ {0, 1, . . . , 3m− 1} and j ∈ {0, 1, 2, 3}, is an
isomorphism between Γ and W3m ×ζ Z4.

Lemma 4.3.3. The largest subgroup of Aut(W3m) which lifts with respect
to the natural projection W3m ×ζ Z4

∼= Γ→ Γ/H ∼= W3m, where H = 〈ρ3m〉
and ζ is as given in Lemma 4.3.2, is the group

J =

{
〈ρW3m , µW3m , ε3,{0}〉 if m ≡ 2 (mod 4)
〈ρW3m , µW3m , ε3,{0,1}〉 otherwise

.

Proof. Recall from Subsection 4.3.1 that Aut(W3m) = Eo〈ρW3m , µW3m〉 ∼=
Z3m

2 o D3m where E = 〈ε0, . . . , ε3m−1〉. Clearly, ρW3m , µW3m ∈ J . Thus to
prove the lemma it is su�cient to prove that the largest subgroup of E
which lifts is the group

F =

{
〈ε3,{0}, ε3,{1}, ε3,{2}〉 if m ≡ 2 (mod 4)
〈ε3,{0,1}, ε3,{1,2}〉 otherwise .
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Let F ′ denote the largest subgroup of E which lifts. Using Proposition 4.1.4
it can be seen that F ≤ F ′. Moreover, since ρW3m , µW3m ∈ J , we have that

if φ ∈ F ′ then φρW3m , φµW3m ∈ F ′. (4.1)

It is convenient to view elements ε in E as vectors in Z3m
2 . Namely, we

write ε = (e0, . . . , e3m−1) where ei = 1 if and only if εi actually appears in
ε. Note that in this context (4.1) can be interpreted as follows: F ′ is in-
variant under the �cyclic shift� φ = (f0, f1, . . . , fn−1) 7→ (fn−1, f0, . . . , fn−2),
and under the �re�ection around the �rst entry� φ = (f0, f1, . . . , fn−1) 7→
(f0, fn−1, fn−2, . . . , f2, f1).

Next we show that ω = ε3,{0,1,2} = (1, . . . , 1) ∈ F ′ if and only if
m ≡ 2 (mod 4). If m ≡ 2 (mod 4), then ω ∈ F ≤ F ′. On the other
hand, if ω ∈ F ′ then applying Proposition 4.1.4 to the fundamental cy-
cles C = (x0, y0, y1, x1) and C ′ = (x0, x1, . . . , x3m−1), we get, respectively,
−β = ζ(Cω) = γζ(C) = γβ and 3mβ + 1 = ζ(C ′ω) = γζ(C ′) = γ, where γ
is an element in Z∗4. It follows that 3mβ+ 1 ≡ −1 (mod 4) and thus m ≡ 2
(mod 4), as required.

Now choose φ ∈ F ′. Then there exists ε ∈ F such that the �rst two
components of ψ = φε are both equal to 1, that is, ψ = (1, 1, . . .). We
complete the proof by showing that

ψ = ε3,{0,1}, or ψ = ω and m ≡ 2 (mod 4). (4.2)

Assume that the third component of ψ equals 0, that is, ψ = (1, 1, 0, . . .).
Then, we claim, ψ = (1, 1, 0, 1, . . .); for if this were not the case then apply-
ing Proposition 4.1.4 to ψ with C = (x0, y0, y1, x1) and C ′ = (x1, y1, y2, x2)
we get, that −2β + α = ζ(Cφ) = ζ(C ′φ) = 2β − α, which implies that
0 = 4β = 2α = 2, a contradiction. From this we can conclude that if
ψ 6= ε3,{0,1}, then applying a suitable cyclic shift to ψ we get that either
ψ′ = (1, 0, 1, 0, . . .) ∈ F ′ or ψ′′ = (1, 1, 1, 0, . . .) ∈ F ′. But applying Propo-
sition 4.1.4 to ψ′ and ψ′′ with C = (x0, y0, y1, x1) and C ′ = (x1, y1, y2, x2)
we get, respectively, β = ζ(Cψ′) = ζ(C ′ψ

′
) = −β and −β = ζ(Cψ′′) =

ζ(C ′ψ
′′
) = α − 2β, both are clearly impossible. It therefore follows that, if

ψ 6= ω, then ψ = ε3,{0,1}. Thus (4.2) holds, and the proof is competed.
The following proposition proves [47, Conjecture 5] which says that a

stabilizer of an arc in Aut(Γ) is of order 2 if m ≡ 2 (mod 4), and of order
1 in all other cases.

Proposition 4.3.4. Let Γ be an edge-transitive rose window graph belonging
to family (c). Then Aut(Γ) = G, where

G =

{
〈ρ, µ, σ, τ〉 if m ≡ 2 (mod 4)
〈ρ, µ, σ〉 otherwise

.
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Proof. By Lemma 4.3.1, the graph Γ is a H-covering graph of the graph
W3m, where H = 〈ρ3m〉. For α ∈ Aut(Γ), we let α̂ denote the projection of α
into Aut(W3m), and let K̂ = {α̂ : α ∈ K}, where K ≤ Aut(Γ). For example,
ρ̂Γ = ρW3m and µ̂Γ = µW3m . Since, by Lemma 4.3.1, the orbits of H form
an Aut(Γ)-invariant partition of V (Γ) it follows that the full automorphism
group Aut(Γ) of Γ project to Aut(W3m). Since the projection Ĝ of G into
Aut(W3m) is isomorphic to the group J given in Lemma 4.3.2, it follows
that Aut(Γ) = G.

We end this subsection by the following result which shows that another
conjecture proposed by Wilson is also true (see [47, Conjecture 6]).

Theorem 4.3.5. If m is divisible by 4 then the two graphs R12m(3m +
2, 3m− 1) and R12m(3m− 2, 3m+ 1) in class (c) are isomorphic.

Proof. Let Γ = R12m(3m + 2, 9m + 1) = R12m(3m + 2, 3m− 1) and Γ′ =
R12m(9m+ 2, 3m+ 1) ∼= R12m(3m−2, 3m+ 1). Then, by Lemma 4.3.2, Γ ∼=
W3m ×ζ Z4 and Γ′ ∼= W3m ×ζ′ Z4, where ζ, ζ ′ : A(W3m)→ Z4 are T -reduced
voltage assignments with voltages of cotree arcs as shown in Figure 4.3,
and, respectively, (α, β) = (1, 3) and (3, 1). Recall that ω = ε3,{0,1,2} =∏3m−1

i=0 (xi, yi−1) is an automorphism of Aut(W3m). Since m is divisible by
4, we have that ζ(C) = ζ ′(Cω) for every fundamental cycle C with respect
to the spanning tree T (see Table 4.1). Applying Proposition 4.1.5 we get
that Γ ∼= Γ′.

C ζ(C) Cω ζ ′(Cω)
(yi−1, yi, xi, xi−1) β = 3 (xi, xi+1, yi−1, yi−2) −β = 3 1 ≤ i ≤ e− 1
(ye−1, y0, x0, x1, . . . , xe−1) β + 1 = 0 (x0, x1, ye−1, y0, . . . , ye−2) −β + 1 = 0
(yi−1, xi+1, xi, xi−1) α = 1 (xi, yi, yi−1, yi−2) −2β + α = 1 1 ≤ i ≤ e− 2
(ye−2, x0, x1, . . . , xe−2) α+ 1 = 2 (xe−1, ye−1, y0, . . . , ye−3) (e− 2)β + 1 + α = 2
(ye−1, x1, x2, . . . , xe−1) α+ 1 = 2 (x0, y0, y1, . . . , ye−2) (e− 2)β + 1 + α = 2
(xe−1, x0, x1, . . . , xe−2) 1 (ye−2, ye−1, y0, . . . , ye−3) eβ + 1 = 1

Table 4.1: The voltages of fundamental cycles with respect to ζ and the
voltages of their images under ω with respect to ζ ′, where e = 3m.

4.3.4 Family (d)

Throughout this subsection let n = 2m and let Γ be an edge-transitive
rose window graph belonging to family (d), that is, Γ = R2m(2b, r), where
2 ≤ 2b ≤ m, b2 ≡ ±1 (mod m), and r = 1, or r = m − 1 and m is even.
The following result about Aut(Γ) can be deduced from [33].
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Proposition 4.3.6. ([33, Propositions 3.7 and 3.8]) If Γ is as above but in
neither of families (a) and (b), then the subgroup Hm = 〈ρ2〉 is normal in
Aut(Γ).

De�ne the permutation σ of V (Γ) for b2 ≡ 1 (mod m) by the rule

xσi =

{
xbi if i is even
ybi−b if i is odd and yσi =

{
x1+bi if i is even
ybi−b+r if i is odd ,

and for b2 ≡ −1 (mod m) by the rule

xσi =

{
xbi if i is even
ybi−b if i is odd and yσi =

{
x−1+bi if i is even
ybi−b−r if i is odd .

It was shown in [47] that σ ∈ Aut(Γ). Let G = 〈ρ, µ, σ〉. The following
proposition proves [47, Conjecture 3] which says that, the stabilizer of an
arc in Aut(Γ) is trivial.

Proposition 4.3.7. If Γ is in neither of families (a) and (b) then Aut(Γ) =
G.

Proof. Let A = Aut(Γ) and x = x0. To prove that A = G it is enough to
show that |Ax| ≤ 4. For this purpose let X = {xi | i ∈ Z2m even}, and let
Γ′ = Γ2[X], that is, x2i ∼ x2j in Γ′ if and only if dΓ(x2i, x2j) = 2. Note that
Γ′ is of degree 4 if 2 < a < n− 2, and of degree 2 otherwise. Clearly, X is
an orbit of Hm in V (Γ). By Proposition 4.3.6, Hm is normal in Aut(Γ). It
follows that Hm and Ax leave X invariant. Let HX

m and AXx be constituents
of Hm and Ax, respectively.

Then one can see that the following properties hold:

1. Hm
∼= HX

m ≤ Aut(Γ′), and HX
m is regular on X = V (Γ′).

2. AXx normalizes HX
m (since Hm is normal in A).

3. AXx ≤ Aut(Γ′).

Let P = AXx . The �rst two properties show that P is permutation iso-
morphic to a subgroup of the holomorph Hol(Hm) (see [19]). Further, ev-
ery element π ∈ P can be associated with a number k ∈ {1, . . . ,m − 1},
gcd(k,m) = 1, in such a way that xπ2i = x2ik for all i ∈ Zm. Thus for
the vertex stabilizer Px2 of x2 ∈ X, we have that |Px2| = 1. Observe that
x2 ∈ NΓ′(x). Therefore,

|AXx | = |P | = |Px2||xP2 | ≤ |NΓ′(x)| =
{

4 if 2 < a < n− 2
2 otherwise.
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Let K be the kernel of Ax acting on X. To obtain that |Ax| ≤ 4 it is
enough to show that

|K| =
{

1 if 2 < a < n− 2
2 otherwise.

For this purpose let α ∈ K, that is, xα2i = x2i for all i. If 2 < a < n − 2
then for every i ∈ Zn we have that NΓ(x2i) ∩ NΓ(x2i+2) = {x2i+1} and
NΓ(xi)∩NΓ(xi+a) = {yi}, which imply that α = 1Ax , the identity element of
Ax, and thus |K| = 1. Now assume that a = 2. Since Γ is in none of families
(a) and (b) we have that r = m − 1 and that m ≥ 6 is an even number.
Observe next that the 4-cycles (x2i, x2i+1, x2i+2, y2i), i ∈ Zn, are �xed by
α. Further, α can act on the set {x1, x3, . . . , x2m−1, y0, y2, . . . , y2m−2} in two
ways: either �xes each vertex, or switches all pairs x2i+1, y2i. In the former
case α = 1Ax , while in the latter case we get that α also switches all pairs
y2i+1, y2i+1+m. Therefore |K| = 2, and the proof is completed.

4.4 The proof of the main theorem

Throughout this section let Γ be a rose window graph and let M(Γ)
be the set of all rotary maps with underlying graph Γ. If M(Γ) 6= ∅ then
clearly Γ is edge-transitive, and thus it belongs to one of the four families
(a)-(d). Theorem 4.2.3 is proven after a careful analysis of each of these
families in the following four subsections. In fact, Theorem 4.2.3 is a direct
consequence of Propositions 4.4.4, 4.4.8, 4.4.9 and 4.4.10.

4.4.1 Family (a)

Throughout this subsection let Γ = Rn(2, 1). Recall from Subsec-
tion 4.3.1 that for Γ 6= R4(2, 1) we have Aut(Γ) = E o 〈ρ, µ〉 ∼= Zn

2 o Dn,
where E = 〈ε0, . . . , εn−1〉.

Lemma 4.4.1. Let Γ be di�erent from R4(2, 1), let M ∈ M(Γ), let T =
E ∩ Aut(M), let φ = (tj)j∈Zn and φ′ = (t′j)j∈Zn be any two elements in T ,
and let i ∈ Zn. Then the following hold:

|T | = 8, T ρ = T, T µ = T, and if ti = t′i, ti+1 = t′i+1 and ti+2 = t′i+2 then φ = φ′.(4.3)

Proof. Let K = Aut(M), and denote by F (M) the set of cycles of Γ
which are the boundaries of faces ofM. As remarked in the introduction,
each X ∈ F (M) is a consistent cycle. By Proposition 4.1.1, Aut(Γ) has
3 orbits on the set of (directed) consistent cycles of Γ. These orbits have
representatives (x0, x1, yn−1, y0) of length 4, (x0, x1, . . . , xn−1) of length n,
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and (x0, x1, . . . , xn−1, yn−1, y0, . . . , yn−2) of length 2n. As the sets {xi, yi},
i ∈ Zn, are blocks of Aut(Γ), it is not di�cult to see that the consistent
4-cycles are (xi, xi+1, yi−1, yi), i ∈ Zn. Therefore, each edge of Γ lies on
exactly one such 4-cycle, and so the cycles in F (M) must have length n or
2n. Let us �x one X in F (M), and write |X| for its length. The group
E acts transitively on the set Σ = {Xα | α ∈ Aut(Γ)}. In particular, if
X = (x0, x1, . . . , xn−1) then ρ and µ �x X. Since Σ is an orbit of Aut(Γ) =
E o 〈ρ, µ〉, E must be transitive on Σ. Similarly, one can show this fact for
the case when X = (x0, x1, . . . , xn−1, yn−1, y0, . . . , yn−2). Since E is abelian,
the action of E/E0 on Σ is regular, where E0 denotes the kernel of the
action. Moreover, E0 = 1 if |X| = n, while E0 = 〈ω = (1, . . . , 1)〉 if
|X| = 2n. Let T ′ = {ε ∈ E | Xε ∈ F (M)}. Clearly, T ⊆ T ′. Since M
is a rotary map, either each face of M is of length |X| = n or each face
ofM is of length |X| = 2n. Therefore, |E(Γ)| = |F (M)||X|/2. It follows
that |F (M)| = 8 for |X| = n and |F (M)| = 4 for |X| = 2n. Then |T ′| = 8
because |T ′| = |F (M)| for |X| = n and |T ′| = 2|F (M)| for |X| = 2n.
Now pick ε ∈ T ′. Clearly, ε ∈ K if and only if {Xφε | φ ∈ T ′} = F (M)ε =
F (M) = {Xφ | φ ∈ T ′}, which is equivalent to the statement that T ′ε = T ′.
Thus T ′T = T ′ which implies that T ′ is a subgroup of E, and so T ′ ≤ K.
Thus T ′ = T , that is, |T | = 8.

Further, observe that K contains elements of the form ρε and µε′, where
ε, ε′ ∈ E. Because of that we have T = T (ερ−1) = T ρ

−1
and T = T (ε′µ−1) =

T µ
−1
, and thus T ρ = T and T µ = T . Recall that T ρ = T means that T ,

when viewed as subspace of Zn
2 , is invariant under cyclic shifts of vectors.

Now the lemma follows from the following implication: φ = (0, 0, 0, . . .) ∈
T ⇒ φ = (0, . . . , 0). In particular, φ and φρ both �x the arc (x1, x2), and
since, by Proposition 4.1.3, the arc stabilizer K(x1,x2) is of order |K(x1,x2)| =
2, it follows that φρ = φ, which implies that φ = (0, . . . , 0).

Lemma 4.4.2. Let Γ be di�erent from R4(2, 1). Then M(Γ) 6= ∅ if and
only if E contains a subgroup T satisfying condition (4.3).

Proof. The implication �⇒� is clear by Lemma 4.4.1. For the implication
�⇐� let T ≤ E satisfy condition (4.3). We check that K = 〈T, µ, ρ〉 satis�es
Proposition 4.1.3 (i)-(iii). It is easy to see that K is transitive on A(Γ), that
is, Proposition 4.1.3 (i) holds.

By Lemma 4.4.1, |K| = |T ||〈µ, ρ〉| = 16n. The order of the vertex
stabilizer Kx1 is 8, and the order of the edge stabilizer Kx0x1 is 4. The
group Kx1 is faithful on NΓ(x1). Namely, if φ ∈ Kx1 �xes NΓ(x1) pointwise,
then φ ∈ T follows. In this case φ = (0, 0, 0, . . .), and hence, by (4.3),
φ = (0, . . . , 0). Thus Kx1 is dihedral, and therefore Proposition 4.1.3 (ii)
holds, too.
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Also, there exists ψ ∈ T such that ψ = (0, 0, 1, . . .). Now ψ and µρ are
distinct involutions in K, each �xing the edge x0x1. Thus Kx0x1 is dihedral
of order 4. By this also Proposition 4.1.3 (iii) holds. This completes the
proof of the lemma.

Lemma 4.4.3. Let Γ be di�erent from R4(2, 1) and let T ≤ E satisfy
condition (4.3). Then gcd(n, 12) > 2, and T is one of the following two
subgroups:

T1 = 〈ε3,{0}, ε3,{1}, ε3,{2}〉 and T2 = 〈ε4,{0,1}, ε4,{1,2}, ε4,{2,3}〉.

Proof. First observe that the groups Ti, i ∈ {1, 2}, satisfy condition (4.3).
We show that T is indeed one of these two groups. After a suitable cyclic
shift we �nd φ ∈ T such that φ = (1, 0, 0, 1, . . .). (Observe that n > 4, since
Γ 6= R4(2, 1).) We will see below that φ is determined uniquely by its next
missing entry.

Assume �rst that φ = (1, 0, 0, 1, 0, . . .). Then the re�ection around the
4th entry maps φ to itself, see (4.3). Hence φ = (1, 0, 0, 1, 0, 0, . . .). Also,
the cyclic shift with 3 steps �xes φ. Thus φ = ε3,{0} and it follows that
T = T1.

Assume now that φ = (1, 0, 0, 1, 1, . . .). Then a direct check shows that
n 6= 5. If φ = (1, 0, 0, 1, 1, 1, . . .) then the re�ection around the 5th entry
maps φ to itself, and hence φ = (1, 0, 0, 1, 1, 1, 0, 0, . . .). But then φφρ

2

and φ(ρ−1) have the same entry on the 3 − 6th places, but distinct entries
on the 7th place, contradicting (4.3). If however φ = (1, 0, 0, 1, 1, 0, 1 . . .)
then the re�ection around the 6th entry maps φ to itself, and thus φ =
(1, 0, 0, 1, 1, 0, 1, 1, 0, 0, . . .), again contradicting (4.3) since in this case φ and
φρ

3
have the same entries on the 6− 9th places, but distinct entries on the

5th place. It therefore follows that φ = (1, 0, 0, 1, 1, 0, 0, . . .), and applying
the cyclic shift with 4 steps implies that φ = ε4,{0,3}, and consequently
T = T2.

Observe that the complete bipartite graph K4,4, that is the rose window
graph R4(2, 1), is the underlying graph of a re�exible toroidal map of type
{4, 4}2,2 (see [41]). This fact, Proposition 4.1.3 and Lemmas 4.4.1, 4.4.2
and 4.4.3 combined together imply the following result.

Proposition 4.4.4. Let Γ be a rose window graph Rn(2, 1) belonging to
family (a). Then M(Γ) 6= ∅ if and only if gcd(n, 12) > 2 and every M ∈
M(Γ) is re�exible.

4.4.2 Family (b)

Throughout this subsection let n = 2m, and let Γ be the rose window
graph R2m(m+2,m+1) which is isomorphic to R2m(m−2,m−1) belonging

48



to family (b). Recall from Subsection 4.3.2 that Aut(Γ) = Eo〈ρσ0, µρ
m〉 ∼=

Zm
2 oDm, where E = 〈ε0, . . . , εm−1〉.
The following two lemmas are counterparts to Lemma 4.4.1 and Lemma 4.4.2,

respectively. The proofs are left to the reader.

Lemma 4.4.5. LetM∈M(Γ), let T = E ∩Aut(M), let φ = (tj)j∈Zn and
φ′ = (t′j)j∈Zn be any two elements in T , and let i ∈ Zn. Then the following
hold:

|T | = 16, T ρ = T, T µ = T, and if ti = t′i, ti+1 = t′i+1, ti+2 = t′i+2 and ti+3 = t′i+3 then φ = φ′.(4.4)

Lemma 4.4.6. M(Γ) 6= ∅ if and only if E contains a subgroup satisfying
condition (4.4).

Lemma 4.4.7. Let T ≤ E satisfy condition (4.4). Then gcd(m, 60) > 3,
and T is one of the following four subgroups: T1 = 〈ε4,{0}, ε4,{1}, ε4,{2}, ε4,{3}〉,
T2 = 〈ε5,{0,1}, ε5,{1,2}, ε5,{2,3}, ε5,{3,4}〉, T3 = 〈ε6,{0,2}, ε6,{1,3}, ε6,{2,4}, ε6,{3,5}〉
and T4 = 〈ε6,{0,1,2}, ε6,{1,2,3}, ε6,{2,3,4}, ε6,{3,4,5}〉.
Proof. First observe that the groups Ti, i ∈ {1, 2, 3, 4}, satisfy condition
(4.4). We show that T is indeed one of these groups. After a suitable cyclic
shift we �nd φ ∈ T such that φ = (1, 0, 0, 0, 1, . . .). If m ≤ 6, then a direct
check shows that m = 5 and T = T2. Let m > 6. We will see below that φ
is determined uniquely by its next two missing entries.

Assume �rst that φ = (1, 0, 0, 0, 1, 0, 0, . . .). Re�ecting around the 5th
entry maps φ to itself. Thus φ = (1, 0, 0, 0, 1, 0, 0, 0, . . .). Since the cyclic
shift with 4 steps �xes φ we get that φ = ε4,{0}, which implies that T = T1.
Second, assume that φ = (1, 0, 0, 0, 1, 1, 0, . . .). Then re�ecting around the
3th entry �xes φ. Thus we get ψ = φρ

2
= (0, 1, 1, 0, 0, 0, 1, 1, 0, . . .) ∈

T . (Observe that φ = (1, 0, 0, 0, 1, 1, 0, 1) can be excluded by a direct
check.) Thus ψ is �xed by a cyclic shift with 5 steps, so ψ = ε5,{1,2}.
It follows T = T2. Third, assume that φ = (1, 0, 0, 0, 1, 0, 1, . . .). Then
again re�ecting around the 3th entry �xes φ, hence ψ = (ti)i∈Zm = φρ

2
=

(1, 0, 1, 0, 0, 0, 1, 0, 1, . . .) ∈ T . (Observe that ψ = (1, 0, 0, 0, 1, 0, 1, 0) can be
excluded by a direct check.) We show that the cyclic shift with 6 steps �xes
ψ. This then implies that ψ = ε6,{0,2}, and consequently T = T3. For this
purpose suppose that ψ = (1, 0, 1, 0, 0, 0, 1, 0, 1, 1, . . .). Then ψψρ

5
has entry

1 in �ve consecutive places, hence ψψρ
5

= (1, . . . , 1). It can be checked that
ψ 6= (1, 0, 1, 0, 0, 0, 1, 0, 1, 1), hence ψ = (1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, . . .). Now
ψψρ

3
= (fm−1, fm−2, fm−3, 1, 0, 1, 1, 0, 1, 0, 1, . . .), and ψρ

−3
= (0, 0, 0, 1, 0, 1, 1, 1, . . .).

They have the same entry on the 4 − 7th places, but di�er in the 8th
place, a contradiction. Finally, assume that φ = (1, 0, 0, 0, 1, 1, 1, . . .). Then
φ 6= (1, 0, 0, 0, 1, 1, 1) and φ 6= (1, 0, 0, 0, 1, 1, 1, 1). Re�ecting around the 3th
entry again �xes φ, hence ψ = φρ

2
= (1, 1, 1, 0, 0, 0, 1, 1, 1, . . .) ∈ T . Then

ψψ3 = (1, . . . , 1). Thus ψ = ε6,{0,1,2}, and consequently T = T4.
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Lemmas 4.4.5, 4.4.6 and 4.4.7 combined together imply the following
result.

Proposition 4.4.8. Let Γ be a rose window graph R2m(m − 2,m − 1) be-
longing to family (b). Then M(Γ) 6= ∅ if and only if gcd(m, 60) > 3 and
everyM∈M(Γ) is re�exible.

4.4.3 Family (c)

Let n = 12m. Then a rose window graph belonging to family (c) is
isomorphic to the graph Γ = R12m(3d + 2, 9d + 1), where d = m or −m.
Recall from Subsection 4.3.3 that

Aut(Γ) = G =

{
〈ρ, µ, σ, τ〉 if m ≡ 2 (mod 4)
〈ρ, µ, σ〉 otherwise .

In addition, if m ≡ 2 (mod 4) then |G| = 2|A(Γ)|, Gx0 = 〈µ, τ〉 ∼= D4, τµ
permutates NΓ(x0) in a 4-cycle, and Gx0x1 = 〈µρ, µτµ〉 ∼= D2. On the other
hand if m 6≡ 2 (mod 4) then |G| = |A(Γ)|, and Gx0 = 〈µ, σ〉 ∼= Z2 × Z2.
All these combined together with Propositions 4.1.2 and 4.1.3 imply the
following result.

Proposition 4.4.9. Let Γ be a rose window graph belonging to family (c).
Then M(Γ) 6= ∅ if and only if m ≡ 2 (mod 4) and every M ∈ M(Γ) is
re�exible.

4.4.4 Family (d)

Let Γ = R2m(2b, r) where b2 ≡ ±1 (mod m), 2 ≤ 2b ≤ m, and r = 1, or
r = m−1 andm is even. Recall from Subsection 4.3.4 that, if Γ is in none of
families (a) and (b), then Aut(Γ) = G = 〈ρ, µ, σ〉. Moreover, |G| = |A(Γ)|,
and if b2 ≡ 1 (mod m) then Gx0 = 〈µ, σ〉 ∼= Z2 × Z2. On the other hand, if
b2 ≡ −1 (mod m) then Gx0 = 〈σ〉 ∼= Z4. All these combined together with
Propositions 4.1.2 and 4.1.3 imply the following result.

Proposition 4.4.10. Let Γ be a rose window graph R2m(2b, r) belonging to
family (d) which is in none of families (a) and (b). ThenM(Γ) 6= ∅ if and
only if b2 ≡ −1 (mod m) and everyM∈M(Γ) is chiral.

4.4.5 Proof of the main theorem

Results of previous four subsections the proof of the main theorem is
now at hand.
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Proof of Theorem 4.2.3: Let Γ = Rn(a, r) be a rose window graph
underlying a rotary mapM, 1 ≤ a, r ≤ n/2. Then Γ is edge-transitive and
thus it belongs to one of the four families (a)-(d) stated in [33]. Proposi-
tions 4.4.4, 4.4.8, 4.4.9 and 4.4.10 combined together imply the theorem.
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Chapter 5

Summary / Összefoglalás

5.1 Summary

The notion of semi quadratic sets was introduced by F. Buekenhout in
1973 [12]. Since that time a lot of attempts were made to classify all semi
quadratic sets, but the problem is still open in general.

In the �rst section of Section 1.1 we summarize some results on semi
quadratic sets. Because of the huge diversity of these objects in our re-
searches we restrict ourselves to the planar case and we study semiovals. A
semioval in a projective plane is a non-empty pointset S with the property
that for every point in S there exists a unique tangent line passing through
the point. The classical examples of semiovals arise from polarities (ovals
and unitals), and from the theory of blocking sets. The study of semiovals
is also motivated by their applications to cryptography [4].

For planes of small order the complete spectrum of the sizes and the
number of projectively non-isomorphic semiovals are known. For q ≤ 13 we
give the complete description in PG(2, q).

The main aim of the �rst two chapters is to characterize the semiovals
which are contained in the union of at most three lines. After presenting
some older results on semiovals with long secants [20] and on the bounds on
the size of a semioval we prove that if the semioval is contained in the union
of three lines, then there are much better bounds on its size ( Theorem 1.2.2).

The case when the semioval is contained in less then three lines is easy.
After this we have to distinguish two di�erent cases. In the �rst chapter
we completely characterize the semiovals which are contained in three non-
concurrent lines (Section 1.3). We use basic additive group theory, results
on di�erence sets and combinatorial arguments.

At the end of Chapter 1 we introduce a possible generalization for the
concept of semiovals and cite some known results on them (Theorem 1.4.2).
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In Chapter 2 we study semiovals contained in three concurrent lines.
This case is much more complicated than the previous one, here we have to
introduce the concept of strong semiovals. There is only one in�nite family
of this type of semiovals arising from Baer subplanes of PG(2, q), where q
is an even power of a prime. In Section 2.2 we give an improved upper
bound for the size of semiovals in Πq (see Theorem 2.2.2), and show that
this bound is sharp (see Example 2.2.3). In Section 2.3 we give an algebraic
description of semiovals in PG(2, q).

Finally, Section 2.4 is devoted to the study of strong semiovals. We
present some necessary conditions for the existence of such objects and give
a complete classi�cation of strong semiovals in PG(2, p) and PG(2, p2), p an
odd prime.

These results motivates our �nal conjecture on the non-existence of
strong semiovals di�erent from the above mentioned type.

The (∆, D)-problem (or degree/diameter problem) is to determine the
largest possible number of vertices of a graph which has maximum degree
∆ and diameter D. In Chapter 3 we restrict our attention to the class
of linear Cayley graphs. After the preliminary materials we present some
constructions where the resulting graphs improve the previously known,
general lower bounds for vertex-transitive graphs ((3.2) and (3.3)). For
small number of vertices these are also compared to the known largest vertex
transitive graphs having the same degree and diameter.

It turns out that the problem for our case is to look for special pointsets
in projective spaces, namely saturating sets. We give a short overview of
the used geometric background. The graphs in our constructions arise from
comlete arcs, caps and other objects of �nite projective spaces.

In Chapter 4 we study a special class of tetravalent graphs. The concept
of rose window graphs was introduced by Wilson in [41, 47].

Wilson was primarily interested in embeddings of graphs Rn(a, r) into
closed surfaces as rotary maps. He gave several examples of such maps, and
concluded his paper [47] by a conjecture that the list of parameters n, a,
r given there is the complete list of parameters giving rose window graphs
which underlie rotary maps. AmapM is an embedding of a �nite connected
graph Γ into a surface so that it divides the surface into simply-connected
regions, called the faces of M. The preliminary results are detailed in
Section 4.1.1.

An automorphism of M is an automorphism of Γ which preserves its
faces. Following [48],M is called rotary if it admits automorphisms R and
S with the property that R cyclically permutes the consecutive edges of a
face f , and S cyclically permutes the consecutive edges incident to some
vertex v of f . In this case the automorphism group Aut(M) of M acts
transitively on the vertex set, edge set, and face set. [6, 14, 38].
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If a rotary map also contains an automorphism T which `�ips' an edge
e of f , and preserves f , then we say that M is re�exible. On the other
hand, if no such automorphism T exists, then M is called chiral. One of
the central questions regarding maps is the following: which graphs admit
an embedding onto some closed surface as a rotary map [7].

Wilson actually posed three questions about rose window graphs in [47].
Given natural numbers n ≥ 3 and 1 ≤ a, r ≤ n− 1, for which n, a and r is
Rn(a, r) edge-transitive; when Rn(a, r) is edge-transitive, what is the order
of its automorphism group and for which parameters the underlying graph
of a rotary map?

The �rst question was answered by Kovács, Kutnar and Maru²i£ in [33],
the second and third questions are discussed in Chapter 4. We use some well
known results about coverings and embeddings of graphs. The basic facts on
these concepts and the tools we use are also presented in the 4.1.2 subsec-
tion. A combinatorial description of a K-covering was introduced through
a voltage graph by Gross and Tucker [25]. The problem of determining
whether an automorphism α of Γ lifts or not is expressed in terms of volt-
ages and we use these results as a main tool in the study of edge-transitive
rose window graphs. Four families of rose window graphs are distinguished
and discussed consecutively in 4.3 the automorphism groups are also deter-
mined in all cases. Finally in 4.4 our main theorem 4.2.3 which answers the
third question of Wilson is proven after a careful analysis of four families of
rose window graphs.

In Chapter 5 a short summary is given both in english and hungarian.
The dissertation ends with the list of references.
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5.2 Összefoglalás

A szemikvadratikus halmazok fogalmát F. Buekenhout vezette be 1973-
ban [12]. Azóta sok próbálkozás történt az osztályozásukra, de az általános
probléma még nem megoldott.

Az 1.1 részben el®ször néhány, a szemikvadratikus halmazokra vonatkozó
eredményt ismertetünk. A szemikvadratikus halmazok sokfélesége miatt ku-
tatásainkban a síkbeli esetre korlátoztuk magunkat és az ún. szemioválisokat
tanulmányoztuk. Egy projektív síkon szemioválisnak nevezünk egy S nem-
üres ponthalmazt, ha minden P pontján keresztül pontosan egy olyan tP
egyenes létezik, amire S∩tP = {P} . Ezt az egyenest az S P -beli érint®jének
nevezzük. A klasszikus példák szemioválisokra a polaritások (oválisok és
unitálok) közül, továbbá a blokkoló halmazok köréb®l (csúcsnélküli három-
szög) származtathatók. A szemioválisok tanulmányozását a kriptográ�ai
alkalmazásaik is motiválják [4].

Kis rend¶ síkok esetén a méretek teljes spektruma és a projektíven nem
izomorf szemioválisok száma egyaránt ismert.

Az els® két fejezetben azon szemioválisok karakterizációját t¶ztük ki
célul, amelyeket három vagy annál kevesebb egyenes uniója tartalmaz. Néhány
régebbi, hosszú szel®kkel rendelkez® szemioválisokra vonatkozó eredmény
[20] és a szemiovális méretére vonatkozó korlátok bemutatása után be-
bizonyítjuk, hogy az általunk vizsgált esetben jobb korlátok érvényesek
(1.2.2 Tétel).

Az az eset, amikor a szemioválist már háromnál kevesebb egyenes is
tartalmazza, egyszer¶en kezelhet®. Ezek után két különböz® esetre bont-
juk a vizsgálatot. Az els® fejezetben arra adunk teljes karakterizációt,
amikor a szemioválist tartalmazó három egyenes nem illeszkedik egy pont-
ra (1.3 Tétel). Kombinatorikai jelleg¶ állításokat és egyszer¶ eredményeket
használunk az additív csoportelmélet illetve a di�erencia halmazok elméletének
köréb®l.

Az els® fejezet végén a szemiovális fogalom egy lehetséges általánosításáról
esik szó, néhány ezekre vonatkozó eredményt is ismertetünk (1.4.2 Tétel).

A második fejezetben a másik esetet tárgyaljuk, amikor a három egyenes
egy ponton megy át. Ez jóval bonyolultabb mint az el®z®, be kell vezetnünk
a szabályos szemioválisok fogalmát. Csak egy végtelen osztályát ismerjük az
ilyen típusú szemioválisoknak, amik PG(2, q) Baer részsíkjainak segítségével
származtathatók ha q páros kitev®j¶ prímhatvány. A 2.2 részben a Πq sík
szemioválisainak méretére vonatkozó fels® korláton javítunk (2.2.2 Tétel) és
a 2.2.3 Példával megmutatjuk a korlát élességét. A 2.3 részben a PG(2, q)-
beli szemioválisok egy algebrai leírását adjuk.

Végül a 2.4 részben a szabályos szemioválisokat tanulmányozzuk. Szük-
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séges feltételeket mutatunk szabályos szemioválisok létezésére, és prím il-
letve prímnégyzet rend¶, testre épített síkok esetén megadjuk a teljes leírá-
sukat (páratlan prím esetén).

Ezek az eredmények motiválják utolsó sejtésünket, hogy a fenti típuson
kívül nincsenek szabályos szemioválisok.

A (∆, D)-probléma (vagy fokszám/átmér® probléma) azon legnagyobb
egész szám meghatározása, ahány csúcsú gráf létezik az adott ∆ maximális
fokszámú és D átmér®j¶ gráfok között. A harmadik fejezetben a lineáris
Cayley gráfok körében tárgyaljuk a problémát. Az el®zmények ismertetése
után olyan konstrukciókat mutatunk, ahol a kapott gráfok javítanak az ed-
dig ismert, csúcstranzitív gráfokra vonatkozó általános alsó korláton ((3.2)
és (3.3)). Kis csúcsszám esetén a kapott gráfokat összehasonlítjuk a csúcs-
tranzitív esetben ismert legnagyobb, ugyanazon paraméterekkel rendelkez®
gráfokkal.

Kiderül, hogy a mi esetünkben a probléma tulajdonképpen a projektív
tér ún. szaturáló halmazainak keresését jelenti. Röviden áttekintjük a fel-
használt geometriai hátteret. A konstruált gráfok teljes ívekb®l, süvegekb®l
és a projektív tér egyéb ismert objektumaiból származtathatók.

A negyedik fejezetben a 4-reguláris gráfok egy speciális osztályát tanul-
mányozzuk. A rózsaablak gráfok fogalmát Wilson vezette be [41, 47].

Wilsont eredetileg az Rn(a, r) rózsaablak gráfok zárt felületekbe való ún.
forgásszimmetrikus térképként (rotary map) történ® beágyazásai érdekelték.
Számos példát adott ilyen térképekre és a [47] cikkét azzal a sejtéssel zárta,
hogy az ott megadott, azon n, a, r paraméterekre vonatkozó listája, ami
felsorolja az összes forgásszimmetrikus térképpel rendelkez® rózsaablak grá-
fot, teljes. Egy Γ véges, összefügg® gráf, valamely felületbe történ® olyan
M beágyazásait nevezzük térképnek (map), melyek a felületet egyszere-
sen összefügg® tartományokra, ún. lapokra osztják. Az ezekre vonatkozó
el®zmények részleteit tartalmazza a 4.1.1 rész.

AzM térkép egy automor�zmusa alatt a Γ gráf olyan automor�zmusát
értjük, ami meg®rzi a lapokat. A [48] cikk elnevezéseit követve M térkép
forgásszimmetrikus, ha vannak olyan R and S automor�zmusok, amik ren-
delkeznek azzal a tulajdonsággal, hogy R egy f lap egymást követ® éleit,
míg S a lap egy v csúcsának szomszédait permutálják ciklikusan. Ebben
az esetben az M térkép Aut(M) automor�zmus-csoportja tranzitíven hat
a csúcsok, az élek és a lapok halmazán is [6, 14, 38].

Ha a forgásszimmetrikus térképnek van ezeken túl olyan T automor�z-
musa is, ami az f lap egy e élét mintegy megfordítja, úgy, hogy a lapot
közben meg®rzi, akkor a térképet re�exibilisnek nevezzük. Ha nincs ilyen
T , akkor pedig királisnak hívjuk. A térképekre vonatkozó egyik központi
kérdés, hogy mely gráfoknak van bizonyos zárt felületre forgásszimmetrikus
térképként történ® beágyazása [7].
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Wilson három, a rózsaablak gráfokra vonatkozó kérdést fogalmazott meg
a [47] cikkben. Milyen n, a és r paraméterek (n ≥ 3, 1 ≤ a, r ≤ n − 1)
esetén lesz az Rn(a, r) rózsaablak gráf éltranzitv; ha Rn(a, r) éltranzitív, mi
az automor�zmus-csoportjának rendje és végül milyen paraméterekre lesz a
gráfnak forgásszimmetrikus térképe?

Az els® kérdést Kovács, Kutnar és Maru²i£ megválaszolták [33], az értekezés
negyedik fejezete pedig a második és a harmadik kérdést tárgyalja. Gráfok
fedéseire és beágyazásokra vonatkozó, jól ismert eredményeket használunk
fel. Ezen fogalmakkal kapcsolatos alapvet® tényeket és a felhasznált eszközö-
ket mutatja be a 4.1.2 rész. Az ún. reguláris fedések kombinatorikus leírását
Gross és Tucker megadták a feszültség gráfok (voltage graph) fogalmát fel-
használva [25]. A kérdést, hogy egy Γ gráf egy α automor�zmusa felemelhet®
vagy sem feszültségek segítségével is megfogalmazhatjuk. Az erre vonatkozó
eredmények szolgálnak f® eszközül az éltranzitív rózsaablak gráfok tanul-
mányozásánál. A 4.3 részben rózsaablak gráfok négy speciális osztályát vizs-
gáljuk meg és minden esetben meghatározzuk az automor�zmus-csoportokat
is. Végül a 4.4 részben a f® eredményünket bizonyítjuk (4.2.3 Tétel) négy
eset aprólékos vizsgálatával, megválaszolva Wilson harmadik kérdését is.

Az ötödik fejezetben a dolgozat rövid angol és magyar nyelv¶ össze-
foglalását adjuk.

Az értekezés a hivatkozások felsorolásával zárul.
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