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Preface I

Preface

Model building is probably the most significant component of scientific thinking baring
abstract similarities in all branches of science. We build models and examine how
they function, we apply modifications to them as long as we reach our desired goal.
Artificial intelligence is a special branch of science, which provides an endless horizon to
the lovers of computational model building. All my life, I have developed my abilities in
a direction that allows me to create models that are able to simulate certain components
of human intelligence. The present dissertation is the anthology of my endeavors to
create methods grouped around a certain task group, the elaboration of which has given
me high-flown intellectual experiences.

Naturally, to reach the current phase of my scientific career would not have been
possible without the support of my immediate surrounding. I find it very important to
list the people who have given me this support.

First of all, I owe the most to my supervisor András Kocsor, who has lead me in
mastering scientific thinking. He introduced me and made me devote myself to model
building. I would also like to thank Csaba Szepesvári, who has helped my work in
the examination of models from a mathematical point of view. Further, I thank Dóra
Csendes and David Curley for scrutinizing and correcting this thesis from a linguistic
point of view. Last, but not least, my heart-felt thanks goes to my wife Judit for
providing a secure family background during the time spent writing this work.

Szeged, Hungary Kornél Kovács
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Chapter 1

Introduction

Machine learning forms a branch of artificial intelligence [59]. It comprises a set of
algorithms that enable computers to learn. The concept of learning usually builds on
two different approaches: inductive and deductive learning. My thesis follows the in-
ductive learning approach, which retrieves rules or descriptive patterns from massive
data sets. Presently, the main focus of machine learning is the complex task of auto-
matic information extraction. Further important application possibilities lie in natural
language processing, syntactic pattern recognition, the improvement of search engines,
medical diagnosis, bio-informatics, speech recognition, object recognition, and enhanc-
ing computer games with humanlike intelligence - only to mention a few fields. Certain
machine learning methods attempt to eliminate human resource from the process of
data analysis, while others try to make human-machine interaction more human.

Considering the current level of technological advances, machine learning has be-
come the most researched and most intensively developing field of artificial intelligence.
The present dissertation focuses on the examination and elaboration of the most novel
approach in machine learning, namely that of kernel methods.

This chapter of the thesis contains the following. First, I introduce the basic tech-
nique of kernel methods. Following that, I summarize in separate sections the results
gained by applying kernel methods to various scientific problems. Finally, I close the
chapter with overviewing and evaluating the results.

1.1 Kernel Methods

Kernel methods (KM) are a family of pattern recognition algorithms [61], whose most
significant member is the Support Vector Machine (SVM) [69]. The general task of
pattern recognition is to identify and examine representative correlations (e.g., clusters,
classification decisions, etc.) on general data (e.g., vectors, documents, sequences,

7



8 Introduction

Figure 1.1: An illustration of the kernel mapping idea. The inner product in Hilbert
space H is defined 〈k(x1, ·), k(x2, ·)〉 = k(x1, x2).

pictures, etc.). The KM approach was named after kernel functions, which work in
a derived feature space where the real coordinates of patterns never have to be cal-
culated. These methods only rely on the dot product of paired sample points, which
are calculated implicitly by applying the kernel functions. Apart from SVM, there are
a number of other algorithms belonging to the family of KM: e.g., various regression
methods, Fisher’s linear discriminant analysis (LDA) [25], principal components analy-
sis (PCA) [29], canonical correlation analysis (CCA) [2], ridge regression [49], spectral
clustering [48], and many others. Generally speaking, the majority of kernel methods
lead to effectively soluble problems, convex optimisation or eigenproblems.

1.1.1 Inroduction to the kernel mapping idea

Let X, y be the training data, where X = (x1, . . . , xn) are the input patterns (xj ∈
Rd) and y ∈ {−1, +1}n are the corresponding target labels for classification tasks or
alternatively y ∈ R for regression problems. We will assume that (xi, yi), i = 1, . . . , n

are independent, identically distributed random variables.

It is often the case that the problem of classification, regression or relevant feature
extraction can be made substantially easier when the data is mapped into an appropriate
high dimensional space by some non-linear mapping φ and linear methods are applied
to the transformed data. If the algorithm is expressible in terms of dot products and if
the non-linear mapping

φ : Rd → H (1.1)

is such that the dot products of the images of any two points x and y under φ can be
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Figure 1.2: The Checkerboard example.

computed as a function of x and y only and in poly(d)-time without explicitly calculat-
ing φ(x) or φ(y) then the algorithm remains tractable, regardless of the dimensionality
of H. This allows us to consider very high or even infinite dimensional image spaces
H. We may as well start by choosing a symmetric positive definite function

k : Rd × Rd → R, (1.2)

called the kernel function (see e.g. [10]). Then the closure of the linear span of the set

{ k(x, ·) | x ∈ Rd } (1.3)

gives rise to a Hilbert space H where the inner product is defined such that it satisfies

〈k(x1, ·), k(x2, ·)〉 = k(x1, x2) (1.4)

for all points x1, x2 ∈ Rd [45]. The choice of k automatically gives rise to the mapping

φ : Rd → H (1.5)

defined by φ(x) = k(x, ·). This is called the kernel mapping idea (cf. Fig. 1.1 and
[1; 51; 68]).

1.1.2 Artificial Example

I demonstrate the application of kernel mapping by solving a typical classification prob-
lem. Suppose we have a 2 by 2 checkerboard on which we spread sample points
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Figure 1.3: The Checkerboard example. The sample points are classified using a linear
kernel function.

accidentally. Let us generate positive samples on fields (1,1) and (2,2), while fields
(1,2) and (2,1) cover negative samples. Figure 1.2 illustrates a generated two-class
set following the above defined pattern. Positive examples are marked with a circle,
while negative ones are marked with dots on the figure. The machine learning task is
to define a bordering surface, which separates the positive examples from the negative
ones. For demonstrational purposes, I use Guillaume Caron’s SVM applet:

http://www.site.uottawa.ca/ gcaron/SVMApplet/SVMApplet.html,

which endeavors to separate the positive and negative samples by applying the
SVM method. On Figure 1.3, we can see the result of the linear kernel separation. It
is instantly visible that with defining a plain linear decision surface (see the light green
line appearing in the middle of the green zone) the separation is not possible. The
applied kernel function in this case is:

k(x, z) = 〈x, z〉. (1.6)
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Figure 1.4: The Checkerboard example. The sample points are classified using a non-
linear kernel function.

If we replace the linear kernel with the following

k(x, z) = exp

(− ‖ x− z ‖
0.25

)
, (1.7)

so called RBF kernel function, then the hyperplane separation in space H results in a
non-linear decision surface in the original space. The decision surface can be seen in
Figure 1.4. The bright green contour imitates the separation lines of the checkerboard.
Thus, the success of the separation of the sample points with this kernel method is
100%.

1.2 Structure of the Thesis

Following the introduction of kernel methods, I present the results of the thesis chapter
by chapter. Finally, I close the dissertation by summarizing the results.
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1.2.1 Summary by Chapters

The thesis comprises two main parts. In the first part (Chapter 2 and 3), I introduce
feature extraction methods that are designed to support the efficient solution of classi-
fication and regression tasks. In the second part (Chapter 4 and 5), I define two novel
branches of kernel-based learning methods.

In Chapter 2, I propose a new feature extraction method called Margin Maximiz-
ing Discriminant Analysis (MMDA) [31], which seeks to extract features suitable for
classification tasks. MMDA is based on the principle that an ideal feature should con-
vey the maximum information about the class labels and it should depend only on the
geometry of the optimal decision boundary and not on those parts of the distribution
of the input data that do not participate in shaping this boundary. Further, distinct
feature components should convey unrelated information about the data. Two feature
extraction methods are proposed for calculating the parameters of such a projection
that are shown to yield equivalent results. The kernel mapping idea is used to derive
non-linear versions. Experiments with several real-world, publicly available data sets
demonstrate that the method yields competitive results.

Face recognition is a highly non-trivial classification problem since the input is
high-dimensional and there are many classes with just a few examples per class. In
the Chapter, I also propose using Maximum Margin Discriminant Analysis to solve
face recognition problems. I show that MMDA is capable of finding good features
in face recognition and performs very well provided it is preceded by an appropriate
pre-processing phase [37].

In Chapter 3, I consider feature extraction in a regression context. Feature extraction
can also be thought of as a way to reduce the dimensionality of the input data whilst
keeping important information intact. Principal component analysis (PCA) [29] is such
an unsupervised method that seeks to represent the input patterns in a lower dimensional
subspace so that the expected squared reconstruction error is minimized. Since PCA is
not meant for classification tasks the average regression error may become arbitrarily
bad after the data is projected onto the first few principal components. This is what
has motivated me in elaborating two new kernel-based feature extraction methods
introduced in the Chapter, each of which especially designed to support regression
methods. The first approach follows the line underlying the MMDA method, yet in
this case I propose to stick to the ’ambiguity decomposition’ theory when defining the
method. The technique thus created is called Decorrelated Learning Regression (DLR)
[65]. The second approach is a variation of the so called Average Derivative Estimation
(see statistics), which - in this case - uses kernel functions [65]. The method searches for
the relevant sub-space of the feature space, which allows for the more precise solution
of the regression problem, i.e. we suppose that the unknown regression function f can
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be defined as follows: f(x) = f0(Bx), where the B matrix maps the d dimensional
data to an m dimensional sub-space. With this, I intend to show that using kernel
methods in regression problems ensures the selection of relevant sub-spaces from the
point of view of regression efficiency.

In Chapter 4, I elaborate on the application of hyperplane-based kernel methods
in classification [34]. Practically, I enhance the geometrical theory represented by the
Support Vector Machine (SVM) [61]. With extension of the input space’s dimension,
the bias term used in SVMs can be eliminated. The defined formulae provide for the
use of different loss functions. A unique application of the regression formalism makes
it possible to develop a new hyperplane-based classification method. In this case, we
integrate the elements of the output space into the formula of the hyperplane approach.
Finally, I introduce the eigen-analysis technique of Minor Component Analysis. This
technique separates the positive and the negative sample points based on the eigen
vector pertaining to the smallest eigen value, where the eigen vector is a normal vector
defining the hyperplane. In the Chapter, I evaluate the efficiency of the defined methods
on standard data bases. Considering the test results, we can see that the efficiency
proves to be impressive.

Combinations of basis functions are applied in Chapter 5 to generate and solve
a convex reformulation of several well-known machine learning algorithms like certain
variants of boosting methods and Support Vector Machines [35]. I call such a refor-
mulation a Convex Machines (CM) approach. The non-linear Gauss-Seidel iteration
process for solving the CM problem converges globally and fast [8; 35]. The sparsity of
the CM solution can effectively be controlled by some novel heuristics. The proposed
techniques [35; 36] are inspired by the methods from linear algebra and Feature Se-
lection (FS). Numerical results and comparisons demonstrate the effectiveness of the
methods on publicly available datasets. The FS-based ones perform better than the
general purpose selection techniques, but methods from the latter group can be em-
ployed on large-sized datasets. The CM approach can perform learning tasks using far
fewer basis functions and generate sparse solutions.

The final Chapter provides a short summary of the thesis. Lastly, I round off the
work with an Appendix containing a brief summary of the principal results of the thesis.

1.2.2 Summary by Results

The theses of the present dissertation can be differentiated in two ways and can be
separated into two different groups. In one reading, the results acquired by the author
fall into the topic of kernel-based feature extraction and classification methods within
the field of machine learning. In an other reading, we can learn about algorithmic
constructions and practical applications. Hereunder, following the structure of the
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dissertation, the results are introduced according to the first approach. It is important
to note that the list of results below enumerate only those parts of the novelties to
which the author has contributed in major part.

The author’s kernel-based feature extraction methods form the first group of results.
These results are described in detail in Chapter 2 and 3.

I/1. The author has defined the direct version of the MMDA algorithm [31; 37].
This method employs a feature extraction technique that increases the efficiency
of classification methods. The author managed to prove the feasibility of the
defined method by applying it on several examples of the UCI machine learning
database [9].

I/2. The MMDA algorithm is apt by nature to reduce high dimensional feature spaces
in order to increase classification efficiency. The author has developed a modified
version of this algorithm for face recognition. With the help of the FERET gold
standard face recognition database [17], he managed to prove the usability of the
introduced method. He also managed to surpass the state-of-the-art results in
the field [37].

I/3. Beyond classification, regression problems may also form the focus of feature
extraction. The author has also developed a version of the MMDA algorithm for
solving regression tasks, with a focus on the retrieval of correlation-free features.
The name of the method is Kernel Decorrelated Learning Regression (KDLR)
[65]. Based on tests performed over standard regression problems we can state
that the approach leads to more efficient regression in practice.

I/4. The author proposed the combination of the statistics-based average derivative
estimation method on the one hand, and kernel functions on the other hand. The
aim of this novel method called Kernel Average Derivative Estimation (KADE) is
the identification of sub-spaces that are relevant from a regression’s point of view
[65]. By testing on artificial data and comparing relating algorithms the author
proved that the identified sub-spaces enable more effective regression in a good
number of cases.

Novel kernel-based classification algorithms form the second group of results. These
results are detailed in Chapter 4 and 5.

II/1. The author defined a family of hyperplane-based classification methods [34]. He
proposed three modifications, each following traditional geometrical concepts: i)
he used various loss functions in hyperplane-based classification; ii) he applied
linear regression in a unique way to improve classification; iii) he embedded the
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Thesis Topics [31] [34] [35] [36] [37] [65] Chapter Type

MMDA • 2 Feature Extraction
MMDA FACE version • • 2 Feature Extraction

KDLR • • 3 Feature Extraction
KADE • 3 Feature Extraction

Hyperplane Classifiers • 4 Classification
Convex Networks • • 5 Classification

Basic Basis Selection Methods • 5 Basis Selection
Complex Basis Selection Methods • 5 Basis Selection

Table 1.1: The relation between the thesis topics and the corresponding publications.

output space into the input space and he developed the Minor Component Classi-
fier (MCC) method, which defines a classification hyperplane with the help of an
eigenvector pertaining to the smallest eigenvalue of a sample point matrix. The
author formed the testing environment of the methods and performed demon-
strational tests. Results prove that the methods developed by the author are
comparable to results performed by SVM [61].

II/2. The author constructed a classification scheme called Convex Machine Technique,
which applies a rare combination basis functions. The method contains a number
of machine learning techniques, such as: Support Vector Machine (SVM) [61],
Smooth Support Vector Machine (SSVM) [39], Least Square Support Vector
Machine (LSVM) [64], Kernel Logistic Regression (KLR) [21], just to mention a
few. Inspired by basic numeric mathematical methods, the author also developed
three base function selection techniques (RANDOM, MGRAMM, CORR) [35],
which he tested on certain elements of the UCI data repository [9].

II/3. He further developed three complex base function selection techniques (SFS,
SFFS, PTA) in order to improve the efficiency of classification on the one hand,
and to decrease the size complexity of the classification model on the other
hand. The defined methods build on the analogy of state-of-the-art feature space
selection techniques. Base on test results, it can be declared that these methods
support effective classification [65].

Finally, Table 1.1 summarizes which publication covers which method of the thesis.
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Chapter 2

Maximum Margin Discriminant

Analysis

This chapter considers feature extraction in a classification context. Feature extraction
can be used for data visualization, e.g. plotting data in the coordinate system defined
by the principal components of the data covariance matrix. Visualization may help us
to find outliers, or meaningful clusters. Another beneficial use of feature extraction
is in noise reduction. In classification the goal is to suppress irrelevant information in
order to make the classification task using the transformed data easier and simpler.
The author describes here a new feature extraction method called Margin Maximizing
Discriminant Analysis (MMDA) which seeks to extract features suitable for classification
tasks. MMDA is based on the principle that an ideal feature should convey the maximum
information about the class labels and it should depend only on the geometry of the
optimal decision boundary and not on those parts of the distribution of the input data
that do not participate in shaping this boundary.

2.1 Introduction

Feature extraction is the process of transforming the input patterns either by means
of a linear or a non-linear transformation. Linear transformations are more amenable
to mathematical analysis, while non-linear transformations are more powerful. When
linear methods are applied to non-linearly transformed data, the full method becomes
non-linear. One important case is when the linear method uses only dot-products of
the data. In this case the kernel mapping idea [1; 51; 68] can be used to obtain an
efficient implementation whose run time does not depend on the dimensionality of the
non-linear map’s image space. This ’kernel mapping’ idea applies to many well-known
feature extraction methods like principal component analysis and linear discriminant
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analysis. In classification, the best known example utilizing this idea is the support
vector machine (SVM) [68].

Principal component analysis (PCA) [29] is one of the most widely-known linear
feature extraction method used. It is an unsupervised method that seeks to represent
the input patterns in a lower dimensional subspace such that the expected squared
reconstruction error is minimized. By its very nature PCA is not meant for classification
tasks. So, in the worst case, the Bayes error rate may become arbitrarily bad after the
data is projected onto the first few principal components even if the untransformed data
was perfectly classifiable. We shall call this phenomenon a filtering disaster. PCA can
still be very useful e.g. for suppressing “small noise” which corrupts the input patterns
regardless of the class labels. PCA has been generalized to KPCA [62] by using the
kernel mapping idea.

Classical linear discriminant analysis (LDA) [25] searches for directions that allow
optimal discrimination between the classes provided that the input patterns are normally
distributed for all classes j = 1, . . . , m and share the same covariance matrix. If these
assumptions are violated LDA becomes suboptimal and a filtering disaster may occur.
Recently, LDA has been generalized using the kernel mapping technique [5; 46; 57] as
well.

Discriminant analysis as a broader subject addresses the problem of finding a trans-
formation of the input patterns such that classification using the transformed data set
becomes easier (e.g. by suppressing irrelevant components, or noise). More recent
methods in discriminant analysis include the “Springy Discriminant Analysis” (SDA)
(and its non-linear kernelized counterpart, KSDA), which was derived using a mechani-
cal analogy [30; 32] or, in a special case, as a method for maximizing the between-class
average margin itself averaged for all pairs of distinct classes [40]. The goal of the
algorithm proposed in [24] is to find a linear transformation of the input patterns such
that the statistical relationship between the input and output variables is preserved.
The authors of this article use reproducing kernel Hilbert spaces (RKHS) to derive an
appropriate contrast function. One distinctive feature of their approach is that the
method is completely distribution free. There are many other methods available but
we will not discuss them here due to lack of space.

In this chapter we propose a new linear feature extraction method that we will call
Margin Maximizing Discriminant Analysis (MMDA). MMDA projects input patterns
onto the subspace spanned by the normals of a set of pairwise orthogonal margin max-
imizing hyperplanes. The method can be regarded as a non-parametric extension of
LDA which makes no normality assumptions on the data but, instead, uses the principle
that the separating hyperplane employed should depend on the decision boundary only.
A deflation technique is proposed to complement this principle to extract a sequence of
orthogonal projection directions. A corresponding non-linear feature extraction method
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is derived using the kernel mapping technique. The performance of the proposed meth-
ods is examined on several real-world datasets. Our findings show that the new method
performs quite well and, depending on the dataset may sometimes perform better than
any of the other methods tested, resulting in an increase in classification accuracy.

2.2 Principles of MMDA

MMDA makes use of the principal idea underlying LDA: projecting the input data onto
the normal of a given hyperplane which separates the two classes best and provides
all the information a decision maker needs to classify the input patterns. However, at
this point LDA places normality assumptions on the data, whereas we make no such
assumptions, but propose to employ margin maximizing hyperplanes instead.

This choice was motivated by the following desirable properties of such hyperplanes
[7; 10; 27]: (i) without any additional information they are likely to provide good gen-
eralization on future data; (ii) these hyperplanes are insensitive to small perturbations
of correctly classified patterns lying further away from the separating hyperplane; more-
over, (iii) they are insensitive to small variations in their parameters. In addition to
these properties, margin maximizing hyperplanes are insensitive to the actual probabil-
ity distribution of patterns lying further away from the decision boundary. Hence when
a large mass of the data lies far away from the ideal decision boundary we can expect
the new method to win against those methods that minimize some form of average
loss/cost since those methods necessarily take into account the full distribution of the
input patterns. An example of such a situation is depicted in Figure 2.1. Note that
such situations are expected to be quite common in practical applications like char-
acter recognition and text categorization. Actually, the original motivation of MMDA
stems from a character recognition problem. Suppose that there are two character
classes. Suppose also that the input space is the space of character images. Then,
let us concentrate only on two pixels. Specifically, let us assume that pixel 1 is such
that for characters in class 1, it can be ‘on’ or ‘off’, but in the majority of cases it is
‘on’. Further, let us assume that pixel 1 is never ‘on’ for characters in class 2. Suppose
too that pixel 2 is such that it is always ‘off’ for characters in class 1 and it is always
‘on’ for characters in class 2. Admittedly, these are strong simplifying assumptions, but
similar cases do occur in real-world character recognition tasks. In this simplified case,
the ideal feature extractor should actually work like a feature selection method: since
the two classes are well separated by using pixel 2, it should project the 2D space of the
two pixels onto the second coordinate. Now notice that this is the situation depicted
in Figure 2.1. LDA and PCA fail to find such a projection, but MMDA succeeds in
doing so.
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class #1
class #2
PCA
LDA
MMDA

Figure 2.1: An illustration of the behavior of PCA, LDA and MMDA for a binary
classification problem. The figure shows the one-dimensional subspace represented by
a hyperplane that PCA, LDA and MMDA project the data onto. Although the data
is linearly separable, PCA and LDA fail to find a subspace such that the data when
projected onto the subspace remains linearly separable. MMDA avoids this problem by
projecting onto the normal of a separating hyperplane when such a hyperplane exists.

We supplement the idea of projecting onto the space spanned by the normal of
a margin maximizing hyperplane by a deflation technique which guarantees that all
subsequent hyperplanes (and all subsequent normals) are orthogonal to each other. As
a result each successive feature extraction step extracts “new” information unrelated to
information extracted in the previous steps.

Deflation can be incorporated as a step to transform the data covariance matrix.
However, we can also incorporate a suitable orthogonality criterion in the equations
defining the margin maximizing hyperplane. We will show the equivalence of these two
approaches in the next section and discuss their relative merits.

2.3 Linear Feature Extraction

2.3.1 The Deflation Approach

Let X, y be the training data, where X = (x1, . . . , xn) are the input patterns (xj ∈ Rd)
and y ∈ {−1, +1}n are the corresponding target labels. We will assume that (xi, yi),
i = 1, . . . , n are independent, identically distributed random variables.

Assuming that the data (X, y) is separable, the maximum margin separating hyper-
plane can be found as a solution of a quadratic programming problem [10]. When the
data is not separable the maximum margin separation problem is modified to simultane-
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ously maximize the margin and minimize the error [68]. This still results in a quadratic
programming problem. In order to introduce the corresponding equations formally, let
us fix a positive real number C that we will use to weight the misclassification cost.
Then the maximum margin separation (MMS) problem is defined as follows: given
(X, y, C) find w ∈ Rd, b ∈ R and

ξ = (ξ1, . . . , ξn)T ∈ Rn (2.1)

such that1

1

2
‖w‖2

2 + C

n∑
i=1

ξi → min s.t.

yi(w
T xi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n. (2.2)

MMDA now proceeds as follows: given (X, y, C), find the solution of the MMS problem
(X, y, C). Let this solution be (w1, b1). The first extracted feature component is

f1(x) = wT
1 x. (2.3)

Now transform the data by projecting it onto a space orthogonal to w1. For simplicity,
assume that w1 is normalized so ‖w1‖2 = 1. Then the projected data is given by

x′i = xi − (wT
1 xi)w1. (2.4)

Let X ′ denote the matrix (x′1, . . . , x
′
n) and let (w2, b2) be the solution of the MMS

problem (X ′, y, C). Then the second extracted feature component is

f2(x) = wT
2 x′, (2.5)

where
x′ = x− (wT

1 x)w1. (2.6)

This procedure can be repeated as many times as desired. The following proposition
shows that w1 and w2 are orthogonal.

Proposition
Let (w1, b1) be the solution of the MMS problem (X, y, C) and (w2, b2) be the solution
of the MMS problem (X ′, y, C), where X ′ = (x′1, . . . , x

′
n) with x′i defined by (2.4).

Then the vectors w1 and w2 are orthogonal. 2

1Here ‖w‖2 denotes the `2 norm of w.
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Proof
First, let us split vector w1 to the sum of two vectors. w1 := wx + wy, where

wx ∈ span(x1, . . . , xn) (2.7)

and wy⊥wx. Then in the target function of Eq. (2.2)

‖w1‖2
2 = ‖wx + wy‖2

2 = ‖wx‖2
2 + ‖wy‖2

2, (2.8)

while wx⊥wy.

Note that in Eq. (2.2)

yi(w
T
1 xi + b) ≥ 1− ξi ⇐⇒ yi(w

T
x xi + b) ≥ 1− ξi, (2.9)

which implies in the optimal solution wy equals the zero vector. Otherwise, based on
Eq. (2.8), if wx is not in span(x1, . . . , xn) cutting off the section outside the linear
span would lead to a better solution.

Now taking into account that x′i = xi− (wT
1 xi)w1 for all i, and similarly to w1, the

w2 vector is also in span(x1,
′ . . . , x′n). We have that w1 is orthogonal to w2.

2

A corollary of this proposition is that

f2(x) = wT
2 (x− (wT

1 x)w1) = wT
2 x. (2.10)

Similarly, if w3, . . . , wr (r ≤ d) are the normals extracted up to step r then w1, . . . , wr

are pairwise orthogonal and the ith feature value fi(x) can be computed via:

fi(x) = wT
i x. (2.11)

In order to derive our first practical algorithm let us note that the solution of the
MMS problem is typically obtained via the Langrangian dual of (2.2):

−1

2
αT Rα + αT 1 → max

such that yT α = 0, 0 ≤ α ≤ C1, (2.12)

where the matrix R is defined by

R = Y XT XY (2.13)
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and
Y = diag(y1, . . . , yn) (2.14)

and α ∈ Rn [68]. Here C1 = (C, . . . , C)> ∈ Rd and the comparison of vectors is made
one component at a time. Given α, the solution of (2.12), the solution of the MMS
problem (X, y, C) is recovered through

w = Xα and b = 1T α. (2.15)

We shall call (2.12) the dual MMS problem parameterized by (R, y, C).
Let X ′ be defined as before. Notice that (2.12) depends on the data vector X only

through the matrix R. Hence, the Langrangian dual defined for the transformed data
X ′ takes the form in (2.12), but R needs to be recalculated. The next proposition
shows how to do this in the general case when the data is projected onto a subspace
spanned by an orthonormal system:

Proposition
Let X ′ be the data X projected onto a space orthogonal to the orthonormal system
W = (w1, . . . , wr). Then

R′ = Y (X ′)T X ′Y = Y
(
XT X − V T V

)
Y, (2.16)

where we define V by V = W T X. In particular, if W = XA for some matrix A then
R′ can be calculated by

R′ = Y
(
K − (KA)(KA)T

)
Y, (2.17)

where K = XT X. 2

Proof
Since x′i = xi − (wT

1 xi)w1 for all i we can say that

X ′ = X −WW T X = (I −WW T )X. (2.18)

Thereby using the orthogonality of matrix W , we get that

(X ′)T X = XT (I −WW T )T (I −WW T )X (2.19)

= XT (I − 2WW T + WW T WW T )X = XT (I −WW T )X (2.20)

= XT X − V T V. (2.21)

A special case of the proposition is that when W = XA is a result af simple algebraic
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conversions. 2

The significance of this result is that it shows it is possible to use existing SVM code
to extract a sequence of orthogonal margin maximizing hyperplanes just by transforming
the matrix R. This proposition is given extra weights as it shows that it is possible
to apply the kernel mapping idea to MMDA. This will be considered in more detail in
Section 2.4.

2.3.2 The Direct Method

The deflation approach requires O(n2) calculations when calculating the transformed
matrix R′. The method we consider in this section avoids this at the price of slightly
increasing the dimensionality of the quadratic programming problem.

Let us define the maximum margin separation problem with orthogonality constraint
(MMSO problem) as follows. Let u be a d-dimensional vector: u ∈ Rd. The MMSO
problem parameterized by (X, y, C, u) is to find w ∈ Rd, b ∈ R and ξ = (ξ1, . . . , ξn) ∈
Rn such that

1

2
‖w‖2

2 + C

n∑
i=1

ξi → min s.t.

yi(w
T xi + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , n,

uT w = 0. (2.22)

Let H = H(u,0) be a hyperplane with normal u ∈ Rd (we assume ‖u‖2 = 1 as before)
and bias 0. Let X ′ = (x′1, . . . , x

′
n) be the matrix whose columns are composed of the

xi vectors projected onto

H : x′i = xi − (uT xi)u (2.23)

as before. The following proposition shows the equivalence of the solutions of MMSO
problem and the solutions obtained using the deflation approach:

Proposition
Let C have a fixed positive value. Given the data (X, y) and the hyperplane H with
normal u satisfying ‖u‖2 = 1 and bias 0, the following holds: let X ′ denote the data
projected onto the hyperplane H. Then the solutions of the MMS problem (X ′, y, C)

and the MMSO problem (X, y, C, u) coincide. 2

Proof
The proof is trivial, while the uT w = 0 condition in Eq. (2.22) is equivalent with the
optimization over a hyperplane with normal u . 2
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According to this last proposition, we obtain equivalent solutions to those gotten
using the deflation approach when orthogonality constraints are added to the MMS
problem. It is readily seen that the proposition remains true when the number of
orthogonality constraints – r, say – is bigger than one. The corresponding MMSO
problem will be denoted by (X, y, C, U), where U = (u1, . . . , ur) is the matrix of
vectors that are used to define the orthogonality constraints.

It is not difficult to prove that the solution of an MMSO problem (X, y, C, U) may
be obtained by solving the following dual quadratic programming problem:

−1

2

(
α>Y KY α + γ>UT Uγ

)
+ α>1 + γ>UT XY α → max

such that yT α = 0, 0 ≤ α ≤ C1. (2.24)

Since the number of columns of U is r, the dimensionality of γ will also be r, and hence
the number of variables in the above quadratic programming problem will be n + r.

The direct method works as follows: Given the data (X, y, C), let (w1, b1) be
the solution of the MMS problem (X, y, C). Assuming that the solution vectors
(w1, b1), . . . , (wr−1, br−1) have already been computed, (wr, br) is obtained as the so-
lution of the MMSO problem (X, y, C, Wr−1), where Wr−1 = (w1, . . . , wr−1).

Now we will show (i) that the dual MMSO optimization problem (X, y, C, Wr) can
be put into a form where the dependence on X is only through the dot product matrix

K = XT X, (2.25)

and (ii) that the matrices involved in the dual MMSO optimization problem can be
computed in an incremental manner in time O(mn), where m is the number of non-
zero elements of α(r). We know that the vectors in Wr lie in the span of

X : wi = Xα(i). (2.26)

Therefore,

Wr = XAr, (2.27)

where Ar = (α(1), . . . , α(r)). Hence,

W T
r Wr = AT

r KAr and W T
r XY = AT

r KY. (2.28)
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So

W T
r Wr = [Ar−1, α(r)]T K[Ar−1, α(r)], (2.29)

where the subblocks can be computed by

AT
r−1KAr−1, AT

r−1α
(r), (α(r))T Ar−1 and (α(r))T Kα(r), (2.30)

respectively. Further,

W T
r XY = AT

r KY (2.31)

and hence,

(W T
r XY )T = (Y KAr−1, Y Kα(r)). (2.32)

Thus the direct method may be computationally cheaper than the deflation approach
when the value of m (the number of support vectors) obtained in step r is much smaller
than the number of data points.

2.4 Non-linear Feature Extraction

It is clear that the kernel mapping idea can be used to obtain an efficient non-linear
version of MMDA too: Firstly, the MMS problem at the heart of MMDA is actually
the problem solved by SVMs, which itself builds on the kernel mapping idea [10]. It
is well known that the MMS problem can be efficiently solved in the H feature space.
However, for the sake of completeness, we shall briefly describe how to ‘kernelize’ the
MMS problem. The input patterns X appear in Equation (2.12) only through the dot
product matrix XT X. Hence, defining the matrix K by

Kij = k(xi, xj), 1 ≤ i, j ≤ n (2.33)

and replacing XT X in Equation (2.12) by K, we obtain a quadratic programming
problem such that (if α denotes its solution)

w(·) =
n∑

i=1

αik(xi, ·) and b = αT 1 (2.34)



2.4 Non-linear Feature Extraction 29

is the solution of the MMS problem (Φ, y, C), where

Φ = (φ(x1), . . . , φ(xn)). (2.35)

Now assuming that r directions

W = (w1, . . . , wr) (2.36)

have already been determined, the (r +1)th direction can be computed as the solution
of the dual MMS problem with R replaced by R′, where R′ is defined in Proposition 2.
Since

W = ΦA (2.37)

for an appropriate matrix A (the jth column of A is the solution of the jth dual
subproblem) and Φ = (φ(x1), . . . , φ(xn)), R′ can be computed by Proposition 2, where
K is now defined by (2.33). It was also found that the dual of the MMSO problem
can be expressed in terms of XT X when W lies in the span of X. Hence the dual
of the MMSO problem can also be expressed using K only, and thus it can be solved
efficiently, regardless of the dimensionality of H.

Finally, rewriting (2.11) in terms of the kernel function we find that the ith com-
ponent of the feature extraction mapping can be evaluated using

fi(x) =
n∑

j=1

α
(i)
j k(xi, x), (2.38)

where α(i) is the solution of the ith dual subproblem. Eq. (2.38) follows directly from

wi(·)=
n∑

j=1

α
(i)
j k(xi,·) (2.39)

and the fact that

fi(x)=〈wi, φ(x)〉=
n∑

j=1

α
(i)
j 〈φ(xi), φ(x)〉. (2.40)
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Dataset # classes # attribs # train # test
Bupa 2 7 699 *
Pima 2 8 768 *
Iono 2 34 351 *

Heart 2 13 303 *
DNA 3 181 2000 1186

Satimage 6 36 4435 2000
Optdigits 10 64 3823 1797

Table 2.1: The characteristics of datasets used in the experiments. In the cases marked
by * 10-fold class-balanced cross-validation was used to measure performances.

2.5 Experiments on UCI Datasets

2.5.1 Visualisation Experiments

In the first experiment we sought to demonstrate the visualization capability of MMDA.
We used the Wine dataset from the UCI machine learning repository [9] which has 13
continuous attributes, 3 classes and 178 instances. We applied PCA, LDA and MMDA
to these data sets. Two dimensional projections of the data are shown in Figure 2.2. In
the case of PCA and LDA, the data is projected onto the eigenvectors corresponding to
the two largest eigenvalues. Since MMDA is defined for binary classification problems,
with multi-class problems we need to group certain classes together. In this example
the first direction is obtained by grouping classes 2 and 3 together into a single class,
while the second direction is obtained by grouping classes 1 and 3 together. It can be
seen that for both LDA and MMDA the data became separable in the projection space.
It was also noticed that the margin of separation is larger for the case of MMDA, as
expected. Note that the size of the margin can be controlled to some extent by the
parameter C. For this figure we used C = 1 and the data was centered and scaled to
have unit variance (this transformation was applied in all of our other experiments as
well). Actually, the data is not linearly separable in the case of the PCA projection.

2.5.2 Subspace Selection Experiments

Next we investigate whether MMDA can estimate useful subspaces that preserve infor-
mation necessary for the classification task. For this we ran MMDA on a number of
binary classification problems. We changed the number of dimensions of the estimated
subspace and measured the classification accuracy that could be achieved by projecting
data on the extracted subspace. This experiment was run with both the linear and
kernelized versions of MMDA. Since there is obviously no optimal classifier we decided
to estimate the quality of the extracted subspace by training an artificial neural network
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Figure 2.2: Scatter plot of wine data projected onto a two-dimensional subspace. The
upper left subfigure shows the projection onto the first two attributes, while the other
three show the results of a PCA, LDA and MMDA transformation, respectively.

(ANN) classifier on the projected data. The ANN was trained for a fixed number of
iterations using batch gradient descent with a constant learning rate. There is one
hidden layer and the number of hidden nodes is three times the number of inputs. Our
experiments showed that, on the datasets used, this method is competitive with the
results of SVMs. We chose to combine ANNs with linear feature extraction since (i) we
wanted to keep the algorithms simple and since (ii) the test speed of the resulting com-
posite classifier was then usually very high. High classification speed is important for
some applications like OCR. SVMs need special postprocessing to achieve comparably
high speeds, therefore we decided to use ANNs.

The characteristics of the datasets used in this experiment are shown in Table 2.1,
while the results are presented in Figures 2.3 and 2.4. The results labeled ’original’
were obtained using an ANN trained on the original, untransformed data. It may be
seen that for a number of datasets very good classification rates are achieved with only
a few features. Also, in certain cases performance drops when the dimensionality of
the subspace is increased.
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Figure 2.3: Accuracies achieved by training a neural network on the subspace extracted
by (K-)MMDA shown for datasets called Bupa and Pima.

2.5.3 Multi-class Classification Tests

Next, we tested the performance of the method on a number of larger multi-class prob-
lems. For multi-class problems we used the “one vs. all” approach: basically when the
number of classes is m we ran (K-)MMDA m times with one class against all the oth-
ers. We chose this approach for its simplicity. This is probably a suboptimal approach,
though our initial experiments with output-coding suggests that accuracies obtained
this way are quite good.2 In this case we tested the interaction of MMDA with several
classifiers. These were the ANN introduced earlier, support vector machines with the

2Note that we lose pairwise orthogonality (directions extracted for different subproblems are not
necessarily orthogonal). In the future we plan to investigate the case when pairwise orthogonality is
enforced. Note here that as a kernel for K-MMDA fourth order cosine kernels were used.
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Figure 2.4: Accuracies achieved by training a neural network on the subspace extracted
by (K-)MMDA shown for datasets called Ionosphere and Heart Disease.

linear kernel and C4.5 [54]. The results for the three datasets are shown in Figure 2.5.
For comparision we also included the results obtained with ‘no feature extraction’, PCA
and LDA. For the datasets DNA and Optdigits we got competitive results, but for
Satimage the result for the tested cases were worse than those obtained with the other
methods tested. In particular, in the case of Satimage all feature extractors yielded
worse results than those using no feature extractor. We conjecture that the optimal
subspace for Satimage might be just the (untransformed) space of input patterns.3

3In these experiments K-MMDA was implemented using a Gauss-Seidel iteration (or the Adatron)
and (without loss of generality) we set b = 0.
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Figure 2.5: The interaction of classifiers and feature extractors. The results for K-
MMDA are shown. The label KOA< i > means that K-MMDA was run in a one-vs-all
manner, and for each subproblem where i is the number of directions extracted per
subproblem.

2.6 MMDA for Face Recognition

Human face recognition is a special classification problem where the number of classes
is high, there are only a few samples per class and the input space is high-dimensional.
These properties make face recognition an especially challenging classification problem.

2.6.1 Motivation

Successful approaches to face recognition must exploit the inherent regularity of face
images: a good classifier has to suppress within-class (intra-personal) differences while
enhancing between-class (or extra-personal) differences. This is the basic idea underly-
ing some subspace methods, the best known examples of which include the Fisherface
method and Moghaddam and Pentland’s Bayesian Face Recognition (BFR) methods
[6; 47]. These methods work by projecting the space of images into a lower-dimensional
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space where classification is typically done by resorting to 1-nearest neighbour classi-
fication with an appropriately defined distance function. The difficulty is that since
there are only a very few examples per class, the information of what needs to be
suppressed/enhanced cannot be class specific still, the features should maximize the
amount of information kept about the class labels.

In this chapter it was already shown that MMDA can produce high quality features.
The performance of classifiers built on the top of these features often exceeds the
performance of other state-of-the-art methods. Hence it seems worthwhile to apply
MMDA to the problem of extracting features in face recognition.

2.6.2 MMDA Face Recognition Method

Since MMDA is defined for binary classification problems, with multi-class problems one
needs to group certain classes together. In [31] it was suggested that MMDA should
be used following a “one-vs.-all” approach: basically when the number of classes is m,
MMDA is run m times with one class against all the others. This is a simple approach
and in [31] it was suggested that although it is likely to be suboptimal, it can yield a
sufficiently good performance even when compared with the more involved approach
based on output-coding.

It should be mentioned that the one-vs.-all approach cannot produce useful features
in face recognition tasks as here all the m subproblems are seriously skewed with one
class having only a few elements and the other has lots. Such skewed distributions will
yield highly correlated features for the independent subproblems since the subproblems
are “well aligned” (it is easy to see that forcing independent features to be decorrelated
does not help either due to the large overlap of the problems). The same conclusion
holds for the features obtained using the output-coding approach since there classes
are grouped together without taking into account their relations in the input space.
In a typical subtask persons with very different faces could be grouped together while
persons with similar faces might be assigned to different classes.

This gives us the idea of using the available data to create the binary classification
subproblems for MMDA. The particular approach suggested here is to use information
in the images to create the subproblems. One approach for doing just this is the
following. Some method (like LDA or PCA) is used to generate a number of unrelated
features. For each feature, the projections of training images on a selected feature are
computed. This produces a number of points on the real-line. Next, the persons in
the training set are grouped into two groups so as to minimize the total within-group
distortion between the previously calculated points on the real-line (this is a special
case of k-means clustering and can be implemented efficiently). MMDA is then run
on this binary classification problem (on the original, untransformed images) and the
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Algorithm 1 Feature Extraction by MMDA for Face Recognition

input: (m, (x1, y1) . . . , (xN , yN)) // no. of subjects, list of face-image, person id
pairs

F := (); X i := {xj|yj = i}, i = 1, . . . , m; // images of person i

(w1, . . . , wn) := FE((x1, y1) . . . , (xN , yN)); // extract n features using method FE

for i ∈ {1, . . . , n} do
zj := wT

i xj, j = 1, . . . , N ; // project images

Zi := {zj|yj = i}, i = 1, . . . , m; // collect projected images of person i

Find (v1, . . . , vm) ∈ {−1, 1}m such that
∑

vi=−1,vj=−1

i6=j

∑

z∈Zi

z′∈Zj

(z − z′)2 +
∑

vi=1,vj=1

i6=j

∑

z∈Zi

z′∈Zj

(z − z′)2

is minimized.

F0 := MMDA(∪vi=−1X
i,∪vj=+1X

j); // extract features using MMDA

append(F, F0); // append features to the list of features extracted so far

end for

return F

corresponding features are then saved. The process is continued with the next feature.
The union of features extracted this way defines the extracted feature space. The
proposed algorithm is listed above.

2.7 Face Recognition Experiments

We used the CSU Face Identification Evaluation System (CSU FIES) to evaluate the
performance of our algorithm on the FERET database [17].

The FERET dataset includes only raw face data collections. Examples of variations
of collections can be seen in Fig. 2.6 and tipical set of images collected in one sitting
in Fig. 2.7. CSU (Colorado State University) has developed a usefull preprocessing
tool that performs same basic pre-processing steps (normalisation, equalization, face
cutting). We used the CSU FIES environment for performing our experiments with
MMDA.
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Figure 2.6: Examples of variations of collections.

2.7.1 Experimental Setup

Since the idea can be applied to other supervised feature extraction algorithms, we also
decided to test it using LDA in place of MMDA, so that we could see the effect of the
data-grouping procedure and the effect of MMDA separately. In addition, both PCA
and LDA were used as the underlying feature-extraction methods. This gave rise to the
algorithms LDA(LDA), LDA(PCA), MMDA(LDA) and MMDA(PCA). The CSU Toolkit
allows one to choose a number of distance functions. We tried out a large number of
choices, but only the results for the best distance functions are shown here. For the
algorithms mentioned so far this was the so-called covariance distance function. The
two other algorithms tested were PCA and a combination of LDA and MMDA method.
For PCA the best results were obtained using the distance called MahCosine in the
CSU Toolkit (MahCosine is the cosine distance measured in the Mahalanobis space;
for more details see [17]), while the combined approach, which contains the original
LDA direction itself beside the derived MMDA one, employs also the above mentioned
covariance distance.

2.7.2 Experiments with the standard probs sets

Figures 2.8-11 show the Cumulative Match Curve of recognition rate versus recognition
rank that was obtained for the standard probe sets FAFB, FAFC, DUP1 and DUP2. For
a description of these probe sets the reader should see Section 4.1 of [4]. In brief, FAFB
contains images that were taken at the same time as the training (gallery) images, but
the subjects were asked to assume a different facial expression than those in the gallery
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Figure 2.7: Tipical set of images collected in one sitting.
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Figure 2.8: Results obtained for the standard probe set FAFB of FERET.

images. FAFC contains the images of subjects under significantly different lighting
conditions (this is a smaller set than FAFB). DUP1 contains images taken between one
minute and 1,031 days after the gallery image was taken, while DUP2 is a subset of
DUP1 where the probe image was taken at least 18 months after the probe image.

According to the figure, MMDA based methods with the COV distance consistently
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Figure 2.9: Results obtained for the standard probe set FAFC of FERET.
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Figure 2.10: Results obtained for the standard probe set DUP1 of FERET.



40 Maximum Margin Discriminant Analysis

0 5 10 15 20 25 30 35 40 45 50
10

20

30

40

50

60

70

80

rank

te
st

 a
cc

u
ra

cy

LDA(LDA) COV
LDA(PCA) COV
MMDA(LDA) COV
MMDA(PCA) COV
PCA MahCosine
MMDA+LDA COV

Figure 2.11: Results obtained for the standard probe set DUP2 of FERET.

achieved the best performance on all the tests. On FAFB all the algorithms achieved
similar performances. The performance of MMDA(PCA) is significantly worse than that
of MMDA(LDA) (especially for the harder probe sets) – in line with our expectation
that LDA should yield better individual groupings than PCA. On FAFB and FAFC
the best performance next to MMDA(LDA) was achieved by PCA MahCosine (i.e. a
special Eigenface method), which is still hard to compete with on these test sets. Note,
however, the serious degradation of the performance of this method on the “harder”
test sets DUP1 and DUP2. It appears that rejecting noise (the objective of PCA) is the
most useful when images are taken close to each other in time (and hence possibly lie
in a more concise subspace). Quite surprisingly the performance of LDA(LDA) comes
closest to the performance of the MMDA algorithms. Still, MMDA-based algorithms
have a considerable advantage over LDA(LDA) on all the datasets.

2.7.3 Experiments with the one image per person test set.

In face recognition one particularly critical issue is the number of images per person
available in the training set. In a typical application only a few images might be available
for each person. In addition we should not expect to rerun the feature extraction part
when a new person is incorporated into the database. Hence we ran further tests in
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Figure 2.12: Results obtained for the one-image-per person test.

order to evaluate whether our algorithm can indeed suppress intra-personal changes
while enhancing extra-personal differences under such stringent conditions. We took
200 persons and divided them into two disjoint sets: a set of training images (this set
contained 70% of the images) and a set used for testing (this one had one image in
the gallery per person, and as many images as the person had in the probe set). The
results obtained are shown in Fig. 2.12 above. Here, MMDA(LDA) COV still came
out the best, followed by LDA(LDA) COV.

2.8 Conclusions

One common feature of PCA, LDA and SDA is that they require finding a number
of principal eigenvectors of a matrix whose dimension scales with the dimensionality
of the input space in the linear case, and scales with the number of input patterns in
the non-linear case. MMDA requires the solution of constrained quadratic optimization
problems. As a result, in the case of non-linear feature extraction our method extracts
sparse solutions, whilst the kernelized versions of PCA, LDA and SDA extract dense
solutions (when no additional ‘tricks’ are used). The maximum number of features
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derived using LDA is actually the minimum of the dimensionality of the space and the
number of classes minus one. For high dimensional spaces with a few classes this limits
the use of LDA [40]. Unlike the standard LDA with (linear) MMDA we can extract as
many features as the dimensionality of the pattern space (feature space) allows.

Non-linear MMDA should benefit more from the margin maximizing idea than the
linear version as the non-linear version typically works in very high dimensional (some-
times infinite dimensional) feature spaces. This was partially confirmed by our experi-
ments where, for certain datasets, K-MMDA was shown to give excellent results.

In summary, our experiments so far have shown that MMDA can indeed compete
with other alternative feature extraction methods. One nice aspect of MMDA is that
it can be implemented on top of existing SVM software. Therefore we believe that
the proposed method will be a useful tool for researchers using machine learning. In
the future we plan to investigate the properties of MMDA more thoroughly (e.g. in
multi-class problems). Extensions that make use of different norms penalizing w may
also be of interest.

In this chapter we described the application of MMDA together with a clever prepro-
cessing method to face recognition tasks. MMDA is a method that is most suitable for
binary classification problems where many samples are available for each of the classes.
Since face recognition lies on the opposite end of the spectrum of classification prob-
lems (many classes, few samples per class) MMDA cannot be used directly with face
recognition. The preprocessing method proposed is capable of creating a sufficiently
large number of independent groupings of subjects such that subjects within the same
group have similar images and the corresponding images can be fed into MMDA that
returns some features.

In the face recognition experiments we found that the performance of MMDA rivals
that of the best alternative methods on all the tests that we tried. Of particular
interest is the result of a test where each person in the training set had a single image
and persons in the test set had no images in the training set used to tune the features.
It was found that MMDA performed the best on this test – the significance of this
result is that situations like the tested one are likely to be found in practice.

We think that the results obtained so far are encouraging. However, there remain
some important open questions of course. It would be important to examine further
features such as noise resistance of the results – this could be done using existing tools
from the CSU toolkit. Moreover, the second experiment involved only 200 persons due
to limited time and resources. It would be useful to know whether the advantages of
using MMDA(LDA) are retained if the number of samples in the training set were to be
increased. Also, there are a number of other ways to create (balanced) binary problems,
e.g. by clustering the image space and then combining nearest neighbour clusters. It
would be interesting to find out what the performance of MMDA/LDA is with such
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groupings (see [76] for such an approach applied to LDA). Then as argued in [43] a
better input representation should have a significant impact on the performance of the
algorithms as well. It would also be interesting to try the method in other domains like
text classification that share some of the characteristics of face recognition problems.





Chapter 3

Feature Extraction for Regression

Problems

In this chapter we consider two novel kernel machine based feature extraction algorithms
in a regression settings. The first method is derived from the principles underlying
the Maximum Margin Discimination Analysis (MMDA) algorithm. However, here it is
shown that the orthogonalization principle employed by the original MMDA algorithm
can be motivated by using the well-known ambiguity decomposition, thus providing a
firm ground for the good performance of the algorithm. The second algorithm combines
kernel machines with average derivative estimation and is derived from the assumption
that the true regressor function depends only on a subspace of the original input space.

3.1 Introduction

Let us consider regression problems, where the data (Xi, Yi) are independent, identically
distributed random variables, L is loss function such as e.g. quadratic loss function

L(y, z) = (y − z)2, (3.1)

and we seek to determine the regressor

f(x) = argmin
y

E[L(Y, y)|X = x]. (3.2)

In the case of the quadratic loss function

f(x) = E[Y |X = x]. (3.3)

45
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Here

X ∼ Xi, Y ∼ Yi. (3.4)

Let us first consider the model

Y =
∑

i

βigi(X) + ε, (3.5)

where

gi : X → R (3.6)

are unknown functions, and ε is noise variable, independent of Y,X. We shall consider
estimating gi by means of an iterative procedure. One view of the model is then to
treat the

Y = βT γ + ε (3.7)

as a linear regression problem, where γ = (g1, . . . , gm).

3.2 Feature Extraction Based on Ambiguity de-

composition

In this section – based on the Ambiguity decomposition formalism – we propose a
feature extraction method called ’decorrelated learning’, which is defined directly for
regression.

3.2.1 Ambiguity decomposition

Now we shall assume that the vector β (cf. Eq. 3.7) is such that 0 ≤ β ≤ 1, βT e = 1,
where e = (1, 1, . . . , 1)T , i.e., the output can be obtained as a noisy convex combination
of the ‘features’ g1(X), . . . , gm(X). We shall further assume that the loss function is
the quadratic loss.

Let g =
∑

i βigi, f arbitrary. Then, it is not hard to see that

(g(x)− f(x))2 =
∑

i

βi(gi(x)− f(x))2

−
∑

i

βi(gi(x)− g(x))2. (3.8)
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Therefore,

Loss(g) =
∑

i

βi Loss(gi)−
∑

i

βiE[(gi(X)− g(X))2] (3.9)

and

Loss(g) = E[(g(X)− f(X))2]. (3.10)

This formula, first given in [38] is called “ambiguity decomposition” (AD), since

∑
i

βiE[(gi(X)− g(X))2] (3.11)

can be viewed as the “ambiguity” of the ensemble g1(X), . . . , gm(X).

3.2.2 Decorrelated Learning

According to AD the ensemble loss can be decreased if the ambiguity of the ensemble
is maximized whilst keeping the loss of the individual members low.

Now, we obtain easily

∑
i

βiE[(gi(X)− g(X))2] =
∑

i

(β2
i − βi)

(
E[gi(X)]2

+ Var[gi(X)]
)
−

∑

i6=j

βiβj Cov(gi(X), gj(X)).

Therefore, given two ensembles (gi), (ĝi) satisfying

E[gi(X)] = E[ĝi(X)] (3.12)

and

Var[gi(X)] = Var[ĝi(X)], (3.13)

if
∑

i6=j

βiβjE[gi(X) gj(X)] <
∑

i6=j

βiβjE[ĝi(X) ĝj(X)] (3.14)

then

Loss(g) < Loss(ĝ). (3.15)
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The assumption of equal expected values and variances is motivated by assuming that
each gi should match the regressor function f as closely as it is possible and hence the
expected value and variance of gi(X) are controlled by this desire.

As a conclusion, we have that a small ensemble loss is to enforce orthogonality:

E[gi(X)gj(X)] = 0, i 6= j. (3.16)

In what follows we call methods that enforce this condition decorrelated learning (DL)
methods.

3.2.3 Kernel Machines

Now, let k : Rd×Rd → R be a positive definite kernel, H be the RKHS corresponding
to k. Let {(xi, yi)}n

i=1 denote the observed data (again, xi, yi are i.i.d.) and let L(y, z)

be a loss function, e.g.

L(y, z) = (y − z)2, f ∈ H. (3.17)

Define

R(f) =
1

n

n∑
i=1

L(f(xi), yi) + λ‖f‖2, (3.18)

where ‖f‖2 is in the norm of H (i.e. this is ridge regression in the case of the quadratic
loss). By the “Representer Theorem” of Wahba [71] f ∈ span(Φ), where

Φ = (φ1, . . . , φn) (3.19)

and φi : Rd → R is defined by

φi(x) = k(xi, x). (3.20)

E.g. assume f = Φα for some α ∈ Rn. Equation (3.18) can be solved by

R(α; X; k) =
1

n

n∑
i=1

L((Φα)(xi), yi) + λαT Kα, (3.21)

where

Kij = k(xi, xj) and X = (x1, . . . , xn). (3.22)

When the dataset X and the kernel k are fixed we will often write R(α) instead of
R(α; X; k). Similarly, when the kernel is fixed we will use R(α; X).
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Now assume gi = Φαi, gj = Φαj. How does (3.16) look like in this case? By
replacing the expectation operation with the empirical mean we obtain

0 =
n∑

k=1

gi(xk)gj(xk) =
n∑

k=1

∑
i,j

αkiαkjφi(xk)φj(xk)

=
∑
i,j

n∑

k=1

αkiαkjk(xi, xk)k(xj, xk) = αT
i K2αj.

Therefore an iterative procedure that optimizes R(α) and respects the orthogonality
criterion (3.16) is as follows: Given α1, . . . , αi, let

αi+1 = argmin
α

{R(α) |αT
j K2α = 0, 1 ≤ j ≤ i }. (3.23)

Once α1, . . . , αk are computed for some k > 0, one may estimate the optimal mixing
coefficients βi by e.g. ordinary or regularized (linear) least squares.

Observe that this is just the algorithm originally proposed for classification in [31]
under the name MMDA with the modification that the orthogonality criterion

αT
j Kα = 0 (3.24)

used by MMDA is replaced with

αT
j K2α = 0. (3.25)

If k(x, y) = xT y then gi(x) = uT
i x, for ui =

∑
i αixi. Then αT

j Kα = 0 is
equivalent to uT

j w = 0 and αT
j K2α = 0 is equivalent to uT

j Ĉu, where Ĉ is the
empirical covariance matrix:

(n− 1)Ĉ =
n∑

k=1

xkx
T
k . (3.26)

Therefore, by replacing the ad-hoc Euclidean metric of [31] we get a more principled
version of MMDA. When the data covariance matrix is the unit matrix then the two
approaches are equivalent. This may explain the success of MMDA on some of the
problems it were tested on in [31].

In what follows we call the method obtained by solving (3.23) together with the
method used to obtain the mixing coefficients βi, decorrelated learning regression
(DLR).
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3.2.4 Algorithms

Now let us look at the algorithmic aspect of the optimization problem (3.23). There
are two equivalent ways to solve this problem (the appropriate results of [31] extend
to the case discussed here with minor changes). The first method is to successively
deflate the input data. Let us look at this in the linear case (i.e., k(x, y) = xT y). Let
the input data be collected into the matrix X = (x1, . . . , xn). Assume that w = Xα

is the parameter vector obtained in the last step of the algorithm. Then the deflation
of the data X can be done using

X ′ = X − wwT CX/(wT Cw). (3.27)

Indeed, for each i (1 ≤ i ≤ n),

wT Cx′i = 0, (3.28)

which follows immediately since

wT CX ′ = wT CX − (wT Cw) (wT CX)/(wT Cw)

= wT CX − wT CX

= 0. (3.29)

In the non-linear case it can be shown that the solution of RX(α) depends on the data
X only through the kernel matrix

K = ΦT Φ. (3.30)

Therefore, an algorithm corresponding to the deflation approach in the non-linear case
can be obtained by looking at how K is transformed by the deflation now carried out
in the feature space.

The non-linear counterpart of (3.27) is obtained by replacing w with Φα, X with
Φ, and using

C ∝ ΦΦT (3.31)

we have that

Φ′ = Φ− ΦααT ΦT CΦ/(αT ΦT CΦα)

= Φ− ΦααT K2/(αT K2α),

where we have used ΦT Φ = K. Clearly, we still have $αT ΦT CΦ′ = 0. Using this
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equation we get

(Φ′)T Φ′(= K ′) = K − uαT K −KαuT + uαT KαuT , (3.32)

where

u = K2α/(αT K2α), (3.33)

i.e., K ′ can be expressed as a function of K and α (we assume that αT K2α 6= 0 which
is equivalent to α 6= 0 since K (and hence K2) is positive definite.)

The other approach is obtained by noting that the solution of (3.23) can be obtained
by solving the Langrangian dual of the quadratic programming problem (3.23). For this,
assume that the solutions up to step i are obtained in the form ΦAi where we have
collected the vectors α1, . . . , αi into the matrix Ai. Also, consider now the ε-loss of
function of Vapnik [68]:

L(y, z) = max(0, |y − z| − ε). (3.34)

It is relatively easy to derive that the problem reduces to the following quadratic pro-
graming problem:

L(α, α∗, β) = −1

2
(α− α∗)T K(α− α∗)

− (α− α∗)T K2Aiβ

− 1

2
βT AiK

3Aiβ + (α− α∗)T y

− ε(α + α∗)T e → max

s.t. 0 ≤ α, α∗ ≤ Ce, (3.35)

where e = (1, 1, . . . , 1)T . Now the Langrangian to consider has the following form:

L(α, γ) = αT (λI + K)Kα− 2αT Ky + αT K2Aγ

that should be minimized with respect to α and maximized with respect to γ. Differ-
entiating L w.r.t. α we get that γ∗ is such that

K2Aγ∗ = −2(λI + K)Kα− 2Ky.

Therefore we can get the optimal α by minimizing

L(α, γ∗) = −αT (nλI + K)Kα. (3.36)
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3.3 Kernel Average Derivative Estimation

The other class of algorithms we consider assumes that the unknown regressor function
f can be written in the form

f(x) = f0(Bx) (3.37)

for some matrix B that projects the d dimensional inputs onto an m dimensional
subspace with m ¿ d (i.e. BBT = Im). Here f0 is an unknown link function. Note
that this representation is not unique. In the statistical literature models where the
regressor function satisfies (3.37) are calledmulti-index regressionmodels. Model (3.37)
is a rather general expression of the hypothesis that all the information about f is
concentrated in a low-dimensional projection Bx. Our goal here is to find the effective
dimension m and to describe the effective dimension reducing space S [41] in the form
of

S = =BT . (3.38)

There are many approaches to estimate an effective dimension reducing space. One
of the earliest approaches is principal component analysis (PCA). However, PCA does
not take into account the dependent variables and hence cannot be expected to work in
general. Under some restrictive assumptions the authors in [41] propose the so called
sliced inverse regression approach. A modification of this method (principle Hessian
directions) is explored in [42] and [14]. Here we propose to use the average derivative
estimation based on [60] with kernel machines.

The basic idea of average derivative estimation is as follows: Consider the derivative
of f (here and in what follows we assume that f is sufficiently smooth). Easily,

d

dx
f(x) = BT f ′0(Bx),

where f ′0 ∈ Rm is the derivative of f0. Therefore we get that for all x ∈ Rd and for

F (x)
def
=

d

dx
f(x)

we have F (x) ∈ S.

The basic idea now is to estimate f using a non-parametric estimator. Let f̂ denote
such an estimate obtained and let x1, . . . , xn be the data points used. Then define

F̂ (x) =
d

dx
f̂ (3.39)
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and compute the eigenvalue decomposition of

M =
∑

i

F̂ (xi)F̂ (xi)
T , (3.40)

i.e. let

M = UT ΛU, (3.41)

where U is an orthonormal matrix with its columns being the eigenvectors of M and
Λ is a diagonal matrix where we assume that the eigenvalues of Λ are given in the
diagonal in a decreasing order. If F̂ = F then it is easy to see that only the first m

eigenvalues of M differ from zero. Since F̂ is only an approximation of F we may
expect that M will have more than m non-zero eigenvalues. However, the hope is that
the dimensionality of the effective dimension reducing subspace can be recovered by
detecting a gap in the spectrum.

We should note here that if Z is an n× n orthogonal matrix and

Ψ = (F (x1), . . . , F (xn)) (3.42)

then, in general, the subspace spanned by the columns Ψ and ΨZ is the same. This
idea can be used to get a more stable estimate of the subspace. However, in this work
we have not used this idea.

Once estimates of m and B are obtained the procedure can be repeated but now
for the projected data (Bx1, . . . , Bxn). Such an iteration is especially advantageous
when m ¿ d and since most estimation techniques are sensitive to the dimensionality
of the input data.

Here we propose to use kernel machines to obtain f̂ , an estimate of f . We shall
call the resulting method KADE (Kernel based Average Derivative Estimation). The
choice of using kernel machines is motivated by the widely accepted view that kernel
machines are less sensitive to the dimensionality of the input space (as they are deemed
to work in very high, or even infinite dimensional feature space) which is important in
the first step of the algorithm.

3.4 Experiments

We illustrate the effectiveness of the proposed methods through a series of experiments.
First we consider decorrelated learning regression (DLR).
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Figure 3.1: Estimation error for ridge regression (regularized least squared) and decor-
related learning regression as a function of the regularization parameter and a model
parameter. In this case the model used highly correlated input variables. For more
explanation see the text.

3.4.1 Experiments with DLR

In the first experiments we were interested in iwhether DLR has any advantage over
regularized least squares regression in the simplest setting possible. Therefore we chose
the linear kernel and linear regression problems. Specifically, we have chosen the fol-
lowing problem: Let x, z, ε be independent normally distributed random variables with
variance 1, 0.12 and 0.012, respectively. Then let

x1 = x, x2 = x + z, y = x1 + b2x2 + ε. (3.43)

This problem is representative of the situation commonly found in statistical practice
when the regression variables are correlated. When the regression variables are highly
correlated then ordinary least squares become unstable. One remedy is to use regular-
ization that we consider here. In the experiments we have varies λ, the regularization
parameter and b, the second regression coefficient of the model. We have also varied
the number of points used for training in a wide range from 10 to 105. The results did
not show a strong dependence on the number of points used. The square root of the
average squared loss was measured on an independent test set of 2000 points. The
plot of the dependency of this error measure on λ and b2 is shown in Figure 3.1. It can
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Figure 3.2: Estimation error for ridge regression (regularized least squared) and decor-
related learning regression as a function of the regularization parameter and a model
parameter. In this case the model used uncorrelated (actually independent) input vari-
ables. For more explanation see the text.

be observed that in the case of ridge regression the error grows linearly both with b2

and λ, whilst it stays close to the optimum for DLR, independently of b and λ (note
that DLR used the same regularization parameter λ used by ridge regression).

One may object that in the case of highly correlated independent variables principle
component regression (PCR) or partial least squares regression (PLS) should be used
to find out the ‘latent’ variables of the data first. Hence, we have also experimented
with decorrelated inputs as it is known that both PCR and PLS would decorrelate the
inputs [26].1 In this case we used

x1, x2 ∼ N(0, 1) and y = x1 + b2x2 + ε. (3.44)

The results of this experiment can be seen in Figure 3.2. As can be expected, the error
of ridge regression is much smaller than in the previous case. However, it is still an
order of magnitude higher than for the optimum. Note that DLR still behaves the same
as in the previous example.

1It is not that widely known that PLS can also be formulated in terms of the principal component
analysis of the data. However, in [26] it is shown that this is the case and the feedback from the
dependent variables is present only in a weak form.



56 Feature Extraction for Regression Problems

(λ = 10k) k -6 -5 -4 -3 -2
LS-SVM 84.8±11.0 84.7±11.0 83.7±10.9 76.9±10.2 64.6±8.2

DLR-I 74.0±10.3 36.5±6.0 15.9±1.3 12.9±2.7 13.1±3.9
DLR 81.0±10.6 56.9±8.0 17.7±3.2 13.2±3.0 13.2±3.1

(λ = 10k) k -1 0 1 2 3
LS-SVM 58.9±6.4 47.1±5.5 33.3±4.2 26.2±3.3 22.5±4.5

DLR-I 13.3±4.1 13.4±4.1 13.4±4.1 13.4±4.1 13.4±4.1
DLR 13.2±3.2 13.2±3.2 13.2±3.2 13.2±3.2 13.2±3.2

(λ = 10k) k 4 5 6
LS-SVM 17.0±2.8 15.2±3.0 17.8±6.5

DLR-I 13.4±4.1 13.4±4.1 13.4±4.1
DLR 13.2±3.2 13.2±3.2 13.2±3.2

Table 3.1: Comparison of DLR and LS-SVM on the Boston Housing data. Columns
correspond to different regularization parameters. LS-SVM stands for Least Squares
Support Vector Machines, DLR-I is DLR with the data covariance matrix replaced by
the identity matrix.

These experiments show that DLR is potentially more efficient than PLS or PCR
and is rather insensitive to the actual value of the regularization parameter.

The results of these experiments promise that DLR is a competitive method and
that it should be less sensitive to the actual value of the regularization parameter. Such
a method is highly desirable as currently the only known sound method to determine
good regularization parameters is by time-consuming cross-validation.

Next we ran experiments on the Boston Housing Data database (506 samples with
20 dimensional input variables). In this case we used least-squares ridge regression
with 3rd order cosinus polynomial kernels. DLR used ridge regression for estimating
the mixture parameters. Again we have varied λ and observed the error rate. Error
was measured as the relative mean squared error, using 5-fold cross-validation. On the
top of the extracted features we trained a linear ridge regression model. Results are
shown in Table 3.1. Given the table one may conclude that the tolerance of DLR to
the regularization parameter is indeed larger than that of LS-SVM alone. Also, notice
that we have obtained consistently better results with DLR than with LS-SVM with
identical settings.

We have also compared DLR when in the orthogonality criterion the data covariance
matrix was replaced by the identity matrix. The results obtained did not show any
significant difference to the case when the data covariance matrix was used. Further
investigation is needed to find out the reason of this. Our current belief is that the
covariance matrix of the data (in the appropriate RKHS) could be close to the identity
matrix so that the two metrics induced are not much different.
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Figure 3.3: Datasets used for experimenting with KADE. For both datasets the depen-
dent variable depends only on the first input variable.

3.4.2 Experiments with KADE

In these experiments we used the synthetic datasets of [24]. The first dataset has 100
samples and is two dimensional,

X1, X2 ∼ N(0, 2.52) (3.45)

and

Y = 1/(1 + exp(−X1)) + ε, (3.46)
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with

ε ∼ N(0, 0.12). (3.47)

We have used least-squares SVMs with 3rd order polynomial kernels. The eigenvalues
we obtain are 0.0317,0.0002, i.e., λ2/λ1 < 0.01. The angle between b = [1, 0]T and
the first eigenvector is −0.0100 (measured in radian). The second dataset is also two
dimensional, it has 200 samples and X1,X2 are as before, but now

Y = 2 ∗ exp(−X2
1 ) + ε. (3.48)

In this case we tried LS-SVM with the Gaussian RBF kernel with σ = 0.1. The
eigenvalues are 0.1728 and 0.02209. The angle between b and the first eigenvector is
0.0091. Note that according to [24] SIR, PhD, CCA (Canonical Correlation Analysis),
and PLS yield good acceptable results on the first dataset, whilst they do not perform
very well on the second (the smallest absolute angle is obtained for CCA and it is
0.1818). For KDR the respective values are −0.0014 and 0.0052. The datasets are
shown in Figure 3.3. The third dataset has 17 dimensions, the number of samples is
300. All variables are uniformly distributed on [0, 1]. The regression problem is given
by

Y 0.9 ∗X1 + 0.2 ∗ 1/(1 + X17) + ε, (3.49)

with

ε ∼ N(0, 0.012). (3.50)

For the first and second eigenvector we get the multiple correlation coefficients

R(e1) = 0.9874, R(e17) = 0.9842, (3.51)

where ei is the unit vector with its ith coordinate being 1.2 Despite the fact that some
of our results are slightly worse than those obtained with KDR, note that we ran only
a single iteration of KADE. We expect that subsequent iterations would improve our
results considerably.

2This result was obtained again with a Gaussian RBF kernel with σ = 10.
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3.5 Conclusions

In this chapter we have proposed two methods for feature extraction for regression
problems. The first method, decorrelated learning regression (DLR), can be viewed as
a better motivated (and generalized) version of MMDA, a feature extraction method
[31] that has shown some merit in some classification tasks. DLR estimates decorrelated
features by solving a series of regression problems. We have shown experimentally that
DLR is more robust to the choice of the regularization parameter than ridge-regression.
Also, based on our experiments we have argued that it can be expected that the
performance of DLR would be better than that of PLS [74] or PCR when PLS/PCR
would be combined with regularization. One expects that this might be necessary for
the purposes of capacity control when working in high or even infinite dimensional
Hilbert spaces [55].

The second method we proposed is the adaptation of the “Average Derivative Es-
timation” algorithm to kernel machine based regression. Based on our experiments it
can be expected that this method will be competitive with alternative methods, such as
the KDR method of [24], especially since our method is straightforward to implement.
Further, the corresponding optimization problem has a convex loss function and thus
this method can be expected to be more stable than e.g. KDR. Naturally, there is room
for further research with KDR. It would be especially important to try out the iterative
version of KADE and to work out theoretically sound stopping conditions.
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Kernel-Based Classification
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Chapter 4

Kernel Hyperplane Classifiers

Numerous scientific areas depend on classification and regression methods which may
be linear or non-linear. As we demonstrated earlier in the thesis by using the so-called
kernel idea, linear methods can be readily generalized to nonlinear ones. The key idea
was originally presented in Aizermann’s paper [1] and it was successfully applied in
the context of the ubiquitous Support Vector Machines (SVM) [69]. The roots of SV
methods can be traced back to the need for the determination of the optimal parameters
of a separating hyperplane, which can be formulated both in input space or in kernel
induced feature spaces. However, optimality can vary from method to method and
SVM is just one of several possible approaches.

In this chapter we introduce a new family of hyperplane classifiers. But, in contrast
to Support Vector Machines - where a constrained quadratic optimization is used - some
of the proposed methods lead to the unconstrained minimization of convex functions
while others merely require solving a linear system of equations. In order that the
efficiency of these methods could be checked, classification tests were conducted on
standard databases. In our evaluation, classification results of SVM were of course used
as a general point of reference, which we found were outperformed in many cases.

4.1 Introduction

Without loss of generality we shall assume that, as a realization of multivariate random
variables, there are m-dimensional real attribute vectors in a compact set X over Rm

describing objects in a certain domain, and that we have a finite n×m sample matrix
X = [x1, . . .xn]T containing n random observations. Let us assume as well that we
have an indicator function

L : Rm → L ⊆ R, (4.1)

63
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where

L(xi) = yi (4.2)

gives the label of the sample xi, and let us denote the vector [y1, . . . , yn]T by Y . Here,
a finite set L means a classification task. Should L be an infinite set, the task will be
a regression problem.

In this chapter we will restrict our investigations only to that of binary classification
(L = {−1, +1}), as multiclass problems can be dealt with by applying binary clas-
sifiers [28]. But regression problems will not be entirely excluded here, since binary
classifiers will be derived from regression formulae.

4.2 Hyperplane classifiers

Hyperplane classifiers seem to be weak approximators with respect to the separation
of positive and negative classes. This is due to the fact that in low dimension spaces,
sample sets where linear separation does not work can be easily defined. The kernel idea
is designed to overcome this limitation, therefore the examination of hyperplane-based
methods becomes interesting.

I introduce three methods in the following. In the first case, I propose to extend
hyperplane classifiers with unique loss functions. The second method uses the regression
formalism for classification in a way different from the generally documented methods.
The third approach – also as the most significant result of the Chapter – is the so-called
Minor Component Classifier, which performs classification by treating the input and the
output space in a unified space.

4.2.1 Linear classifiers with various loss-functions

Linear classification attempts to separate the sample points with different labels via a
hyperplane. A hyperplane is a set of point z:

(
zT 1

)
a = 0 z ∈ Rm, a ∈ Rm+1. (4.3)

For a sample z the left-hand side of Eq. (4.3) is a signed expression with absolute
value proportional to the distance from the hyperplane. In addition, the sign of this
expression corresponds to the sign of the half-space the point lies in.

A point xi is well-separated by a hyperplane with parameter a if and only if:

yi

(
xT

i 1
)

a > 0 i ∈ {1, . . . , n}. (4.4)
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Figure 4.1: Examples for loss functions.

Based on these products a target function - whose lower value indicates a better sepa-
ration - can be defined:

τ(a) =
n∑

i=1

g
(
yi

(
xT

i 1
)

a
)
, (4.5)

where g : R → R is a strictly monotonic decreasing function, called a loss function.
Of the many possibilities [18], four candidates are shown in Fig. 4.1. We should note
here that using a signum-function approximating loss function, the measure estimates
the number of poorly separated points when α →∞.

Minimizing τ(a) we get an unconstrained minimization of a strictly convex function,
which is in marked contrast to the quadratic optimization with constraints in SVM.
With a suitably smooth loss function, the gradient vector of τ(a) will be smooth as
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well, hence one can apply quasi-Newton methods or even the Newton iteration method.

After obtaining the optimal parameter of the separating hyperplane the binary clas-
sification of an arbitrary point z can be carried out by:

sign
((

zT 1
)

a
)

. (4.6)

4.2.2 Linear regression in classification

Linear regression attempts to optimally fit a hyperplane onto the indicator function L.
The indicator function has values y1, . . . , yn at the sample points x1, . . . ,xn while the
regression hyperplane has function values f(x1), . . . , f(xn), where

f(z) =
(
zT 1

)
a z ∈ Rm, a ∈ Rm+1. (4.7)

Thus the error of the sample point xi can be expressed by

εi = yi − f(xi) = yi −
(
xT

i 1
)

a. (4.8)

The optimal parameter of the regression hyperplane can be obtained by minimizing the
following sum:

min
a

n∑
i=1

ε2
i = min

a
‖Y −X1a‖2

2, (4.9)

where

X1 =




xT
1 1
...

...
xT

n 1


 . (4.10)

The well-known solution of Eq. (4.9) is given by

a = (XT
1 X1)

+XT
1 Y, (4.11)

where + denotes the Moore-Penrose pseudo-inverse.

Though the regression makes use of the hyperplane in a different sense from that
in the classification problem, the regression-based binary classification of an arbitrary
point z can still be performed in the same way as that for a linear classifier:

sign
((

zT 1
)

a
)

. (4.12)
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4.2.3 Minor Component Classifier

Let us take the sample points X with the corresponding labels Y , and represent

(
xT

1 y1

)T

, . . . ,
(
xT

n yn

)T

(4.13)

as vectors in Rn+1. In this extended space a hyperplane with parameter ā contains
points z where

(
zT L(z) 1

)
ā = 0, z ∈ Rm, ā ∈ Rm+2. (4.14)

The distance of (xi yi) from the hyperplane is

δ(xi, yi) =

(
xT

i yi 1
)

ā

‖a‖2

, (4.15)

so there exists an optimal hyperplane fitting on the extended sample points with least
error:

min
ā

n∑
i=1

δ(xi, yi)
2 = min

ā

āT XT
2 X2ā

āT ā
X2 =




xT
1 y1 1
...

...
...

xT
n yn 1


 . (4.16)

It can be proved that eigenvectors of XT
2 X2 are the stationary points of the above

function with the corresponding eigenvalues as function values. Thus the solution of
the minimization problem can be readily obtained by finding the eigenvector of XT

2 X2

which has the smallest eigenvalue [23].

We should note that the better the fit of a hyperplane onto the points, the lower the
deviation of the sample points projections onto the normal vector of the hyperplane.
Finding the best hyperplane means performing a Minor Component Analysis (MCA) [44]
in the extended space, as MCA searches for directions with a small deviation of the
sample points projections.

The binary classification of a point u in the original space can be performed by
computing the absolute distances in the extended space for both labels {−1, 1} and
probabilities can be assigned to the labels via normalization:

P (L(u) = 1) =
|δ (u,−1)|

|δ (u, 1)|+ |δ (u,−1)| (4.17)

P (L(u) = −1) =
|δ (u, 1)|

|δ (u, 1)|+ |δ (u,−1)| (4.18)
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4.3 Kernel-based non-linearization

The proposed methods, linear classifiers, linear regression and minor component clas-
sifier perform linear separation in the original sample space. Making the separation
non-linear with kernels it must be shown that the methods optimal solutions are in the
linear subspace of the appropriate extended points:

a = X1α α ∈ Rn, (4.19)

and
ā = X2β β ∈ Rn. (4.20)

Regarding a linear classifier the parameter vector a can be decomposed into two per-
pendicular components a1 and a2, where the first component lies in the subspace of
the extended sample points X1:

a = a1 + a2 a1 = X1α, α ∈ Rn, a1⊥a2. (4.21)

The form of the measure τ then becomes

τ(a) =
∑n

i=1 g
(
yi

(
xT

i 1
)

(a1 + a2)
)

=

=
∑n

i=1 g
(
yi

(
xT

i 1
)

a1 + yi

(
xT

i 1
)

a2

)
=

=
∑n

i=1 g
(
yi

(
xT

i 1
)

a1

)
,

(4.22)

because a2 is orthogonal to all the extended sample points
(
xT

i 1
)
.

Because the measure depends only on a1, the minimization in fact can be performed
in the linear subspace of the extended sample points X1. Actually, this result holds true
for the other methods as well.

Utilizing the introduced formulas the solutions of the proposed methods can be
found by optimizing α and β respectively:

min
α

n∑
i=1

g
(
yi

(
xT

i 1
)

XT
1 α

)
, (4.23)

α = (XT
1 X1X1X

T
1 )+XT

1 X1Y, (4.24)

min
β

βT X2X
T
2 X2X

T
2 β

βT X2XT
2 β

. (4.25)

Algorithms using only the dot product can be executed in the kernel feature space by



4.3 Kernel-based non-linearization 69

kernel function evaluations alone. The construction of an appropriate kernel function
is a non-trivial problem, but there are many good suggestions about the sorts of kernel
functions [16; 63; 69] which might be adopted along with some background theory.
Among the functions available, the two most popular kernels are:

Polynomial kernel: k(x,y) =
(
xTy + 1

)d
, d ∈ N (4.26)

Gaussian RBF kernel: k(x,y) = e−
‖x−y‖2

r , r ∈ R+ (4.27)

Employing the kernel-idea to make the proposed methods (4.23), (4.24) and (4.25)
non-linear, we obtain the following three expressions:

min
α

n∑
i=1

g

(
yi

n∑
j=1

αik

((
xi

1

)
,

(
xj

1

)))
, (4.28)

α = (KT K)+KT Y, (4.29)

min
β

βT K̄K̄β

βT K̄β
, (4.30)

where the matrices K and K̄ contain the pairwise dot products of transformed points:

Kij = k

((
xi

1

)
,

(
xj

1

))
, (4.31)

K̄ij = k







xi

yi

1


 ,




xj

yj

1





 . (4.32)

The solution of (4.30) can be obtained by finding the eigenvector corresponding to
the smallest nontrivial eigenvalue of the generalized eigenproblem

K̄K̄β = λK̄β. (4.33)

Note here that if the transformed sample points lie entirely on a hyperplane in the space
F then the normal vector of the hyperplane is not in the subspace of the transformed
sample points. Thus perfect fitting of the hyperplane is never realized in regression
methods nonlinearized with kernels.
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LINEAR
CLASSIFIER

LINEAR
REGRESSION

MCC SVM

BUPA
train 72.29 71.70 73.10 72.40
test 65.98 65.40 62.24 65.60

CHESS
train 100.0 97.42 95.98 100.0
test 98.08 90.73 88.49 98.08

ECHO
train 100.0 92.35 91.57 100.0
test 89.54 89.57 90.32 90.10

HHEART
train 86.64 85.96 85.27 87.10
test 80.08 79.73 80.40 80.40

MONKS
train 100.0 93.35 93.35 100.0
test 87.88 88.81 89.60 89.10

SPIRAL
train 100.0 100.0 100.0 100.0
test 88.48 87.23 90.80 89.20

Table 4.1: The best training and testing results using tenfold cross validations. A set
of kernel functions with different parameters were used during the tests, but only the
best results are summarized here.

4.4 Experimental Results and Evaluation

When evaluating the efficiency of a new algorithm the usual method is to assess its
performance by making use of standard databases. To this end we selected a set of
databases again from the gold standard UCI Repository [9]. Namely, we carried out
tests using the BUPA liver, chess, echo, Hungarian heart, monks and spiral databases.
All sets were normalized so that each feature had a zero mean and unit deviation and
we applied a tenfold cross-validation on all the sets.

Since a recent study [28] compared five different Support Vector algorithms using
the UCI Repository and concluded that the methods have no significant difference in
efficiency, we will employ [13] as the SVM classifier. The numerical results of tenfold
cross-validations are shown in Table 4.1, where the best result is emphasized in bold. It
confirms that regression based classification methods are indeed just as effective as the
original separation algorithms. Moreover, making use of the labels in the regression task
with the Minor Component Classifier the usual classification methods were surpassed
in many cases so MCC can now be considered as a rival classification method.
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4.5 Conclusions

In this chapter, the author introduced a family of hyperplane-based classification meth-
ods. The first method combined hyperplane classifiers with various loss functions, while
the second one applied a regression approach for classification. In the third case, the
author defined the hyperplane-based target function as one building on an eigenvalue-
eigenvector solution. It is to be emphasized that elements of the introduced methods
significantly rely on dimension-composition approaches. Extending the input vectors
with a dimension containing an additional constant - namely 1 - allows the optimisa-
tion of the bias parameter of the hyperplane. If we further add the output dimension
(i.e., those marked y) to the above, we arrive at a new learning algorithm - Minor
Component Classifier - by mapping the hyperplane onto the enlarged sample set. Test
results support the application of this novel family of hyperplane classifiers. The most
promising member of the described method family is the Minor Component Classifier.





Chapter 5

Convex Machines

Convex formulations for classification problems are widely used in the machine learning
community owing to the simplicity of the optimization task. Here we explore this prop-
erty. First, we define a sufficiently broad convex optimization form for the classification
task, which – as special cases – implies numerous popular classifiers such as Logistic
Regression, Support Vector Machines and its Smooth or Least Square counterparts.
The non-linear Gauss-Seidel method with box constraints (BOX-GS) is able to solve
the above optimization problem, i.e. it converges to a single optimum. Although the
BOX-GS method is a gradient-based method and converges relatively fast in practice, if
we have a large number of parameters to be optimized, applying various heuristic refine-
ments is a reasonable strategy. Hence we will also present a number of modifications on
the BOX-GS method which guarantee that the number of nonzero components of the
heuristic solution is less than a preset parameter. Numerical results and comparisons
demonstrate the effectiveness of the proposed methods on publicly available datasets.

5.1 Introduction

In this chapter we concentrate on two key topics in machine learning: classification
and heuristic optimization. Intrinsically the main goal here is to give a new family of
heuristic convex optimization methods for large-scale classification problems.

Nowadays the machine learning community is focusing more and more on the convex
formulation of classification tasks. This is due to two important consequences: i) the
optimization process is not plagued by local minima. ii) even despite the large number
of variables to be optimized numerous approximate optimization strategy are feasible
in practice. By now, it is well-known from the literature that Support Vector Machines
(SVMs), Boosting and its variants such as Logistic Regression Boosting or Adaboost
lead to a similar convex optimization problem over a convex domain. The following
authors have sought to unify different classification methods using the convex formalism:

73
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R. Schapire et al. first discovered the relationship between boosting and SVMs [20]. T.
Evgeniou et al. summarized the theoretical framework for the problem of learning from
examples in the context of Regularization Networks and Support Vector Machines [18].
In [58] the authors examined the equivalence of Boosting and SVMs from the linear
programming point of view. They developed a general mechanism for converting SVM-
like algorithms into boosting-like algorithms and vice versa, which provides a deeper
insight into the relationship between the two. Many authors investigated the properties
of the convex risk minimization approach to machine learning and its consequences for
SVMs [12; 61; 69]. The unification approach we follow in this chapter is similar to
the one described in [75] and is motivated by function approximation using a sparse
combination of basis functions.

5.2 Convex Machines

Now - as in earlier chapters - consider the problem of classifying n points in a compact
set X over Rm, represented by vectors x1, . . . ,xn, according to the membership of
each point xi in the classes {1, . . . , c}, as specified by y1, . . . , yn. A multiclass problem
can be transformed into a set of binary classification tasks – where we usually have
yi in {−1, +1} – using various algorithms like the one-against-all method [72] or the
output coding scheme [33], say. Hence our investigation here can be restricted to the
problem of binary classification without loss of generality.

Now let V be a vector space, which will be viewed as a function space here. Let
S ⊂ V denote a finite set of basis functions

S = {f1(x), . . . , fk(x)}, fi : X → R (5.1)

and let Span(S) stand for the linear subspace spanned by S, that is

Span(S) =

{
fα : X → R | fα(x) =

k∑
i=1

αifi(x), x ∈ X , α ∈ Rk

}
. (5.2)

The classification problem may be defined by the following optimization problem

min
fα(x)∈Span(S)

Ex,yL(fα(x), y), (5.3)

where L is a loss function measuring the quality of the predictor fα(x) and E denotes
the expectation over (x, y). A possible convex restriction of Eq. (5.3) is

min
fα(x)∈Box(S,B)

Ex,yH(yifα(xi)). (5.4)
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Here the loss function L(fα(x), y) is assumed to be of the form H(yifα(xi)), where
H : R → R is a twice continuously differentiable, non-negative, decreasing, convex
function. Of the many possibilities for the function H four candidates have been
plotted in Fig. 4.1 (cf. Chapter 4.). Box(S,B), furthermore, is a box constrained
subset of Span(S), i.e.

B = B1 × · · · × Bn ⊆ Rn (5.5)

is a cartesian product space of non-empty intervals and

Box(S,B) =

{
fα : X → R | fα(x) =

k∑
i=1

αifi(x), x ∈ X , α ∈ B
}

. (5.6)

Due to the fact that the problem of approximating a function from sparse data is ill-
posed [70] we have already assumed two different types of restrictions on the shape of
the predictor function: i) fα(x) is a linear combination of a finite set of basis func-
tions and ii), this linear combination is constrained components by components using
intervals. In addition, inspired by regularization theory [18; 66] we add a regularization
term to the cost function to be optimized:

min
fα(x)∈Box(S,B)

Ex,yH(yifα(xi)) + λ‖α‖2
A, (5.7)

where λ > 0 and A ∈ Rk×k is an arbitrary symmetric positive-definite matrix.

The above convex optimization task implies numerous classification methods such
as Support Vector Machines [68; 69], its Smooth [39] or Least Squares [64] counter-
parts, and Logistic Regression [21], which will be discussed later. We should note here
that in certain cases the hinge loss will be substituted by a smooth, twice continuously
differentiable approximant. If we have a large number of data points in the training set
and/or numerous variables in Eq. (5.7), the optimization procedure requires using ad-
vanced optimization tricks. We give a brief list of such solutions through the example of
SVM’s without aiming at completeness. SVM was originally formulated as a quadratic
programming (QP) problem. Unfortunately, even for a thousand point dataset, one is
faced with a fully dense quadratic problem with a constraint matrix having a million
entries. Unfortunately too, the dual QP problem also contains the kernel matrix, which
has a quadratic size data structure. To reduce the time and space complexities different
techniques were developed by the machine learning community: i) a low rank approx-
imation of the kernel matrix can be used [73]; ii) the optimization procedure may be
performed by various sophisticated optimization methods like SMO [50], Chunking [11],
decompositions [19] and coordinate ascent methods [22]; iii) the QP problem might be
transformed into another quasi-similar forms (e.g. LS-SVM, RSVM, SSVM) for making
the optimization task easier; and iv) the application of various approximate algorithms
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are suitable for speeding up the computations [3; 67].

Here we restrict our investigations to the box-constraint non-linear Gauss-Seidel
method [8], because it is quite suitable for the optimization problem defined in Eq.
(5.7.) First, this method converges to a single optimum. Moreover we make some
extensions so that during the iterations the number of non-zero parameters stays below
a pre-set parameter. To this end we both apply straightforward heuristics and feature
selection algorithms like Sequential Forward Selection, Sequential Forward Floating
Selection and the Plus-l Take Away-r method [53]. We will demonstrate that the
methods proposed in the Chapter are effective and fast using standard datasets of
different sizes [9]. The structure of the remaining part of the Chapter will follow the
same pattern as these described hereunder.

5.3 Methods implied

In this section for demonstration purposes we will show that some ubiquitous kernel-
based classification methods can be reformulated so that they have the same form as
the problem defined in Eq. (7).

5.3.1 Support Vector Machines

Let X be a compact set in the m-dimensional Euclidean space. A function k : X×X →
R is a Mercer kernel, if and only if it is a) continuous, b) symmetric, and c) positive
definite. We mean by ’k : X × X → R is positive definite’ that for every finite set
{x1, . . . ,xr} ⊂ X the r×r kernel matrix K = [k(xi,xj))]

r
i,j=1 is positive semi-definite.

Now let the set of the basis functions be defined by

S = {y1k(x,x1), . . . , ynk(x,xn)}, (5.8)

where k is a Mercer kernel, x ∈ X and (x1, y1), . . . , (xn, yn) form the training database.

The standard linear SVM problem [16; 69] without the bias term is given by the
following for some C > 0,

minw CeT ξ + 1
2
wTw

s.t. Y Xw + ξ ≥ e

ξ ≥ 0

, (5.9)

where Y is a diagonal matrix with y1, . . . , yn lying along the diagonal, X = (x1, . . . ,xn)T

and e is a column vector of ones in the appropriate dimension. We usually solve this
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by using the primal Lagrangian defined as

maxw,α CeT ξ + 1
2
wTw −αT (Y Xw + ξ − e)

s.t. α, ξ ≥ 0
, (5.10)

from which taking the derivatives we have the following conditions for the single opti-
mum

w = XT Y α 0 ≤ α ≤ Ce. (5.11)

With these conditions from Eq. (5.10) the following Langrangian dual problem can be
turned out:

minα CeT ξ + 1
2
αT Y XXT Y α

s.t. Y XXT Y α + ξ ≥ e

α ≥ 0

−α ≥ Ce

ξ ≥ 0

, (5.12)

where XXT may be substituted by a K = [k(xi,xj))]
n
i,j=1 kernel matrix. We should

note here that strictly positive definite kernels do not require bias term [52]. At a
solution of problem (5.12) ξ is given by (e− Y KY α)+, where

(z+)i = max{0, zi} i = 1, . . . , n. (5.13)

Exploiting this connection in Eq. (5.12) we get

minα

∑n
i=1

(
1− yi

∑n
j=1 αjyjk(xi,xj)

)
+

+ 1
2C

αT Y KY α

s.t. 0 ≤ α ≤ Ce
, (5.14)

which is a already problem in the form of Eq. (5.7) with the following definitions

H(x) = (1− x)+ ,

λ = 1
2C

,

A = Y KY,

B = [0, C]n.

(5.15)

Since the hinge loss H(x) (Fig. 4.1.D) is not two times continuously differentiable we
may replace it using a very accurate smooth approximation of (x)+ defined by

p(x) = x +
1

β
log(1 + e−βx), β À 0. (5.16)

Actually, it can be shown that as the smoothing parameter β tends to infinity the unique
solution of the smoothed problem approaches the unique solution of the original one.
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5.3.2 Smooth Support Vector Machines

Y. Lee and O. Mangasarian defined the Smooth Support Vector Machine (SSVM) both
in a linear and a kernel-based non-linear form [39]. We show that the latter can be
reformulated as an optimization task in form of Eq. (5.7). The SSVM is given by the
following unconstraint minimization problem for some C > 0,

min
α∈Rn, b∈R

C

2
‖p (e− Y (KY α− be)) ‖2

2 +
1

2

(
αT α + b2

)
, (5.17)

where b denotes the bias term, K = [k(xi,xj))]
r
i,j=1 is the kernel matrix and the domain

of function p of Eq. (5.16) is extended to vectors component-wise. Now after some
algebraic re-arrangement and denoting the identity matrix by I and b with αn+1 we get
the following minimization problem:

min
α∈Rn+1

n∑
i=1

C

2
p

(
1− yi

(
n∑

j=1

yjαjk (xi,xj)− αn+1

))2

+
1

2
αT Iα. (5.18)

It is obvious that Eq. (5.18) is of form Eq. (5.7), but in contrast to the SVM case the
set of basis function S has an additional element:

S = {y1k(x,x1), . . . , ynk(x,xn),−1}, (5.19)

and the appropriate choice for the definitions are

H(x) = C
2
p (1− x)2 ,

λ = 1
2
,

A = I,

B = (−∞,∞)n+1 .

(5.20)

5.3.3 Least Squares Support Vector Machines

J. A. K. Suykens and J. Vandewalle defined a variant of SVM methods, the Least
Squares Support Vector Machines (LS-SVM), which simplifies the original SVM opti-
mization problem to a set of linear equations [64]. Employing our notations the form
of the linear system of equations of LS-SVM can be specified by

[
Y KY + 1

C
I y

yT 0

][
α

b

]
=

[
e

0

]
, (5.21)

where α ∈ Rn, b ∈ R and y = (y1, . . . , yn)T . Now let us denote the right hand side
matrix by Z and b with αn+1 again. Using this notations Eq. (5.21) can be solved by
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an equivalent least squares optimization problem:

min
α∈Rn+1

‖Zα− e‖2
2 = eTe + 2eT Zα + αT ZT Zα. (5.22)

Since eTe is a constant and αT ZT Zα is an appropriate norm-square, we only need to
bring 2eT Zα into the form of Ex,yH(yifα(xi)). To this end first we define H(x) by
slightly modifying the hinge loss:

H(x) = (γ − x)+, (5.23)

where γ is a sufficiently large constant, which we define later. Naturally p(x)+γ−1 is
an appropriate smooth approximation for H(x). Based on the above preparations we
may give the LS-SVM method in the form of Eq. (5.7),

min
α∈Rn+1

H
(
yi

(∑n+1
j=1 αjfj (xi)

))
+ αT ZT Zα

s.t. −δe ≤ α ≤ δe.
, (5.24)

where δ is a parameter chosen so that the optimal solution Z−1e surely falls into
[−δe, δe] and the base functions are arbitrary continuous functions satisfying the fol-
lowing conditions for the training data

fj(xi) =

{
yjk(xi,xj) if i 6= j

yjk(xi,xj) +
(
1 + 1

Cyi

)
otherwise

j = 1, . . . , n.

fn+1(xi) = 1

(5.25)

The definitions in Eq. (5.7) in the case of LS-SVM will be

λ = 1,

A = ZT Z,

B = [−δe, δe].

(5.26)

We have yet another duty, namely we need to define γ, which is an arbitrary positive
constant larger than

max
i,j,α

(
yi

(
n+1∑
j=1

αjfj (xi)

))
i, j ∈ {1, . . . , n}, α ∈ [−δe, δe]. (5.27)

The above selection for γ ensures that the modified hinge loss H(x) will be evaluated
only for values less than γ.
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5.3.4 Kernel Logistic Regression

Now we will show that Logistic Regression and its non-linear kernel-based version,
Kernel Logistic Regression – see [21; 56] – fall into the group covered by Eq. (5.7). Like
that defined by [21] the above methods lead to the following unconstrained optimization
task:

min
α, b

C

n∑
i=1

H

(
yib−

n∑
j=1

αjyiyjk(xi,xj)

)
+ αT Y KY α, (5.28)

where H(x) = log(1 + ex). Using the notation αn+1 = b and dividing the objective
function by C we have that

min
α

n∑
i=1

g

(
−yi

(
n+1∑
j=1

αjfj(xi)

))
+

1

C
αT Y KY α, (5.29)

which is undoubtedly in the form of Eq. (5.7) taking into account that

λ = 1,

A = Y KY,

B = (−∞,∞)n+1.

(5.30)

5.4 The Non-linear Gauss-Seidel Method with box

constraint

In the previous section we demonstrated that problem (5.7) implies a set of well-known
classification methods. As we mentioned earlier, numerous optimization techniques can
be used for solving Eq. (5.7) or its variants. Numerous authors in different contexts
suggested using different coordinate ascent based iterative learning like the Non-linear
Gauss-Seidel or the Gauss-Southwell method for similar optimization tasks. We also
propose to apply the Non-linear Gauss-Seidel method here with an additional box con-
straint [8], which is suitable for solving Eq. (5.7). First we discuss the iteration itself,
then in the next section we include some suggested heuristic improvements of the
method.

Definition 5.1 (projection mapping)

[ ]p : Rk → A [x]p = z ⇔ ‖x− z‖2 = min
y∈A

‖x− y‖2 (5.31)

Definition 5.2 (box constrained Gauss-Seidel iteration)

xt+1
i =

[
xt

i − γ∇if(zt
i)

]p

i
(5.32)
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where

γ > 0, zt
i = (xt+1

1 , . . . , xt+1
i−1, x

t
i, . . . , x

t
k), xt+1 = zt

k+1. (5.33)

During the iteration process each component of the actual solution xt is successively
upgraded by the gradient rule. If the solution falls outside the domain it will be replaced
by the nearest point of the set with the aid of the projection mapping. We know that
the box constrained GS iteration method is convergent for every function f : A → R
over a non-empty, convex and closed set A, where f is twice continuously differentiable
and lower bounded. Moreover, the gradient should be a Lipschitz function and there
must exist a δ > 0 such that

0 < δ ≤ ∇2
iif(x). (5.34)

The limit point of the iteration is the extremum of the function over A [8]. We know
also from Bertsekas & Tsitsiklis’s book [8] that the Lipschitz condition concerning the
gradient can be ignored if every level set of the function is bounded, which is the case
for problem (5.7).

5.5 Sparse Convex Machines

Sparse solutions (i.e. sparse input-output models) for classification problems are ben-
eficial for two reasons. First, we may avoid the problem of overfitting and second,
both the optimization procedure and the evaluation of the classifier is faster. Therefore
forcing as many αi parameters to be zero as possible in the predictor function

fα =
k∑

i=1

αifi(x) (5.35)

is a reasonable strategy. For the sake of controlling the sparsity the number of basis
functions with zero-coefficients will be restricted by making the following assumption

k∑
i=1

|sign(αi)| ≤ q, (5.36)

where q is a preset parameter. Unluckily, such a condition makes the optimization
problem of Eq. (5.7) combinatorial, so the suggested non-linear Gauss-Seidel technique
in its original form cannot be applied. Our aim is to select from the available basis
functions a subset of order q at most with minimal function value. This task is NP
hard [15] so the only effective way here is to employ heuristics.
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Algorithm 2 MGRAMM(q)

input: q, f1, . . . , fk // no. of subjects

method:

Y = {1, . . . , k}; I = ∅;
for i = 1 . . . q

t = argmaxj∈Y−I ‖fj −
i−1∑

l=1

〈fj, f
∗
l 〉

〈f ∗l , f ∗l 〉
f ∗l ‖2

I = I ∪ {t};

f ∗i = ft −
i−1∑

l=1

〈ft, f
∗
l 〉

〈f ∗l , f ∗l 〉
f ∗l ;

return I;

5.5.1 Basic Heuristics

In this section we deal with algorithms that do not use the Convex Machine (CM)’s
objective function defined in Eq. (5.7) during the optimal basis function subset selection
of order q.

RANDOM The simplest strategy is the random selection approach when we randomly
select q basis functions from among the k basis functions. This approach does
not have an objective function that can be minimized so we will choose instead
the subset with the best performance after several executions.

MGRAMM Convex Machines approximates the optimal separator surface using a linear
combination of the basis functions. Hence the approximation can be performed
on an orthogonal basis of the function space, as in the case of the result of
the Gramm-Schmidt orthogonalization algorithm. Despite this, the dimension of
the basis is the rank of the function set which can exceed the desired number
q. Moreover, the algorithm generates an orthogonal function system with linear
combinations of basis functions instead of selecting the individual functions.

To solve the above we will define a greedy iterative selection strategy (cf. Algo-
rithm 2) based on a modified version of the Gramm-Schmidt orthogonalization
algorithm. Among the available basis functions we choose the one with a max-
imal residual norm after the Gramm-Schmidt process at each step. The result
of this greedy method is not the orthogonal function system itself but the basis
functions used in the linear combinations.

Assume that the basis functions are elements of L2 so the dot product is the
integral of the product function. When analytical computations of the integrals
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Algorithm 3 CORR(q)

input: q, f1, . . . , fk // no. of subjects

method:

Y = {1, . . . , k}; I = ∅;
for i = 1. . . q

t = argminj∈Y−I

i−1∑

l=1

〈fj, f
∗
l 〉2

〈fj, fj〉
I = I ∪ {t};

f ∗i =
ft

〈ft, ft〉0.5
;

return I;

are not possible we utilize the following approximation in the algorithm using the
sample points

〈f, g〉 =
n∑

i=1

f(xi)g(xi) f, g : X → R. (5.37)

CORR The MGRAMMmethod tries to choose an orthogonal basis of the functions with
the help of the Gramm-Schmidt process. The choice might be good when the
dot product of functions is available. Employing the approximation in Eq. (5.37)
the result of the algorithm will be also just an approximation of the desired basis.

Such an estimation can be carried out in different ways. The orthogonality of
the elements in the basis can be also employed, since the mutual correlation
coefficients must be zero. Our aim is to select functions such that the squared
sum of the element in the correlation matrix should be minimal. Similar to
MGRAMM this method (cf. Algorithm 3) will be a greedy iterative process and
also will exploit the fact that the mutual correlation coefficient for normalized
functions takes the form of Eq. (5.37).

5.5.2 Complex Heuristics

Measure-based subset selection is an active area of other fields in artificial intelligence
like Feature Selection [53], say. In this context one should select r features from the
available m to maximize the classification performance of a machine learning algorithm.
The elaborated techniques can be employed for our subset selection problem if the
required measure is replaced by the objective function value of the CM task. In the
following let CM(I) denote the optimal value of the objective function in CM when
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Algorithm 4 SFS(q)

input: q, f1, . . . , fk // no. of subjects

method:

Y = {1, . . . , k}; I = ∅;
for i = 1. . . q

t = argminj∈Y−I CM (I ∪ {j})
I = I ∪ {t};

return I;

the basis function set is restricted in the following way

S = {fi1(x), . . . , fil(x)} i1, . . . , il ∈ I. (5.38)

SFS The Sequential Forward Selection method is a greedy approach for the measure-
based subset selection problem. Starting with the empty index set it extends the
indices with the locally optimal element without backtracking (cf. Algorithm 4).

PTA The SFS method is a sequential algorithm, hence previous steps cannot be mod-
ified when detecting their latter impact on the result. A solution to the problem
is the Plus l Take Away r approach. It periodically extends the actual index set
by l elements and afterwards removes r so that the measure is locally optimal
after each step. By doing this the effects of previous selections can be eliminated
during the execution of the subroutine (cf. Algorithm 5).

SFFS When running a PTA routine r removing steps always follow l extending ones.
Hence it is possible to execute a removing step when the evolving set has a worse
measure value than the previous one of the same order. Conversely, an extending
step can be performed when we get a better solution at the that particular level
by removing a function. These problems are absent in the Sequential Forward
Floating Selection algorithm. It sequentially removes elements after one extending
step while the measure we obtain is better than the previous ones of the same
order (cf. Algorithm 6).

5.6 Results

We now demonstrate the effectiveness of the Convex Machine approach by comparing
its results with other methods.
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Algorithm 5 PTA(q, l, r)

input: q, f1, . . . , fk // no. of subjects

method:

Y = {1, . . . , k};
if (l > r) then i = 0; I = ∅; goto Step1;
else i = k; I = Y ; goto Step2;

Step1:

repeat l times
t = argminj∈Y−I CM (I ∪ {j});
I = I ∪ {t}; i = i + 1;
if (i == q) goto Step3;

Step2:

repeat r times
t = argminj∈I CM (I − {j})
I = I − {t}; i = i - 1;
if (i == q) goto Step3;

goto Step1;
Step3:

return I;

Algorithm 6 SFFS(q)

input: q, f1, . . . , fk // no. of subjects

method:

Y = {1, . . . , k};
Y0 = ∅; i = 0;

Step1:

t = argminj∈Y−Yi
CM (Yi ∪ {j});

Yi+1 = Yi ∪ {t}; i = i + 1;
if (i == q) goto Step3;

Step2:

t = argminj∈Yi
CM (Yi − {j})

if CM (Yi − {t}) < CM (Yi−1) then
Yi−1 = Yi − {t}; i = i - 1;
goto Step2;

else
goto Step1;

Step3:

return Yq;
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ANN SVM CM
balance 89.03 93.55 99.79

86.35 90.63 95.41
bupa 72.01 81.73 80.69

68.07 74.39 71.92
glass 84.24 99.79 100.0

69.87 84.70 86.23
iono 93.35 99.40 99.94

86.17 91.09 92.41
monks 90.64 97.50 99.05

87.28 95.82 96.51
pima 78.68 82.49 80.55

76.09 75.58 74.82
wdbc 98.71 99.47 100.0

97.61 97.62 96.93
wpbc 85.71 98.47 99.04

76.41 77.36 79.63

Table 5.1: Ten-fold cross-validation training and testing results on some UCI datasets
using three different methods. ANN is a feed-forward neural network with one hidden
layer where the number of hidden units was set at three times the class number. SVM
used the cosine polynomial kernel defined in Eq. (5.39) with q = 3 and σ = 1 for
nonlinearity. With the help of Eq. (5.14) the CM method applied the same basis
functions.

5.6.1 Classification Tests with CM

In order to evaluate how well each algorithm classifies an unknown dataset, we per-
formed a tenfold cross-validation on publicly available datasets from the UCI repository
[9]. The performance of the CM method was compared with Artificial Neural Networks
(ANN) and Support Vector Machines (SVM).

We applied a feed-forward neural network (MLP) with one hidden layer, where the
number of hidden neurons was set at three times the class number. The backprop-
agation learning rule was applied for training. MLP was executed five times on each
dataset and then we chose the parameter values which gave the best performance on
training sample.

For an impartial comparison we employed our 1-norm SVM implementation where
the bias term was absent [52]. Multiclass cases were handled by the one-against-all
approach. Additionally, the cosine polynomial kernel we applied made the SVM method
non-linear

κ (x,y) =

(
xTy

‖x‖ ‖y‖ + σ

)q

, q ∈ N, σ ∈ R+ (5.39)

with parameters q = 3 and σ = 1.

The basis functions for the CM problem were defined by the above kernel function
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Figure 5.1: Performances of the proposed heuristics controlling CM sparsity on the Iono
database expressed in percentages of the RANDOM method result. The CM measures
were used as performance indicators regardless of how the methods works.

using the sample points of a training set, as shown in Eq. (5.14). Thus

fj (z) = yjκ (z,xj) . j = 1, . . . , n (5.40)

The coefficients of the basis functions were not restricted in our tests, i.e. we used the
domain A = (−∞,∞)n. In the regularization term of Eq. (5.7) we set the identity
matrix equal to A with λ = 1.

It turned out that, on most of the datasets tested, the tenfold testing correctness
of the CM problem was the highest for these methods. We summarize all these results
in Table 5.1. It confirms that the CM classification method is indeed just as effective
as the ubiquitous machine learning algorithms. Moreover, their performances were
surpassed in many cases. It can be readily seen that the problem of overfitting the data
was present more often in the methods with global optima. It might be explained with
the locally optimal solution of the ANN method, which can be regarded as a kind of
regularization. Similar results are expected when using sparse heuristics to solve a CM
problem.
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Figure 5.2: The consistency of the measure in the CM method and its abstraction
ability with the aid of the MGRAMM method on the Iono database. The decreasing
CM measure means a better testing correctness.

5.6.2 Examining the Effect of the Sparse Representation

We also examined the performance of the proposed heuristics controlling CM spar-
sity. We compared the methods on the Iono database by examining the value of the
CM objective function, regardless of how the methods worked. The results of the six
heuristics are shown in Fig. 5.1. We used the performance of the RANDOM method
as a reference so the results of other algorithms are expressed in percentages. The
RANDOM method chose its best from 5 executions and the PTA was performed with
settings l = 3 and r = 1.

As the reader will notice, the Feature Selection (FS)-based techniques performed
better than the general purpose selection algorithms. The SFFS method achieved
the best performance, surpassing both the SFS and PTA techniques. In the other
group the MGRAMM and CORR approaches achieved similar results, and both of them
outperformed the RANDOM method here. These latter algorithms tend to the FS-
based methods and have faster computational speeds.

During the subset selection we optimize some measures while the abstraction ability
is the most important in the machine learning sense. The consistency of the measure
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RANDOM
MGRAMM
CORR

10% 20% 30% 100%

balance
95.10
95.25
95.41

95.25
95.40
95.10

95.40
95.25
95.25

95.41

bupa
70.49
69.14
69.12

71.35
70.53
69.12

69.14
71.61
69.42

71.92

glass
84.75
85.16
85.18

89.66
86.62
85.16

87.00
85.91
86.66

86.23

iono
89.16
91.23
91.58

93.19
92.04
91.32

92.68
90.54
91.85

92.41

monks
93.18
92.94
92.65

93.70
91.66
94.40

94.76
90.89
95.11

96.51

pima
78.51
77.89
77.62

77.24
76.43
76.22

75.97
77.87
76.60

74.82

wdbc
97.44
97.25
97.10

97.27
96.93
96.93

97.44
96.09
96.93

96.93

wpbc
78.27
76.37
74.05

78.29
75.14
75.93

77.29
73.20
79.70

79.63

Table 5.2: Ten-fold cross-validation testing results of the Convex Machines method
using the heuristics RANDOM, MGRAMM and CORR. The sparsity was controlled
by maximizing the number of available basis functions to 10%, 20% and 30% of the
complete sets, respectively.

in the CM method and its abstraction ability can be seen in Fig. 5.2 with the aid of the
MGRAMM method on the previous database. As can readily be seen, the decreasing
CM measure value means a better abstraction ability, i.e. testing correctness. Thus
the measure of the CM approach might indeed be employed as an objective function
of machine learning algorithms.

5.6.3 Classification experiments using Heuristics

The performance of heuristics with faster computational speed were examined with the
help of ten-fold cross-validation. We summarize our results in Tables 5.2 and 5.3. The
sparsity of solutions were maximized using 10%, 20% and 30% of the available func-
tions. The RANDOM and PTA methods both had the same parameters as those above.
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SFS
PTA
SFFS

10% 20% 30% 100%

balance
94.66
94.75
95.41

94.77
95.19
94.97

94.91
94.92
95.08

95.41

bupa
69.46
69.20
70.37

69.22
70.66
71.20

68.96
71.41
69.88

71.92

glass
84.36
85.10
85.18

88.62
86.56
85.47

86.63
85.74
86.91

86.23

iono
89.24
91.51
92.13

91.81
92.25
93.24

90.71
92.71
92.48

92.41

monks
93.07
92.80
92.65

93.55
91.85
94.90

94.64
90.79
95.49

96.51

pima
77.86
78.42
77.74

76.43
77.14
76.49

75.97
76.55
78.03

74.82

wdbc
97.44
97.35
97.18

97.22
96.96
97.29

97.38
96.16
97.43

96.93

wpbc
76.26
78.06
75.82

75.92
78.19
76.39

74.75
77.03
79.98

79.63

Table 5.3: Ten-fold cross-validation testing results of the Convex Machines method
using the heuristics SFS, PTA and SFFS. The sparsity was controlled by maximizing
the number of available basis functions to 10%, 20% and 30% of the complete sets,
respectively.

As observed, all of the algorithms selected subsets with adequate testing correctness.
This kind of capacity reduction in the CM learning method brings about a sort of regu-
larization which is reflected in the results: results with a reduced basis outperform the
original ones in many cases. The various algorithms here have their best performance
on different tasks. In general, different requirements in the learning phase will lead the
user to select one of the available heuristics.

5.7 Conclusions

This chapter gave an overview of the CM methodology, which is a reformulation of
certain machine learning algorithms including several well-known nonlinear classification
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methods. The CM problem can be solved by the convergent nonlinear Gauss-Seidel
iteration process, which is sufficiently fast for this task. The numerical results on its
abstraction ability show that the CM method can be considered as a rival classification
method to both ANN and SVM. Moreover, the sparsity of the CM problem can be
effectively controlled by the proposed heuristics. The FS-based ones performed better
than the general purpose selection techniques but they required longer computational
times. The faster algorithms in the other group just approximate the performance of
FS techniques but they could be employed in larger problems. Future work includes
a new heuristic based on a CM objective function which can be utilized in very large
classification problems. We also plan to use chunking algorithms like those described
in [11] for problems which do not fit in the memory.





Chapter 6

Conclusions

In this brief chapter, I summarize the consequences of the presented thesis. The pri-
mary inductor of scientific improvements is the appearance of technical innovations.
While in the sixties, artificial intelligence-based methods were mainly limited to linear
and quadratic models, current computational capacities allow a much more intensive
improvement in model building. A further aspect, which contributed to the advances
of the field is that the number and size of learning databases increased considerably.

The thesis is built around the kernel idea, which is suitable for the transformation of
linear models into non-linear ones, while only minimally increasing the complexity of the
model. The kernel idea is able to transform algorithms that only use the dot product of a
set of sample vectors as their input. In this case, we can acquire alternative models with
the non-linear re-definition of the dot product. Thus, the main objective is to re-define
the basic tasks of machine learning, such as feature extraction, classification, regression
in the form of dot products. The results included in my dissertation contribute to the
described idea with a number of novel algorithms.

In the first part of the thesis, I defined feature extraction techniques that effectively
increase the precision of classification and regression methods. We succeeded in justi-
fying the grounds for these techniques by making them work on standard data bases of
machine learning and on the task of face recognition. In summary, we can state that
the four elaborated methods pave the way to the effective reduction of high dimensional
feature spaces.

In the second part, we focused on the topic of classification. We first introduced a
family of hyperplane-based classification methods. These outline a group of methods
that gives a deeper insight into the nature of how variably the hyperplane can be
used for classification. The leading motif of the newly defined method group is the
underlying geometrical approach. In the same part, we define a general classification
scheme leading to the optimisation of convex functions, which comprises a number of
techniques developed over the past few years. The unified approach that determined
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our way of thinking in this case supposes a traditional numeric mathematical thinking.
The methods introduced in part two performed well on both real and artificial data.
With this, we managed to emphasize usability beyond the constructional results.



Appendix A

Summary

A.1 Summary in English

Introduction

Model building is probably the most significant component of scientific thinking baring
abstract similarities in all branches of science. We build models and examine how
they function, we apply modifications to them as long as we reach our desired goal.
Artificial intelligence is a special branch of science, which provides an endless horizon
to the lovers of computational model building.

Machine learning forms a branch of artificial intelligence [59]. It comprises a set
of algorithms that enable computers to learn. The concept of learning usually builds
on two different approaches: inductive and deductive learning. My thesis follows the
inductive learning approach, which retrieves rules or descriptive patterns from massive
datasets. Presently, the main focus of machine learning is the complex task of auto-
matic information extraction. Further important application possibilities lie in natural
language processing, syntactic pattern recognition, the improvement of search engines,
medical diagnosis, bio-informatics, speech recognition, object recognition, and enhanc-
ing computer games with humanlike intelligence - only to mention a few fields. Certain
machine learning methods attempt to eliminate human resource from the process of
data analysis, while others try to make human-machine interaction more human.

Considering the current level of technological advances, machine learning has be-
come the most researched and most intensively developing field of artificial intelligence.
The present thesis focuses on the examination and elaboration of the most novel ap-
proach in machine learning, namely that of kernel methods.

Kernel methods (KM) are a family of pattern recognition algorithms [61], whose
most significant member is the Support Vector Machine (SVM) [69]. The general
task of pattern recognition is to identify and examine representative correlations (e.g.,
clusters, classification decisions, etc.) on general data (e.g., vectors, documents, se-
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quences, pictures, etc.). The KM approach was named after kernel functions, which
work in a derived feature space where the real coordinates of patterns never have to be
calculated. These methods only rely on the dot product of paired sample points, which
are calculated implicitly by applying the kernel functions. Apart from SVM, there are
a number of other algorithms belonging to the family of KM: e.g., various regression
methods, Fisher’s linear discriminant analysis (LDA) [25], principal components analy-
sis (PCA) [29], canonical correlation analysis (CCA) [2], ridge regression [49], spectral
clustering [48], and many others. Generally speaking, the majority of kernel methods
lead to effectively soluble problems, convex optimisation or eigenproblems.

Results

The theses of the present dissertation can be differentiated in two ways and can be
separated into two different groups. In one reading, the results acquired by the author
fall into the topic of kernel-based feature extraction and classification methods within
the field of machine learning. In an other reading, we can learn about algorithmic
constructions and practical applications. Hereunder, following the structure of the
dissertation, the results are introduced according to the first approach. It is important
to note that the list of results below enumerate only those parts of the novelties to
which the author has contributed in major part.

The author’s kernel-based feature extraction methods form the first group of results.
These results are described in detail in Chapter 2 and 3 of the dissertation.

I/1. The author has defined the direct version of the MMDA algorithm [31; 37].
This method employs a feature extraction technique that increases the efficiency
of classification methods. The author managed to prove the feasibility of the
defined method by applying it on several examples of the UCI machine learning
database [9].

I/2. The MMDA algorithm is apt by nature to reduce high dimensional feature spaces
in order to increase classification efficiency. The author has developed a modified
version of this algorithm for face recognition. With the help of the FERET gold
standard face recognition database [17], he managed to prove the usability of the
introduced method. He also managed to surpass the state-of-the-art results in
the field [37].

I/3. Beyond classification, regression problems may also form the focus of feature
extraction. The author has also developed a version of the MMDA algorithm for
solving regression tasks, with a focus on the retrieval of correlation-free features.
The name of the method is Kernel Decorrelated Learning Regression (KDLR)
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[65]. Based on tests performed over standard regression problems we can state
that the approach leads to more efficient regression in practice.

I/4. The author proposed the combination of the statistics-based average derivative
estimation method on the one hand, and kernel functions on the other hand. The
aim of this novel method called Kernel Average Derivative Estimation (KADE) is
the identification of sub-spaces that are relevant from a regression’s point of view
[65]. By testing on artificial data and comparing relating algorithms the author
proved that the identified sub-spaces enable more effective regression in a good
number of cases.

Novel kernel-based classification algorithms form the second group of results. These
results are detailed in Chapter 4 and 5.

II/1. The author defined a family of hyperplane-based classification methods [34]. He
proposed three modifications, each following traditional geometrical concepts: i)
he used various loss functions in hyperplane-based classification; ii) he applied
linear regression in a unique way to improve classification; iii) he embedded the
output space into the input space and he developed the Minor Component Clas-
sifier (MCC) method, which defines a classification hyperplane with the help
of an eigenvector pertaining to the smallest eigenvalue of a sample point ma-
trix. The author formed the testing environment of the methods and performed
demonstrational tests. Results prove that the methods develop by the author are
comparable to results performed by SVM [61].

II/2. The author constructed a classification scheme called Convex Machine Technique,
which applies a rare combination basis functions. The method contains a number
of machine learning techniques, such as: Support Vector Machine (SVM) [61],
Smooth Support Vector Machine (SSVM) [39], Least Square Support Vector
Machine (LSVM) [64], Kernel Logistic Regression (KLR) [21], just to mention a
few. Inspired by basic numeric mathematical methods, the author also developed
three base function selection techniques (RANDOM, MGRAMM, CORR) [35],
which he tested on certain elements of the UCI database [9].

II/3. He further developed three complex base function selection techniques (SFS,
SFFS, PTA) in order to improve the efficiency of classification on the one hand,
and to decrease the size complexity of the classification model on the other
hand. The defined methods build on the analogy of state-of-the-art feature space
selection techniques. Base on test results, it can be declared that these methods
support effective classification [65].

Finally, Table A.1 summarizes which publication covers which method of the thesis.
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Thesis Topics [31] [34] [35] [36] [37] [65] Chapter Type

MMDA • 2 Feature Extraction
MMDA FACE version • • 2 Feature Extraction

KDLR • • 3 Feature Extraction
KADE • 3 Feature Extraction

Hyperplane Classifiers • 4 Classification
Convex Networks • • 5 Classification

Basic Basis Selection Methods • 5 Basis Selection
Complex Basis Selection Methods • 5 Basis Selection

Table A.1: The relation between the thesis topics and the corresponding publications.

A.2 Summary in Hungarian

Bevezetés

A modellalkotás a tudomány talán legfontosabb komponense, amely absztrakt módon
minden tudományágban azonos. Modelleket alkotunk és megvizsgáljuk azok működését,
módosításokat végzünk rajta mindaddig, amíg el nem érjük kitűzött célunkat. A
mesterséges intelligencia egy különös tudományág, amely rendkívül jó táptalajt ad a
számítógépes modellalkotás szerelmeseinek.

A gépi tanulás a mesterséges intelligencia tudományterület részét képezi [59]. Olyan
algoritmusok konstrukcióját foglalja magában, amelyek a szamítógépet "tanulási" képes-
ségekkel ruházzák fel. A tanulásnak rendszerint két különböző megközelítése van: in-
duktív és deduktív. A tézis az induktív irányzatot követi, amely rendszerint szabályokat
vagy deszkriptív mintákat nyer ki masszív adathalmazokból (a tézisben az általánosítást
a statisztikai megközelítés módszertanával végezzük). A gépi tanulás fókuszában je-
len pillanatban leginkább az automatikus információ kinyerés összetett feladata áll.
Ezen kívül fontos alkalmazásokat jelent - a teljesség igénye nélkül - a természetes
nyelvfeldolgozás, a szintaktikus mintafelismerés, kereső motorok javítása, orvosi diag-
nosztika, bioinformatika, beszédfelismerés, tárgyak azonosítása és például számítógépes
játékok intelligenciával történő felruházása. Bizonyos gépi tanulási módszerek az em-
bert próbálják kiiktatni az adatanalízis folyamatából, míg más eljárások éppen az ember
gép interakciót próbálják emberibbé tenni.

A gépi tanulás, a jelen kor technológiai szintje mellett a mesterséges intelligencia
leginkább kutatott és legrelevánsabban fejlődő területévé vált. A dolgozat a gépi ta-
nulás legújszerűbb módszertanához a kernel módszerek világához kapcsolódó eljárások
konstrukciójával és vizsgálatával foglalkozik.

A kernel módszerek (KM) a mintafelismerés algoritmusainak egy olyan családja [61],
amelynek legjelentősebb tagja a Support Vector Machine (SVM) [69]. A mintafelis-
merés általános feladata nem más, mint reprezentatív összefüggések keresése és tanul-
mányozása (például klaszterek, korrelációs összefüggések, klasszifikációs döntések vizs-
gálata) általános adatokon (vektorok, dokumentumok, szekvenciák, képek, stb.)
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A KM megközelítés a nevét a kernel függvényekről kapta, amelyek egy olyan szár-
maztatott tulajdonság térben dolgoznak, ahol a minták tényleges koordinátáit soha nem
kell kiszámolni. A módszerek csak a mintapontok páronként vett skalárszorzatára tá-
maszkodnak, amelyeket implicit módon a kernel függvények alkalmazásával számítanak
ki.

A kernel modszerek csaladjába beletartozik az SVM-en kívül számos más algoritmus:
különböző regressziós eljárások, a Fisher-féle lineáris diszkrimináns analízis (LDA) [25],
a főkomponens analízis (PCA) [29], a kanonikus korreláció analízis (CCA) [2], a ’ridge’
regresszió [49], a spektrális klaszterezés [48], és még sok más eljárás. Általánosságban
elmondható, hogy a kernel módszerek többsége hatékonyan megoldható feladatokra,
konvex optimalizációra vagy sajátérték-sajátvektor problémára vezetnek.

Eredmények

A disszertáció tézisei lényegében két különböző módon két-két csoportra oszthatók. Az
egyik osztályozás szerint a szerző eredményei a gépi tanulás témakörének kernel-alapú
tulajdonságkinyerő és klasszifikációs módszereinek tárgykörébe esik. A másik felosztás
szerint pedig algoritmikus konstrukciókról és gyakorlati alkalmazásokról beszélhetünk.
A következőkben követve a disszertáció felépítését az első felosztás szerint vesszük
számba az elért eredményeket. Fontosnak tartjuk megjegyezni, hogy az alább rész-
letezett eredménylista a kapcsolódó cikkek nóvumainak csak azon részét katalogizálja,
ahol a disszertáció szerzőjének hozzajárulása volt domináns.

Az eredmények első csoportját a szerző Kernel alapú tulajdonságkinyerő módszerei
képezik. Ezen eredményeket a 2-es és 3-as fejezetek írják le a tézisben.

I/1. A szerző kidolgozta az MMDA algoritmus direkt változatát [31; 37]. A módszer
egy olyan tulajdonságkinyerő eljárás, amely megnövelheti a klasszifikációs mód-
szerek hatékonyságát. Az UCI gépi tanulási adatbázis számos példáján sikerült
bizonyítani az eljárás használatának létjogosultságát [9].

I/2. Az MMDA algoritmus a motivációjából következően alkalmas nagydimenziós tula-
jdonságterek redukálására a nagyobb klasszifikációs hatékonyság növelése érdeké-
ben. A szerző megkonstruálta a módszer arcfelismerésre kidolgozott módosított
változatát. A FERET ’gold standardot’ képező arcfelismerési adatbázis [17] segít-
ségével bizonyította a bevezetett eljárás eredményességét. Az irodalomban fellel-
hető eredményeket sikerült több ponton jelentősen meghaladni [37].

I/3. A tulajdonságkinyerés fókuszában a klasszifikáción túl a regresszió is állhat. A
szerző kidolgozta az MMDA algoritmus regressziós problémák megoldására adap-
tált változatát, korrelációmentes tulajdonságok kinyerésére. A módszer neve Ker-
nel Decorrelated Learning Regression (KDLR) [65]. Standard regressziós felada-
tokon történő teszt alapján kimondható, hogy az eljárás a gyakorlatban hatékony
regresszióhoz vezethez.
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I/4. A szerző javaslatot tett a statisztikából ismert átlagos deriváltbecslő eljárás és
a kernel függvények alkalmazásának kombinációjára. A Kernel Average Deriva-
tive Estimation-nek (KADE) elnevezett eljárás célja a regresszió szempontjából
releváns alterek megtalálása [65]. Mesterséges adatokon történő teszteléssel és
a kapcsolódó algoritmusokkal való összehasonlítással a szerző kimutatta, hogy a
megtalált alterek számos esetben hatékonyabb regressziót tesznek lehetőve.

A tézis eredményeinek második csoportjába újszerű Kernel alapú klasszifikációs al-
goritmusok tartoznak. Az eredményeket a 4-es és 5-ös fejezetek részletezik.

II/1. A szerző definiálta hipersík alapú klasszifikációs módszerek egy családját [34].
Három geometriai megfontolásokat követő módosítást/konstrukciót javasolt. i)
különféle veszteségfüggvényeket használt a hipersik alapú klasszifikációban. ii)
a lineáris regressziót sajátos módon alkalmazta klasszifikációhoz. iii) az out-
put teret beágyazta az input térbe és kidolgozta a Minor Component Classi-
fier (MCC) modszert, amely egy a mintapontokbol számított mátrix legkisebb
sajátértékéhez tartozó sajátvektora segítségével definiál klasszifikációs hipersíkot.
A szerző kialakította a módszerek tesztelési környezetét, majd végrehajtotta a
működést demonstráló teszteket. Az eredmények azt igazolják, hogy az SVM-
el [61] kompetitív eljárások kialakítására került sor.

II/2. A szerző megkonstruált egy klasszifikációs sémát az ún. ’Convex Machine’ tech-
nikát, amely bázisfügvények ritka kombinációját alkalmazza. A kidolgozott mód-
szertan magában foglal számos gépi tanulási technikát. A teljesség igénye nélkül
ezek közé tartozik a Support Vector Machine (SVM) [61], a Smooth Support
Vector Machine [39], a Least Square Support Vector Machine (LSVM) [64] es a
Kernel Logistic Regression (KLR) [21]. Kialakított továbbá három alapvető nu-
merikus matematikai módszerek által inspirált bázisfüggvény-kiválasztási módsz-
ert (RANDOM, MGRAMM, CORR) [35], amelyeket tesztelt az UCI adatbázis [9]
egyes elemein.

II/3. A szerző kidolgozott három komplexebb bázisfüggvényszelekciós módszert (SFS,
SFFS és PTA) a klasszifikáció hatékonyságának javítására és a klasszifikációs
modell méret-komplexitásának csökkentésére. A definiált eljárások az irodalom-
ból ismert hatékony tulajdonságtér-szelekciós módszerek analógiájára épülnek. A
kialakitott tesztek eredménye alapján elmondható, hogy ezek az eljárások segítik
a hatékony klasszifikációt [65].

Az összefoglaló végén az A.2-es táblázat mutatja a tézispontok és azok publikáltságának
összefüggését.
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Tézis eredmények [31] [34] [35] [36] [37] [65] Fejezet Eredmény kategóriája
MMDA • 2 Tulajdonságkinyerés

MMDA arcfelismerő • • 2 Tulajdonságkinyerés
KDLR • • 3 Tulajdonságkinyerés
KADE • 3 Tulajdonságkinyerés

Hipersík alapú klasszifikáció • 4 Klasszifikáció
Konvex gépek • • 5 Klasszifikáció

Alapvető bázisszelekciós eljárások • 5 Bázisfüggvény-szelekció
Komplex bázisszelekciós eljárások • 5 Bázisfüggvény-szelekció

A.2. táblázat. A tézisek és a kapcsolódó publikációk összefüggése.
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