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Chapter 1

Introduction

The bulk of substances and processes in nature is often characterized by certain 
degree of inhomogeneity: one might say, it is rather the rule than the exception. 
The most frequently mentioned example is the almost always inevitable presence 
of impurities or other lattice defects in crystals. The theoretical description of 
this kind of feature of real systems established the concept of disorder, and 
started on its way the investigation of the—nowadays wide-spread—disordered 
models, which is gently developing to be an independent discipline.

From a theoretical point of view, in systems with many degrees of freedom 
one has to distinguish between two cases on the ground of dynamics of random 
impurities. If the characteristic relaxation time associated to impurities is 
comparable to that of thermal degrees of freedom it, i.e. t¿ ~  it, then in 
the theoretical description randomness appears just as an additional parameter 
among other parameters characterizing the thermal degrees of freedom. In this 
case disorder is termed annealed,.

The situation is very different, however, if impurities relax much slower than 
thermal degrees of freedom: » i t -  In the theoretical approaches randomness 
is now considered to be time-independent. This is the case of quenched or frozen 
disorder. As a consequence disorder has to be treated separately from thermal 
degrees of freedom: averaging procedure decomposes into the calculation of 
thermal expectational value and the averaging over disorder. In the sequel we 
always think of quenched disorder if it is not specified.

Among disordered models special attention was payed for models which ex
hibit a phase transition, where the obvious question arises, what consequences 
the introduction of disorder has (if it has at all) on the properties of pure (e.i. 
homogeneous) system. According to the experiences quenched disorder has ef
fects on the nature of phase transitions in varying degrees. It may lead to the 
elimination of the transition by smearing out singularities. Or it may cause the 
change of order of the transition: a first order transition can turn to a continuous 
one. In case of a continuous transition (which is not “smeared out” by random
ness), a basic question was, how universal properties, such as critical exponents 
are influenced by disorder. Here, a heuristic relevance-irrelevance criterion was 
formulated by Harris for diluted systems, which was generalized to other kinds 
of random models [43]. Intensive numerical and analytical work has started to 
clarify the universality class of various disordered models, including those which 
have a discontinuous transition in their pure form.
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2 CHAPTER 1. INTRODUCTION

Besides classical transitions, also zero-temperature quantum phase transi
tions attracted much interest, where the critical behavior in random systems is 
formed by the interplay between disorder and quantum fluctuations instead of 
thermal ones, leading to a new mechanism for phase transitions, which differs 
in many respects from the activated dynamics in thermally driven transitions. 
Quantum fluctuations are more pronounced in low-dimensional systems, such 
as spin chains, where a remarkable progress was achieved by an asymptotically 
exact real-space renormalization group scheme developed for the random Heisen
berg chain by Ma, Dasgupta and Hu [89]. This method was then extended to 
other random quantum spin chains including the random transverse-field Ising 
spin chain by Fisher [33, 31, 32]. In these systems a new type of coarse-grained 
behaviour was found. By coarse-graining, most systems flow toward a fixed 
point, where the ratio of local parameters in the Hamiltonian remains finite. 
Contrary to this it turned out, that in these quantum spin chains, the distribu
tion of parameters becomes arbitrarily broad on a logarithmic scale as the fixed 
point is approached. The ratio of parameters is typically infinite or zero here, 
and the system is governed by an infinite-random,ness fixed point.

Disorder was found however to influence not only the critical behaviour. 
Griffiths and McCoy pointed out in the random classical [37] and quantum Ising 
model [91], respectively, that there exists an extended region around the critical 
point, where several physical quantities are singular. The origin of Griffiths 
phase (also termed as a line of “semicritical fixed points”) are the fluctuations of 
disorder. The so called Griffiths-McCoy singularities are much more enhanced in 
quantum systems, where statics and dynamics are inherently linked. According 
to a phenomenological scaling theory the origin of singular behaviour of all 
quantities studied so far, were reduced to a common physical ground.

One might think, among disordered models those with infinite randomness 
are less tractable. For models governed by a finite-randomness fixed point, dis
order can be treated as a perturbation of the pure behaviour, and perturbative 
methods are sometimes applicable. For the study of models with infinitely strong 
randomness, perturbative techniques obviously cannot be developed. Instead of 
this, a large amount of information can be extracted from these systems, (sur
prisingly, in certain cases more is known about disordered models than about 
corresponding pure ones), via methods exploiting that disorder completely dom
inates and prescribes the physics close to the fixed point.

This latter type of randomness, i.e. the infinitely strong one, is the main 
subject of the present work. We shall discuss two related issues. In the first 
part of the thesis we deal with the singular behaviour of random quantum spin 
chains at criticality and in the Grrifiths phase, whereas in the second part a 
classical model, the random-bond g-state Potts model is studied in a special 
limit, where thermal fluctuations become irrelevant. A common feature of both 
problems, that the critical behaviour is strongly dominated by fluctuations of 
disorder as opposed to quantum fluctuations (resp. thermal fluctuations in the 
classical model). The new results presented in this work were published in Refs. 
[54, 112, 55, 53, 70].

The outline of the thesis is the following. In Chapter 2 we shortly summerize 
the theory of critical phenomena in disordered classical and quantum systems, 
and give a general phenomenological description of Griffiths phase.

In Chapter 3 previously known results on the random transverse-field Ising 
chain are reviewed, including the free-fermion description of the model, the
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relation with random walk, and the phenomenological scaling theory of the so 
called rare events.

In Chapter 4 we present our numerical and phenomenological results on the 
Griffiths phase of random transverse-field Ising spin chain. We consider here 
quantities, the singular behaviour of which is not trivially related to that of the 
energy gap, such as the second energy gap, non-linear susceptibility, and energy- 
density autocorrelation function. By using phenomenological scaling arguments 
we relate the exponents describing the singular behaviour of the above quantities 
to the dynamical exponent. In the free-fermion picture closed forms for these 
quantities are derived, which are then analysed numerically. The numerical 
results support the validity of scaling considerations.

Subsequently we extend the Ma-Dasgupta-Hu type real-space renormaliza
tion group scheme to the Griffiths phase, which is presented in Chapter 5. 
We give an analytic solution for the flow equations of the random transverse- 
field Ising chain in the Griffiths region, where we show that the procedure is 
asymptotically exact, and the dynamical exponent stays invariant during renor
malization. By the help of this an exact expression for the determination of 
dynamical exponent is given. On the ground of phenomenological considera
tions we propose the above assertions to be generally valid for quantum spin 
chains. In order to check this we solve numerically the renormalization group 
flow equations of random quantum Potts chain. Our results are compatible with 
theoretical considerations.

Chapter 6. is devoted to the study of random XY- and random dimerized 
XX chain. Here, we develop a phenomenological theory of average quantities, 
which relies on the scaling behaviour of rare events. Establishing a relation 
with random walks, rare events are identified as regions corresponding to sur
viving walks. By the help of this theory we determine the complete set of bulk- 
and surface critical exponents. These are than compared to numerical results 
on operator-profiles obtained by using the free-fermion representation. We find 
critical order parameter profiles follow the conformal predictions, if we use the 
exponents obtained from phenomenology. Furthermore we determine the aver
age behaviour and the distribution of dynamical correlations at criticality and 
in the Griffiths phase. Using the decoupling of models under study into two 
Ising chains, we give an analytical expression for the dynamical exponent.

In Chapter 7 we turn to study the g-state random Potts model, where after 
appropriate parameterization the q —¥ oo limit is sensible, and the magnetization 
exponent is known to converge to a finite value. Contrary to previous finite-g 
calculations we perform here a direct investigation in the q —¥ oo limit by the 
help of random cluster representation of the model. We show that in this limit 
thermal fluctuations becomes irrelevant, and critical behaviour is determined 
by a single dominant graph in the geometric representation of the model. To 
find this graph is equivalent to an optimization problem of a non-convex cost- 
function defined on the set of graphs. We solve this problem by a stochastic- 
and a combinatorial optimization method, and analysing the fractal properties 
of dominant graph, we give a more accurate estimation for critical exponents, 
than previously.



4 CHAPTER 1. INTRODUCTION



Chapter 2

C riticality  and disorder

2.1 Critical phenomena
In the present work we deal with continuous phase transitions of disordered 
models. These phase transitions have to be discussed in the light of critical 
phenomena in pure systems, irrespective whether the corresponding pure system 
undergoes a first- or a second order transition. Therefore we review a few basic 
notions connected with critical phenomena in pure systems, before we turn to 
discuss the consequences of randomness in the next section.

2.1.1 C ritical exp on en ts
We consider here a pure system with many degrees of freedom and short-range 
interactions between them, which possesses a continuous phase transition. To 
quantify the deviation from criticality one introduces a control parameter 6, 
which is zero at the transition. In thermally driven phase transitions it is the 
reduced temperature, but in general it may be some other parameter of the 
Hamiltonian.

The system is characterized by a continuous function of 6, the order parame
ter, which is non-zero at one side of the transition (8 < 0), called ordered phase, 
and vanishes otherwise. The opposite side of critical point is termed disordered 
phase. In the sequel we deal with magnetic phase transitions, which are con
nected with the vanishing of magnetization. Here the local order parameter 
density is the local magnetization

M r) )  = (2.1)

where the local external field h(r) couples to to the local magnetization operator 
rh(r) in the free energy density / ( r). Here and in the following (...) denotes 
thermal expectation value, which reduces at zero temperature to ground state 
expectational value.

The bulk two-point correlation function for the magnetization operator is 
obtained by taking the functional derivative of the free energy with respect to 
the position-dependent field

52FC M ) = (m(O)m(r)) = iMQ)M(r) ■ (2.2)

5



6 CHAPTER 2. CRITICALITY AND DISORDER

It has the asymptotic behaviour limr_s,0O C(r,S) = (m(0))(m(r)), since the local 
order parameters are asymptotically uncorrelated. The ordered phase is char
acterized by (m(r)) ^  0, meaning, there is long-range order (LRO), while in the 
disordered phase (to(r)) = 0 and there is short-range order (SRO). Considering 
the connected part of correlation function, i.e. the spatial correlation of fluctu
ations around the average, Ccon(r,6) = ((to(0) — (m(0)))(m(r) — (to(r)))), one 
observes in both phases:

C c o „ M # 0 ) ~ e - ^ ,  (2.3)

where £ is the correlation length. This is the distance over which the fluctua
tions of microscopic degrees of freedom (here the local order parameters) are 
significantly correlated with each other. (Note that Ccon(r) = C(r) for 6 > 0.)

Close to criticality the singular part of thermodynamic quantities are de
scribed by power-laws, where the powers are called critical exponents. A critical 
point is hallmarked by an infinite correlation length, which close to the transi
tion diverges as

(2.4)

where v is the correlation length exponent. Strictly at criticality (6 = 0) £ is 
infinite, and the bulk correlation of the order parameter has an algebraic decay,

C(r,0) (2.5)

where ij is the decay exponent. This type of behaviour of correlation is called 
quasi-long-range order (QLRO). The bulk order parameter (simply denoted by 
to) vanishes in the ordered phase close to the transition as

to ~  M y 3, (2.6)

where ¡3 is the order parameter exponent. The specific heat c = diverges as

c~ \5 \~ a, (2-7)

with a, the specific heat exponent. Perturbing the system by an external mag
netic field h, leads to the divergence of the susceptibility x  = §jp following the 
scaling law

X ~ |< M , h-> 0. (2.8)

At 6 = 0 the order parameter vanishes with h, like

m ~ h 1/Sh. (2.9)

Close to the surfaces of the system (if there are any) various properties may 
behave differently as in the bulk. This necessitates the introduction of the analo
gous surface critical exponents, through the singular behaviour of corresponding 
surface quantities, e.g. m s ~  (-S)13 , where m s is the surface magnetization.

In most cases the critical exponents are fully specified by the symmetry 
properties of the model under consideration, and do not depend on microscopic 
details of interaction. This allows phase transitions to be categorized into dif
ferent universality classes.
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2.1 .2  Scaling
The power-low form of quantities in terms of parameters 8, h etc. measuring the 
deviation from critical point, is linked to the self-similarity of critical fluctuations 
inside the correlation volume £d. The system is then covariant under a global 
change of the length-scale and singular quantities are homogeneous functions of 
their arguments. These properties form the basis of the scaling hypothesis.

When lengths are rescaled by a factor b > 1, i.e. when r —t r/b, the scaling 
fields (6, K) are changed by a factor bd^ x where x is the scaling dimension of 
conjugate quantities. When d — x > 0 (< 0) the corresponding scaling field 
grows (decreases) under rescaling. Such a field is said to be relevant (irrele
vant) whereas it is marginal when x = d. The system becomes invariant under 
rescaling only when the relevant scaling fields vanish which corresponds to the 
critical point. Since irrelevant variables finally vanish under rescaling, only rel
evant and marginal scaling fields influence the critical properties, the marginal 
ones generally leading to varying exponents.

Assuming that the only relevant scaling fields are 6 and h, the free energy- 
density is a homogeneous function of its variables and transforms as

/  h, i )  = b-df  (& /v5, bd~*"h, , (2.10)

where xm is the scaling dimension of magnetization. The critical behaviour of 
conjugate quantities and their derivatives can be deduced from (2.10), and the 
corresponding exponents are all related to x m and v, as follows:

a = 2 -  dv (2.11)
P = vxm (2.12)
7 = v(d -  2xm) (2.13)

sh = - - 1 (2.14)

n = 2xm. (2.15)

Relation (2.12) can be recovered from the second 8 derivative of both sides of 
(2.10) at h = 1/L = 0 and taking b = 8^v. From (2.10) it follows for the scaling 
form of magnetization

to h, - 0  = b~Xmm ( b ^ v8, bd~Xmh, . (2.16)

Taking now h = 1/L = 0 and b = 8^v one gets (2.13). Similarly, putting1
8 = 1/L = 0 and b = h*™-* one obtains (2.15). From (2.10) the scaling form 
of susceptibility is

X U  h, = bd- 2x~X ( b1/v8, bd- x~h, . (2.17)

Taking h = 1/L = 0 and b = t v one arrives to (2.14). The transformation law 
of the two-point function follows from (2.10) and (2.2)

C(r,8) = b^‘2XmC{,- ,b 1/v8). (2.18)
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Now with the choice 6 = 0 and b = r relation (2.15) is recovered. At the critical 
point singularities are supressed by a finite L. Finite-size scaling exploits the 
way they develop when L —¥ oo in order to determine the critical exponents. 
For example choosing 6 = h = 0 and b = L in (2.16) gives

m ^ L ~ Xm. (2.19)

2.1 .3  C onform al invariance
Covariance under conformal transformations [11, 46] is expected to hold at the 
critical point of systems with short-range interactions, which possess transla
tional and rotational symmetry and are invariant under uniform scaling.

A conformal transformation r —t r'(r) can be viewed as a generalization of 
uniform scaling, where the local structure of the lattice (i.e. angles between 
curves) is preserved, but the rescaling factor b(r) is a smooth function of posi
tion. It follows from the Jacobian of the transformation as b(r)^d = det(dr'/dr). 
Since local fields transform as h(r) —¥ h'(r') = b(r)d~xh(r), two point correla
tion function in (2.2) transforms like

(m(ri)m(r2)) =  6 (r i)^ mfe(r2) ^ m(TO(r])TO(r2)) (2.20)

under a conformal transformation. The conformal group for d > 2 is finite
dimensional and contains rotations, uniform dilatations, translations, inversions 
and the special conformal transformation

(r')
r

(2 .21)

which is a composition of previous ones. It is especially useful, since a semi
infinite system with a flat surface containing the origin is invariant under (2.21) 
if a parallel with the surface, and the covariance under such an infinitesimal 
transformation determines the form of critical two-point functions.

In two dimensions the conformal group is isomorfic with the group of com
plex analytic functions w(z). Therefore it is infinite-dimensional and the local 
dilatation factor is |dw/dz|-1 . A frequently used conformal mapping in two 
dimensions is the logarithmic transformation

L iw = — in z, 
2n

(2.22)

which maps the infinite z plane onto a periodic strip of width L and infinite 
length. Applying (2.22) on the correlation function (2.18) at criticality, it can 
be shown, that the correlation length £ along the strip is related to the scaling 
dimension x m via

r 1 = Y Xm- (2-23)
Furthermore the above procedure allows to determine the boundary-induced 
operator profiles [57, 129, 56].

If a disordered system has the required symmetry properties on average, then 
the results of conformal invariance are expected to hold for the corresponding 
average quantities. When some of the symmetries quoted above are broken, 
then some of the results associated to conformally invariant systems still hold, 
like the relation (2.23) as observed in specific examples [57].
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2.2 The effects of disorder
In this section we discuss the question how randomness affects the phase tran
sitions. We shall use through and through the terminology of renormalization 
group (RG) theory which is a useful tool in the theory of phase transitions. 
Generally in real-space RG methods a partial trace (i.e. trace over a fraction of 
degrees of freedom) in the patition sum is performed. After this in some cases 
it can be replaced by an effective Hamiltonian which has the same structure as 
the original one, however with different parameters and a reduced number of 
degrees of freedom. The iteration of this procedure is then leads to the chang
ing of parameters in the Hamiltonian, which can be illustrated in the parameter 
space by the so called RG trajectories. A point in the parameter space which 
is left invariant by the transformation is called a fixed point. The phase dia
gram can be divided into attractive basins of fixed points, from any point of 
which the system flows to the same fixed point. In such a region the large-scale 
behaviour is described by the properties of the fixed point. The decreasing of 
degrees of freedom during the RG transformation corresponds to the rescaling 
of correlation length. Therefore in a fixed point the correlation length must be 
either zero or infinite. The former ones are called trivial fixed points and these 
control the ordered and disordered phases, whereas the latter are the critical 
fixed points controlling the system on the critical surface.

Relevance-irrelevance criteria For continuous phase transitions perturba
tion expansions were developed [86, 87, 88, 28, 82] to treat the effect of weak 
disorder and also a heuristic relevance-irrelevance criterion on the stability of 
a pure system fixed point against weak disorder is known [43], which was origi
nally derived in diluted systems, but can be generalized to other kinds of random 
systems. The Harris-criterion predicts the randomness, which couples to the 
energy density, to be relevant, if

v < d/2, (2.24)

where v is the correlation length exponent of the pure system. In this case 
the system flows to a new disordered fixed point in the parameter space (see 
later). While if v > d/2, randomness is irrelevant, and the critical behaviour is 
governed by the pure system fixed point. Note that the above criterion takes 
into account only the immediate vicinity of the pure system fixed point, i.e. it 
concerns only weak disorder. It can happen that a model is stable against weak 
disorder, however sufficiently strong randomness brings it to a new fixed point. 
Such a behaviour can be observed e.g. in the one-dimensional Ashkin-Teller 
model and the quantum-clock model [13].

The effect of quenched disorder at a first-order transition point is compar
atively less understood than the same phenomena at a continuous transition 
point. Here neither a general relevance criterion, nor a consistent perturbation 
expansion is known to apply around the discontinuity fixed point of the pure 
model. One remarkable exception is the stability criterion by Aizenman and 
Wehr [2] (based on an idea of Imry and Wortis [64], see also by Hui and Berker 
[50]), which rigorously states that in two dimensions any amount of quenched 
disorder will soften the first-order transition in the pure system into a continuous 
one. In three dimension the same criterion predicts a cross-over phenomenon:
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generally the transition stays discontinuous for weak disorder, whereas it turns 
to a second-order one for sufficiently strong disorder [21] .

Irrelevant disorder If quenched disorder is irrelevant, the system is spa
tially inhomogeneous on a microscopic scale, but by coarse-graining it, becomes 
asymptotically homogeneous on macroscopic scales. The coarse-grained be
haviour is thus equivalent with that of the corresponding pure system, and the 
system belongs to the pure system universality class.

If randomness is relevant, the resulting disordered fixed points can be further 
classified on the basis of the coarse-grained behaviour of the system in the low- 
energy and long-wavelength limit [96].

Finite randomness fixed points One possibility for the system by coarse- 
graining it is to remain inhomogeneous also on macroscopic scales, however 
with finite relative magnitude of inhomogenities (i.e. ratio of parameters in the 
Hamiltonian) in the long-wavelength limit. In this case the system is said to be 
governed by a finite randomness fixed point.

Infinite-randomness fixed points An other possible scenario by coarse- 
graining a random system is that the relative magnitude of inhomogenities does 
not remain finite, but grows without limits. In these systems the distributions of 
the logarithmic magnitudes of the terms in the Hamiltonian become arbitrarily 
broad, as the energy scale tends to zero. The critical behaviour is controlled 
by an infinite-random,ness fixed point (IRFP). Broad distributions involve the 
lack of self-averaging. Considering finite samples of size N, the thermal average 
of a quantity X  is obviously sample-dependent in a quenched random system. 
Therefore, if one is interested in the average quantity, one has to perform an 
additional average over the disorder configurations, which is called quenched 
disorder average. We shall denote by [. ..]a„ in the following. The sample-to- 
sample fluctuations of X  can be described by the normalized variance:

[A Fav

If Djy(X) —t 0 in the thermodynamic limit N  —¥ oo, then X  is said to be self
averaging and a sufficiently large sample is a good representative of the whole 
ensemble. Contrary if Dn (X) tends to a finite limit, the sample-to-sample 
fluctuations remains finite, and any sample, no matter how large, is never a 
good representative of the ensemble. In this case X  is called non-self-averaging, 
and in order to characterize X,  its whole distribution is needed.

There are only few models known, where the critical behaviour is controlled 
by an IRFP. Most of them are one-dimensional quantum chains at zero temper
ature: random singlet states of certain antiferromagnetic chains, the quantum 
critical point of random transverse-field Ising (and Potts) chains or the Haldane 
state in the random spin-1 Heisenberg chain. In addition to chains we men
tion here spin-^ ladders, which exhibit essentially one-dimensional behaviour, 
as well [84, 97]. Later it turned out that also the quantum critical behaviour of 
higher-dimensional systems, such as the d = 2 and d = 3 random ferromagnetic 
transverse-field Ising model, is governed by an IRFP [96].
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2.3 Classical spin models w ith quenched disor
der

Here, we introduce two simple but non-trivial classical spin systems, which are 
basic for the theoretical study of critical behaviour with quenched disorder. The 
simplest and historically first studied spin system having a continuous phase 
transition, is the Ising model [65]. It is defined by the Hamiltonian

H = ^ J  (2.26)
m  *

where ^  = ±1 is a classical Ising spin attached to site i of a d-dimensional 
lattice, and the first sum is taken only over nearest-neighbour spins. The short- 
range interaction tends to align neighbouring spins if J  > 0 (the case of Ising 
ferromagnet), while for J  < 0 antiparallel orientation is favorable (Ising antifer- 
romagnet). Below a critical temperature Tc, the system possesses two ordered 
phases with non-zero per site magnetization m = (a). (See the phase diagram 
in Fig. 2.1.) The phase boundary h = 0 ends in a critical point at T = Tc.

Disorder is introduced in (2.26) via the 
parameters J  and h: h

H = — ^  JijOiOj — (2.27)
< i j>  i

where, now, Jy and hi are quenched random 
variables. Hereby one obtains the various 
random Ising models.

An important generalization of (2.26) (in 
the sense that more than two values of spin 
variables are allowed) is the q-state Potts 
model,

Hpotts= ~ y , aj) ~ y  \ i),
bi) *

(2.28)
where the classical Potts spin ty, is allowed to take q different values <7, = 
1,2, . . . ,q  and S(i,j) is the Kronecker symbol. For q = 2 one recovers the 
Ising Hamiltonian (2.26) up to a multiplicative and an additive constant. Other 
notable special case of (2.28) is bond-percolation, which can be regarded as the 
suitably defined q —¥ 1 limit of g-state Potts model [132].

For h = 0 the pure Potts model has a low temperature ordered and a high 
temperature disordered phase. In between them a phase transition point takes 
place, which is of first order, if q is above some dimension-dependent critical 
value qc{d) < q, otherwise it is continuous. However, even in the former case 
the transition softens to a continuous one in the random bond Potts model [2].

H I

Figure 2.1: Phase diagram of the 
Ising ferromagnet. Crossing the 
dashed line the system undergoes 
a first order transition. A critical 
point is located at T = Tc, h = 0.

T Tc

Diluted models

The simplest realizations of systems with quenched disorder are the diluted mag
nets. These systems may be interpreted as a binary alloy with a magnetic and 
a non-magnetic component, which occupy the lattice sites randomly. The two
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Figure 2.2: Phase diagram of a diluted ferromagnet. The ferromagnetically ordered 
phase is denoted by FM, whereas the paramagnetic phase by PM.

relevant parameters of such a system are the temperature and the concentra
tion of, say, the non-magnetic component p. The phase diagram is depicted in 
Fig. 2.2. The line T = 0 of the phase diagram corresponds to the problem 
of site-percolation. Decreasing p from one towards zero, pc is the first value 
where an infinite cluster of magnetic atoms appears (in an infinite system). The 
singular point, pc, is a geometric analogon of continuous phase transitions. For 
example the density of the spanning cluster playing the role of order parameter 
vanishes as p ~  (pc —p)^p close to pc. Below a certain concentration, pc, the sys
tem has a long-range ordered phase at low enough temperature, while above pc 
there does not exist any long-range order. Crossing the separatrix a continuous 
phase transition occurs, which belongs to different universality classes at T = 0 
(percolation) and at p = 0 (pure ferromagnetic system). In the intermediate 
region 0 < p < pc the critical exponents are constant. If dilution is irrelevant, 
the systems on the separatrix flows to the attractive pure system fixed point 
and the exponents agree with that of pure one. If dilution is relevant, a new 
attractive fixed point appears on the phase boundary which controls the whole 
region 0 < p < pc, and characterized by different exponents than that of pure 
one.

A particular diluted model is the bond-diluted Ising ferromagnet, obtained 
by putting hi = 0 and Jy = 0 with probability p and Jy = J  > 0 with 
probability \ — p in  (2.27).

Random field models

The second important class is the family of random field models. Considering 
(2.27) with Jy = J  and hfis as independent random variables with zero mean, 
(drawn from, e.g. a Gaussian distribution with variance ho) one obtains the 
random field Ising model. There is a competition between the two terms in 
the Hamiltonian at T = 0: the interaction tends to align neighbouring spins, 
while external fields try to pin the spins according to the sign of local field. 
Fixing the the value of the exchange coupling J, the two relevant parameters 
are the variance of the field distribution ho and the temperature T. The phase 
diagram looks similar to that of diluted models (one should replace p by ho). 
For sufficiently small ho and T  the interaction term wins and the system is 
in its ferromagnetic phase with non-vanishing magnetization. As opposed to 
dilution, random field is always a relevant perturbation. Finding the ground
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state is an optimization problem and since the T = 0 fixed point controls the 
whole critical line, the structure of the ground-state gives some insight into the 
finite-temperature behaviour, as well.

Spin glasses

The paradigms of quenched disordered systems are the spin glasses [6]. These 
are different from other random systems in many respects: at the transition the 
non-linear response functions diverges, dynamics is rather slow in the spin-glass 
phase and near the transition, they are characterized by a “random” order pa
rameter and the “chaotic” behaviour of correlations as a function of temperature 
can be observed.

A particular spin glass model is the Ising spin glass. It can be originated 
from (2.27) by choosing hi = 0 and Jy = ±  J  with probability 1 — p and p, 
respectively. So both ferromagnetic and antiferromagnetic couplings are allowed 
between pairs of spins.

The phase diagram (Fig. 2.3) is richer 
than that of diluted models. In addition to 
ferromagnetic, antiferromagnetic, and para
magnetic phases a spin glass (SG) phase ap
pears at low enough temperature and at in
termediate concentration of antiferromagnetic 
couplings. The two main physical ingredi
ents controlling this region are the quenched 
disorder and the frustration. This later means 
that not all terms in the Hamiltonian can be 
minimized simultaneously. These lead to a 
rugged multi-valley structure of the energy- 
landscape with exponentially many local min
ima having approximately the same energy.
The finding of the true minimum (or min
ima if degeneracy is possible) is an optimiza
tion procedure again. The microscopic pic
ture behind the spin-glass behaviour is that 
the samples consist of small ferromagneti- 
cally ordered islands, the momenta of which 
point to random directions. Therefore in 
this phase the conventional order parameter 
is zero [(<r)]a„ = 0. However [{cr)2]av ^  0, 
while in the paramagnetic phase it vanishes, so this quantity is suitable for 
order parameter.

Figure 2.3: Phase diagram of 
the three-dimensional Ising spin 
glass on a cubic lattice. In be
tween ferromagnetic- (FM) and an
tiferromagnetic (AF) phase a spin 
glass phase (SG) takes place, where
[(c)2]ot. /  0.

2.4 Phase transitions in quantum system s
So far we quoted examples for phase transitions in classical (spin) systems. Now 
we turn to the survey of phase diagrams of quantum-mechanical systems. First 
we deal with features, which are characteristic also for pure quantum models, 
while phenomena caused by randomness are discussed in the next section.
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In the classical disordered systems in the previous section two antagonis
tic effects are present: On the one hand there were short-range interactions 
between spins, which enforce ordering, and on the other hand thermal fluctua
tions, which try to destroy the order. At criticality these two conflicting effects 
are in some sence in equilibrium. Furthermore there was an other ingredient, a 
parameter (dilution, variation of random fields, concentration of antiferromag
netic couplings), which can be used in order to tune the critical temperature. 
In a quantum-mechanical model all these effects may be present, as well. What 
makes the situation much different is that the Hamiltonian describing the sys
tem contains non-commuting local terms. This leads to quantum fluctuations 
and gives an entirelly different way for the relaxation of the system, via quantum 
tunelling.

We now discuss the influ
ence of quantum fluctuations on 
the critical behaviour of the sys
tem. We first argue that they 
are irrelevant at finite-tempera
ture transitions. In order to do 
this, one has to compare the 
magnitude of thermal fluctua
tions with that of quantum fluc
tuations. The former is given 
by the thermal energy per de
gree of freedom, which is of or- 

Figure 2.4: Phase diagram of a quantum sys- der Ub Tc, while the later is mea- 
tem. A quantum critical point (QCP) is located sured by the zero-point quan- 
at T = 0, A = Ac. turn of energy, which is fiojc, if
the characteristic frequency of fluctuations is wc. It is known, that close to 
the transition the correlation length (. becomes infinite, according to (2.4). At 
the same time fluctuations become very slow, and the relaxation time diverges, 
which is known as ’’critical slowing-down”. The characteristic time scale, which 
is set by the relaxation time close to criticality, and the characteristic length 
scale, given by the correlation length, are connected as

T (2.29)

where the exponent z, defined in this way, is called dynamical exponent. By the 
help of (2.4) and (2.29) one obtains for the characteristic frequency

wc ~  ^ ~  151 .̂ (2.30)

At a finite Tc quantum fluctuations are negligible if fiojc -C or equiva
lently

|<S|«T<r, (2.31)

which can always be satisfied close enough to the transition for finite Tc. Hence 
for any finite Tc the transition is therefore classical.

Suppose there is a parameter A, by which the transition temperature can 
be tuned, and after all, at some value Ac, Tc is forced to zero. (See phase 
diagram in Fig. 2.4.) We see, that the width of the region, where (2.31) is valid,
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shrinks to zero as Tc —t 0 (Fig. 2.4). If Tc = 0 a new universality class emerges, 
which differs from the classical one. Changing A along the line T = 0 a quantum 
phase transition (QPT) occurs at A = Ac, which is triggered purely by quantum 
fluctuations. At T  = 0 no heat bath exists, and thermally activated hopping 
in the energy landscape is replaced by tunelling through barriers. A so called 
quantum control parameter measuring the deviation from quantum critical point 
can be conveniently defined as 6 = ■

So for finite Tc the critical behaviour of a d-dimensional quantum system 
is equivalent with that of a d-dimensional classical system. Contrary to this, 
strictly at the quantum critical point (QCP) the physics is described by a (d + 
l)-dimensional classical action, where the extra dimension corresponds to the 
imaginary time r  = it of the quantum-mechanical problem. The reason for 
this connection is the Suzuki-Trotter transformation [125]. The main idea of 
Suzuki-Trotter mapping is, that the imaginary time evolution operator of a 
d-dimensional quantum model, which is Hermitian, can be viewed as a transfer
matrix of a (d + l)-dimensional classical model, in the anisotropic limit where 
the lattice spacing in the transfer direction vanishes. In this case the quantum 
model is called the Hamiltonian limit of the classical model, while the later is the 
lattice representation of the former. The extension of the classical system in the 
transfer direction is H/fegT, where T  is the temperature of the quantum model. 
For Tc ^  0 the correlation length in the imaginary time direction is limited 
by h/ksTc, and the critical behaviour is controlled by the diverging correlation 
length in space dimensions. So the behaviour is like that of a d-dimensional 
classical system. For Tc = 0, however, correlations in the temporal direction 
can grow unlimitedly. Therefore the system behaves as a (d + l)-dimensional 
classical one.

In quantum models relation (2.29) is a consequence of the fact, that statics 
and dynamics are inextricably connected, since both statical properties and dy
namics of the system are determined by the Hamiltonian. According to Suzuki- 
Trotter mapping the imaginary time of a quantum model can be viewed as 
additional spatial dimension of a classical model. Thus, it is supposed that 
the correlation length in this direction (the relaxation time) diverges simultane
ously with spatial correlation length near criticality, as given in (2.29). In pure 
systems the dynamical exponent is one, z = 1, which corresponds to the equiv
alence of time and space, and also corresponds to a linear dispersion relation, 
which is indeed the case for the exactly solvable one-dimensional transverse-field 
Ising model.

In order to illustrate the relevance of QPT’s one mentions the metal-insulator 
transition in three-dimensional doped semiconductors [81] or the superconducting- 
insulator transition [85]. In both cases the control parameter is the concentra
tion of impurities. Other examples are the quantum spin glasses [117, 6], where 
the control parameter is an external thermodynamical parameter, such as the 
strenght of the magnetic field.

2.4.1 Transverse-field Ising m od el and quantum  P o tts  m od el

For concreteness we introduce here the simplest model possessing a QPT. As the 
prototype of thermal phase transitions is the classical Ising model, the protoype 
of systems possessing a QPT, is the transverse-field Ising model (TIM). It is
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defined by the Hamiltonian:

h  =  ^ Y !  -  E  h i ( j i ’ ( 2 -3 2 )
< i j>  i

where of and of are Pauli matrices, representing a spin sitting on site i of a 
d-dimensional hypercubic lattice. The first sum in (2.32) runs over only nearest- 
neighbour pairs of sites. This model is the Hamiltonian limit of the classical 
Ising model in (2.27). For later convenience we introduce here immediately the 
random version of TIM, where exchange couplings, J, and external fields hi are 
independent random variables.

Since [of ,of] ^  0 for all i, (2.32) is genuinely a quantum-mechanical model. 
The interaction term tends to order the spins along the ar-axis, while the trans
verse fields, coupled to of, try to flip them to the z-axis hence they tend to 
destroy the order. If the exchange couplings are positive, the interaction prefers 
a parallel orientation of neighbouring spins, and the order is ferromagnetic, while 
if they are negative, the antiparallel alignment is favourable, and it is the case 
of an antiferromagnet. By allowing both ferromagnetic and antiferromagnetic 
couplings, one gets the quantum Ising spin glass. (The sign of fi,’s can always 
be gauged away by local spin rotations around the a:-axis.)

Now we consider the pure ferromagnetic TIM, i.e. Jy = J  > 0 and hi = h. 
Fixing J, the quantum control parameter is defined as 6 = hc, where hc is 
the dimension-dependent critical value of the field h. In any dimension at zero 
temperature the TIM has a ferromagnetically ordered phase with non-zero mag
netization for 8 < 0 , while if 8 > 0 the system is in its paramagnetic phase with 
vanishing magnetization. The two regions are separated by a quantum critical 
point at 8 = 0. If the dimensionality of the system is below the lower critical 
dimension dc, which is between two and three, the system is paramagnetic at 
any finite temperature, while if d > dc, the ferromagnetic order holds on also 
for finite temperatures.

Quantum fluctuations are introduced in this model by the presence of trans
verse terms: If h, was zero, the interaction term would be diagonal in the x- 
representation, the ax operators could be replaced by its eigenvalues, and the 
model would be equivalent to the classical Ising model, with a unique ground 
state (in small symmetry breaking longitudinal field). On the other hand if 
interaction were switched off, the spins would be pinned by external fields, and 
the ground state would be classical again.

If J  is non-zero, and the field is switched on, H  is no longer diagonal in the 
ar-representation, and the model becomes quantum-mechanical. The ground- 
state will be a superposition of classical states, which describes the quantum- 
mechanical tunelling between local minima of the classical energy-landscape. 
Quantum fluctuations which manifests itself in tunelling are the strongest at 
the critical point 6 = 0.

As we have already mentioned, the lattice representation of (2.32) is a clas
sical d+ 1-dimensional Ising model with ferromagnetic interactions in the extra, 
temporal direction:

/ ^ c la s s ic a l  =  “ E E  K i j V i ( T ) V j ( T )  -  E E  A 'j< T j( r )o ' j ( r  +  1),  (2 .3 3 )
r  < i j>  t i

where r  = 1,2 , . . . , L T refers to slices of the (imaginary) time direction. The 
reduced interactions, iFy are the same in all time slices. The couplings in (2.33)
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are related to that of the quantum Ising model, as ify  = A rJy , exp(^2ifj) = 
tanh(Arftj), where At is the width of a time slice. The extension in this direc
tion is equal to the temperature of the quantum model: LTA r = /?. Performing 
the Hamiltonian limit At —¥ 0 leads to K tj —¥ 0 and K t —t oo in (2.33). At 
criticality the universal properties are not affected by At , and (2.33) belongs to 
the same universality class as the TIM.

A generalization of TIM is the q-state quantum Potts model. It is defined by 
the Hamiltonian

h  = ^ y !  t k a » Mi ’ (2-34)
m  i q k=i

where the q x q  matrix Mt given in (B.3) flips the Potts spin at site i, the states 
of which are labelled by | n,), n, = 1,2, . . . ,q .  This model is the Hamiltonian 
limit of the classical g-state Potts model given in (2.28), and it reduces to (2.32) 
for q = 2.

2.4 .2  Q uantum  phase tran sition s in th e  presence o f disor
der

So far we have concentrated on the quantum critical behaviour of pure systems. 
Now we sketch here what differences to the pure quantum critical behaviour 
may arise by the introduction of disorder. We illustrate this through the random 
variant of TIM in (2.32), where the exchange interactions Jy and external fields 
hi are independent, random variables, drawn from some distributions, n(J)dJ  
and p(h)dh, respectively.

Throughout this work we are dealing with lattice models, in which random 
variables at different lattice sites are uncorrelated, although the question of cor
related disorder is also a subject of intensive research[130, 111]. Another feature 
is that, random variables are identically distributed in space. The problem of 
’’inhomogeneous disorder”, when variables are drawn from position-dependent 
distributions, has also attracted much interest, but it is not discussed here. 
For a recent study of this issue in the RTIC with algebraic decaying surface 
inhomogeneous disorder see Ref. [72].

As we have already discussed in Section 2.2, a pure system fixed point may
be eighter stable against disorder or unstable, if the system flows to a new, 
disordered fixed point. For deciding the relevance of disorder one invokes the 
Harris-criterion, which indicates the pure quantum Ising critical point to be 
unstable against weak disorder if d < 4.

As we have already mentioned, time scale and length scale are connected in 
quantum systems according to (2.29), and pure critical behaviour is isotropic 
in the sence that z = 1. This is not necessarily true in the vicinity of a dis
ordered quantum critical point. This follows from the fact, that randomness 
is uncorrelated in spatial directions, however the quenched (time-independent) 
randomness is perfectly correlated along the time direction. The anisotropy in 
time direction is manifesting itself in a dynamic exponent differing from one. A 
conventional finite randomness fixed point is characterised by a finite dynamical 
exponent, while an IRFP is characterised by extremly strong anisotropy, with 
a formally infinite dynamical exponent. The random transverse-field Ising fer- 
romagnet in one-, two- and three spatial dimensions were found to be governed
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by an IRFP with z = oo [106, 113, 63, 96]. The IRFP was argued to be attrac
tive also for quantum Ising spin glasses for strong disorder [96], but in contrary 
to this, Monte-Carlo results predicted a conventional fixed point with finite z 
[38, 115]. For a possible explanation of this controversy see Ref. [13].

2.5 Griffiths phase
A surprising feature of disordered quantum (and also classical) systems, which 
has no counterpart in pure systems, is the presence of an extended region around 
the critical point, the so called Griffiths phase, where several physical quantities 
are singular (Griffiths-McCoy singularities). Such anomalous behaviour was 
first found by Griffiths in the paramagnetic phase of the site-diluted classical 
Ising ferromagnet [37]. While in classical systems these singularities are only 
essential, in a quantum system they can by rather strong, as was pointed out 
by McCoy, who found the divergence of susceptibility in the McCoy-Wu model 
[93, 92] (which is the lattice representation of the one-dimensional random TIM) 
in an extended region above the critical point [91]. Although such a singular 
phase exists also in the ferromagnetic side of the critical point, we shall focus 
on the paramagnetic region in the following.

The underlying physics behind Griffiths-McCoy singularities is that there 
exist such rare regions in the sample, which contain much stronger couplings 
than the average. These strongly coupled domains (SCD) tend to order locally 
even if the whole system is in the disordered phase. The spins sitting in such a 
locally ordered cluster, are frozen together, and act collectively, as a giant spin. 
These give a strong response for external perturbations, which may lead to the 
divergence of average response functions, e.g. the susceptibility. Besides, to 
such a well-localised ordered formation a small energy gap is associated, since 
one knows from the exact solution of the homogeneous transverse-field Ising 
chain, that the gap vanishes (exponentially in an open chain) with the system 
size, in the ordered phase.

The vanishing energy gap involves the anomalous behaviour of dynamical 
quantities. Locally ordered clusters contain small fields, which corresponds to 
large temporal couplings in the lattice representation of the model, which tend 
to order the spins ferromagnetically in the time direction, so relaxation time 
is consequently large. These rare, exponential slowly relaxing domains lead to 
power-law-tail distributions of relaxation time rrei, and other quantities related 
to it. The broad distribution of rrei implies the algebraic decay of average auto
correlations. This is reminescent of a critical point, however the characteristic 
spatial extent of the strongly coupled domains is still finite and spatial correla
tions fall off exponentially with a finite correlation length. Therefore Griffiths 
phase is termed as a line of “semicritical fixed points”. This anisotropy is also 
reflected in the dynamical exponent, which differs from one, and varies contin
uously in the Griffiths phase, tending to a limiting value as the critical point is 
approached. This limiting value was found to coincide with the value obtained 
at criticality, in the one- and two-dimensional random TIM, indicating, that 
also the critical behaviour is dominated by the rare strong clusters.

Depending on the type of disorder distribution, the Griffiths phase may 
extend to the whole paramagnetic phase, but in some cases it has a finite upper 
boundary 8q , above which (i.e. for 8 > 5g) the forming of SCD-s, i.e. locally
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ordered regions is impossible. In the one-dimensional RTIM for example, where 
hc = J  in the pure case, SCD-s cannot exist if max{ Jy} < min{/^}. Thus 5q 
depends on the form of coupling and field distributions. So does z, which is 
exactly known in the one-dimensional random TIM, and was found to be non
universal in the Griffiths region. At the upper limit of the Griffiths phase 5g 
we have z = 1, thus the isotropy of time and space axes is restored.

There exists a phenomenological theory [126, 39] of the Griffiths phase, by 
the help of which the origin of singular behaviour of various quantities is reduced 
to a common physical ground. We shall introduce this in the following section.

2.5.1 P h en om en olog ica l descrip tion

Consider the quantity Pl (N), which measures the probability, that in a finite d- 
dimensional sample of volume V = Ld there is a cluster of N  = ld -C V strongly 
coupled spins. Here, I is the typical linear size of the SCD. Since N  consecutive 
strong bonds can be found with exponentially small probability ~  exp(—AiV), 
whereas the cluster could be placed at ~  V different sites, we have

Pl (N) ~  Vexp(—AiV), (2.35)

where A is some positive constant. The imaginary relaxation time of such a SCD 
is, however, exponentially large in the volume, which can be seen as follows. The 
vanishing of temporal correlation corresponds to the insertion of a domain wall 
perpendicular to the time axis in the lattice representation of the quantum 
model under consideration. This costs an energy proportional to the volume of 
the SCD E = —BN,  where B is a positive constant. The probability of such an 
event (i.e. the formation of a domain wall), and thus the characteristic length 
between walls, which gives the relaxation time, is proportional to the Boltzmann 
factor

rrei ~  exp(BiV). (2.36)

Combining (2.35) and (2.36) one obtains a broad power-law distribution of imag
inary relaxation times

_ A
PL(Trel) ~  VTTef (2.37)

The power depends on the microscopic details, so it is expected to vary smoothly 
in the Griffiths-phase.

For a classical system with activated dynamics the difference is that in the 
relaxation time (2.36) not the volume but the surface of the SCD appears rrei ~  
e x p ( B ' i V ). This leads to a much narrower, stretched exponential distribution 
F£iass(rrei) ~  exp(—AQnTrei)331"). Therefore Griffiths-McCoy singularities are 
rather weak in classical systems and it is hard to observe them by numerical 
simulations.

The energy gap is related to the relaxation time as e\ ~  hence (2.37)
— —1 FB £1implies the algebraic decay of its distribution Pl (ci ) ~  Ve{ 

ing argumentation sheds light upon an another physical meaning 
dimensionless probability distribution is

The follow- 
of ^ . The

PL(lnei) =  eiPL(ei) ~  Ldef = (Lel/Z)d, (2.38)
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where in the last expression the dynamical exponent z appears, which relates the 
time scale to the length scale by definition. Comparing the last two expressions 
in (2.38), one obtains A /B  = d/z. Hence the linearized form of the low energy- 
tail of distribution reads as:

dln[Pt(lnei)] = — lnei + const. (2.39)

Another singular quantity related to r rei, is the local susceptibility \ i  at sit® h 
defined through the local magnetization

r dE0 mi = — lim ——Ht->o dHi (2.40)

.. dmi Yi = lim —— .dHt (2.41)

Hi is the strength of the local longitudinal field, which enters the Hamiltonian 
(2.32) via an additional term Hicrf, and E0 is the ground-state energy of the 
system. One knows from the one-dimensional TIM, that xi is inversely propor
tional to the energy gap (see (4.1)), therefore one expects

In [.Pl (In xi)] d
z In xi + const. (2.42)

It may happen that the linear response is analytical in the Griffiths-phase and 
singularity arises only in the non-linear response (e.g. in higher-dimensional 
quantum spin glasses). Therefore one often investigates the local non-linear 
susceptibility, defined as

Ym _  lim 
Xl ~H™odH? (2.43)

since mi is an oddwhich is the first non-vanishing higher derivative of toj 
function of Uj.

In the one-dimensional TIM y"1 contains the third power of gap in the de 
nominator (see (4.3)), hence one assumes that the tail of its distribution is

^  Inx f  + const, (2.44)

with
znl = 3z. (2.45)

From (2.42) it is obvious, that the average local susceptibility diverges if z > d, 
while the condition for the divergence of non-linear susceptibility follows from 
(2.44) as z >

Now we deduce the scaling form of singular thermodynamic quantities for a 
finite but small temperature T  and external field H. The average susceptibility-
can be obtained using (2.42) and expecting a cutoff in the distribution of order 
T - i :

b c U m - T « * - 1. (2.46)
The same result can be deduced from the asymptotic decay of the average spin
spin autocorrelation function

[G]at,(r) = [(of of (r))]a„ ~  J e~T/TielPL(Tiei)dTiei ~  J PL(Tiei)dTiei ~  T~d/z.
(2.47)
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p - l
Using the sum rule for susceptibility, [x]at, = fQ [G]at,(r)dr, one recovers 
(2.46).

The scaling form of average susceptibility in the presence of a small longi
tudinal field of strength H, when the appropriate scaling variable is T/H ,  is 
expected to be

[X\av(T,H) = T i - 1x(T/H),  (2.48)

where x(x) is some smooth scaling function. Putting H = T  in (2.48) yields

[ x ] a v ( T  = ( b i O - f f i - 1. (2.49)

Integrating (2.49) by H, one gets the scaling form of average local magnetization

[mx]av(T = 0 , H ) ~ H i .  (2.50)

Since the magnetization is related to the ground state energy according to (2.40), 
integrating (2.50) over H  once again yields for the scaling form of average in
ternal energy at small T  and H:

E(T,H) = H i +1E(T/H), (2.51)

where E(x) is a smooth scaling function. With the choice T = H  one obtains

E(T,H  = 0) ~ T i +1. (2.52)

This yields for the scaling behaviour of specific heat:

c(T ,F  = 0) = | | ( T , F  = 0 ) ~ T U  (2.53)

Thus all above Griffiths-McCoy singularities are characterized with a single 
exponent z, which varies continuously with the control parameter in the Griffiths 
phase.

2.6 Experimental realizations
In this work we restrict ourselves mainly to the study of disordered one-dimension
al quantum systems. There are a few magnetic materials for the description of 
which the three-dimensional version of our models are adequate. Since spe
cial phenomena (GrifRths-phase etc.) are present also in the less complicated 
one-dimensional models, the investigation of them helps us to understand the 
behaviour of more realistic two- and three-dimensional systems better. In fact 
the special features arising from the interplay between disorder and quantum 
fluctuations, are more pronounced in one-dimension than in higher dimensional 
systems.

For three-dimensional Ising-model an experimental realization is the com
pound LiHoxYi_xF4, an insulating magnetic material [134, 133]. It is an 
isostructural derivative of the dipolar-coupled Ising ferromagnet LiHoF4, where 
non-magnetic Y3+ ions and magnetic Ho3+ ions occupy randomly the rare-earth 
sites. Applying an external magnetic field of strength F perpendicular to the 
easy magnetic axis, results in the splitting of the ground-state doublets of Ho3+
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ions, and makes for the system possible to tunnel between these states. This 
diluted system can be described by a random transverse-field Ising spin glass 
with transverse-field h ~  T2. In this system studied with x = 0.167 a spin-glass 
phase appears below a temperature Tg(T), which depends on the applied field, 
T. Crossing the phase boundary at T = 98m K  the divergence of non-linear 
susceptibility was found, which vanishes at 25m K  [134] in contrast to theoreti
cal expectations. This discrepancy may originate from the long-range nature of 
dipolar coupling.

On the other hand one-dimensional models have experimental relevance on 
their own right, as well. There are special substances in which chains of rel
ative strongly interacting atoms are settled, which interact weakly with each 
other. One can mention, e.g. the ionic crystal Sr2Cu0 3 , in which paramagnetic 
copper atoms are aligned along lines, and the strength of coupling between 
them, mediated by oxygen atoms is 200077 [36]. The interaction energy be
tween such chains separated by Sr atoms is 5K. Thus in the temperature range 
5K  < T < 2000K  this system is quasi-one-dimensional, and can be described 
by the antiferromagnetic Heisenberg chain. Other examples are Sr3CuPtOe, 
where antiferromagnetic couplings between Cu atoms are provided by Pt, while 
in Sr3CuIrOe the interaction mediated by Ir is ferromagnetic. The isostruc
tural compound Sr3CuPti_xIrxOe is a realization of a one-dimensional spin- 
glass. Other examples are the various tetracyano-quinodimethanide(TCNQ)- 
salts, such as quinolinium-(TCNQ)2. These are one-dimensional insulating 
compounds, in which positive ions have two states. They can be described 
by a Hubbard model with half-filling of electrons. When hopping term is much 
larger than Coulomb-repulsion term, the latter model is equivalent to a Heisen
berg antiferromagnet.

Measurements on the susceptibility of quinolinium-(T(7iV(3)2 came to the 
low temperature behaviour x  ~  T ^ a with a < 1 universal [127]. This, together 
with other results of measurements on dynamical properties [128] was inter
preted as evidence that the above compound is a random-exchange Heisenberg 
antiferromagnet.

An interesting relation of the random transverse-field Ising models to the 
non-Fermi liquid behaviour of /-electron compounds, such as U and Ce inter- 
metallics. In these systems the the low temperature properties of the Kondo 
impurities have been mapped onto an effective random transverse-field Ising 
chain with random bonds and fields having power-law decaying spatial correla
tions [14, 15, 111].



Chapter 3

T he random  transverse-field  
Ising chain

In this chapter we review the known results on the random transverse-field Ising 
spin chain (RTIC) with free ends:

L - 1 L

h = ^y! -a«  ' - E (3-1)
i=i i=i

where J, and are independent random variables, drawn from distributions 
7r(J)dJ and p(h)dh, respectively. The sign of J, and can be chosen to be 
positive without loss of generality, since it is always possible to make the sign 
disappear by a gauge transformation of —t —of, of —¥ —of on the appropriate 
sites, which is a consequence of the absence of frustration in one dimension. 
Thus the one dimensional transverse-field Ising ferromagnet, antiferromagnet 
and spin-glass are equivalent. In higher dimensions it is no longer true be
cause of frustration. The random transverse-field Ising chain is self-dual. The 
transformation

h z =  n x n x

i
K  IP i (3-2)

3 = 1
maps (3.1) into the same Hamiltonian however with parameters J[ = hi and 
h'i = J i- 1 , thus bonds and fields are formally interchanged.

3.1 Phase diagram with non-random couplings
The transverse-field Ising chain with non-random couplings Jy = J  and = h 
is exactly solvable by mapping it to free fermions [83, 104]. Its lattice represen
tation, the two-dimensional classical Ising model was firstly solved by Onsager 
in a more complicated way [100].

Introducing the quantum control parameter 6 = In j , the phase diagram 
looks as shown in Fig 3.1. At zero temperature and 6 < 0 the system is in its

23
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ferromagnetic phase with longe-range order and non-vanishing magnetization. 
The energy gap vanishes exponentially with the system size in the thermody
namic limit. (The way e\ vanishes in this phase depends on the boundary 
condition [9].)

If 8 > 0 or T  > 0 there is short-range order with zero magnetization and the 
system is paramagnetic. Here the energy gap is finite.

At T = 0 the two phases are sep
arated by a quantum critical point at 
8 = 0. Its location also follows from 
the self-duality of the model. This 
point is characterized by quasi-long- 
range order, and by critical exponents 
v = 1, xm = |  and z = 1. According 

to the Harris-criterion in (2.24) this model is unstable against weak randomness 
and is driven to a new fixed point.

3.2 Phase diagram of the random model
The quantum control parameter of the random model is

S = M U - p n - g ™  (3.3)
var[J] + var[/i]

where var[x] denotes the variance of x. The phase diagram is similar to that 
of non-random one (see Fig 3.2). A striking difference is the appearance of 
Griffiths phase. For the random model there exists a large amount of exact, 
conjectured and numerical results, which we shall briefly summerize below.

3.2.1 C ritica l region
According to Fisher’s renormalization group (RG) treatment [33], which will 
be introduced in detail in Chapter 5, the critical behaviour of the model is 
controlled by an IRFP, with extremely (logarithmically) broad distribution of 
quantities. The average bulk magnetization vanishes close to the transition as 
[m]av ~  ( S ) 13 with the conjectured exponent

¡3 = 2 — <fi, <8= (1+2^ }- (3.4)

The corresponding surface exponent is

I3S =  1, (3.5)

which is an exact result of McCoy [91]. From the RG treatment the zero- 
temperature scaling form of magnetization in a small applied longitudinal field 
H  is exactly known for 8 -C 1 (see Ref. [33]). At criticality (8 = 0) the bulk 
magnetization behaves as [m]av(H) ~  []ngp-# > for H  -C 0.

The relation between the RTIC and random walk (see Section 3.5.1) can be 
used in order to calculate the finite-size scaling of surface magnetization [59]:

[m*]av~ L ~ x™, x sm = ^ .

T PM

FM critical point

I }________ .
0 s

Figure 3.1: Phase diagram of the homo
geneous transverse-field Ising chain.

(3.6)
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The RG method leads to the following results on correlations [33]. The spin-spin 
correlation function

Cx(r) = (axax+r)  (3.7)

behaves typically at criticality as — lnC'x(r) = Ar1/2 for large r, where the 
constant A is broadly distributed. For |<5| -C 1 Cx(r) decays typically as 
— lnC'x(r) «  i*/Ctyp and the typical correlation length £typ diverges as

C typ
1

¿Ftyp Gyp — 1- (3.8)

This was found also by Shankar and Murthy [121] via transfer matrix calcula
tions.

The average correlations, which are measurable, are dominated by the rare, 
strongly correlated regions with order unity correlations, and therefore behave 
differently. At criticality the power-law decay of mean correlation

(3-9)

was found, while for |<5| -C 0 the true correlation length diverges faster than
C tyP :

v = 2. (3.10)

The critical point characterized by extreme anisotropy. Time scale is related 
to length scale as

In r  ~  £1/2, (3-11)

which corresponds to an infinite dynamical exponent z = oo [33].
According to phenomenological and numerical results [109] the critical au

tocorrelation function Gx(r) = (of (r)of (0)) typically falls off faster than any 
power-law, while the average decays logarithmically slowly

[Gx]av(T) ~  ( ln r)-2x (3.12)

The critical transverse spin correlation function Ce(r) = (ofof+r) is a self
averaging quantity and at criticality its average behaves as — \n[Ce{r)]av ~  r1/2, 
like its typical value [109]. The critical average transverse spin autocorrelation 
function [Ge(r)]at, = [(of (t)<7?(0))]at, decays as [Ge(r)]at, ~  T^Ve [109].

3.2 .2  G riffiths phase
In the paramagnetic phase the disordered Griffiths phase is located in the region 
0 < 6 < Sa, where free energy is a non-analytic function of T  and H, as it was 
discussed in Section 2.5.

This region extends to fc , above which all transverse-fields are bigger than 
couplings. The exact value of the dynamical exponent is known [59]. It is the 
positive root of the equation

1 / z "

■J av

=  1. (3.13)
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FM

1.

PM

-5q 0 5q
5

The dynamical exponent generally depends both on 6 and on the distributions 
7r( J) and p(J). However it becomes universal, i.e. distribution independent, in 
the vicinity of the critical point where z(6) «  1/(26), |<5| -C 1, in accordance 
with the RG results [33, 31]. On the other hand z = 1 as 6 —¥ Sq .

The phenomenological argumentations on scaling behaviour of singular quan
tities achieved for the RTIM in general dimension d in Section 2.5, also hold 
here with d = 1. The numerical results on different singular quantities in the 
Griffiths phase are all in agreement with the analytical formula in (3.13) and 
the observed small deviations are attributed to finite-size corrections [138, 58].

Below the critical point lies the 
ordered Griffiths phase, exhibiting 
similar singularities as its disorder
ed counterpart. The underlying 
physics of singularities in this re
gion is understood due to duality, 
which connects the point in the 
paramagnetic phase at 6 to the po- 

Figure 3.2: Phase diagram of the RTIC. int in the ferromagnetic phase at 
—6. The formations corresponding to SCD’s in the paramagnetic side of criti
cal point, are the weakly coupled domains (WCD) in the ferromagnetic phase, 
which contain smaller bonds and stronger fields than the average, and are lo
cally in the disordered phase. A WCD effectively cuts the system inty two very- 
weakly interacting parts and thus reduces the surface order enormously. The 
dual object, i.e. a SCD is known to be associated with a very small energy gap, 
e\. Thus in the tails of the distributions, mx and e\ are dual quantities, and 
one expects the following singularity of surface magnetization in the ordered 
Griffiths phase:

P(lnmx) ~  mx -+ 0 . (3.14)
This scaling relation, which can be proven exactly for the RTIC (see Section 
3.4), is expected to hold also for other one-dimensional disordered quantum 
chains.

ordered disordered
Griffiths phase Griffiths phase

3.3 Free fermion description of RTIC
The problem of diagonalization of (3.1) is equivalent to the eigenvalue problem 
of a 2l x 2l matrix if one would expand H  in the tensoral product space of 
spin states. However considerable simplification can be achieved by mapping H 
through a Jordan-Wigner transformation and a following canonical transforma
tion to a free fermion model:

=  ’ (3 - 1 5 ) 9= 1  V J

in terms of the (r)q) fermion creation (annihilation) operators. The en
ergy of modes eq is obtained through the solution of an eigenvalue problem, 
which necessitates the diagonalization of a 2L x 2L tridiagonal matrix with 
non-vanishing matrix-elements T2i^ i :2i = = hi, i = 1,2, . . . , L  and
T2i,2i+i = T2i+i :2i = Ji, i = 1,2, . . . ,  L — 1, and the components of the eigenvec
tors Vq are denoted as Vq(2i — 1) = —<j>q(i) and Vq(2i) = tpq(i), i = 1,2,...  ,L,
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i.e.
0

^
0

O
 ^

J l
0 h2

\ /  -<M !) \  
* 9(1)

—<M2)
T = h,2 0

\

Jl - i
Jl - i 0 

hL
hL
o y

^ ( L - l )

V * 9(l ) J

(3.16)
One considers only the eq > 0 part of the spectrum. The details of this standard 
method can be found in Appendix A.2. The eigenvalue problem of (3.16) is 
analytically solvable only for the pure model [104]. However it is a powerful 
tool also for the numerical study of the random model, since the dimensionality 
of the problem is reduced from 2L to 2L.

In the following we derive expressions for various quantities in the free 
fermion picture, which are needed later.

3.3.1 C ritical poin t

First we give a justification of criticality condition given by (3.3). The critical 
point for the RTIC can be obtained from the condition that the energy gap, 
which is inversely proportional to the relaxation time, must vanish in the ther
modynamic limit. From Eq.(A.15) one obtains that a non-trivial solution with 
zero eigenvalue exists if det((A — B)(A + B)) = 0. Or simply det(A — B) = 0, 
since (A — B)T = (A + B). The exact solution of the pure model tells us, that 
with periodic boundaries the first gap can be zero even in a finite chain. There
fore one considers here the corresponding matrix for the cyclic chain, which 
reads as

B, =

/ h  0
J± ho 0

J2 hz

\ Jl - i

vanishes if nf= i ^  = nf= i Ji

Jl \

(3.17)

0
hL J

In the L —t oo limit,
when boundary effects are irrelevant, this yields the criticality condition also for 
the free chain:

[In h]av = [lnJ]a„ (3.18)

For a special case the validity of Eq. (3.18) follows from the self-duality 
of the model. Assuming that there exist only a single phase transition in the 
system, where physical properties are singular, it must be located at the fixed 
point of the transformation (3.2) [80]. Thus if ir(J) and p(h) are identical, the 
system is expected to be at its criticality, and (3.18) is trivially satisfied.
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3.3 .2  M agn etiza tion  and dyn am ical correlations
Since the Hamiltonian contains products of two step operators, it commutes 
with the operator

L

q = I K  (3-19)i= 1

Q has two eigenvalues: Q =  ±1, therefore the space of spin states decomposes 
into two orthogonal subspaces. In the free fermion picture these two sectors 
are related to the parity of the fermion number operator N  = Y^= i ct c* = 
k(J2i=i °f + !)• If Q = 1, N  is even, and if Q = 0, N  is odd. The operator 
of maps a state from one sector to the other, hence the ground state expec
tation value (0|of |0) is zero. Consequently (0|of |0) is not suitable as an order 
parameter. The true order parameter has to be determined from the asymp
totic behaviour of the autocorrelation function Gf (r) = (0|of (r)of (0) |0). Using 
of (t) = eTHa fe^TH, the autocorrelation function assumes the form

G f(r) = l(*|of |0)|2 exp [—r(Ei -  E0)], (3.20)
i

where |i) is the i-th eigenstate of H  with eigenvalue £ f  Then limT_>0O Gi (t) = 
(mf)2, since the magnetization is asymptotically uncorrelated. In the ordered 
phase the first energy gap vanishes exponentially in the thermodynamic limit, 
i.e. the first excited state becomes degenerate with the ground-state. Therefore 
in the large r  limit only the first excited state survives in (3.20) and the local 
magnetization is given by the off-diagonal matrix element:

m{ree = (l|of |0), (3.21)

where the superscript refers to the boundary condition. In the fermion repre
sentation of is expressed as

af = A1B1 . . .A l- 1Bl- 1Al (3.22)

with
Ai = +% ) Bi = (*)(»£ “ %) • (3-23)

Q Q

Using |1) = r)i |0) the matrix-element in (3.21) is evaluated by Wick’s theo
rem. Since for i ^  j  (0|.4j.4j|0) = (0\BiBj\0) = 0, one obtains for the local 
magnetization

TOfreel

u  r 1 r 1 r 1
± 1 1 t r i i  U712 • • • {*11 —  1
u  r 1 r 1 r 1

i ±2 {*21  {*2 2  • • • {*21 —  1
(3.24)

where

ri s* r 1 r 1l l  l L r i i  {*12  • • • {*11 — 1

Hj = (0\mAj\0) = *iU)
Gjk = <0|Bfc,4i |0) = —^ $ 9(fe)$9(j) .  (3.25)

Q
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The surface magnetization can be given in a closed form [58]. One possible 
route to this is to put 1%l = 0, what implies that the eigenvalue srL of £>£ = 
|<r£ becomes a good quantum number. In the fermion-picture the twofold 
degeneracy srL = corresponds to the presence of a zero mode, ei = 0, with 
an eigenvector satisfying Vi(2i) = = 0,i = 1,2, . . . ,L .  Then the first
excited state [ 1) is degenerate with the ground state |0) and the matrix-element 
in (3.21) corresponds to the ground-state expectation value of the magnetization:

TO/ r e e +  = (0|CTf |Q), (3.26)

which is given by (3.24). The surface magnetization, m Ts = m f = 4>i(l) can 
easily be obtained by solving TVi = 0 with Vi(2i) = 0 for * = 1, . . . ,  L and 
using the normalization condition 4>i (i)2 = 1. This yields

TOX
s (3.27)

This can be derived also with free boundaries in the L —t oo limit [102].
The autocorrelation between surface spins can be obtained directly from 

(3.20) as:
G'i(t ) = Y  l$ g(!)|2 exp(-re9) , (3.28)

Q

whereas bulk autocorrelation function can be given in a more complicated form 
in terms of a Pfaffian (for details see Ref. [58]).

3.4 Relation with random walks
Another source of exact results is the mathematical equivalence between the 
RTIC and the Sinai walk [120], which was found by Igloi [59]. Namely, Eq. 
(A. 15) can be transformed into the eigenvalue problem of the Fokker-Planck op
erator of a one-dimensional random walk (RW) with nearest-neighbour hopping 
in a random environment [59, 62]. Among others the following correspondances 
were established:

Ji 4A )l/2 (3.29)
hi (Wi,i+i.)l/2 (3.30)
2

ek ^Afc, (3.31)

where »¿,¿±1 = w(i —¥ i ±  1) transition probabilities characterizing the random 
walk, and Au is the k’th eigenvalue of the Fokker-Planck operator.

The free boundaries of RTIC of size L correspond to adsorbing boundaries 
in the RW problem at site i = 0 and i = L. The surviving probability Psurv(L), 
i.e. the probability for the walker starting near one of the adsorbing walls not 
to cross its starting point after L steps, is given in a form similar to (3.27). It 
was thus established:

Psurv(L) 4A m2s(L). (3.32)
The control parameter of the RW is defined as

^ _  [lnw^Ja,, — [lnw_*]a„
var [«;<_] + var[w_>] (3.33)
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At Srw  = 0 the diffusion is ultra-slow and the averaged mean-square dis
placement grows as [(X2(i))]at, ~  ln4i. Around this point, i.e. for small 
Srw  -f- 0 takes place the region of anomalous diffusion, characterized by

[<X2(t))]a„ ~ t* ,  (3.34)

with 4/ < 1, which is the analogon of Griffiths phase in RTIC. Comparing the 
finite-size-scaling behaviour of the largest non-zero eigenvalue Àu{L) ~  L- * in 
this region with that of the energy gap of RTIC in the GrifRths-phase e*, ~  L~z, 
one obtains using Eq. (3.31)

z -tt* —. (3.35)

Now exploiting, that T is known exactly [25, 75] in the form

/  w 
\w

2

= 1, (3.36)

and using (3.29), (3.30) and (3.35), one obtains for the dynamical exponent of 
the RTIC the implicit equation in (3.13).

Eq. (3.36) follows from the observation, that the product of independent, 
identically distributed random variables A = xix^x^ . ..  (the so called Kesten
variable) has a singular distribution P(A) ~  A-1+Ai, with ß given by [x^jav = 
1 [75]. One can also arrive at (3.13) directly by regarding the perturbative 
expression for the energy gap in (3.42) as a Kesten-variable. Applying this 
argument to the exact expression of surface magnetization

1TO2 (3.37)

one obtains (3.14).

3.5 Phenom enological theory
In random quantum spin chains the critical properties are expected to be con
trolled by an IRFP, where distributions are extremely broad and as a con
sequence the average and typical behavior of these quantities are completely 
different. The average is dominated by such realizations (the so called rare 
events), which have a very large contribution, but their fraction is vanishing in 
the thermodynamic limit. In this section we identify these rare events for the 
RTIC model and use their properties to develop a phenomenological theory, on 
the ground of which we derive some of the results listed in Section 3.2. Later 
we shall apply this theory with slight modifications to the random XX and XY 
chains.

3.5.1 Surface order param eter and th e  m apping to  ran
dom  walks

The surface order parameter is given by the simple formula in (3.27). It is easy 
to see from (3.27) that in the thermodynamic limit the average surface order
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parameter is zero (non-zero), if the geometrical mean of the Jj couplings is 
(smaller) greater than that of the hj couplings. From this the definition of the 
control parameter in (3.3) follows.

Next we compute the average value of the surface order parameter for the 
extreme binary distribution1, i.e. the limit A —¥ 0 and ho = 1 in (4.17). For a 
random realization of the couplings the surface order parameter at the critical 
point (p = q = 1/2) is zero, if a product of the form of I l f t W ) -2)  ̂ = 
1 ,2 ,..., L is infinite, i.e. the number of A-couplings exceeds the number of A-1- 
couplings in any of the [1,1] intervals. Otherwise the surface order parameter 
has a finite value of 0(1). The sequence of couplings J, can be represented by 
one-dimensional random walks that start at zero and make the i-th step upwards 
(for Jj = A-1) or downwards (for Jt = A). The ratio of walks representing a 
sample with finite surface order parameter is given by the survival probability 
of the walk Psurv, he. the probability of the walker to stay always above the 
starting point in L steps.

In the vicinity of the critical point, the scaling behavior of the average sur
face order parameter can be obtained from the survival probabilities of biased 
random walks [58], where the probability that the walker makes a step towards 
the adsorbing boundary, q, is different from that of a step off the boundary, p. 
The control parameter of the walk, 5W = p — q, is proportional to the quantum 
control parameter 8 in (3.3) evaluated with the binary distribution. Thus the 
basic correspondences are:

[ms(S, L)]av ~  Tsurv(8W, L), 8 ~  Sw. (3.38)

We recall the asymptotic properties of PSUIV(8W, L) [58]. For unbiased walks:

Psurv(Sw = 0 ,L ) ~  L - 1 ? 2 , (3.39)

for walks with a drift away from the wall:

Psurv (8W > 0, L -+ oo) ~  8W , (3.40)

and for walks with a drift towards the wall:

Psmv(8w < 0,P) ~  exp (—L/£w), £w ~  8y 2 . (3-41)

In this way we have identified the rare events for the surface order parameter, 
which are samples with a coupling distribution which have a surviving walk 
character. The scaling properties of the average surface order parameter and 
the correlation length immediately follow from Eqs. (3.39), (3.40) and (3.41).

3.5 .2  Scaling o f low -energy ex c ita tion s

The rare events are also important for the low-energy excitations. The results 
are obtained by using a simple relation for the smallest gap e\ (l) of an open 
system of size I with free boundary conditions, expecting that it goes to zero at 
least as ~  1/1. Then one can neglect the r.h.s. of the eigenvalue problem of T

1The extreme binary distribution represents one possible explicit construction of the
infinite-randomness fixed point.



32 CHAPTER 3. THE RANDOM TRANSVERSE-FIELD ISING CHAIN

in (A. 16) and derive approximate expressions for the eigenfunctions '!> i and T i . 
Finally one arrives at

«-1 h .
ei(l) ~  J J  -j- . (3.42)

i=i Jj
(For details see Ref. [61].) Here, the surface order parameter at the other end 
of the chain toj_i is given by replacing hj/Jj  for h b - j / J l - j in Eq. (3.27).

Before using (3.42) we note that (surface) order and the presence of low- 
energy excitations are inherently related. Samples with an exponentially small 
gap have finite, 0(1), order parameters at both boundaries and the coupling 
distribution follows a surviving walk picture. Such a coupling configuration 
represents a SCD, which at the critical point extends over the size of the system, 
L. In the off-critical situation, in the Griffiths phase the SCD-s have a smaller 
extent, I -C L, and they can be localized both in the bulk and near the surface 
of the system. The characteristic excitation energy of a SCD can be estimated 
from Eq. (3.42) as

t — x k
e, ( » ~  I I t  ~  exp j^ itrln(J//t) j , (3.43)

i=i

where ltI measures the size of transverse fluctuations of a surviving walk of 
length I, defined as the conditional expectation value of the position of the 
walker after I steps under the condition, that the walker survives until the Ith 
step, whereas In(J/h) is an average ratio of the couplings.

At the critical point (6 = 0), where I ~  L, the size of transverse fluctuations 
of the couplings in the SCD is ite ~  L 1 / 2 [58]. Consequently one obtains from 
Eq. (3.43) for the scaling relation of the gap:

ei(6 = 0, L) ~  exp(^const- L1̂ 2) . (3.44)

Then the appropriate scaling variable is In e/ ' /L  and the distribution of the 
excitation energy is extremely (logarithmically) broad.

In the Griffiths phase the size of a SCD can be estimated along the lines of 
Ref. [58] as I ~  £w In L and the size of transverse fluctuations is now |tr ~  l ~  
In L. Setting this estimate into Eq. (3.43) we obtain for the scaling relation of 
the gap:

e i ( L ) ~ L - Z , (3 .4 5 )

where z is the dynamical exponent.

3.5 .3  Scaling th eory  o f correlations
The scaling behavior of critical average correlations is also inherently connected 
to the properties of rare events. Here the quantity of interest is the probability 
P'fll), which measures the fraction of rare events of the local order parameter 
rrif. 2 For the surface order parameter rnf it is given by the surviving prob
ability, Px( 1) = PSurv, according to Eq. (3.38). We start with the equal-time 
correlations
____________________ [C/J(r)]av = [(0|afaf+r|0)]av . (3.46)

2 Here and throughout the section fi =  x for the RTIC, while considering the XX and XY 
chains (see later) ¡i =  x,y, z.
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In a given sample there should be local order at both reference points of the 
correlation function in order to have O ' (r) = 0(1). This is equivalent of having 
two SCD-s in the sample which occur with a probability of + r), which
factorizes for large separation limr_s,0O + r) = F A'(I)FA' (I + r), since the
disorder is uncorrelated. The probability of the occurrence of a SCD at position 
l, P'^l), has the same scaling behavior as the local order parameter [to(*]av. 
Generalizing the arguments leading to (3.21), [mf]av is given by

[m?] av = [(</vkf|0)]av, (3-47)

where 1$^) denotes the lowest eigenstate of H having a non-vanishing matrix
element of <7 f with the ground state in the ordered phase. It behaves at a bulk 
point, 0 < l /L < 1, as:

[mf (L)]av ~  L_x" , (3.48)

whereas for a boundary point, 1 = 1 , this relation involves the surface scaling 
dimension x^. Consequently P11)!) transforms as P'^l) = b~x>t P^ (l/b) under a 
scaling transformation, when lengths are rescaled by a factor b > 1. Recalling 
that for spatial correlations there should be two independent SCD-s we obtain 
the transformation law:

[^ ( r ) ]av = fe-2̂ ( r / f e ) ] av . (3.49)

Now taking b = r one obtains power-law decay with the exponent

r f  = 2x>1 . (3.50)

For critical time-dependent correlations the scaling behaviour is different from 
that in (3.49). This is due to the fact that disorder in the time direction 
is perfectly correlated and the autocorrelation function in a given sample is 
Gf(T) = 0(1), if there is one SCD localized at position l. Therefore the aver
age autocorrelation function [Gf (In r)]av scales as the probability of rare events 
P»(l):

[Gf (In r)]av = b~ x>1 [Gf(ln r /6 1/,2)]av , (3.51)

where we have used the relation in Eq. (3.11) between relevant length and time 
at the critical point. Taking the length scale as b = (In r )2 we obtain for points 
I in the volume:

[Gf(r)]av ~  (lnr)- ^  , (3.52)

whereas for surface spins, 1 = 1, one should use the corresponding surface decay- 
exponent

Next we turn to study the scaling properties of the average correlation func
tions in the Griffiths phase, i.e. outside the critical point. For equal-time cor
relations in a sample C,i(r) = 0(1), if the SCD extends over a large distance of 
r, which according to Eq. (3.41) is exponentially improbable. Thus the average 
spatial correlations decay as

~  exp(—r/£), £ ~  £» , (3.53)

where £w is defined in Eq. (3.41). On the other hand the autocorrelation func
tion in a sample is G'^t) = 0(1), if there is one SCD localized at l, which occurs
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with a probability of P'^l) ~  1 /L. Consequently the average autocorrelation 
function, which scales as P /i(Z), transforms under a scaling transformation as:

[G f ( r ) ] av =  b-^GfoiT/b* ) ]av 5 >  0 , (3.54)

where we used the scaling combination r/bz in accordance with Eq. (2.29). Now 
taking b = tx!z one obtains

[ « W J a v - T - 1/* , (3.55)

both in the volume and at the surface.



Chapter 4

N um erical stu d y  o f th e  
G riffiths phase

The singular quantities studied so far in the Griffiths phase are all related to the 
scaling properties of the lowest energy gap. This explains the observation why a 
single varying exponent is sufficient to characterize the singularities of the differ
ent quantities. There are, however, other observables, which are expected to be 
singular as well, but not connected directly to the first gap. As an example one 
could consider the distribution of the second (or some higher) gap. By similar 
reasons as for the first gap these higher excitations are also expected to vanish 
in the thermodynamic limit and the corresponding probability distributions are 
described by new exponents valid for small values of the gaps. As another ex
ample we consider the connected transverse spin autocorrelation function G\ (r) 
In the McCoy-Wu model, this function corresponds to the energy-density cor
relation function in the direction of correlated disorder. Therefore we adopt 
in the following this terminology and call G ^r) the energy-density autocorre
lation function. Finally one should mention the non-linear susceptibility whose 
distribution is expected to be described by a new varying exponent. In the 
one-dimensional RTIM this quantity has not yet been investigated before.

In this section we extend previous numerical work and study the scaling 
behavior of the above mentioned singular quantities in the Griffiths phase. We 
present a phenomenological scaling theory and we confront its predictions by 
results of numerical calculations, based on the free-fermion representation of 
the Hamiltonian in (3.1). We show that the physical quantities we studied 
are characterized by power-law singularities with varying critical exponents, 
the value of those are connected to the dynamical exponent through scaling 
relations.

4.1 Free fermion description of dynamical quan
tities

The local susceptibility defined in (2.41) can be expressed as [58]:

Xi =
(i\af |o)|
Et — E0 (4.1)
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Using (3.22), for the boundary spin I = 1 one has the simple expression:

Xi (4.2)

Similarly, the local non-linear susceptibility defined in (2.43) can be obtained 
by perturbation calculation and reads as:

X ?  =  24 {  5 > | a f  \ i ) W ^ W t i \ c r f \ j ) 1^ r ( j \ c T f  \ k ) - EA - Er ( k W f \ 0 )  +
J,j,k 0 Ej -  E,0 Ek -  E0

E <^kf|Q) V  IQ'kf |Q)
Ei -  E, E-'0 /  ~T“ ^J3 J

E.j — Eq • (4-3)

For surface spins, 1= 1 , (4.3) simplifies:

(4.4)
Next we consider the connected part of energy-density autocorrelation function 
at site l, Gf, defined by

Gf (r) =  (0|crf (r)crf (0)|0) -  <0|af (r)|0 )(0 |a f (0)|0)
= E K°lCTfl*)|2exP[^T(£'* -  Eo)} ■ (4.5)

*>o

In the free-fermion representation of is expressed as [83]:

= M B U (4.6)

with A\ and Bi given in (3.23). By the help of this Gf(r) is given by

G/e(r) = ^ | 4 / 5(l)4>7(l)^vi,7(|)$5(|)|2eXp ^ T(e5+e7)] , (4.7)
S> 7

which can be expressed for surface spins as

G)(r) = E
S> 7

^ - ^ 4 > 5(1)4>7(I) exp[^r(e5 + e7)] (4.8)

4.2 Phenom enological and scaling considerations
Previously, along a phenomenological argumentation, we arrived to the distri
bution of first energy gap given in (2.39), where now <2=1.

Next, we consider the second gap, e2, which is connected to the existence 
of a second strongly connected cluster of N' < N  spins, and its value is given 
according to the argumentations in Section 2.5.1 as

€2 ~  exp(^BiV') . (4.9)
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The probability with which a cluster of size N'  occurs, provided another cluster 
of size N  > N'  exists, is given by P'L(N') ~  Lexp(^.4iV') Y1n=n ' Pl (N)- For 
N'  -C L (or in the infinite system size limit L —t oo) this can be estimated as:

Pl (N') ~  L2 exp[ ^ 2 AN'} . (4.10)

Thus from (4.9) and (4.10) we have

P'L (In e2) ~  L2 e\,z , (4.11)

with 1 ¡z' = 2A/B,  thus
z' = z / 2  . (4.12)

Note that the scaling combination in the r.h.s. of (4.11) is dimensionless, as it 
should be. Repeating the above argument for the third, or generally the nth gap 
the corresponding distribution is described by an exponent = z/n,  however 
the finite size corrections for these gaps are expected to increase rapidly with n.

The scaling behavior of the average spin autocorrelation function is given 
by:

[G i]a v (r)  =  / p . i e O I M . l ’ e x p i - r e O d e i ,  (4.13)

where the factor with the matrix-element is \Mi\2 ~  1 ¡L, since the probability 
that a low energy cluster is localized at a given site, l, is inversely proportional 
to the length of the chain. Then using (2.38) one arrives to the result in (2.47) 
with d = 1, thus establishing the relation between the decay exponent of the 
spin autocorrelation function and the dynamical exponent.

For energy-density autocorrelations, according to (4.7) and (4.8) the char
acteristic energy scale is e2 and the asymptotic behavior of the average energy- 
density autocorrelation function is given by:

[Gf]av(r) = /  -P[(e2)|Aif|2 exp(^re2)de2 . (4-14)

Now we take the example of the surface autocorrelation function in (4.8) to 
show that the factor with the matrix-element, |M®|2, is proportional to e|. 
The remaining factor in (4.8) with the first components of the eigenvectors is 
expected to scale as 1/L due to similar reasons as for the spin autocorrelations, 
thus \Mf \2 ~  T-1e! and together with (4.11) one has P'L(e2 ) \Mf \2 ~  L e ^ z+1. 
Before evaluating the integral in (4.14) we note that for a fixed L the expression 
in (4.14) stays valid up to r  ~  Lz. Therefore to obtain the L independent 
asymptotic behavior in r  we should instead vary L, so that according to (4.11) 
take L ~   ̂ and in this way we stay within the border of validity of (4.14)
for any r. With this modification we arrive to the algebraic decay of average 
energy-density autocorrelation function:

[G e]a v (r)  ~  , (4.15)

with an exponent r]e related to the dynamical exponent as

de = 2 + -z (4.16)
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Figure 4.1: Probability distribution of — lnei and — lne2 for the uniform distribution 
at ho = 2 (left) and the binary distribution (A =  4) at ho = 2.5 (right). The slopes of 
fitted straight lines correspond to l/z(ho) and l/z'(ho),  respectively. They follow the 
predicted relation z’ (ho) = z(ho)/2.

where the relation in (4.12) is used. We expect that the factor, \Mf\2, has 
the same type of scaling behavior for any position l, thus the relation in (4.16) 
stays valid both for bulk and surface spins. We note that the reasoning above 
(4.16) applies also for the spin autocorrelation function, in which case in (4.13), 
however there is no explicit L dependence.

In this way we have established a phenomenological scaling theory which 
connects the unconventional exponents in (4.12), (4.16) to the dynamical expo
nent. In the next section we confront these relations with numerical results.

4.3 Numerical results
In the numerical calculations we have considered RTIC’s with up to L = 128 
sites and the average is performed over several 10000 realizations, typically we 
considered 50000 samples. For some cases, where the finite-size corrections were 
strong, we also made runs with L = 256, but with somewhat less realizations.

We have used two types of random distributions. In the binary distribution 
the couplings can take two values A > 1 and 1/A with probability p and q = 1 —p, 
respectively, while the transverse-field is constant:

tt(J) = pS(J -  A) + qd(J -  A-1) ,
p(h) = 8 (h — ho) . (4-17)

From (3.3) the criticality condition is (p — q) In A = In ho, whereas for the sym
metric binary distribution p = q = |  it is ho = 1. In the Griffiths phase, 
1 < ho < A, the dynamical exponent from (3.13) is determined by the equation

X i i
hy = pXJ + q \ ~ J . (4.18)

In the uniform distribution both the couplings and the fields have rectangular 
distributions:

tt(J) =

"<'■»={ô:

1, for 0 < J  < 1 
0, otherwise 

for 0 < h < ho 
otherwise (4.19)
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Figure 4.2: Probability distribution of the linear and non-linear susceptibility, Inyy 
and Inyi’1, respectively, for the uniform distribution at ho = 3. The straight lines are 
fitted to the data for the largest system size, their slopes correspond to l/z(ho) and 
l / znl(ho)y respectively. They follow the predicted relation znl(ho) = 3z(ho).

The critical point is at ho = 1, whereas the dynamical exponent is given by the 
solution of the equation

z \n ( l  — z 2) = — ln/io- (4.20)

The Griffiths phase now extends to 1 < ho < oo.
We start to present results about the distribution of the first and second 

gaps.
As illustrated in Fig. 4.1, both 

for the uniform and the binary dis
tributions, the asymptotic scaling re
lations for the distribution of the first 
two gaps in (2.39) and (4.11) are sat
isfied. From the asymptotic slopes of 
the distributions we have estimated 
the 1 / z  and 1 /z'  exponents for the 
two largest finite systems, L = 64 and 
L = 128, which are presented in Fig.
4.3 for different points of the Grif
fiths phase for the uniform distribu
tion. As seen in the Figure the z ex
ponent calculated from the first gap 
agrees very well with the analytical 
results in (4.20). For the z' exponent, 
as calculated from the distribution of to t 'le analytical result (3.13), the broken 
the second gap the scaling result in ^ne corresP°nds to 2/z.
(4.12) is also well satisfied, although the finite-size corrections are stronger than 
for the first gap. For the third gap, due to the even stronger finite size effects, we 
have not made a detailed investigation. Extrapolated results at ho = 2 are found 
to follow the scaling result z^  = z / 3. Next, we analyzed the distribution of the 
linear and non-linear local susceptibilities at the surface spin. As demonstrated 
in Fig. 4.2 both type of distributions satisfy the respective asymptotic relations 
in (2.42) and (2.44), from which the critical exponents z and zni are calculated.

h0

Figure 4.3: The estimates for 1 /z and 1 /z' 
as a function of ho for the uniform distri
bution. The full line for 1/z corresponds
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Figure 4.4: The estimates for 1/z and l / z nl as a function of ho for the uniform 
distribution. They have been obtained from our analysis of the probability distribution 
of Inyi and In y 1?1, respectively, for two system sizes (as exemplified in fig. 3). The full 
line for 1/z corresponds to the analytical result (3.13), the broken line corresponds to 
1/3z, which should be identical with 1 / z al.

0
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-30

-2 0 2 4 6 8 10 12
In t

Figure 4.5: The bulk energy-energy autocorrelation function [GeL^2}^’(T) for the bi
nary distribution (A =  4) at ho = 1.5 for different system sizes as a function of Inr. 
The slope of the straight line identifies the exponent rie(ho).

The estimates are shown in Fig. 4.4 at different points of the Griffiths phase. 
As seen in the Figure the numerical results for the dynamical exponent, z, are 
again in very good agreement with the analytical results in (4.20) and also the 
exponent of the non-linear susceptibility, zni, follows fairly well the scaling in 
(2.45).

Finally, we calculated the average energy-density autocorrelation function. 
As seen in Fig. 4.5 [Ge]av(r) displays a linear region in a log-log plot, the size of 
which is increasing with L, but its slope, which is just the decay exponent, r]e, has 
only a weak L dependence. The slope of the curve and thus the corresponding 
decay exponent r]e has a variation with the parameter ho, as illustrated in Fig. 
4.6. The estimated r]e exponents at the critical point, ho = 1, and in the Griffiths 
phase are presented in Fig. 4.7. As seen in this Figure the variation of r]e is well 
described by the form r]e(S) = r]e(0) + 1 ¡z(8). This functional form corresponds 
to the scaling result in Eq.(4.16), if the critical point correlations decay with

%(0) =  2 . (4.21)
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Figure 4.6: The bulk energy-energy autocorrelation function [G y 2]av(T) for the bi
nary distribution (A =  4) at different values for ho for L =  128 as a function of Inr. 
One observes the variation of the exponent f]e(ho) (identical to the slope of the straight 
line fits) with increasing ho.
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Figure 4.7: The exponent r}e(ho) for the binary distribution (A =  4). The full line is 
the analytical prediction r}e(ho) =  2 +  l / z (ho)  with z(ho) given by the exact formula 
(3.13) for the binary distribution with A =  4.

The numerical calculations with L = 128 give a slightly higher value 7̂e(0) ^  2.2 
[109]. However, the finite-size estimates show a slowly decreasing r}e(Q) with 
increasing system size. Repeating the calculation with L = 256 we got 7̂e(0) ^  
2.1. Thus we can conclude that the scaling relation in (4.16) is probably valid 
and then (4.21) is the exact value of the decay exponent of the average critical 
energy-density autocorrelations1.

4.4 Summary
We have considered the random transverse-field Ising spin chain and studied the 
singular behaviour of susceptibility, non-linear susceptibility, higher gaps, and 
the energy-density autocorrelation function in the Griffiths phase. Our main

1 Numerical estimates for the decay exponent of the average energy-density autocorrelation 
function for surface spins at the critical point are jj|  «  2.5 with L =  128 [109], which is some
what larger than for bulk autocorrelations. Discrepancies between estimates for z from surface 
and bulk quantities have been observed before [58]. They can be attributed to corrections to 
scaling effects which are different for different quantities, see also Fig. 6 in Ref. [138]
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conclusion is that all the above singular quantities can be characterized by 
power-law singularities and the corresponding varying critical exponents can be 
related to the dynamical exponent z(6) and, for energy-density autocorrelations, 
to the rje (0) critical point exponent. Since the exact value of z(6) is known in 
(3.13) and we expect that also the relation in (4.21) is valid, we have a complete, 
analytical description of the Griffiths phase of the RTIM in one dimension. Much 
of the reasoning of our phenomenological scaling considerations in Section 4.2 
stay valid for other random quantum systems. Especially the scaling behavior 
of the higher gaps and the corresponding relation in (4.12) should be valid even 
for higher dimensions and the same is true for the distribution of the non-linear 
susceptibility and the corresponding relation in (2.45).



Chapter 5

RG  stu d y  o f th e  Griffiths 
phase

Among the theoretical methods developed to study random quantum systems 
the renormalization group (RG) scheme introduced by Ma, Dasgupta and Hu[89] 
plays a special role. For a class of systems, the critical behavior of those is con
trolled by an infinite randomness fixed point, the RG method becomes asymp
totically exact during iteration. For some one-dimensional models, e.g. the ran
dom transverse-field Ising model [33] and the random XXZ model [32], Fisher 
has obtained analytical solution of the RG equations and in this way many- 
new exact results and new physical insight about the critical behavior of these 
models have been gained. Subsequent analytical [58] and numerical [137, 58] 
investigations of the models are in agreement with Fisher’s results. The RG- 
scheme has been numerically implemented in higher dimensions [96, 84], as well, 
to study the critical behavior of the RTIM and reasonable agreement with the 
results of quantum Monte-Carlo simulations[106] has been found. Considering 
the GrifRths-phase of random quantum spin chains here the RG-scheme has 
been rarely used [84], mainly due to the general belief that the method looses 
its asymptotically exact properties by leaving the vicinity of the scale invariant 
critical point.

Our aim is to clarify the applicability of the Ma-Dasgupta-Hu (MDH) RG- 
method in the Griffiths phase of random quantum spin chains. We start with 
the RTIC, extend the method to the Griffiths phase and present the analytical 
solution of the RG-equations. Then, for general models, we analyze by scaling 
considerations the structure of the RG equations around the line of semicritical 
fixed points and arrive to the conclusion that the RG method becomes asymp
totically exact in the whole Griffiths region. This statement is then checked 
numerically in the random quantum Potts model (RQPM) by solving the RG 
flow equations.

5.1 The M a-Dasgupta-Hu RG -m ethod
Investigating quantum phase transitions one is interested in the low-temperature 
properties of the system and would like to systematically eliminate high-energy- 
degrees of freedom. A simple way of doing this the MDH RG-method firstly

43
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developed for the random spin-| Heisenberg chain [89] and later applied for 
other spin chains (RTIC, XX-, XY-, and XXZ chain) [33, 32].

The main idea of the method is to take the strongest term in the Hamilto
nian, find the ground states of it, and take the coupling to the rest of the system 
perturbatively, and then throw out the excited states involving the strong cou
pling, yielding an effective Hamiltonian with couplings smaller then decimated 
ones. Thus iteration of the above operations leads to the successive decrease of 
energy scale.

We show here the implementation of the above procedure on the RTIC, 
where one distinguishes between two cases.

Strong bond decimation If the largest coupling is a bond, e.g. fi = J2, one 
considers the block-Hamiltonian containing the two spins connected by J2 (see 
Fig. 5.1):

H23 = ^J2^2a3 ~ h'2(?2 ~ 3̂<Jf • (5-1)
We assume, that J2 fi2 ,hz- The ground state of (5.1) lies in the subspace 
spanned by | ft) and | 44)- Solving the eigenvalue problem in this subspace 
yields for the ground state energy:

Eq = ^ \ J J 2 + (h,2 + hs)2 = — J2 — — ----———— h • • • (5-2)

The first excited state is in the sector spanned by | 44) and | 4-t)- The energy 
associated to this is

Ei = —-v/jf + (^2 — hs)2 = — J2 — — ------——— I- • • • (5-3)v 2 J 2
Thus the excitation energy:

Ei -  Eq = + . ..  (5.4)
J2

Dropping the two higher lying states with energies E3 «  E4 = J2, we are left 
with an effective Hamiltonian which acts on a single spin as

H2Z = ---- j— V23- (5.5)J 2

Strong field decimation If the strongest term in the Hamiltonian is a field, 
one has to consider the block (see Fig. 5.1):

H13 = — h 2 (t .j — J ^ f a '2 — •h^2(J3- (5-6)

Assuming ft2 ;§> J \ , J2 the last two term can be regarded as a small perturbation 
on the first one. These can be treated by second order degenerate perturbation 
theory in the subspace |a\ f 2 <rf) with a-f, = f  or 4- This yields for the
effective Hamiltonian:

(5-7)
fl  2

The same result can be obtained much easier by eliminating the strong coupling 
in the dual of (5.6), as shown in Fig. 5.1.
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A
h2 h 3 J2 >> h 2 ,h 3 h.23

Ji J2 J 3 J 1 J3

B
hi h2 h3

J1 J2

■3

hi
X—

Ji3

n

Ji J2 i h 2 >> Ji;J 2 Ji3

hi h 2 h3 hi h 3

h 2 >> J J 2 h

Figure 5.1: The course of MDH strong disorder RG-scheme for RTIC and RQPM. In 
case of a strong bond (A) one ends up with a single effective spin in a field I123 =
For a strong field (B) the decimation is equivalent to eliminating a strong bond in 
the dual lattice. Then the central spin is eliminated, leaving an effective coupling 
J 13 =  between remaining spins.

Thus the basic RG-equations for coupling and field decimations are given by

h = hjhi+1 
nJi

J  = J 1 Ji
Khj

(5.8)

respectively, which are related through duality. Here, for the RTIM we have 
k = 1. Note that for k > 1 the generated new couplings are smaller than 
decimated ones1, which leads to the gradual decrease of fi during the procedure.

Under renormalization one follows the probability distributions of the cou
plings R(J, Q), and that of the fields P(h,ii), which are normalized, such that

P(h,Q)dh= R(J ,Q)dJ=l . (5.9)

When the energy-scale is lowered ns <> —> <> — dil. which amounts to elimi
nating dQ[P(Q, Q) + R(il, fi)] spins, the distribution R(J, Q) is changing as

R(J, Q^dQ)  =
( M M

= j R(J,Q) + dQP(Q,Q) J  d.R J  dJ3R (Ji,0 )R (J3,0 )x

5 J Ji J3
~Q

k ) -  S(J -  R )  -  S(J -  J3 1 ^  dtt[R(tt,tt) + P(tt,tt)}
(5.10)

1 Otherwise the procedure may fail. For details see Ref. [13, 69].
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The first term in brackets accounts for generated new couplings, while the second 
and third term for decimated ones. The last factor is included in order to 
maintain normalization.

A similar equation for the field distribution follows from (5.10) through du
ality, which amounts to interchange P />’ and J  h.

Now expanding R(J,i1 — dfi) and P(h,i1 — dfi) we obtain the differential 
equations:

= R(J, 0)[P(Q, Q) -  R( Q, ft)}

JQk Ok
- P { 0 , 0 ) /  d J 'R (J ' ,Ü )R (^ - ^ , 0 ) - £  , (5.11)

Jjk j  j

dF^ ,0) = P(h, 0)[F(0, 0) -  P(0, 0)]i>O»0 O k
- R ( 0 , 0 ) /  dh 'P (h ' ,n )P (^ -^ , 0 ) - £  , (5.12)

The fixed point (0 —t 0) solution to the above equations at the critical point 
(F = F) of the RTIC (k = 1) was found by Fisher [33, 31]. It is given in terms 
of the distribution p(r]) of the variable r] = ^(ln Q — In J ) /  In Q as

p(î])dî] = exp(—T])dr]. (5.13)

5.2 Analytical study of RTIC
For the RTIC (k = 1) we found one class of solutions, which satisfy the RG 
equations also in the off-critical situation. They are of the form:

r (j , fi) = r ( n ,n ) ( n / j ) 1_fl(fi’fi)fi
p(h,n)  = P(n ,n )(n /f t)1_p(fi’fi)fi , (5.14)

where the distributions involve the parameters, R(fi) =  R(Q, il) and P(0) = 
P(il, fi), which satisfy the relation (P — R)0 = l / z  = const. Thus the solution
is characterized by a single parameter z = z(6), which depends on the quantum
control-parameter 6. At the critical point we have l/z(0) = 0, whereas in the 
paramagnetic phase 1 /z(6) > 0 and monotonically increases with 6.

In terms of the variables, u = Rtt + 1/2z = PIl — 1/2z and v = — In 11 we 
obtain the differential equation

du , 1
d i  + ^ = 4 ^ ’ (5.15)

which has the solution, u = l/(w — wo), vq = const, at the critical point with 
l / z  = 0. This is identical to the critical fixed point solution in (5.13). At 
this point we refer to Fisher’s analysis [33, 31] and conclude that the functions 
in Eqs (5.14) indeed represent the fixed point distribution for all non-singular 
initial distributions. Another argument for Eqs. (5.14) representing the true 
fixed point distribution, is based on the numerical solution of Eqs. (5.11) and
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(5.12), which are evolving towards the special solutions in (5.14) for different 
initial distributions. A third argument can be found in Ref. [52].

In the Griffiths phase, 6 > 0, the solution of Eq.(5.15) in terms of the original 
energy-scale variable, fl, is given by

_  ua/2z + l/4z2tanh [ln(fi0/O)/2z] , .
U l/2z + «otanh [ln(fio/0)/2z] ’ ’

where u = uq at a reference point Q = O0- Approaching the line of semicritical 
fixed points, i.e. for t 0, we have in leading order:

m  = Pil -  1 / z  = R(ilo)/[P(ilQ)z] (il/ilQ)1/z + ... (5.17)

thus P and R have different low energy asymptotics.
The physical relevance of 1 ¡z can be obtained by studying the change of 

number of spins, nn —¥ nn — dnn connected with a change in the energy scale 
as fl —¥ fl — dQ. This leads to the differential equation

^  = nf i[P(fl,fl) + .R(fl,fl)], (5.18)

the solution of which is given by:

nn = {cosh [ln(fio/0)/2z] + 2z t/osinh [ln(flo/fl)/2z]}-2 , (5.19)

which along the line of semicritical fixed points has the asymptotic behavior 
nn = const • fl1/2, Q —y 0. Since the typical distance between remaining spins 
is Lq ~  1/rin ~  fl_1/z, we can identify z as the dynamical exponent, which 
governs the relation between time- and length-scales as -  ~ 17 .

Next we show that z is invariant along the RG trajectory and can be deduced 
from the original distributions. For this we consider the averages, [JM]av and 
[h^n]av, and using Eqs.(5.11) and (5.12) we calculate the derivative:

J j [ ( W ] a v  = ( l " [ ( W ] a v ) x
x (p (fi,fi)fr '- '[ j'r|av +  R(n ,n)n 'j [/l- 'j]av) , (5.20)

which is vanishing for ju = /i, if [(J//i)^]av = 1. Consequently fi stays invariant 
along the RG trajectory until the fixed point, where using the distribution in 
Eqs.(5.14) we obtain jj, = 1 ¡z. Thus the dynamical exponent for the RTIM is 
given by the solution of the equation (3.13), which is then exact, since the RG- 
transformation becomes asymptotically exact as fi —¥ 0. This latter statement 
follows from the fact that the ratio of decimated bonds, An,j, and decimated 
fields, A rift, goes to zero as Arij/An^ = R(Il,Il)/P(Il,Il) ~  fi1/2. Then the 
probability, Pr(a), that the value of a coupling, J, being neighbor to a deci
mated field is fi < J  < ail with 0 < a  < 1 is given by Pr(a) = 1 — a Rn, which 
goes to zero for any non-zero a, since Ml  ~  fl1/2 at the fixed point. Conse
quently the decimations in Eq.(5.8) and the related RG equation in Eqs.(5.11) 
and (5.12) are indeed exact. Thus we presented here a derivation of (3.13), 
which is independent of that introduced in Section 3.4.
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5.3 General sealing theory
Next, we consider general random quantum spin chains with a critical IRFP and 
analyze the structure of the RG equations close to the line of semicritical fixed 
points, thus as fi —¥ 0. As for the RTIM, the decimation for fields and couplings 
is asymmetric and for fi —t 0 exclusively fields are decimated out, which are 
typically infinitely stronger, than neighbouring couplings. Therefore the RG 
decimation equations in Eq.(5.8) are asymptotically exact. The second point is 
to show that the dynamical exponent stays invariant along the RG trajectory, 
even though in the starting phase the RG equations are approximative. For 
this we consider the low energy tail of the distribution function of the first gap, 
Pl (In ei), which involves the exponent z, and use the scaling result of Section 
4.2. This states that the probability distribution of the second, third, etc. gaps 
are related to Pl (In ei) as P t(lne2) ~  P | (In ei), P t(lne3) ~  P |(lnei), etc, due 
to the fact that for a small second, third gap one needs two, three independent 
SCD-s and the corresponding probabilities are multiplied. In the RG decima
tion the SCD-s are only eliminated through coupling decimation, since their 
couplings are stronger than the average fields. If at some time a SCD with a 
small gap, e\, is eliminated then in the probability distribution, Pl (lnei), one 
should consider the former second gap and use the corresponding conditional 
probability, F t (lnei) —t P l (In C2) /P l (In ei) ~  Pl (In ei). Thus the small energy- 
tail of the gap-distribution and consequently the dynamical exponent remains 
invariant under the renormalization procedure. The previously obtained exact 
results for the RTIM give strong support for the validity of these phenomeno
logical considerations.

5.4 Numerical analysis of the random quantum  
Potts model

For a numerical demonstration of the validity of the above statement we con
sidered two random quantum spin chains, the one-dimensional RQPM and the 
dimerized Heisenberg (XXX) chain, both having a set of RG equations very- 
similar to that of the RTIM in (5.8).

The q-state RQPM was already- introduced in Section 2.4.1. We study here 
its one-dimensional version given by the Hamiltonian

L  L  .. 9 — 1
H = -  E qJiö(ni,ni+1) -  Aif, (5.21)

i=i i Q k= l

where periodic boundaries are considered, i.e. spins at site 1 and site L + 1 are 
taken to be identical.

Fields and couplings play analogous role as for the RTIC. The quantum 
Potts chain is self-dual, and the quantum control parameter is the same as that 
of RTIC, given in (3.3). As it is shown in Appendix B, the recursion equations 
are of form of (5.8) and k takes the value k = q/ 2 [119].

At the critical point the RG-equations for 1 < k < oo have been solved by 
Senthil and Majumdar [119] with the result that k is an irrelevant variable and 
the IRFP is the same as for the RTIM. In the GrifRths-phase we could not find 
a complete solution of the RG equations, in spite of the close similarity- to that
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of the RTIM. We could, however, show that up to an accuracy of 0(iV-O) the 
solution is of the form of Eqs.(5.14) and thus there is infinite randomness along 
the line of fixed points.

This can be shown in an other way by using the numerical founding, that 
close to the fixed point fi = II* = 0 the distribution

p(x, It)dx = QP f  0 J d^  0 < x < 1 (5.22)

has a non-vanishing value at x=l:

p(l,Q) n=n»=o P*(l) >0 , (5.23)

while

is zero at r = 1

r(y, 0 )dy = Ü R(^ , I Ï )d^  0 < y < 1 

r( l ,û ) |n =n»=0 = r*(l) = 0.

(5.24)

(5.25)

(See Fig. 5.2.) Then equation (5.18) reduces in the vicinity of the fixed point 
(II —t 0) to

dnQ _  nQp*( 1) (5,26)

with the solution
dÜ 0 ’

nn = fF*W x const. (5.27)

Repeating the argument below Eq. (5.19), we can read off the dynamical expo
nent as

z = 1
r ( i )

(5.28)

Now we derive the form of fixed point solution to (5.12) for general k > 1, 
using the assumptions in (5.23) and (5.25), which was found by numerics.

In terms of the distribution functions (5.22) and (5.24), Eq. (5.12) can be 
written as

= p(x,Ii)\p(l,il)-r(l ,ii)] + r(l,ii) f  dx'p(x',Il)p(^jK,il)-^jK.
OX Oit JxK

(5.29)
Close to the fixed point fi = fi* = 0, where r(l,fi*) = 0, p(l,fi*) = _p*(l) and 

In-fi» = Eq. (5.29) becomes significantly simpler:

dp*x —  = ox .p*(x)(l^p*(l)). (5.30)

Its solution is

P
- l + f

(5.31)

where we have used relation (5.28).
The exponent z, however, does depend on the parameter k, since the validity 

of the condition in Eq.(3.13) is limited to k = 1, thus in general z = zK(S).
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Figure 5.2: The distributions p(x,Il) vs. x (left) and r(y,Il) vs. y (right) on a log-log 
scale for different energy scales fl denoted on the figures, obtained from the numerical 
solution of (5.11) and (5.12) with n = 3/2 and uniform distribution with ho = 2. The 
solid line in figure left corresponds to (5.31) with the extrapolated value z «  0.519. In 
figure right r(y,Il) evolves towards a power-law distribution with power — 1 as II —► 0.

We have calculated the dynamical exponent by solving numerically the RG 
flow equations (5.11) and (5.12). In a mathematical point of view these are 
connected integro-differential equations with singular kernels in the integrals.

In the numerical integration the bond and field variables are discretized, 
as Jn = n • A J  and hn = n ■ Ah, n = 1 ,2 ,..., where N  = is the
number of representative points in a unit interval, which we call resolution. The 
distribution functions R and P at a given energy-scale fi are represented by a 
set of functional values {R(Ji, Q)} and {P(hi, 0)}, respectively.

Decreasing the energy scale by a small finite value Ail the evolution of 
distribution functions was computed by the standard forth-order Runge-Kutta 
method [98].

At each stage of the energy scale the integrals in (5.11) and (5.12) have to be 
evaluated, where the domain of integration vanishes as fi —¥ 0. To overcome this 
difficulty the resolution was doubled at energies fi = . by introducing
new points into the sets {R(Ji, Q)} and {P(hi, 0)} in between already existing 
points through polynomial fitting.

The normalization of distributions, which otherwise would deteriorate due 
to numerical errors, was restored after each Runge-Kutta step by integrating P 
and R over the whole domain of definition and renormalizing them. In the re
gions, where the integrand was slowly varying, a standard quadrature (Simpson 
formula [98]) was used, while the region containing the singularity was found to 
be able to be well approximated by a power-law. The border separating the two 
regions, were set automatically by monitoring the error of polynomial fitting.

The procedure was stopped at the final energy scale fi/  = and the
effective value of the dynamical exponent for various intermediate energy scales 
were extracted by fitting a straight line to p(x,i2) in a log-log plot (Fig 5.2), 
where the slope is asymptotically related to z according to (5.31). These values 
were then extrapolated to fi = 0. The computation was then repeated with 
larger and larger resolutions, and finally the effective values were extrapolated to 
N  —y oo, by the BST-algorithm [8]. Starting with a uniform initial distribution 
in (4.19), the resulted values of zK are seen in Fig. 5.3.

We have also calculated the dynamical exponent by a numerical implemen-
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Figure 5.3: Dynamical exponents from numerical solution of Eqs. (5.11) and (5.12) 
(denoted by a and v), and from numerical iteration of recursion-equations (5.8) for 
different values of the parameter k. For k = 1 (RTIM and the random dimerized 
XX-chain) the exact result is given by the full line, for k = 2 and 4 the broken lines 
are guide to the eye.

tation of the RG scheme over 50000 samples of length L < 214. Starting with 
the uniform probability distribution, we got the estimates shown in Fig. 5.3: 
l / z K is a monotonously decreasing function of k and eventually it is expected 
to go to zero in the whole Griffiths phase in the limit k —¥ oo.

These results were compared with dynamical exponents of the XXX-chain, 
calculated by P. Lajko, directly from the asymptotic behaviour of the distribu
tion of surface magnetization, as given in Eq. (3.14). For the dimerized XXX 
chain J  and h, in Eq.(5.8) are replaced by the Heisenberg couplings at odd and 
even positions, J0 and Je, respectively, and the parameter takes the value k = 2 
[89, 32]. The distance from the critical point is measured similarly to (3.3). For 
numerical calculations of surface magnetization the DMRG method was used, 
for chains with L < 64 and some 20000 samples were considered. An overall 
agreement between dynamical exponents calculated by the two methods was 
found. As a demonstration we show in Fig. 5.4 the distribution of m s for the 
XXX-chain and for the q = 4 state RQPM, where for both models we are at 
the same distance from the transition point. As seen in Fig. 5.4 the asymptotic 
behavior of the two distributions is identical, as expected on the RG basis, since 
k = 2 for both models. Furthermore the dynamical exponents agree very well 
with those calculated by the RG method.

5.5 Summary
In this chapter we have pointed out by exact calculations on the RTIC and gen
eral scaling considerations, that MDH RG-method is applicable along the lines 
of semicritical fixed points of quantum spin chains, where it is asymptotically 
exact. We found the fixed point solutions to the RG flow equations governing 
the RTIC in the Griffiths region. We presented an exact result for the dynam
ical exponent, and showed, that z stays invariant along the RG procedure. By 
a general scaling argument on the gap distribution we suggest this later state
ments to be generally valid for other spin chains. We performed a numerical 
analysis of RG flow equations of the one-dimensional RQPM, and determined
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ln(ms) [t]

Figure 5.4: Probability distribution of the logarithm of the surface magnetization 
of the dimerized random XXX-chain with 8 = —(In 2)/2 for different finite systems 
calculated by the DMRG method by P. Lajko. The slope of full straight line 1 /z(8) = 
0.47 comes from the RG treatment. In the inset the same quantity is shown for the 
q = 4 state RQPM at the same distance from the critical point. The asymptotic slope 
of this distribution can be well fitted by the same exponent as for the XXX-model.

the K-dependent dynamical exponents. For k = 2 an excellent agreement was 
found with DMRG results on the dimerized XXX model, which is described by 
the same RG equations. These and other numerical results strongly support the 
asymptotic exactness of the procedure and the correctness of other exact and 
phenomenological findings.



Chapter 6

T he random  X X - and X Y  
chain

In this chapter we are going to extend the methods and calculations brought 
out in Chapter 4 to other disordered quantum spin chains. Namely, we are 
going to study here XY- and dimerized XX spin-| chains with random exchange 
couplings by analytical and numerical methods and by phenomenological scaling 
theory.

6.1 Phase diagram with non-random couplings
First we introduce a few well-known antiferromagnetic spin-| models including 
those, which are the subject of investigation, then we give a brief survey of their 
zero-temperature phases.

We start with the general one-dimensional XYZ model, the other models 
under investigation are its special cases. It is given by the Hamiltonian

H x y z  =  Y , ( J i S i S f+1 +  J ? S ? S ?+i +  J i S i S i+i)
i

(6 .1)

where S f  = are the components of a spin-^ operator attached to site l. 
By rotating the spins at appropriate sites, one can always render the couplings 
J f  and J f  to be positive. If the couplings Jf  are now positive, the model is 
antiferromagnetic, while if they are negative, it is ferromagnetic.

The special cases we consider are the following. Putting Jf  = J f  = Jf  
in (6.1) one gets the Heisenberg (or XXX) model. If J f  = J f  ^  Jf  in (6.1), 
the model is called XXZ model. Moreover if Jf  = 0 one arrives to the simpler 
XX model. In the above models Sf. = ^  Sf  is a conserved quantity. Keeping 
Jf  = 0 but allowing J f  and J f  to be different, the resulting model is called X Y  
model.

The homogeneous XYZ model (i.e. J f  = J x, J f  = J y, Jf  = J z) is controlled 
by two parameters: The parameter A given by

A = 2 J z
J x + Jy (6.2)

53
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Figure 6.1: Left: Zero-temperature phase diagram of the pure antiferromagnetic XYZ 
chain. Phase boundaries are indicated by solid lines. XAF(YAF) refers to a phase 
with antiferromagnetic order in the x(y) direction. ZF(ZAF) denotes a phase with 
(anti)ferromagnetic order in the z direction. The points labeled by H have Heisenberg 
symmetry. Right: Phase diagram of the pure dimerized XX chain.

and the anisotropy parameter

j x
J x + Jy (6.3)

The phase diagram is shown in Fig. 6.1 [4]. The system exhibits QLRO with 
continuously varying decay exponents along phase boundaries. These criti
cal lines separate various long-range ferro- and antiferromagnetically ordered 
phases. The point a = 0, A = 1 corresponds to the antiferromagnetic Heisen
berg chain, whereas a = 0, A = — 1 can be transformed to a Heisenberg ferro- 
magnet. The XY chain takes place along the line A = 0 divided into two parts 
by the isotropic XX point.

Another issue in the context of XX chain is dimerization. (See Fig. 6.1 
(right).) It was pointed out by Haldane, that isotropic antiferromagnetic chains 
of integer spins have an energy gap, whereas half integer spin chains are gap
less [42]. However, alternating couplings in spin-1/2 chains enforce a dimerized 
ground state, and an energy gap is induced. See Fig. 6.1 (right). In the absence 
of disorder the spin-1 and dimerized spin-| chains are in the same phase. This 
dimerized phase is characterized by a finite gap, exponentially decaying spatial 
correlations, and a non-vanishing string order parameter(see Ref. [47, 45]).

Now we shall focus on the line A = 0 and summerize the existing results on 
the system subjected to randomness.
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6.2 Previously known results for random cou
plings

The XX point is known to be unstable both against symmetric randomness 
J f  = J f , and a,symmetric randomness, i.e. when J f  and J f  are drawn from 
independent distributions, nx(Jx) and ny(Jy), respectively [29]. Furthermore 
in both cases the fixed point governing the critical behaviour is an IRFP.

In case of asymmetric randomness one obtains the random XY chain. The 
known results on this model are taking over from that of RTIC through the 
mapping of the XY chain into two decoupled RTIC. This mapping was developed 
in the thermodynamic limit and for finite chains with periodic boundaries [32, 
103, 45].

The quantum control parameter of the model is the average anisotropy de
fined as:

s _  [In J a]av ~ [In j y]a.v 
“ var[ln J x} + var[ln J y] (6.4)

For 5a > 0 (< 0) there is long-range order in the x (y) direction, i.e. 
limr_KX)[C7i(i*)]av ^  0 for n = x(y), where [C7i(r)]av is defined in (3.46). Cx(r) 
in the XY model can be expressed as the product of two independent Ising 
correlators (3.7). Thus at criticality (ôa = 0) the typical spin-spin correlations 
(p = x,y) decay as ~  erArl/2, where the distribution of A is broad, like in 
the RTIC. Whereas average correlations decay algebraically (QLRO), with bulk 
decay exponents twice as that of RTIC, i.e. r f  = rfy = 3 — f S .  The correlation 
length exponent is the same as that of RTIC, i.e. v = 2.

Considering the random XX model, where couplings are correlated as J f  = 
J f  = Jj, one can move the system away from criticality by introducing alter
nation such that even (e) and odd (o) couplings, connecting the site 2i, 2i + 1 
and 2i — 1,2i, respectively, are taken from distributions (f{ J e) and p°( J°). The 
quantum control parameter is now the average dimerization defined as:

= [In J°]av -  [In J e]av
d ~  var[ln J°] + var[ln J<=] ' 1 ' j

At 8d = 0 the system is critical. According to the RG treatment by Fisher 
[32], in the resulting phase all spins are paired and form singlets, however, the 
distance between two spins in a singlet pair can be arbitrarily large. It is thus 
termed random-singlet (RS) phase. The long singlet bonds are typically much 
weaker than short ones and bonds cannot cross each other. The relation between 
length and time scale was found to be identical to that of RTIC in (3.11). Typical 
spatial correlation of spins decays as ~  e~Ar'1/2, where the constant A is broadly 
distributed. Although rare widely separated pairs of spins, which have strong 
0(1) correlation lead to the algebraic decay of average correlations. Because of 
the singlet nature of pairs of spins, all components decay with the same power, 
which is r]x = r]y = rf = 2. This phase is gapless, and there is no string order. 
The RG approach predicts the antiferromagnetic random XX fixed point to 
control the critical behavior of the antiferromagnetic Heisenberg model, too.

The region 8a f  0 corresponds to the random dimer (RD) phase, which is 
gapless like the RS  phase, but has a non-vanishing string order.

In both random XX and XY chains, a Griffiths phase takes place around the 
critical point. As shown by an RG analysis [51, 135], applicable in the vicin
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ity of the RS fixed point, the Griffiths phase is characterized by a dynamical 
exponent predicted to be a continuous function of the quantum control param
eter (anisotropy or dimerization) and the singular behavior of different physical 
quantities are all expected to be related to it.

The RG predictions [32, 51, 135] have been compared to the results of nu
merical studies [40, 118, 45], especially in the RS phase of isotropic chains. In 
the RS phase some numerical results are controversial: in earlier studies [118] a 
different scenario from the RG picture is proposed (in particular with respect to 
the transverse correlation function), later investigations on larger finite systems 
have found satisfactory agreement with the RG predictions [45], although the 
finite-size effects were still very strong.

6.3 Results
In this chapter we extend previous work in several directions. Here we consider 
open chains and study both bulk and surface quantities, as well as end-to- 
end correlations. We develop a phenomenological theory which is based on 
the scaling properties of rare events and determine the complete set of critical 
decay exponents. We calculate numerically (off-diagonal) spin-operator profiles, 
whose scaling properties are related to (bulk and surface) decay exponents [129] 
and compare the profiles with predictions of conformal invariance. Another new 
feature of our work is the study of dynamical correlations, both at the critical 
point and in the Griffiths phase, which are not accessible by the MDH RG- 
method. Finally, we perform a detailed analytical and numerical study of the 
Griffiths phase and calculate, among others, the exact value of the dynamical 
exponent.

6.3.1 Free-ferm ion rep resen tation
We consider an open XY chain (i.e. with free boundary conditions) with L sites 
described by the Hamiltonian:

L - l

II E  (J'lSfS'U 1 + J?S?S!+1) (6 .6)

i=i
We use two types of random distributions already introduced in Section 4.3, 
both for the XY and XX models. One of them is a binary distribution:

7TX(JX) 
TTy(Jy)

the other is a uniform one: 

7TX(JX)

7Ty(Jy)

p6(Jx -  A) + q6(Jx -  A-1); 
S(Jy -  J f ) ,

f  1, for 0 < J x < 1 
 ̂0, otherwise

/  ( J f r 1, for 0 < J y < Jq 
\  0, otherwise

(6.7)

(6.8)

For the XX model the corresponding distributions (f{ J e) and p°(J°) follow from 
correspondences:

./■' ./'. jy  ./•
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nx(Jx) -+pe(Je), ny(jy) ^  p°(J°) . (6.9)
Note that the critical points of the two models (6a = 0 and 6a = 0, respectively) 
are not equivalent due to the different disorder correlations.

Following a completely analogous way, as for the RTIC, i.e. performing the 
Jordan-Wigner transformation, and a subsequent canonical transformation, the 
Hamiltonian (6.6) is mapped into a system of non-interacting fermions with 
Hamiltonian (3.15). For details see Appendix A. The fermion excitations are 
non-negative and satisfy the set of equations

^ , ( 0  = J j > _ M i - i )  +  J ^ g (i +  i )

e,<M0 = Jf_1vPg( | - l )  + J«*q(l + 1), (6.10)
with boundary conditions J |  = J f  = 0. These equations are nothing but (A. 14) 
in components. Introducing a 2L-dimensional vector Vq with components:

Vq(41 -  3) = <I>,(2/ -  1), 1/(41 -  2) = >F;(2/ -  1),
1/(41 -  1) = * 9(21), Vq(41) = $,(21); (6.11)

Eqs.(6.10) then correspond to the eigenvalue problem of the matrix:
/  0 0 J f \

0 0 0 Jf
J f 0 0 0 J'i

J f  0 0 0 n
J f  o 0 0 J!

T =
n 0 0 0

JÏ-2  0 0
J Ï - 1 

0 J X
J L - 1

J Î - 1 0 0 0
V J x

J L - 1 0 o /
We confine ourselves to the positive part of the spectrum, as was argued in 
Appendix A. The eigenvalues of T in (6.12) are of two classes. Forg = 2i —1, i = 
1 ,2 ,... ,L  the even components of the eigenvectors are zero, i.e. V2,_i(2j) = 
0, j  = 1 ,2 ,..., L, whereas for the other class with q = 2i the odd components 
are zero, V2,(2j — 1) = 0. Consequently T can be expressed as a direct product 
T =  T j 0 T r, with the tridiagonal matrices , T t of size L x  L. As a result 
one has to diagonalize these two matrices. Thus for chains with even number of 
sites, L = 2N,  the two classes of eigenvectors are given in terms of the vectors 

and 4/ via: C 2 * - i  : $ 2 i - i ( 2 j )  — 4 /2 * - i ( 2 j  — 1) — 0
e2 i: $ 2* (2,7 — 1) = * 2i(2j) = 0 (6.13)

for i , j = l , . . . , N .
For the XX model the even and odd sectors are degenerate, e2,._i = e2,, thus 

it is sufficient to diagonalize only one matrix. In this case one has the additional 
relations:

XX — model (6.14)^2*-1(2j — 1) = * 2 i( 2 j - l )
*«(2 j) = * 2 i-i(2 j).

The matrices and T t are in one-to-one correspondence with the eigenvalue 
problem of one-dimensional TIM-s. This exact mapping for finite open chains 
is presented in Appendix C.
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Local order parameters Next we are going to study the long-range order in 
the ground state of the system. For similar reasons as for the RTIC, the local 
order parameter in a finite system is given by the off-diagonal matrix element:

mf  = {l\Sf |0) . (6.15)

(Note that there is a difference of a factor of |  between the form of (3.21) and 
that of (6.15) since the former is defined in terms of Pauli operators instead of 
spin operators.) It can be calculated from the determinant (3.24) containing 
matrix elements in (3.25).

For surface spins the local order parameter is simply given by mf = 4>i(l)/2, 
which can be evaluated in the thermodynamic limit L oo in the phase with 
long-range order, when e,\ = 0. Using the normalization condition ^  |4>i(l)|2 = 
1 we obtain for the surface order parameter:

mf

mf

(6.16)

We note that this formula is exact for finite chains if we use fixed spin boundary 
condition, s f  = ±1/2, which amounts to have = 0. In the fermionic
description the two-fold degeneracy of the energy levels, corresponding to s f  = 
1/2 and sxL = —1/2, is manifested by a zero energy mode in (3.15) and from the 
corresponding eigenvector we obtain mf  in (6.16) for any finite chain.

For non-surface spins the expression of the local order parameter (3.24) can 
be simplified by using the relations (6.13). Then, half of the elements of the 
determinant (3.24) are zero, the non-zero-elements being arranged in a checker
board pattern, and mf  can be expressed as a product of two determinants of 
half-size, which reads for I = 2j  as:

G l , 2 j - 2

G ? , , 2 j - 2

G 2 j - l , 2 j - 2

(6.17)

The local order parameter mf,  related to the off-diagonal matrix-element of 
the operator Sf  can be obtained from (3.24) and (6.16) by exchanging Jf  J f .

The local order parameter mf  is given as in (3.47), where |< f> z )  is now the 
ground state |0). Since (0|of |0) also contains a non-singular contribution, the 
scaling behaviour of its singular part is more convenient to determine by con
sidering the off-diagonal order parameter mf = (<j)z \<jf\Q), where ( < f > z \ is now the 
first excited state of H, which has non-vanishing matrix element with |0) [57].

H i G 1 2 G i ;4
h 3 G 3 ,2 G 3 4

H 2 j - 1 G 2j - 1 ,2 G 2 j - 1 , 4
G 2 , i G 2 ,3  • • • G 2 ,2 j -

G ,ip G ^  3 ■ G 4 , 2 j -
C i 2 j , l 2j,3 G 2 j , 2 j - 1
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Using (4.6) the off-diagonal order parameter mf  is given by

mf  = ^| -  $ i (0 ^ 2(0 + « i(0^2(0l • (6.18)

For the XX model one can obtain simple expressions nsing the relations in (6.14) 
as:

m )i-i = | [ $ i(2* -  C]2 >
XX^model (6.19)

m |4 = |[$ i(2 i)]2 .

In the context of XY and XX chains we shall call m f ’y and mf  transverse and 
longitudinal order parameters, respectively, in the following.

Autocorrelations Next we consider the dynamical correlations Gf  (r) =
(S)Ai (T)S)A' (T)) as a function of the imaginary time r. For the ar-component of 
the surface spins they are given following (3.28) as

Gi (t ) = | £ |< M l ) | 2 e x p ire ,)
Q

L / 2

= j X i ' 1’-' i)- (6-2°)
i

where we have used the relations in (6.13).
The connected longitudinal correlation is given in a simple form for any 

position l in (4.8) as

Gf (r) = | X l  -  % « ) * ,« )  + 'MO'M'OI2 exp[^r(eg + ep)] . (6.21)
P>Q

6.3 .2  P h en om en olog ica l th eory  from  scaling o f rare even ts
In this section we identify the rare events for the random XY (and XX) model, 
which dominate the average quantities, and use their properties to develop a 
phenomenological theory in an analogous way as it has been done for the RTIC.

Surface order parameter The local order parameter at the boundary is 
given by the simple formula in (6.16), which has the same structure like that 
of RTIC in (3.27). Thus using the extreme binary distribution (i.e. A —t 0 and 
J f  = 1 in (6.7)) and following the same argumentations as for RTIC in Section 
3.5.1, we conclude with the basic correspondences between the average surface 
order parameter of the X Y  (and XX) model and the surviving probability of 
adsorbing random walks:

[ m U 6 , L ) ] a v ~ P B m v ( 6 w , L / 2 ) ,  S  ~  S w  . ( 6 .2 2 )
The scaling properties of the average surface order parameter and the correlation 
length then follow from (3.39), (3.40) and (3.41) and will be evaluated in Section 
6.3.3.
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Scaling of low-energy excitations In order to estimate the scaling of low- 
energy excitations, we neglect the r.h.s. of the eigenvalue equation of matrix T  
in (6.12), which is reasonable, if e\ vanishes at least as fast as e\ ~  1/1, with the 
system size l. We shall see, that it is fulfilled. Deriving approximate expressions 
for and 'f i we obtain, similarly to (3.42), the expression for the first gap:

f/2-1 jy,
d(l) ~  J J  ~^r~  ■ (6.23)

i=i

Here rnf is given in (6.16) and the surface order parameter at the other end of 
the chain, mf_15 is given by replacing J y - i / J i j  by in (6-16).

The characteristic excitation energy of an SCD can be estimated from (6.23)
as

i/2- 1 j v . f , ________ ,
e i(l)~  J J  ~  e x p |- y l n ( Jv/ Jx) } ,  (6.24)

j=l 2J
where ltI measures the size of transverse fluctuations of a surviving walk of 
length 1/2 and In(Jx/Jy)  is an average ratio of the couplings (it is ln(Je/J°) 
for the XX model). Applying the properties of ltI given in Section 3.5.2 we 
get similar behaviour as for the RTIC. At the critical point we arrive at (3.44), 
whereas in the Griffiths phase to (3.45), which now contains the dynamical 
exponent of the XY (XX) model.

6.3 .3  C ritica l properties
Here we consider in detail the random XY and XX chains in the vicinity of the 
critical point. The off-critical properties in the Griffiths phase are presented in 
the following section.

Length- and time scales As we argued in Section 3.5 the rare events are 
SCD-s, having a coupling distribution of surviving RW character. The typical 
size of an SCD, as given by in Eq. (3.41), is related to the average correlation
length of the system £. Then using the correspondences in (6.22), (3.41) and 
(3.53) we get the relation:

£~|<5|_,/, v = 2 .  (6.25)

The typical correlation length, £typ, as measured by the average of the loga
rithm of the correlation function is different from the average correlation length. 
One can estimate the typical value by analyzing the formula (6.16) for the sur
face order parameter, where the products are typically of Y l j i Jy - i / J i j )2 ~  
exp(const • |<5|L), thus [ms(L,6 < 0)]typ ~  exp(^const • |<5|L) ~  exp(—L/£tyP)- 
Therefore we obtain:

ptyP = 1 • (6.26)
We note that at the critical point the largest value of the above products is 
typically of Yij iJ i j - i l  ~  exp (const ■ L1/2), since the transverse fluctua
tions in the couplings are of O (L1/2). Therefore we have [ms{L,5 = 0)]typ ~ 
exp(^const • L1/2).

As shown in Eq. (6.24) the value of the smallest gap is related to the size 
of transverse fluctuations of an SCD ltr. Close to the critical point (8 —¥ 0) one
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has ltr ~  C1/,2j and therefore the characteristic relaxation time of a sample scales 
with correlation length £ as

ln rrei ~ £ 1/2. (6.27)

We note that the results in this part about length- and time scales are valid 
both for the XY- and XX models. They also hold in identical form for the 
RTIC, which can be understood as a consequence of the mapping of the XY 
chain into decoupled RTIC-s.

Quasi-long-range order

At the critical point the decay exponent of correlations are related to the scaling 
exponent x,z of the fraction of rare events of the given quantity (see Eq. (3.50)) 
and its value generally depends on the type of correlations of the disorder, thus 
it could be different for the XY and the XX models. Analyzing the scaling 
properties of the rare events in the XY and XX chains we have calculated the 
critical decay exponents of different correlation functions, both between two 
spins in the volume and for end-to-end correlations. Our results are presented 
in Table 6.1.

In the following we are going to derive these exponents by analytical and 
scaling methods and then confront them with the results of numerical calcula
tions based on the free fermion technique.

Longitudinal order parameter We start with the scaling behavior of the 
longitudinal order parameter mf,  which in the XX chain is given by the simple 
formula in (6.19). Summing over all sites one gets the sum-rule

L

J 2 ml = 1 x x  -  model, (6.28)
j=i

where we have used (6.13) and the fact that the <S>g and 'Iy; are normalized. 
Since this sum-rule is also valid for the average quantities, we get immediately

[mf]av = L- 'rh’ il/L) , (6.29)

where m z(l) is a scaling function with I = l/L. Consequently for bulk spins the 
finite-size dependence of the local order parameter is [mf]av ~  L -1 , thus we 
have xz(XX)  = 1 and from (3.50) the decay exponent is

T]Z(XX)  = 2.

rf  (XY) r f ( XX) rf  (XY) r f {XX)
bulk 3 \/5^**) 2(*) 4 2(*)

surface i 1 2 1

Table 6.1: Decay exponents of critical correlations in the random XY and XX chains. 
The exponents with a superscript ^  are those calculated by Fisher with the RG 
method [32], whereas follows from the results of the RTIC in Ref. [33, 31].
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A further consequence of the sum-rule is that the average value of the bulk order 
parameter is the same, if the averaging is performed over any single sample. 
Thus the order parameter m z and the correlation function (0\Sf S'f+r|0) are self
averaging. This is quite unusual in disordered systems where the correlations 
are generally not self-averaging [25].

The surface order parameter mf  for the XX model satisfies the relation 
mf = 2 (m fy ,  which follows from relation mf = $ i( l) /2  and (6.19). Then 
a rare event with mf = 0(1) is also a rare event for the order parameter mf. 
Consequently the fraction of rare-events Pf is given by the surviving probability 
in (3.39). Thus the scaling dimension is xf = 1/2 and the decay exponent of 
critical end-to-end correlations is

r,f(XX) = 1.

We calculated the order-parameter profile [m/]av numerically for large finite 
systems up to L = 256. As shown in Fig. 6.2 the numerical points of the scaled 
variable T[mf]av are on one scaling curve m z(l) for different values of L. The 
scaling curve has two branches for odd and even lattice sites, which cross at 
l = L/2. The upper part of the curves in the large L limit is very well described 
by the function m z(l)n = „4sin(7rl)-1/2, which corresponds to the conformal 
result on off-diagonal matrix element profiles [129]:

/ it \  X>1 (  ] \
[mf]av ~  ( - )  isinTT-J , (6.30)

with x z = 1 and xf = 1/2. On the other hand the lower part of the curves in 
Fig. 6.2 is given by fnz(l)\ = „4sin(7ri), which corresponds to Eq. (6.30) with 
xf = 2. Thus we obtain that average critical correlations between two spins 
which are next to the surface are decaying as [CZ(2,L — l)]av ~  L~A. Using 
the sum-rule for the profile in Eq. (6.28) and the conformal predictions one 
can determine the pre-factor A  from normalization. Then from the equation 
A/2 ^ [ ( sm u x)^ 1/2 + sin7ra:]da: = 1, one gets A  = .86735, which fits well the 
numerical data on Fig. 6.2.

These results about the conformal properties of the profile are in agreement 
with similar studies of the RTIC [57, 58]. Thus it seems to be a general fea
ture that critical order-parameter profiles of random quantum spin chains are 
described by the results of conformal invariance, although these systems are 
strongly anisotropic (see Eq. (6.27)) and therefore not conformal invariant.

Next we turn to study the order parameter mf  and the longitudinal corre
lation function in the random X Y  model. In this model the disorder in the 
J f  and Jf  couplings is uncorrelated, therefore one can perform averaging in 
the two subspaces and T t , or in the two decoupled RTIC-s, independently. 
Note that the expression for mf  in Eq. (6.18) is given as a product of two 
vector-components, where each vector belongs to different subspaces and have 
the same average behavior. Since the couplings entering the two separate eigen
value problems are independent one gets for the disorder average

[ m f ] av =  [ $ l ( 0 ] a v - [ * 2 ( * ) ] a v .  ( 6 -3 1 )
The probability for mf  being of order one is the product of the probabilities for 

(I) and ^ 2(0 being of order one hence we conclude that the scaling dimension
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
(l-0.5)/L

Figure 6.2: Finite-size scaling plot of the longitudinal order-parameter profiles [mf ]av 
for the XX model at criticality for different system sizes calculated numerically with the 
fermion method using Eq. (6.19). The data are for the uniform distribution, averaged 
over 50000 samples. The profiles predicted by conformal invariance are indicated by 
full lines.

(l-0.5)/L

Figure 6.3: Finite size scaling plot of the longitudinal order-parameter profiles [mf ]av 
for the XY model at criticality for different system sizes calculated numerically with 
the fermion method using Eq. (6.19). The data are for the uniform distribution, 
averaged over 50000 samples.

for mf in the random XY chain is twice that for the random XX chain. Thus 
the decay exponents are

jf  (XY) = 4

and
tjU XY )  = 2

in the bulk and at the surface, respectively.
The numerical results about the order-parameter profile is shown in Fig. 6.3. 

The data collapse is satisfactory, although not as good as for the X X  model. 
Similar conclusion holds for the relation with the profile predicted by conformal 
invariance, which is also presented in Fig. 6.3.

Transverse order parameter We start with the surface order parameter, 
mf,  as given by the simple formula in Eq. (6.16). This formula is identical both 
for the XY and XX models and its average behavior follows from the adsorbing
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(l-0.5)/L

Figure 6.4: Transverse order-parameter profile [mf]&v for the XY model at criticality 
for different system sizes calculated numerically with the fermion method using Eq. 
(6.17). The data are for the uniform distribution, averaged over 50000 samples.

random walk mapping in Section 6.3.2. Then from Eqs. (6.22) and (3.39) one 
gets xf  = 1/2 and

V ? = 1 ,
both for the random XY and XX models. The value of the decay exponents 
follows also from the mapping to two RTIC-s. As shown in Eq. (C.8) the 
correlation function (S,fjS,fi+2r) is expressed as the product of spin correlations 
in the two RTIC-s, one with open boundary conditions, but the other is taken 
with fixed-spin boundary conditions in terms of dual variables. For end-to-end 
correlations this second factor in the product is unity, since it is the correlation 
between two fixed spins. Therefore end-to-end correlations in the RTIC and the 
random XY and XX models are identical.

For bulk correlations one can easily find the answer for the XY model with 
the mapping in Eq. (C.l). When the two points of reference are located far 
from the boundary, the chosen boundary condition does not matter. After 
performing the independent averaging for the two factors of the product one 
obtains [(S,fjS,fi+2r)]av = l/4[(<7fof+r)]|v, thus we recover Fisher’s result:

j f  (XY) = 2r](TIM) = 3 -  VE . (6.32)

The scaling exponent xx(XY)  can identically be obtained from the expression 
of the order-parameter profile in Eq. (6.17), which is in the form of a product 
of the two Ising order parameters and for the XY model the two factors are 
averaged independently.

For the XY model the numerically calculated profile is shown in Fig. 6.4. 
The scaling plot with the exponents in Table 6.1 is reasonable, although larger 
systems and even more samples would be needed to reach the expected asymp
totic behavior, as predicted by conformal invariance in (6.30).

The arguments leading to the prediction (6.32) for the transverse bulk order 
parameter exponent do not apply for the XX model and one cannot obtain a 
simple estimate for the bulk decay exponent from Eqs. (C.8) or (6.17) due to 
the following reason. The expressions with the parameters of the two quantum 
Ising chains contain real and dual variables for the two (a and r) systems. 
Since Jf  = J f  = Ji a domain of strong couplings in the a chain corresponds
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-L+1 ■■■ -5 -3 -1, 1/X, 1/X , X , X , X 1 3 5  ■■■ L-1

X . X , 1/X, X .1/X,

Figure 6.5: Sketch of a bond configuration for a chain of length 2L — 1 that gives a 
non-vanishing transverse magnetization mx ~ 0(1) for the central (bulk) spin. The 
example is for the extreme binary distribution. Weak couplings (J-u-i = A) correspond 
to downward steps of the random walk on both sides of the central spin (here at 0). 
Note that both, the right and the left half of the random walk have surviving character, 
i.e. do not cross the starting point.

to a domain of weak couplings in the r  chain and reverse. Therefore the rare 
events of the TIM can not be simply related to the rare-events of the XX chain.

The value for f f ( X X ) ,  however, can be obtained by the following argument. 
For simplicity let us consider the extreme binary distribution in which J2, = 1 
and J2j- i = A or 1/À with probability 1/2, taking the limit A -+ 0. Then from 
Eq.(6.16), one gets a non-vanishing transverse surface magnetization, only if the 
disorder configuration has a surviving walk character (meaning J/[(=1 ¿2 i-i < oo 
for all I = 1 ,.. .,  L / 2 — 1). This implies, also for general distributions of couplings 
that mf  ~  0(1) only if the surface spin is weakly coupled to the rest of the 
system. It is instructive to note the difference to the surface magnetization in 
the RTIC, where mf  ~  0(1) when the surface spin is strongly coupled to the 
rest of the system, meaning that 111=1 (V^*) < oo for all l = 1 ,... ,L — 1 for 
the extreme binary distribution.

The same remains true for a bulk spin, which also has non-vanishing trans
verse magnetization only if it is weakly coupled to the rest of the system (the 
trivial example being when both its couplings to the left and to the right are 
exactly zero, which gives the maximum value mf = 1/2). Thus the central 
spin in a chain of length, say 2L — 1, has mx ~  0(1) if and only if the bond- 
configurations on both sides have surviving character, as it is depicted in Fig. 6.5 
for the extreme binary distribution. Since the probability Psurv(L/2) for a con
figuration of L/ 2 couplings to represent a surviving walk is Psurv(L/2) ~  L-1/2 
it is

mf  ~  {Psurv(L/2)}2 ~  L - \  i.e. xx(XX)  = l .  (6.33)

From this one obtains
i f  ( XX)  = 2. (6.34)

We verified the strong correlation between weak coupling and non-vanishing 
transverse order parameter numerically in the following way: We considered a 
chain with L + 1  sites and the couplings at both sides of the central spin were 
taken randomly from a distribution called S W 1, which represents those samples 
in the uniform distribution, which has a surface magnetization of mf(SW) > 
1/4. (Thus cutting one of the couplings to the central spin results in a local

1In the binary distribution SW denotes the set of coupling distributions with a surviving 
walk character.
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(l-0.5)/L

Figure 6.6: Transverse order-parameter profile [mf]&v for the X X  model at criticality 
for different system sizes calculated numerically with the fermion method using Eq. 
(6.17). The data are for the uniform distribution, averaged over 50000 samples.

magnetization greater than 0.25.) Then we calculated numerically the order 
parameter at the central spin and its average value over the SW  configurations 
lm L / 2W  as given in Table 6.2.

As seen in the Table the averaged surface order parameter stays constant 
for large values of L, whereas the bulk order parameter decreases very slowly, 
actually slower than any power. The data can be fitted by [m^^2]sw ~  (In L ) ~ ° ,  
with a «  0.5. Thus we conclude that the numerical results confirm the expo
nents given in (6.34), however there are strong logarithmic corrections, which 
imply for the average transverse correlations

[^(»OJav ~ r " 2(ln r)-1 XX model. (6.35)

These strong logarithmic corrections make the numerical calculation of the crit
ical exponents very difficult [45, 118]. In earlier numerical work using smaller 
finite systems disorder dependent exponents were reported [118]. We believe 
that these numerical results can be interpreted as effective, size-dependent ex
ponents and the asymptotic critical behavior is indeed described by Eq. (6.35).

Note that our results in Table 6.1 satisfy the relation r f ( XX)  = r f ( XX) ,  
both in the volume and at the surface, which corresponds to Fisher’s RG result 
[32]. In this way we have presented an independent justification of Fisher’s RS 
phase picture, where the average correlations are dominated by random singlets, 
so that the distance between the pairs could be arbitrarily large.

We checked numerically the above theoretical predictions in the random XX

L 2[toJ]sw 2 \fnrL/2]sw
16 0.817 0.531
32 0.806 0.471
64 0.799 0.431
128 0.792 0.413
256 0.791 0.383

Table 6.2: Surface and bulk transverse order parameters averaged over 50000 SW 
configurations for the uniform distribution.
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L xx(L)
16 0.635
32 0.677
64 0.730
128 0.823
256 0.872
512 0.910

Table 6.3: Effective bulk scaling dimension of the transverse order parameter in the 
random XX chain.

model. In Fig. 6.6 we present the scaled m'f profiles for the binary distribution 
for finite systems up to L = 512. These have a broad plateau and the data for 
different system sizes do not perfectly fall on one single scaling curve due to 
strong finite-size effects. Even system sizes as large as L = 512 appear to be 
insufficient to get rid of such correction terms. Therefore we have calculated the 
effective size-dependent xx(L) exponents by a two-point fit. To do this we have 
averaged the order parameter in the middle of the profile for L/4 < l < 3L/4 
and compared this average values for finite systems with L j 2 and L sites. As 
seen in Table 6.3 the effective exponents are monotonously increasing with the 
size of the system and they are not going to saturate, even for L = 5122.

From the data in Table 6.3 one can not make an accurate estimate about 
the limiting value of xx(L), but it is clear that xx(L) grows at least up to the 
theoretical limit xx = 1, although it could, in principle, reach even a larger 
value. We note that similar observation was made by Henelius and Girvin [45] 
from the average Sx correlation function, where the effective r f  exponents seem 
to grow over the theoretically predicted value of r f  = 2. (See Fig. 2 of Ref 
[45].)

Autocorrelations

According to the scaling theory in Section 3.5.3 the decay of average critical 
autocorrelations in random quantum spin chains is ultra-slow, it takes place in 
logarithmic time scales, as given in (3.52). Here we compare these predictions 
with the results of numerical calculations. We start with the surface autocor
relation function [Gx (r)]av for the XX model, which is calculated in the binary 
distribution (A = 4) on finite systems up to L = 128. As seen in Fig. 6.7 
(left) the logarithmic time-dependence is well satisfied and the decay exponent 
is found in agreement with r/x( XX)  = 1 as given by the scaling result in Eq. 
(3.52). For bulk spin critical autocorrelations we considered [G|^2(r)]av for the 
XX model. Again the numerical results in Fig. 6.7 (right) are consistent with a 
logarithmic decay with an exponent r f ( XX)  = 2.

Next we turn to study the distribution of critical autocorrelations. As we 
have seen the average behavior is logarithmically slow, but for typical samples, 
as described in Appendix D, one expects a faster decay with a power-law time-

2 It is not feasible to increase the size of the system further, primary not due to compu
tational demand, but due to inaccuracies in the numerical routines, even in 64-bit precision. 
The origin of this numerical difficulty are those samples with an extremely small excitation 
energy.
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Figure 6.7: Spin autocorrelation function [ G f ( r ) ] av for the XX model for L = 32,64 
and 128 calculated numerically with the fermion method using Eqs. (3.28) and (6.21). 
The data are for the binary distribution (A =  4), averaged over 50000 samples, a) 
(Left) shows l = 1, the surface transverse autocorrelations, b) (Right) shows l = L / 2, 
the bulk longitudinal autocorrelations.

Figure 6.8: Scaling plot of the probability distribution of the autocorrelation function 
Gf  (r) for the XX model for different values of r  at criticality (L = 128). The data are 
for the uniform distribution averaged over 100000 samples, a) (Left) shows l = 1, the 
surface transverse autocorrelations, b) (Right) shows l = L / 2, the bulk longitudinal 
autocorrelations.
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dependence. Then Gf (r) ~  r -7  and the 7 exponent could vary from sample 
to sample. Such type of “multi-scaling” behavior of the autocorrelations has 
been recently observed by Kisker and Young [78] in the random quantum Ising 
model. In Fig. 6.8 we have numerically checked this assumption for the critical 
autocorrelations Gf (r) and GZL ,2(r), respectively, of the random XX chain, the 
average behavior of those have been studied before. As seen in Fig. 6.8 we have 
obtained indeed a good data collapse of the probability distributions P,z (7 ) in 
terms of the scaling variable 7 = — In Gf /  In r  for both type of autocorrelations, 
but the scaling curve in the two cases are different.

The average correlation function generally have a contribution from the scal
ing function P /i(7 ), but there could be also non-scaling contributions, as found 
for the random quantum Ising chain in Ref. [35]. The scaling contribution 
is coming from the small 7 part of the scaling function, which according to 
Fig. 6.8 (left) for the autocorrelations Gf (r) approaches a finite value linearly, 
Px(7 ) ~  A + B'j. Thus we have for the average autocorrelations:

p O O

[Gf(r)]av = /  F*(7 )Gf(r)d7
Jo

r 00
~  / (A + B'j) exp(—7 lnr)d7

Jo
~  A(lnT)- 1  + _B(lnr)-2 , (6.36)

in agreement with the scaling result in (3.52) and with the numerical result in 
Fig. 6.8 (left) We note that the correction to scaling contribution to the average 
autocorrelations in (6.36) is also logarithmic.

For the critical autocorrelation Gf .,2 (t ) the scaling function in Fig. 6 .8  

(right) for small 7 approaches linearly zero3 Pz(̂ /) ~  7 . Thus the scaling 
contribution to the average autocorrelation, as evaluated along the lines of Eq. 
(6.36), is [Gf (r)]av ~  (lnr)-2 , in agreement with the scaling result in (3.52).

6.3 .4  G riffiths phase
Around the critical point both in the XY and XX chains a Griffiths phase can 
be found (See Fig. 6.9). Thinking of the mapping in (C.l) one observes, that 
the regions 0 < 6a (6a) < 6a and —Sg < Sa (6a) < 0 of the phase diagrams of the 
XY- and XX chain are mapped onto the Griffiths phase of the RTIC. Therefore 
one expects similar singularities in these regions like in the Griffiths phase of 
RTIC. The physical picture behind this singular phase in XY and XX chains 
is clear: similarly to the RTIC, the off-critical system contains rare islands of 
spins, which are locally in the opposite off-critical phase.

For the Griffiths phase of XY and XX chains all the phenomenological con
siderations, which were presented in Section 2.5.1 for the RTIC, are invariably 
valid here with d = 1. Thus all the singular quantities are described in this 
region by the dynamical exponent, which is a smooth function of the control 
parameter.

Dynamical exponent In the following we calculate the exact value of the 
dynamical exponent using the same strategy as for the random quantum Ising

3For a finite system the scaling function approaches a finite limiting value of P z {7  = 
0,L)  ~  L ^ 1/'2, which is checked numerically.
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Figure 6.9: a) (Left) Phase diagram of the random XY chain, b) (Right) Phase 
diagram of the random dimerized XX chain.

model presented in Section 3.4. Our basic observation is the fact that the eigen
value problem of the TV (or Tt ) matrix can be mapped to a Fokker-Planck 
operator, which appear in the Master equation of a Sinai diffusion. The tran
sition probabilities of the latter problem are then expressed with the coupling 
constants of the spin model. The Griffiths phase of the spin model corresponds 
to the anomalous diffusion region of the Sinai walk and from the exact results 
on the scaling form of the energy scales in this problem one obtains for the 
dynamical exponent of the XY model:

T»)

1 / z"

= 1 (6.37)
av

whereas for the XX model the result follows with the correspondences in (6.9). 
For the binary distribution in (6.7) the Griffiths phase is for 1 < J |  < A and z 
is given by

¥) ■ «“»
For the uniform distribution (6.8)

z In (l — z ^ 2) = — In Jq , (6.39)

and the Griffiths phase extends to 1 < Jq < o o .

(Jq)1̂  = cosh (

Autocorrelations Next we are going to study numerically the Griffiths phase 
and to verify some of the scaling results described above. In this respect we shall 
not consider those quantities which have an equivalent counterpart in the RTIC 
(distribution of energy gaps, local susceptibility, specific heat, etc), since that 
model has already been thoroughly investigated numerically. The autocorrela
tion functions, however, are different in the two models and we are going to 
study those in the following.

The average bulk longitudinal autocorrelation function [G ^2(r)]av of the XX 
model is shown in Fig. 6.10 in a log-log plot at different points of the Griffiths 
phase. The asymptotic behavior in (3.55) is well satisfied and the dynamical 
exponents obtained from the slope of the curves are in good agreement with the 
analytical results in (6.37). Similar conclusion can be drawn from the average 
surface transverse autocorrelations, [Gf (r)]av, as shown in Fig. 6.10.

Next we study the distribution of the autocorrelation functions. In Fig. 
6.11 the distribution of the bulk longitudinal autocorrelation function of the
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Figure 6.10: The average surface (left) and bulk (right) autocorrelation function 
K / 2'i (T)]»v °f the X X  model in the Griffiths phase for various values of ho. The 
straight lines have a slope of l/z(ho),  where the dynamical exponent z(ho) agrees well 
with the exact value determined via the formula (6.37). The data are for the uniform 
distribution averaged over 50000 samples of size L = 128.

5 10
x = -In gL/2(t) / t

15 
1/(1+z)

200

Figure 6.11: (Left): Probability distribution of the bulk longitudinal autocorrelation 
function of the XX model in the Griffiths phase for ho = 1.5. The data are for the 
uniform distribution from 100000 samples of size L = 128. (Right): Scaling plot of the 
data in the left figure. The scaling variable [In G2:( r ) ] /r 1̂ 2:+1') contains the dynamical 
exponent z(ho) known from the formula (6.37). The full curve is the theoretical 
prediction in (6.42) using the exact value of z(ho =  1.5) =  2.659 and a fit-parameter 
c =  0.22.
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XX model is given at different times r. As argued in Appendix D, the typical 
autocorrelations are of a stretched exponential form

Gm(t) ~  exp -(t€0z)GC+O i + i if # 0 (6.40)

thus the relevant scaling variable is

In G ^ r)
ti /G+i ) (6.41)

Using this scaling argument we obtained a good data collapse of the points of 
the distribution function as shown in Fig. 6.11 (right). We note that for the 
random quantum Ising model Young [138] has also derived the scaling function 
from phenomenological arguments,

P ( x )  = d c x f G  exp - - -----(cx)1+1/z (6.42)

which is also presented in Fig. 6.11. One can see considerable differences be
tween the numerical and theoretical curves. Similar tendencies have been no
ticed for the RTIC in Ref. [138]. The discrepancies are probably due to strong 
corrections to scaling or finite-size effects. These corrections, however do not 
affect the scaling form in (6.41).

6.4 Summary
We have performed a detailed study of the scaling behavior of rare events ap
pearing in the random XY and XX chains. We identified them as strongly 
coupled domains, where the coupling distribution has some surviving random 
walk character. From the scaling properties of the rare events we have identi
fied the complete set of critical decay exponents and found exact results on the 
correlation length exponent and the scaling anisotropy.

Another new aspect of our work was the study of dynamical correlations. We 
have obtained the asymptotic behavior of the average autocorrelation function 
and determined the scaling form of the distribution of autocorrelations.

In the off-critical regime we investigated the singular physical quantities in 
the Griffiths phase. In particular we have obtained exact expression for the 
dynamical exponent z, which is a continuous function of the quantum control 
parameter and the singularities of all physical quantities can be related to its 
value.



Chapter 7

T he R andom -bond P o tts  
m odel in th e  large-g lim it

7.1 Introduction
So far we have dealt with quantum models, but in this chapter we turn our 
attention to a classical model, the two-dimensional g-state random-bond Potts 
model (RBPM) defined in (2.28). Much work has been devoted to this model, 
the transition point of which is known from self-duality also in its disordered ver
sion [76]. In the pure model an exact result by Baxter [4] ensures a first-order 
transition for q > 4. Although early Monte Carlo (MC) simulations [23, 27] 
left space for an interpretation [71] of a ^-independent super-universal behav
ior in random systems, later extensive MC [105, 18, 19, 20, 101] and transfer 
matrix[12, 66] calculations consistently determined g-dependent magnetic expo
nents, whereas the correlation length exponent v was found to be close to the 
pure Ising value Vi = 1 for all q.

In the large-g limit thermal fluctuations are reduced and as a consequence 
the pure model is soluble in any dimension and a perturbation expansion in 
powers of l /q 1̂  can be performed. In the same limit for the random model 
at the phase transition point an effective interface Hamiltonian has been con
structed and mapped onto the interface Hamiltonian of the random-field Ising 
model [12, 66]. This mapping has then been used to relate the phase diagram of 
the two problems and to deduce the tricritical exponents of the RBPM at d > 2 
dimensions. However, in the large-g limit no direct calculation to study the crit
ical behavior has yet been performed. In two dimensions the presently known 
information is obtained via extrapolation of the results calculated at finite values 
for q. From these estimates no special type of critical behavior is expected in the 
large-g limit. For example the magnetization scaling dimension x m seems to sat
urate at a finite, non-trivial limiting value [99, 67] lim^oo x m(q) k, 0.17 — 0.19. 
However, at this point one should note on the presence of strong (logarithmic) 
corrections in the form of 1/ln q (see Fig. 5 in Ref. [99]).

In this chapter we are going to present a direct investigation of the criti
cal behaviour of the random-bond Potts model in the large-g limit. As will be 
shown, in this limit the thermal fluctuations are negligible and the calculation 
of the average thermodynamical and correlation properties of the model is ef

73
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fectively reduced to an optimization problem. Here the competition between 
ordering effects, originating from a tendency to clustering, and disordering ef
fects, due to energy gain from quenched disorder, play an important role in 
determining the optimal structure. In two dimensions we perform a numerical 
study based on simulated annealing and a combinatorial algorithm, and also 
conformal aspects of the problem are investigated.

7.2 Cluster representation in the large-g limit
We consider the q-state Potts model on a d-dimensional hyper-cubic lattice with 
periodic boundary conditions given by the reduced Hamiltonian:

H
i/r

<«>
(7.1)

where ify  > 0 are reduced ferromagnetic couplings. The d-dimensional hyper
cubic lattice corresponds to a graph G = (V, E), where V is the set of vertices, 
which is identical to the lattice sites, and E  is the set of edges, which is identical 
to the bonds between neighbouring sites on the lattice. As shown in Appendix 
E, in the random cluster representation [73] the partition sum of the model Z  
is expressed as a sum over all subsets U C E  of the set of edges (or bonds) as:

e  ' n  %  - (7-2)
u c e  (ij)eu

where n(U) denotes the number of connected clusters in the subgraph G = 
(V, U) of G, consisting of all lattice sites but the reduced set of bonds in U, and 
Vij = eKij — 1 is the Mayer function for the coupling ify. For the latter we use 
the parameterization:

va = q1/d+w» . (7.3)
Then the contributions from the different graphs to Z  are expressed in powers 
of q:

Z =  £  qF{u) (7.4)
U C E

with
F ( U )  =  n ( U ) +  ^  A + W i j ) .  (7.5)

( i j ) c u  a

In the following we consider the large g-limit (q —¥ oo), where the partition sum 
is dominated by the leading term given by the maximum value for F :

F0 = m&xucEiFiU)} , (7.6)

where —F0 corresponds to the free energy of the system, up to a prefactor of 
\¡(kT\n q) = const. Let us denote with Uq the subset of E  that gives the 
optimum in (7.6), i.e. F0 = F(Uq), and with Go = (V,Uo) the corresponding 
dominant graph. Then the energetic contribution to —F0 is due to the couplings 
in the dominant graph, whereas the entropic term is related to the number of 
connected parts. In what follows, we use the word graph when we mean the 
subgraph G = (V,U) of G defined by an edge subset U.
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In the pure system, with wy = w, the structure of the dominant graphs in 
the different thermodynamic phases are trivial. Consider a lattice with N  = Ld 
spins with fully periodic boundary conditions, the number of bonds is dN. Then, 
in the low-temperature phase with w > wc the fully connected graph (V, E) is 
the dominant graph, thus F0 = Fc = [dN(l/d + w) + 1]. On the other hand in 
the high-temperature phase, w < wc, the dominant contribution is due to the 
empty graph (V, 0), with a value of Fe = N. At wc = — 1 /dN,  when Fc = Fe, 
there is phase coexistence, which means a sharp phase transition even in a finite 
system in the limit of q —¥ oo. In the thermodynamic limit we have wc = 0, and 
the latent heat per site is given by AL /N  = 1 in our units.

Introducing disorder, such that wy can take randomly positive and negative 
values, the question arises, whether this trivial structure of the dominant graph 
persists at the transition point, i.e.: Is there still a coexistence between two 
parts of the graph, one being fully connected, whereas the other is empty? To 
study this problem Cardy and Jacobsen [12, 66] have constructed the interface 
Hamiltonian, which is then mapped onto that of the random-field Ising model. 
This has lead to the answer that for d > 2 the effect of small disorder is ir
relevant, thus there is still phase coexistence and thus the transition is of first 
order, whereas in d = 2 the phase coexistence is destroyed by any amount of 
disorder, in accordance with Aizenman and Wehr exact results [2].

In the following we are going to consider the problem in two dimension, 
where the dominant graph has a non-trivial structure. In particular we study 
the (fractal) properties of the largest connected cluster of Go, denoted by T. 
In the low-temperature phase, T  < Tc, T is compact, thus the average number 
of points in T is given by [nr]av ex N  = L2, where L  is the linear size of the 
square lattice. In the high-temperature phase, for T  > Tc, [nr]av stays finite and 
defines the average correlation length, (. through [nr]av ~  £2- At the transition 
point the average mass is expected to scale as

[nr]av ~  Ldf , (7.7)

with a fractal dimension df < 21.
The properties of [nr]av are directly related to the asymptotic behavior of 

the average spin-spin correlation function, defined in the large-g limit as

[G(r)]av = [(J(o-i,CTi ))]av , (7.8)
where (...) denotes the thermal and spatial average over all pairs of sites i and j  
with a distance r. We use the fact that correlations between two spins are gener
ally zero, unless they belong to the same cluster, when C(r) = 1. In the case of 
T  < T C, when T is a spanning cluster the probability Pr(L) that a spin belongs 
to T is given by Pr(L) = [nr]av/N , whereas the same probability for two spins is 
Pr(L)2. From this follows, that the average correlations between two spins sepa
rated by a large distance of r = L is given by: [C(r)]av ~  Pr(L)2 = ([rirJav/N)2. 
In the low-temperature phase, T  < Tc, where the average magnetization, [m]av, 
is defined as [m]|v = limr_>0O[G(r)]av, we obtain:

[m]av = lim T < T C, (7.9)
_______________________________________________________L —>go L

1At the critical point the dominant graph is generally not unique, cf. with the bimodal 
distribution in Eq.(7.12) any two clusters having just one strong and one weak bond between 
them could be either connected or disconnected. We assume that the degenerate optimal 
graphs have the same asymptotic fractal properties.
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whereas at the critical point the average spin-spin correlations decay as a power:

[C(r)]av x m = 2 - d f , T = TC . (7.10)

Finally, in the high-temperature phase, where the average size of F is finite the 
probability to have a connected cluster of size r is exponentially small, which 
leads to an average correlation function of the form [(7(r)]av ~  exp(—»*/£), f°r 
r »  £.

7.3 M ethods
Next we specify the form of the disorder, where we make use of the simplification 
that arises due to self-duality that holds under special conditions. According 
to the results by Kinzel and Domany [76] the random model is at the critical 
point, if the distribution P(w) of wy is an even function of w, i.e.

P(w) = P(-w).  (7.11)

For details see Appendix E. For convenience we use the bimodal distribution

P(w) = pS(w — oj) +  (1 — p)S(w + oj) , (7-12)

where the critical point is at p = pc = 1/2, whereas the reduced temperature 
t = (T — Tc)/Tc can be expressed as:

t = -o j (p -  1/2), |f| -C 1 . (7.13)

Generally we restrict ourselves to the range of disorder parameterized as 0 < 
o j < 1/2. We note that for o j = 0 one recovers the pure model, whereas for 
o j > 1/2 we are in the usual percolation limit. Indeed, for the latter range of 
parameters the dominant graph contains all the strong bonds, whereas the weak 
bonds are all absent.

According to the results presented in the previous Section the solution of 
the RBPM in the large-g limit is equivalent to an optimization problem with 
a non-local cost-function given by Eq.(7.5). To find the dominant graph of the 
problem we used standard, approximative procedures. Most of the results were 
obtained by the method of simulated annealing, but some calculations were 
performed by an approximative combinatorial optimization algorithm.

In the procedure of simulated annealing a hypothetical temperature variable 
T/ is introduced and, after thermalization, is lowered until the hopefully global 
minimum of the cost-function is reached. In practical applications we lowered 
the temperature as T/ = l / ( r  — 0.5), in finite time-steps r  = 1,2,.. .60, and 
checked that the resulting configuration does not change after further cooling. 
At a fixed temperature in the thermalization MC steps we generally used local 
rules by creating or removing bonds, but sometimes we also considered to move 
a full line of bonds. In order to arrive to the global minimum several differ
ent starting configurations are considered (at least three), and the best final 
configuration was taken. In the investigations generally L x L finite samples 
with linear size up to L = 24 were considered and periodic boundary conditions 
were used in both directions. For smaller sizes the averaging was usually per
formed over 10000 samples, whereas for larger sizes we used several thousands 
of realizations.
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Alternatively, for oj < 1/4 we used a combinatorial optimization algorithm 
that yields a configuration that is close to the optimum but not necessarily 
equal to it. Actually the worst case bound for the ratio of the value F0 of the 
optimal solution Uq to the value F(U*) of configuration U* that is found by the 
algorithm is only 2/3, which would be too bad for our purposes. However, in 
typical cases the configurations produced by the algorithm are much closer, as 
we checked by comparison with the configurations generated by the simulated 
annealing method. The algorithm works as follows [41]:

For all sites i let zx_, ix+, iy_ and iy+ be its left, right, lower and upper 
neighbour, respectively, and denote with (üx_), (mx+), (ny~) and (iiy+) the 
bonds (edges) between these neighbouring sites and i. These constitute a mini
mal set of edges that, when removed from G , cut the site i from the rest of the 
graph. Let us denote them by

Ei := {(«x_), («,+), (*%-), (%+)} (7.14)

and their weight

w(Ei)= ( l  + wa)-  (7-15)
( i j ) e E i

The minimum cut between any two pairs of sites, i and j, is defined as the 
set of edges that has a minimum total weight and whose removal from G cuts 
the graph into two disjoint subgraphs, one containing i and one containing j  
[1, 44, 3]. In our case it is then given either by £) or Ej, as long as |wy| < 1/4, 
as one can easily convince oneselves.

The idea of the algorithm is as follows: Obviously the removal of the edges 
contained in a minimum cut, like in £) for all i, increases the number of com
ponents in the graph by one, i.e. one wins one unit in the cost function F(U) 
(7.5). On the other hand one looses w(-E)) units and when increasing the num
ber of components of the graph G, one should keep this weight loss as small 
as possible. Therefore we consider a collection of minimum cuts as possible 
candidates of edge sets to be removed from G. Let the edge sets be ordered 
nondecreasing weight, such that w(£j) < w(E2) < • • • <w(EL2 ) and define for 
all r = 0 ,1 ,2 ,..., L2 the edge subsets

r

Ur = E \ \ J  Ei , (7.16)
i= 1

i.e. U° = E, and with increasing r successively edge sets of non-decreasing 
weight are substracted from E. When doing this, initially (i.e. for small r) most 
of the time a site will be isolated that before has been connected to a larger 
cluster and therefore frequently (depending on the weight of the substraced 
edges) F(U) will increase, as desired. These are the trial configurations for 
our optimization problem and we take the best solution among them, i.e. U* 
such that F(U*) = max{F([/r)|r = 0 ,1 , . . . ,L2}. It can be shown [41] that 
F(U*)/F0) > 2/3, also for oj > 1/4, however, in this case the minimum cuts are 
not as simple as in (7.14).

With the combinatorial optimization method we could treat larger finite 
systems (up to 128 x 128), than by simulated annealing and the number of 
configurations we used were between 10000 and 1000 for smaller and larger 
systems, respectively.
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F o r  t h e  p u r p o s e  o f  c lu s te r  a n a ly s i s  w e  im p le m e n te d  t h e  s t a n d a r d  H o s h e n -  
K o p e lm a n  la b e l in g  a l g o r i t h m  [49] in  b o t h  m e th o d s .

7.4 R esu lts a t th e  critical po in t
F i r s t ,  w e  t e s t e d  t h e  r e la t iv e  a c c u r a c y  o f  t h e  tw o  m e th o d s  b y  c o m p a r in g  th e  
v a lu e  o f  t h e  o b t a in e d  c o s t - f u n c t io n s .  F 0 .  f o r  d if fe re n t  f in i te  s iz e s . A s  a  g e n e r a l  
t e n d e n c y  s im u la t e d  a n n e a l in g  h a s  g iv e n  h ig h e r ,  t h u s  b e t t e r  e s t im a te s ,  b u t  t h e  
r e la t iv e  d if fe re n c e  fo r  L  <  16 w a s  v e r y  s m a l l ,  le s s  t h e n  0 .4 % . F o r  t h e  l a r g e s t  
s y s t e m  w e  s tu d i e d  b y  s im u la t e d  a n n e a l in g .  L  =  2 4 . t h e  r e la t iv e  d if fe re n c e  h a s  
in c r e a s e d  t o  a b o u t  0 .6 % . W e  s h a l l  l a t e r  a n a ly z e  c o n s e q u e n c e s  o f  t h e  in a c c u r a c y  
o f  t h e  r u in -c u t  m e th o d  in  t h e  m a g n e t i c  p r o p e r t i e s  o f  t h e  R B P M . I n  t h e  fo llo w in g  
w e  p r e s e n t  r e s u l t s  w h ic h  a r e  o b t a in e d  b y  t h e  m o r e  a c c u r a t e  s im u la t e d  a n n e a l in g  
m e th o d .

M ic r o s c o p ic  le n g t h  s c a le  T y p ic a l  o p t im a l  c o n f ig u r a t io n s  fo r  d i f fe r e n t  v a lu e s  
o f  u j  c a lc u la t e d  w i th  t h e  s a m e  d i s o r d e r  r e a l i z a t io n  fo r  m y ( =  ± m )  a r e  p r e s e n te d  
in  F ig .  7 .1 . T h e  p o s i t io n  o f  t h e  s t r o n g  b o n d s  (my =  +m) c a n  b e  o b ta in e d

F ig u r e  7 .1 : T y p ic a l  o p t im a l  c o n f ig u r a t io n s  fo r  d if f e r e n t  v a lu e s  o f  m c a lc u la t e d  
w i th  t h e  s a m e  d i s o r d e r  r e a l i z a t io n  fo r  m y ( =  ± m ) .

f ro m  t h e  o p t im a l  c o n f ig u r a t io n  fo r  u j >  1 /2 .  s in c e  in  p e r c o la t i o n  o n ly  th e s e  
b o n d s  a r e  o c c u p ie d .  A s  s e e n  in  t h e  f ig u re ,  fo r  s m a l le r  d i s o r d e r  p a r a m e t e r  t h e  
o p t im a l  g r a p h  lo o k s  t o  b e  m o r e  c o m p a c t ,  w h e r e a s  fo r  s t r o n g e r  u j t h e  o p t im a l  
c o n f ig u r a t io n s  a r e  v e r y  c lo se  t o  e a c h  o th e r .  T h i s  f a c t  is  a  c o n s e q u e n c e  o f  t h e  
p r e s e n c e  o f  a  f in i te  l e n g th - s c a le  in  t h e  p r o b le m .  F o r  s m a l l  u j t h e  s y s t e m  b e h a v e s
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uniformly up to a length-scale l,c which is given by estimating the size l of a 
step, which is located at the top of a straight surface of a connected cluster, see 
Fig. 7.2. Using the bimodal distribution in (7.12) the existence of the step is

- --------- l --------- -

Figure 7.2: A connected cluster with a step of i-points on the top of a straight 
surface.

connected to the condition:

2 J - 1

E w, >

where w, = ± oj with the same probability, or equivalently:

(7.17)

2 / -1
¿ > > 2 ^ (7.18)

with pi = ±1. For large I the probability distribution of the sum in the l.h.s. 
of Eq.(7.18) is Gaussian, with a variance of \J21 — 1. Consequently the average 
size of the step lc scales with a small oj as

1
2cJ (7.19)

To observe the true asymptotic behavior in the RBPM, the system size should 
be larger than this value, L > Zc(w), therefore we restricted ourselves to not too 
small oj values.

Cluster size distribution Next we analyze the distribution of the largest 
connected cluster, F. Inspecting the structure of a typical optimal graph in Fig. 
7.1 we arrive to the conclusion that F is a fractal, so that we take the scaling 
combination n r /L df , which corresponds to the form in Eq.(7.7). In Fig. 7.3 
we present a scaling plot of the reduced cluster size distribution, where a data 
collapse can be obtained with a fractal dimension df «  1.8.

We note that the points, corresponding to the smallest system, deviate more 
from the hypothetical scaling curve, which can be attributed to the effect of the 
finite length scale lc. In the inset of Fig. 7.3 a similar scaling plot is presented 
in the percolation region, i.e. for oj > 1/2, where the fractal dimension of 
percolation [123], dp = 91/48 is used. The scaling curves for oj < 1/2 and 
oj > 1/2 look different: for the RBPM the distribution is broad and there is a 
considerable weight for small clusters, whereas for percolation the distribution 
is single peaked without a relevant small cluster contribution.
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Figure 7.3: Scaling plot of the size distribution of the largest cluster at the critical 
point of the RBPM at w =  0.4 for different finite systems. A data collapse is obtained 
with a fractal dimension df «  1.8. In the inset the same quantity is plotted for 
percolation, when w > 1/2 and dp = 91/48.

Magnetization exponent Next we calculated the average density of the 
largest connected cluster [rir]a,v/L2, from the size dependence of which the frac
tal dimension df in (7.7) and the magnetization exponent xm in (7.10) follows. 
In Fig. 7.4 we have plotted [rir]a,v/L2 for different finite sizes in a log-log scale, 
using different values of the disorder parameter, oj. In this figure, besides the 
results obtained by simulated annealing, also points calculated by the approx
imate (min-cut) optimization algorithm are presented. As seen the min-cut 
algorithm works satisfactory for small systems, L < 16, when the difference in 
the cost-functions calculated by the two methods is also very small. For larger 
sizes, however, which are beyond the possibilities of simulated annealing, the 
error of the optimization algorithm increases. Based on the results presented in 
Fig. 7.4 the min-cut method tends to generate a compact cluster in the large 
system limit. Therefore we used the min-cut method only for limited sizes, 
which are anyhow manageable by the simulated annealing method, although 
with much longer computational time.

Returning to the average density in Fig. 7.4 one can observe that for the 
disorder parameter in the RBPM range, i.e. 0 < ui < 1/2, the points fall on 
nearly parallel straight lines having a slope of —2 + df ~  —0.2, where df ~  1.8 
corresponds to the value we used in the scaling plot of the reduced cluster-size 
distribution in Fig.7.3. The slope of the same line calculated in the percolation 
regime, with oj > 0.5 is significantly different, it is —2 + dp ~  —0.1, where dp is 
close to the fractal dimension of two-dimensional percolation.

The estimates of the magnetization scaling dimension x m at different disor
der parameter oj are summarized in Table 7.1.

As seen in Table 7.1 the magnetization exponent xm is approximately inde
pendent of the disorder parameter for 0 < ui < 1/2, and its value is within the 
range of xm «  0.17 — 0.19. This is in agreement with the estimates obtained 
by extrapolating the results calculated at finite q-s [99, 67], thus the two limits 
seem to be interchangeable. The apparent variation of x m with oj can be at
tributed to cross-over effects: at ui = 0 the pure system transition, whereas at
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Figure 7.4: Size dependence of the average density of the largest connected cluster at 
different values of the disorder parameter, w, calculated by simulated annealing and by 
the approximative optimization (min-cut) algorithm. Note that the min-cut method 
has a systematic error for larger systems. The slope of the curves, si, for different 
0 < w < 0.5 is approximately identical and indicated by a straight line with si = ^0.2, 
but this slope differs from that of percolation, which corresponds to w > 0.5, and the 
related straight line has si = ^5/48. Typical error of the simulated annealing method 
is indicated by the error bar, whereas the error for percolation is smaller than the size 
of the symbol.

OJ
0.2

0.25
0.31
0.4

0.185(30)
0.188(16)
0.165(15)
0.178(13)

> 0.5 0.103(2)

Table 7.1: Scaling exponent, xm, of the average magnetization for different disorder 
parameter w. The last row with w > 0.5 corresponds to normal percolation where the 
exact value is xpm = 5/48 =  0.104.

oj = 1/2 the percolation fixed point is going to perturb the value of effective, 
finite-size dependent exponents.

The magnetization exponent x m has been calculated by another method, 
which is based on conformal invariance. Here we use the result mentioned in 
Section 2.1.3, that in a long strip of width Lw and with periodic boundary- 
conditions the average correlation function along the strip decay exponentially:

[(CTjCTj+ t i ) ] a v  ~  exp(-u/£LJ  , (7.20)

where the correlation length for large widths asymptotically behaves as:

2 1TXn
(7.21)

In practical calculations we used strips of widths, Lw = 2,3,4 and 5, and with 
such a lengths, that in the calculated correlation function the exponential decay
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U) Xm
Lw — 2 Lw — 3 Lw — 4 Lw = 5

0.400
0.423
0.452

0.263(9)
0.267(1)
0.266(1)

0.166(4)
0.168(5)
0.170(4)

0.165(5)
0.167(2)
0.169(2)

0.163(6)
0.163(6)
0.163(6)

Table 7.2: Numerical estimates for the average magnetization exponent, xm, using 
the correlation length-exponent relation in Eq.(7.21) for different widths, Lw.

in (7.20) seemed not to change by further increase of the length. Generally we 
went at least up to a length of 64 sites, which has then limited the available 
widths Lw. The calculated exponents for some values of the disorder parameter 
are given in Table 7.2.

As we see the size dependence of xm is very weak for Lw > 3 and the 
extrapolated value of x m ~  0.17 is practically independent of the form of the 
disorder. This estimate is compatible with the previous one obtained by finite- 
size scaling. The fact, that this latter result lies close to the lower bound of 
the finite-size scaling one is probably due to the confluent singularity of the 
percolation fixed point, which is quite strong in the region of oj- s  we used in the 
calculation on strips.

Central charge We have also calculated the central charge of the conformal 
anomaly c [11, 46] from the finite-size correction to the free energy per width:

qt p
fo(Lw) = f 0(oo) -  —  + 0 ( L - 3) , (7.22)

U-Lw

with the result:
c =  0.74, 1, =  ! £ £ > .  (7, 3,

This is compatible with previous estimate [67] c ~  0 .5 /In 2, which is obtained 
by finite-g extrapolation.

7.5 Results outside the critical point
Finally we investigated the average magnetization, [m(L, i)]av, in the vicinity of 
the critical point. In the scaling region, defined as L\t\v = 0(1), where v is the 
critical exponent of average correlations, the average magnetization is expected 
to behave as:

[m(L,i)]av = L~Xmrh(L\t\v) , (7.24)

where m(y) is some scaling function. The calculated magnetizations at different 
finite size and temperature then should collapse to the same scaling function, 
provided the correct critical exponents xm and v are used. In Fig. 7.5 we show 
the result of such a scaling plot, where we used v = 1, as found approximately 
in finite-q calculations, whereas for xm we used our previous estimate obtained 
through finite-size scaling at the critical point. The data collapse in Fig. 7.5 is 
satisfactory, however to obtain a precise estimate on v one needs to extend the 
calculations for larger systems.
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Figure 7.5: Scaling plot of the finite-size average magnetization in the vicinity of the 
critical point, for a disorder parameter w = 0.4. The scaling exponents we used here 
are xm = 0.177 and v = 1.

7.6 Phase diagram
Working with the bimodal distribution in (7.12) our results are compatible with 
the RG-phase diagram drawn in Fig. 7.6.

PURE DIS TR PERC

1 - - 1 - 1  - 1
0 1/2 ^  oo

Figure 7.6: Schematic RG phase diagram of the two-dimensional RBPM with varying 
strength of bimodal disorder w. For details see the text.

The pure systems fixed point (PURE), located at oj = 0, is unstable against 
any weak disorder, thus the critical behavior in the range of 0 < oj < 0.5 is con
trolled by the disordered fixed point (DIS). Our numerical calculation indeed 
indicate a universality with respect of the strength of disorder. Increasing the 
disorder over oj = 0.5 we reach the region of attraction of the normal percola
tion, and the corresponding fixed point (PERC) is located at oj = oo. Our RG 
phase diagram is completed by introducing a repulsive tricritical fixed point, 
TR,  at u) = 0.5, which separates the regions of attraction of the two non-trivial 
fixed points, DIS  and PERC.  The singular properties of the TR  can be quite 
unusual, since the corresponding optimal graph is highly degenerate: the possi
ble configurations include all which interpolate between that of the RBPM and 
that of normal percolation.

The behavior of the system at the fixed point DIS,  which is the subject of 
the present study, is strongly dominated by disorder effects, whereas thermal 
fluctuations seem to be negligible. Similar, disorder dominated critical behavior 
occur in random quantum spin chains, the critical behaviour is controlled by an 
IRFP.
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7 . 7  Summary
In this chapter the critical behavior of the Potts model with non-frustrated, ran
dom bimodal couplings was investigated in the large g-limit. We have shown how 
the calculation of the free energy and the correlation functions of the RBPM can 
be mapped onto an optimization problem, which was then numerically studied 
by simulated annealing and by an approximate combinatorial optimization al
gorithm. From the finite-size scaling of the average size of the dominant graph, 
we estimated the magnetization and correlation length exponent for different 
values of the disorder parameter, the former one also by measuring correlations 
in strip geometry. Moreover we calculated the central charge from the finite-size 
scaling of free energy. Our results are more precise than previous extrapolative 
estimates and are compatible with them. On the basis of the above results we 
presented the phase diagram of the model, where certain features the disordered 
fixed point controlling the 0 < oj < 1/2 region are reminiscent of an IRFP.



Chapter 8

Sum m ary

In the present thesis we discussed random systems, where strong disorder leads 
to the possibility of obtaining exact or presumably exact results on the critical- 
and Griffiths-McCoy singularities, or at least considerably simplifies the treat
ment of the problem.

A large portion of our new results concerns the Griffiths phase of the RTIC 
and the closely related XX- and XY model. In these models, the critical be
haviour of which is controlled by an infinite-randomness fixed point, the av
erage quantities are dominated by the contribution of a vanishing fraction of 
rare samples, while other samples are irrelevant. A phenomenological scaling 
theory based on the properties of rare events was applied in order to determine 
the singular behaviour of higher gaps, non-linear susceptibility and autocorre
lations in the Griffiths phase of the RTIC and the random XY- and XX chain. 
In addition to this extensive numerical analysis based on the free-fermion tech
nique was performed. The results are consistent and show, that all singularities 
in the Griffiths phase are explained by the properties of rare strongly coupled 
domains, and this common origin manifests itself in the sufficiency of a single 
exponent for the complete description of Griffith-McCoy singularities.

On the other hand infinitely strong randomness is known to ensure the 
asymptotic exactness of the Ma-Dasgupta-Hu renormalization group treatment. 
We showed that the method is asymptotically exact also in the Griffiths phase 
due to the logarithmically broad distribution of couplings. We found that the 
dynamical exponent of the model, containing the information on the Griffiths- 
McCoy singularities, is invariant during the procedure, which makes possible to 
give an exact expression for calculating the dynamical exponent. The exact de
termination of dynamical exponents of the RQPM which is governed by similar 
RG equations like the RTIC, is still an open question.

Some of our results such as the invariance of dynamical exponent are sup
posed to be generally valid among disordered quantum spin chains, whereas 
others, e.g. the exponent relations for higher gaps, should be valid also in 
higher dimensions. Another field where the present results could be applied 
is the anomalous diffusion region of Sinai walk, which is closely related to the 
Griffiths phase of quantum chains.

The rare strongly coupled domains determine not only the properties of Grif
fiths phase but the average critical properties, as well. Using exact expressions 
for the surface order parameter of the XY- and XX chain, obtained by the free-
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fermion technique, we identified the rare events with coupling sequences having 
a surviving walk character. Close to criticality, using the properties of random 
walk we determined the complete set of critical decay exponents of the above 
models. The numerically calculated off-diagonal operator profiles together with 
the results of conformal invariance give critical exponents, which are compati
ble with those obtained by the random-walk arguments. This fact is accordance 
with other experiences that in strongly anisotropic and therefore not conformal 
invariant disordered spin chains some results of conformal theory still hold.

In the other issue we discussed, the random-bond Potts model in the large-g 
limit, the special parameterization and the q —¥ oo limit converts the problem of 
calculating the thermodynamical and correlation properties into an optimization 
problem. The finding that a single graph describes the properties of the system 
is parallel to the important role of rare samples in the previous problem.

So we have dealt in this thesis with singular properties of strongly disordered 
models at criticality and in the Griffiths phase. Among our findings obtained 
in special models, there are a number of results which are supposed to reflect 
more general properties of random systems. Thus the information extracted 
from the above special models hopefully contributes to a better understanding 
of the cooperative behaviour of random systems with many degrees of freedom. 
Notwithstanding our analysis raise several new questions, such as the treatment 
of phenomena studied in our low-dimensional models in higher dimensional or 
in more realistic models.



A ppendix A

M apping th e  RTIC onto  
free ferm ions

A .l Jordan-W igner transformation
First we introduce the raising and lowering operators

a f  = ^(erf + iaf ) and a, = ^(af -  ¿erf), (A.l)

respectively, in terms of which of = a f +a, and of = 2af  a* — 1. These operators 
commute on different sites like Bose operators, but on the same site they behave 
as Fermi operators: {a,,af} = 0 and (a,)2 = (af )2 = 0. In terms of a f  s and 
a f ’s the Hamiltonian (3.1) assumes a quadratic form:

L  —1 L

H = -  ^ [ a f a ,+ i  + afaf+1 + h.c.} -  ’Y h i(2afai -  1), (A.2)
i=i i=i

where h.c. means hermitian conjugate.
Since canonical transformations do not preserve the mixed commutation 

rules among afs and a f ’s, it is not possible to diagonalize (A.2) directly. 
This difficulty can be avoided by introducing new variables after Jordan and 
Wigner [68]:

Cj =  exp
¿—1

m  Yf ,  a f  "j cf  = a f  exp
¿ — 1

- ™ Y .  at
5=i 5=i

These are indeed Fermi operators, satisfying

{ a ,c f  }  =  S i j ,  { d ,  Cj }  =  {cf , c f }  =  0 . 
Then cf  Ci = afa , , so the inverse transformation is simply

*-i Í-1
dj = exp - ™ Y ci c3

i—1
Cj, a f  = c f  exp -i  Y  cj

i—1

(A.3)

(A.4)

(A.5)
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Furthermore aJa ,+i = 4° i+ 1 and af+1a f  = c f  cf+1. Thus the Hamiltonian can 
be arranged into a quadratic form of c,’s and 4 ’s:

L — l

H = E
hj=i

with matrices

4 AijCj + ~ (4 Ba4 + h-4

!  2/ii J\
J\ 2/l2 J‘2

J 2 hi
¿=1

(A.6)

A = J2

B =

V
/ °

Jl

\

Jl -
- J i

0

■h

Jl -

J l - 1
2hL )

\

- J l - 1
0 )

(A.7)

The above steps can be achieved also for the XY chain defined in (6.6). In 
this case the above matrices read as

/

A = I

0 J f
Jf J?

J?
0

j f  + jy
J '2 + 4  

0

\

V
/

J:L — l J l - i
'L — l J l - i

- 4

Jf
4  ̂4

4
0

JS -  M

J f  -  J f
0

J
V 4-i J:

L — l 4-i
L — l 0

. (A.8)7
The hermicity of H  implies that A is a Hermitian matrix, while the commu

tation rules require that B is antisymmetric. Moreover for the RTIC and the 
XY chain both are real.

Note that it is not possible to obtain a simple quadratic form (A.6) in higher 
dimensions or with next-nearest-neighbour interaction or with an interaction 
containing also the z component of spin.

A .2 Bogoliubov transformation
The way of diagonalizing the quadratic Hamiltonian (A.6) is known as Bogoliubov- 
transformation [7]. One looks for a linear transformation

Vg = ^ ( d q i d  +  h qic f ) ,  4  = 5 7  J qiC'i +  h q i C i ) .f (A.9)
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where gqi and hqi are real, and the rjq s and ?j+’s are fermion operators (thus the 
transformation is canonical), in terms of which the Hamiltonian is expressed as

H  = ^  eqrf^i)q + constant. (A. 10)
Q

Applying the relation [i]q,H] — eqr]q = 0 one obtains the equations for gqi and
hqi [83]

eq9qi = '^^{QqjMj — hgjBji), eqhqi = ^ ( gqjBij — hqjAji). (A.11) 
j j

Introducing the ¿-component vectors and with components

^ ? ( * )  =  9 q i A  h q i ,  4 /g ( i )  =  9 q i ~  h qj ,  ( A . 12)

chosen to be normalized to 1:

$ > * (* )  = ! > ’ (*) = 1, (A.13)
i i

one obtains the equations for the one-fermion excitation energies eq in matrix 
notation:

<!>,,( A ^ B ) <q'\>q and ^ g(A + B) = eg$ g. (A.14)

Combining these equations one arrives to

A -  B)( A — B) ,'A]>q or $ g(A + B)(A -  B) = e*$g. (A.15)

Now the squares of excitation energies are given as the eigenvalues of an L  x L  
matrix.

Creating a 2L-component vector Vq, with components Vq(2i — 1) = —$ q(i) 
and V q ( 2 i )  =  \Pg(z), % = 1,2,. . . ,  L  (A.15) is reformulated as

T V g= eqVq, (A.16)

where the matrix T of size 2L x 2L is given in (3.16) [58].
It is easy to see, that if eq is an eigenvalue of T, than —eg is also an eigenvalue 

and the corresponding eigenvector can be obtained from that of eq by trans
forming 4>g to ^<bg. This means the interchanging of creation and annihilation 
operators, and reflects the particle-hole symmetry of the system. Therefore the 
whole information is contained in one half of the spectrum. We confine ourselves 
to positive fermion excitation energies eq > 0.

The constant in (A. 10) can be determined from the invariance of trace under 
canonical transformation. From (A.6) trff = 2L_1 JT  An + 2L Y^= i hi, while 
from (A.10) trff = 2L_1 ^  eg+2L x constant. Comparing these two expressions 
the constant is thus —|  ^  eq and one arrives to the final result in (3.15).
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A ppendix B

R enorm alization  o f th e  
R Q PM

In order to derive the RG equations of the RQPM, it is expedient to represent 
the Hamiltonian (5.21) in the new basis

1 «
|n{) = —  ^ w (n' - 1)(n' - 1)|ni>, l = 1,2__ ,L, (B.l)

V^»« = 1

where ui = exp and | n{), n* = 1,2,...  ,q stand for states of the Potts spin 
at site I [122]. In this basis (5.21) assumes the form

L - 1 9 - 1  L

H = -  Ml Mi+:t  -  hlRl’ (B.2)
1=1 k=l /=i

where operators Mi and Ri acting on |n[) are represented by the q x q  matrices:

Mi

/ 0  1 0  0 . . .  0 \
0 0 1 0 . . .  0

1

\ 1 0 0 /

( q - 1 0 0 . . o x
0 - l 0 . . 0
0 0 - 1

0
\ 0  0 - 1 /

(B.3)

In the following we work in this representation and primes are simply abandoned. 
We see that the terms in (B.2), through which the fields couple to the system 
are now diagonal, but the interactions are no longer. Instead they flip the spins.

Strong bond decimation If J2 ]§> h2 ,hz one considers the block, similarly 
to the RTIC (see Fig. 5.1),

g-i
H = -  J2 Y ,  M * M f k -  h2R2 -  hsRs. (B.4)

k=1
This block has q2 states. In the absence of fields h2 = h$ = 0, there are two 
levels in the spectrum: the ground state is g-fold degenerate and separated from
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the q(q — l)-fold degenerate excited levels by J2. If small fields are switched on, 
the lower nivou will split into a non-degenerate ground state and a g  -  1-fold 
degenerate multiplett. Dropping the higher lying q(q — 1) states one is left with 
a nivou-structure of a single Potts spin variable. The details of the calculation 
are the following. The eigenvalue problem separates into q orthogonal subspaces 
spanned by the vectors:

1 | l l ) , |2g), |3(g-l)) , . . . , |g2)
2 |12),|21),|3g),...,|g3)

q m ) ,  |2(<? -  1 ) ) ,  |3(<7 -  2)) , . . . ,  |<?1) (B.5)

and subspaces 2,3, . . . ,  q are degenerate. The ground state is in the first sub
space spanned by the vectors

fa = |11)

<t> 1 =
1

= {|2g) + |3 (g - l ) ) m } , (B.6)
\ J q  - 1

where we have combined degenerate states. After solving the block eigenvalue 
problem, the ground state energy is given as

E0 = — -{J2(q^‘2.)+(q—2)(h2+h3)+[(qJ2 — (h2+h3)(q—2))2+4(h2+h3)2(q—l)]}.
(B.7)

For J2 ¡12 , h3 we get

E o  =  h ( q  -  1) -  { h 2 + Th 3 r ( q  -  1) •qj  2
(B.8)

The (q — l)-fold degenerate excited state come from the ground states of the 
degenerate sectors 2,3, . . . ,  q. Choosing sector 2, the ground state is spanned 
by the vectors

^0 = 112)
ft>i = |21)

' I p 2  =
1

-J\3q) + 4(q -  1)) m ) -7 ^ 2

The solution of the block eigenvalue problem for h3 = h3 = 0 is

(B.9)

t / i\ / I  1 I q ^ \£o = —J 2 \ q  — 1) v 0 =  { —  '
q

£1 — J2 

£2 = J2

Vi =  (
q —2 q ^ 2

2 q 2 q ’ V^q

V2 = (^= ,^^ = ,0 ) . (B.10)

Now the fields can be treated as small perturbations given by the matrix

-(q -  1 )fi2 + h3 0 0 \
V = I 0 ^ ( q ^ l ) h 3 + h2 0 . (B.ll)

0 0 h3 + h3 I
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The first correction to £o A e^  = (vo\V\vq) is zero, while the second correction 
is

A (2) _  |(w o |V > i)|2 |(wo|V> 2)|2¿i£0 —-----------------------------------
S\ ~~ £o £2 ~~ £0

Thus the excitation energy is

a /-: /•;, — /•;„ - . . .  (B.13 )
J2

Keeping now only the first q states, we are left with the energy spectrum of a 
single Potts spin in a field:

r _  2 fi2h3h 23 —---- -—. (B.14)
q ¿2

Strong field decimation In case of a strong field h3 J\ , J2 one considers 
the block in Fig. 5.1 B, and uses the duality transformation of quantum Potts 
chain, which maps the high-temperature phase to the low-temperature one. 
Similarly to the RTIC, dual couplings J[ and ft' are related to original ones as

ft' = J,_i and J[ = hi. (B.15)

Decimating out the strong bond J'2 = ft2 in the dual block, according to (B.14) 
one gets an effective Potts spin in a field h'23 = ^ —jra . In the direct lattice 
this procedure corresponds to the decimation of spin 2, and finally one is left 
with an effective bond between between spin 1 and spin 3, the value of which 
is, according to (B.15):

- _  2 J2J3
1̂3 —--- 7---•q ft2

Thus we got the recursion equations (5.8) with k = |  for the RQPC.

q - 2
2 q.J2 (ft2 + h3) ^ - ( f t2 ^ f t3)

(B.12)

(B.16)
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A ppendix C

M apping th e  X Y  chain into
RTIC-s

We have seen in Section 6.3.1 that the matrix T in (6.12) can be represented 
as a direct product T = 0 T t . Now one can observe that the tridiagonal 
matrices T a, T t of size L x L are of the form as the T matrix of an RTIC of 
size L (see (3.16)). The corresponding RTIC Hamiltonians read as

Ha

Ht

L j 2 - 1  L / 2

I E «*?+!- 4 E J2,*=1
l ^ 1-  \  Pj 'TX'TXA J 2 i ‘ î P

/  -, ’'2i—l ui 
i

L/21
i 1 ¿+1 iY .Ji2i — l 1 i

i=1
(C.l)

Here the a f’z and t*’z are two sets of Pauli matrices at site i and there are free 
boundary conditions for both chains. We can then write Hx y  = Ha + HT. Note 
the symmetry a*’z t*’z and J f J f , thus anisotropy in the XY model has 
different effects in the two Ising chains.

One can easily find the transformational relations between the XY and Ising 
variables: 2 2 —  1

a? = n  (2sj ) - a i = 4s i i - i s ii
j = i
2i-l

K  II (2Si ) > Ti = 4S2i-lS2i ,
3=1

whereas the inverse relations are the following:

2 — 1 i
2 S:2i-l = cr’i U tj <n

3=1
i-1

3=1

2 = T * ] J a z , 2 S l t  =  r * l l a z .

3=1 3=1

(C.2)

(C.3)
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We note that a relation between the XY model and two decoupled Ising quantum 
chains in the thermodynamic limit [102, 32] and for finite chains with periodic 
boundary condition [45] is known for some time, here we have extended this 
relation for finite chains with free boundary condition. These are essential to 
map local order parameters and end-to-end correlation functions.

End-to-end correlations are related as

1 L/2 1 
(S?S*L) = i K a £ /2) < n r f )  = | K a £ /2) *=1

_ T /¡y
since in the ground state (n*=i r f) = 1- Similarly

(SÏSI) = ,

(C.4)

(C.5)

thus the end-to-end correlations in the two models are in identical form. As 
a consequence the corresponding decay exponent r]f in the random models in 
Table 6.1 is the same in the two systems and the same conclusion holds also for 
the correlation length exponent v in (6.25). These results are also independent 
of the type of correlation of the disorder, thus are valid both for the XY and 
XX models.

Correlations between two spins at general positions 21 and 21 + 2r are related 
as

(SïjSïl+2r) = \ ( a f a f + r ) ( f [ T Ï + i ) .  (C.6)
i=  1

The second factor in the r.h.s., (111=i Ti+ù-, defines a string-like order parameter 
[47, 45] which can be expressed in a simpler form in terms of the dual Ising 
variables

l i l i *¿+1
r i = r f - i f f ,  (C.7)

already introduced in (3.2). Under the duality transformation fields and cou
plings are exchanged, therefore the vanishing bonds at the two ends of an open 
chain are transformed to vanishing fields, thus the dual chain has two end spins 
fixed to the same state. So we obtain for the correlations in Eq. (C.6)

/ O X  q a 
\ J 2 lJ 2 l+ 2r ) =  > í ^ ) ( í f í f +r)++ (C.8)

where the superscript ++ denotes fixed-spin boundary condition. For non
surface points the average value of the correlation function in (C.8) depends 
on the type of disorder correlations. For the XY model, where the disorder is 
uncorrelated the two factors in (C.8) can be averaged separately, whereas this 
is not possible for the XX model. We treated this point in Section 6.3.3.



Scaling o f autocorrelation  
functions

A ppendix D

The autocorrelation functions are represented by the general form:

G^(t) = ^ 2  W k |2 exp(-TAEk) (D.l)
k

where the dominant contributions to the sum in Eq. (D.l) are from SCD-s which 
are localized at some distance I from the spin and have a very small excitation 
energy, ÀE(l). The scaling form of ÂE(l) follows from the considerations in 
Section 3.5.2 and one obtains from (3.44) and (3.45)A E ( l )  ~ i  e o e x p ^ Æ 1̂ ) ^  =  0 (D.2)

{ € q I  Z , 0  <  0

at the critical point and in the Griffiths phase, respectively, where eo denotes 
the energy scale. Thus the larger the distance from the spin the larger the 
probability to have an SCD with a very small energy. For the matrix element, 
\M(l)\2, the tendency is the opposite since the overlap with the wave function 
of the SCD is (exponentially) decreasing with the distance. The corresponding 
scaling form can be read from the typical behavior of the surface order parameter 
as given below and above (6.26) as

M{1) exp {—B l1/2), 8 = 0 
exp(-Z/£tyP), 8 < 0

(D.3)

Then GM(r) in (D.l) can be approximated by a sum which runs over SCD-s 
localized at different distances l and this sum is dominated by the largest term 
with l = 10:

G»(t ) ~  \M(l0)\2 exp(—rA.E'(io)) . (D.4)

Using the scaling forms in (D.2) and (D.3) one gets following result.
At the critical point the characteristic distance is Iq = [ln(reo.4/i?)/.4]2 and 

the typical autocorrelation function decays as a power:

&*(?) ~ T ~ BtA, 8 = 0 . (D.5)
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Thus the relevant scaling variable of the problem is

In G11 (t  )
7 = -----¿ = 0 . (D.6)

In the Griffiths phase the characteristic distance has a power-law r  dependence, 
lo = £,typ(T€oz)1̂ z+1'1, which is however different from the average scaling form 
in (2.29). Thus the typical autocorrelations now are of a stretched exponential 
form, as presented in (6.40).



A ppendix E

D u ality  o f th e  R B P M

The two phases of the g-state random-bond Potts model can be mapped onto 
each other by a duality transformation, which makes possible the exact determi
nation of the critical point. We present this in the framework of random cluster 
representation.

First we show, how to transform the partition function of the RBPM into 
(7.2), which is known as Fortuin-Kasteleyn transformation. The partition func
tion of the RBPM reads as

Introducing the new variable wy = eKij — 1 and using the identity uy<f(<7j, aj) = 
eKijS((Ti,(Tj) _  z  is reformulated as

Forgetting for a moment the sum over spin configurations in (E.2), and mul
tiplying out the product, the resulting terms are products containing as many 
factors as the number of edges of the lattice. These factors are of two kind: 
whether 1 or uy<f(<7j, oy). Now, to each such product a subgraph G ç G  can be 
associated. The rule for this one-to-one correspondence is that each edge (i j ) of 
the graph is occupied, i.e. (ij)  G U, when it is counted with weight uy< f(< 7 j ,  oy) 
in the product and unoccupied when it is counted with weight 1. Now consider
ing a given product and performing the summation over spin states, only those 
configurations contribute (with ri(*j)er/wy)) in which, spins in all connected 
clusters take the same value. Then denoting the number of connected clusters 
by n(U), one arrives to (7.2).

Now we introduce the concept of dual lattice G' = (V , E') the sites of which 
correspond to the plaquettes (squares) of G, and are located in the middle of 
them. Thus G' is also a square lattice, as G, shifted by a half lattice spacing 
along both axes. A subgraph G' = (V ',U r) Ç G' is now said to be dual to
G = (V,U), if U' contains all edges (ij)' G U' which do not cross any edge 
(ij) G U.

(E.l)

z = y i  n  ( v i3ő (a i ’ ctí ) + ! )  • (E.2)
-R;} m
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Since by construction each loop of G encircles a cluster of G', and vice versa, 
one has

n(U) = c(U') + 1, n(U') = c(U) + 1, (E.3)

where c(U) denotes the number of loops in U. Furthermore the Euler relation

c(U) = b(U) + n(U) — N  (E.4)

holds for any graph, where N  is the number of sites and b(U) is the number of 
bonds in G = (V, U). Using the above relations, and denoting the total product 
of weights as V = ri(*j)e-Ewy> Z  can be rewritten in terms of dual graphs:

2  =  e  <in { u )  n II M

q c(U") +  l  J J  v - i

u c e  ( i j ) e u U ' C E '

y  ^   ̂ gbiU^j  +  n i U' )  — iV'+l
n  w« i = v y ,  (i n { u ' ) n  —

U'CE* ( i j ) ' e u ' U ' C E '  ( i j ) ' CU'  Vl j

(E.5)

We define the dual couplings K*j through q/vij = v*j = eKu — 1, or equivalently

(eKij -  l)(eK^ - l )  = q. (E.6)

Considering now the pure model with reduced coupling ify  = K, the first 
expression in (E.5) can be viewed as a high-temperature expansion with cou
pling K. According to the calculation in (E.5) it is then connected to a low- 
temperature partition function containing K*. Provided that there is a single 
phase transition in the system, it must be at the fixed point of the duality trans
formation (E.6) K* = K. Thus for the pure model the critical reduced coupling 
is K c = ln (y^+  1). The random g-state Potts model with symmetric bimodal 
coupling distribution, i.e. with two equally probable couplings K\ and K 2, is 
apparently critical, if = K 2 and K% = K\, which is equivalent to

(eKl -  l)(eK2 - 1  ) = q. (E.7)

If we are given a continuous randomness distribution p(K)dK, the system is 
then at its critical point, if it is invariant against the transformation (E.6), i.e.

p(K)dK = —p(K*)dK*. (E.8)

Now turning to the variable wy defined in (7.3), (E.8) reduces to the criticality 
condition presented in (7.11) [76].
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Rendezetlenség dominálta szinguláris viselkedés 
kvantum- és klasszikus rendszerekben 

Összefoglalás

A természetben előforduló anyagokat és folyamatokat kevés kivételtől elte
kintve mindig bizonyos fokú inhomogenitás jellemzi. A leggyakrabban említett 
példa erre a kristályokban megfigyelhető szennyező atomok és egyéb rácshibák 
jelenléte. A valós rendszerek ezen tulajdonságának elméleti leírása hívta létre 
a rendezetlenség koncepcióját, majd indította útjára a—mára már széleskörűen 
alkalmazott—rendezetlen modellek vizsgálatát, mely lassanként önálló diszciplí
nává növi ki magát.

A rendezetlen rendszerek elméleti leírása során külön kezelendők azon rend
szerek, melyekben a rendezetlenséggel kapcsolatos relaxációs idő lényegesen na
gyobb a termikus szabadsági fokokhoz társuló relaxációs időnél. Az ilyen rend
szereket leíró ún. “befagyott” rendezetlenségű modellekben a fizikai mennyiségek 
termikus várható értéke függ a rendezetlenség konkrét megvalósulásától. Ilyen 
modellekben előfordulhat, hogy némely mennyiség nem önátlagoló, azaz átlagos- 
és tipikus értéke különböző. Ezen mennyiségek jellemzéséhez a teljes eloszlásuk 
ismerete szükséges. A továbbiakban az ilyen modellek tulajdonságait tárgyaljuk.

A rendezetlen modelleken belül különös érdeklődés indult meg a fázisát
alakulást mutató modellek iránt, melyeknél természetes módon vetődik fel a 
kérdés, hogy a rendezetlenség bevezetése milyen változásokat eredményez (ha 
eredményez egyáltalán) a rendezetlenségtől mentes, ún. tiszta rendszer tulaj
donságaihoz képest.

A tapasztalatok szerint a rendezetlenség változó mértékben befolyásolja a 
tiszta rendszer fázisátalakulását: Előfordul, hogy a rendezetlenség a fázisáta
lakulási pont megszűnéséhez vezet, vagy az átalakulás rendűségének megvál
tozásához: nevezetesen az elsőrendű fázisátmenet folytonossá válik. Alapvető 
kérdés itt, hogy egy folytonos fázisátalakulás esetén (amelyet a rendezetlenség 
nem mos el), a kritikus pont univerzális tulajdonságai mily módon változnak. 
Véletlen-csatolású modellekben a választ erre a kérdésre egy—Harris nevéhez 
fűződő—heurisztikus stabilitási kritérium adja, mely a rendezetlenség releváns 
voltát a megfelelő tiszta rendszer fajhő exponensével hozza kapcsolatba.

A klasszikus rendszerekben lezajló—termikus fluktuációk által kontrollált— 
fázisátalakulásoktól számos vonatkozásban különböznek az—abszolút nulla fokon 
végbemenő—ún. kvantum-fázisátalakulások. Itt—hőtartály nem lévén—az ak
tiválási dinamikát az alagútazás váltja fel, ami a klasszikustól merőben eltérő fá
zisátalakulási mechanizmushoz vezet. A rendezetlen kvantum-fázisátalakulások 
kritikus tulajdonságait a termikus fluktuációk helyett a kvantum-fluktuációk és 
a rendezetlenség fluktuációinak összjátéka alakítja ki.

A kvantum-fázisátalakulási ponttal rendelkező rendezetlen modellek egy cso
portja különleges nagyléptékű és alacsony energiás viselkedést mutat. Míg 
a legtöbb rendszert a—hosszúságegység növekedésével járó—valós-tér renor- 
málási-csoport transzformációk olyan fixpont felé sodorják, ahol a Hamilton- 
függvényben szereplő lokális paraméterek hányadosa véges marad, addig ezen 
modellekben a fenti transzformáció során a Hamilton-operátor paramétereinek 
eloszlása, logaritmikus skálán, minden határon túl szélesedik, midőn az energia
skála nullához tart. A fixpontban ekkor a paraméterek hányadosa tipikusan



végtelen vagy nulla; a rendszer viselkedését egy ún. végtelenül erős rendezet- 
lenségű fixpont írja le. A széles eloszlások maguk után vonják az önátlagolás 
hiányát, és a mennyiségek átlagértékét az ún. ritka minták extrém járulékai 
határozzák meg. A modellek ezen osztályába alacsony dimenziós kvantumrend
szerek tartoznak, zömében spinlácok és spinlétrák.

Azonban a rendezetlenség hatása nem csupán a a fázisátalakulási pont jel
lemzőinek befolyásolására korlátozódik. GrifRths ill. McCoy mutatta ki a ren
dezetlen klasszikus- ill. kvantum-Ising-modellben, hogy a kritikus pont körül 
egy kiterjedt tartomány található, ahol számos fizikai mennyiség szingulárisán 
viselkedik. Ennek a—kizárólag rendezetlen rendszerekben megfigyelhető—ún. 
Grifüths-fázisnak a létét azok a ritka domének okozzák, melyek lokálisan a kri
tikus pont túloldalán lévő fázisban vannak. A GrifRths-McCoy szingularitások 
a klasszikus modellekkel szemben lényegesen hangsúlyozottabban jelentkeznek a 
kvantummechanikai rendszerekben, ahol a dinamika és sztatika összekapcsolódik. 
Itt a rendezetlenség fent vázolt fluktuációi következtében az átlagos időbeli ko
rrelációk—a kritikus viselkedéssel megegyező módon—hatványfüggvény szerint 
csengenek le. Ezzel szemben a térbeli korrelációkat rövidtávú rend jellemzi, 
így a Griffiths-fázist “szemikritikus” fixpontok sorozatának nevezik. Egy feno- 
menologikus skálaelmélet szerint az összes vizsgált fizikai mennyiség szinguláris 
viselkedése közös fizikai alapra vezethető vissza, és az ezt leíró exponensek kap
csolatba hozhatók a rendszer dinamikai exponensével, mely folytonosan változik 
a Griffiths-fázisban.

Az értekezés túlnyomó részében rendezetlen kvantum-spinláncok GrifRths- 
fázisbeli- és kritikus viselkedését vizsgáljuk, melyet a fent említett végtelenül 
erős rendezetlenségű fixpont kontrollál. Az értekezés második részében egy 
klasszikus modell, a véletlen-csatolású ferromágneses g-állapotú Potts-modell 
kritikus viselkedését tanulmányozzuk a nagy q határesetben, amikor a termikus 
fluktuációk jelentéktelenné válnak. Mindkét probléma közös vonása, hogy a 
rendszer viselkedését a rendezetlenség alakítja ki döntő módon a kvantum
fluktuációkkal ill. a klasszikus problémánál a termikus fluktuációkkal szemben.

A fenti kérdéskörök tanulmányozására számos módszert alkalmaztunk. A 
kvantum-spinláncok viselkedését a szabadfermion-reprezentáción alapuló anali
tikus és numerikus módszerekkel, valamint fenomenologikus skálaelmélet segít
ségével tanulmányozzuk. A Griffiths-fázis tulajdonságait renormálási-csoport 
transzformáció keretein belül elemezzük, analitikusan és numerikus úton. A 
véletlen-csatolású Potts-modell megoldását a nagy q határesetben optimalizálási 
problémára vezetjük vissza, amit aztán numerikus sztochasztikus- és kombina
torikus optimalizációs módszerekkel vizsgálunk.

Az értekezés felépítése a következő. Rövid bevezetést követően, a második 
fejezetben összefoglaljuk a tiszta- és rendezetlen klasszikus- és kvantumrend
szerekben megfigyelhető kritikus viselkedés sajátosságait, majd ismertetjük a 
Griffiths-McCoy szingularitások fenomenologikus elméletét.

A harmadik fejezetben az egydimenziós rendezetlen kvantum-Ising-modell- 
re vonatkozó eddigi ismereteket gyűjtjük össze. Ezen belül bemutatjuk a fenti 
modell leképezését szabad fermionok rendszerére, kapcsolatát a véletlen bolyon
gással, és egy—a ritka eseményekre épülő—fenomenologikus skálaelméletet.

A negyedik fejezettel kezdődően rátérünk az új eredmények ismertetésére. 
Elsőként az előző fejezetben bemutatott modell Griffiths-fázisában vizsgálunk 
olyan mennyiségeket, melyek szinguláris viselkedése nem hozható közvetlenül 
kapcsolatba az energiarés—ismert—viselkedésével. Ezen mennyiségek a követ-



kezőek: a második- és magasabb energiarések eloszlása, a nemlineáris szuszcepti- 
bilitás és az energiasűrűség autokorrelációs függvény. Fenomenologikus skálázási 
érveléssel kimutatjuk a fenti mennyiségek szinguláris viselkedését, és az ezt leíró 
exponenseket kapcsolatba hozzuk a dinamikai exponenssel. Szabadfermion-rep- 
rezentációban a fenti mennyiségekre zárt formulát vezetünk le, majd ezeket nu
merikus vizsgálatnak vetjük alá. A fenomenologikus- és az azokkal összhangban 
álló numerikus eredményeink szerint a GrifEths-fázisban szinguláris mennyiségek 
egyetlen—a kontroli-paraméterrel folytonosan változó—exponenssel jellemezhe- 
tőek.

Ezt követően a Ma-Dasgupta-Hu-féle közelítő valós-tér renormálási-csoport 
transzformációt alkalmazzuk a fenti modellre. A renormálási-csoport egyenletek 
fixponti megoldásai ismertek a modell kritikus pontjában, ahol az eljárás aszimp
totikusan egzakt, azonban általánosan elterjedt az a felfogás, hogy ez kizárólag 
a kritikus pontban és közvetlen közelében igaz. Ebben a fejezetben megadjuk 
a renormálási-csoport egyenletek analitikus megoldását a rendezetlen kvantum- 
Ising-modell GrifEths-fázisában, majd megmutatjuk, hogy az eljárás itt is asz
imptotikusan egzakt. Bizonyítjuk, hogy a dinamikai exponens invariáns marad 
a renormálás során, majd ezt felhasználva egzakt kifejezést adunk a dinamikai 
exponens számítására. Az energiarés eloszlására épülő fenomenológiai meg
fontolások alapján a fenti állításokat általános érvényűnek gondoljuk a kvantum- 
spin-láncok körében. Ezt ellenőrizendő, numerikusán megoldjuk a rendezetlen 
kvantum-Potts-lánc renormálási-csoport egyenleteit, és becslést adunk a mo
dell g-tól függő dinamikai exponensére. Ezen értékek jó egyezésben állnak más 
módszerrel (sűrűségmátrix renormálási csoporttal) kapott megfelelő becslésekkel, 
ily módon a numerikus eredmények alátámasztják az elméleti megfontolások 
helyességét.

Ezután a rendezetlen XY- és a rendezetlen dimerizált XX-lánc tanulmá
nyozására térünk át. Vizsgálataink alapját az átlagos mennyiségek—a ritka 
domének skálázási viselkedésén alapuló—fenomenologikus elmélete képezi, me
lyet kiterjesztünk az XY- és XX-modellekre. A fenti modellek és a véletlen boly
ongás között talált kapcsolat révén azonosítjuk a ritka doméneket, mint olyan 
tartományokat, melyekben a csatolások sorozata túlélő bolyongással reprezen
tálható. Ezen elmélet segítségével meghatározzuk a fenti modellek tömbi- és 
felületi kritikus exponenseit. Ezeket azután összevetjük az operátor profilokra— 
szabadfermion-reprezentáción alapuló számítással—kapott numerikus eredmé
nyeinkkel. Eredményeink szerint a kritikus nemdiagonális rendparaméter-profilok 
követik a konform elmélet által megjósolt viselkedést, annak ellenére, hogy a 
modell nem konform invariáns. Mindezek mellett vizsgáljuk a dinamikai kor
relációkat. A kritikus állapotban ezek átlagának logaritmikusán lassú csökkenését 
találjuk, míg a korrelációs függvény eloszlásában multi-skálázás figyelhető meg. 
Ezzel szemben a GrifEths-fázisban az átlagos autokorrelációs függvény a távolság 
valamely hatványaként cseng le, ahol a kitevő kapcsolatba hozható a dinamikai 
exponenssel. Felhasználva, hogy a vizsgált modellek alkalmas transzformációval, 
két Ising-lánccá csatolhatok szét, analitikus összefüggést adunk a dinamikai ex
ponens számítására.

Az értekezés utolsó fejezetében a kétdimenziós rendezetlen g-állapotú Potts- 
modellt tanulmányozzuk. Ismert, hogy ezen modell tiszta változata q > 4 esetén 
elsőrendű fázisátalakulást mutat, mely a rendezetlenség hatására folytonossá 
válik. Korábbi, véges q-ra kapott eredmények szerint a korrelációshossz-exponens 
g-tól alig függ, míg a mágnesezettségi exponens g-függést mutat, és a q —¥ oo



határesetben véges értékhez tart. Itt a fenti modellt közvetlenül a q —t oo 
határesetben vizsgáljuk, a véletlen klaszter reprezentáció segítségével. Ekkor 
megmutatható, hogy a termikus fluktuációk irrelevánssá válnak, és a kritikus 
viselkedést a rendezetlenség fluktuációi szabják meg döntő módon, ami abban 
nyilvánul meg, hogy a fizikai tulajdonságokat egyetlen domináns gráf határozza 
meg. Megmutatjuk, hogy ezen gráf megtalálása egy—a gráfok halmazán ér
telmezett—globális, nemkonvex költségfüggvény optimalizálási problémájával 
egyenértékű. Ezen optimalizálási feladatot két numerikus módszerrel, egy stan
dard sztochasztikus optimalizációs eljárással és egy közelítő kombinatorikus op- 
timalizációs módszerrel oldjuk meg. A domináns gráf fraktáltulajdonságainak 
számításával becslést adunk a Potts-modell mágnesezettségi- és korrelációs- 
hossz-exponensére, különböző mértékű rendezetlenség mellett. A korábbi ex- 
trapolatív becslésekkel összhangban álló, de annál pontosabb eredményeink sze
rint a fenti exponensek függetlenek a rendezetlenség alakjától.

Összefoglalva, jelen értekezésben erősen rendezetlen modellek kritikus pont
beli- és Grifflths-fázisbeli tulajdonságait tanulmányoztuk. A speciális model
lekre kapott eredményeink között számos olyan található, mely a véletlen mo
dellek általánosabb érvényű vonásait tükrözi. így eredményeink, reményeink 
szerint, hozzájárulnak a rendezetlen, sok szabadsági fokú rendszerek koorepatív 
viselkedésének mélyebb megértéséhez. Mindamellett az értekezésben vázolt el
emzéseink számos új kérdést vetnek fel. így például az alacsony dimenziós 
modellek fent leírt jelenségei magasabb dimenziós, valamint a valóságot pon
tosabban tükröző modellekben javarészt továbbra is feltáratlanok.



Disorder dominated singular behaviour in random 
quantum and classical systems 

Summary

The bulk of substances and processes in nature is often characterized by 
certain degree of inhomogeneity: one might say, it is rather the rule than the 
exception. The most frequently mentioned example is the almost always in
evitable presence of impurities or other lattice defects in crystals. The theoret
ical description of this kind of feature of real systems established the concept 
of disorder, and started on its way the investigation of the—nowadays wide
spread—disordered models, which is gently developing to be an independent 
discipline.

From a theoretical point of view those systems in which the characteristic 
relaxation time associated to impurities is negligible to that of thermal degrees 
of freedom, has to be treated separately. In the so called “quenched” disordered 
models describing these systems, the thermal expectational value of a given 
quantity is apparently depends on the particular realization of disorder. Some 
quantities may be non-self-averaging, i.e. the typical and average values are 
different. In this case one has to consider the whole distribution of the quantity 
instead of the average value.

Among disordered models special attention was payed for models which ex
hibit a phase transition, where the obvious question arises, what consequences 
the introduction of disorder has (if it has at all) on the properties of the pure 
(i.e. homogeneous) system. According to the experiences quenched disorder 
has effects on the nature of phase transitions in varying degrees. It may lead 
to the elimination of the transition by smearing out singularities. Or it may- 
cause the change of order of the transition: a first order transition can turn 
to a continuous one. In case of a continuous transition (which is not “smeared 
out” by randomness), a basic question is, how universal properties, such as crit
ical exponents are influenced by disorder. Here, for random coupling models a 
general heuristic relevance-irrelevance criterion was formulated by Harris, which 
relates the stability of pure system fixed point to the specific heat exponent of 
the pure system.

Quantum phase transitions occurring at zero temperature differ from ther
mally driven transitions in several respects. Here, there is no heat bath and 
activated dynamics is replaced by quantum tunneling through energy barriers, 
which leads to an entirely different mechanism of phase transition. The random 
quantum critical behaviour is formed by the interplay between disorder and 
quantum fluctuations instead of thermal ones.

A special class of low-dimensional disordered quantum models is known to 
have an unconventional coarse-grained behaviour. By coarse-graining, most 
systems flow toward a fixed point, where the ratio of local parameters in the 
Hamiltonian remains finite. Contrary to this it turned out, that in these models, 
the distribution of parameters becomes arbitrarily broad on a logarithmic scale 
as the fixed point is approached. The ratio of parameters is typically infinite 
or zero at the fixed point, and the system is said to be governed by an infinite
randomness fixed point. Broad distributions involve the lack of self-averaging 
and average quantities are dominated by the extreme contribution of a vanishing 
fraction of rare samples. This class of models comprises mainly quantum spin



chains and spin ladders.
Disorder influences however not only the critical behaviour. Griffiths and 

McCoy pointed out in the random classical and quantum Ising model, respec
tively, that there exists an extended region around the critical point, where 
several physical quantities are singular. The origin of Griffiths phase, which has 
no counterpart in pure systems, is the presence of such rare domains, which 
are locally in the opposite phase. The so called Griffiths-McCoy singularities 
are much more enhanced in quantum systems, where statics and dynamics are 
inherently linked. Here, the fluctuations of disorder described above give rise 
to a power-law decay of average temporal correlations, which is reminiscent of 
criticality, while in the spatial direction there is short-range order. For this 
reason Griffiths phase is termed as a line of “semicritical fixed points”. Accord
ing to a phenomenological scaling theory the singular behaviour of quantities 
studied so far, were reduced to a common physical ground, and the exponents 
characterizing the singularities are all related to the dynamical exponent of the 
system, which is a continuous function of the control parameter in the Griffiths 
phase.

In the bulk of the thesis we deal with the Griffiths phase and the critical 
behaviour of quantum spin chains, which is controlled by an infinite-randomness 
fixed point. In the second part a classical model, the random-bond g-state Potts 
model is studied in the large-g limit, where thermal fluctuations become irrele
vant. A common feature of both problems, that the critical behaviour is strongly 
dominated by fluctuations of disorder as opposed to quantum fluctuations (resp. 
thermal fluctuations in the classical model).

In order to investigate the above problems, several different approaches have 
been used. The quantum spin chains are studied by the help of free-fermion 
representation in analytical and numerical way, and in the framework of a phe
nomenological scaling theory. The properties of Griffiths phase are investigated 
analytically and numerically by renormalization group transformation. The 
problem of random-bond Potts model in the large-g limit is mapped onto an 
optimization problem, which is solved by stochastic and combinatorial optimiza
tion methods.

In Chapter 2 we shortly summerize the theory of critical phenomena in 
disordered classical- and quantum systems, and give a general phenomenological 
description of Griffiths phase.

In Chapter 3 previously known results on the random transverse-field Ising 
chain are reviewed, including the free-fermion description of the model, the 
relation with random walk, and the phenomenological scaling theory of rare 
events.

In Chapter 4 we present our numerical and phenomenological results on the 
Griffiths phase of random transverse-field Ising spin chain. We consider here 
quantities, the singular behaviour of which is not trivially related to that of the 
energy gap, such as the second energy gap, non-linear susceptibility, and energy- 
density autocorrelation function. By using phenomenological scaling arguments 
we relate the exponents describing the singular behaviour of the above quantities 
to the dynamical exponent. In the free-fermion picture closed forms for these 
quantities are derived, which are then analyzed numerically. The numerical 
results support the validity of scaling considerations.

Subsequently we extend the Ma-Dasgupta-Hu type real-space renormaliza
tion group scheme to the Griffiths phase, which is presented in Chapter 5. This



method was applied at the critical point of several quantum spin chains, where 
it works asymptotical exactly, and generally believed to lose its asymptotical 
exactness by leaving the vicinity of critical point. We give an analytic solution 
for the flow equations of the random transverse-field Ising chain in the Griffiths 
region, where we show that the procedure is asymptotically exact, and the dy
namical exponent stays invariant during renormalization. By the help of this 
an exact expression for the determination of dynamical exponent is given. On 
the ground of phenomenological considerations we propose the above assertions 
to be generally valid for quantum spin chains. In order to check this we solve 
numerically the renormalization group flow equations of random quantum Potts 
chain, and estimate the value of g-dependent dynamical exponents. Our results 
are compatible with that of obtained by density-matrix renormalization group 
calculations, supporting the validity of theoretical considerations.

Chapter 6. is devoted to the study of random XY- and random dimerized 
XX chain. Our investigations rest on the phenomenological theory of average 
quantities developed in Chapter 3, which relies on the scaling behaviour of rare 
events. Establishing a relation with random walks, rare events are identified 
as regions corresponding to surviving walks. By the help of this theory we 
determine the complete set of bulk- and surface critical exponents. These are 
then compared to results on operator-profiles, which are obtained by numerical 
calculations based on the free-fermion technique. We find that critical order
parameter profiles follow the conformal predictions, although the models under 
investigation are not conformal invariant. Furthermore we determine the aver
age behaviour and the distribution of dynamical correlations at criticality and 
in the Griffiths phase. Average autocorrelations are found to decay logarith
mically slowly at criticality, whereas they decay as a power-law in the Griffiths 
phase with a power related to the dynamical exponent. Via decoupling the 
models into two Ising chains, we give an analytical expression for the dynamical 
exponent.

In Chapter 7 we turn to study the g-state random Potts model, where after 
appropriate parameterization the q —¥ oo limit is sensible, and the g-dependent 
magnetization exponent is known to converge to a finite value. Contrary to 
previous finite-g calculations we perform here a direct investigation in the q —¥ oo 
limit by the help of random cluster representation of the model. We show that 
in this limit thermal fluctuations becomes irrelevant, and critical behaviour is 
determined by a single dominant graph in the geometric representation of the 
model. To find this graph is equivalent to an optimization problem of a non
convex cost-function defined on the set of graphs. We solve this problem by 
a stochastic- and a combinatorial optimization method. Analyzing the fractal 
properties of dominant graph we give a more accurate estimation for critical 
exponents, than previously.

We have dealt in this thesis with singular properties of strongly disordered 
models at criticality and in the Griffiths phase. Among our findings obtained 
in special models, there are a number of results, which are supposed to reflect 
more general properties of random systems. Thus the information extracted 
from the above special models hopefully contributes to a better understanding 
of the cooperative behaviour of random systems with many degrees of freedom. 
Notwithstanding our analysis raise several new questions, such as the treatment 
of phenomena studied in our low-dimensional models in higher dimensional or 
in more realistic models.


