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Chapter 1

Introduction

The bulk of substances and processes in nature is often characterized by certain
degree of inhomogeneity: one might say, it is rather the rule than the exception.
The most frequently mentioned example is the almost always inevitable presence
of impurities or other lattice defects in crystals. The theoretical description of
this kind of feature of real systems established the concept of disorder, and
started on its way the investigation of the—nowadays wide-spread—disordered
models, which is gently developing to be an independent discipline.

From a theoretical point of view, in systems with many degrees of freedom
one has to distinguish between two cases on the ground of dynamics of random
impurities. If the characteristic relaxation time associated to impurities t; is
comparable to that of thermal degrees of freedom t;, i.e. t; ~ t;, then in
the theoretical description randomness appears just as an additional parameter
among other parameters characterizing the thermal degrees of freedom. In this
case disorder is termed annealed.

The situation is very different, however, if impurities relax much slower than
thermal degrees of freedom: t; >> ;. In the theoretical approaches randomness
is now considered to be time-independent. This is the case of quenched or frozen
disorder. As a consequence disorder has to be treated separately from thermal
degrees of freedom: averaging procedure decomposes into the calculation of
thermal expectational value and the averaging over disorder. In the sequel we
always think of quenched disorder if it is not specified.

Among disordered models special attention was payed for models which ex-
hibit a phase transition, where the obvious question arises, what consequences
the introduction of disorder has (if it has at all) on the properties of pure (e.i.
homogeneous) system. According to the experiences quenched disorder has ef-
fects on the nature of phase transitions in varying degrees. It may lead to the
elimination of the transition by smearing out singularities. Or it may cause the
change of order of the transition: a first order transition can turn to a continuous
one. In case of a continuous transition (which is not “smeared out” by random-
ness), a basic question was, how universal properties, such as critical exponents
are influenced by disorder. Here, a heuristic relevance-irrelevance criterion was
formulated by Harris for diluted systems, which was generalized to other kinds
of random models [43]. Intensive numerical and analytical work has started to
clarify the universality class of various disordered models, including those which
have a discontinuous transition in their pure form.
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Besides classical transitions, also zero-temperature quantum phase transt-
tions attracted much interest, where the critical behavior in random systems is
formed by the interplay between disorder and quantum fluctuations instead of
thermal ones, leading to a new mechanism for phase transitions, which differs
in many respects from the activated dynamics in thermally driven transitions.
Quantum fluctuations are more pronounced in low-dimensional systems, such
as spin chains, where a remarkable progress was achieved by an asymptotically
exact real-space renormalization group scheme developed for the random Heisen-
berg chain by Ma, Dasgupta and Hu [89]. This method was then extended to
other random quantum spin chains including the random transverse-field Ising
spin chain by Fisher [33, 31, 32]. In these systems a new type of coarse-grained
behaviour was found. By coarse-graining, most systems flow toward a fixed
point, where the ratio of local parameters in the Hamiltonian remains finite.
Contrary to this it turned out, that in these quantum spin chains, the distribu-
tion of parameters becomes arbitrarily broad on a logarithmic scale as the fixed
point is approached. The ratio of parameters is typically infinite or zero here,
and the system is governed by an infinite-randomness fized point.

Disorder was found however to influence not only the critical behaviour.
Griffiths and McCoy pointed out in the random classical [37] and quantum Ising
model [91], respectively, that there exists an extended region around the critical
point, where several physical quantities are singular. The origin of Griffiths
phase (also termed as a line of “semicritical fixed points”) are the fluctuations of
disorder. The so called Griffiths-McCoy singularities are much more enhanced in
quantum systems, where statics and dynamics are inherently linked. According
to a phenomenological scaling theory the origin of singular behaviour of all
quantities studied so far, were reduced to a common physical ground.

One might think, among disordered models those with infinite randomness
are less tractable. For models governed by a finite-randomness fixed point, dis-
order can be treated as a perturbation of the pure behaviour, and perturbative
methods are sometimes applicable. For the study of models with infinitely strong
randomness, perturbative techniques obviously cannot be developed. Instead of
this, a large amount of information can be extracted from these systems, (sur-
prisingly, in certain cases more is known about disordered models than about
corresponding pure ones), via methods exploiting that disorder completely dom-
inates and prescribes the physics close to the fixed point.

This latter type of randomness, i.e. the infinitely strong one, is the main
subject of the present work. We shall discuss two related issues. In the first
part of the thesis we deal with the singular behaviour of random quantum spin
chains at criticality and in the Grrifiths phase, whereas in the second part a
classical model, the random-bond ¢-state Potts model is studied in a special
limit, where thermal fluctuations become irrelevant. A common feature of both
problems, that the critical behaviour is strongly dominated by fluctuations of
disorder as opposed to quantum fluctuations (resp. thermal fluctuations in the
classical model). The new results presented in this work were published in Refs.
[54, 112, 55, 53, 70].

The outline of the thesis is the following. In Chapter 2 we shortly summerize
the theory of critical phenomena in disordered classical and quantum systems,
and give a general phenomenological description of Griffiths phase.

In Chapter 3 previously known results on the random transverse-field Ising
chain are reviewed, including the free-fermion description of the model, the



relation with random walk, and the phenomenological scaling theory of the so
called rare events.

In Chapter 4 we present our numerical and phenomenological results on the
Griffiths phase of random transverse-field Ising spin chain. We consider here
quantities, the singular behaviour of which is not trivially related to that of the
energy gap, such as the second energy gap, non-linear susceptibility, and energy-
density autocorrelation function. By using phenomenological scaling arguments
we relate the exponents describing the singular behaviour of the above quantities
to the dynamical exponent. In the free-fermion picture closed forms for these
quantities are derived, which are then analysed numerically. The numerical
results support the validity of scaling considerations.

Subsequently we extend the Ma-Dasgupta-Hu type real-space renormaliza-
tion group scheme to the Griffiths phase, which is presented in Chapter 5.
We give an analytic solution for the flow equations of the random transverse-
field Ising chain in the Griffiths region, where we show that the procedure is
asymptotically exact, and the dynamical exponent stays invariant during renor-
malization. By the help of this an exact expression for the determination of
dynamical exponent is given. On the ground of phenomenological considera-
tions we propose the above assertions to be generally valid for quantum spin
chains. In order to check this we solve numerically the renormalization group
flow equations of random quantum Potts chain. Our results are compatible with
theoretical considerations.

Chapter 6. is devoted to the study of random XY- and random dimerized
XX chain. Here, we develop a phenomenological theory of average quantities,
which relies on the scaling behaviour of rare events. Establishing a relation
with random walks, rare events are identified as regions corresponding to sur-
viving walks. By the help of this theory we determine the complete set of bulk-
and surface critical exponents. These are than compared to numerical results
on operator-profiles obtained by using the free-fermion representation. We find
critical order parameter profiles follow the conformal predictions, if we use the
exponents obtained from phenomenology. Furthermore we determine the aver-
age behaviour and the distribution of dynamical correlations at criticality and
in the Griffiths phase. Using the decoupling of models under study into two
Ising chains, we give an analytical expression for the dynamical exponent.

In Chapter 7 we turn to study the g-state random Potts model, where after
appropriate parameterization the ¢ — oo limit is sensible, and the magnetization
exponent is known to converge to a finite value. Contrary to previous finite-gq
calculations we perform here a direct investigation in the ¢ — oo limit by the
help of random cluster representation of the model. We show that in this limit
thermal fluctuations becomes irrelevant, and critical behaviour is determined
by a single dominant graph in the geometric representation of the model. To
find this graph is equivalent to an optimization problem of a non-convex cost-
function defined on the set of graphs. We solve this problem by a stochastic-
and a combinatorial optimization method, and analysing the fractal properties
of dominant graph, we give a more accurate estimation for critical exponents,
than previously.
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Chapter 2

Criticality and disorder

2.1 Critical phenomena

In the present work we deal with continuous phase transitions of disordered
models. These phase transitions have to be discussed in the light of critical
phenomena in pure systems, irrespective whether the corresponding pure system
undergoes a first- or a second order transition. Therefore we review a few basic
notions connected with critical phenomena in pure systems, before we turn to
discuss the consequences of randomness in the next section.

2.1.1 Critical exponents

We consider here a pure system with many degrees of freedom and short-range
interactions between them, which possesses a continuous phase transition. To
quantify the deviation from criticality one introduces a control parameter 0,
which is zero at the transition. In thermally driven phase transitions it is the
reduced temperature, but in general it may be some other parameter of the
Hamiltonian.

The system is characterized by a continuous function of 4, the order parame-
ter, which is non-zero at one side of the transition (6 < 0), called ordered phase,
and vanishes otherwise. The opposite side of critical point is termed disordered
phase. In the sequel we deal with magnetic phase transitions, which are con-
nected with the vanishing of magnetization. Here the local order parameter
density is the local magnetization

. of
(i(x)) = — =L 21)
where the local external field h(r) couples to to the local magnetization operator
m(r) in the free energy density f(r). Here and in the following (...) denotes
thermal expectation value, which reduces at zero temperature to ground state
expectational value.

The bulk two-point correlation function for the magnetization operator is
obtained by taking the functional derivative of the free energy with respect to
the position-dependent field

F

(2.2)
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It has the asymptotic behaviour lim, o, C(r,8) = (i (0)){m(r)), since the local
order parameters are asymptotically uncorrelated. The ordered phase is char-
acterized by {(m(r)) # 0, meaning, there is long-range order (LRO), while in the
disordered phase {(mi(r)) = 0 and there is short-range order (SRO). Counsidering
the connected part of correlation function, i.e. the spatial correlation of fluctu-
ations around the average, Ceon(r,8) = {((m(0) — (1(0)))(m(r) — {m(r)))), one
observes in both phases:

Ceon (7,0 # 0) ~ e77/¢, (2.3)

where £ is the correlation length. This is the distance over which the fluctua-
tions of microscopic degrees of freedom (here the local order parameters) are
significantly correlated with each other. (Note that Ceon(r) = C(r) for 6 > 0.)

Close to criticality the singular part of thermodynamic quantities are de-
scribed by power-laws, where the powers are called critical exponents. A critical
point is hallmarked by an infinite correlation length, which close to the transi-
tion diverges as

E~107", (2.4)

where v is the correlation length exponent. Strictly at criticality (6§ = 0) £ is
infinite, and the bulk correlation of the order parameter has an algebraic decay,

C(r,0) ~ 777, (2.5)

where 1 is the decay exponent. This type of behaviour of correlation is called
quasi-long-range order (QLRO). The bulk order parameter (simply denoted by
m) vanishes in the ordered phase close to the transition as

m ~ (=6)°, (2.6)
where 3 is the order parameter exponent. The specific heat ¢ = g%{ diverges as
¢~ 1872, (2.7)

with «, the specific heat exponent. Perturbing the system by an external mag-
2

netic field h, leads to the divergence of the susceptibility y = % following the

scaling law

x ~ 1677, h — 0. (2.8)

At 6 = 0 the order parameter vanishes with A like
m ~ W/, (2.9)

Close to the surfaces of the system (if there are any) various properties may
behave differently as in the bulk. This necessitates the introduction of the analo-
gous surface critical exponents, through the singular behaviour of corresponding
surface quantities, e.g. my ~ (—=8)?", where mj is the surface magnetization.

In most cases the critical exponents are fully specified by the symmetry
properties of the model under consideration, and do not depend on microscopic
details of interaction. This allows phase transitions to be categorized into dif-
ferent universality classes.
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2.1.2 Scaling

The power-low form of quantities in terms of parameters 4, h etc. measuring the
deviation from critical point, is linked to the self-similarity of critical fluctuations
inside the correlation volume £?. The system is then covariant under a global
change of the length-scale and singular quantities are homogeneous functions of
their arguments. These properties form the basis of the scaling hypothesis.

When lengths are rescaled by a factor b > 1, i.e. when r — r/b, the scaling
fields (8, h) are changed by a factor b~ where z is the scaling dimension of
conjugate quantities. When d — x > 0 (< 0) the corresponding scaling field
grows (decreases) under rescaling. Such a field is said to be relevant (irrele-
vant) whereas it is marginal when z = d. The system becomes invariant under
rescaling only when the relevant scaling fields vanish which corresponds to the
critical point. Since irrelevant variables finally vanish under rescaling, only rel-
evant and marginal scaling fields influence the critical properties, the marginal
ones generally leading to varying exponents.

Assuming that the only relevant scaling fields are § and h, the free energy
density is a homogeneous function of its variables and transforms as

f (5, h, %) =p7if (bl/”d, bi—omp, %) , (2.10)

where x,, is the scaling dimension of magnetization. The critical behaviour of
conjugate quantities and their derivatives can be deduced from (2.10), and the
corresponding exponents are all related to z,, and v, as follows:

o = 2—dv (2.11)
8 = vy (2.12)
v o= v(d-2zm) (2.13)
o = %-1 (2.14)
no= 2. (2.15)

Relation (2.12) can be recovered from the second ¢ derivative of both sides of
(2.10) at h = 1/L = 0 and taking b = 67%. From (2.10) it follows for the scaling
form of magnetization

1 _ = &m 1/vs pd—zm E
m (5,h,L> =b"""m (b 8,0 h, 7)) (2.16)

Taking now h = 1/L = 0 and b = 67" one gets (2.13). Similarly, putting

6=1/L=0and b= h¥=—7 one obtains (2.15). From (2.10) the scaling form
of susceptibility is

X (5, h, %) = by (bl/”d, b h, %) : (2.17)

Taking h = 1/L =0 and b = t" one arrives to (2.14). The transformation law
of the two-point function follows from (2.10) and (2.2)

C(r,8) = b‘g’”"C(%,bl/”(S). (2.18)
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Now with the choice § = 0 and b = r relation (2.15) is recovered. At the critical
point singularities are supressed by a finite L. Finite-size scaling exploits the
way they develop when L — oo in order to determine the critical exponents.
For example choosing § = h =0 and b = L in (2.16) gives

m o~ L4, (2.19)

2.1.3 Conformal invariance

Covariance under conformal transformations [11, 46] is expected to hold at the
critical point of systems with short-range interactions, which possess transla-
tional and rotational symmetry and are invariant under uniform scaling.

A conformal transformation r — r'(r) can be viewed as a generalization of
uniform scaling, where the local structure of the lattice (i.e. angles between
curves) is preserved, but the rescaling factor b(r) is a smooth function of posi-
tion. It follows from the Jacobian of the transformation as b(r)~¢ = det(dr'/0r).
Since local fields transform as h(r) — h'(r') = b(r)?=*h(r), two point correla-
tion function in (2.2) transforms like

(ria(ry)io(r2)) = b(ry) ™™ b(ry) = (i (v )i (r5)) (2.20)

under a conformal transformation. The conformal group for d > 2 is finite-
dimensional and contains rotations, uniform dilatations, translations, inversions
and the special conformal transformation

r r

W = 7'_2 -+ a, (221)
which is a composition of previous ones. It is especially useful, since a semi-
infinite system with a flat surface containing the origin is invariant under (2.21)
if a parallel with the surface, and the covariance under such an infinitesimal
transformation determines the form of critical two-point functions.

In two dimensions the conformal group is isomorfic with the group of com-
plex analytic functions w(z). Therefore it is infinite-dimensional and the local
dilatation factor is |dw/dz|™'. A frequently used conformal mapping in two
dimensions is the logarithmic transformation

L
w= o In z, (2.22)
which maps the infinite z plane onto a periodic strip of width L and infinite
length. Applying (2.22) on the correlation function (2.18) at criticality, it can
be shown, that the correlation length £ along the strip is related to the scaling

dimension x,, via 5
_ T
&= 7 Tm- (2.23)

Furthermore the above procedure allows to determine the boundary-induced
operator profiles [57, 129, 56].

If a disordered system has the required symmetry properties on average, then
the results of conformal invariance are expected to hold for the corresponding
average quantities. When some of the symmetries quoted above are broken,
then some of the results associated to conformally invariant systems still hold,
like the relation (2.23) as observed in specific examples [57].
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2.2 The effects of disorder

In this section we discuss the question how randomness affects the phase tran-
sitions. We shall use through and through the terminology of renormalization
group (RG) theory which is a useful tool in the theory of phase transitions.
Generally in real-space RG methods a partial trace (i.e. trace over a fraction of
degrees of freedom) in the patition sum is performed. After this in some cases
it can be replaced by an effective Hamiltonian which has the same structure as
the original one, however with different parameters and a reduced number of
degrees of freedom. The iteration of this procedure is then leads to the chang-
ing of parameters in the Hamiltonian, which can be illustrated in the parameter
space by the so called RG trajectories. A point in the parameter space which
is left invariant by the transformation is called a fized point. The phase dia-
gram can be divided into attractive basins of fixed points, from any point of
which the system flows to the same fixed point. In such a region the large-scale
behaviour is described by the properties of the fixed point. The decreasing of
degrees of freedom during the RG transformation corresponds to the rescaling
of correlation length. Therefore in a fixed point the correlation length must be
either zero or infinite. The former ones are called trivial fixed points and these
control the ordered and disordered phases, whereas the latter are the critical
fixed points controlling the system on the critical surface.

Relevance-irrelevance criteria For continuous phase transitions perturba-
tion expansions were developed [86, 87, 88, 28, 82] to treat the effect of weak
disorder and also a heuristic relevance-irrelevance criterion on the stability of
a pure system fixed point against weak disorder is known[43], which was origi-
nally derived in diluted systems, but can be generalized to other kinds of random
systems. The Harris-criterion predicts the randomness, which couples to the
energy density, to be relevant, if

v <df2, (2.24)

where v is the correlation length exponent of the pure system. In this case
the system flows to a new disordered fixed point in the parameter space (see
later). While if v > d/2, randomness is irrelevant, and the critical behaviour is
governed by the pure system fixed point. Note that the above criterion takes
into account only the immediate vicinity of the pure system fixed point, i.e. it
concerns only weak disorder. It can happen that a model is stable against weak
disorder, however sufficiently strong randomness brings it to a new fixed point.
Such a behaviour can be observed e.g. in the one-dimensional Ashkin-Teller
model and the quantum-clock model [13].

The effect of quenched disorder at a first-order transition point is compar-
atively less understood than the same phenomena at a continuous transition
point. Here neither a general relevance criterion, nor a consistent perturbation
expansion is known to apply around the discontinuity fixed point of the pure
model. One remarkable exception is the stability criterion by Aizenman and
Wehr [2] (based on an idea of Imry and Wortis [64], see also by Hui and Berker
[50]), which rigorously states that in two dimensions any amount of quenched
disorder will soften the first-order transition in the pure system into a continuous
one. In three dimension the same criterion predicts a cross-over phenomenon:
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generally the transition stays discontinuous for weak disorder, whereas it turns
to a second-order one for sufficiently strong disorder [21].

Irrelevant disorder If quenched disorder is irrelevant, the system is spa-
tially inhomogeneous on a microscopic scale, but by coarse-graining it, becomes
asymptotically homogeneous on macroscopic scales. The coarse-grained be-
haviour is thus equivalent with that of the corresponding pure system, and the
system belongs to the pure system universality class.

If randomness is relevant, the resulting disordered fixed points can be further
classified on the basis of the coarse-grained behaviour of the system in the low-
energy and long-wavelength limit[96].

Finite randomness fixed points One possibility for the system by coarse-
graining it is to remain inhomogeneous also on macroscopic scales, however
with finite relative magnitude of inhomogenities (i.e. ratio of parameters in the
Hamiltonian) in the long-wavelength limit. In this case the system is said to be
governed by a finite randomness fixed point.

Infinite-randomness fixed points An other possible scenario by coarse-
graining a random system is that the relative magnitude of inhomogenities does
not remain finite, but grows without limits. In these systems the distributions of
the logarithmic magnitudes of the terms in the Hamiltonian become arbitrarily
broad, as the energy scale tends to zero. The critical behaviour is controlled
by an infinite-randomness fized point (IRFP). Broad distributions involve the
lack of self-averaging. Considering finite samples of size N, the thermal average
of a quantity X is obviously sample-dependent in a quenched random system.
Therefore, if one is interested in the average quantity, one has to perform an
additional average over the disorder configurations, which is called quenched
disorder average. We shall denote by [...]ay in the following. The sample-to-
sample fluctuations of X can be described by the normalized variance:

[Xg]av - [X]gv

DN(X): [X]g

(2.25)

If Dy(X) — 0 in the thermodynamic limit N — oo, then X is said to be self-
averaging and a sufficiently large sample is a good representative of the whole
ensemble. Contrary if Dy (X) tends to a finite limit, the sample-to-sample
fluctuations remains finite, and any sample, no matter how large, is never a
good representative of the ensemble. In this case X is called non-self-averaging,
and in order to characterize X, its whole distribution is needed.

There are only few models known, where the critical behaviour is controlled
by an IRFP. Most of them are one-dimensional quantum chains at zero temper-
ature: random singlet states of certain antiferromagnetic chains, the quantum
critical point of random transverse-field Ising (and Potts) chains or the Haldane
state in the random spin-1 Heisenberg chain. In addition to chains we men-
tion here spin—% ladders, which exhibit essentially one-dimensional behaviour,
as well [84, 97]. Later it turned out that also the quantum critical behaviour of
higher-dimensional systems, such as the d = 2 and d = 3 random ferromagnetic
transverse-field Ising model, is governed by an IRFP [96].
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2.3 Classical spin models with quenched disor-
der

Here, we introduce two simple but non-trivial classical spin systems, which are
basic for the theoretical study of critical behaviour with quenched disorder. The
simplest and historically first studied spin system having a continuous phase
transition, is the Ising model [65]. It is defined by the Hamiltonian

H= —JZaiaj - hZai, (2.26)
(i) ¢

where ¢; = +1 is a classical Ising spin attached to site 7 of a d-dimensional
lattice, and the first sum is taken only over nearest-neighbour spins. The short-
range interaction tends to align neighbouring spins if J > 0 (the case of Ising
ferromagnet), while for J < 0 antiparallel orientation is favorable (Ising antifer-
romagnet). Below a critical temperature T, the system possesses two ordered
phases with non-zero per site magnetization m = (¢). (See the phase diagram
in Fig. 2.1.) The phase boundary h = 0 ends in a critical point at T' = T..
Disorder is introduced in (2.26) via the

parameters J and h: h
H= - Z Jzijdi()'j —Zhw’i, (2.27) TTT
<G> ¢l ________ ——
where, now, .J;; and h; are quenched random L ¢ l L T
variables. Hereby one obtains the various

random Ising models.

An important generalization of (2.26) (in
the sense that more than two values of spin
variables are allowed) is the g¢-state Potts
model,

Figure 2.1: Phase diagram of the
Ising ferromagnet. Crossing the
dashed line the system undergoes

a first order transition. A critical
Hpops = — Z Jijo(oi, 05) — Z hid (o, 1), point is located at T =T, h = 0.
i

(i)
(2.28)
where the classical Potts spin oy, is allowed to take ¢ different values o; =
1,2,...,q and 6(4,j) is the Kronecker symbol. For ¢ = 2 one recovers the
Ising Hamiltonian (2.26) up to a multiplicative and an additive constant. Other
notable special case of (2.28) is bond-percolation, which can be regarded as the
suitably defined g — 1 limit of ¢g-state Potts model [132].

For h = 0 the pure Potts model has a low temperature ordered and a high
temperature disordered phase. In between them a phase transition point takes
place, which is of first order, if ¢ is above some dimension-dependent critical
value ¢.(d) < g, otherwise it is continuous. However, even in the former case
the transition softens to a continuous one in the random bond Potts model [2].

Diluted models

The simplest realizations of systems with quenched disorder are the diluted mag-
nets. These systems may be interpreted as a binary alloy with a magnetic and
a non-magnetic component, which occupy the lattice sites randomly. The two
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Te PM

FM

Figure 2.2: Phase diagram of a diluted ferromagnet. The ferromagnetically ordered
phase is denoted by F'M, whereas the paramagnetic phase by PM.

relevant parameters of such a system are the temperature and the concentra-
tion of, say, the non-magnetic component p. The phase diagram is depicted in
Fig. 2.2. The line T = 0 of the phase diagram corresponds to the problem
of site-percolation. Decreasing p from one towards zero, p. is the first value
where an infinite cluster of magnetic atoms appears (in an infinite system). The
singular point, p,, is a geometric analogon of continuous phase transitions. For
example the density of the spanning cluster playing the role of order parameter
vanishes as p ~ (p. —p)P» close to p.. Below a certain concentration, p., the sys-
tem has a long-range ordered phase at low enough temperature, while above p,
there does not exist any long-range order. Crossing the separatrix a continuous
phase transition occurs, which belongs to different universality classes at T'= 0
(percolation) and at p = 0 (pure ferromagnetic system). In the intermediate
region 0 < p < p. the critical exponents are constant. If dilution is irrelevant,
the systems on the separatrix flows to the attractive pure system fixed point
and the exponents agree with that of pure one. If dilution is relevant, a new
attractive fixed point appears on the phase boundary which controls the whole
region 0 < p < p., and characterized by different exponents than that of pure
one.

A particular diluted model is the bond-diluted Ising ferromagnet, obtained
by putting h; = 0 and J;; = 0 with probability p and Jy; = J > 0 with
probability 1 — p in (2.27).

Random field models

The second important class is the family of random field models. Considering
(2.27) with J;; = J and hy’s as independent random variables with zero mean,
(drawn from, e.g. a Gaussian distribution with variance hg) one obtains the
random field Ising model. There is a competition between the two terms in
the Hamiltonian at 7' = 0: the interaction tends to align neighbouring spins,
while external fields try to pin the spins according to the sign of local field.
Fixing the the value of the exchange coupling J, the two relevant parameters
are the variance of the field distribution hy and the temperature T'. The phase
diagram looks similar to that of diluted models (one should replace p by hg).
For sufficiently small hg and T the interaction term wins and the system is
in its ferromagnetic phase with non-vanishing magnetization. As opposed to
dilution, random field is always a relevant perturbation. Finding the ground
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state is an optimization problem and since the T' = 0 fixed point controls the
whole critical line, the structure of the ground-state gives some insight into the
finite-temperature behaviour, as well.

Spin glasses

The paradigms of quenched disordered systems are the spin glasses [6]. These
are different from other random systems in many respects: at the transition the
non-linear response functions diverges, dynamics is rather slow in the spin-glass
phase and near the transition, they are characterized by a “random” order pa-
rameter and the “chaotic” behaviour of correlations as a function of temperature
can be observed.

A particular spin glass model is the Ising spin glass. It can be originated
from (2.27) by choosing h; = 0 and J;; = +J with probability 1 — p and p,
respectively. So both ferromagnetic and antiferromagnetic couplings are allowed
between pairs of spins.

The phase diagram (Fig. 2.3) is richer P
than that of diluted models. In addition to

ferromagnetic, antiferromagnetic, and para-
magnetic phases a spin glass (SG) phase ap- AF
pears at low enough temperature and at in-
termediate concentration of antiferromagnetic
couplings. The two main physical ingredi-

ents controlling this region are the quenched
disorder and the frustration. This later means

that not all terms in the Hamiltonian can be
minimized simultaneously. These lead to a
rugged multi-valley structure of the energy-
landscape with exponentially many local min-

ima having approximately the same energy. 0

SG PM

FM

The finding of the true minimum (or min- T
ima if degeneracy is possible) is an optimiza-~

tion procedure again. The microscopic pic- Figure 2.3: Phase diagram of
ture behind the spin-glass behaviour is that the three-dimensional Ising spin
the samples consist of small ferromagneti- 8lass on a cubic lattice. —In be-
cally ordered islands, the momenta of which ~ feen ferromagnetic- (FM) and al-
point to random directions. Therefore in tiferromagnetic (AF) phase a spin
this phase the conventional order parameter Eg(lai%pha;eo(SG) takes place, where
is zero [(0)]ae = 0. However [(0)2]as # 0, 777

while in the paramagnetic phase it vanishes, so this quantity is suitable for
order parameter.

2.4 Phase transitions in quantum systems

So far we quoted examples for phase transitions in classical (spin) systems. Now
we turn to the survey of phase diagrams of quantum-mechanical systems. First
we deal with features, which are characteristic also for pure quantum models,
while phenomena caused by randomness are discussed in the next section.
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In the classical disordered systems in the previous section two antagonis-
tic effects are present: On the one hand there were short-range interactions
between spins, which enforce ordering, and on the other hand thermal fluctua-
tions, which try to destroy the order. At criticality these two conflicting effects
are in some sence in equilibrium. Furthermore there was an other ingredient, a
parameter (dilution, variation of random fields, concentration of antiferromag-
netic couplings), which can be used in order to tune the critical temperature.
In a quantum-mechanical model all these effects may be present, as well. What
makes the situation much different is that the Hamiltonian describing the sys-
tem contains non-commuting local terms. This leads to quantum fluctuations
and gives an entirelly different way for the relaxation of the system, via quantum
tunelling.

We now discuss the influ-
ence of quantum fluctuations on
the critical behaviour of the sys-
tem. We first argue that they
are irrelevant at finite-tempera-

quantum ture transitions. In order to do

disordered this, one has to compare the

‘Eﬁg‘gg QCP @agnit}lde of thermal fluctua-
/ tions with that of quantum fluc-

tuations. The former is given
by the thermal energy per de-
gree of freedom, which is of or-
Figure 2.4: Phase diagram of a quantum sys- der kg1, while the later is mea-
tem. A quantum critical point (QCP) is located sured by the zero-point quan-
at T =0, A=A, tum of energy, which is hw,, if
the characteristic frequency of fluctuations is w.. It is known, that close to
the transition the correlation length £, becomes infinite, according to (2.4). At
the same time fluctuations become very slow, and the relaxation time diverges,
which is known as ”critical slowing-down”. The characteristic time scale, which
is set by the relaxation time close to criticality, and the characteristic length
scale, given by the correlation length, are connected as

T~ € (2.29)

where the exponent z, defined in this way, is called dynamical exponent. By the
help of (2.4) and (2.29) one obtains for the characteristic frequency

1
We ~ =~ [0]"*. (2.30)
At a finite T, quantum fluctuations are negligible if fiw, <« kpT,, or equiva-
lently

18] < T, (2.31)

which can always be satisfied close enough to the transition for finite 7,. Hence
for any finite T, the transition is therefore classical.

Suppose there is a parameter A, by which the transition temperature can
be tuned, and after all, at some value A., T, is forced to zero. (See phase
diagram in Fig. 2.4.) We see, that the width of the region, where (2.31) is valid,
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shrinks to zero as T, — 0 (Fig. 2.4). If T, = 0 a new universality class emerges,
which differs from the classical one. Changing A along the line 7' = 0 a quantum
phase transition (QPT) occurs at A = A, which is triggered purely by quantum
fluctuations. At T = 0 no heat bath exists, and thermally activated hopping
in the energy landscape is replaced by tunelling through barriers. A so called
quantum control parameter measuring the deviation from quantum critical point
can be conveniently defined as § = %

So for finite T, the critical behaviour of a d-dimensional quantum system
is equivalent with that of a d-dimensional classical system. Contrary to this,
strictly at the quantum critical point (QCP) the physics is described by a (d -+
1)-dimensional classical action, where the extra dimension corresponds to the
imaginary time 7 = it of the quantum-mechanical problem. The reason for
this connection is the Suzuki-Trotter transformation [125]. The main idea of
Suzuki-Trotter mapping is, that the imaginary time evolution operator of a
d-dimensional quantum model, which is Hermitian, can be viewed as a transfer-
matrix of a (d + 1)-dimensional classical model, in the anisotropic limit where
the lattice spacing in the transfer direction vanishes. In this case the quantum
model is called the Hamiltonian limit of the classical model, while the later is the
lattice representation of the former. The extension of the classical system in the
transfer direction is h/kpT, where T is the temperature of the quantum model.
For T, # 0 the correlation length in the imaginary time direction is limited
by 7i/kpT., and the critical behaviour is controlled by the diverging correlation
length in space dimensions. So the behaviour is like that of a d-dimensional
classical system. For T, = 0, however, correlations in the temporal direction
can grow unlimitedly. Therefore the system behaves as a (d + 1)-dimensional
classical one.

In quantum models relation (2.29) is a consequence of the fact, that statics
and dynamics are inextricably connected, since both statical properties and dy-
namics of the system are determined by the Hamiltonian. According to Suzuki-
Trotter mapping the imaginary time of a quantum model can be viewed as
additional spatial dimension of a classical model. Thus, it is supposed that
the correlation length in this direction (the relaxation time) diverges simultane-
ously with spatial correlation length near criticality, as given in (2.29). In pure
systems the dynamical exponent is one, z = 1, which corresponds to the equiv-
alence of time and space, and also corresponds to a linear dispersion relation,
which is indeed the case for the exactly solvable one-dimensional transverse-field
Ising model.

In order to illustrate the relevance of QPT’s one mentions the metal-insulator
transition in three-dimensional doped semiconductors [81] or the superconducting-
insulator transition [85]. In both cases the control parameter is the concentra-
tion of impurities. Other examples are the quantum spin glasses [117, 6], where
the control parameter is an external thermodynamical parameter, such as the
strenght of the magnetic field.

2.4.1 Transverse-field Ising model and quantum Potts model

For concreteness we introduce here the simplest model possessing a QPT. As the
prototype of thermal phase transitions is the classical Ising model, the protoype
of systems possessing a QPT, is the transverse-field Ising model (TIM). It is



16 CHAPTER 2. CRITICALITY AND DISORDER

defined by the Hamiltonian:

H=->Y" Jjoioi =Y ha}, (2.32)

<if> i
where ¢? and ¢} are Pauli matrices, representing a spin sitting on site i of a
d-dimensional hypercubic lattice. The first sum in (2.32) runs over only nearest-
neighbour pairs of sites. This model is the Hamiltonian limit of the classical
Ising model in (2.27). For later convenience we introduce here immediately the
random version of TIM, where exchange couplings, J; and external fields h; are
independent random variables.

Since [07,07] # 0 for all ¢, (2.32) is genuinely a quantum-mechanical model.
The interaction term tends to order the spins along the x-axis, while the trans-
verse fields, coupled to o}, try to flip them to the z-axis hence they tend to
destroy the order. If the exchange couplings are positive, the interaction prefers
a parallel orientation of neighbouring spins, and the order is ferromagnetic, while
if they are negative, the antiparallel alignment is favourable, and it is the case
of an antiferromagnet. By allowing both ferromagnetic and antiferromagnetic
couplings, one gets the quantum Ising spin glass. (The sign of h;’s can always
be gauged away by local spin rotations around the z-axis.)

Now we consider the pure ferromagnetic TIM, i.e. J;; =.J > 0 and h; = h.
Fixing J, the quantum control parameter is defined as § = h;h“, where h, is
the dimension-dependent critical value of the field h. In any dimension at zero
temperature the TIM has a ferromagnetically ordered phase with non-zero mag-
netization for 6 < 0, while if § > 0 the system is in its paramagnetic phase with
vanishing magnetization. The two regions are separated by a quantum critical
point at § = 0. If the dimensionality of the system is below the lower critical
dimension d,, which is between two and three, the system is paramagnetic at
any finite temperature, while if d > d., the ferromagnetic order holds on also
for finite temperatures.

Quantum fluctuations are introduced in this model by the presence of trans-
verse terms: If h was zero, the interaction term would be diagonal in the z-
representation, the ¢” operators could be replaced by its eigenvalues, and the
model would be equivalent to the classical Ising model, with a unique ground
state (in small symmetry breaking longitudinal field). On the other hand if
interaction were switched off, the spins would be pinned by external fields, and
the ground state would be classical again.

If J is non-zero, and the field is switched on, H is no longer diagonal in the
z-representation, and the model becomes quantum-mechanical. The ground-
state will be a superposition of classical states, which describes the quantum-
mechanical tunelling between local minima of the classical energy-landscape.
Quantum fluctuations which manifests itself in tunelling are the strongest at
the critical point § = 0.

As we have already mentioned, the lattice representation of (2.32) is a clas-
sical d+ 1-dimensional Ising model with ferromagnetic interactions in the extra,
temporal direction:

BHiassical = — Z Z Kijai(T)Uj(T) - ZZ KiO'i(T)Ui(T + 1)a (233)

T i

where 7 = 1,2,..., L, refers to slices of the (imaginary) time direction. The
reduced interactions, K;; are the same in all time slices. The couplings in (2.33)
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are related to that of the quantum Ising model, as K;; = ArJy;, exp(—2K;) =
tanh(A7h;), where A7 is the width of a time slice. The extension in this direc-
tion is equal to the temperature of the quantum model: L, A7 = 3. Performing
the Hamiltonian limit A7 — 0 leads to K;; — 0 and K; — oo in (2.33). At
criticality the universal properties are not affected by A7, and (2.33) belongs to
the same universality class as the TIM.

A generalization of TIM is the g-state quantum Potts model. 1t is defined by
the Hamiltonian

1, =
H ==Y qJié(nin;) - ZghiZMf, (2.34)
() i k=1

where the ¢ x ¢ matrix M; given in (B.3) flips the Potts spin at site 4, the states
of which are labelled by |n;), n; = 1,2,...,4. This model is the Hamiltonian
limit of the classical ¢g-state Potts model given in (2.28), and it reduces to (2.32)
for g = 2.

2.4.2 Quantum phase transitions in the presence of disor-
der

So far we have concentrated on the quantum critical behaviour of pure systems.
Now we sketch here what differences to the pure quantum critical behaviour
may arise by the introduction of disorder. We illustrate this through the random
variant of TIM in (2.32), where the exchange interactions J;; and external fields
h; are independent, random variables, drawn from some distributions, #(J)dJ
and p(h)dh, respectively.

Throughout this work we are dealing with lattice models, in which random
variables at different lattice sites are uncorrelated, although the question of cor-
related disorder is also a subject of intensive research[130, 111]. Another feature
is that, random variables are identically distributed in space. The problem of
7inhomogeneous disorder”, when variables are drawn from position-dependent
distributions, has also attracted much interest, but it is not discussed here.
For a recent study of this issue in the RTIC with algebraic decaying surface
inhomogeneous disorder see Ref. [72].

As we have already discussed in Section 2.2, a pure system fixed point may
be eighter stable against disorder or unstable, if the system flows to a new,
disordered fixed point. For deciding the relevance of disorder one invokes the
Harris-criterion, which indicates the pure quantum Ising critical point to be
unstable against weak disorder if d < 4.

As we have already mentioned, time scale and length scale are connected in
quantum systems according to (2.29), and pure critical behaviour is isotropic
in the sence that z = 1. This is not necessarily true in the vicinity of a dis-
ordered quantum critical point. This follows from the fact, that randomness
is uncorrelated in spatial directions, however the quenched (time-independent)
randomness is perfectly correlated along the time direction. The anisotropy in
time direction is manifesting itself in a dynamic exponent differing from one. A
conventional finite randomness fixed point is characterised by a finite dynamical
exponent, while an IRFP is characterised by extremly strong anisotropy, with
a formally infinite dynamical exponent. The random transverse-field Ising fer-
romagnet in one-, two- and three spatial dimensions were found to be governed
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by an IRFP with z = oo [106, 113, 63, 96]. The IRFP was argued to be attrac-
tive also for quantum Ising spin glasses for strong disorder [96], but in contrary
to this, Monte-Carlo results predicted a conventional fixed point with finite z
[38, 115]. For a possible explanation of this controversy see Ref. [13].

2.5 Griffiths phase

A surprising feature of disordered quantum (and also classical) systems, which
has no counterpart in pure systems, is the presence of an extended region around
the critical point, the so called Griffiths phase, where several physical quantities
are singular (Griffiths-McCoy singularities). Such anomalous behaviour was
first found by Griffiths in the paramagnetic phase of the site-diluted classical
Ising ferromagnet [37]. While in classical systems these singularities are only
essential, in a quantum system they can by rather strong, as was pointed out
by McCoy, who found the divergence of susceptibility in the McCoy-Wu model
[93, 92] (which is the lattice representation of the one-dimensional random TIM)
in an extended region above the critical point [91]. Although such a singular
phase exists also in the ferromagnetic side of the critical point, we shall focus
on the paramagnetic region in the following.

The underlying physics behind Griffiths-McCoy singularities is that there
exist such rare regions in the sample, which contain much stronger couplings
than the average. These strongly coupled domains (SCD) tend to order locally
even if the whole system is in the disordered phase. The spins sitting in such a
locally ordered cluster, are frozen together, and act collectively, as a giant spin.
These give a strong response for external perturbations, which may lead to the
divergence of average response functions, e.g. the susceptibility. Besides, to
such a well-localised ordered formation a small energy gap is associated, since
one knows from the exact solution of the homogeneous transverse-field Ising
chain, that the gap vanishes (exponentially in an open chain) with the system
size, in the ordered phase.

The vanishing energy gap involves the anomalous behaviour of dynamical
quantities. Locally ordered clusters contain small fields, which corresponds to
large temporal couplings in the lattice representation of the model, which tend
to order the spins ferromagnetically in the time direction, so relaxation time
is consequently large. These rare, exponential slowly relaxing domains lead to
power-law-tail distributions of relaxation time 7o, and other quantities related
to it. The broad distribution of 7 implies the algebraic decay of average auto-
correlations. This is reminescent of a critical point, however the characteristic
spatial extent of the strongly coupled domains is still finite and spatial correla-
tions fall off exponentially with a finite correlation length. Therefore Griffiths
phase is termed as a line of “semicritical fixed points”. This anisotropy is also
reflected in the dynamical exponent, which differs from one, and varies contin-
uously in the Griffiths phase, tending to a limiting value as the critical point is
approached. This limiting value was found to coincide with the value obtained
at criticality, in the one- and two-dimensional random TIM, indicating, that
also the critical behaviour is dominated by the rare strong clusters.

Depending on the type of disorder distribution, the Griffiths phase may
extend to the whole paramagnetic phase, but in some cases it has a finite upper
boundary d¢, above which (i.e. for § > d¢) the forming of SCD-s, i.e. locally
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ordered regions is impossible. In the one-dimensional RTIM for example, where
he = J in the pure case, SCD-s cannot exist if max{J;;} < min{h;}. Thus é¢
depends on the form of coupling and field distributions. So does z, which is
exactly known in the one-dimensional random TIM, and was found to be non-
universal in the Griffiths region. At the upper limit of the Griffiths phase d¢g
we have z = 1, thus the isotropy of time and space axes is restored.

There exists a phenomenological theory [126, 39] of the Griffiths phase, by
the help of which the origin of singular behaviour of various quantities is reduced
to a common physical ground. We shall introduce this in the following section.

2.5.1 Phenomenological description

Consider the quantity Pr,(V), which measures the probability, that in a finite d-
dimensional sample of volume V' = L? there is a cluster of N =17 < V strongly
coupled spins. Here, [ is the typical linear size of the SCD. Since N consecutive
strong bonds can be found with exponentially small probability ~ exp(—AN),
whereas the cluster could be placed at ~ V different sites, we have

PL(N) ~ Vexp(—AN), (2.35)

where A is some positive constant. The imaginary relaxation time of such a SCD
is, however, exponentially large in the volume, which can be seen as follows. The
vanishing of temporal correlation corresponds to the insertion of a domain wall
perpendicular to the time axis in the lattice representation of the quantum
model under consideration. This costs an energy proportional to the volume of
the SCD E = —~BN, where B is a positive constant. The probability of such an
event (i.e. the formation of a domain wall}, and thus the characteristic length
between walls, which gives the relaxation time, is proportional to the Boltzmann
factor

Tret ~ €xp(BN). (2.36)

Combining (2.35) and (2.36) one obtains a broad power-law distribution of imag-
inary relaxation times

4_1

Pr(Trel) ~ V1o

(2.37)

The power depends on the microscopic details, so it is expected to vary smoothly
in the Griffiths-phase.

For a classical system with activated dynamics the difference is that in the
relaxation time (2.36) not the volume but the surface of the SCD appears 7y ~
exp(B'N Ea ). This leads to a much narrower, stretched exponential distribution
P () ~ exp(—A(In Trel)ﬁ). Therefore Griffiths-McCoy singularities are
rather weak in classical systems and it is hard to observe them by numerical
simulations.

The energy gap is related to the relaxation time as e; ~ %, hence (2.37)

. a4’
implies the algebraic decay of its distribution Pr(e;) ~ VeP '. The follow-
ing argumentation sheds light upon an another physical meaning of %. The
dimensionless probability distribution is

- A5 _ (1.H7)d
Pr(lne;) = e1 Pr(er) ~ L% P = (Le;’ )", (2.38)
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where in the last expression the dynamical exponent z appears, which relates the
time scale to the length scale by definition. Comparing the last two expressions
in (2.38), one obtains A/B = d/z. Hence the linearized form of the low energy
tail of distribution reads as:

In[Pr(lne)] = gln €1 -+ const. (2.39)

Another singular quantity related to 7, is the local susceptibility x; at site [,
defined through the local magnetization

my = — lim —— (2.40)
as:
. Omy
= 8H,
H; is the strength of the local longitudinal field, which enters the Hamiltonian
(2.32) via an additional term H;o}, and Ep is the ground-state energy of the

system. One knows from the one-dimensional TIM, that y; is inversely propor-
tional to the energy gap (see (4.1)), therefore one expects

(2.41)

In[Pr(Inx;)] = -g In x; -+ const. (2.42)

It may happen that the linear response is analytical in the Griffiths-phase and
singularity arises ounly in the non-linear response (e.g. in higher-dimensional
quantum spin glasses). Therefore one often investigates the local non-linear
susceptibility, defined as
Pm
nl . l
= lim ———
X T g OH} '
which is the first non-vanishing higher derivative of my, since my; is an odd
function of H;.
In the one-dimensional TIM X?l contains the third power of gap in the de-
nominator (see (4.3)), hence one assumes that the tail of its distribution is

(2.43)

d
In[Pr, (In x")] = —ar In X} + const, (2.44)

with

2" =32, (2.45)
From (2.42) it is obvious, that the average local susceptibility diverges if z > d,
while the condition for the divergence of non-linear susceptibility follows from
(2.44) as z > 4.

Now we deduce the scaling form of singular thermodynamic quantities for a
finite but small temperature T" and external field H. The average susceptibility
can be obtained using (2.42) and expecting a cutoff in the distribution of order
T

[Xaw(T) ~ T (2.46)
The same result can be deduced from the asymptotic decay of the average spin-
spin autocorrelation function

oo}

[aMﬂEWﬁ%mw~fowmme~/ P (Teet)drees ~ 7.
i (2.47)
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-1
Using the sum rule for susceptibility, [X]oo = [, [Glaw(7)d7, one recovers
(2.46).

The scaling form of average susceptibility in the presence of a small longi-
tudinal field of strength H, when the appropriate scaling variable is T/H, is
expected to be

d_q.
[X]cw(Ta H) =4 1X(T/H)? (2'48)

where y(z) is some smooth scaling function. Putting H = T in (2.48) yields
d_
[Xaw(T =0, H) ~ H="". (2.49)
Integrating (2.49) by H, one gets the scaling form of average local magnetization
[m*]ee(T =0,H) ~ H:. (2.50)

Since the magnetization is related to the ground state energy according to (2.40),
integrating (2.50) over H once again yields for the scaling form of average in-
ternal energy at small T and H:

E(T,H) = H* T E(T/H), (2.51)
where E(z) is a smooth scaling function. With the choice T = H one obtains
E(T,H =0) ~T*, (2.52)

This yields for the scaling behaviour of specific heat:

OF
o(T,H=0)==(T,H=0)~T*. (2.53)
oT
Thus all above Griffiths-McCoy singularities are characterized with a single
exponent z, which varies continuously with the control parameter in the Griffiths
phase.

2.6 Experimental realizations

In this work we restrict ourselves mainly to the study of disordered one-dimension-
al quantum systems. There are a few magnetic materials for the description of

which the three-dimensional version of our models are adequate. Since spe-

cial phenomena (Griffiths-phase etc.) are present also in the less complicated

one-dimensional models, the investigation of them helps us to understand the

behaviour of more realistic two- and three-dimensional systems better. In fact

the special features arising from the interplay between disorder and quantum

fluctuations, are more pronounced in one-dimension than in higher dimensional

systems.

For three-dimensional Ising-model an experimental realization is the com-
pound LiHo,Y: «F4, an insulating magnetic material [134, 133]. It is an
isostructural derivative of the dipolar-coupled Ising ferromagnet LiHoF4, where
non-magnetic Y>* ions and magnetic Ho®* ions occupy randomly the rare-earth
sites. Applying an external magnetic field of strength I' perpendicular to the
easy magnetic axis, results in the splitting of the ground-state doublets of Ho®*+
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ions, and makes for the system possible to tunnel between these states. This
diluted system can be described by a random transverse-field Ising spin glass
with transverse-field A ~ I'?. In this system studied with z = 0.167 a spin-glass
phase appears below a temperature T, (I"), which depends on the applied field,
I". Crossing the phase boundary at T = 98mK the divergence of non-linear
susceptibility was found, which vanishes at 25mK [134] in contrast to theoreti-
cal expectations. This discrepancy may originate from the long-range nature of
dipolar coupling.

On the other hand one-dimensional models have experimental relevance on
their own right, as well. There are special substances in which chains of rel-
ative strongly interacting atoms are settled, which interact weakly with each
other. One can mention, e.g. the ionic crystal SroCuQg3, in which paramagnetic
copper atoms are aligned along lines, and the strength of coupling between
them, mediated by oxygen atoms is 2000K [36]. The interaction energy be-
tween such chainsg separated by Sr atoms is 5K. Thus in the temperature range
5K < T < 2000K this system is quasi-one-dimensional, and can be described
by the antiferromagnetic Heisenberg chain. Other examples are SrzCuPtOg,
where antiferromagnetic couplings between Cu atoms are provided by Pt, while
in SrgCulrOg the interaction mediated by Ir is ferromagnetic. The isostruc-
tural compound Sr3CuPty _IryOg is a realization of a one-dimensional spin-
glass. Other examples are the various tetracyano-quinodimethanide(TCNQ)-
salts, such as quinolinium-(TCNQ)s. These are one-dimensional insulating
compounds, in which positive ions have two states. They can be described
by a Hubbard model with half-filling of electrons. When hopping term is much
larger than Coulomb-repulsion term, the latter model is equivalent to a Heisen-
berg antiferromagnet.

Measurements on the susceptibility of quinolinium-(TCNQ)e came to the
low temperature behaviour x ~ T~ with « < 1 universal [127]. This, together
with other results of measurements on dynamical properties [128] was inter-
preted as evidence that the above compound is a random-exchange Heisenberg
antiferromagnet.

An interesting relation of the random transverse-field Ising models to the
non-Fermi liquid behaviour of f-electron compounds, such as U and Ce inter-
metallics. In these systems the the low temperature properties of the Kondo
impurities have been mapped onto an effective random transverse-field Ising
chain with random bonds and fields having power-law decaying spatial correla-
tions [14, 15, 111].



Chapter 3

The random transverse-field
Ising chain

In this chapter we review the known results on the random transverse-field Ising
spin chain (RTIC) with free ends:

L—1 L
H=-Y Jiofat, = hoi, (3.1)
g=1 i=1

where .J; and h; are independent random variables, drawn from distributions
w(J)dJ and p(h)dh, respectively. The sign of J; and h; can be chosen to be
positive without loss of generality, since it is always possible to make the sign
disappear by a gauge transformation ¢¥ — —c?, ¢f — —of on the appropriate
sites, which is a consequence of the absence of frustration in one dimension.
Thus the one dimensional transverse-field Ising ferromagnet, antiferromagnet
and spin-glass are equivalent. In higher dimensions it is no longer true be-
cause of frustration. The random transverse-field Ising chain is self-dual. The
transformation

~Z __ x &
Oy = 00441
2
~r z
oy = Haj (3.2)
j=1

maps (3.1) into the same Hamiltonian however with parameters J; = h; and
hi = J;_1, thus bonds and fields are formally interchanged.

3.1 Phase diagram with non-random couplings

The transverse-field Ising chain with non-random couplings J;; = J and h; = h
is exactly solvable by mapping it to free fermions [83, 104]. Its lattice represen-
tation, the two-dimensional classical Ising model was firstly solved by Onsager
in a more complicated way [100].

Introducing the quantum control parameter § = In %, the phase diagram
looks as shown in Fig 3.1. At zero temperature and § < 0 the system is in its

23
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ferromagnetic phase with longe-range order and non-vanishing magnetization.
The energy gap vanishes exponentially with the system size in the thermody-
namic limit. (The way €; vanishes in this phase depends on the boundary
condition [9].)
If § > 0 or T > 0 there is short-range order with zero magnetization and the
system is paramagnetic. Here the energy gap is finite.
T P At T = 0 the two phases are sep-
M crical point arated by a quantum critical point at
| 6 = 0. Its location also follows from
0 3 the self-duality of the model. This
point is characterized by quasi-long-
Figure 3.1: Phase diagram of the homo-  pange order, and by critical exponents
geneous transverse-field Ising chain. v=1,1m = % and z = 1. According
to the Harris-criterion in (2.24) this model is unstable against weak randomness
and is driven to a new fixed point.

3.2 Phase diagram of the random model

The quantum control parameter of the random model is

_ [Inhlay = [In J]ao
0= var[J] + var[h] ’ (8:3)

where var[z] denotes the variance of x. The phase diagram is similar to that
of non-random one (see Fig 3.2). A striking difference is the appearance of
Griffiths phase. For the random model there exists a large amount of exact,
conjectured and numerical results, which we shall briefly summerize below.

3.2.1 Critical region

According to Fisher’s renormalization group (RG) treatment [33], which will
be introduced in detail in Chapter 5, the critical behaviour of the model is
controlled by an IRFP, with extremely (logarithmically) broad distribution of
quantities. The average bulk magnetization vanishes close to the transition as
[M]ay ~ (—0)? with the conjectured exponent

so2-g  p= YD (3.4)

The corresponding surface exponent is
Bs =1, (3.5)

which is an exact result of McCoy [91]. From the RG treatment the zero-
temperature scaling form of magnetization in a small applied longitudinal field
H is exactly known for 6 < 1 (see Ref. [33]). At criticality (6 = 0) the bulk
magnetization behaves as [m],(H) ~ W, for H < 0.
The relation between the RTIC and random walk (see Section 3.5.1) can be
used in order to calculate the finite-size scaling of surface magnetization [59]:
[m]ay ~ L~*m, Ty = (3.6)

8
m =

1
5



3.2. PHASE DIAGRAM OF THE RANDOM MODEL 25

The RG method leads to the following results on correlations [33]. The spin-spin
correlation function
C*(r) = {ofoiy,) (3.7)

behaves typically at criticality as —InC*(r) = Ar'/? for large r, where the
constant A is broadly distributed. For [6] <« 1 C%(r) decays typically as
—1In C*(r) = r/&yp and the typical correlation length &, diverges as

1

‘Styp ~ W Vgyp = 1. (38)

viyp

This was found also by Shankar and Murthy [121] via transfer matrix calcula-
tions.

The average correlations, which are measurable, are dominated by the rare,
strongly correlated regions with order unity correlations, and therefore behave
differently. At criticality the power-law decay of mean correlation

(G p— (39)

was found, while for [0} < 0 the true correlation length diverges faster than

‘ftyp M 1
e~ v (3.10)

The critical point characterized by extreme anisotropy. Time scale is related
to length scale as
InT ~ £Y2, (3.11)

which corresponds to an infinite dynamical exponent z = oo [33].

According to phenomenological and numerical results [109] the critical au-
tocorrelation function G*(7r) = (67 (7)o?(0)) typically falls off faster than any
power-law, while the average decays logarithmically slowly

[Gao(r) ~ (In7) =2, (3.12)

The critical transverse spin correlation function Cc(r) = (oi07,,) is a self-
averaging quantity and at criticality its average behaves as — In[C (7)] gy ~ 72,
like its typical value [109]. The critical average transverse spin autocorrelation
function [G(7)]ay = [{eZ(7)07(0))]ay decays as [G*(T)]aw ~ 77" [109].

2 2

3.2.2 Griffiths phase

In the paramagnetic phase the disordered Grifliths phase is located in the region
0 < § < d¢, where free energy is a non-analytic function of 7" and H, as it was
discussed in Section 2.5.

This region extends to d¢g, above which all transverse-fields are bigger than
couplings. The exact value of the dynamical exponent is known [59]. It is the

positive root of the equation
1/z
)] - 819

av
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The dynamical exponent generally depends both on ¢ and on the distributions
w(J) and p(J). However it becomes universal, i.e. distribution independent, in
the vicinity of the critical point where z(d) &= 1/(24), |6} < 1, in accordance
with the RG results [33, 31]. On the other hand z =1 as 6§ — 4.

The phenomenological argumentations on scaling behaviour of singular quan-
tities achieved for the RTIM in general dimension d in Section 2.5, also hold
here with d = 1. The numerical results on different singular quantities in the
Griffiths phase are all in agreement with the analytical formula in (3.13) and
the observed small deviations are attributed to finite-size corrections [138, 58].
Below the critical point lies the

! PM ordered Griffiths phase, exhibiting
FM similar singularities as its disorder-

l : ed counterpart. The underlying

B 0 8 ®  physics of singularities in this re-

ordered disortiered gion is understood due to duality,

Griffiths phase ~ Griffiths phase which connects the point in the
paramagnetic phase at § to the po-
Figure 3.2: Phase diagram of the RTIC. int in the ferromagnetic phase at
8. The formations corresponding to SCD’s in the paramagnetic side of criti-
cal point, are the weakly coupled domains (WCD) in the ferromagnetic phase,
which contain smaller bonds and stronger fields than the average, and are lo-
cally in the disordered phase. A WCD effectively cuts the system inty two very
weakly interacting parts and thus reduces the surface order enormously. The
dual object, i.e. a SCD is known to be associated with a very small energy gap,
€1. Thus in the tails of the distributions, m? and €; are dual quantities, and
one expects the following singularity of surface magnetization in the ordered
Griffiths phase:
P(lnm?) ~ (mH)Y*, m* =0. (3.14)

This scaling relation, which can be proven exactly for the RTIC (see Section
3.4), is expected to hold also for other one-dimensional disordered quantum
chains.

3.3 Free fermion description of RTIC

The problem of diagonalization of (3.1) is equivalent to the eigenvalue problem
of a 2F x 2 matrix if one would expand H in the tensoral product space of
spin states. However considerable simplification can be achieved by mapping H
through a Jordan-Wigner transformation and a following canonical transforma-
tion to a free fermion model:

H=> ¢ (njnq - %) , (3.15)

g=1

in terms of the n} (n,) fermion creation (annihilation) operators. The en-
ergy of modes ¢, is obtained through the solution of an eigenvalue problem,
which necessitates the diagonalization of a 2L x 2L tridiagonal matrix with
non-vanishing matrix-elements T5;_1 9, = T532:-1 = hy, ¢ = 1,2,..., L and
T5 2541 = To441,2e = Ji, 1 =1,2,..., L —1, and the components of the eigenvec-
tors Vy are denoted as V,(2i — 1) = —¢,(¢) and V,(2i) = ¢,(4),i=1,2,..., L,
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i.e.

0 ha _(I)q(l)

hh 0 . U, (1)
0 Ji 0 bhy —%4(2)

T = ha 0 ’ , ‘/q:
JL—l \IJQ(L_l)
JL—l 0 hL _(I)Q(L)

hr 0 v, (L)

(3.16)
One considers only the ¢, > 0 part of the spectrum. The details of this standard
method can be found in Appendix A.2. The eigenvalue problem of (3.16) is
analytically solvable only for the pure model [104]. However it is a powerful
tool also for the numerical study of the random model, since the dimensionality
of the problem is reduced from 27 to 2L.
In the following we derive expressions for various quantities in the free
fermion picture, which are needed later.

3.3.1 Ceritical point

First we give a justification of criticality condition given by (3.3). The critical
point for the RTIC can be obtained from the condition that the energy gap,
which is inversely proportional to the relaxation time, must vanish in the ther-
modynamic limit. From Eq.(A.15) one obtains that a non-trivial solution with
zero eigenvalue exists if det((A ~ B)(A -+ B)) = 0. Or simply det(A — B) = 0,
since (A — B)T = (A + B). The exact solution of the pure model tells us, that
with periodic boundaries the first gap can be zero even in a finite chain. There-
fore one considers here the corresponding matrix for the cyclic chain, which
reads as

hi O Jr,
Ji he O
Jo  hs
A.-B,= . (3.17)
0
Jr1 hr

The determinant of (3.17) vanishes if Hle hi = Hle Ji. In the L — oo limit,
when boundary effects are irrelevant, this yields the criticality condition also for
the free chain:

nhley = [In J]ae. (3.18)

For a special case the validity of Eq. (3.18) follows from the self-duality
of the model. Assuming that there exist only a single phase transition in the
system, where physical properties are singular, it must be located at the fixed
point of the transformation (3.2) [80]. Thus if #(J) and p(h) are identical, the
system is expected to be at its criticality, and (3.18) is trivially satisfied.
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3.3.2 Magnetization and dynamical correlations

Since the Hamiltonian contains products of two step operators, it commutes
with the operator

Q= Haf. (3.19)

Q has two eigenvalues: () = +1, therefore the space of spin states decomposes
into two orthogonal subspaces. In the free fermion picture these two sectors
are related to the parity of the fermion number operator N = Zle e =
Sr o7 +1). ¥Q =1, N is even, and if Q = 0, N is odd. The operator
o¥ maps a state from one sector to the other, hence the ground state expec-
tation value (0}¢¥]0) is zero. Consequently (0}c¥|0) is not suitable as an order
parameter. The true order parameter has to be determined from the asymp-
totic behaviour of the autocorrelation function Gf (1) = (Ojef (7)o (0){0). Using
o (1) = e"Hafe ™M the autocorrelation function assumes the form

Gi (1) =Y W(ilof |0)* exp [~ (E; — Eo)], (3.20)

i

where [) is the i-th eigenstate of H with eigenvalue E;. Then lim, ., Gi(7) =
(m#)?, since the magnetization is asymptotically uncorrelated. In the ordered
phase the first energy gap vanishes exponentially in the thermodynamic limit,
i.e. the first excited state becomes degenerate with the ground-state. Therefore
in the large 7 limit only the first excited state survives in (3.20) and the local
magnetization is given by the off-diagonal matrix element:

m{" = (1]of |0}, (3.21)

where the superscript refers to the boundary condition. In the fermion repre-
sentation of is expressed as

O’f = AlBl e Ag_lBg_lAg (322)
with
A=Y b nf +ng) B =Y tbg(@)(rf —my) - (3.23)
q q

Using [1) = #;7|0) the matrix-element in (3.21) is evaluated by Wick’s theo-
rem. Since for ¢ # j (0}A4;4;]0) = (0|B;B;{0) = 0, one obtains for the local
magnetization

Hl Gll G12 e Gll—l
£ H2 G21 G22 e G21—1
mC = . ) . N (3.24)
H Gn Gp ... Gua
where
Hy = (0lm4;[0) = 2,(j)

Git = (0|BrAj|0) = =" W, (k)@y(j) . (3.25)

q
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The surface magnetization can be given in a closed form [58]. One possible
route to this is to put Az = 0, what implies that the eigenvalue s§ of S§ =
%af becomes a good quantum number. In the fermion-picture the twofold
degeneracy s7 = :l:% corresponds to the presence of a zero mode, ¢; = 0, with
an eigenvector satisfving V1(2i) = ¥1(i) = 0,7 = 1,2,..., L. Then the first
excited state |1) is degenerate with the ground state |0) and the matrix-element
in (3.21) corresponds to the ground-state expectation value of the magnetization:

m{"t = (0lof|0), (3.26)

which is given by (3.24). The surface magnetization, m? = m{ = ®,(1) can
easily be obtained by solving TV; = 0 with V1(2i) = 0 for i = 1,...,L and
using the normalization condition Y, ®1(¢)? = 1. This yields

1+ Lz—l 11 (%) T o . (3.27)

This can be derived also with free boundaries in the L — oo limit [102)].
The autocorrelation between surface spins can be obtained directly from

(3.20) as:

Gi(r) =D |@4(1)]* exp(—Te,) (3.28)
a
whereas bulk autocorrelation function can be given in a more complicated form
in terms of a Pfaffian (for details see Ref. [58]).

3.4 Relation with random walks

Another source of exact results is the mathematical equivalence between the
RTIC and the Sinai walk [120], which was found by Igl6i [59]. Namely, Eq.
(A.15) can be transformed into the eigenvalue problem of the Fokker-Planck op-
erator of a one-dimensional random walk (RW) with nearest-neighbour hopping
in a random environment [59, 62]. Among others the following correspondances
were established:

J & (wi+17i)1/2 (329)
h, & (wi7i+1)1/2 (330)
e e =M, (3.31)

where w; ;41 = w(i — ¢ & 1) transition probabilities characterizing the random
walk, and Ay is the k’th eigenvalue of the Fokker-Planck operator.
The free boundaries of RTIC of size L correspond to adsorbing boundaries
in the RW problem at site ¢ = 0 and i = L. The surviving probability Py (L),
i.e. the probability for the walker starting near one of the adsorbing walls not
to cross its starting point after L steps, is given in a form similar to (3.27). It
was thus established:
Pyyru(L) & m2(L). (3.32)

The control parameter of the RW is defined as

[ln w<_]¢w - [ln w—>]av
varfwe ] + varfw]

Saw = (3.33)



30 CHAPTER 3. THE RANDOM TRANSVERSE-FIELD ISING CHAIN

At ogw = 0 the diffusion is ultra-slow and the averaged mean-square dis-
placement grows as [(X2(t))]sw ~ In*t. Around this point, i.e. for small
dpw # 0 takes place the region of anomalous diffusion, characterized by

[<X2 ()]aw ~ t\p’ (3.34)

with ¥ < 1, which is the analogon of Griffiths phase in RTIC. Comparing the
finite-size-scaling behaviour of the largest non-zero eigenvalue A; (L) ~ L™ ¥ in
this region with that of the energy gap of RTIC in the Griffiths-phase e, ~ L™%,
one obtains using Eq. (3.31)

1
e —. (3.35)

=

Now exploiting, that ¥ is known exactly

l(%—:) T _ 1 (3.36)

av

—

25, 75] in the form

and using (3.29), (3.30) and (3.35), one obtains for the dynamical exponent of
the RTIC the implicit equation in (3.13).

Eq. (3.36) follows from the observation, that the product of independent,
identically distributed random variables A = xjz9z3 ... (the so called Kesten-
variable) has a singular distribution P(\) ~ A71T#, with p given by [2#],, =
1 [75]. One can also arrive at (3.13) directly by regarding the perturbative
expression for the energy gap in (3.42) as a Kesten-variable. Applying this
argument to the exact expression of surface magnetization

1 L 1 s 2
m§:1+2:1 <7> , (3.37)

=11

one obtains (3.14).

3.5 Phenomenological theory

In random quantum spin chains the critical properties are expected to be con-
trolled by an IRFP, where distributions are extremely broad and as a con-
sequence the average and typical behavior of these quantities are completely
different. The average is dominated by such realizations (the so called rare
events), which have a very large contribution, but their fraction is vanishing in
the thermodynamic limit. In this section we identify these rare events for the
RTIC model and use their properties to develop a phenomenological theory, on
the ground of which we derive some of the results listed in Section 3.2. Later
we shall apply this theory with slight modifications to the random XX and XY
chains.

3.5.1 Surface order parameter and the mapping to ran-
dom walks

The surface order parameter is given by the simple formula in (3.27). It is easy
to see from (3.27) that in the thermodynamic limit the average surface order
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parameter is zero (non-zero), if the geometrical mean of the J; couplings is
(smaller) greater than that of the h; couplings. From this the definition of the
control parameter in (3.3} follows.

Next we compute the average value of the surface order parameter for the
extreme binary distribution!, i.e. the limit A — 0 and ho = 1 in (4.17). For a
random realization of the couplings the surface order parameter at the critical
point (p = ¢ = 1/2) is zero, if a product of the form of Hi}:l(Ji)—g, I =
1,2,..., L is infinite, i.e. the number of A-couplings exceeds the number of A7 !-
couplings in any of the [1,]] intervals. Otherwise the surface order parameter
has a finite value of O(1). The sequence of couplings J; can be represented by
one-dimensional random walks that start at zero and make the i-th step upwards
(for J; = A™1) or downwards (for J; = X). The ratio of walks representing a
sample with finite surface order parameter is given by the survival probability
of the walk Py, i.e. the probability of the walker to stay always above the
starting point in L steps.

In the vicinity of the critical point, the scaling behavior of the average sur-
face order parameter can be obtained from the survival probabilities of biased
random walks [58], where the probability that the walker makes a step towards
the adsorbing boundary, ¢, is different from that of a step off the boundary, p.
The control parameter of the walk, d,, = p — ¢, is proportional to the quantum
control parameter § in (3.3) evaluated with the binary distribution. Thus the
basic correspondences are:

[m5(0, L)]aw ~ Pourv (0w, L), 6 ~ G (3.38)
We recall the asymptotic properties of Py (0, L) [58]. For unbiased walks:
Paure (0 = 0,L) ~ L7Y2 (3.39)
for walks with a drift away from the wall:
Paure (60 > 0, L — 00) ~ 8y , (3.40)
and for walks with a drift towards the wall:
Poury(60 < 0,L) ~ exp(=L/&w), &w ~ 0,7 (3.41)

In this way we have identified the rare events for the surface order parameter,
which are samples with a coupling distribution which have a surviving walk
character. The scaling properties of the average surface order parameter and
the correlation length immediately follow from Eqgs. (3.39), (3.40) and (3.41).

3.5.2 Scaling of low-energy excitations

The rare events are also important for the low-energy excitations. The results
are obtained by using a simple relation for the smallest gap €1(I) of an open
system of size ] with free boundary conditions, expecting that it goes to zero at
least as ~ 1/1. Then one can neglect the r.h.s. of the eigenvalue problem of T

IThe extreme binary distribution represents one possible explicit construction of the
infinite-randomness fixed point.
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in (A.16) and derive approximate expressions for the eigenfunctions ®, and .

Finally one arrives at
-1

a(l) ~mimi_yh [

=1

hj
7 (3.42)
(For details see Ref. [61].) Here, the surface order parameter at the other end
of the chain 1y is given by replacing h;/J; for hy_;/Jr—; in Eq. (3.27).

Before using (3.42) we note that (surface) order and the presence of low-
energy excitations are inherently related. Samples with an exponentially small
gap have finite, O(1), order parameters at both boundaries and the coupling
distribution follows a surviving walk picture. Such a coupling configuration
represents a SCD, which at the critical point extends over the size of the system,
L. In the off-critical situation, in the Griffiths phase the SCD-s have a smaller
extent, [ < L, and they can be localized both in the bulk and near the surface
of the system. The characteristic excitation energy of a SCD can be estimated
from Eq. (3.42) as

-1
al~ 1] % ~ exp{-ltrln(J/h)} , (3.43)

where I, measures the size of transverse fluctuations of a surviving walk of
length [, defined as the conditional expectation value of the position of the
walker after [ steps under the condition, that the walker survives until the /th
step, whereas In(.J/h) is an average ratio of the couplings.

At the critical point (6 = 0), where [ ~ L, the size of transverse fluctuations
of the couplings in the SCD is Iy, ~ L'/? [58]. Consequently one obtains from
Eq. (3.43) for the scaling relation of the gap:

€1(0 = 0,L) ~ exp(—const - L*/?) . (3.44)

Then the appropriate scaling variable is Ine/ VL and the distribution of the
excitation energy is extremely (logarithmically) broad.

In the Griffiths phase the size of a SCD can be estimated along the lines of
Ref. [58] as I ~ &, In L and the size of transverse fluctuations is now Iy ~ [ ~
In L. Setting this estimate into Eq. (3.43) we obtain for the scaling relation of
the gap:

e (Ly~L77%, (3.45)

where 7 is the dynamical exponent.

3.5.3 Scaling theory of correlations

The scaling behavior of critical average correlations is also inherently connected
to the properties of rare events. Here the quantity of interest is the probability
P#(1), which measures the fraction of rare events of the local order parameter
my'. 2 For the surface order parameter m# it is given by the surviving prob-
ability, P*(1) = Pgypy, according to Eq. (3.38). We start with the equal-time
correlations
(C" (1) ]aw = (O]} o, 10)]ay - (3.46)
2Here and throughout the section p = z for the RTIC, while considering the XX and XY
chains (see later) u = z,y, 2.
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In a given sample there should be local order at both reference points of the
correlation function in order to have C*(r) = O(1). This is equivalent of having
two SCD-s in the sample which occur with a probability of Py (1,1 + r), which
factorizes for large separation lim, o, P§'(I,] + r) = P*(I)P"(l + r), since the
disorder is uncorrelated. The probability of the occurrence of a SCD at position
I, P*(l), has the same scaling behavior as the local order parameter [m]']ay.
Generalizing the arguments leading to (3.21), [m]']av is given by

(] lav = Kbulo7' [0)]av, (3.47)

where |®,) denotes the lowest eigenstate of H having a non-vanishing matrix-
element of o}' with the ground state in the ordered phase. It behaves at a bulk
point, 0 < I/L < 1, as:

[m} (L)]ay ~ L7, (3.48)

whereas for a boundary point, [ = 1, this relation involves the surface scaling
dimension z. Consequently P*(I) transforms as P*(I) = b=*" P#(1/b) under a
scaling transformation, when lengths are rescaled by a factor b > 1. Recalling
that for spatial correlations there should be two independent SCD-s we obtain
the transformation law:

[CH(7)]ay = D2 [CH (r/b)]ay - (3.49)
Now taking b = r one obtains power-law decay with the exponent
nt = 2zH . (3.50)

For critical time-dependent correlations the scaling behaviour is different from
that in (3.49). This is due to the fact that disorder in the time direction
is perfectly correlated and the autocorrelation function in a given sample is
G (r) = O(1), if there is one SCD localized at position I. Therefore the aver-
age autocorrelation function [G} (In 7)),y scales as the probability of rare events
PE(]):

(G (In7)]ay = b—e" (G} (In /6oy (3.51)

where we have used the relation in Eq. (3.11) between relevant length and time
at the critical point. Taking the length scale as b = (In7)? we obtain for points
! in the volume:

[GH(T)]aw ~ (In7)™7" (3.52)

whereas for surface spins, I = 1, one should use the corresponding surface decay
exponent 7'

Next we turn to study the scaling properties of the average correlation func-
tions in the Griffiths phase, i.e. outside the critical point. For equal-time cor-
relations in a sample C#(r) = O(1), if the SCD extends over a large distance of
r, which according to Eq. (3.41) is exponentially improbable. Thus the average
spatial correlations decay as

[CH(1)]av ~ exp(=1/§), £~ &w, (3.53)

where £, is defined in Eq. (3.41). On the other hand the autocorrelation func-
tion in a sample is G#(7) = O(1), if there is one SCD localized at 1, which occurs
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with a probability of P#(l) ~ 1/L. Consequently the average autocorrelation
function, which scales as P#(1), transforms under a scaling transformation as:

(G} (T)]av = b—]‘[Gf"/b(r/b‘z)];W 0>0, (3.54)

where we used the scaling combination 7/b* in accordance with Eq. (2.29). Now
taking b = 71/ one obtains

(G (T)]ay ~ 772, (3.55)

both in the volume and at the surface.



Chapter 4

Numerical study of the
Griffiths phase

The singular quantities studied so far in the Griffiths phase are all related to the
scaling properties of the lowest energy gap. This explains the observation why a
single varying exponent is sufficient to characterize the singularities of the differ-
ent quantities. There are, however, other observables, which are expected to be
singular as well, but not connected directly to the first gap. As an example one
could consider the distribution of the second (or some higher) gap. By similar
reasons as for the first gap these higher excitations are also expected to vanish
in the thermodynamic limit and the corresponding probability distributions are
described by new exponents valid for small values of the gaps. As another ex-
ample we consider the connected transverse spin autocorrelation function Gf(7)
In the McCoy-Wu model, this function corresponds to the energy-density cor-
relation function in the direction of correlated disorder. Therefore we adopt
in the following this terminology and call Gf(7) the energy-density autocorre-
lation function. Finally one should mention the non-linear susceptibility whose
distribution is expected to be described by a new varying exponent. In the
one-dimensional RTIM this quantity has not yet been investigated before.

In this section we extend previous numerical work and study the scaling
behavior of the above mentioned singular quantities in the Griffiths phase. We
present a phenomenological scaling theory and we confront its predictions by
results of numerical calculations, based on the free-fermion representation of
the Hamiltonian in (3.1). We show that the physical quantities we studied
are characterized by power-law singularities with varying critical exponents,
the value of those are connected to the dynamical exponent through scaling
relations.

4.1 Free fermion description of dynamical quan-
tities
The local susceptibility defined in (2.41) can be expressed as [58]:

=23 [ilor [0 gi@i . (4.1)

35
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Using (3.22), for the boundary spin I = 1 one has the simple expression:
_ 12, (D)

Similarly, the local non-linear susceptibility defined in (2.43) can be obtained
by perturbation calculation and reads as:

X' =24 {Dozofz% 10 13) g Gl o (Kl 0)+
8,7k ¢
o]0 2 io#]0)[2
S (R) 3 ) oo
For surface spins, [ = 1, (4.3) simplifies:
nl _ O,(1)20,(1)* (1 1Y _ (1)) 5~ [ 2D
u _24{§ (ep + €g)ep (619 €q> g( €p > ; €q } .
(4.4)

Next we consider the connected part of energy-density autocorrelation function
at site I, G, defined by

G () = (0lo7 (1)a7 (0)]0) — (0]arf (7)|0){0]orf (0)]0)
=" [0lof|i)|? expl—T(E; — Ey)] - (4.5)
>0

In the free-fermion representation of is expressed as [83]:
of = ABy, (4.6)
with 4; and By given in (3.23). By the help of this G{(7) is given by
Gi(1) = [Ws(1))@ (1) = Us(D2s(1)|” exp[—(es + €] | (4.7)
5>

which can be expressed for surface spins as

Gitr) =3 |- sa,0) enfrlte)]. @
Sy

4.2 Phenomenological and scaling considerations

Previously, along a phenomenological argumentation, we arrived to the distri-
bution of first energy gap given in (2.39), where now d = 1.

Next, we consider the second gap, €2, which is connected to the existence
of a second strongly connected cluster of N' < N spins, and its value is given
according to the argumentations in Section 2.5.1 as

€2 ~ exp(—BN') . (4.9)
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The probability with which a cluster of size N' occurs, provided another cluster
of size N > N' exists, is given by P} (N') ~ Lexp(—AN") Z@ZN, P(N). For
N'" <« L (or in the infinite system size limit L — oo} this can be estimated as:

P} (N'y ~ L* exp[-2AN"] . (4.10)
Thus from (4.9) and (4.10) we have
Pl(Ines) ~ L2/, (4.11)

with 1/2' = 24/ B, thus
2'=2/2. (4.12)

Note that the scaling combination in the r.h.s. of (4.11) is dimensionless, as it
should be. Repeating the above argument for the third, or generally the nth gap
the corresponding distribution is described by an exponent z(" = z /n, however
the finite size corrections for these gaps are expected to increase rapidly with n.

The scaling behavior of the average spin autocorrelation function is given
by:

mmmzfmmmwwmqmm, (4.13)

where the factor with the matrix-element is |M;|* ~ 1/L, since the probability
that a low energy cluster is localized at a given site, [, is inversely proportional
to the length of the chain. Then using (2.38) one arrives to the result in (2.47)
with d = 1, thus establishing the relation between the decay exponent of the
spin autocorrelation function and the dynamical exponent.

For energy-density autocorrelations, according to (4.7) and (4.8) the char-
acteristic energy scale is €3 and the asymptotic behavior of the average energy-
density autocorrelation function is given by:

(Glalr) = [ Phlea) M P exp(—ren)des (4.14)

Now we take the example of the surface autocorrelation function in (4.8) to
show that the factor with the matrix-element, |M{|?, is proportional to 3.
The remaining factor in (4.8) with the first components of the eigenvectors is
expected to scale as 1/L due to similar reasons as for the spin autocorrelations,
thus [Mf|* ~ L€} and together with (4.11) one has Pj (e2)|Mf|* ~ Le}z/‘/“.
Before evaluating the integral in (4.14) we note that for a fixed L the expression
in (4.14) stays valid up to 7 ~ L*. Therefore to obtain the L independent
asymptotic behavior in 7 we should instead vary L, so that according to (4.11)

take L ~ € 1) and in this way we stay within the border of validity of (4.14)
for any 7. With this modification we arrive to the algebraic decay of average
energy-density autocorrelation function:

[GClav(T) ~ 77", (4.15)
with an exponent 1, related to the dynamical exponent as

1
e =2+, (4.16)
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Figure 4.1: Probability distribution of —Ine; and — In ey for the uniform distribution
at ho = 2 (left) and the binary distribution (A == 4) at ho = 2.5 (right). The slopes of
fitted straight lines correspond to 1/z(ho) and 1/2 (ho), respectively. They follow the
predicted relation 2’ (ho) = z(ho)/2.

where the relation in (4.12) is used. We expect that the factor, |Mf|?, has
the same type of scaling behavior for any position I, thus the relation in (4.16)
stays valid both for bulk and surface spins. We note that the reasoning above
(4.16) applies also for the spin autocorrelation function, in which case in (4.13),
however there is no explicit L dependence.

In this way we have established a phenomenological scaling theory which
connects the unconventional exponents in (4.12), (4.16) to the dynamical expo-
nent. In the next section we confront these relations with numerical results.

4.3 Numerical results

In the numerical calculations we have considered RTIC’s with up to L = 128
sites and the average is performed over several 10000 realizations, typically we
considered 50000 samples. For some cases, where the finite-size corrections were
strong, we also made runs with L = 256, but with somewhat less realizations.

We have used two types of random distributions. In the binary distribution
the couplings can take two values A > 1 and 1/ with probability p and ¢ = 1—p,
respectively, while the transverse-field is constant:

w(J) = pd(J = X) +q6(J = A7),
p(h) = 6(h — ho) . (4.17)

From (3.3) the criticality condition is (p — ¢) In A = ln hg, whereas for the sym-
metric binary distribution p = ¢ = % it is hg = 1. In the Griffiths phase,
1 < ho < A, the dynamical exponent from (3.13) is determined by the equation

hi = pAY + gt (4.18)

In the wuniform distribution both the couplings and the fields have rectangular
distributions:
1, for0<J <1
w(J) = {O, otherwise
—1
p(h):{ho , for0<h<ho

4.19
0, otherwise ( )
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Figure 4.2: Probability distribution of the linear and non-linear susceptibility, In x1
and In 7', respectively, for the uniform distribution at ko = 3. The straight lines are
fitted to the data for the largest system size, their slopes correspond to 1/z(ho) and
1/2™ (ho), respectively. They follow the predicted relation 2™ (ho) = 32(ho).

The critical point is at hg = 1, whereas the dynamical exponent is given by the
solution of the equation
zln(1—27%) = —Inho. (4.20)

The Griffiths phase now extends to 1 < hp < .
We start to present results about the distribution of the first and second

gaps.
As illustrated in Fig. 4.1, both

for the uniform and the binary dis- 9

tributions, the asymptotic scaling re- | |

lations for the distribution of the first o e s

two gaps in (2.39) and (4.11) are sat- /,/"/ *

isfied. From the asymptotic slopes of = 4 i

the distributions we have estimated = /‘ 5 g

the 1/z and 1/2' exponents for the ost / % e, =04 o

two largest finite systems, L = 64 and / eplm128 o

L = 128, which are presented in Fig. 0¥ 7120 ¢

4.3 for different points of the Grif- ! 2 HO’O 4 °

fiths phase for the uniform distribu-

tion. As seen in the Figure the z ex-

ponent calculated from the first gap Figure 4.3: The estimates for 1/z and 1/2’
agrees very well with the analytical as a function of ho for the uniform distri-
results in (4.20). For the 2’ exponent, bution. The full line for 1/z corresponds
as calculated from the distribution of to the analytical result (3.13), the broken
the second gap the scaling result in 1 corresponds to 2/z.

(4.12) is also well satisfied, although the finite-size corrections are stronger than
for the first gap. For the third gap, due to the even stronger finite size effects, we
have not made a detailed investigation. Extrapolated results at hg = 2 are found
to follow the scaling result z3) = z/3. Next, we analyzed the distribution of the
linear and non-linear local susceptibilities at the surface spin. As demonstrated
in Fig. 4.2 both type of distributions satisfy the respective asymptotic relations
in (2.42) and (2.44), from which the critical exponents z and 2™ are calculated.
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Figure 4.4: The estimates for 1/z and 1/2™ as a function of hg for the uniform
distribution. They have been obtained from our analysis of the probability distribution
of In y; and In ¥}, respectively, for two system sizes (as exemplified in fig. 3). The full
line for 1/z corresponds to the analytical result (3.13), the broken line corresponds to

1/32, which should be identical with 1/2™.
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Figure 4.5: The bulk energy-energy autocorrelation function [G7 /,]av(7) for the bi-
nary distribution (A = 4) at ho = 1.5 for different system sizes as a function of InT.
The slope of the straight line identifies the exponent ne (ho).

The estimates are shown in Fig. 4.4 at different points of the Griffiths phase.
As seen in the Figure the numerical results for the dynamical exponent, z, are
again in very good agreement with the analytical results in (4.20) and also the
exponent of the non-linear susceptibility, 2™, follows fairly well the scaling in
(2.45).

Finally, we calculated the average energy-density autocorrelation function.
As seen in Fig. 4.5 [G)ay (1) displays a linear region in a log-log plot, the size of
which is increasing with L, but its slope, which is just the decay exponent, ., has
only a weak L dependence. The slope of the curve and thus the corresponding
decay exponent 17, has a variation with the parameter hq, as illustrated in Fig.
4.6. The estimated 7, exponents at the critical point, hg = 1, and in the Griffiths
phase are presented in Fig. 4.7. As seen in this Figure the variation of 1, is well
described by the form 7,.(8) = 1, (0) + 1/2(5). This functional form corresponds
to the scaling result in Eq.(4.16), if the critical point correlations decay with

1e(0) = 2. (4.21)
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Figure 4.6: The bulk energy-energy autocorrelation function [G7 /,]av(7) for the bi-
nary distribution (A == 4) at different values for hg for L = 128 as a function of In .
One observes the variation of the exponent 7. {(ho) {identical to the slope of the straight
line fits) with increasing hg.
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Figure 4.7: The exponent 7. (ho) for the binary distribution (A == 4). The full line is
the analytical prediction 1. (ho) = 2 + 1/z(ho) with z(ho) given by the exact formula
(3.13) for the binary distribution with A = 4.

The numerical calculations with L = 128 give a slightly higher value 7. (0) = 2.2
[109]. However, the finite-size estimates show a slowly decreasing 7,(0) with
increasing system size. Repeating the calculation with L = 256 we got 7.(0) ~
2.1. Thus we can conclude that the scaling relation in (4.16) is probably valid
and then (4.21) is the exact value of the decay exponent of the average critical
energy-density autocorrelations!.

4.4 Summary
We have considered the random transverse-field Ising spin chain and studied the

singular behaviour of susceptibility, non-linear susceptibility, higher gaps, and
the energy-density autocorrelation function in the Griffiths phase. Our main

I Numerical estimates for the decay exponent of the average energy-density autocorrelation
function for surface spins at the critical point are % & 2.5 with L = 128 [109], which is some-
what larger than for bulk autocorrelations. Discrepancies between estimates for z from surface
and bulk quantities have been observed before [58]. They can be attributed to corrections to
scaling effects which are different for different quantities, see also Fig. 6 in Ref. [138]



42 CHAPTER 4. NUMERICAL STUDY OF THE GRIFFITHS PHASE

conclusion is that all the above singular quantities can be characterized by
power-law singularities and the corresponding varying critical exponents can be
related to the dynamical exponent z(d) and, for energy-density autocorrelations,
to the n.(0) critical point exponent. Since the exact value of 2(d) is known in
(3.13) and we expect that also the relation in (4.21) is valid, we have a complete,
analytical description of the Griffiths phase of the RTIM in one dimension. Much
of the reasoning of our phenomenological scaling considerations in Section 4.2
stay valid for other random quantum systems. Especially the scaling behavior
of the higher gaps and the corresponding relation in (4.12) should be valid even
for higher dimensions and the same is true for the distribution of the non-linear
susceptibility and the corresponding relation in (2.45).



Chapter 5

RG study of the Griffiths
phase

Among the theoretical methods developed to study random quantum systems
the renormalization group (RG) scheme introduced by Ma, Dasgupta and Hu[89]
plays a special role. For a class of systems, the critical behavior of those is con-
trolled by an infinite randomness fixed point, the RG method becomes asymp-
totically exact during iteration. For some one-dimensional models, e.g. the ran-
dom transverse-field Ising model [33] and the random XXZ model [32], Fisher
has obtained analytical solution of the RG equations and in this way many
new exact results and new physical insight about the critical behavior of these
models have been gained. Subsequent analytical [58] and numerical [137, 58]
investigations of the models are in agreement with Fisher’s results. The RG-
scheme has been numerically implemented in higher dimensions [96, 84], as well,
to study the critical behavior of the RTIM and reasonable agreement with the
results of quantum Monte-Carlo simulations[106] has been found. Considering
the Griffiths-phase of random quantum spin chains here the RG-scheme has
been rarely used[84], mainly due to the general belief that the method looses
its asymptotically exact properties by leaving the vicinity of the scale invariant
critical point.

Our aim is to clarify the applicability of the Ma-Dasgupta-Hu (MDH) RG-
method in the Griffiths phase of random quantum spin chains. We start with
the RTIC, extend the method to the Griffiths phase and present the analytical
solution of the RG-equations. Then, for general models, we analyze by scaling
considerations the structure of the RG equations around the line of semicritical
fixed points and arrive to the conclusion that the RG method becomes asymp-
totically exact in the whole Griffiths region. This statement is then checked
numerically in the random quantum Potts model (RQPM) by solving the RG
flow equations.

5.1 The Ma-Dasgupta-Hu RG-method
Investigating quantum phase transitions one is interested in the low-temperature

properties of the system and would like to systematically eliminate high-energy
degrees of freedom. A simple way of doing this the MDH RG-method firstly

43
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developed for the random spin-1 Heisenberg chain [89] and later applied for
other spin chaing (RTIC, XX-, XY-, and XXZ chain) [33, 32].

The main idea of the method is to take the strongest term in the Hamilto-
nian, find the ground states of it, and take the coupling to the rest of the system
perturbatively, and then throw out the excited states involving the strong cou-
pling, yielding an effective Hamiltonian with couplings smaller then decimated
ones. Thus iteration of the above operations leads to the successive decrease of
energy scale.

We show here the implementation of the above procedure on the RTIC,
where one distinguishes between two cases.

Strong bond decimation If the largest coupling is a bond, e.g. ) = J3, one
considers the block-Hamiltonian containing the two spins connected by Jo (see
Fig. 5.1):

H 3 = —Jgﬂgdg - hg()’:;f - h30'§. (51)

We assume, that Jo > he,hs. The ground state of (5.1) lies in the subspace
spanned by | 1) and | }J). Solving the eigenvalue problem in this subspace
yields for the ground state energy:

1 (ha + h3)?
E@I—\/J;?*Jr‘(hQ’Jf‘hB)Q:_J2_§M+”' (5.2)
2

The first excited state is in the sector spanned by | 1) and | [1). The energy
associated to this is

1 . 2
El:—\/J;,z—’r(hg—fm)gz—J2—§w+... (53)
2

Thus the excitation energy:

hahs

2

B, —Ey =222 4 (5.4)

Dropping the two higher lying states with energies E3 ~ E; = Jo, we are left
with an effective Hamiltonian which acts on a single spin as

- hahg

23 =

A 055 (5.5)

Strong field decimation If the strongest term in the Hamiltonian is a field,
one has to consider the block (see Fig. 5.1):

H13 = —hgdg - JlO'fO'rf - JQO’é‘EO'g. (56)
Assuming ho > Ji, Jo the last two term can be regarded as a small perturbation
on the first one. These can be treated by second order degenerate perturbation
theory in the subspace |of 12 ¢3) with ¢f,06f =1 or |. This yields for the

effective Hamiltonian: I
f{13 = - ;difdg. (57)

The same result can be obtained much easier by eliminating the strong coupling
in the dual of (5.6), as shown in Fig. 5.1.
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Figure 5.1: The course of MDH strong disorder RG-scheme for RTIC and RQPM. In
case of a strong bond (A) one ends up with a single effective spin in a field hos = ’f}; .
For a strong field (B) the decimation is equivalent to eliminating a strong bond in
the dual lattice. Then the central spin is eliminated, leaving an effective coupling

Foo e J1J2 . H
Jiz = Py between remaining spins.

Thus the basic RG-equations for coupling and field decimations are given by

hihiga Fo Ji1ds (5.8)

h=
/{,Ji ’ /ihz‘, ’

respectively, which are related through duality. Here, for the RTIM we have
k = 1. Note that for £ > 1 the generated new couplings are smaller than
decimated ones', which leads to the gradual decrease of Q during the procedure.

Under renormalization one follows the probability distributions of the cou-
plings R(J, ), and that of the fields P(h, ), which are normalized, such that

Q Q
/ P(h, Q)dh = / R(J.O)dJ = 1. (5.9)
0 0

When the energy-scale is lowered as {2 — 1 — df), which amounts to elimi-
nating dQ[P(£2, Q) + R(Q), Q)] spins, the distribution R(J, 1) is changing as

R(J,Q —dQ) =
Q Q

= {R(J,Q)+dQP(Q,Q)/ dJ1/ dJsR(J1, Q)R (J5, Q) x
0 0

X [‘5 (J' Jlsf’“) — 0 =) el - J3)” 1-dQ[R(Q,;z)+P(Q,Q)] '
(5.10)

! Otherwise the procedure may fail. For details see Ref. {13, 69].
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The first term in brackets accounts for generated new couplings, while the second
and third term for decimated ones. The last factor is included in order to
maintain normalization.

A similar equation for the field distribution follows from (5.10) through du-
ality, which amounts to interchange P <+ R and J < h.

Now expanding R(J, ) — dQ) and P(h,Q — dQ) we obtain the differential
equations:

LD — RUMIPEO,0) - RE,0)
_P(0,0) QdJ’R(J',Q)R(Jg’“,Q)% , (5.11)
Jr
D — ph, )[R, ) - P(O,0)
_R(Q,0) i dh’P(h',Q)P(%,Q)% , (5.12)
hr

The fixed point (2 — 0) solution to the above equations at the critical point
(R = P) of the RTIC (s = 1) was found by Fisher [33, 31]. It is given in terms
of the distribution p(n) of the variable n = —(InQ —1In J)/In ) as

p(n)dn = exp(—n)dn. (5.13)

5.2 Analytical study of RTIC

For the RTIC (s = 1) we found one class of solutions, which satisfy the RG
equations also in the off-critical situation. They are of the form:

R(J,Q) = R(Q’Q)(Q/J)l—R(Q,Q)Q
P(h,Q) = P(Q,Q)(@/n)' 77002 (5.14)

where the distributions involve the parameters, R(Q) = R(,Q) and P() =
P(Q, ), which satisfy the relation (P — R}{) = 1/z = const. Thus the solution
is characterized by a single parameter z = z(d), which depends on the quantum
control-parameter §. At the critical point we have 1/z(0) = 0, whereas in the
paramagnetic phase 1/z(d) > 0 and monotonically increases with 4.

In terms of the variables, u = RQ + 1/22 = PQ —1/2z and v = —InQ we
obtain the differential equation

du 1

9
I S
dv+ 427

(5.15)

which has the solution, v = 1/(v — vg), vo = const, ot the critical point with
1/z = 0. This is identical to the critical fixed point solution in (5.13). At
this point we refer to Fisher’s analysis [33, 31] and conclude that the functions
in Egs (5.14) indeed represent the fixed point distribution for all non-singular
initial distributions. Another argument for Eqs. (5.14) representing the true
fixed point distribution, is based on the numerical solution of Eqs. (5.11) and
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(5.12), which are evolving towards the special solutions in (5.14) for different
initial distributions. A third argument can be found in Ref. [52].

In the Griffiths phase, § > 0, the solution of Eq.(5.15) in terms of the original
energy-scale variable, Q, is given by

_ up/2z + 1/42% tanh [In(Qo/2)/22]
~ 1/2z+4uptanh [In(Qo/Q)/22]

(5.16)

where © = ug at a reference point = Qg. Approaching the line of semicritical
fixed points, i.e. for 2/l — 0, we have in leading order:

RO = PO —1/2 = R(Q0)/[P(0)2] (/0)"* + ... (5.17)

thus P and R have different low energy asymptotics.

The physical relevance of 1/z can be obtained by studying the change of
number of spins, ng — ng — dng connected with a change in the energy scale
as £1 — Q — df). This leads to the differential equation

%? = ng [P(Q, Q) + R(Q,Q)], (5.18)
the solution of which is given by:
ng = {cosh [In(Qo/Q)/22] + 22 yosinh [In(Qo/Q)/22]} 7 , (5.19)

which along the line of semicritical fixed points has the asymptotic behavior
ng = const - /%, Q — 0. Since the typical distance between remaining spins
is Lo ~ 1/ng ~ Q7Y% we can identify z as the dynamical exponent, which
governs the relation between time- and length-scales as 7 ~ L?.

Next we show that z is invariant along the RG trajectory and can be deduced
from the original distributions. For this we consider the averages, [J*]a and
[h™"]av, and using Eqs.(5.11) and (5.12) we calculate the derivative:

STy = (1= [T/)"])
x (P(, Q) Q[0 + R(2, QO ], , (5.20)

which is vanishing for p = fi, if [(J/h)#*]ay = 1. Consequently ji stays invariant
along the RG trajectory until the fixed point, where using the distribution in
Eqs.(5.14) we obtain ji = 1/z. Thus the dynamical exponent for the RTIM is
given by the solution of the equation (3.13), which is then exact, since the RG-
transformation becomes asymptotically exact as € — 0. This latter statement
follows from the fact that the ratio of decimated bonds, Any, and decimated
fields, Any,, goes to zero as Any/Ang, = R(Q,Q)/P(,Q) ~ Q/%. Then the
probability, Pr(«), that the value of a coupling, J, being neighbor to a deci-
mated field is Q < J < af) with 0 < a < 1 is given by Pr(a) = 1 — af*?, which
goes to zero for any non-zero «, since RQ ~ Q% at the fixed point. Conse-
quently the decimations in Eq.(5.8) and the related RG equation in Eqs.(5.11)
and (5.12) are indeed exact. Thus we presented here a derivation of (3.13),
which is independent of that introduced in Section 3.4.
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5.3 General scaling theory

Next, we consider general random quantum spin chains with a critical IRFP and
analyze the structure of the RG equations close to the line of semicritical fixed
points, thus as 2 - 0. As for the RTIM, the decimation for fields and couplings
is asymmetric and for @ — 0 exclusively fields are decimated out, which are
typically infinitely stronger, than neighbouring couplings. Therefore the RG
decimation equations in Eq.(5.8) are asymptotically exact. The second point is
to show that the dynamical exponent stays invariant along the RG trajectory,
even though in the starting phase the RG equations are approximative. For
this we consider the low energy tail of the distribution function of the first gap,
Ppr(lner), which involves the exponent z, and use the scaling result of Section
4.2. This states that the probability distribution of the second, third, etc. gaps
are related to Pr(Ine;) as Pr(lnes) ~ P¥(lney), Pr(lnez) ~ Pl(lne), ete, due
to the fact that for a small second, third gap one needs two, three independent
SCD-s and the corresponding probabilities are multiplied. In the RG decima-
tion the SCD-s are only eliminated through coupling decimation, since their
couplings are stronger than the average fields. If at some time a SCD with a
small gap, €1, is eliminated then in the probability distribution, Py, (Ine€;), one
should consider the former second gap and use the corresponding conditional
probability, Pr(lne;) — Pr(lnes)/Pr(lne) ~ Pr(lne ). Thus the small energy
tail of the gap-distribution and consequently the dynamical exponent remains
invariant under the renormalization procedure. The previously obtained exact
results for the RTIM give strong support for the validity of these phenomeno-
logical considerations.

5.4 Numerical analysis of the random quantum
Potts model

For a numerical demonstration of the validity of the above statement we con-
sidered two random quantum spin chains, the one-dimensional RQPM and the
dimerized Heisenberg (XXX) chain, both having a set of RG equations very
similar to that of the RTIM in (5.8).

The g-state RQPM was already introduced in Section 2.4.1. We study here
its one-dimensional version given by the Hamiltonian

L

L g—1
H==3qJidnini) -5 ém Sk, (5.21)
2 k=1

i=1

where periodic boundaries are considered, i.e. spins at site 1 and site L + 1 are
taken to be identical.

Fields and couplings play analogous role as for the RTIC. The quantum
Potts chain is self-dual, and the quantum control parameter is the same as that
of RTIC, given in (3.3). As it is shown in Appendix B, the recursion equations
are of form of (5.8) and & takes the value £ = ¢/2 [119].

At the critical point the RG-equations for 1 < k& < oo have been solved by
Senthil and Majumdar [119] with the result that & is an irrelevant variable and
the IRFP is the same as for the RTIM. In the Griffiths-phase we could not find
a complete solution of the RG equations, in spite of the close similarity to that
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of the RTIM. We could, however, show that up to an accuracy of QO(Q2'/%) the
solution is of the form of Eqs.(5.14) and thus there is infinite randomness along
the line of fixed points.

This can be shown in an other way by using the numerical founding, that
close to the fixed point 2 = Q* = 0 the distribution

pla, Q)de = QP (%,Q) d% 0<x <1 (5.22)

has a non-vanishing value at x=1:

1,Q = p*(1 .
PO =P, (5.23)
while ; ;
r(y, Ndy = QR(ﬁ,Q)dﬁ 0<y<1 (5.24)
is zero at r = 1:
7’(1, Q)iQ:Q*:O = 7'*(1) =0. (525)

(See Fig. 5.2.) Then equation (5.18) reduces in the vicinity of the fixed point
(- 0) to
dng nop*(1)

with the solution
ng = O (Y x const. (5.27)

Repeating the argument below Eq. (5.19), we can read off the dynamical expo-
nent as 1
z= . 5.28
p*(1) (5:28)
Now we derive the form of fixed point solution to (5.12) for general & > 1,
using the assumptions in (5.23) and (5.25), which was found by numerics.
In terms of the distribution functions (5.22) and (5.24), Eq. (5.12) can be

written as

0 d ! 1
r5E=05htn = plr. D[P0~ (LO1+r(1.0) [ de'pla’ (. )
(5.29)
Close to the fixed point @ = Q* = 0, where r(1,0Q*) = 0, p(1,9") = p*(1) and
Qg—g |Q:m =0, Eq. (5.29) becomes significantly simpler:

op*
Tor T

P’ (%) = % (%) —H%, (5.31)

where we have used relation (5.28).
The exponent z, however, does depend on the parameter &, since the validity
of the condition in Eq.(3.13) is limited to x = 1, thus in general z = z,(9).

—p"(@)(1 —p*(1)). (5.30)

Its solution is
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Figure 5.2: The distributions p(x, Q) vs. z (left) and r(y, Q) vs. y (right) on a log-log
scale for different energy scales 2 denoted on the figures, obtained from the numerical
solution of (5.11) and (5.12) with & = 3/2 and uniform distribution with hg = 2. The
solid line in figure left corresponds to (5.31) with the extrapolated value z = 0.519. In
figure right r(y, Q) evolves towards a power-law distribution with power —1 as Q — 0.

We have calculated the dynamical exponent by solving numerically the RG
flow equations (5.11) and (5.12). In a mathematical point of view these are
connected integro-differential equations with singular kernels in the integrals.

In the numerical integration the bond and field variables are discretized,
as J, = n-AJ and h, = n-Ah, n =1,2,..., where N = 75 = 2 is the
number of representative points in a unit interval, which we call resolution. The
distribution functions R and P at a given energy-scale {) are represented by a
set of functional values {R(J;, )} and {P(h;, )}, respectively.

Decreasing the energy scale by a small finite value AQ the evolution of
distribution functions was computed by the standard forth-order Runge-Kutta
method [98].

At each stage of the energy scale the integrals in (5.11) and (5.12) have to be
evaluated, where the domain of integration vanishes as {1 — 0. To overcome this
difficulty the resolution was doubled at energies ! = £, 1, %,... by introducing
new points into the sets {R(J;, 1)} and {P(hs, )} in between already existing
points through polynomial fitting.

The normalization of distributions, which otherwise would deteriorate due
to numerical errors, was restored after each Runge-Kutta step by integrating P
and R over the whole domain of definition and renormalizing them. In the re-
gions, where the integrand was slowly varying, a standard quadrature (Simpson
formula [98]) was used, while the region containing the singularity was found to
be able to be well approximated by a power-law. The border separating the two
regions, were set automatically by monitoring the error of polynomial fitting.

The procedure was stopped at the final energy scale 2; = mlﬁ, and the
effective value of the dynamical exponent for various intermediate energy scales
were extracted by fitting a straight line to p(x, Q) in a log-log plot (Fig 5.2),
where the slope is asymptotically related to z according to (5.31). These values
were then extrapolated to {2 = 0. The computation was then repeated with
larger and larger resolutions, and finally the effective values were extrapolated to
N — 00, by the BST-algorithm [8]. Starting with a uniform initial distribution
in (4.19), the resulted values of z,, are seen in Fig. 5.3.

We have also calculated the dynamical exponent by a numerical implemen-

LI
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Figure 5.3: Dynamical exponents from numerical solution of Egs. (5.11) and (5.12)
(denoted by a and v), and from numerical iteration of recursion-equations (5.8) for
different values of the parameter k. For x = 1 (RTIM and the random dimerized
XX-chain) the exact result is given by the full line, for x = 2 and 4 the broken lines
are guide to the eye.

tation of the RG scheme over 50000 samples of length L < 2!, Starting with
the uniform probability distribution, we got the estimates shown in Fig. 5.3:
1/z; is a monotonously decreasing function of x and eventually it is expected
to go to zero in the whole Griffiths phase in the limit £ — oco.

These results were compared with dynamical exponents of the XXX-chain,
calculated by P. Lajké, directly from the asymptotic behaviour of the distribu-
tion of surface magnetization, as given in Eq. (3.14). For the dimerized XXX
chain J and b in Eq.(5.8) are replaced by the Heisenberg couplings at odd and
even positions, J, and J,, respectively, and the parameter takes the value k = 2
[89, 32]. The distance from the critical point is measured similarly to (3.3). For
numerical calculations of surface magnetization the DMRG method was used,
for chains with L < 64 and some 20000 samples were considered. An overall
agreement between dynamical exponents calculated by the two methods was
found. As a demonstration we show in Fig. 5.4 the distribution of m, for the
XXX-chain and for the ¢ = 4 state RQPM, where for both models we are at
the same distance from the transition point. As seen in Fig. 5.4 the asymptotic
behavior of the two distributions is identical, as expected on the RG basis, since
% = 2 for both models. Furthermore the dynamical exponents agree very well
with those calculated by the RG method.

5.5 Summary

In this chapter we have pointed out by exact calculations on the RTIC and gen-
eral scaling considerations, that MDH RG-method is applicable along the lines
of semicritical fixed points of quantum spin chains, where it is asymptotically
exact. We found the fixed point solutions to the RG flow equations governing
the RTIC in the Griffiths region. We presented an exact result for the dynam-
ical exponent, and showed, that z stays invariant along the RG procedure. By
a general scaling argument on the gap distribution we suggest this later state-
ments to be generally valid for other spin chains. We performed a numerical
analysis of RG flow equations of the one-dimensional RQPM, and determined
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Figure 5.4: Probability distribution of the logarithm of the surface magnetization
of the dimerized random XXX-chain with § = ~(In2)/2 for different finite systems
calculated by the DMRG method by P. Lajké. The slope of full straight line 1/2(8) =
0.47 comes from the RG treatment. In the inset the same quantity is shown for the
q = 4 state RQPM at the same distance from the critical point. The asymptotic slope
of this distribution can be well fitted by the same exponent as for the XXX-model.

the s-dependent dynamical exponents. For x = 2 an excellent agreement was
found with DMRG results on the dimerized XXX model, which is described by
the same RG equations. These and other numerical results strongly support the
asymptotic exactness of the procedure and the correctness of other exact and
phenomenological findings.



Chapter 6

The random XX- and XY
chain

In this chapter we are going to extend the methods and calculations brought
out in Chapter 4 to other disordered quantum spin chains. Namely, we are
going to study here XY- and dimerized XX spin-% chains with random exchange
couplings by analytical and numerical methods and by phenomenological scaling
theory.

6.1 Phase diagram with non-random couplings

First we introduce a few well-known antiferromagnetic spin-% models including
those, which are the subject of investigation, then we give a brief survey of their
zero-temperature phases.

We start with the general one-dimensional XYZ model, the other models
under investigation are its special cases. It is given by the Hamiltonian

Hyxyz =Y (JFSFSEa + TSP + J7 S SEa), (6.1)
I
where Sl”' = %0{" are the components of a spin—% operator attached to site [.

By rotating the spins at appropriate sites, one can always render the couplings
J¥ and J! to be positive. If the couplings J7 are now positive, the model is
antiferromagnetic, while if they are negative, it is ferromagnetic.

The special cases we consider are the following. Putting J = J = Jf
in (6.1) one gets the Heisenberg (or XXX) model. 1f JF = J' # J¢ in (6.1),
the model is called XXZ model. Moreover if .J7 = 0 one arrives to the simpler
XX model. In the above models S7 = 3", 5] is a conserved quantity. Keeping
Ji = 0 but allowing J# and J/ to be different, the resulting model is called XY
model.

The homogeneous XYZ model (i.e. JF = J*, J = JY,Jf = J*) is controlled
by two parameters: The parameter A given by

2J7

A=
Jr £ J

(6.2)

53
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Figure 6.1: Left: Zero-temperature phase diagram of the pure antiferromagnetic XYZ
chain. Phase boundaries are indicated by solid lines. XAF(YAF) refers to a phase
with antiferromagnetic order in the x(y) direction. ZF(ZAF) denotes a phase with
(anti)ferromagnetic order in the z direction. The points labeled by H have Heisenberg
symmetry. Right: Phase diagram of the pure dimerized XX chain.

and the anisotropy parameter

JE—JY

The phase diagram is shown in Fig. 6.1 [4]. The system exhibits QLRO with
continuously varying decay exponents along phase boundaries. These criti-
cal lines separate various long-range ferro- and antiferromagnetically ordered
phases. The point @ = 0, A = 1 corresponds to the antiferromagnetic Heisen-
berg chain, whereas a = 0, A = —1 can be transformed to a Heisenberg ferro-
magnet. The XY chain takes place along the line A = 0 divided into two parts
by the isotropic XX point.

Another issue in the context of XX chain is dimerization. (See Fig. 6.1
(right).) It was pointed out by Haldane, that isotropic antiferromagnetic chains
of integer spins have an energy gap, whereas half integer spin chains are gap-
less [42]. However, alternating couplings in spin-1/2 chains enforce a dimerized
ground state, and an energy gap is induced. See Fig. 6.1 (right). In the absence
of disorder the spin-1 and dimerized spin—% chains are in the same phase. This
dimerized phase is characterized by a finite gap, exponentially decaying spatial
correlations, and a non-vanishing string order parameter(see Ref. [47, 45]).

Now we shall focus on the line A = 0 and summerize the existing results on
the system subjected to randomness.
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6.2 Previously known results for random cou-
plings

The XX point is known to be unstable both against symmetric randomness
JP = J!, and asymmetric randomness, i.e. when J7 and J/ are drawn from
independent distributions, #%(J*) and «¥(.J¥), respectively [29]. Furthermore
in both cases the fixed point governing the critical behaviour is an IRFP.

In case of asymmetric randomness one obtains the random XY chain. The
known results on this model are taking over from that of RTIC through the
mapping of the XY chain into two decoupled RTIC. This mapping was developed
in the thermodynamic limit and for finite chains with periodic boundaries [32,
103, 45].

The quantum control parameter of the model is the average anisotropy de-
fined as:

[ln J%]ay = [In J¥]ay

0 = var(ln J¢] + var[ln J¥] ’ (6.4)

For 8, > 0 (< 0) there is long-range order in the z (y) direction, i.e.
im0 [CH(r)]ay # 0 for p = z(y), where [C*(r)]sy is defined in (3.46). C*(r)
in the XY model can be expressed as the product of two independent Ising
correlators (3.7). Thus at criticality (8, = 0) the typical spin-spin correlations
(p = x,y) decay as ~ e—Arl/z, where the distribution of A is broad, like in
the RTIC. Whereas average correlations decay algebraically (QLRO), with bulk
decay exponents twice as that of RTIC, i.e. * =n¥ =3 — /5. The correlation
length exponent is the same as that of RTIC, i.e. v = 2.

Considering the random XX model, where couplings are correlated as Jj* =
J} = J;, one can move the system away from criticality by introducing alter-
nation such that even (e) and odd (o) couplings, connecting the site 2i,2i + 1
and 2i — 1, 24, respectively, are taken from distributions p¢(J¢) and p°(J°). The
quantum control parameter is now the average dimerization defined as:

[In J%a — [In J¢a

0a = var[ln J°] + var[ln Je] ’ (6.5)

At §; = 0 the system is critical. According to the RG treatment by Fisher
[32], in the resulting phase all spins are paired and form singlets, however, the
distance between two spins in a singlet pair can be arbitrarily large. It is thus
termed random-singlet (RS) phase. The long singlet bonds are typically much
weaker than short ones and bonds cannot cross each other. The relation between
length and time scale was found to be identical to that of RTIC in (3.11). Typical
spatial correlation of spins decays as ~ e—A’”W, where the constant A4 is broadly
distributed. Although rare widely separated pairs of spins, which have strong
O(1) correlation lead to the algebraic decay of average correlations. Because of
the singlet nature of pairs of spins, all components decay with the same power,
which is n* = n¥ = n* = 2. This phase is gapless, and there is no string order.
The RG approach predicts the antiferromagnetic random XX fixed point to
control the critical behavior of the antiferromagnetic Heisenberg model, too.

The region §; # 0 corresponds to the random dimer (RD) phase, which is
gapless like the RS phase, but has a non-vanishing string order.

In both random XX and XY chains, a Griffiths phase takes place around the
critical point. As shown by an RG analysis [51, 135], applicable in the vicin-
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ity of the RS fixed point, the Griffiths phase is characterized by a dynamical
exponent predicted to be a continuous function of the quantum control param-
eter (anisotropy or dimerization) and the singular behavior of different physical
quantities are all expected to be related to it.

The RG predictions [32, 51, 135] have been compared to the results of nu-
merical studies [40, 118, 45], especially in the RS phase of isotropic chains. In
the RS phase some numerical results are controversial: in earlier studies [118] a
different scenario from the RG picture is proposed (in particular with respect to
the transverse correlation function), later investigations on larger finite systems
have found satisfactory agreement with the RG predictions [45], although the
finite-size effects were still very strong.

6.3 Results

In this chapter we extend previous work in several directions. Here we consider
open chains and study both bulk and surface quantities, as well as end-to-
end correlations. We develop a phenomenological theory which is based on
the scaling properties of rare events and determine the complete set of critical
decay exponents. We calculate numerically (off-diagonal) spin-operator profiles,
whose scaling properties are related to (bulk and surface) decay exponents [129]
and compare the profiles with predictions of conformal invariance. Another new
feature of our work is the study of dynamical correlations, both at the critical
point and in the Griffiths phase, which are not accessible by the MDH RG-
method. Finally, we perform a detailed analytical and numerical study of the
Griffiths phase and calculate, among others, the exact value of the dynamical
exponent.

6.3.1 Free-fermion representation
We consider an open XY chain (i.e. with free boundary conditions) with L sites
described by the Hamiltonian:

L—1
H="> (JFSrst, +J7S!Sty) - (6.6)

=1

We use two types of random distributions already introduced in Section 4.3,
both for the XY and XX models. One of them is a binary distribution:

w(JT) = pa(JT = A) +qd(JT = AT

(V) = 6V - Jg), (6.7)
the other is a uniform one:
/e 1, for 0 < J® <1
() = {O, otherwise
S (JOH™Y, for 0 < Jv < B
() {O, otherwise ’ (6:8)

For the XX model the corresponding distributions p*(J¢) and p°(.J?) follow from
correspondences:

JE s JE TV - JC,
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m(J7) = pe(J€), w(JY) = p°(J°) . (6.9)

Note that the critical points of the two models (§, = 0 and d4 = 0, respectively)
are not equivalent due to the different disorder correlations.

Following a completely analogous way, as for the RTIC, i.e. performing the
Jordan-Wigner transformation, and a subsequent canonical transformation, the
Hamiltonian (6.6) is mapped into a system of non-interacting fermions with
Hamiltonian (3.15). For details see Appendix A. The fermion excitations are
non-negative and satisfy the set of equations

eUe(l) = JL @l =1)+ Jf (1 +1)
eq®e(l) = JE 01— 1)+ J)e,(1+1), (6.10)
with boundary conditions J§ = J} = 0. These equations are nothing but (A.14)

in components. Introducing a 2L-dimensional vector V, with components:
Vol =3)=®,(21 = 1),  Vo(4l —2) =¥, (20 - 1),

Vy(4l — 1) = ¥,(20), Vy(dl) = @,4(21); (6.11)
Eqs.(6.10) then correspond to the eigenvalue problem of the matrix:
0o o J
0 0 o0 Jf
Jo 0 o0 0 J&
Jg0 0 o0 JH
Jy 0 0 0 JY
T= 0 0 0 (6.12)
- . N
J 5, 0 0 0 Ji4
J 0 0 0

JE 0 0

We confine ourselves to the positive part of the spectrum, as was argued in
Appendix A. The eigenvalues of T in (6.12) are of two classes. For g = 2i—~1, i =
1,2,..., L the even components of the eigenvectors are zero, i.e. Vao;1(2j) =
0, j =1,2,...,L, whereas for the other class with ¢ = 2¢ the odd components
are zero, V2;(2j — 1) = 0. Consequently T can be expressed as a direct product
T =T, @ T,, with the tridiagonal matrices T, , T, of size L x L. As a result
one has to diagonalize these two matrices. Thus for chains with even number of
sites, L = 2N, the two classes of eigenvectors are given in terms of the vectors
$ and ¥ via:

€241 : Do 1(27) = Wy a1(25-1)

€2 ©2(25 — 1) = Wau(29)
fori,j=1,...,N.

For the XX model the even and odd sectors are degenerate, €z;_1 = €9;, thus

it is sufficient to diagonalize only one matrix. In this case one has the additional
relations:

I
o

(6.13)

I
o

Doy 1(25 —1) = Wy(25-1),

®4:(25) = Uy1(2)) .
The matrices T, and T, are in one-to-one correspondence with the eigenvalue
problem of one-dimensional TIM-s. This exact mapping for finite open chains
is presented in Appendix C.

XX — model (6.14)
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Local order parameters Next we are going to study the long-range order in
the ground state of the system. For similar reasons as for the RTIC, the local
order parameter in a finite system is given by the off-diagonal matrix element:

mi = (1|57]0) . (6.15)

(Note that there is a difference of a factor of 3 between the form of (3.21) and
that of (6.15) since the former is defined in terms of Pauli operators instead of
spin operators.) It can be calculated from the determinant (3.24) containing
matrix elements in (3.25).

For surface spins the local order parameter is simply given by m7 = ®1(1)/2,
which can be evaluated in the thermodynamic limit L — oo in the phase with
long-range order, when ¢; = 0. Using the normalization condition 3, |®1(1)|> =
1 we obtain for the surface order parameter:

1 r L/2—1 [ Jy 2 —1/2
mi = S |1+ > H(—"JJ;) Xy
e 6.16
T, -1 (6.16)
m{ = 2 1+ZH<“’JJ‘1> XX.
i =1 j=1 2j

We note that this formula is exact for finite chains if we use fixed spin boundary
condition, s§ = +1/2, which amounts to have J/_; = 0. In the fermionic
description the two-fold degeneracy of the energy levels, corresponding to s} =
1/2 and s§ = —1/2, is manifested by a zero energy mode in (3.15) and from the
corresponding eigenvector we obtain mf in (6.16) for any finite chain.

For non-surface spins the expression of the local order parameter (3.24) can
be simplified by using the relations (6.13). Then, half of the elements of the
determinant (3.24) are zero, the non-zero-elements being arranged in a checker-
board pattern, and mj can be expressed as a product of two determinants of
half-size, which reads for [ = 2j as:

Hy G2 G G1,2j—2
. 1 Hs G320 Gsa G352
H’)J—l GQ]—l,Q GQ}—l 4 G’«’J—l,?]—?
Gaoa Gags Ga2j-1
Gag Gaz ... Gagj
x | . D T (6.17)
Gaja Gajs Gaj,2j-1

The local order parameter m/, related to the off-diagonal matrix-element of
the operator S/ can be obtained from (3.24) and (6.16) by exchanging J;* <> J/.

The local order parameter mj is given as in (3.47), where |¢,) is now the
ground state |0). Since (0|o;|0) also contains a non-singular contribution, the
scaling behaviour of its singular part is more convenient to determine by con-
sidering the off-diagonal order parameter mj = (¢.|o;|0), where (¢.| is now the
first excited state of H, which has non-vanishing matrix element with |0) [57].
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Using (4.6) the off-diagonal order parameter m; is given by

1

2§ =@ (D)W2(1) + 1 (1) P2(1)] - (6.18)

For the XX model one can obtain simple expressions using the relations in (6.14)
as:

My = %[(I)l(% - P
X X —model (6.19)
[W1(20)]

[T

z —
mgi —

In the context of XY and XX chains we shall call mf ¥ and mj transverse and
longitudinal order parameters, respectively, in the following.

Autocorrelations Next we consider the dynamical correlations GJ (1) =
(5/'()S]' (1)) as a function of the imaginary time 7. For the 2-component of
the surface spins they are given following (3.28) as

Gir) = g Z 2 exp(~re,)
L/’)
= 4 Z eXp(—7'€221_1) s (620)

where we have used the relations in (6.13).
The connected longitudinal correlation is given in a simple form for any
position [ in (4.8) as

G (1) = 1 31— B0, () + T, ) expl-r(eg + )] . (6:21)

p>q

6.3.2 Phenomenological theory from scaling of rare events

In this section we identify the rare events for the random XY (and XX) model,
which dominate the average quantities, and use their properties to develop a
phenomenological theory in an analogous way as it has been done for the RTIC.

Surface order parameter The local order parameter at the boundary is
given by the simple formula in (6.16), which has the same structure like that
of RTIC in (3.27). Thus using the extreme binary distribution (i.e. A — 0 and
J§ =1in (6.7)) and following the same argumentations as for RTIC in Section
3.5.1, we conclude with the basic correspondences between the average surface
order parameter of the XY (and X X) model and the surviving probability of
adsorbing random walks:

[m7 (6, D)]aw ~ Peury (0w, L/2), 6~ by . (6.22)

The scaling properties of the average surface order parameter and the correlation
length then follow from (3.39), (3.40) and (3.41) and will be evaluated in Section
6.3.3.
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Scaling of low-energy excitations In order to estimate the scaling of low-
energy excitations, we neglect the r.h.s. of the eigenvalue equation of matrix 7'
in (6.12), which is reasonable, if €; vanishes at least as fast as €3 ~ 1/1, with the
system size [. We shall see, that it is fulfilled. Deriving approximate expressions
for ®; and ¥; we obtain, similarly to (3.42), the expression for the first gap:

r,..x Y = Jgj—l
ey ~mimi TP ] _— (6.23)
j=1 2j

Here m7 is given in (6.16) and the surface order parameter at the other end of
the chain, m{_,, is given by replacing JJ; , /J5; by J] | o:/Jf_5; in (6.16).

The characteristic excitation energy of an SCD can be estimated from (6.23)
as

1/2-1 Jgj_l [ —
al)~ I —j;—fwexp{—??hﬂjyﬁf)}, (6.24)
g=1 2j

where I, measures the size of transverse fluctuations of a surviving walk of
length 1/2 and In(J#/.Jv) is an average ratio of the couplings (it is ln(Je¢/.J?)
for the XX model). Applying the properties of I, given in Section 3.5.2 we
get similar behaviour as for the RTIC. At the critical point we arrive at (3.44),
whereas in the Griffiths phase to (3.45), which now contains the dynamical
exponent of the XY (XX) model.

6.3.3 Critical properties

Here we consider in detail the random XY and XX chains in the vicinity of the
critical point. The off-critical properties in the Griffiths phase are presented in
the following section.

Length- and time scales As we argued in Section 3.5 the rare events are
SCD-s, having a coupling distribution of surviving RW character. The typical
size of an SCD, as given by &, in Eq. (3.41), is related to the average correlation
length of the system £. Then using the correspondences in (6.22), (3.41) and
(3.53) we get the relation:

E~1077, v=2. (6.25)

The typical correlation length, &y, as measured by the average of the loga-
rithm of the correlation function is different from the average correlation length.
One can estimate the typical value by analyzing the formula (6.16) for the sur-
face order parameter, where the products are typically of ] j(Jif,’j_l/ Jrfj)2 ~
exp(const - |8|L), thus [ms(L,0 < 0))yp ~ exp(—const - [6]L) ~ exp(—L/&yp)-
Therefore we obtain:

Vegp = 1. (6.26)

We note that ot the critical point the largest value of the above products is
typically of [1;(J5;_,/J5;)* ~ exp(const - L'/?), since the transverse fluctua-
tions in the couplings are of O(L'/?). Therefore we have [ms(L,d = 0)]iyp ~
exp(—const - L1/?).

As shown in Eq. (6.24) the value of the smallest gap is related to the size
of transverse fluctuations of an SCD [,. Close to the critical point (§ — 0) one
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has li; ~ &'/2, and therefore the characteristic relaxation time of a sample scales
with correlation length & as
In 7oy ~ Y2 (6.27)

We note that the results in this part about length- and time scales are valid
both for the XY- and XX models. They also hold in identical form for the
RTIC, which can be understood as a consequence of the mapping of the XY
chain into decoupled RTIC-s.

Quasi-long-range order

At the critical point the decay exponent of correlations are related to the scaling
exponent z# of the fraction of rare events of the given quantity (see Eq. (3.50))
and its value generally depends on the type of correlations of the disorder, thus
it could be different for the XY and the XX models. Analyzing the scaling
properties of the rare events in the XY and XX chains we have calculated the
critical decay exponents of different correlation functions, both between two
spins in the volume and for end-to-end correlations. Our results are presented
in Table 6.1.

In the following we are going to derive these exponents by analytical and
scaling methods and then confront them with the results of numerical calcula-
tions based on the free fermion technique.

Longitudinal order parameter We start with the scaling behavior of the
longitudinal order parameter m;, which in the XX chain is given by the simple
formula in (6.19). Summing over all sites one gets the sum-rule

L
> mi=1 XX—model, (6.28)
=1

where we have used (6.13) and the fact that the ®, and ¥, are normalized.
Since this sum-rule is also valid for the average quantities, we get immediately

[m]]ay = L™ (1/L), (6.29)
where 7* (1) is a scaling function with [ = /L. Consequently for bulk spins the
finite-size dependence of the local order parameter is [mj]a, ~ L', thus we

have *(X X) =1 and from (3.50) the decay exponent is

I (XX)=2

(XY) | 9*(XX) | ¥ (XY) | *(XX)
bulk || 3—v3"7 | 2 4 2(x)
surface 1 1 2 1

Table 6.1: Decay exponents of critical correlations in the random XY and XX chains.
The exponents with a superscript ) are those calculated by Fisher with the RG
method [32], whereas **) follows from the results of the RTIC in Ref. [33, 31].
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A further consequence of the sum-rule is that the average value of the bulk order
parameter is the same, if the averaging is performed over any single sample.
Thus the order parameter m* and the correlation function (0|57 57, ,.|0) are self-
averaging. 'This is quite unusual in disordered systems where the correlations
are generally not self-averaging [25].

The surface order parameter mj for the XX model satisfies the relation
mi = 2(m¥)?, which follows from relation m? = ®;(1)/2 and (6.19). Then
a rare event with m¥ = O(1) is also a rare event for the order parameter m?.
Consequently the fraction of rare-events Py is given by the surviving probability
in (3.39). Thus the scaling dimension is 27 = 1/2 and the decay exponent of
critical end-to-end correlations is

ni(XX) =1

We calculated the order-parameter profile [m}],, numerically for large finite
systems up to L = 256. As shown in Fig. 6.2 the numerical points of the scaled
variable L{mj].. are on one scaling curve m*(l) for different values of L. The
scaling curve has two branches for odd and even lattice sites, which cross at
I = L/2. The upper part of the curves in the large L limit is very well described

by the function m*(l), = Asin(xl)~*/2, which corresponds to the conformal
result on off-diagonal matrix element profiles [129]:

LA A
[mf’];ww(z) <51n7rz> , (6.30)

with 2% = 1 and 2{ = 1/2. On the other hand the lower part of the curves in
Fig. 6.2 is given by m*(); = Asin(wl), which corresponds to Eq. (6.30) with
x5 = 2. Thus we obtain that average critical correlations between two spins
which are next to the surface are decaying as [C*(2,L — 1)]ay ~ L™, Using
the sum-rule for the profile in Eq. (6.28) and the conformal predictions one
can determine the pre-factor A from normalization. Then from the equation
A/2 fol [(sin7wz)~Y? 4 sinwa]de = 1, one gets A = .86735, which fits well the
numerical data on Fig. 6.2.

These results about the conformal properties of the profile are in agreement
with similar studies of the RTIC [57, 58]. Thus it seems to be a general fea-
ture that critical order-parameter profiles of random quantum spin chains are
described by the results of conformal invariance, although these systems are
strongly anisotropic (see Eq. (6.27)) and therefore not conformal invariant.

Next we turn to study the order parameter m; and the longitudinal corre-
lation function in the random XY model. In this model the disorder in the
J{ and J/ couplings is uncorrelated, therefore one can perform averaging in
the two subspaces T, and T, or in the two decoupled RTIC-s, independently.
Note that the expression for m; in Eq. (6.18) is given as a product of two
vector-components, where each vector belongs to different subspaces and have
the same average behavior. Since the couplings entering the two separate eigen-
value problems are independent one gets for the disorder average

The probability for m] being of order one is the product of the probabilities for
®4 (1) and P2 (1) being of order one hence we conclude that the scaling dimension
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Figure 6.2: Finite-size scaling plot of the longitudinal order-parameter profiles [mjlav
for the XX model at criticality for different system sizes calculated numerically with the
fermion method using Eq. (6.19). The data are for the uniform distribution, averaged
over 50000 samples. The profiles predicted by conformal invariance are indicated by
full lines.
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Figure 6.3: Finite size scaling plot of the longitudinal order-parameter profiles [mjlav
for the XY model at criticality for different system sizes calculated numerically with
the fermion method using Eq. (6.19). The data are for the uniform distribution,
averaged over 50000 samples.

for mf{ in the random XY chain is twice that for the random XX chain. Thus
the decay exponents are
(XY) =4

and
i (XY) =2

in the bulk and at the surface, respectively.

The numerical results about the order-parameter profile is shown in Fig. 6.3.
The data collapse is satisfactory, although not as good as for the X X model.
Similar conclusion holds for the relation with the profile predicted by conformal
invariance, which is also presented in Fig. 6.3.

Transverse order parameter We start with the surface order parameter,
m¥, as given by the simple formula in Eq. (6.16). This formula is identical both
for the XY and XX models and its average behavior follows from the adsorbing
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Figure 6.4: Transverse order-parameter profile [m{]av for the XY model at criticality
for different system sizes calculated numerically with the fermion method using Eq.
(6.17). The data are for the uniform distribution, averaged over 50000 samples.

random walk mapping in Section 6.3.2. Then from Egs. (6.22) and (3.39) one
gets x¥ = 1/2 and
=1,

both for the random XY and XX models. The value of the decay exponents
follows also from the mapping to two RTIC-s. As shown in Eq. (C.8) the
correlation function (55,55, ,,) is expressed as the product of spin correlations
in the two RTIC-s, one with open boundary conditions, but the other is taken
with fixed-spin boundary conditions in terms of dual variables. For end-to-end
correlations this second factor in the product is unity, since it is the correlation
between two fixed spins. Therefore end-to-end correlations in the RTIC and the
random XY and XX models are identical.

For bulk correlations one can easily find the answer for the XY model with
the mapping in Eq. (C.1). When the two points of reference are located far
from the boundary, the chosen boundary condition does not matter. After
performing the independent averaging for the two factors of the product one
obtains [(S3,5%,, ) av = 1/4[{c] 0}, ,)]5,, thus we recover Fisher’s result:

P (XY)=2(TIM)=3-5. (6.32)

The scaling exponent z*(XY') can identically be obtained from the expression
of the order-parameter profile in Eq. (6.17), which is in the form of a product
of the two Ising order parameters and for the XY model the two factors are
averaged independently.

For the XY model the numerically calculated profile is shown in Fig. 6.4.
The scaling plot with the exponents in Table 6.1 is reasonable, although larger
systems and even more samples would be needed to reach the expected asymp-
totic behavior, as predicted by conformal invariance in (6.30).

The arguments leading to the prediction (6.32) for the transverse bulk order
parameter exponent do not apply for the XX model and one cannot obtain a
simple estimate for the bulk decay exponent from Eqgs. (C.8) or (6.17) due to
the following reason. The expressions with the parameters of the two quantum
Ising chains contain real and dual variables for the two (¢ and 7) systems.
Since J = J/ = J; a domain of strong couplings in the ¢ chain corresponds
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Figure 6.5: Sketch of a bond configuration for a chain of length 2L — 1 that gives a
non-vanishing transverse magnetization m® ~ (1) for the central (bulk) spin. The
example is for the extreme binary distribution. Weak couplings (J2;—1 = A) correspond
to downward steps of the random walk on both sides of the central spin (here at 0).
Note that both, the right and the left half of the random walk have surviving character,
i.e. do not cross the starting point.

to a domain of weak couplings in the 7 chain and reverse. Therefore the rare
events of the TIM can not be simply related to the rare-events of the XX chain.

The value for n* (X X), however, can be obtained by the following argument.
For simplicity let us consider the extreme binary distribution in which Js; = 1
and Jo;—1 = A or 1/X with probability 1/2, taking the limit A — 0. Then from
Eq.(6.16), one gets a non-vanishing transverse surface magnetization, only if the
disorder configuration has a surviving walk character (meaning Hi}:l Joi1 < o0
foralll =1,...,L/2~1). This implies, also for general distributions of couplings
that m§ ~ O(1) only if the surface spin is weakly coupled to the rest of the
system. It is instructive to note the difference to the surface magnetization in
the RTIC, where m? ~ O(1) when the surface spin is strongly coupled to the
rest of the system, meaning that Hi‘:l(l/‘]i) <ooforalll =1,...,L ~1 for
the extreme binary distribution.

The same remains true for a bulk spin, which also has non-vanishing trans-
verse magnetization only if it is weakly coupled to the rest of the system (the
trivial example being when both its couplings to the left and to the right are
exactly zero, which gives the maximum value my = 1/2). Thus the central
spin in a chain of length, say 2L — 1, has m* ~ O(1) if and only if the bond-
configurations on both sides have surviving character, as it is depicted in Fig. 6.5
for the extreme binary distribution. Since the probability Psy,,(L/2) for a con-
figuration of L/2 couplings to represent a surviving walk is Py (L/2) ~ L™1/2
it is

mi ~ {Pyuro(L/2)}? ~ L7, ie. 2%(XX)=1. (6.33)

From this one obtains
o (XX)=2. (6.34)

We verified the strong correlation between weak coupling and non-vanishing
transverse order parameter numerically in the following way: We considered a
chain with L + 1 sites and the couplings at both sides of the central spin were
taken randomly from a distribution called SW, which represents those samples
in the uniform distribution, which has a surface magnetization of m¥(SW) >
1/4. (Thus cutting one of the couplings to the central spin results in a local

'In the binary distribution SW denotes the set of coupling distributions with a surviving
walk character.
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Figure 6.6: Transverse order-parameter profile [mj lav for the X X model at criticality
for different system sizes calculated numerically with the fermion method using Eq.
(6.17). The data are for the uniform distribution, averaged over 50000 samples.

magnetization greater than 0.25.) Then we calculated numerically the order
parameter at the central spin and its average value over the SW configurations
[mf/g]sw as given in Table 6.2.

As seen in the Table the averaged surface order parameter stays constant
for large values of L, whereas the bulk order parameter decreases very slowly,
actually slower than any power. The data can be fitted by [m7] /Q]SW ~ (InL) "7,
with ¢ & 0.5. Thus we conclude that the numerical results confirm the expo-
nents given in (6.34), however there are strong logarithmic corrections, which
imply for the average transverse correlations

[C* (7)]ay ~ 7 2(In7)~? XX model . (6.35)

These strong logarithmic corrections make the numerical calculation of the crit-
ical exponents very difficult [45, 118]. In earlier numerical work using smaller
finite systems disorder dependent exponents were reported [118]. We believe
that these numerical results can be interpreted as effective, size-dependent ex-
ponents and the asymptotic critical behavior is indeed described by Eq. (6.35).

Note that our results in Table 6.1 satisfy the relation n* (X X) = n*(X X),
both in the volume and at the surface, which corresponds to Fisher’s RG result
[32]. In this way we have presented an independent justification of Fisher’s RS
phase picture, where the average correlations are dominated by random singlets,
so that the distance between the pairs could be arbitrarily large.

We checked numerically the above theoretical predictions in the random XX

L | 2[mfsw | 2[m7 j5)sw
16 0.817 0.531

32 0.806 0471
64 0.799 0.431
128 | 0.792 0.413
256 | 0.791 0.383

Table 6.2: Surface and bulk transverse order parameters averaged over 50000 SW
configurations for the uniform distribution.
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L | 2%(L)
16 | 0.635
32 | 0.677
64 | 0.730
128 | 0.823
256 | 0.872
512 | 0.910

Table 6.3: Effective bulk scaling dimension of the transverse order parameter in the
random XX chain.

model. In Fig. 6.6 we present the scaled m{ profiles for the binary distribution
for finite systems up to L = 512. These have a broad plateau and the data for
different system sizes do not perfectly fall on one single scaling curve due to
strong finite-size effects. Even system sizes as large as L = 512 appear to be
insufficient to get rid of such correction terms. Therefore we have calculated the
effective size-dependent z*(L) exponents by a two-point fit. To do this we have
averaged the order parameter in the middle of the profile for L/4 <1 < 3L/4
and compared this average values for finite systems with L/2 and L sites. As
seen in Table 6.3 the effective exponents are monotonously increasing with the
size of the system and they are not going to saturate, even for L = 5122,

From the data in Table 6.3 one can not make an accurate estimate about
the limiting value of % (L}, but it is clear that x*(L) grows at least up to the
theoretical limit #* = 1, although it could, in principle, reach even a larger
value. We note that similar observation was made by Henelius and Girvin [45]
from the average S% correlation function, where the effective n* exponents seem
to grow over the theoretically predicted value of n* = 2. (See Fig. 2 of Ref
43

Autocorrelations

According to the scaling theory in Section 3.5.3 the decay of average critical
autocorrelations in random quantum spin chains is ultra-slow, it takes place in
logarithmic time scales, as given in (3.52). Here we compare these predictions
with the results of numerical calculations. We start with the surface autocor-
relation function [G¥(7)]ay for the XX model, which is calculated in the binary
distribution (A = 4) on finite systems up to L = 128. As seen in Fig. 6.7
(left) the logarithmic time-dependence is well satisfied and the decay exponent
is found in agreement with n¥(X X) = 1 as given by the scaling result in Eq.
(3.52). For bulk spin critical autocorrelations we considered [G7 /2(7)] av for the
XX model. Again the numerical results in Fig. 6.7 (right) are consistent with a
logarithmic decay with an exponent * (X X) = 2.

Next we turn to study the distribution of critical autocorrelations. As we
have seen the average behavior is logarithmically slow, but for typical samples,
as described in Appendix D, one expects a faster decay with a power-law time-

21t is not feasible to increase the size of the system further, primary not due to compu-
tational demand, but due to inaccuracies in the numerical routines, even in 64-bit precision.
The origin of this numerical difficulty are those samples with an extremely small excitation
energy.
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Figure 6.7: Spin autocorrelation function [G} ()]s for the XX model for L = 32,64
and 128 calculated numerically with the fermion method using Eqgs. (3.28) and (6.21).
The data are for the binary distribution (A = 4), averaged over 50000 samples. a)
(Left) shows [ == 1, the surface transverse autocorrelations, b) (Right) shows [ = L/2,

the bulk longitudinal autocorrelations.
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Figure 6.8: Scaling plot of the probability distribution of the autocorrelation function
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surface transverse autocorrelations, b) (Right) shows [ = L/2, the bulk longitudinal

autocorrelations.
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dependence. Then G}'(r) ~ 777 and the 7 exponent could vary from sample
to sample. Such type of “multi-scaling” behavior of the autocorrelations has
been recently observed by Kisker and Young [78] in the random quantum Ising
model. In Fig. 6.8 we have numerically checked this assumption for the critical
autocorrelations G7 (7) and G7 ,,(7), respectively, of the random XX chain, the
average behavior of those have éeen studied before. As seen in Fig. 6.8 we have
obtained indeed a good data collapse of the probability distributions P () in
terms of the scaling variable v = —In G}/ In 7 for both type of autocorrelations,
but the scaling curve in the two cases are different.

The average correlation function generally have a contribution from the scal-
ing function P#(-y), but there could be also non-scaling contributions, as found
for the random quantum Ising chain in Ref. [35]. The scaling contribution
is coming from the small + part of the scaling function, which according to
Fig. 6.8 (left) for the autocorrelations G¥(r) approaches a finite value linearly,
P*(v) ~ A+ B~. Thus we have for the average autocorrelations:

Gt = [ " PGy

~ /OOO(A + Bv) exp(—~1nT)dy
~ A(ln7)™'+ B(lnT)"?, (6.36)

in agreement with the scaling result in (3.52) and with the numerical result in
Fig. 6.8 (left) We note that the correction to scaling contribution to the average
autocorrelations in (6.36) is also logarithmic.

For the critical autocorrelation G7 /2(7) the scaling function in Fig. 6.8
(right) for small v approaches linearly zero® P*(y) ~ . Thus the scaling
contribution to the average autocorrelation, as evaluated along the lines of Eq.
(6.36), is [G¥(T)]av ~ (In7)72, in agreement with the scaling result in (3.52).

6.3.4 Griffiths phase

Around the critical point both in the XY and XX chains a Griffiths phase can
be found (See Fig. 6.9). Thinking of the mapping in (C.1) one observes, that
the regions 0 < §,(84) < dg and ~d¢g < 8,(84) < 0 of the phase diagrams of the
XY- and XX chain are mapped onto the Griffiths phase of the RTIC. Therefore
one expects similar singularities in these regions like in the Griffiths phase of
RTIC. The physical picture behind this singular phase in XY and XX chains
is clear: similarly to the RTIC, the off-critical system contains rare islands of
spins, which are locally in the opposite off-critical phase.

For the Griffiths phase of XY and XX chains all the phenomenological con-
siderations, which were presented in Section 2.5.1 for the RTIC, are invariably
valid here with d = 1. Thus all the singular quantities are described in this
region by the dynamical exponent, which is a smooth function of the control
parameter.

Dynamical exponent In the following we calculate the exact value of the
dynamical exponent using the same strategy as for the random quantum Ising

3For a finite system the scaling function approaches a finite limiting value of P#(y =
0,L) ~ L™ which is checked numerically.
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Figure 6.9: a) (Left) Phase diagram of the random XY chain. b) (Right) Phase
diagram of the random dimerized XX chain.

model presented in Section 3.4. Our basic observation is the fact that the eigen-
value problem of the T, (or T,) matrix can be mapped to a Fokker-Planck
operator, which appear in the Master equation of a Sinai diffusion. The tran-
sition probabilities of the latter problem are then expressed with the coupling
constants of the spin model. The Griffiths phase of the spin model corresponds
to the anomalous diffusion region of the Sinai walk and from the exact results
on the scaling form of the energy scales in this problem one obtains for the
dynamical exponent of the XY model:

(%) 1/2} _1. (6.37)

av

whereas for the XX model the result follows with the correspondences in (6.9).
For the binary distribution in (6.7) the Griffiths phase is for 1 < J¥ < X and z
is given by

2 In A
(J9* = cosh (“7> . (6.38)
For the uniform distribution (6.8)
zln(1-27%) =-InJY, (6.39)

and the Griffiths phase extends to 1 < J§ < o0.

Autocorrelations Next we are going to study numerically the Griffiths phase
and to verify some of the scaling results described above. In this respect we shall
not consider those quantities which have an equivalent counterpart in the RTIC
(distribution of energy gaps, local susceptibility, specific heat, etc), since that
model has already been thoroughly investigated numerically. The autocorrela-
tion functions, however, are different in the two models and we are going to
study those in the following.

The average bulk longitudinal autocorrelation function [G7 ,,(7)]av of the XX
model is shown in Fig. 6.10 in a log-log plot at different points of the Griffiths
phase. The asymptotic behavior in (3.55) is well satisfied and the dynamical
exponents obtained from the slope of the curves are in good agreement with the
analytical results in (6.37). Similar conclusion can be drawn from the average
surface transverse autocorrelations, [G7 (7)]av, as shown in Fig. 6.10.

Next we study the distribution of the autocorrelation functions. In Fig.
6.11 the distribution of the bulk longitudinal autocorrelation function of the
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Figure 6.10: The average surface (left) and bulk (right) autocorrelation function
[G‘i/z;l(*r)}av of the XX model in the Griffiths phase for various values of hg. The
straight lines have a slope of 1/z(hg), where the dynamical exponent z(hg) agrees well
with the exact value determined via the formula (6.37). The data are for the uniform
distribution averaged over 50000 samples of size L = 128.
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Figure 6.11: (Left): Probability distribution of the bulk longitudinal autocorrelation
function of the XX model in the Griffiths phase for hg = 1.5. The data are for the
uniform distribution from 100000 samples of size L == 128. (Right): Scaling plot of the
data in the left figure. The scaling variable [In G*(7)]/7*/**1) contains the dynamical
exponent z{ho) known from the formula (6.37). The full curve is the theoretical
prediction in (6.42) using the exact value of z(hg = 1.5) = 2.659 and a fit-parameter
¢ =0.22.
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XX model is given at different times 7. As argued in Appendix D, the typical
autocorrelations are of a stretched exponential form

G"(7) ~ exp [-(reoz)l/<z+1> (1 + %)} , 040, (6.40)

thus the relevant scaling variable is

In GH(T)
Using this scaling argument we obtained a good data collapse of the points of
the distribution function as shown in Fig. 6.11 (right). We note that for the
random quantum Ising model Young [138] has also derived the scaling function
from phenomenological arguments,

P(x) = ¢(cx)'/* exp (— : j_ z(cm)1+1/z> (6.42)

which is also presented in Fig. 6.11. One can see considerable differences be-
tween the numerical and theoretical curves. Similar tendencies have been no-
ticed for the RTIC in Ref. [138]. The discrepancies are probably due to strong
corrections to scaling or finite-size effects. These corrections, however do not
affect the scaling form in (6.41).

6.4 Summary

We have performed a detailed study of the scaling behavior of rare events ap-
pearing in the random XY and XX chains. We identified them as strongly
coupled domains, where the coupling distribution has some surviving random
walk character. From the scaling properties of the rare events we have identi-
fied the complete set of critical decay exponents and found exact results on the
correlation length exponent and the scaling anisotropy.

Another new aspect of our work was the study of dynamical correlations. We
have obtained the asymptotic behavior of the average autocorrelation function
and determined the scaling form of the distribution of autocorrelations.

In the off-critical regime we investigated the singular physical quantities in
the Griffiths phase. In particular we have obtained exact expression for the
dynamical exponent z, which is a continuous function of the quantum control
parameter and the singularities of all physical quantities can be related to its
value.



Chapter 7

The Random-bond Potts
model in the large-¢ limit

7.1 Introduction

So far we have dealt with quantum models, but in this chapter we turn our
attention to a classical model, the two-dimensional g¢-state random-bond Potts
model (RBPM) defined in (2.28). Much work has been devoted to this model,
the transition point of which is known from self-duality also in its disordered ver-
sion [76]. In the pure model an exact result by Baxter [4] ensures a first-order
transition for ¢ > 4. Although early Monte Carlo (MC) simulations [23, 27]
left space for an interpretation [71] of a g-independent super-universal behav-
ior in random systems, later extensive MC [105, 18, 19, 20, 101] and transfer
matrix[12, 66] calculations consistently determined g-dependent magnetic expo-
nents, whereas the correlation length exponent v was found to be close to the
pure Ising value vy = 1 for all q.

In the large-¢ limit thermal fluctuations are reduced and as a consequence
the pure model is soluble in any dimension and a perturbation expansion in
powers of 1 /ql/ ¢ can be performed. In the same limit for the random model
at the phase transition point an effective interface Hamiltonian has been con-
structed and mapped onto the interface Hamiltonian of the random-field Ising
model [12, 66]. This mapping has then been used to relate the phase diagram of
the two problems and to deduce the tricritical exponents of the RBPM at d > 2
dimensions. However, in the large-g limit no direct calculation to study the crit-
ical behavior has yet been performed. In two dimensions the presently known
information is obtained via extrapolation of the results calculated at finite values
for gq. From these estimates no special type of critical behavior is expected in the
large-gq limit. For example the magnetization scaling dimension z,, seems to sat-
urate at a finite, non-trivial limiting value [99, 67] lim g 00 Zm(g) = 0.17 —0.19.
However, at this point one should note on the presence of strong (logarithmic)
corrections in the form of 1/1ng¢ (see Fig. 5 in Ref. [99]).

In this chapter we are going to present a direct investigation of the criti-
cal behaviour of the random-bond Potts model in the large-¢ limit. As will be
shown, in this limit the thermal fluctuations are negligible and the calculation
of the average thermodynamical and correlation properties of the model is ef-
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fectively reduced to an optimization problem. Here the competition between
ordering effects, originating from a tendency to clustering, and disordering ef-
fects, due to energy gain from quenched disorder, play an important role in
determining the optimal structure. In two dimensions we perform a numerical
study based on simulated annealing and a combinatorial algorithm, and also
conformal aspects of the problem are investigated.

7.2 Cluster representation in the large-q limit

We consider the g-state Potts model on a d-dimensional hyper-cubic lattice with
periodic boundary conditions given by the reduced Hamiltonian:

H
== =) Kijd(oi,05) . (7.1)
)

where K;; > 0 are reduced ferromagnetic couplings. The d-dimensional hyper-
cubic lattice corresponds to a graph G = (V, E), where V is the set of vertices,
which is identical to the lattice sites, and E is the set of edges, which is identical
to the bonds between neighbouring sites on the lattice. As shown in Appendix
E, in the random cluster representation [73] the partition sum of the model Z
is expressed as a sum over all subsets U C E of the set of edges (or bonds) as:

Z = Z IR H Vi (7.2)

UCE (1)U

where n(U) denotes the number of connected clusters in the subgraph G =
(V,U) of G, consisting of all lattice sites but the reduced set of bonds in U, and
vy = efii — 1 is the Mayer function for the coupling K; 7. For the latter we use

the parameterization:

vij = g/ (7.3)
Then the contributions from the different graphs to Z are expressed in powers
of ¢:
zZ=>3 ¢"O (7.4)
UCE
with !
FU)=nU)+ »_ (5 +wig) - (7.5)
(i)elU

In the following we consider the large ¢-limit (¢ — o0), where the partition sum
is dominated by the leading term given by the maximum value for F':

F@ = maXUg_:E{F(U)} s (76)

where —Fy corresponds to the free energy of the system, up to a prefactor of
1/(kT1ng) = const. Let us denote with Uy the subset of E that gives the
optimum in (7.6), i.e. Fo = F(Up), and with Gy = (V,Up) the corresponding
dominant graph. Then the energetic contribution to —Fg is due to the couplings
in the dominant graph, whereas the entropic term is related to the number of
connected parts. In what follows, we use the word graph when we mean the
subgraph G = (V,U) of G defined by an edge subset U.
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In the pure system, with w;; = w, the structure of the dominant graphs in
the different thermodynamic phases are trivial. Consider a lattice with N = L¢
spins with fully periodic boundary conditions, the number of bonds is dN. Then,
in the low-temperature phase with w > w,. the fully connected graph (V, E) is
the dominant graph, thus Fy = F, = [dN(1/d + w) -+ 1]. On the other hand in
the high-temperature phase, w < w,, the dominant contribution is due to the
empty groph (V,0), with a value of F, = N. At w, = —1/dN, when F, = F,
there is phase coexistence, which means a sharp phase transition even in a finite
system in the limit of ¢ — 0o. In the thermodynamic limit we have w, = 0, and
the latent heat per site is given by AL/N = 1 in our units.

Introducing disorder, such that w;; can take randomly positive and negative
values, the question arises, whether this trivial structure of the dominant graph
persists at the transition point, i.e.: Is there still a coexistence between two
parts of the graph, one being fully connected, whereas the other is empty? To
study this problem Cardy and Jacobsen [12, 66] have constructed the interface
Hamiltonian, which is then mapped onto that of the random-field Ising model.
This has lead to the answer that for d > 2 the effect of small disorder is ir-
relevant, thus there is still phase coexistence and thus the transition is of first
order, whereas in d = 2 the phase coexistence is destroyed by any amount of
disorder, in accordance with Aizenman and Wehr exact results [2].

In the following we are going to consider the problem in two dimension,
where the dominant graph has a non-trivial structure. In particular we study
the (fractal) properties of the largest connected cluster of Gg, denoted by T'.
In the low-temperature phase, T' < T,, T" is compact, thus the average number
of points in I' is given by [nr]ay & N = L?, where L is the linear size of the
square lattice. In the high-temperature phase, for T' > T, [nr]ay stays finite and
defines the average correlation length, £, through [nr].y ~ £2. At the transition
point the average mass is expected to scale as

[nF]av ~ Ldf 3 (77)

with a fractal dimension dy < 2'.
The properties of [nr]ay are directly related to the asymptotic behavior of
the average spin-spin correlation function, defined in the large-q limit as

[C()]av = [{0(02; 05))]av » (7.8)

where (...) denotes the thermal and spatial average over all pairs of sites ¢ and j
with a distance r. We use the fact that correlations between two spins are gener-
ally zero, unless they belong to the same cluster, when C(r) = 1. In the case of
T < T,, when T is a spanning cluster the probability Pr(L) that a spin belongs
to I'is given by Pr(L) = [nr]ay /N, whereas the same probability for two spins is
Pr(L)?. From this follows, that the average correlations between two spins sepa-
rated by a large distance of r = L is given by: [C(r)]ay ~ Pr(L)? = ([nr]ay/N)?.
In the low-temperature phase, T' < T, where the average magnetization, [m]ay,

is defined as [m]2, = lim,_, [C(r)]av, We obtain:

T<T,, (7.9)

L—oco L2 ’

LAt the critical point the dominant graph is generally not unique, cf. with the bimodal
distribution in Eq.(7.12) any two clusters having just one strong and one weak bond between
them could be either connected or disconnected. We assume that the degenerate optimal
graphs have the same asymptotic fractal properties.
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whereas at the critical point the average spin-spin correlations decay as a power:
[C(M)]ay ~r7 %, 2y =2-dsy, T=T,. (7.10)

Finally, in the high-temperature phase, where the average size of I is finite the
probability to have a connected cluster of size r is exponentially small, which
leads to an average correlation function of the form [C(r)]sy ~ exp(—r/£), for
r > £

7.3 Methods

Next we specify the form of the disorder, where we make use of the simplification
that arises due to self-duality that holds under special conditions. According
to the results by Kinzel and Domany [76] the random model is at the critical
point, if the distribution P(w) of w;; is an even function of w, i.e.

P(w) = P(~w). (7.11)
For details see Appendix E. For convenience we use the bimodal distribution
Plw) = pb(w —w) + (1 —p)é(w +w) , (7.12)

where the critical point is at p = p. = 1/2, whereas the reduced temperature
t = (T —T,)/T. can be expressed as:

t=-w(p-1/2), lHk1l. (7.13)

Generally we restrict ourselves to the range of disorder parameterized as 0 <
w < 1/2. We note that for w = 0 one recovers the pure model, whereas for
w > 1/2 we are in the usual percolation limit. Indeed, for the latter range of
parameters the dominant graph contains all the strong bonds, whereas the weak
bonds are all absent.

According to the results presented in the previous Section the solution of
the RBPM in the large-g limit is equivalent to an optimization problem with
a non-local cost-function given by Eq.(7.5). To find the dominant graph of the
problem we used standard, approximative procedures. Most of the results were
obtained by the method of simulated annealing, but some calculations were
performed by an approximative combinatorial optimization algorithm.

In the procedure of simulated annealing a hypothetical temperature variable
T}, is introduced and, after thermalization, is lowered until the hopefully global
minimum of the cost-function is reached. In practical applications we lowered
the temperature as T, = 1/(7 — 0.5), in finite time-steps 7 = 1,2,...60, and
checked that the resulting configuration does not change after further cooling.
At a fixed temperature in the thermalization MC steps we generally used local
rules by creating or removing bonds, but sometimes we also considered to move
a full line of bonds. In order to arrive to the global minimum several differ-
ent starting configurations are considered (at least three), and the best final
configuration was taken. In the investigations generally L x L finite samples
with linear size up to L = 24 were considered and periodic boundary conditions
were used in both directions. For smaller sizes the averaging was usually per-
formed over 10000 samples, whereas for larger sizes we used several thousands
of realizations.
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Alternatively, for w < 1/4 we used a combinatorial optimization algorithm
that yields a configuration that is close to the optimum but not necessarily
equal to it. Actually the worst case bound for the ratio of the value Fy of the
optimal solution Uy to the value F(U*) of configuration U* that is found by the
algorithm is only 2/3, which would be too bad for our purposes. However, in
typical cases the configurations produced by the algorithm are much closer, as
we checked by comparison with the configurations generated by the simulated
annealing method. The algorithm works as follows [41]:

For all sites ¢ let 4,—, i44, ¢y~ and 4,4 be its left, right, lower and upper
neighbour, respectively, and denote with (ié,-), (4iy4), (ity—) and (idy4) the
bonds (edges) between these neighbouring sites and . These constitute a mini-
mal set of edges that, when removed from G, cut the site ¢ from the rest of the
graph. Let us denote them by

By = {(ii—), (i), (iiy-), (i +)} (7.14)
and their weight .
w(B;) = Z (5 + wij) - (7.15)
(#/)€ E;

The minimum cut between any two pairs of sites, ¢ and j, is defined as the
set of edges that has a minimum total weight and whose removal from G cuts
the graph into two disjoint subgraphs, one containing ¢ and one containing j
(1, 44, 3]. In our case it is then given either by E; or Ej, as long as jw;;| < 1/4,
as one can easily convince oneselves.

The idea of the algorithm is as follows: Obviously the removal of the edges
contained in a minimum cut, like in E; for all 4, increases the number of com-
ponents in the graph by one, i.e. one wins one unit in the cost function F(U)
(7.5). On the other hand one looses w(E;) units and when increasing the num-
ber of components of the graph G, one should keep this weight loss as small
as possible. Therefore we consider a collection of minimum cuts as possible
candidates of edge sets to be removed from G. Let the edge sets be ordered
nondecreasing weight, such that w(E;) < w(Ez) < ... < w(Er2) and define for
allr =0,1,2,..., L? the edge subsets

U = E\ U E;, (7.16)

i=1

ie. UY = E, and with increasing r successively edge sets of non-decreasing
weight are substracted from E. When doing this, initially (i.e. for small r) most
of the time a site will be isolated that before has been connected to a larger
cluster and therefore frequently (depending on the weight of the substraced
edges) F(U) will increase, as desired. These are the trial configurations for
our optimization problem and we take the best solution among them, i.e. U*
such that F(U*) = max{F(U")|r = 0,1,...,L?}. It can be shown [41] that
F(U*)/Fp) > 2/3, also for w > 1/4, however, in this case the minimum cuts are
not as simple as in (7.14).

With the combinatorial optimization method we could treat larger finite
systems (up to 128 x 128), than by simulated annealing and the number of
configurations we used were between 10000 and 1000 for smaller and larger
systems, respectively.
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For the purpose of cluster analysis we implemented the standard Hoshen-
Kopelman labeling algorithm [49] in both methods.

7.4 Results at the critical point

First, we tested the relative accuracy of the two methods by comparing the
value of the obtained cost-functions, Fy, for different finite sizes. As a general
tendency simulated annealing has given higher, thus better estimates, but the
relative difference for L < 16 was very small, less then 0.4%. For the largest
system we studied by simulated annealing, I = 24, the relative difference has
increased to about 0.6%. We shall later analyze consequences of the inaccuracy
of the min-cut method in the magnetic properties of the RBPM. In the following
we present results which are obtained by the more accurate simulated annealing
method.

Microscopic length scale Typical optimal configurations for different values
of w calculated with the same disorder realization for w;;(= $w) are presented
in Fig. 7.1. The position of the strong bonds (w;; = +w) can be obtained

EEma i =] Y m g
T H T T I77 e
! i 1 EmEmmmmma:
o = EEEmEED
T 81588
o ____JI - o i sl
%
o a
a RARRE a
B ] 0
®=0.25 ®=0.31

i

sk
Ry

a

m - e :Hud_i_r_nl— _'T_

\III:;: DI:D _TI:_:E:‘ %‘l{' :‘ :‘7:_

i & e P, e
®=0.4 ®>0.5

Figure 7.1: Typical optimal configurations for different values of w calculated
with the same disorder realization for w;;(= +w).

from the optimal configuration for w > 1/2, since in percolation only these
bonds are occupied. As seen in the figure, for smaller disorder parameter the
optimal graph looks to be more compact, whereas for stronger w the optimal
configurations are very close to each other. This fact is a consequence of the
presence of a finite length-scale in the problem. For small w the system behaves
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uniformly up to a length-scale I, which is given by estimating the size [ of a
step, which is located at the top of a straight surface of a connected cluster, see
Fig. 7.2. Using the bimodal distribution in (7.12) the existence of the step is

- | — =

Figure 7.2: A connected cluster with a step of I-points on the top of a straight
surface.

connected to the condition:

212—1 (% + wi) >1, (7.17)

=1
where w; = dw with the same probability, or equivalently:

21-1

1
H PR 7.18
;:1 pi> oo (7.18)

with p; = £1. For large [ the probability distribution of the sum in the Lh.s.
of Eq.(7.18) is Gaussian, with a variance of v/2] — 1. Consequently the average
size of the step I, scales with a small w as

I ~ (%) . (7.19)

To observe the true asymptotic behavior in the RBPM, the system size should
be larger than this value, L > I.(w), therefore we restricted ourselves to not too
small w values.

Cluster size distribution Next we analyze the distribution of the largest
connected cluster, I'. Inspecting the structure of a typical optimal graph in Fig.
7.1 we arrive to the conclusion that I' is a fractal, so that we take the scaling
combination np /L%, which corresponds to the form in Eq.(7.7). In Fig. 7.3
we present a scaling plot of the reduced cluster size distribution, where a data
collapse can be obtained with a fractal dimension dy ~ 1.8.

We note that the points, corresponding to the smallest system, deviate more
from the hypothetical scaling curve, which can be attributed to the effect of the
finite length scale .. In the inset of Fig. 7.3 a similar scaling plot is presented
in the percolation region, i.e. for w > 1/2, where the fractal dimension of
percolation [123], d, = 91/48 is used. The scaling curves for w < 1/2 and
w > 1/2 look different: for the RBPM the distribution is broad and there is a
considerable weight for small clusters, whereas for percolation the distribution
is single peaked without a relevant small cluster contribution.
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Figure 7.3: Scaling plot of the size distribution of the largest cluster at the critical
point of the RBPM at w = 0.4 for different finite systems. A data collapse is obtained
with a fractal dimension d; &~ 1.8. In the inset the same quantity is plotted for
percolation, when w > 1/2 and d, = 91/48.

Magnetization exponent Next we calculated the average density of the
largest connected cluster [nr]a.y/L?, from the size dependence of which the frac-
tal dimension dy in (7.7) and the magnetization exponent ., in (7.10} follows.
In Fig. 7.4 we have plotted [nrlay/L? for different finite sizes in a log-log scale,
using different values of the disorder parameter, w. In this figure, besides the
results obtained by simulated annealing, also points calculated by the approx-
imate (min-cut) optimization algorithm are presented. As seen the min-cut
algorithm works satisfactory for small systems, L < 16, when the difference in
the cost-functions calculated by the two methods is also very small. For larger
sizes, however, which are beyond the possibilities of simulated annealing, the
error of the optimization algorithm increases. Based on the results presented in
Fig. 7.4 the min-cut method tends to generate a compact cluster in the large
system limit. Therefore we used the min-cut method only for limited sizes,
which are anyhow manageable by the simulated annealing method, although
with much longer computational time.

Returning to the average density in Fig. 7.4 one can observe that for the
disorder parameter in the RBPM range, i.e. 0 < w < 1/2, the points fall on
nearly parallel straight lines having a slope of —2 + d; ~ —0.2, where d;y =~ 1.8
corresponds to the value we used in the scaling plot of the reduced cluster-size
distribution in Fig.7.3. The slope of the same line calculated in the percolation
regime, with w > 0.5 is significantly different, it is —2 + d,, >~ —0.1, where d, is
close to the fractal dimension of two-dimensional percolation.

The estimates of the magnetization scaling dimension x,, at different disor-
der parameter w are summarized in Table 7.1.

As seen in Table 7.1 the magnetization exponent x,, is approximately inde-
pendent of the disorder parameter for 0 < w < 1/2, and its value is within the
range of z,, & 0.17 — 0.19. This is in agreement with the estimates obtained
by extrapolating the results calculated at finite g-s [99, 67], thus the two limits
seem to be interchangeable. The apparent variation of x,, with w can be at-
tributed to cross-over effects: at w = 0 the pure system transition, whereas at
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Figure 7.4: Size dependence of the average density of the largest connected cluster at
different values of the disorder parameter, w, calculated by simulated annealing and by
the approximative optimization {min-cut) algorithm. Note that the min-cut method
has a systematic error for larger systems. The slope of the curves, s, for different
0 < w < 0.5 is approximately identical and indicated by a straight line with sl = —0.2,
but this slope differs from that of percolation, which corresponds to w > 0.5, and the
related straight line has sl = —5/48. Typical error of the simulated annealing method
is indicated by the error bar, whereas the error for percolation is smaller than the size
of the symbol.

w T
0.2 || 0.185(30)
0.25 | 0.188(16)
0.31 | 0.165(15)
04 | 0.178(13)
>05 || 0.103(2)

Table 7.1: Scaling exponent, x.,, of the average magnetization for different disorder
parameter w. The last row with w > 0.5 corresponds to normal percolation where the
exact value is 28, = 5/48 = 0.104.

w = 1/2 the percolation fixed point is going to perturb the value of effective,
finite-size dependent exponents.

The magnetization exponent x,, has been calculated by another method,
which is based on conformal invariance. Here we use the result mentioned in
Section 2.1.3, that in a long strip of width L, and with periodic boundary
conditions the average correlation function along the strip decay exponentially:

[<0i0i+u>]av ~ eXp(_u/‘ng) 5 (720)
where the correlation length &7, for large widths asymptotically behaves as:

T 2ma,,

€L (7.21)

In practical calculations we used strips of widths, L., = 2,3,4 and 5, and with
such a lengths, that in the calculated correlation function the exponential decay
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w T
Ly=2 Lo=3 L,=4 Ly=5
0.400 || 0.263(9) 0.166(4) 0.165(3) 0.163(6)
0.423 || 0.267(1) 0.168(5) 0.167(2) 0.163(6)
0.452 || 0.266(1) 0.170(4) 0.169(2) 0.163(6)

Table 7.2: Numerical estimates for the average magnetization exponent, T, using
the correlation length-exponent relation in Eq.(7.21) for different widths, L.,.

in (7.20) seemed not to change by further increase of the length. Generally we
went at least up to a length of 64 sites, which has then limited the available
widths L,,. The calculated exponents for some values of the disorder parameter
are given in Table 7.2.

As we see the size dependence of z,, is very weak for L, > 3 and the
extrapolated value of x,, =~ 0.17 is practically independent of the form of the
disorder. This estimate is compatible with the previous one obtained by finite-
size scaling. The fact, that this latter result lies close to the lower bound of
the finite-size scaling one is probably due to the confluent singularity of the
percolation fixed point, which is quite strong in the region of w-s we used in the
calculation on strips.

Central charge We have also calculated the central charge of the conformal
anomaly ¢ [11, 46] from the finite-size correction to the free energy per width:

e

fo(Lw) = fo(oo) - 612 +0(L,?) , (7.22)
with the result:
c=0.74(1) = O'f)nlél) . (7.23)

This is compatible with previous estimate [67] ¢ = 0.5/ In 2, which is obtained
by finite-g extrapolation.

7.5 Results outside the critical point

Finally we investigated the average magnetization, [m(L, t)]ay, in the vicinity of
the critical point. In the scaling region, defined as Li#]* = O(1), where v is the
critical exponent of average correlations, the average magnetization is expected
to behave as:

[m(L,t)]ay = L™ m(Lit]") , (7.24)

where m(y) is some scaling function. The calculated magnetizations at different
finite size and temperature then should collapse to the same scaling function,
provided the correct critical exponents x,, and v are used. In Fig. 7.5 we show
the result of such a scaling plot, where we used v = 1, as found approximately
in finite-¢ calculations, whereas for x,, we used our previous estimate obtained
through finite-size scaling at the critical point. The data collapse in Fig. 7.5 is
satisfactory, however to obtain a precise estimate on v one needs to extend the
calculations for larger systems.



7.6. PHASE DIAGRAM 83

L=6  +
12 ¢+ L=8 X
% L=12 ©
L L:’]G A
= ® L=24 A
4 17
£ &
><E
—1
0.8} g
X
A
0.6 : :
-0.5 0 0.5

Figure 7.5: Scaling plot of the finite-size average magnetization in the vicinity of the
critical point, for a disorder parameter w = 0.4. The scaling exponents we used here
are &y, = 0.177 and v = 1.

7.6 Phase diagram

Working with the bimodal distribution in (7.12) our results are compatible with
the RG-phase diagram drawn in Fig. 7.6.

PURE DIS TR PERC
0 172 @ <o

Figure 7.6: Schematic RG phase diagram of the two-dimensional RBPM with varying
strength of bimodal disorder w. For details see the text.

The pure systems fixed point (PURE), located at w = 0, is unstable against
any weak disorder, thus the critical behavior in the range of 0 < w < 0.5 is con-
trolled by the disordered fixed point (DIS). Our numerical calculation indeed
indicate a universality with respect of the strength of disorder. Increasing the
disorder over w = 0.5 we reach the region of attraction of the normal percola-
tion, and the corresponding fixed point (PERC) is located at w = oo. Our RG
phase diagram is completed by introducing a repulsive tricritical fixed point,
TR, at w = 0.5, which separates the regions of attraction of the two non-trivial
fixed points, DIS and PERC. The singular properties of the TR can be quite
unusual, since the corresponding optimal graph is highly degenerate: the possi-
ble configurations include all which interpolate between that of the RBPM and
that of normal percolation.

The behavior of the system at the fixed point DIS, which is the subject of
the present study, is strongly dominated by disorder effects, whereas thermal
fluctuations seem to be negligible. Similar, disorder dominated critical behavior
occur in random quantum spin chains, the critical behaviour is controlled by an
IRFP.
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7.7 Summary

In this chapter the critical behavior of the Potts model with non-frustrated, ran-
dom bimodal couplings was investigated in the large g-limit. We have shown how
the calculation of the free energy and the correlation functions of the RBPM can
be mapped onto an optimization problem, which was then numerically studied
by simulated annealing and by an approximate combinatorial optimization al-
gorithm. From the finite-size scaling of the average size of the dominant graph,
we estimated the magnetization and correlation length exponent for different
values of the disorder parameter, the former one also by measuring correlations
in strip geometry. Moreover we calculated the central charge from the finite-size
scaling of free energy. Our results are more precise than previous extrapolative
estimates and are compatible with them. On the basis of the above results we
presented the phase diagram of the model, where certain features the disordered
fixed point controlling the 0 < w < 1/2 region are reminiscent of an IRFP.



Chapter 8

Summary

In the present thesis we discussed random systems, where strong disorder leads
to the possibility of obtaining exact or presumably exact results on the critical-
and Grifliths-McCoy singularities, or at least considerably simplifies the treat-
ment of the problem.

A large portion of our new results concerns the Griffiths phase of the RTIC
and the closely related XX- and XY model. In these models, the critical be-
haviour of which is controlled by an infinite-randomness fixed point, the av-
erage quantities are dominated by the contribution of a vanishing fraction of
rare samples, while other samples are irrelevant. A phenomenological scaling
theory based on the properties of rare events was applied in order to determine
the singular behaviour of higher gaps, non-linear susceptibility and autocorre-
lations in the Griffiths phase of the RTIC and the random XY- and XX chain.
In addition to this extensive numerical analysis based on the free-fermion tech-
nique was performed. The results are consistent and show, that all singularities
in the Griffiths phase are explained by the properties of rare strongly coupled
domains, and this common origin manifests itself in the sufficiency of a single
exponent for the complete description of Griffith-McCoy singularities.

On the other hand infinitely strong randomness is known to ensure the
asymptotic exactness of the Ma-Dasgupta-Hu renormalization group treatment.
We showed that the method is asymptotically exact also in the Griffiths phase
due to the logarithmically broad distribution of couplings. We found that the
dynamical exponent of the model, containing the information on the Griffiths-
McCoy singularities, is invariant during the procedure, which makes possible to
give an exact expression for calculating the dynamical exponent. The exact de-
termination of dynamical exponents of the RQPM which is governed by similar
RG equations like the RTIC, is still an open question.

Some of our results such as the invariance of dynamical exponent are sup-
posed to be generally valid among disordered quantum spin chains, whereas
others, e.g. the exponent relations for higher gaps, should be valid also in
higher dimensions. Another field where the present results could be applied
is the anomalous diffusion region of Sinai walk, which is closely related to the
Griffiths phase of quantum chains.

The rare strongly coupled domains determine not only the properties of Grif-
fiths phase but the average critical properties, as well. Using exact expressions
for the surface order parameter of the XY- and XX chain, obtained by the free-
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fermion technique, we identified the rare events with coupling sequences having
a surviving walk character. Close to criticality, using the properties of random
walk we determined the complete set of critical decay exponents of the above
models. The numerically calculated off-diagonal operator profiles together with
the results of conformal invariance give critical exponents, which are compati-
ble with those obtained by the random-walk arguments. This fact is accordance
with other experiences that in strongly anisotropic and therefore not conformal
invariant disordered spin chains some results of conformal theory still hold.

In the other issue we discussed, the random-bond Potts model in the large-g
limit, the special parameterization and the ¢ — oo limit converts the problem of
calculating the thermodynamical and correlation properties into an optimization
problem. The finding that a single graph describes the properties of the system
is parallel to the important role of rare samples in the previous problem.

So we have dealt in this thesis with singular properties of strongly disordered
models at criticality and in the Griffiths phase. Among our findings obtained
in special models, there are a number of results which are supposed to reflect
more general properties of random systems. Thus the information extracted
from the above special models hopefully contributes to a better understanding
of the cooperative behaviour of random systems with many degrees of freedom.
Notwithstanding our analysis raise several new questions, such as the treatment
of phenomena studied in our low-dimensional models in higher dimensional or
in more realistic models.



Appendix A

Mapping the RTIC onto
free fermions

A.1 Jordan-Wigner transformation

First we introduce the raising and lowering operators
+ 1 T Y 1 @ sl
a = §(Ui +i0!) and a; = §(ai —i0)), (A1)

respectively, in terms of which ¥ = a;*—}—ai, and o} = Qa;*ai —1. These operators
commute on different sites like Bose operators, but on the same site they behave
2 )2 = 0. In terms of a;’s and

as Fermi operators: {a;,a;} = 0 and (a;)% = (q]
aj ’s the Hamiltonian (3.1) assumes a quadratic form:

L—1 L
H ==Y [afai1 +afal,, +he] = hi(2afa; — 1), (A.2)
=1 =1

where h.c. means hermitian conjugate.

Since canonical transformations do not preserve the mixed commutation
rules among a;’s and a’s, it is not possible to diagonalize (A.2) directly.
This difficulty can be avoided by introducing new variables after Jordan and
Wigner[68]:

i—1 i—1
¢; = exp m’Zajaj ag, c;* = aj exp —m’Zajaj . (A.3)
=1 j=1
These are indeed Fermi operators, satisfying
7

{Ci?cj} = 5ij’ {Ciacj} = {C-‘Facj} =0. (A4)

Then ¢ ¢; = a; a;, so the inverse transformation is simply

i—1 i—1
a; = exp | —mi chcj ¢, af =cfexp |mi Z cfej) (A.5)
=1 Jj=1
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Furthermore a;*ai_ﬂ = c;*cijq and a;ilaj = cjc;’:ﬂ. Thus the Hamiltonian can

be arranged into a quadratic form of ¢;’s and c;* ’s:

L1 L
1
H= Z [chijcj + E(C;L-Bijcj- + h.c.)} + Z hi, (A.6)
i,j=1 =1
with matrices
20 1
Ji 2he o
A=-— Jo ,
Jr-1
Jr-1 2hy
0 -J
J 0 ~J
B=— Jy e . (A7)
’ ~Jr 1
Jr-1 0

The above steps can be achieved also for the XY chain defined in (6.6). In
this case the above matrices read as

0 JE+ g7
JE 4+ JY 0 JE+ JY
Al Ji+JY 0 ’
4
Ji_i+Jl
JE o+ Ji 0
0 Jr—J¥
J{’ - JT 0 Jg - J{;
Yy __ gz
B=1 Jo=Ji 0 (A8)
4
Jf—1 - J%—1

J%—1 - Jf—1 0
The hermicity of H implies that A is a Hermitian matrix, while the commu-
tation rules require that B is antisymmetric. Moreover for the RTIC and the
XY chain both are real.
Note that it is not possible to obtain a simple quadratic form (A.6) in higher
dimensions or with next-nearest-neighbour interaction or with an interaction
containing also the z component of spin.

A.2 Bogoliubov transformation

The way of diagonalizing the quadratic Hamiltonian (A.6) is known as Bogoliubov-
transformation [7]. One looks for a linear transformation

Mg = Z(gqici + hqicj-)a 77; = Z(ng‘,cj + hgici), (A9)

2 2
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where gq; and hg; are real, and the 5,’s and 7} ’s are fermion operators (thus the
transformation is canonical), in terms of which the Hamiltonian is expressed as

H= Z €q7l 11q + constant. (A.10)
g

Applying the relation [n,, H] — ¢4, = 0 one obtains the equations for g, and
hqi [83]

€qYqt = Z(gquij —hgjBji), €qhgi = Z(gquij = hgjAji). (A.11)

i i
Introducing the L-component vectors ®; and ¥y, with components

Dy(i) = 9gi + hgs,  Wy(i) = ggi — hgs (A.12)
chosen to be normalized to 1:

Z@@;’(i) = Zqz@;‘(i) =1, (A.13)

one obtains the equations for the one-fermion excitation energies €, in matrix
notation:
®,(A-B)=¢%, and Y, (A+B)=¢2, (A.14)

Combining these equations one arrives to
®,(A-B)(A+B) = 63(I)q or U,(A+B)(A-B)= eg\I!q. (A.15)

Now the squares of excitation energies are given as the eigenvalues of an L x L
matrix.

Creating a 2L-component vector V,, with components V,(2¢ — 1) = —®,(¢)
and Vy(2i) = ¥,(¢), i = 1,2,..., L (A.15) is reformulated as

TV, = ¢,V,, (A.16)

where the matrix T of size 2L x 2L is given in (3.16) [58].

It is easy to see, that if ¢, is an eigenvalue of T, than —¢, is also an eigenvalue
and the corresponding eigenvector can be obtained from that of ¢, by trans-
forming ®, to —®,. This means the interchanging of creation and annihilation
operators, and reflects the particle-hole symmetry of the system. Therefore the
whole information is contained in one half of the spectrum. We confine ourselves
to positive fermion excitation energies €, > 0.

The constant in (A.10) can be determined from the invariance of trace under
canonical transformation. From (A.6) trH = 28! > Au + 2L Zle h;, while
from (A.10) trH = 2£-1 % g €4+20 x constant. Comparing these two expressions
the constant is thus —1 >4 €q and one arrives to the final result in (3.15).
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Appendix B

Renormalization of the
RQPM

In order to derive the RG equations of the RQPM, it is expedient to represent
the Hamiltonian (5.21) in the new basis

1 &<
Ing) = NG E w1y 1 =1,2.... L, (B.1)
ny=1

where w = exp [%] and |ng), ny = 1,2,...,q stand for states of the Potts spin
at site [ [122]. In this basis (5.21) assumes the form

L—-1
H=->"J

I=1 k=

g—1

L
MEMPF =S "Ry, (B.2)
1 =1

where operators M; and R; acting on |n;) are represented by the ¢ x ¢ matrices:

010 0 ...0 q51 _01 8 8
001 0 ... 0 0 o0 1
M, = R = . . (B.3)
X .
0
1 0 0 . 0 1

In the following we work in this representation and primes are simply abandoned.
We see that the terms in (B.2), through which the fields couple to the system
are now diagonal, but the interactions are no longer. Instead they flip the spins.

Strong bond decimation If Js > he, hg one considers the block, similarly
to the RTIC (see Fig. 5.1},

g—1
H=—J% M{M{™" —hyRy — hsRy. (B.4)
k=1

This block has ¢ states. In the absence of fields ho = hy = 0, there are two
levels in the spectrum: the ground state is g-fold degenerate and separated from
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the ¢(q — 1)-fold degenerate excited levels by Jo. If small fields are switched on,
the lower nivou will split into a non-degenerate ground state and a g — 1-fold
degenerate multiplett. Dropping the higher lying g(¢ — 1) states one is left with
a nivou-structure of a single Potts spin variable. The details of the calculation
are the following. The eigenvalue problem separates into ¢ orthogonal subspaces
spanned by the vectors:

1 §11>?§QQ>?§3((1_1))?"'?§q2>
2 [12),]21),3), .-, [g3)

a  [1g),[2(¢ - 1)),3(¢ = 2)),....[q1) (B.5)

and subspaces 2,3, ...,q are degenerate. The ground state is in the first sub-
space spanned by the vectors
do = {11
1
= 2 3(g—1 2 B.
$1 m{i @O+ Bla—1) + ... +42)}, (B.6)

where we have combined degenerate states. After solving the block eigenvalue
problem, the ground state energy is given as

By = — 5 12(q=2)+(q=2) (ot hs) (g Jo— (ho-+hs) (a~2)) P4 (s +-hs (1)),

(B.7)
For Jy > ho, hy we get
ha + h3)?
Egz-Jg(q-l)-u(q—l)%—... (B.8)
q-J2
The (g — 1)-fold degenerate excited state come from the ground states of the
degenerate sectors 2,3, ...,q. Choosing sector 2, the ground state is spanned
by the vectors
o = |12)
P = |21)
1
= 3 4(g~1 . B.
P2 m(i 7 +4(g—-1)+...+1¢g3) (B.9)
The solution of the block eigenvalue problem for he = hy = 0 is
1 1 [qg-2
g = —Ja(g — 1 v = (—, —, 4/ ——
0 2(g — 1) 0= ( i Ja \/ p )
q—2 [Jq—2 2
= J = —
&1 2 U1 ( 2(] i 2(] 3 m)
1 1
g9 = Jo g = (—=, ———=,0). B.10
2 2 2 (\/5 \/5 ) ( )
Now the fields can be treated as small perturbations given by the matrix
—(q - l)hg -+ h3 0 0
V= 0 —(q - 1)h3 + ho 0 . (Bll)

0 0 ho -+ hs
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The first correction to g Aeél) = (vo]Vvo) is zero, while the second correction
is

2 Vie)?  [{wo[V]w)]* _ ¢-2 s 1 2
Act?) = vl - S ha + h3)? — ——(ha — hy)?.
EO €1 —Ep €2 — Ep QQJQ ( 2+ 3) 2J2( 2 3)
(B.12)
Thus the excitation energy is
AE=F -E0=2h3h3 T (B.13)
2

Keeping now only the first ¢ states, we are left with the energy spectrum of a

single Potts spin in a field:
= 2 hahs
hay = = ——. B.14
0 = 22 (B.14)

Strong field decimation In case of a strong field ho > Ji, Jo one considers
the block in Fig. 5.1 B, and uses the duality transformation of quantum Potts
chain, which maps the high-temperature phase to the low-temperature one.
Similarly to the RTIC, dual couplings J] and h} are related to original ones as

h; = Ji—l and Jz, = hz (B15)

Decimating out the strong bond .J} = he in the dual block, according to (B.14)
one gets an effective Potts spin in a field hbhy = %hgzé” In the direct lattice
this procedure corresponds to the decimation of spin 2, and finally one is left
with an effective bond between between spin 1 and spin 3, the value of which
is, according to (B.15):

Jig = 2223 (B.16)

Thus we got the recursion equations (5.8) with & = £ for the RQPC.
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Appendix C

Mapping the XY chain into
RTIC-s

We have seen in Section 6.3.1 that the matrix T in (6.12) can be represented
as a direct product T = T, @ T,. Now one can observe that the tridiagonal
matrices T,, T, of size L x L are of the form as the T matrix of an RTIC of
size L (see (3.16)). The corresponding RTIC Hamiltonians read as

L/2— L/’)
H, = 1 00z+1_42 107
1 Z/2 L/’)
H, = —; E: _H—-4§:Jhlr (C.1)
=1

Here the ¢;"° and 7,7° are two sets of Pauli matrices at site i and there are free
boundary conditions for both chains. We can then write Hxy = H, -+ H,. Note
the symmetry o;"° <+ 7,7% and J# <+ J/, thus anisotropy in the XY model has
different effects in the two Ising chains.

One can easily find the transformational relations between the XY and Ising
variables:

2¢—1
ol = (28%), o =48Y%,_,S%
Jj=1
2:—1
T8 = Ilzw Ti =482 5% (C.2)
whereas the inverse relations are the following
i—1 i
285, = of [[7, 285 =07 ][}
=1 j
i—1 i
284, , = e 284 =7 ] - (C.3)
=1 j
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We note that a relation between the XY model and two decoupled Ising quantum
chains in the thermodynamic limit [102, 32] and for finite chains with periodic
boundary condition [45] is known for some time, here we have extended this
relation for finite chains with free boundary condition. These are essential to
map local order parameters and end-to-end correlation functions.

End-to-end correlations are related as

Lj2
(S7S7) = Z<01 0L/2><H ) = Z<01 UL/Q) ) (C.4)
i=1

since in the ground state (Hf:/f 7#) = 1. Similarly

(SY5Y) = J(riE ) (©5)
thus the end-to-end correlations in the two models are in identical form. As
a consequence the corresponding decay exponent 7y in the random models in
Table 6.1 is the same in the two systems and the same conclusion holds also for
the correlation length exponent v in (6.25). These results are also independent
of the type of correlation of the disorder, thus are valid both for the XY and
XX models.

Correlations between two spins at general positions 21 and 2]+ 2r are related
as

3 €T 1 b : z
(551551 12,) = 1(01 Uz+r><H i) - (C.6)

i=1

The second factor in the r.h.s., (J]\_; i), defines a string-like order parameter
[47, 45] which can be expressed in a simpler form in terms of the dual Ising
variables

~Z _ x &
Ty = TiTipa

T8 = TELTE, (C.7)
already introduced in (3.2). Under the duality transformation fields and cou-
plings are exchanged, therefore the vanishing bonds at the two ends of an open
chain are transformed to vanishing fields, thus the dual chain has two end spins
fixed to the same state. So we obtain for the correlations in Eq. (C.6)

e X 1 x & ~ X 0
<S§1521+2r> = Z<01 0!+r><Tl Tl-{~r>++ » (C.8)

where the superscript T+ denotes fixed-spin boundary condition. For non-
surface points the average value of the correlation function in (C.8) depends
on the type of disorder correlations. For the XY model, where the disorder is
uncorrelated the two factors in (C.8) can be averaged separately, whereas this
is not possible for the XX model. We treated this point in Section 6.3.3.



Appendix D

Scaling of autocorrelation
functions

The autocorrelation functions are represented by the general form:

G*(1) = D |Mi|” exp(—TAE}) (D.1)
k

where the dominant contributions to the sum in Eq. (D.1) are from SCD-s which
are localized at some distance [ from the spin and have a very small excitation
energy, AE(l). The scaling form of AE(l) follows from the considerations in
Section 3.5.2 and one obtains from (3.44) and (3.45)

—AIY?),6=0
AE(D) ~ egexp(—Al'7?), D.2

at the critical point and in the Griffiths phase, respectively, where g denotes
the energy scale. Thus the larger the distance from the spin the larger the
probability to have an SCD with a very small energy. For the matrix element,
|M(I)[?, the tendency is the opposite since the overlap with the wave function
of the SCD is (exponentially) decreasing with the distance. The corresponding
scaling form can be read from the typical behavior of the surface order parameter
as given below and above (6.26) as

exp(=BIY/?), §=0

exp(—1/&yp), 6 <0’ (D-3)

e~ {
Then G*(7) in (D.1) can be approximated by a sum which runs over SCD-g
localized at different distances I and this sum is dominated by the largest term
with [ = l@i

G* (1) ~ | M (Ip)|? exp(—TAE(lp)) . (D.4)

Using the scaling forms in (D.2) and (D.3) one gets following result.
At the critical point the characteristic distance is lo = [In(reg A/B)/A]? and
the typical autocorrelation function decays as a power:

GH(ry ~77 B 5=0. (D.5)
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Thus the relevant scaling variable of the problem is

InGH(T)
== 5=0. D.6
gl o (D.6)
In the Griffiths phase the characteristic distance has a power-law 7 dependence,
lo = &iyp(Te02)/(*T1) | which is however different from the average scaling form
in (2.29). Thus the typical autocorrelations now are of a stretched exponential
form, as presented in (6.40).



Appendix E

Duality of the RBPM

The two phases of the ¢-state random-bond Potts model can be mapped onto
each other by a duality transformation, which makes possible the exact determi-
nation of the critical point. We present this in the framework of random cluster
representation.

First we show, how to transform the partition function of the RBPM into
(7.2), which is known as Fortuin-Kasteleyn transformation. The partition func-
tion of the RBPM reads as

Z = Z exp ZKij(S(ai,aj) = Z H [(eK”‘;(U"’UJ') - 1) - 1] . (ED)

{oi} {3} {oi} (3}

Introducing the new variable v;; = e/ — 1 and using the identity v;;6(0y, 05) =
eKiidloioi) _ 1 7 is reformulated as

z =31 (wyblow o) +1). (E2)
{oi} {id)

Forgetting for a moment the sum over spin configurations in (E.2), and mul-
tiplying out the product, the resulting terms are products containing as many
factors as the number of edges of the lattice. These factors are of two kind:
whether 1 or v;;0(0;,05). Now, to each such product a subgraph G C G can be
associated. The rule for this one-to-one correspondence is that each edge (ij) of
the graph is occupied, i.e. (ij) € U, when it is counted with weight v;;6(oy,0;)
in the product and unoccupied when it is counted with weight 1. Now consider-
ing a given product and performing the summation over spin states, only those
configurations contribute (with H(i fev v;7), in which, spins in all connected
clusters take the same value. Then denoting the number of connected clusters
by n(U}), one arrives to (7.2).

Now we introduce the concept of dual lattice G' = (V', E') the sites of which
correspond to the plaquettes (squares) of G, and are located in the middle of
them. Thus G' is also a square lattice, as G, shifted by a half lattice spacing
along both axes. A subgraph G' = (V',U') C G' is now said to be dual to
G = (V,U), if U’ contains all edges (ij)) € U' which do not cross any edge
(ij) e U.
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Since by construction each loop of (@ encircles a cluster of ', and vice versa,
one has
n(U)=c(U") +1, n(U'y = c(U) + 1, (E.3)

where ¢(U) denotes the number of loops in U. Furthermore the Euler relation
cU)y=bU)+nlU)~N (E.4)

holds for any graph, where N is the number of sites and b(U) is the number of
bonds in G = (V,U). Using the above relations, and denoting the total product
of weights as V' = [];;)cp vij, Z can be rewritten in terms of dual graphs:

7 = Z qn(U) H v =V Z qc(U’)+1 H vi}l _

Uce (1)U Urce (1) el
. ’ N art _ . A ’ q
v Z VAU =N H vijlz‘/ql N Z ") H L
U CE (ij)/EU/ U'CE! (ij)'EU' 2]

(E.5)

K

We define the dual couplings K}; through q/vi; = v =e i 1, or equivalently

(efii —1)(eRis —1) = q. (E.6)

Considering now the pure model with reduced coupling K;; = K, the first
expression in (E.5) can be viewed as a high-temperature expansion with cou-
pling K. According to the calculation in (E.5) it is then connected to a low-
temperature partition function containing K™*. Provided that there is a single
phase transition in the system, it must be at the fixed point of the duality trans-
formation (E.6) K* = K. Thus for the pure model the critical reduced coupling
is K. = In(,/g + 1). The random g-state Potts model with symmetric bimodal
coupling distribution, i.e. with two equally probable couplings K; and Ko, is
apparently critical, if Kf = Ky and Kj = K;, which is equivalent to

(efr —1)(ef2 - 1) =q. (E.7)

If we are given a continuous randomuness distribution p(K)dK, the system is
then at its critical point, if it is invariant against the transformation (E.6), i.e.

p(K)dK = —p(K*)dK*. (E.8)

Now turning to the variable w;; defined in (7.3}, (E.8) reduces to the criticality
condition presented in (7.11) [76].
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Rendezetlenség domindlta szingularis viselkedés
kvantum- és klasszikus rendszerekben
Osszefoglalas

A természetben eléforduld anyagokat és folyamatokat kevés kivételtol elte-
kintve mindig bizonyos fokt inhomogenitas jellemzi. A leggyakrabban emlitett
példa erre a kristalyokban megfigyelhet$ szennyezé atomok és egyéb racshibdk
jelenléte. A valds rendszerek ezen tulajdonsigdnak elméleti leirdsa hivta 1étre
a rendezetlenség koncepcidjat, majd inditotta Gtjara a—mara mar széleskoriien
alkalmazott—rendezetlen modellek vizsgdlatat, mely lassanként 6nallé diszcipli-
nava novi ki magat.

A rendezetlen rendszerek elméleti leirdsa sordn kiilon kezelenddék azon rend-
szerek, melyekben a rendezetlenséggel kapcsolatos relaxacids id6 lényegesen na-
gyobb a termikus szabadsdgi fokokhoz tarsulé relaxdcios idénél. Az ilyen rend-
szereket leiré tn. “befagyott” rendezetlenségli modellekben a fizikai mennyiségek
termikus varhaté értéke fligg a rendezetlenség konkrét megvaldsulasatol. Ilyen
modellekben el6fordulhat, hogy némely mennyiség nem éndtlagold, azaz dtlagos-
és tipikus értéke kiilonboz6. Ezen mennyiségek jellemzéséhez a teljes eloszlasuk
ismerete sziikséges. A tovabbiakban az ilyen modellek tulajdonsagait targyaljuk.

A rendezetlen modelleken beliil kiilonos érdeklédés indult meg a fazisdit-
alokuldst mutatd modellek irdnt, melyeknél természetes médon vetddik fel a
kérdés, hogy a rendezetlenség bevezetése milyen véltozdsokat eredményez (ha
eredményez egyéltalan) a rendezetlenségtdl mentes, tn. tiszta rendszer tulaj-
donséagaihoz képest.

A tapasztalatok szerint a rendezetlenség véaltozd mértékben befolyasolja a
tiszta rendszer fazisdtalakuldsat: Eléfordul, hogy a rendezetlenség a fazisata-
lakuldsi pont megsziinéséhez vezet, vagy az atalakulds rendiiségének megval-
tozasdhoz: nevezetesen az elsOrendil fazisdtmenet folytonossd valik. Alapvetd
kérdés itt, hogy egy folytonos fazisdtalakulds esetén (amelyet a rendezetlenség
nem mos el), a kritikus pont univerzdlis tulajdonsigai mily médon véltoznak.
Véletlen-csatoldsi modellekben a vélaszt erre a kérdésre egy—Harris nevéhez
fliz6d6—heurisztikus stabilitdsi kritérium adja, mely a rendezetlenség relevins
voltat a megfeleld tiszta rendszer fajhd exponensével hozza kapcsolatba.

A klasszikus rendszerekben lezajlo—termikus fluktudciok altal kontrollalt—
fazisatalakulasoktol szamos vonatkozasban kiilonboznek az—abszolit nulla fokon
végbemen6—uin. kvantum-fazisdtalokuldsok. Itt—hdétartdly nem lévén—az ak-
tivalasi dinamikat az alagitazds valtja fel, ami a klasszikustél merében eltérs fa-
zisdtalakulasi mechanizmushoz vezet. A rendezetlen kvantum-fazisatalakuldsok
kritikus tulajdonsdgait a termikus fluktudciok helyett a kvantum-fluktudcick és
a rendezetlenség fluktudcidinak Gsszjatéka alakitja ki.

A kvantum-fazisdtalakulasi ponttal rendelkezé rendezetlen modellek egy cso-
portja kiilonleges nagyléptékli és alacsony energids viselkedést mutat. Mig
a legtobb rendszert a—hosszisagegység névekedésével jaré—valds-tér renor-
maldsi-csoport transzformdéciok olyan fixpont felé sodorjik, ahol a Hamilton-
fliggvényben szereplé lokdlis paraméterek hinyadosa véges marad, addig ezen
modellekben a fenti transzformacié sordn a Hamilton-operdtor paramétereinek
eloszlisa, logaritmikus skdldn, minden hataron tul szélesedik, midén az energia-
skala nulldhoz tart. A fixpontban ekkor a paraméterek hdnyadosa tipikusan



végtelen vagy nulla; a rendszer viselkedését egy tn. wvégtelenil erds rendezet-
lenségtl firpont irja le. A széles eloszlisok maguk utdn vonjdk az dndtlagolds
hignydt, és a mennyiségek atlagértékét az tn. ritka mintdk extrém jarulékai
hatarozzak meg. A modellek ezen osztalydba alacsony dimenzids kvantumrend-
szerek tartoznak, zomében spinldcok és spinlétrak.

Azonban a rendezetlenség hatdsa nem csupan a a fazisdtalakuldsi pont jel-
lemzdinek befolyasoldsara korlatozddik. Griffiths ill. McCoy mutatta ki a ren-
dezetlen klasszikus- ill. kvantum-Ising-modellben, hogy a kritikus pont koriil
egy kiterjedt tartomany taldlhaté, ahol szamos fizikai mennyiség szinguldrisan
viselkedik. Ennek a—kizdrolag rendezetlen rendszerekben megfigyelhet6—un.
Griffiths-fazisnak a létét azok a ritka domének okozzdk, melyek lokdlisan a kri-
tikug pont ttloldaldn 1év6 fazisban vannak. A Griffiths-McCoy szingularitdsok
a klasszikus modellekkel szemben 1ényegesen hangsilyozottabban jelentkeznek a
kvantummechanikai rendszerekben, ahol a dinamika és sztatika 6sszekapcsolddik.
Itt a rendezetlenség fent vazolt fluktudcidi kovetkeztében az atlagos idébeli ko-
rreldcidk—a kritikus viselkedéssel megegyez$ médon—hatvanyfiiggvény szerint
csengenek le. Ezzel szemben a térbeli korreldcidkat révidtava rend jellemzi,
igy a Griffiths-fazist “szemikritikus” fixpontok sorozatdnak nevezik. Egy feno-
menologikus skédlaelmélet szerint az Osszes vizsgalt fizikai mennyiség szingularis
viselkedése kozos fizikai alapra vezetheté vissza, és az ezt leird exponensek kap-
csolatba hozhatdk a rendszer dinamikai exponensével, mely folytonosan valtozik
a Griffiths-fazisban.

Az értekezés tulnyomé részében rendezetlen kvantum-spinldncok Griffiths-
fazisbeli- és kritikus viselkedését vizsgiljuk, melyet a fent emlitett végteleniil
erés rendezetlenségli fixpont kontrolldl. Az értekezés mdsodik részében egy
klasszikus modell, a véletlen-csatolasu ferromégneses g¢-allapoti Potts-modell
kritikus viselkedését tanulmanyozzuk a nagy ¢ hataresetben, amikor a termikus
fluktuacidk jelentéktelenné valnak. Mindkét probléma kozos vondsa, hogy a
rendszer viselkedését a rendezetlenség alakitjia ki donté médon a kvantum-
fluktuaciokkal ill. a klasszikus probléméndl a termikus fluktudcidkkal szemben.

A fenti kérdéskorok tanulmanyozdsira szamos modszert alkalmaztunk. A
kvantum-spinlancok viselkedését a szabadfermion-reprezenticién alapulé anali-
tikus és numerikus médszerekkel, valamint fenomenologikus skdlaelmélet segit-
ségével tanulminyozzuk. A Griffiths-fazis tulajdonsiagait renormalési-csoport
transzformacié keretein belill elemezziik, analitikusan és numerikus tton. A
véletlen-csatoldst Potts-modell megolddsat a nagy ¢ hataresetben optimalizilasi
problémaéra vezetjiik vissza, amit aztdn numerikus sztochasztikus- és kombina-
torikus optimalizacids modszerekkel vizsgalunk.

Az értekezés felépitése a kovetkezd. Rovid bevezetést kovetden, a masodik
fejezetben Osszefoglaljuk a tiszta- és rendezetlen klasszikus- és kvantumrend-
szerekben megfigyelhetd kritikus viselkedés sajatossdgait, majd ismertetjiik a
Griffiths-McCoy szingularitasok fenomenologikus elméletét.

A harmadik fejezetben az egydimenziés rendezetlen kvantum-Ising-modell-
re vonatkozd eddigi ismereteket gyiijtjiik Ossze. Ezen beliil bemutatjuk a fenti
modell leképezését szabad fermionok rendszerére, kapcesolatat a véletlen bolyon-
gassal, és egy—a ritka eseményekre épiilé—fenomenologikus skidlaelméletet.

A negyedik fejezettel kezdGdden ratériink az Gj eredmények ismertetésére.
Elsoként az elézé fejezetben bemutatott modell Griffiths-fazisaban vizsgdlunk
olyan mennyiségeket, melyek szinguldris viselkedése nem hozhaté kozvetleniil
kapcsolatba az energiarés—ismert—viselkedésével. Ezen mennyiségek a kévet-



kezbek: a masodik- és magasabb energiarések eloszlasa, a nemlinedris szuszcepti-
bilitas és az energiasiirliség autokorrelicids fliggvény. Fenomenologikus skalazasi
érveléssel kimutatjuk a fenti mennyiségek szinguldris viselkedését, és az ezt leird
exponenseket kapcsolatba hozzuk a dinamikai exponenssel. Szabadfermion-rep-
rezentaciéban a fenti mennyiségekre zart formulét vezetiink le, majd ezeket nu-
merikus vizsgalatnak vetjiik ald. A fenomenologikus- és az azokkal dsszhangban
4116 numerikus eredményeink szerint a Grifliths-fazisban szingularis mennyiségek
egyetlen—a kontroll-paraméterrel folytonosan valtozé—exponenssel jellemezhe-
toek.

Ezt kéveten a Ma-Dasgupta-Hu-féle kozelitd valds-tér renormaélési-csoport
transzformaciét alkalmazzuk a fenti modellre. A renormélasi-csoport egyenletek
fixponti megoldédsai ismertek a modell kritikus pontjdban, ahol az eljards aszimp-
totikusan egzakt, azonban altaldnosan elterjedt az a felfogéds, hogy ez kizdrdlag
a kritikus pontban és kozvetlen kézelében igaz. Ebben a fejezetben megadjuk
a renormalasi-csoport egyenletek analitikus megoldésat a rendezetlen kvantum-
Ising-modell Griffiths-fazisdban, majd megmutatjuk, hogy az eljards itt is asz-
imptotikusan egzakt. Bizonyitjuk, hogy a dinamikai exponens invaridns marad
a renormalds soran, majd ezt felhaszndlva egzakt kifejezést adunk a dinamikai
exponens szamitdsara. Az energiarés eloszlasdra épiilé fenomenoldgiai meg-
fontolasok alapjan a fenti allitdsokat dltaldnos érvénytinek gondoljuk a kvantum-
spin-lancok korében. Ezt ellendrizendd, numerikusan megoldjuk a rendezetlen
kvantum-Potts-lanc renormaldsi-csoport egyenleteit, és becslést adunk a mo-
dell ¢-t6l fiiggd dinamikai exponensére. Ezen értékek jé egyezésben dllnak mas
mddszerrel (stirtiségmatrix renormalasi csoporttal ) kapott megfelel$ becslésekkel,
ily médon a numerikus eredmények aldtamasztjdk az elméleti megfontoldsok
helyességét.

Ezutdn a rendezetlen XY- és a rendezetlen dimerizdlt XX-ldnc tanulma-
nyozasara tériink &t. Vizsgdlataink alapjat az atlagos mennyiségek—a ritka
domének skalazasi viselkedésén alapulé—ienomenologikus elmélete képezi, me-
lyet kiterjesztiink az XY~ és XX-modellekre. A fenti modellek és a véletlen boly-
ongas kozott talalt kapcsolat révén azonositjuk a ritka doméneket, mint olyan
tartomanyokat, melyekben a csatoldsok sorozata tulélé bolyongassal reprezen-
talhaté. Ezen elmélet segitségével meghatarozzuk a fenti modellek tombi- és
feliileti kritikus exponenseit. Ezeket azutan Gsszevetjiik az operator profilokra—
szabadfermion-reprezentacion alapuld szamitdssal—kapott numerikus eredmé-
nyeinkkel. Eredményeink szerint a kritikus nemdiagondlis rendparaméter-profilok
kovetik a konform elmélet dltal megjdésolt viselkedést, annak ellenére, hogy a
modell nem konform invarians. Mindezek mellett vizsgdljuk a dinamikai kor-
reldcickat. A kritikus dllapotban ezek dtlaganak logaritmikusan lasst cstkkenését
taldljuk, mig a korreldciés fliggvény eloszldsaban multi-skalazas figyelhetd meg.
FEzzel szemben a Griffiths-fazisban az dtlagos autokorrelacios fliggvény a tavolsig
valamely hatvanyaként cseng le, ahol a kitevo kapcsolatba hozhaté a dinamikai
exponenssel. Felhaszndlva, hogy a vizsgalt modellek alkalmas transzformaciéval,
két Ising-lanccé csatolhatdk szét, analitikus Osszefliggést adunk a dinamikai ex-
ponens szdmitasira.

Az értekezés utolsé fejezetében a kétdimenzids rendezetlen g-allapott Potts-
modellt tanulméanyozzuk. Ismert, hogy ezen modell tiszta véltozata g > 4 esetén
els6rendii fazisatalakuldst mutat, mely a rendezetlenség hatdsara folytonossd
valik. Korabbi, véges ¢g-ra kapott eredmények szerint a korreldciéshossz-exponens
g-tol alig fiigg, mig a magnesezettségi exponens ¢-fiiggést mutat, és a ¢ —» o0



hataresetben véges értékhez tart. Itt a fenti modellt kézvetlenil a ¢ — o
hatéresetben vizsgaljuk, a véletlen klaszter reprezentdcid segitségével. Ekkor
megmutathatd, hogy a termikus fluktudcick irrelevanssd véilnak, és a kritikus
viselkedést a rendezetlenség fluktudcioi szabjik meg donté mdédon, ami abban
nyilvanul meg, hogy a fizikai tulajdonsdgokat egyetlen dominans graf hatarozza
meg. Megmutatjuk, hogy ezen graf megtaldldsa egy—a grafok halmazin ér-
telmezett—globalis, nemkonvex koltségfiiggvény optimalizalasi probléméjaval
egyenértékli. Ezen optimalizalasi feladatot két numerikus mddszerrel, egy stan-
dard sztochasztikus optimalizacids eljarassal és egy kozelité kombinatorikus op-
timalizdcids médszerrel oldjuk meg. A domindns graf fraktaltulajdonsigainak
szamitasdval becslést adunk a Potts-modell magnesezettségi- és korreldcids-
hossz-exponensére, kiilonb6z6 mértékl rendezetlenség mellett. A kordbbi ex-
trapolativ becslésekkel 6sszhangban 4116, de anndl pontosabb eredményeink sze-
rint a fenti exponensek fiiggetlenek a rendezetlenség alakjatol.

Osszefoglalva, jelen értekezésben erdsen rendezetlen modellek kritikus pont-
beli- és Griffiths-fazisbeli tulajdonsigait tanulményoztuk. A specidlis model-
lekre kapott eredményeink kzott szdmos olyan taldlhatd, mely a véletlen mo-
dellek altaldnosabb érvényl vondsait tikrozi. fgy eredményeink, reményeink
szerint, hozzdjarulnak a rendezetlen, sok szabadsédgi foku rendszerek koorepativ
viselkedésének mélyebb megértéséhez. Mindamellett az értekezésben vazolt el-
emzéseink szdmos Uj kérdést vetnek fel. fgy példaul az alacsony dimenzids
modellek fent leirt jelenségei magasabb dimenzids, valamint a valésdgot pon-
tosabban tiikrézé modellekben javarészt tovabbra is feltaratlanok.



Disorder dominated singular behaviour in random
quantum and classical systems
Summary

The bulk of substances and processes in nature is often characterized by
certain degree of inhomogeneity: one might say, it is rather the rule than the
exception. The most frequently mentioned example is the almost always in-
evitable presence of impurities or other lattice defects in crystals. The theoret-
ical description of this kind of feature of real systems established the concept
of disorder, and started on its way the investigation of the—mnowadays wide-
spread—disordered models, which is gently developing to be an independent
discipline.

From a theoretical point of view those systems in which the characteristic
relaxation time associated to impurities is negligible to that of thermal degrees
of freedom, has to be treated separately. In the so called “quenched” disordered
models describing these systems, the thermal expectational value of a given
quantity is apparently depends on the particular realization of disorder. Some
quantities may be non-self-averaging, i.e. the typical and average values are
different. In this case one has to consider the whole distribution of the quantity
instead of the average value.

Among disordered models special attention was payed for models which ex-
hibit a phase transition, where the obvious question arises, what consequences
the introduction of disorder has (if it has at all) on the properties of the pure
(i.e. homogeneous) system. According to the experiences quenched disorder
has effects on the nature of phase transitions in varying degrees. It may lead
to the elimination of the transition by smearing out singularities. Or it may
cause the change of order of the transition: a first order transition can turn
to a continuous one. In case of a continuous transition (which is not “smeared
out” by randomuness), a basic question is, how universal properties, such as crit-
ical exponents are influenced by disorder. Here, for random coupling models a
general heuristic relevance-irrelevance criterion was formulated by Harris, which
relates the stability of pure system fixed point to the specific heat exponent of
the pure system.

Quantum phase transitions occurring at zero temperature differ from ther-
mally driven transitions in several respects. Here, there is no heat bath and
activated dynamics is replaced by quantum tunneling through energy barriers,
which leads to an entirely different mechanism of phase transition. The random
quantum critical behaviour is formed by the interplay between disorder and
quantum fluctuations instead of thermal ones.

A special class of low-dimensional disordered quantum models is known to
have an unconventional coarse-grained behaviour. By coarse-graining, most
systems flow toward a fixed point, where the ratio of local parameters in the
Hamiltonian remains finite. Contrary to this it turned out, that in these models,
the distribution of parameters becomes arbitrarily broad on a logarithmic scale
as the fixed point is approached. The ratio of parameters is typically infinite
or zero at the fixed point, and the system is said to be governed by an infinite-
randomness fived point. Broad distributions involve the lack of self-averaging
and average quantities are dominated by the extreme contribution of a vanishing
fraction of rare samples. This class of models comprises mainly quantum spin



chains and spin ladders.

Disorder influences however not only the critical behaviour. Griffiths and
McCoy pointed out in the random classical and quantum Ising model, respec-
tively, that there exists an extended region around the critical point, where
several physical quantities are singular. The origin of Griffiths phase, which has
no counterpart in pure systems, is the presence of such rare domains, which
are locally in the opposite phase. The so called Griffiths-McCoy singularities
are much more enhanced in quantum systems, where statics and dynamics are
inherently linked. Here, the fluctuations of disorder described above give rise
to a power-law decay of average temporal correlations, which is reminiscent of
criticality, while in the spatial direction there is short-range order. For this
reason Griffiths phase is termed as a line of “semicritical fixed points”. Accord-
ing to a phenomenological scaling theory the singular behaviour of quantities
studied so far, were reduced to a common physical ground, and the exponents
characterizing the singularities are all related to the dynamical exponent of the
system, which is a continuous function of the control parameter in the Griffiths
phase.

In the bulk of the thesis we deal with the Griffiths phase and the critical
behaviour of quantum spin chains, which is controlled by an infinite-randomness
fixed point. In the second part a classical model, the random-bond ¢-state Potts
model is studied in the large-¢ limit, where thermal fluctuations become irrele-
vant. A common feature of both problems, that the critical behaviour is strongly
dominated by fluctuations of disorder as opposed to quantum fluctuations (resp.
thermal fluctuations in the classical model).

In order to investigate the above problems, several different approaches have
been used. The quantum spin chains are studied by the help of free-fermion
representation in analytical and numerical way, and in the framework of a phe-
nomenological scaling theory. The properties of Griffiths phase are investigated
analytically and numerically by renormalization group transformation. The
problem of random-bond Potts model in the large-¢ limit is mapped onto an
optimization problem, which is solved by stochastic and combinatorial optimiza-
tion methods.

In Chapter 2 we shortly summerize the theory of critical phenomena in
disordered classical- and quantum systems, and give a general phenomenological
description of Griffiths phase.

In Chapter 3 previously known results on the random transverse-field Ising
chain are reviewed, including the free-fermion description of the model, the
relation with random walk, and the phenomenological scaling theory of rare
events.

In Chapter 4 we present our numerical and phenomenological results on the
Griffiths phase of random transverse-field Ising spin chain. We consider here
quantities, the singular behaviour of which is not trivially related to that of the
energy gap, such as the second energy gap, non-linear susceptibility, and energy-
density autocorrelation function. By using phenomenological scaling arguments
we relate the exponents describing the singular behaviour of the above quantities
to the dynamical exponent. In the free-fermion picture closed forms for these
quantities are derived, which are then analyzed numerically. The numerical
results support the validity of scaling considerations.

Subsequently we extend the Ma-Dasgupta-Hu type real-space renormaliza-
tion group scheme to the Griffiths phase, which is presented in Chapter 5. This



method was applied at the critical point of several quantum spin chains, where
it works asymptotical exactly, and generally believed to lose its asymptotical
exactness by leaving the vicinity of critical point. We give an analytic solution
for the flow equations of the random transverse-field Ising chain in the Griffiths
region, where we show that the procedure is asymptotically exact, and the dy-
namical exponent stays invariant during renormalization. By the help of this
an exact expression for the determination of dynamical exponent is given. On
the ground of phenomenological considerations we propose the above assertions
to be generally valid for quantum spin chains. In order to check this we solve
numerically the renormalization group flow equations of random quantum Potts
chain, and estimate the value of g-dependent dynamical exponents. Our results
are compatible with that of obtained by density-matrix renormalization group
calculations, supporting the validity of theoretical considerations.

Chapter 6. is devoted to the study of random XY- and random dimerized
XX chain. Our investigations rest on the phenomenological theory of average
quantities developed in Chapter 3, which relies on the scaling behaviour of rare
events. Establishing a relation with random walks, rare events are identified
as regions corresponding to surviving walks. By the help of this theory we
determine the complete set of bulk- and surface critical exponents. These are
then compared to results on operator-profiles, which are obtained by numerical
calculations based on the free-fermion technique. We find that critical order-
parameter profiles follow the conformal predictions, although the models under
investigation are not conformal invariant. Furthermore we determine the aver-
age behaviour and the distribution of dynamical correlations at criticality and
in the Griffiths phase. Average autocorrelations are found to decay logarith-
mically slowly at criticality, whereas they decay as a power-law in the Griffiths
phase with a power related to the dynamical exponent. Via decoupling the
models into two Ising chains, we give an analytical expression for the dynamical
exponent.

In Chapter 7 we turn to study the g-state random Potts model, where after
appropriate parameterization the ¢ — oo limit is sensible, and the ¢-dependent
magnetization exponent is known to converge to a finite value. Contrary to
previous finite-q calculations we perform here a direct investigation in the g — oo
limit by the help of random cluster representation of the model. We show that
in this limit thermal fluctuations becomes irrelevant, and critical behaviour is
determined by a single dominant graph in the geometric representation of the
model. To find this graph is equivalent to an optimization problem of a non-
convex cost-function defined on the set of graphs. We solve this problem by
a stochastic- and a combinatorial optimization method. Analyzing the fractal
properties of dominant graph we give a more accurate estimation for critical
exponents, than previously.

We have dealt in this thesis with singular properties of strongly disordered
models at criticality and in the Griffiths phase. Among our findings obtained
in special models, there are a number of results, which are supposed to reflect
more general properties of random systems. Thus the information extracted
from the above special models hopefully contributes to a better understanding
of the cooperative behaviour of random systems with many degrees of freedom.
Notwithstanding our analysis raise several new questions, such as the treatment
of phenomena studied in our low-dimensional models in higher dimensional or
in more realistic models.



