Chapter 1

Introduction

My dissertion contains the main results of my research activity car-
ried out during the time of my PhD studies at the University of Szeged.
It includes three papers of mine which have been published. These works
are related to the following two different fields of mathematics:

1- complete polynomial vector fields

2- geodesics on warped product manifolds.

In accordance with our papers, the dissertation is divided into three
main chapters:

1) In Chapter 2 we shall describe complete polynomial vector fields
on a finite-dimensional simplex S := (z1+z2+- -4z, = 1) with an
application to differential equations in genetical dynamic systems,

2) Chapter 3 deals with the complete polynomial vector fields on the
Euclidean unit ball B := (2% + ...+ 22 < 1),

3) Chapter 4 is devoted to the geometry of the central symmetric

warped product structures on IRéV x IR.

In Chapter 2 we are going to describe the complete polynomial vector
fields and their fixed points in a finite-dimensional simplex. We apply
the results to differential equations of genetical evolution models.
There are several well-known models in literature [4], [5], [2] on the
time evolution of a closed population consisting of IN different species

- with the whole population at time ¢ > 0 as the solution of a system

of ordinary differential equations Lvg(t) = Fj(vi(t),v2(t),...,rn(t))
(k = 1,2,...,N) where the functions F} are some polynomials of at

most 3-rd. degree. During a seminar on such models one has raised the
problem what are the strange consequences of the assumption that the
evolution has no starting point in time, in particular what can be stated

on non-changing distribution in that case. In this chapter we provide
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the complete algebraic description of all polynomial vector fields (with
arbitrary degrees), V(z) = (Fy(x), Fo(z), ..., Fy(x)) on RY which give
rise to solutions for the evolution equation defined for all time parame-
ters t € IR, and satisfying the natural rate conditions r1(t), r2(t), r3(t),

. ra(t) > 0; Zi\]:1 ri(t) = 1 whenever r1(0), r2(0), ..., rx(0) > 0
and % r,(0) = 1. On the basis of the explicit formulas obtained we
descrkig(le the structure of the set of zeros for such vector fields which

corresponded to the non-changing distribution.

In Chapter 3 we are going to describe the complete polynomial vector
fields in the unit ball B := (22 + 23 + --- 4+ 2%, < 1) of RY. This work
originates from a nice parametric formula due to L.L. Staché [3] for the
complete real polynomial vector fields on the unit disc IK of the space
C of complex numbers. He has shown that a real polynomial vector
field p: € — € is complete in IK iff p is a finite real linear combination
formed by the functions iz, vz — z2™2, (2 € €, m = 0,1,...) and
(1 — |2/*)Q where Q is any real polynomial from € to €. Our result in
this chapter establishes that p : RN — IRY is a complete polynomial
vector field in the unit ball B if and only if p(x) = R(z) — (R(z), x)x +
(1 — (z,z))Q(z) for some polynomials @, R : RN — IR™. This theorem
not only generalizes the result of [3] on IK, but it even simplifies it by
showing that the complete polynomial vector fields on the unit disc of
€ have the form [ip(2)z + q(2)(1 — |2]|?)] where p,q : € — IR are any

real polynomials.

In Chapter 4 we shall study the geometry of the central symmetric war-
ped product manifold structures on Ry x IR' where R} = R™\{0},
which correspond to the potential functions al|z||, @ > 0, and equip-
ped with the Riemannian scalar product (-,-) defined by the following
properties:

i) the projection onto IR™ along IR' of this Riemannian scalar (-,-) is

canonical Euclidean,



ii) IR' is orthogonal to IR” with respect to (-, -),

iii) the projection onto IR' along RY of (-,-) at (a,a) € RY x R is
the canonical one multiplied by U(|a|?), where U : Ry — IR, is
smooth.

Notice that these properties determine uniquely the scalar product
of the vectors (X,€), Y(n) € T(aya)(IRéV x IR') and it can be written in

the form

(X,€) - (Y,m) =(X,Y) + U(la*) - & - .
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Chapter 2

Complete polynomial vector fields in a simplex

Throughout the whole work RY := {(£1,...,&n) : &1, ..., En € R}
denotes the vector space of all real N-tuples. We reserve the notations
x1,...,2zyN for the standard coordinate functions zy : (&1,...,&n) — &k

on IR™. Also we reserve the notation S for the unit simplex
S = (x1+~-~+xN:1, Ti1,..., TN 20) =
={peR": z1(p)+---+aznp) =1, z1(p),...,zx(p) >0} .
Recall [6] that by a vector field on S we simply mean a function S —
IRY. A function ¢ : S — IR is said to be polynomial if it is the restric-

tion of some polynomial of the linear coordinate functions xq,...,,zxN:

for some finite system of coefficients ay,. x, € IR with k1,...,kny €

{0,1,...}) we can write @(p) = >, .o Qpy kT -2k (p € 9).
In accordance with this terminology, a vector field V on S is a poly-
nomial vector field if its components Vj := xp o V (that is V(p) =
(Vi(p), ..., Vn(p)) for p € S) are polynomial functions. It is elemen-
tary that given two polynomials P, = P, (z1,...,zy) : RY — R
(m = 1,2), their restrictions to S coincide if and only if the difference
P, — P, vanishes on the affine subspace Ag := (acl + .-ty = 1) ge-
nerated by S. We shall see later that a polynomial P = P(x1,...,2N)
vanishes on the affine subspace M := (’ylxl + -+ yNITN = 5) iff
P = (miz1 + -+ yven — 0)Q(x1,...,xzy) for some polynomial Q.
Thus polynomial vector fields on S admit several polynomial extensions

to IRY but any two such extensions differ only by a vector field of the

form (1 +---+ay —1)W.

Definition. A locally Lipschitzian (e.g. polynomial) vector field
V : RN — R is said to be complete in a (non-empty) subset K ¢ R™
if for any point p € K there is a (necessarily unique) curve Cp, : R — K

such that C,(0) = p and £C,(t) = V(Cp(t)) (t € R).
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Our purpose will be to describe the complete polynomial vector
fields on the simplex S and we apply the results to differential equations

of genetical evolutions models.

Well-known genetical models [4], [5], [2] of the time evolution of
a closed population consisting of N different species describe the rates
r1(t), ra(t),. .., rn(t) of the respective species within the whole popula-
tion at time t > 0 as the solution of a system of ordinary differential
equations dry(t)/dt = Fy(ri(t),...,rn(t), (k = 1,...,N) where the
functions Fj, are some polynomials of degree at most 3. During a se-
minar on such models held at the Bolyai Institute one has asked the
following question. What are the consequences of the assumption that
the evolution has no starting point in time, in particular what can be
stated on the non-changing distribution in that case.

In this chapter we provide the complete algebraic discription
of all polynomial vector fields (with arbitrary degrees) wv(z) =
(Fy(z), Fy(z), ..., Fyx(x)) on IRY, which give rise to solutions for all
the evolution equation defined for all time parameters ¢ € IR and sa-
tisfying the natural rate conditions vy (¢),...,vn(t) > 0, ij ri(t) =1,
whenever v1(0),...,vx(0) > 0 and ch\]ﬂ r,(0) = 1. Observe that the
vector fields v described above are complete polynomial vector fields of
third degree in the simplex. On the basis of the explicit formulas obta-
ined, we describe the structure of the set of zeros for such vector fields

(which correspond to the non-changing distributions).

Our main results are as follows.

2.2. Theorem. A polynomial vector field V : S — RY is complete in
S if and only if with the vector fields



where €; is the standard unit vector e; := (0,...,0, 1 ,0,...,0), we
have
N
V= Zpk(xb o IN)Z
k=1
for some polynomial functions Py, ..., Py : RY — IR.

2.3. Theorem. Given a complete polynomial vector field V of S, there
are polynomials 61,...,0n : RV ™1 — IR of degree less than that of V
such that the vector field

N-1

N—1
Z [5k Ti,...,TN-1) — Z xp0g(T1, ..., xN_1) €k

N-1
+ @1+ +ayo1— 1) Z we0e(T1,. .., TN_1)EN
=1

coincides with V' on S. The points of the zeros of V inside the fa-

cial subsimplices Sk == S N (z1,...,2x > 0 =2TKg41 = -+ = TN)
(K=1,...,N) can be described as
N-1
SxN (V=0 =50 @k(z1,...,an1) =0),
k=1

SkN(V=0)=Skg0N(i(z1,...,aN_1) ==

Figl. The fundamental vector fields Z1, Z5, Z3 in the case N = 3.
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Finally we turn back to our motivativation, the genetical time evo-
lution equation for the distribution of species within a closed population.

Namely in [7] we have the system

d N
prad :<; g(i)w; — g(k))l‘k+
(V) N N
+ 3wl i | > MG, G, 0,5 6, k) — wx
ij=1 =1
for describing the behaviour of the rates z1(t),...,zn(t) at time ¢

of the N species of the population. Here the terms g(k), M(i, 7, /)
and £(i,j,¢,k) are non-negative constants with Zévzl M(i,j,0) =

25:1 e(i,7,¢,k) = 1. Observe that this can be written as

d N
P Zg(k)Zk + W
k=1
with the vector fields
N
Zk::xk Za:j(ej—ek),
j=1
N N
W= w(i, j) Tz, [ZM(@',]', 0)e(i, j, b, k)—xk| ek,
i,j,k=1 =1

respectively. As a consequence of Theorems 2.1 and 2.2 we obtain the

following.

2.4. Theorem. Let N > 3. Then the time evolution of the population
can be retrospected up to any time t < 0 starting with any distribution
(z(0),...,zn(0)) € S if and only if the term W wvanishes on S, that is
if simply d/dt © = ijzl 9(k)Zk(x1,...,xN). In this case the set of the

stable distributions has the form

U SN (xy, =0form¢J,) where J, :={m: g(m) =1~} .
7€{g(1),.,g(N)}



2.5. Corollary. If g(1),...,9(IN) > 0 and the vector field (V) is comp-
lete in S then

PR
E;g(k)xk(t) >0

for any solution t — x(t) € S of the evolution equation dz/dt =V (x).

Proof of Theorem 2.1

As in the previous section, we keep fixed the notations eq,..., en,
r1,...,xn, S for the standard unit vectors, coordinate functionals and
unit simplex in RY, and V : RY — RY is an arbitrarily fixed poly-
nomial vector field. We write (u,v) := ch\]ﬂ zp(u)zk(v) for the usual
scalar product in RY.

According to [9, (2,2)], V' is complete in S if and only if
d
V(p) €Tp(S):={veR": 3¢c:R—-S5, ¢0)=p, %’tzoc(t) =uv}
for all p € S. By writing

N
_ 1 _
e::NkE_lek, up :=ex —€, Sp:=5N(xp=0) (k=1,...,N)

for the center, the vectors connecting the vertices with the center and

the maximal faces of S, it is elementary that
T,(S)={v: (v,e) =0} ifpeS\Unr_, Sk),
T,(5) = {v: (0,3 = (v.up) =0 (k€ K,)}
if p e Ufj:l S and K, :={k: p e Si}

for any non-empty subset K of {1,..., N}. Since the vector field V is

polynomial by assumption, it follows that
V is complete in S <=
(V(p),e)=0 (peS) and (V(p),um)=0 (p€ Sy, m=1,...,N).

Let us write

Lg:=(z1+--+ay=1), Ls,:=LsN(zm=0) (m=1,...,N)



for the hyperplane supporting S, and for the affine submanifolds gene-
rated by the faces S,,, respectively. Since e = uy + € and since poly-
nomials vanishing on a convex set vanish also on its supporting affine

submanifold, equivalently we can say

V' is complete in § <=

(V(p),e)=0 for pe Lg and (V(p), e,,,) =0 for pe Lg, (m=1,...,N).

If P;,...,Py:IRY — IR are polynomial functions then, with the vector
fields Zy := xy, Z;\le zj(ej —er) (k=1,...,N), we have

for any point p € IRY (not only for p € S). On the other hand, if p € S,
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then x,,(p

Pe(p)ze(p) D xj(p){ej — enrem) =

k=1 ji j#k
= > Ppzlp) D zi(p){ej — e em) =0.
k: k#m j: j#km

This means that the vector fields of the form V := 25:1 P, Z,, with ar-
bitrary polynomials Py, ..., Py are complete in S, moreover (V(p),e) =

0 for all p € RY.

To prove the remaining part of the theorem, we need the following

lemma.

2.6. Lemma. If P : RY — IR is a polynomial function and 0 # ¢ :
RY — R is an affine function* such that P(q) = 0 for the points q of
the hyperplane {qg € RN : ¢(q) = 0} then ¢ is a divisor of P in the
sense that P = ¢Q with some (unique) polynomial Q : RY — IR.

Proof. Trivially, any two hyperplanes are affine images of each other.
In particular there is a one-to-one affine (i.e linear + constant) map-
ping A : RY < RY such that {g € RY : ¢(p) = 0} = A({q €
RY : z,(q) = 0}). Then R := P o A is a polynomial function such
that R(q) = 0 for the points of the hyperplane {g € R : 1(¢q) = 0}.

. d . .
We can write R = Y, _ Opyoo ey @ - 2hN with a suitable fi-

.....

nite family of coefficients ay, . k.. By the Taylor formula, ag, . ky =

..........

k1t tkN
k k
83311 ---8:1:NN
9U1:~~~:£L'N:0

R vanishes for x1 = 0. This means that R = x1 Ry with the polyno-

R. 1t follows that ay, .y = 0 for k1 > 0, since

; . \d d k1—1_ ko kn
mial Ro = 1 _1D 5 kv—0Ti T3z . By the same argument

.....

* That is ¢ is the sum of a linear functional with a constant.
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applied for the polynomial function ¢ of degree d = 1 in place of R, we
see that ¢ o A = axy for some constant (polynomial of degree 0) « # 0.

That is ¢ = ax; o A~!. Therefore
-1 -1 -1 -1 1 -1
P=RoA " =[r1Ry)Jo A" =(x10A " )(Rpo A ):gb-(aRooA ).

Since the inverse of an affine mapping is affine as well, the function
Q= éRO o A~ is a polynomial which suits the statement of the lemma.

O

2.7. Corollary. A polynomial vector field V:RY = RY coincides
with V on S iff it has the formV =V + (z14- -+ zy — L)W with some
polynomial vector field W : RY — IRY.

Proof. Observe that D and V coincide on S iff they coincide on the
hyperplane Lg supporting S. We can write V= ch\]ﬂ f’kek resp. V =
Zgzl Py.e;. with some scalar valued polynomials Iﬁk resp. P and, by the
lemma, we have P, —P,=0on Lg iff P, — P, = (r1+-+zny —1)Qk
with some polynomial Q;, : RY — R (k=1,...,N), that is if V-V=
(x1 + -+ an — 1)W with the vector field W := Zgzl Qrek. O

Instead of the generic polynomial vector field V' complete in S,
it is more convenient to study another 1% coinciding with V' on S but
having additional properties. As in the proof of the previous corollary,
we decompose V as V = >, Ppe,. Recall that V(p) € T,(S) C {v :
(v,€) = 0} for the points p € S. In terms of the component functions
Py, this means that % Zgzl P, =0 thatis Py = =), kAN P, on S.
On the other hand, 1 +--- 4+ oxy = 0 that is axy = — >, gAN Ol S.

Introduce the vector field

~ N ~
V.= Z Pkek
k=1
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where

Py :=mp(x1,...,eN_1) :=
2:Pk(xl,.flig,...,l']\]_l,l—l'l—"'—QTN_1> (k<N),
N -1 N-1
Py i =7nn(z1,...,2N_1) := — Z P, = — Tk(Z1, .., TN_1)-
k=1 k=1

By its construction, V coincides with V on S, it is a polynomial of
the same degree as V but only in the variables xq,...,zxy_1 and it
has the property ch\]ﬂ f’k = 0 on the whole space R". The relations
Vip) = V(p) € T,(S) € {v: (v,ex) =0} forpe S (k=1,...,N)

mean
Py(p) =(V(p), ex) = 0
for peSpy=(zp =0, 11+ -+znxy=1, z1,...,25 > 0).
In terms of the polynomials 7, of N — 1 variables this can be stated as

mi(€1y .., €n—1) =0 whenever & =0 (k=1,...,N—1) and

N-1

- Z Wk(&l?"'?éN—l)[: 7TN(£17"'7£N—1>} =0
k=1
whenever & + -4+ &nv_1 = 1.

By the lemma (applied with N —1 instead of V), the first N—1 equations

are equivalent to

Wk(gla"wg]\ffl) = Skgk(gla“',g]\ffl) (k = 17"'7N_ 1)

with some polynomials gy, : R ™! — IR with degree less than the degree
of m; and V. Also by the lemma (with N — 1 instead of N), the last

equation can be interpreted as

N-1

— Z?Tk(fl, condnar) =N (€, Eno) =

=1
=[1—-(&+-+&v-1)]on(&r, ..., En—1)
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(5 * )

with some polynomial gx : RM 1! - R of degree less than that of V.
Thus

N-1

= Gonr, o bv) =1 = (G4 +Ev-n)]on (&, En),
Selon — ekl(§1s- - En—1) = on (&1, -, En 1)

k=1

By introducing the polynomials 0, := o — on (kK = 1,...,N — 1) of
N — 1 variables, we can reformulate the relationships (#x) as

T = &ok = Ep(0k +on)  (k=1,...,N —1),

T =(1-& —- —&n)on,

on = =101 — - —EN-10N—1

which is the same as

Wk(fl, sy £N71) =
N-1
= & [0k(&r, - En—1) = > &del(&rs . En1)| for k#N,
=1
N-1
=&+ FEn—1) Y &€, EN-1)
=1
wheredq, ..., y_1are arbitrary polynomials of the variables&q, ..., Env_1.

Summarizing the arguments, we have obtained the following result.

2.8. Proposition. Let V = Zgzl Prep be a wvector field where

Pi,...,PN : RY — R are polynomials of the coordinate functions
Z1,...,xN. Then V is complete in the simplex S := (x1 + -+ -+ xny =
1,21,...,xn > 0) if and only if there exist polynomials é1,...,0n—1 of
N — 1 variables and degree less than that of V' such that the vector fi-
eld V = Zgzl Tk(x1,...,2N_1)ek, where the polynomials 7y, are given
by (x % *) in terms of 61,...,0n—_1, coincides with V' on the hyperplane

Lsg:=(x1+ - +zny=1).
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On the basis of the proposition we can finish the proof of Theorem
2.1 as follows. Let V' be a polynomial vector field complete in S. By
the proposition, we can find a vector field V of the form (*) coinciding
with V on S such that d1,...,0n—; : RY™! — IR are polynomials. It
suffices to show that the vector field

N—1
Z 0x1, .. vxn_1)Zk(T1, ..., xN) =
k=1
N—1 N
= 6(m1,...,acN,1)Zxkxg(ek —ey)
k=1 (=1

coincides with V on S. Consider any point p € S and let & := zx(p)
(k=1,...,N). Since {y =1—& — -+ — &N, it is straightforward to
check that indeed

N N-1 N-1
Vp § [O(Ers o Enm1) = D EedelEr s Evm) |ent
k=1 £=1

N-1
+ (& 4+ v — 1) Zféé (&1,-. ., &n—1)en+
=1
N-1

+ Z (155 EN—1) ka&(ek —er)=0.0
=1

k=1
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Proof of Theorem 2.2

According to Proposition 3.3, we can take a vector field V of
the form () coinciding with V on S where 6;,...,0y : RY™! — R
are polynomials of degree less than that of V. Consider a point

p = (&,...,&n) € S. Necessarily éy = 1 -6 — - —&n_1 > 0
and &1,...,&ny-1 > 0. We have V(p) = 0 iff

N-1
& |0k(&ry - Enm1)— > &be(&rs- . €n—1)| =0
=1
(h=1,... N—1).

Assume these equations hold with &q,...,&y >0, that is p€ Sy. Then

01(61,.. - &n—1) = - =6on-1(&1y - éN—1) =
N—1
= §e60(E1y -+, EN—1)-
=1
However, by writing ¢ for the common value of the §x(&1,...,&En—-1), we
have § ="' &0, that is Exd=(1-37",'¢,)d=0 and § = 0.
Assume finally that K < N and &1,...,8gk > 0=Ex41 = = &N,

that is p € Sk. Then V(p) = 0 iff

(&1, €K,0,...,0) =

= (k=1,...,K).
:2@5@(51,-..,51(,0,...,0)
=1
Again the 0x(&1,...,€K,0,...,0) assume a common value §. However,

in this case 221 & =1 and hence § may be arbitrary for V(p) =0. O

Proof of Theorem 2.3

First we check that ch\]ﬂ (vazl g(i)z; — g(k))zrer = ch\]ﬂ g(k)Zy,

on S. Indeed, given any index m, from the fact that Zivzl r; =1on S,
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it follows

k;l N
= glk) (x> _wilei —ex),em) =
k=1 i=1

N
gk)zrzi(ei em) — Y g(k)wrwier, em) =
=

.
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Since, in general, (real-)linear combinations of complete vector fields
are complete vector fields (see e.g. [1]), and since the Zj are comp-
lete in S, the field V = S g(k)Z, — W is complete in S iff W
is complete in S. As we have seen, the polynomial vector field W
is complete in S iff <I/V, ch\]ﬂ ek> = 0 and (W(xy1,...,2N),ex) = 0
whenever r;, = 0 for some index k and vazl x; = 1. It is well
known that, by its construction, <V(x1,...,:1:N),Zf\i1 ei> = 0 and
hence <W(w1,...,xN),Z£V:1 e,-> = 0 if vazl x; even in the case if V
is not complete in S. Fix any index k. By the definition W :=
ZWN@:1 Zf\,jjzl w(i, j)T;x; [Zévzl M(i, g, 0)e(i, j, £,m) — a:m] em Wwe have
(W(p),ex) = 0 for all points p = (&1,...,&n) with & = 0 and
S & =1 if and only if

N N
El w(i, )&, ; 1 M (i, j,0)e(i, j, €, k) =0 if Ziii & =1
s -
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By elementary properties of bilinear forms, this latter relation holds iff

N
w(i, j) > M(i,j,0)e(i,j, 0,k) =0  ifi,j #k.
/=1

Since N > 3, the field W has this property for all indices k =1,..., N
iff all these terms vanish and hence W = 0. Thus V is complete in S
iff W =0 that is V = Zgzl g(k)Z, on S. In this case, the equation
V(&1,...,&n) = 0 with (§1,...,6n) € S means

along with the conditions &1 +---4+&y = 1 and &, ...,&x > 0. Consider
a point (§1,...,¢n) € S and write J := {j : & > 0}. Then & =0
for k ¢ J and hence } ; ;& = 1 and V(&,....6n) = 0 iff g(k) =
Zf\il §ig(i) = >_,ec;7€9(j) for the indices k& € J. By writing v :=
> jes§9(j) for the common value of the g(k) with (k € J), we see that
V(Sla s 7£N) = O for any gla .- 7£N) S Smﬂ]ej('rj > O)QHzQJ(xZ = 0)
This completes the proof. O
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Chapter 3

Complete polynomial vector
fields of the Euclidean ball

In this chapter we will describe the complete polynomial vector
fields in the unit ball of a finite dimensional inner product space which
we identify with IRY.

Our work arises from an idea of a nice result of L.L. Staché [4] in
2001 where he characterized the complete real polynomial vector fields
in the (two-dimensional) unit disc IK of the complex plane €. We will
show that our result not only generalizes the results of [4] on IK, but it

even simplifies them.

3.1. Definition. Given any subset K in IRY the set of real n tuples
and a mapping v : RY — ]RN, we say that v is a complete vector field
in K if for every point ky € K there exists a curve z : IR — K such that
z(0) = ko and dflit) = v(z(t)) for all t € R.

In Chapter 2 we represented complete polynomial vector fields on
a simplex as polynomial combinations of some finite family of complete
vector fields of third degree. This idea motivates the formulation of our

main result in this section.

First let us reformulate Staché’s theorem [4] in terms of polyno-
mial combinations instead of linear combinations asserting (in complex
notations, when identifying IR? with € in the usual manner) that a
polynomial vector field v : € — € is complete in the unit disc K if and
only if it is a finite IR-linear combination of the vector fields from the

family
Fi={iz, pz" —p2""2, (1-12P)Q
n=0,1,...; p=1,i; Q € Polr(C,C)} .
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Actually we have the simpler form for the real linear span (the family

of all finite linear combinations) of F as
Spanp F = {P iz + Q(1 — [2]*) :
P € Pol(C,R), Q € Pol(C,T)} .

3.2. Remark. Recall that a mapping v : RY — RY is said to be a
polynomial vector field if v(z) = (p1(z),...,pn(x)); z € RY for some
polynomials py,...,p, : RY — IR, of N variables (that is each p; is a

finite linear combination of functions of the form :1;71”1 .. .:1:7]7\}” with non-
negative integers m,; where z; : (£1,&2,...,&n) — &, denotes the j-th

canonical coordinate function of IR™).

3.3. Definition. By writing ((&1,&2,...,&N), (M1, M2, ..., N)) =
Zf\il &;m; for the inner product in RY , it is easy to see that a polynomial
(or even smooth) vector field is complete in the ball B := ((z,z) < 1) if
and only if it is complete in the sphere S := ((z,z) = 1). Furthermore,
v is complete in § if and only if it is orthogonal to the radius vector on
S, i.e. if (v(z),x) =0 for z € S.

We know from Chapter 2 that if F: R — IR is a polynomial and
p : RY — IR be any polynomial such that p(M) =0 and M C RY,
then there is a polynomial ¢ : RY — IR such that P = ¢ - F, when
F(x) = ¢1(x)-d2(x) - - - dn(x), and the ¢; are linearly independent affine
functions. Now we will prove the case when f(z) = 1 — (z,x) which is

important to formulate our main result.

3.4. Lemma. Let f : RY — R be a polynomial such that f(x) =0
for x € S where S := ((z,x) = 1). Then there ezists a polynomial
Q:RY = IR, such that f(z) = (1 — (z,2))Q(x).

Proof. Let g : B — IR be the function on the unit ball B := ({x,z) < 1),

defined by g(x) = (1j<(§,):c>)'

The function g is analytic, since it is the quotient of two polynomi-

als. Thus g(z) = >, gx(x) where g are k-homogeneous polynomials
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on IRY. We have f(4e) = 0 (e,e) = 1, where e is the unit vector. So
given e € RY with (e,e) = 1, there exists a polynomial P, : IR — IR,
of degree < deg f — 2 such that (1 — t?)P.(t) = f(te). If follows

that, for every fixed unit vector e € RY, g(te) = ({952)) = P.(t) =
265({_2 ar(e)th, with suitable constants ag(e), ..., Qqegf—2(¢) € R.

Hence we deduce that gx(te) = 0 for k > degf — 2 and for all t € IR
and unit vectors e. Then g = Zdeg f — 2k—09k is a polynomial. This

completes the proof.

Lemmas with such a character seem to be very important in the
theory of complete polynomial vector fields of domains defined by poly-
nomial inequalities. In the complex case, due to the algebraic closedness
of the field €, there are similar results but the proofs cannot be imitated

in the real case, even in the case of a ball.

3.5. Theorem. Let P : RY — IRY be a polynomial mapping. Then P
is a complete polynomial vector field in the sphere S := ({(x,z) = 1) if
and only if

[P(z) = R(z) — (R(z), z)z + (1 — (2, 2))Q(z)]
for some polynomial mappings R, Q) : RY — RY.

Proof. Suppose that P(x) = R(x) — (R(z), z)z+ (1 —(x,z))Q(x) where
R, Q:IRY — IR" are polynomials. Then

<R($) - (R(x),x)x,x) = <R(SL‘),$> - <R($),SL‘><$,$> =0

on S. Since (z,z) =1 for x € S and also (1 — (z,2))Q(x) =0 on S.
Theorefore (P(z),x) =0 for x € S that P is tangent to S.

Conversely, suppose that the polynomial vector field P : RN —
IRY, is complete in S. Let P(z) = P(z) — (P(z),z)x. Since P is
tangent to S, we have P(z) L x (i.e. (P(x),z) = 0. This implies that
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P(z) = P(z) or P(z) — P(z) =0 on S. By Lemma 3.4, P(z) — P(z) =
(1 — (z,2))Q(z) for some Q € P the (R™,IR"). Theorefore

P(z) = P(z) + (1 = (z,2))Q(z) = P(z) — (P(z), z)z + (1 — (z,7))Q(x).
This completes the proof. O

3.6. Corollary. Let Vi : x — e — (eg,z)x where k = 1,2,3,..., N.
N

Then every complete polynomial vector field on the sphere S := (Z r?=
i=1

1) coincides with some vector field of the form V (z) = Zi\]:1 pr(z)Vi(x)
when restricted to S where p1,...,p, : IR"™ — IR are appropriate poly-

nomials.

Proof. Let z = > z;e; be fixed, and let a, : RY — RY be the
linear mapping y — y — (x,y)x. Consider the operation £, : y —

(1 —(z,z))y"(z,y)z where yT stands for the adjoint of y. Observe that

gz (Ba(y)) = Ba(y) — (@, Buly))x =
=1 - (z,2))y+ (z,y)r — (2, (1 - 2z,2))y + (z,y)z)r =
== (@, 2)y + (z,y)x — (z,y)x + (z, 2)(z, y)z—
= (z,y){z, w)r = (1 — (z,2))y.

Therefore Vi, (z) = a.(er) and Q¥ (z) = 3.(Q, (7)) = Zivzl gier and
az(Q" (7)) = ax(02(Q(2)) = (1 — (z,2))Q(x),
N N
(D dgier) =Y dhaa(er) = Y ai(@)Vi(a).
k=1 k=1

Then, by writing v (z) := (V(z),ex) (k=1,...,N) for the component
functions of the vector field V', we have V(x) := > v (x)er and

R(z) — (2, R(x))z = au(R(2)) = au (Y ve(z)ex) =
k=1

= ka(x)a(ek) = ka(ﬂf)Vk(ﬂf)
k=1
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By this we get

(1= (2,))Qx) = ) _ g (x)ui(x).

Thus with the scalar valued polynomials pg (x) := vi(z) + g (x) we have

N N
V()= w(@)Vil(z)+ > gi(x)Vi(z) =
k=1

SRRy

Figure 2. The vector fields Vi : x — e — (ex, x)x, (k=1,2,3) on S

in N =3 dimensions.

3.7. Corollary The complete polynomial vector fields on S are exactly

the resrictrictions of the vector fields of the form
V iz zA(z)

where A is any polynomial mapping RY — Mat(_)(N, R) into the space

af all antisymmetric N x N-matrices.
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Proof. Given any polynomial mapping A : RY — Mat(f)(N, R), we

have

(wA(2), 2) = (z,2A(x)") = (z,2(—A(2))) =
= —(zA(z),x

Thus necessarily (zA(z),z) = 0 that is zA(x) L 2 on the whole RY. In
particular eA(e) L e for all unit vectors e which means that = — zA(x)
is a complete polynomial vector field of second degree in the unit sphere
S= (x4 +ax =1).

Conversely, let V' be any complete polynomial vector field on .S. We
know that V(z) = Zk 1 Vk(2) Vi () for some scalar-valued polynomials
Vg RY — IR with the fundamental vector fields

N
Vi(x) = e, — (eg, x)x = e — xg inei .

=1

Since the function 1 — (2% + - -- 4+ x%;) vanishes on S, the vector field

Vizg):=V(z)—[1— (2> +-+2%) ka
k=1

coincides with V' on the sphere S. However, with the standard matrices

E;; with 1 at the (i, k)-entry and 0 elsewhere, we can write

~ N al -
V(z) = ka(x) [ek — T inez] [1— (274 +2z}) ZU’“ x)ey =
k;]1 N i= k=1
ST AR
k;,1 2;1
= ka(x) ZJU [Ezk - EkZ] -
k=1 i=1
—r S (wn(@) — awvi@))[Ba — Fyd] =
1<i<k<N

where A(z) := 3 i cpen (T30 (T) — 240 (@) [Eir — Ei] is a polynomial
mapping from IRY into Mat{™) (N, R). O
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3.8. Remark. There is an interesting link between the complete poly-
nomial vector fields of the unit simplex P := (z1+- - -+xn, T1,..., TN >
0) and those of the sphere S := (z3+- - -+%, = 1). Namely, the mapping

T:(z1,...,2n5) — (23,...,2%)

maps the positive part Sy := SN (x1,...,zx > 0) of the sphere onto
P in a one-to-one manner. Given any smooth complete vector field
W:P—RY W)= (w(z),...,wx(z))) of the simplex P, its pull-
back to Sy is

d
T#V : S, 3 (z1,...,xn) — p T YT (z) +7W(T())) =
7=0
d
=g (et g (et ek )
1
= i(xflwl(x%,...,ac?v),...,m&le(x%,...,m?v)) .

In particular the operation T# establishes the following relationship

between the fundamental complete polynomial vector fields Zx(z) :=

Tk Zf\il x;(e;—ey) of Pof Pand Vi (x) := ex,—(ex, x)x of S, respectively:
T#Zp(z) = FapVi(z)  (k=1,...,N).

Therefore all complete polynomial vector fields of P are pulled back to

complete polynomial vector fields of S;.. Namely we have

Figure 3. The vector fields Vi (z) in N =3 dimensions.
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Chapter 4

Geodesics on a central symmetric

warped product manifold

Let U : R4+ — R4 be a given smooth function. We consider the
manifold IR{ x R', where IR{ = IR™\{0} is equipped with a Riemannian
scalar product (-,-) satisfying the following conditions:

i) The projection onto IRy along IR! of the Riemannian scalar product

(-,-) is the canonical Euclidean one.

ii) IR! is orthogonal to IR{ with respect to (-, -).
iii) The projection onto IR' along IR{ of (-,-) at (a,p) € IR§ x R' is

the canonical one multiplied by the function U.

These properties determine uniquely the scalar product of the tangent

vectors (X, &), (Y,n) € T(q,8) (Rg x ]Rl) and it can written in the form

g(a,ﬁ)((Xa 6)7 (Y7 77)) = <X7 Y> +&-m- U(‘a|2)'

where (X,Y) =>"" | X, -Y;. For the sake of simplicity we shall write

<(X7 6)7 (Y7 77)>* = g(a,ﬁ)((Xa f)(Y, 77))

This simplification will not lead to any confusion since we know every
time which point the tangent vector belongs to. We will regard  in
(a, B) like the (n + 1)-th coordinate.

One of our basic results is formulated in the following theorem.

4.1. Theorem. The Levi-Civita connection of the Riemannian

metric (1) introduced above has the following Christoffel symbols

‘0 if i k<n

0 if 4,j<n, k=n+1

0 if wk<n, j=n+1
i 0 if jk<m, i=n+1
Fig@B) =\ Zo,wez)/2 if k<nm ij=n+1’

0i(U(2))/2U(z) if j,k=n+1

0,(U(=))/20(2) if ik—=n+1

L0 if i k=n+1



where 1 < i,j,k <n+1, z= (a,B) and Os is the derivative with respect

to the s-th coordinate.

Proof. The Levi-Civita connection is torsion free thus we have
Ff’ ;= F;?’i (the symmetry of Christoffel symbols). The other defining

equation for this connection is

(T7 T)[g(a,ﬁ)((Xv 5)7 (Ya 77))] =
= <V(T,T) (Xv 5)7 (Ya 77))* + <(X7 f), V(T,T)(Y7 77))*

where (7, 7) is a tangent vector. Let {E;}I" ; be an orthonormal base

in the tangent space, and

(E(i,0) if 1<i<n
0; =
(0,1) if i=n+1.

We obtain that

n+1
0i9(a,) (05 0) = Y _(L7;5((a, 8)) - (95, Op)s + T ((a, ) - (9, 05).),

s=1

where 1 < i, k < n+ 1. The simple way in which this system can be
solved is presented in the pattern below.

In the first column we have written the delimited cases according to
values of indices which we were just investigating. In the second column
are the equations corresponding to the indices in the first column. The
solutions of the respective equations can be found in the third column.
The solutions of the equations in the third and fourth rows are obtained

as a solution of a system of linear (for the I'-s) equations.

CASE EQUATION SOLUTION
j=k=n+1 oU(Z)=2-TpHL, - U(2) Tril =505
i=k=n+lj<n F?,ZL -U(Z2) = _F%+1,n+1 FgL—l—l,n—l—l = 8i(12(z)
k=n+1j<n Pt uUz)=-1i,, P =0
i=n+ljk<n D1 = —Thiin I =0

gk < I, =T, Iy, =0
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These solutions show the statements in the theorem. O

4.2. Corollary. The system of differential equations of the geode-
s1c8 18
B =h/U(Z)
ij = a;h°U'(Z2)/U(Z) 1<j<n
where h is a suitable constant, Z = {(a, 3), and (a(s), 3(s)) is the geodesic

: n
whose coordinates are {a;}_; and (3.

Proof. The general differential equation for geodesics is

n+1
Zj + Z Ts- 21T (2) =0,
s,t=1
where z(s) = (1(8),...,2n+1(8)) is geodesic. In our case we get the
following
5L AN 0iU(2))
2 =0
ﬁ + ﬁizzlal QU(Z) )
" o —0i(U(Z) :
i+ (3 g =0 (1< <),

where (a(a), 5(s)) = (a1(s),az(s),...,an(s), B(s)) is a geodesic. Since
S AT = Loy

we obtain from the first equation that

d

U(Z)- B+ (U(2)- 5 =0,

which implies the existence of a constant h satisfying
BU(Z) = h.

This and a simple calculation give from our second differential equ-

ation that )
. h=U"(Z) .
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Notation:

The function U(Z) is called the deformation function of the met-
ric. The corresponding potential function of the mechanical system is
v(ay,az) = ﬁ(lz) where z = a? + a3. There are two interesting cases

where the trajectories are closed.
i) v(ar,a2) = k(ai + a3);

—k
2 2 °
aj+as

ii) v(ay, ag) =

According to [1, p.42] we deal with first one where U(Z) = m/z where
m is constant. The second case with U(Z) = —ky/z is called Kep-
ler case. Our Riemannian manifold described by (1) is a special case
of the so-called warped product Riemannian space, with warping func-
tion  — |lz[|72 : R} — IR'. Consider an arbitrary warping function
¢ : IR{ — IR it is easy to see that the orthogonal projection onto IRy
of geodesics of the warped product manifold IRjX,IR are exactly the
trajectories of the mechanical systems on IR{ with potential function
cp(z)~! with arbitrary constant. The geometry of the trajectories of
mechanical systems with Central symmetric potential function is pre-
sented in Arnold’s book Chapter 2 page 41. In particular there has
been proved that all bounded trajectories of mechanical system with
central symmetric potential function are closed if and only if the poten-
tial has the form —k||z|~t, (k > 0) or al|z||?, (¢ > 0). We will study
the geometry of central symmetric warped product manifold which cor-
responds to potential function al|z||?, (a > 0) first and also geometry of

Kepler —kl||z| ! (k > 0),

4.3. Theorem Let (x(s),&(s)) be a geodesic in Ry x R" with

respect to the Riemannian metric (1). We denote its initial values at

s =0 by x(0) = xq, £(0) = &, %X(0) = to, £(0) = 79. Then one has the

following possibilities:

a) If 7o = 0 then the geodesic (x(s), £(s)) is contained in the line

x(s) = tos + xo, £(s) = &o; this geodesic is complete except in
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the case if & = 0 and the vectors to and xo are collinear.
b) If 7o > 0 then the projection of the geodesic onto Ry is an

ellipse with centre 0. Its equation has the shape

x(s) = cos(y/Tol[%o[| ™" 5)x0 + sin(y/Tol|x0 | ~"5) /7ol %o to-

The corresponding geodesic is complete except in the case if
the vectors to and xq are collinear and the projected ellipse is
degenerated to a segment with the midpoint O.

c) If 79 < 0 then the projection of the geodesic onto R{ is a
hyperbola with center 0. Its equation has the shape

x(s) = cos h(y/Tol|xo0]| " 8)x0 + sin h(yv/Tollxol| ™" s) v/Tollxol[to-

If the vectors ty and xq are collinear then the projected hyper-
bola is degenerated to a half line. The corresponding geodesic

1s complete.

Proof. Let {e;,...,e,} be an orthonormal basis in the vector
space IR" satisfying xo = req, tg = cosye; +sin~vye, and let ey be a unit
vector of IR. In the corresponding coordinate system {zg,x1,..., o},
defined by x = z1e1 + ...+ x,e, and xg = &, from Theorems 4.1 and
4.2 the Riemannian metric tensor g;; in Theorem 4.1 and Corollary 4.2

has the following components:

Iu :5)\/.1,7 gxo = gox :07 goo = ||X||727 ()\,,u: 17"'7”)

at the point (x,£). An easy calculation gives that the non-vanishing
coefficients F;k in the equation #* + > F;kack =0, (i,j,k=0,...,n) of
geodesics can be expressed by

x|
8.1‘)\

18||X||

T = Il P52, T =19, =~ S
I

It follows that the equation of a geodesic (x(s),&(s)) is of the form

fL"A(S) + HX(S)H_4:E)\(S)€2(S> =0, ()‘ =1,..., n)7
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E(s) = 2lIx(s)[72 ) 2" (s)d" (s)é(s) = 0,

where the dot denotes the derivation d%. These equations can be written

in the form

(s) = ) | %(0)2(), £() = 2Apx() | A g

The last equation is equivalent to the expression

£(s) = cl[x(s)|”

with an arbitrary ¢ = constant. Substituting this into the preceding
equations one has %X(s) + ¢x(s) = 0.

If £(0) = 70 = 0 then ¢ = 0, the function &(s) = & is constant and
the vector valued function x(s) = tgs + xq is linear. It means that the
corresponding geodesic is a line. If the initial values satisfy & = 0 and
the vectors tg and xq are collinear then the geodesic should contain the
origin (0,0 which does not belong to the manifold. Hence in this case

the corresponding geodesic is non-complete.

Now, we assume 7y # 0. In this case we have 19 = c[|x(0)]|* = ¢||xo]|?
and
(s) + =g x(s) = 0
x(s) + ——=x(s) = 0.
%0l

If 79 > 0 then the general solution of this equation has the following

form
x(s) = cos(y/To||%o|| " 's)a + sin(y/7o||x0 " 's)b,
where a and b are constant vectors satisfying xo = a and tg =

V7ollxol|"tb. Clearly, if the initial values xo and to are linearly in-
dependent then the solution curve is an ellipse with centre O which is
contained in the 2-dimensional subspace W of IR™ spanned by the initial
values xg and ty. Hence the corresponding geodesic is complete.

If the initial values xy and t( are linearly dependent then the solution

ellipse with centre 0 is degenerated to a segment containing 0. But the
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origin 0 does not belong to our manifold and hence the corresponding
geodesic is non-complete.

If 79 < 0 then the general solution of this equation has the following

form
x(s) = cos h(y/To]|xo| ™" s)a + sin h(y/To|[xol| " s)b,
where a and b are constant vectors satisfying xo = a and tg =

VTollxol|7tb. If xo and to are linearly independent then the solution
curve is a connected component of a hyperbola with centre 0 which is
contained in the subspace W spanned by the initial values xo and tg.
Hence the corresponding geodesic is complete.
If the vectors xg and t( are linearly dependent then the solution hyper-
bola with centre 0 is degenerated to a repeated half line fully contained
in the manifold. Hence the corresponding geodesic is complete. O
Now we deal with the second case to give the geometry of Kepler
Motions.
In this case the determining function of the metric is U(z) = ¢v/z.

We have the following description of the geodesics.

4.4. Theorem. Let (a(s),a(s)) be a geodesic in R x R with
respect to the Riemannian metric (1). We denote its initial values at
s =0 by ap = a(0), ag = a(0), T = a(0), 7 = &(0). Let Eq, Es € Ry
be orthogonal unit vectors in W which are spanned by ag and T. Choose

FE., Es satisfying the following
Gozal'El, T:Tl'E1+T2'E2.

If T # 0 we get the following description of geodesics:
The geodesics do not leave the space spanned by W and R*. Furt-
hermore, if we denote the projection of T to R' along Ry by T3, there

are three possibilities:

i) if (T, 7)|2 =T +TF +c-|al|-T? <0, then the projection of

the geodesic onto W 1is an ellipse,

31



i) if |T,7)]2 =T +T5 +c-|al| - T§ = 0, then the projection of
the geodesic onto W is a parabola,

iii) if |T,7)|?2 = T¢ +T5 +c-|al| - T§ > 0, then the projection of
the geodesic onto W 1is a hyperbola.

The equation of the projected geodesic in polar-coordinate is

2 |aj]*- T3

—c T3 - |af]? + v - cos(p —w)’

P(vy) =

where

v=sgn(c) = /4 T2 T} adl* + (2- T3 - |af]2 + ¢ T3 - [a )2,

2-Ty-aY- sgn(c))
U

w = arc sin<

and p = |al, cosp = (a, Fr)/lal.
Proof. Let {E,..., E,} be an orthonormal base in IR" such that
CLQZCL?'EL T:tl'E1+T2~E2

and E,, 11 be a unit vector in IR'. From Corollary 4.2 we get the following
differential equation for the geoedesic (a(s), a(s)):

h2

.mzo (1<j<n)

(5) aj — a;

h

77
clai|

(6) G =

where h = 7-c-|ag|. In our coordinate system a;(0) = a;(0) for3 < j <n
hence by the Picard-Lindel6f theorem we conclude, that a;(0) = 0. So
it is enough to investigate the case if n = 2.

Let p(s) = |a(s)| and take the polar coordinate system in IRZ, i.e.
ai(s) = p(s) - cos(p(s)), az(s) = p(s) - sin(ip(s)).
i From the differential equations (5) we have

(5") 2-c-p®-(P-cosp—2-p-p-sing —p-p*-cosp—p-@-sing) = h? - cosp,
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5) )

2.c-p? - (Psing—2-p-p-cosp—p-@-sing —p-@-cosp) =h?-singp.

Take the linear combination of these equations by (sin g, — cos @)

and (cos p, sin ) to obtain the following ones:

2-c-p*-(F—p-p?) =h2

After multiplying the first one by p, a simple integration gives

p =g,
where ¢ is a suitable constant. On substituting this into the second

equation and dividing it by p?, multiplying it by p we can integrate it,
that yields

2 2
. q h
(8) C'pg—f—c-}?—k—— !

p_

)
where ¢’ is constant.
Using the equations (7), (8) it is easy to get, that

dp _ . p \/p2~q’—p~h2—c-q2
dp ¢ c ’

On subsituting p = 1/p into this equation it appears in the following
integrable form

h2
¢
hence

—2.a; - ¢>
9 = ,
©) Ple) h2 —cos(kF @) -\/4-a1-¢* ¢ +h?

where k is constant given by the integration of the previous equation.

It must be noted here, that ¢ is zero if and only if ¢ - p? = 0 <

¢ = 0. i.e. ¢ is constant. Hence the geodesic is a straight line passing

through the origin and the equation (9) is not true. Easy calculation
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(10)

shows, that ¢ = Ty /|ag| and ¢(0) = 0. Thus ¢ = 0 if and only if 75 = 0,
i.e. the projection of geodesic onto IR(2) along IR! is straight line if and

only if its starting speed T is parallel to ag. In this case (8) shows that
p=+/q"/c— h?/cp. This equation together with (6) gives

dp a h

dp p \/c-p2~q’—c-p-h2'

There are three possibilities now:

i) if ¢- ¢’ > 0, then

" h h? 2 2 /
op)=q + ,-1n(p— -+ Vp2—h -p/q>,
c-q 2-q
ii) if ¢- ¢’ < 0, then
) an h . (4-p-q/2—2-q’-h2>
= ———— -arcsin
iii) if c- ¢ = 0 <= ¢ = 0. Since c-p?> = —h?/p, ¢ has to be

negative, and so dp/dyp = \/—c - p, which leads to

(o) = (a-v/—c+ q“)2/4.

The most interesting case is the second one, where p is bounded

Wtk h ).Wewill

4
/2

4q/2 ’ 2q7 4q

and the geodesic vibrates in the interval (5—;, —

not deal with these cases further.

From the border conditions one can show by a straightforward but

tedious caclulation that

)= — Lol
u—v-cos(p — 00)
where
uw=—7%"lag| - £,
v=—sgn(c)\[T? - T} + G+ Jaol - §)%
w = arcsin(%).
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(11)

It is well know, that this equation defines conic sections. To deter-

mine its shape we have to investigate its eccentricity

o T T+ (T3 472 |- 5)?

€= 72 ay|- &

A quick calculation shows, that

4T22 2 2 2
c2.a2.7-2_'(T1 +T5 + ¢ |an| - T3),
1

2 =1+

which implies in an easy way, that € more than, less than or equal to 1
according to the sign of |(T,7)|2 = T2 + T3 + c - |ag| - T3, which was to
be proved. m

4.5. Corollary. If ¢ > 0, then all the projections of geodesics are
hyperbolas which have two asymptotic straight lines through the origin
with the direction w — arccos(1/¢) and w + arccos(1/¢). The nearest
point of these asymptotic lines to the origin is (w,|ag| - T3 /(u — v)).

Thus the origin is not contained inside the hyperbola.

Proof. If ¢ > 0, then |(T,7)|? > 0 and so € > 1. Thus the equation

of the projection of geodesics is

|ag| - T3

-cos(p —w) — (—u)

Y

p(p) = =

where —v, —u > 0 and ¢ = =2 > 1. It is clear that p(y) is minimal if
cos(yp—w) is maximal. This proves the second statement of the Corollary.

On the other hand the denominator can not be zero, and p(¢p)
tends to infinite if ¢ tends to w — arc cos(u/v) or w + arc cos(u/v). This

completes the proof.

4.6. Corollary. The projection of a geodesic is a circle if and only
if c <0, T is perpendicular to ag and |T|* + |(T,7)|? = 0. The radius

of this circle is 2 - |T|?/(—c- 72). Its center is the origin.
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Proof. The projection is a circle if and only if » = 0. Since ¢ # 0,
this gives

T, T, =0 and T22+g-7'2-]a0\:0.

4.7. Corollary. If the projection of a geodesic is an ellipse, and
for its eccentricity € # 0, then its long axis has direction w and length
2-lao|- T3 u 2-lao| T3 u

Py It has two focal points: the origin and (w, W) Its

short axis has length 2 - |ag| - T%.

Proof. It is clear that the nearest and the most far point of the
projection are on the long axis. We can get these points and their
distances from the origin, when cos(¢ — w) = 1. The length of the
long axis is the sum of their distances. The difference of these distances
gives the distance of second focal points from the origin. If x is the half

of short axis, the Pythagoras theorem gives

lag| - T3 - u _ <\a0|2-T24-v2 x2)%
w2 — u2

The solution of this equation completes the proof. O

4.8. Corollary. If the projection of the geodesic is a parabola, then
it is open in direction w. Its nearest point is (w + 7, —T%/(c-7?)) and

its focal point is the origin.

Proof. This corollary can be easily obtained on substituting v =

e -u = u into (10). O

4.9. Corollary. If the projection of the geodesic is a hyperbola and
c < 0, then 1its focal point is the origin. It has two asymptotic straight

lines with direction
w+ arccos(1/e)(1/e) and w — arccos(1/e).

Proof. The proof of our first corollary shows the way in which we

can get this one. O

36



4.10. Theorem. If 7 > (<)0 then « is strictly increasing (decre-
asing) and it depends on p = |a| according to the following differential
equation

do sgnsin(p — w) - |ag| - T2
dp \/P2(v? —u?) + 2]ao|T2 -u-p — |aol? - TZ

where we have used the notations of our first theorem.

Proof. On investigating (7) at the startpoint, we get ¢ = T - |ag|.

From (10) we conclude

v - sin(p — w) = sgnsin(p — w) - \/p2(v2 —u2) 4+ 2|ag|T§ -u-p —|ag|? - Ty

Let a(t) = a(p(¢(t))). The theorem will be implied by (6), (7), (10) in

the following way:

lao da da dp dp
Tl = — = — s — . — .
NPT dp
dao —p-v-sin(p —w) q
- — 2 p_2.p
dt laol - T p
d 2(02 —u2) + 2lanlT2 v -p— 2. 74
Z—a~sgnsin(go—w)-\/p (U u)—|— \a0| 2 " uU-p ‘Cl0| 2
dp T2

The monotonicity of « follows from (6) directly, since

sgn<C ~h]a\ > =sgn7.[]

4.11. Corollary. If the projection of the geodesic is an ellipse,

then
_c~a(2)-7'22_ lag| -v . VIT|? + 72 B
pla) = |2 5 - sin _ const ),
T, 7 (T, 7)I3 7+ |ao| - sgn(sin(p — w))

where const is such a number, that p(a) = |ag|.

Proof. Since the projection is an ellipse, v2 — u? < 0. We can

rewrite (12) in the form

1

do Ty -7 -ao| - sgn(sin(y —w)) <|a0\2 Ty - v? (- lao| 'T22'u)2)§
dp u? — v? (u? —v?2)? u? — v? '
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The integration of this formula implies the Corollary. O

4.12. Corollary. If the projection of the geodesic is a parabola,
then

pla) = ——- (o — @) + |ag].

Proof. In this case, v? = u? thus (12) appears in the orm

da sgnsin(p —w) - lag| - 7
dp \/2-lag|-u-p— |ag|?-TZ

On integrating this equation we get the corollary. O

Proof. Since v? > u?, we have from (12) that

da Ty - 7 - |ag| - sgn(sin(p — w))
d_ o 2.74.42 T2 5
P 1)2 — u2 . <—‘C(LZ‘27€22)2 + (p + |(2)02‘,Tfpu)2> ’

The integration gives « like a function of p, from which the corollary

follows. O

4.13. Remark. All the above give the result, that we would be
able to write down the geodesics completely in the cylindrical coordinate

system (p, ¢, a) if we choose « for the parameter.
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ABSTRACT

The dissertion contains the main results of three papers of mine con-

cerning complete polynomial vector fields with an application to diffe-
rential equations in genetical dynamic systems and geodesics on warped
product manifolds, respectively.
In Chapter 2 we describe the complete polynomial vector fields and
their fixed points in a finite-dimensional simplex. As main result we get
the following. A polynomial vector field V : S — IRY is complete in
T :=(x1+---+xy) if and only if with the vector fields

Zy; :=xk2xj(ej—ek) (k=1,...,N)

. . ~ =

where e; is the standard unit vector e; := (0,...,0, 1 ,0,...,0), we
have

N

V = ZPk(xl,. . .,:L‘N)Z]~€

k=1
for some polynomial functions P, ..., Py : RY — IR. Given a comp-
lete polynomial vector field V' of T, there are polynomials d1,...,dn :

RY! — IR of degree less than that of V such that the vector field

N-1

N—1
Z [5k Ti,...,TN-1) — Z xp0g(x1, ..., xN_1) €k

N-1
+(901+---+fo1 - 1 Z 1‘6515 901,---,90N71)€N
/=1

coincides with V on T'. The points of the zeros of V inside the fa-
cial subsimplices Sk = SN (x1,...,2x > 0 =xg41 = -+ = xTN)
(K=1,...,N) can be described as

N-—-1

SxN (V=0 =50 @kz1,...,an1) =0),
k=1

SKQ(VZO):SKﬂ(51(1;1,...,:1:]\]_1):-..:
= 5K(x1,...,acN,1)) (K< N)
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We apply the results to differential equations of genetical evolution mo-
dels to answer the question what are the strange consequences of the
assumption that the evolution has no starting point in time, in particu-
lar what can be stated on non-changing distributions of populations in
that case. Several well-known models in literature on the time evolution
of a closed population consisting of N different species - with the whole
population at time ¢ > 0 as the solution of a system of ordinary diffe-
rential equations Lu(t) = Fi(vi(t),v2(t),...,on(t)) (k =1,2,...,N)
where the functions F}, are some polynomials of at most 3-rd. degree
and we have (vy(t),v2(t),...,un(t)) € T for all time ¢ € IR. As a con-
sequence of our description, if N > 3 then the time evolution of the
population can be retrospected up to any time ¢ < 0 starting with any
distribution (z(0),...,zn(0)) € S if and only if the term W vanishes on
S, that is if simply d/dt = = Zgzl 9(k)Zk(x1,...,zN). In this case the

set of the stable distributions has the form

U SN (xy =0formé¢gJ,) where J, :={m: g(m) =1~} .
7€{g(1),.,g(N)}

If g(1),...,9(N) > 0 and the vector field (**) is complete in S then

d N
o > g(k)a(t) > 0

k=1
for any solution ¢ +— z(t) € S of the evolution equation dz/dt = V().

In Chapter 3 we describe the complete polynomial vector fields in
the unit sphere S := (27 + 23 4+ --- + 2% = 1) of RY. We get the
following. With the vector fields Vi, : x — e — (eg, z)x (k=1,..., N),
every complete polynomial vector field on S coincides with some vector
field of the form V(x) = Zgzl pr(z)Vi(x) when restricted to S where
P1,...,pn : IR"™ — IR are appropriate polynomials. Also the complete
polynomial vector fields on S are exactly the resrictrictions of the vector
fields of the form

Vi:xw— zA(x)
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where A is any polynomial mapping RY — Mat (™) (N, IR) into the space
af all antisymmetric N x N-matrices. This work originates from a nice
parametric formula due to L.L. Staché for the complete real polynomial
vector fields on the unit disc IK of the space € of complex numbers. He
has shown that a real polynomial vector field p : € — € is complete
in IK iff p is a finite real linear combination formed by the functions
iz, 2" —zzm*2 (z € €, m = 0,1,...) and (1 — |2|*)Q where Q is
any real polynomial from € to €. Our result in this chapter not only
generalizes the 2-dimensional result of Stachd, but it even simplifies it
by showing that the complete polynomial vector fields on the unit disc
of € have the form [ip(2)z + q(2)(1 — |2|?)] where p,q: € — IR are any
real polynomials.

Notice that there is an interesting link between the complete polyno-
mial vector fields of the unit simplex P := (z1+- - -+xn, 1,...,2n > 0)

and those of the sphere S := (22 + - - - + 2% = 1). Namely, the mapping
T:(x,...,2N5)— (22,...,2%)

maps the positive part Sy := SN (x1,...,zx > 0) of the sphere onto
P in a one-to-one manner. Given any smooth complete vector field
W:P - RY W)= (w(z),...,wy(z))) of the simplex P, its pull-
back to Sy is

TRV S5 (wr,eaon) = o TN (T () +7W(T (@) =
7=0
d
—— (@@ +rwn(ad, R ek e (el 23] )=
7=0
1 - J—
= _(1'1 1w1(x]_7 ,xN),. . .,le’u)N(x%,. 7$N>)

2

In particular the operation T# establishes the following relationship
between the fundamental complete polynomial vector fields Zy(z) :=

Tp vazl x;(e;—ey) of P of Pand Vi (x) := ep—(ex, x)x of S, respectively:

T#Zp(z) = Loy Vi(x)  (k=1,...,N).
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Therefore all complete polynomial vector fields of P are pulled back to

complete polynomial vector fields of S;.. Namely we have

N
T# <ch\]:1pk ) Z%:L‘kpk xl,,x?\])Vk(IL‘)

k=1

In Chapter 4 we study the geometry of the central symmetric warped

product manifold structures on IRY” x IR' where RY = IRV \{0}, which

correspond to the potential functions a||z||, @ > 0, and equipped with

the Riemannian scalar product (-, -) defined by the following properties:

i) the projection onto IRY along IR' of this Riemannian scalar (-,-) is
canonical Euclidean,

ii) IR! is orthogonal to IRY with respect to (-, -),

iii) the projection onto IR' along RY of (-,-) at (a,a) € RY x R is
the canonical one multiplied by U(|a|?), where U : Ry — IRy is
smooth.

According to our basic result, the Levi-Civita connection of the
natural Riemannian metric has the following Christoffel symbols

if 4,5,k<n

if q,j<n k=n+l

if i,k<n,j=n+1

k _ if jjk<n,i=n+1
V@B =) Zauw(ay2 it k<n, ij=n+1’

0;(U(2))/2U(z) if jk=n+1
0;(U(2)/2U(z) if i,k=n+1
L0 i i k=n+1

where 1 < 4,5,k < n+1, z = (a,8) and 05 is the derivative with
respect to the s-th coordinate. The system of differential equation of

the geodesics is

B=h/U(Z)
iy = a;h?U'(Z2)/U(Z) 1<j<n

where h is a suitable constant, Z = (a,3), and (a(s), 8(s)) is the geo-

desic whose coordinates are {a;}7_; and 3. Hence we get the following
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description of geodesics. Given a geodesic (x(s),£(s)) in Ry x R' with

respect to the natural Riemannian metric with initial values x(0) = %,

£(0) = &, %(0) = to, £(0) = 19 at s = 0, we have the following possibi-

lities:

2)

If 79 = 0 then the geodesic (x(s), £(s)) is contained in the line
x(s) = tos + xo, £(s) = &o; this geodesic is complete except in
the case if g = 0 and the vectors ty and x( are collinear.

If 7o > 0 then the projection of the geodesic onto IRy is an

ellipse with centre 0. Its equation has the shape

x(s) = cos(y/To||xol| " s)x0 + sin(y/To||xol| " s) /7o | %0 || to-

The corresponding geodesic is complete except in the case if
the vectors ty and xg are collinear and the projected ellipse is
degenerated to a segment with the midpoint 0.

If 79 < 0 then the projection of the geodesic onto IRy is a
hyperbola with center 0. Its equation has the shape

x(s) = cos h(y/Tol|x0]| ™" 8)x0 + sin h(yv/Tollxol| " s) /Tollxol[to-

If the vectors tg and x( are collinear then the projected hyper-
bola is degenerated to a half line. The corresponding geodesic

is complete.
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KIVONAT

A disszertacié harom publikaciém eredményeit tartalmazza, ezek
egyrészt a teljes polinomialis vektormezokrol, illetve azok genetikai di-
namikus rendszerekbeli alkalmazésairdl szélnak, valamint torzitott szor-
zatsokasagok geodetikusaival foglalkoznak.

A 2. fejezetben leirjuk a végesdimenzids szimplexek teljes polino-
midlis vektormezoit és ezek fixpontjait. A f6 eredményiink a kovetkezd.
AV : S — R" polinomidlis vektormezé akkor és csak akkor teljes a

T :=(x1 +---+ x,) halmazban, ha

V=

WE

Pk(acl,. . .,l'N)Zk
k=1

alakban el6allithatdk, ahol P, ..., Py : RY - R polinomfiiggvények,
N
Zy, :=xk2xj(ej—ek) (k=1,...,N)
j=1

J
~ =~
ése; = (0,...,0, 1 ,0,...,0) szokasos egységvektorok. Adott T-nek
V' teljes polinomidlis vektormezdje, 1éteznek V-nél alacsonyabb foku

61,...,0n : RV "1 = IR polinomok oly médon, hogy a

N-1 N-1
V= Z T [5k(ac1, Ce iy IN—1) — Z xp0p(z1, ..., xN_1)|€R+
k=1 £=1
N—1
+ (961 +---t+rN_1— 1) Z 1365@(901, . ->xN71)€N
=1

vektormezok egybeesnek V-vel T-n. V zérushelyei a lapok Sk :=5N
(1,...,2x > 0=zg41=---=zn) (K=1,...,N) részszimplexein beliil
leirhatdak az alabbi alakban:

N-—-1

SxN (V=0 =50 ] @kz1,...,an1) =0),
k=1

SKQ(VZO):SKﬂ(51(1;1,...,:1:]\]_1):-..:
= 5K(x1,...,acN,1)) (K< N)
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Az eredményeinket felhasznaljuk a genetikus evoliciés modellek dif-
ferencidlegyenleteinek teriiletén. Megvalaszoljuk azt a kérdést, hogy mi-
lyen kiilonleges kovetkezényei vannak annak a ténynek, hogy az evolicié-
nak nincs idobeli kezd6épontja. Részletesebben, hogy mit lehet mondani
ebben az esetben a populacio eloszldsanak valtozatlansagardl. Az iro-
dalomban t6bb jol ismert modell 1étezik az N kiilonb6zo fajbol all6 zart
populacié idébeli alakulasanak lefrasara, ahol a ¢ > 0 idépillanatban a
teljes populdciot a Ly (t) = Fi(vi(t),v2(t), ..., ra(t) (k=1,2,...,N)
kozonséges differencidlegyenlet megoldasfiiggvénye irja le. Itt az Fj
fiiggvények legfeljebb harmadfokd polinomok, a (vi(t),...,vn(t)) € T
vektorok pedig T-beliek minden ¢ € IR id6épontban. A leirasunk kovet-
kezménye, hogy az N > 3 esetben a populdcié id6 szerinti alakulasa
akkor és csak akkor vezethet6 vissza barmely ¢ < 0 idépontra barmely
(21(0),...,2n(0)) € S eloszlads esetén, ha a W tag eltiinik S-en, azaz,
egyszeriien ha d/dt x = Zivzl 9(k)Zk(x1,...,zN). Ebben az esetben a

stabil eloszlasok halmaza

U SN (xy, =0form¢gJ,) where J, :={m: g(m) =1~} .
ve{g(1),...9(N)}
alaku.

Ha g(1),...,9(N) > 0 és a (*x) vektormezd teljes S-ben, akkor

fennall a dz/dt = V(z) evoliciés egyenlet minden ¢ — z(t) € S megol-

déséara.

A 3. fejezetben az R™-beli S := (z3 + 23 +--- + 2% = 1)
egységgdmb teljes polinomidlis vektormezoit irjuk le. A kovetkezé ered-
ményt kapjuk. A minden S-beli teljes polinomidlis vektormez6 mege-
gyezik egy V(x) = ch\]ﬂ pr(z)Vi(x) alakd vektormez6 S-re vett meg-
szoritdsaval, ahol Vi : ¢ — e — (eg,x)x (k= 1,..., N) vektormez$ és

P1,---,Pn : IR" — IR megfelel polinomok. Mas széval, az S-beli teljes
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polinomialis vektormezSk pontosan a V : z +— xA(x) alaki vektormezék
megszoritasai, ahol A tetszoleges polinomidlis RN - M at(_)(N ,IR) le-
képezés az N x N-es antiszimmetrikus matrixok terébe. Ez a munka
Staché Laszlonak a komplex szamok IK egységkorén értelmezett teljes
valés polinomidlis vektormezoket megado elegans paraméteres formulé-
jabodl ered. Staché megmutatta, hogy a valés polinomidlis p : € — C
vektormez6 akkor és csak akkor teljes K-n ha p az aldbbi fiiggvények
véges valos linedris kombinécidja: iz, yz2m—2z2""2, (z € C,m =0,1,...)
valamint (1 — [2|?)Q, ahol Q : € — € tetsz6leges valés polinom. Ezen
fejezetlink eredménye nem csak Stacho tételét altalanositja, de le is egy-
szerlsiti azt, amikor megmutatja, hogy C egység korlemezének teljes po-
linomidlis vektormezéi [ip(2)z+q(2)(1—|z|?)] alaktiak, ahol p,q : € — IR
tetszoleges valés polinomok.

Megjegyezziik, hogy érdekes kapcsolat all fenn a P := (x1 + -+ +
TN, T1,...,2N > 0) egységszimplex, valamint az S := (2% + - + 2% =

1) gomb teljes polinomidlis vektormez6i kozott. Nevezetesen, a
T:(z1,...,¢n5) — (23,...,2%)

leképezés a gomb S; := SN (z1,...,xx > 0) pozitiv részét 1-1 értelmii
modon megfelelteti a P-vel. Adott a P szimplex tetszéleges W : P —
RY (W(z) = (wi(z),...,wx(z))) sima teljes vektormezbje, az Sy-ra

vett pullback-je

d
T#V :S. 3 (z1,...,28) — e T (T(z)+TW(T())) =
7=0
d
=%T:0([x%+Tw1<x%,...,x?v)]”%...,[x?vwwzv(x%,...,m?v)]l”):
1
= i(a:l_lwl(x%,...,:1:?\,),...,x&le(a;%,...,x%])) .

Specidlisan, a 77 miivelet az aldbbi kapcsolatot létesiti a P-beli
Zi(x) == xg, Zf\il x;(e; — ex) és az S-beli Vi(x) := ey, — (eg, x)x vektor-

mezdk kozott:
T#Zp(z) = Loy Vi(x)  (k=1,...,N).
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Tehat P barmely teljes polinomidlis vektormezéje visszahtizhaté S, egy

teljes polinomidlis vektormezdjére. Nevezetesen,

N
T# (ij:ﬂ?k ) Z%:L‘kpk xl,,x?\[)Vk(IL‘)
k=1

A 4. fejezetben az ]R(])V x IR'-on értelmezett kozéppontosan szim-
metrikus torzitott szorzatsokasagok geometridjat tanulmanyozzuk, ahol
RY = RM\{0}, amely az alz||, @ > 0 potencialfiiggvényeknek felel
meg, és amelyen az aldbbi médon bevezethetjiikk a (.,.) Riemann-féle
skalarszorzatot:

i) ezen skalarszorzat R' mentén IR -re vett projekciéja kanonikusan
euklideszi,
ii) IR' mer6leges RN -re (.,.) szerint,
it) (.,.) (a,@) € RY xIR! pontbeli, RY mentén IR'-re vett projekciéja

a kanonikus skaldrszorzat U (|«|?)-szerese, ahol U : IR — IR, sima

fiiggvény.

A {6 eredményiink szerint, a természetes Riemann-metrika Levi-
Civita konnexidjanak Christoffel-szimbdlumai az aldabbiak:
if 4,7,k<n
if i,j<n, k=n+1
if ,k<n, j=n+1
i@ B) =0~ 5 ()2 - Zinz; i
(z) if jk=n+1

)/2U
)/2U(2) if i,k=n+1
if i k=n+1

ahol 1 < 4,5,k <n+1, 2z = (a, ) és s az s-dik koordinata szerinti

derivalt. A geodetikus differencidlegyenlet-rendszere
B =h/U(Z)

ij = a;h?U'(Z)/U(Z) 1<j<n



ahol h megfelelé konstans, Z = («, ), és (a(s), 5(s)) az a geodetikus,

melynek koordinétdi {a;}7_; és 8. Tehat a geodetikusok kévetkezd lei-

rasat kapjuk. Adott az természetes Riemann-metrika szerinti IRéV xR'-

beli (x(s),&(s)) geodetikus az x(0) = xg, £(0) = &, x(0) = to, £(0) = 79
s = 0-beli kezdeti értékekkel. Ekkor a kovetkezd lehetdségeink vannak:

a)

Ha 79 = 0, akkor az (x(s),&(s)) geodetikust tartalmazza az
x(s) = tos + xo, £(s) = & egyenes. Ez a geodetikus teljes,
kivéve ha & = 0 és a tg, xo vektorok kollinearisak.

Ha 79 > 0, akkor a geodetikus ]Rév -re vett vetiilete 0 kozép-

pont ellipszis, melynek egyenlete

x(s) = cos(v/To||xol| " s)x0 + sin(y/To||xol| " s) /7o | %0 || to-

alaki. A megfelel6 geodetikus teljes, kivéve azt az esetet, ami-
kor a tg, xg vektorok kollinearisak és a vetiileti ellipszis 0 ko-
zéppontu szakassza fajul el.

Ha 79 < 0, akkor a geodetikus ]R(])V -re vett vetiilete 0 kozép-
pontu hiperbola. Ennek egyenlete

x(s) = cos h(y/To||xol =" s)x0 + sin A(v/To[[%ol| =" 5)v/To %ol to.

alaki. Ha a tg, x¢ vektorok kollinearisak, akkor a vetileti

hiperbola félegyenessé fajul. A megfelel6 geodetikus teljes.
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