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BEVEZETES

Egy .f(’m) szamelméleti fuggvény - egy, a természeftes
szémok halmazén értelmezett fuggvény edditiv, he

(a) L) = f(m) + f(n)

teljestl minden (v 1/ = 1 =re, ahol " & 1 természetes szémok,
(m ) pedig ez v 6s W legnagyobb kizds osztéjét jelsli.

Az [ fuggvény teljesen additiv, ha (o) minden természetes szém~
Pm 'Q'Mo

Egy 9 (n) szémelméleti fuggvény multipliketiv, he
() %(vmn) = 9(%/\)&}(1/\)
teljestl (1w, 11)= 1 =re, () teljesen multiplikativ, ha ({-) minden
fermészetes szémpdrra teljestl. Az elébbiekban feltesszik, hogy egy
g (n) multipliketiv fuggvény semmilyen 1\ =re sem nulla,

Ebben a dolgozetban ez additiv fuggvények és a logeritmus

fuggvény kepcsoletével fogunk foglelkozni, Léini fogjuk, hogy egy
additiv fUggvény nem viselkedhet tul szabdlyosen sem lokdlis, sem

aszimpiotikus szempontbél, csak ha lényegében logaritmus figgvény.

A téma felvetése ERDOS PAL [ 1] =16l szérmazik,
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ELOKESZITES

A bizanyitésok sorén szUkséglnk lesz néhény, a szémelmélet
mdés fejezeteibdl ismert eredményre, tovébbé az egyszerlbb irGsméd
kedvéért egy gyakran hasznélt fogelomra,

Definicié: Legyen (1) és k(1) tetszésszerinti, minden elég nagy
fermészetes szdmra értelmezett fuggvény, tovebbs k(1) > 0
minden olig nigy 1 “voi Alar menipik, higy L (n) = O (Je(n)
(Jx () egyent§ nagyords l<(x)), ha L (1)/k(x) korldtosh

Legyen @ tovébbiekban (o primszém. Ekkorérvényes ez aldbbi

UsszefUggéss

() S= e byxs 001
pex P

Bizonyitéss A bizonyits 1| vizsgdlatin elepul.

8

S @ i o
(C_,{) n /: // )/0 # C&L\é*l eyo"—‘Z_ (~>F£{]’ i 2/{
p<n k=4

(0 X egész részét jelli) (c-) Ervényességét kinnyen beldthatjuk,
hiszen ez 7/, 2,.. .,/ sorozethél [in /)0 | szém oszthaté > =vel,
[n/)o%] oszthaté o~ =tel stb. Ezeket az @ikeket Ssszegezve megkep=
juk » kitevéjét 11 primdényezés elééllindséban,

Becsuljuk meg @
(’(‘9 n v/ — nh /{rg n
kulsnbséget,
W, 4
/[,9 it = {/)\L /L%ﬁ = 2/ /0? X ol =
=0 :

— (M-i—/”/ﬁ}('m{»/i) —n+1) — (2 /09 Z ~ 2): M/o? n + ﬁ[h).



Mésrészt
/(%, ¥ = ‘5_2 [&?/k > [/&?x Adx =

= f&?n -+ 4.
Azez

fﬁc}hl = n /(QC*O‘I;VL + 0(1«)
Ezt felhasznélva &s (C.1) et logaritmélve kepjuk

>}0 /(/0‘}}02__ /—P—]-V\)&*%V\f é(n).

Ezt masképp ive
02} S [3]eap s S bgr [ ntog 0,

Bacsﬂl[%mmstum&hgoh

(e 5 .
S Z .Vv:(-my\:\/f) = C\(M)
m =7
mivel =3 3 Y
Lo | =

(I, és K, alkelmes konstansok) Ezt alkelmazva (C.2)=ben,
a

(C,Zﬂ') Z ['%]}0%,0 = V\i&g}n Jrﬁ'(h)

< ,
seszefUggést kepjuk, M!volmk\donY—ro ¥ [x] <41, érvényes @

V\fm?}v\ ¢ O < ‘_&'?F’<
(c.5) a1y b

< M&r? il P -jo\w + Un)

<n

-



egyenlétienség, (c) bizonyitésthoz elegendS tehét a
Z [[f% pPo= U(K)
P<n

egyenldséget megmutani, (€ /1) -t alkalmezva 7/ =re €5 m =re
S{{ 5] - LR T ey

=7 wm lﬂoa?w g ol w\/?w}‘m ¥ 0(2m) = 0(n)

edédik, Minden X =re [2x|-20x120 , tovébbé ha wm<p=2m,
ador [ E2]-2[2]-1 . gy

P <7

(et) 2= ,l}r% p = 0(m),

A

v

&

Homost /.  <n< 2" , okkoe (¢-6) folhuszndidetvel

——

Z I‘M}}p <= Z /0-9,9 - i—( P ’ /&%,):

P<n el 4 ,Zk-4<i"é2
_ fi O (2%71) = 0™) = 0(2n) = O ().

Ezt behelyettesitve (( - 5)=be

el . ol :
n > -———}f—-—-: VL/@»%VLJF ﬁ(w)
péEn

adédik, 6s ezzel (. ) =t igezoltuk,

Jelsljsn q egy tefszésszerinti primszémhatvinyt, és legyen
p ez @ primszém, emelynek o hatvénya. (c)&s (c.3) felhasznélém
sdval knnyen adédik a
(A) X Ciﬁc%ﬁ = /09 n o+ J4)

CLS\'\

A
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vsszefuggés. Ervényes tovibbé o
S fpr s dgr 5 lge.
(@) X < pLox r <X <y
:j/"&? t\)(' - [0‘9 X+ 0(4): [O‘? o + 0'(/()

és a

0 5 e sye o0
X<q/5¢\x'

egyenldség,

Bizonyitds nélkul kizsljuk ez ismert
e, o 5 iw___h log x + 07(4)
9 5 <X 9
9, = n(mod R)
relativ prim szémok szémét jelsli)
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MONOTON ADDITIV FUGGVENYEK

ERDOs PAL [ koztlte o kivetkez$ térelt:
1.1, tétel: Ha /(1) valés értékt monoton additiv szémelméleti
fuggvény, akkor {(1)=Clogn. (itt és @ tovébbiakban ¢ alkelmes
konstenst jelsl,)

A tételre az || ~ben adott bizonyités kicsit komplikélt,
J.LAMBEK és L. MOSER (2] egyszertl bizonyitdssal kizdlte a kivet
kezét:
1e2, tétels Ha %}(m)wl& értéki monoton multipliketiv fuggvény,
alkor o (n) ="

Mivel mint léini fogjuk - ez 1.1, & 1.2, tétel ekvivalens
éllirdsokat fejez ki, ezéri @ [2] =es cikk bizonyitésa lényegében az
1.1, tételre adott bizonyits egyszerUsitését jelenti, Szellemes bizo-
nyitds telélhaté ez 1.1, tételre még [ | =ben (235-238 o,) is.

Eldsztr az 1.1, és az 1.2, tétel ekvivalencidjér mutetjvk meg.

He egy ¢ (“) multipliketiv fuggwény monoton, ekkor szUkség-
képpen pozitiv, ugyenis 9<'n):9(4) g(~)  miatt 9(1)= 1 Ha
valamely 1 -re %(t)< 0 lenne, akkor csak monoton cstkkend lehet~
ne, és igy g(t+’i)<0 fovébbé (1 (t+ 1)) < O lenne, mésrészt Q/f(u,/)):
:9{%)9/’c+4)>0 , ami ellentmondésra vezeime. Tehdt dcz(h) valében
pozitiv és emiatt ,ﬁo% L}(h) monoton és additiv, ezért elkaelmazhaté ré
az 1.1, tétel, igy ez 1.1, tételbdl kiévetkezik ex 1.2, tétel. A for-
ditott irényu kivetkezés nyilvanvelé,
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Térjunk 6t ez 1.2, tétel LAMBEK - MOSER féle bizonyi-
tésira,

Mivel egy monoton multipliketiv fUggvény szUkségképpen
pozitiv, feltehetS, hogy L}(V\) monoton ndvekvd = kilsnben a mo=
noton nidvekvd szintén multipliketiv _,{/9(,1) fuggvényre alkelmazhat-

lUk Gz ’l‘“’o

Legyen a> 3 &  természetes szém, tovabbé
& . K :
Kt:}:a"L es ff‘\‘o“?__o"/
<=0
ekkor ‘
9 (ke)> g (k1) = 9(=) 9(Ky_,)2...2(q@);

hasonléan ¢
9(8e) < (3@) .
~ 44

-
Ha "2>/& ¢ <1 £ & , azez "F</0?y\-<”r+4
42

akkor K, <V tovabbé S,NQ >aT 287> 7T 20,
mivel & > 3 .lgy

v =4 _/CLO& n —2
C}(m) > %(%Tq)? (9,(&)) Z@(‘q))

bs 4 y\+2

9(“){ %(SHQ)S(Q(«)) <(?<o\)) p

u‘ﬂhﬂnﬂm A,LEZS.C-N
2 / 4" B

)™ T 2 ) g B A

Mivel n > o, |- tetszésszerinti volt

A Y
(?('&))E‘;—Z > (%(M)W



it a é ( felcserélhetdk, igy
4 4.
ban (%(b)/ oyt ) ha el >2

(/(a)}
,{/[0

ezért 1 > 2 -ra (9(1/\)) U konstans - jelsljuk ezt
@L "”’o
Elckor

) ¢ log n -

%(n): e = n

n= 2 =re pedig

C

?(2):%(6)/9(2):66/36—2 , geu/’

A fenti gondolatmenet nyilvénveléan elkalmes oz 1.1. tétel
kszvetlen bizonyitéséra is.

Az 1.1, tétel egy dltulénositésthoz bevezetink egy fogalmat.
1.3, definicié: Legyen v, < ¢, <.. . Ha

J(Q/ :/é&.w\ 7l ///

n >0

> 4

€’_(

J<h

n —=> oo u_‘-ém
ekkor ezt mondjuk, hogy /() e U,, L, - . sorozat alsé,
J)  pedig felsé strusége. Ha _ni?_q)z Hu) = c/”?cf)/ akkor @
sorozat /(L) sUrliségUll

A definiciébsl kdnnyen kivetkezik, hogy he «( < U, <
V, <V, < ... diszjunkt sorozaetok, ekkor JJ(L)+ )< [ , ugyenis

o(("v\) + GW) il % &




“@w

Ervényes oz 1.1, tétel aldbbi dltalénosittsa:
1.4, tétels Legyen n, <1, < .. . @ természetes szémok egy
felsS suruségl < sorozate. Ha /(1) olyan additiv fuggvény, hogy
fnd=flnis)) (A=42,)s dor () = hog .

A tételt ERDCOS (1] sejtette, ez alébbi bizonyitds KATAI
U’l] =8l ered,

Bizonyitds: Legyen i\ fetszésszerinti természetes szém, Az
(W) X -y =A4  (wrd,x) =4, (n,y) =4

egyenlet X \/ megolddsal pozitiv sUrUségl sorozafot elkotmak,

igy @ fenti megjegyzésinket figyelembevéve kepjuk, hogy ven olyen
X,V mdﬁ.’w 'Xl ¥, (V\+4)X, ny eX.

Ekkor

J‘({L\M)x/)? i(my)/ cra i(w+4)+¥(\4)2i(y).—i'(X)ZO/

és ez Gllitést az 1.1, tételre vezettik vissza,
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ASZIMPTOTIKUSAN JO TULAJDONSAGU
ADDITIV FUGGVENYEK

ERDCs (/] kiztlte & kivetkezs 1ételt:
2.1, téiels Ha /() olyon edditiv szémelmsleti figgvény, amelyre
f(ﬁ‘)-f(’%) — 0,
akkor Jﬁ(m) = C I’m} ",

A 2,1, tételre RENYI (5] adott egyszery bizonyitést, elébb
ezonben ERDOS [¢] az 1.1, 65 @ 2.1, téte! kivetkezd kiets dlioléno-
sitdnat kizi!e:

2,2, totels Ha /(1) egy volés &6kt odditiv szémelmsleti figgvény,

amelyre |
Lo (Jtna) - )20,

N —> oo

aieor ‘f(v\) = c po?n.

ALZM#M*MQLL werelt ab=
ban oz esetben, ha /(1) komplex &riékt edditiv figgvény, mert eldor

L) =, 00+ 4 J,00,
“,24("‘)“ 22(\/\) valss éricky fuggvények, “ M&,W
ogysg, igy © 2.2, tétel értelmsben |, (1) =C, [gn, f)=c legn,
tohét #(m) =(c, + _«'cl)/r% n .

A 2,2, seielt ERDCS és RENYI kiiztsen bizonyitotta, @ bizonyl=
tast nem kuoztinsk,
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A 2,1, tételre nem edunk kiltn bizonyitést, @ 2.2, téielre
edott elébbi bizonyites KATAI (7] =161 szémazik, (/] <ben sintén
érdekes bizonyiis telélhaté erre o tételre,

A 2,2, tetelt o kdvetkezdképpen is megfogalmazhatijuks
Tétel: Legyen (1) egy nulléhoz tarté sorozat, Ha 12(%) odditiv szém-

elméloti figgvény és
L) L) 2 -£(n),
akkor JQ(M =L }30(};4 .

Bizonyiids: Az dltalénossy megszoritdse nélkul feltehetjuk, hogy
£(n) nem-negativ, 6s monoton médon tart nulldhoz.

EMWM,W&%)..QMM’W}O
tetszésszerinti primhatvény, és (>0 o Ekkor ven olyen {, hogy
(2.4) jmw-%(m)z-g/);w\ s ptt
Legyen ) olyen nagy, hogy haszndlhassuk (1) =t, Elkor
‘ : ) ‘?‘ 2
(%) < dlptep) +p € = Jip)+ Jlp"7"44) v pes

== <

= {(p)+ ¥(yfk“/'+ p) + ¢ +p-1) €= ..
(
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Ezell ez ogyeniSHanssgekbd] kivetkezik, hogy
Lim iﬁ”_) *”’) |

k=00
Hl‘*mcmr o;)‘. p = essién, ahol o
vk

qu»?). Linm M_VLM 'ivb “Vi(‘))

b =00 Vk =0
azaz (1) teljesen additiv,

Legyen most | primszGm, Legyen 1 elég nagy, & kjuk e
kovetkezd forméban:
VL:AO}OV%'.-.'TC(),_JV-#QY
ahol V>4 s lca,<p, 0ZLac<p ('/(:4,2,...,1’).
(2.1) felhasznaléstval kepjuk, hogy
| Zﬁ(o\oy‘)»r.. tay p)-fp =
= ‘{((W"aﬁ(qo}”v%* o) - EpE s

>W-Asd) ) ) = L(= A a, V-E(v-Al)p,

M= max, (40
W\Al.o

akkor
02 W= (A ) - M-E(v- L+4)p.

Figyelembe véve a

P?é VL<)ﬂ

y+4



TegyUk fel, hogy van olyam p , %Mbwflm}; é%y
Eideor (1.2) <bél @ toljes additivitds folhammntldetvel &2 ¢ ¢

i_%__ Sk :&L> /@\w j_(i_>_£_(ﬁ)

bgo  p> faq T wee kgn G p
ellentmondésre jutunk,

Tohas ﬁ(})/,fog} P konstens, emi « #tel GllinsGt igezolja.



- -

LOKALISAN JO TULAJDONSAGU
ADDITIV FUGGVENYEK

ERDOS [1] sejtetie o kivetkezS Btelt:
3.1, tétel: Ha | (1) additiv sémelméleti figgvény és £(w)— Piw)
korlétos, aikker J{(V\)= ¢ Qo»? w4+ Bl('v\)'“ /17/\(14)
korlGros fuggvénye.

[9] =ben sikertlt bebizonyitanom a 3.1. #tellel kopcsolai=
ban o kdvetkezdn

3.2, iétel: Ha | (1) additiv szémelmslesi fuggvény és | («+1)- (W)
korlétos, aidor (1) = 9 () + L(w), ahol g (n) teljesen additiv
és L () korlétos fuggvény.

Késébb WIRSING [10] egyszeri) bizonyitést adoit @ 3.2, tétel-
re és bebizonyitotla ez alébbi t6telt iss
4. t6tel: Ho J(n) teljesen additiv, & (1) - {(n)< M, akhkor
j('u)»:cﬁm%n+ Lon) o ehol Li(v) korlétos fuggvény.

A 3.2, 6 4. il egylit bizonyitja ez ERDOS féle sejsést.

A 3.2, i6tel helyett annak egy kissé élesebb alakjdr fogjuk be-
bizonyitani, Vezessink be ehhez egy fogalmat:

3.3, definicié: Az olyen figgvényt, melynek az értelmezési tarto~

ménys ez ">\ egész sz6mok halmeza, ahol V>0 , percidlis

szémelméleti figgvénynek nevezzuk,

3.4, _tétels Ha /(1) odditiv parcidlis szémelméleti fuggvény, és
u(wl) - .ﬁ(h))éM)
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akkor l6tezik olyon (mindenUtt ériemezett) teljesen additiv %w

& parcidlison érielmezett |\(n) fuggvény, hogy { ()= g(W)+l(w)
& (1) korlétos, nevezetesen [l\(W)| <iM , ha 1 olég nogy.

Az oltbb kizsit bizonyites o 3.2, Mielre edott [I] bizonyi=
tésom finomitésa,

Legyen ¥(V\) érielmezve az 1 > \ egész szémokon, &
legyen n >N,

3.5, lemmes He S & -/ volativ primek, akior
[MV\S)"SMV‘”SZSM'
Bizonyitts: Kimnyl lammi, hogy

-4 {-A4 .
= ZA = " W (med h—4),
=y
u-amunmm?_n velativ prim 1~/ =hez,

loy ({1) =en nullét érive ) egyszeri . szémirdssel kapijuk, hogy

).f(u‘)-— slw)| = {nt-4) - s fw)|+ M=

(~4

NS SCRITEIRE

£-4 .

TSNS SRS

A =0
§-4

<IM+ ]| > (Mi“k}’ﬁf
!

9‘ 4 A=0

<IM+ D> |42(§ ) =



- b=

<(s+4) M £25M, g e o

3.6, lomma: Minden L=) és 11 >N esetén
| | k
| 1(") - 2% o] <h.2°M.

mw " péros, akkor ez elézé lemmdbsl kivetkexzik az

alinnes 2. 2% M wmel @ jobboldalon. He . pératlan, akior legyen
IZm> N g Qwm,n)= 1, igy ez eibbi eredménylnket felhaszniva

kapjuk, hogy
l-ﬁ(u -7 l(w)‘—

=] Jamw?) - Jlam®) -2 i[zw)d@f(zm)/
<lf(zm> D~ 24w+ [27) - 2420 <
<2.2*M+ 2.2 sz*w g. e o
3.7, lemme: Barmely pozitiv S és | esetén
'.£(V\t)"‘¢£(i/\£)"/:2"{;—SIVL(M +|¥(N){)_
Bizonyitds: Ha =, ez @ilitds wividlis. Lagyen o fovibbickban
plt >, eldeor
u(hw N i/ ' } < IM +H)(M+’~/) ~ i(n!‘/)/ <

<IM+ > H?(“ ) f(m’i-j/{') _47(“)/+(6—S)(£(m)/:

"‘S+4

CaMe S L) - D) a -9 B <

£ =8+

coM + (E=s)(n=0)M + (- Ol )l <

2 a4 (t-5)(2(n-0M +H(N])< 2 il (e Mo+ [ 00).
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Mom
e 2 ﬁw) Jol e[ )] < (=0M 1 {(w)]
W.
A téte! bizonyintes A lormalirsl kevetkezik o
Lo, AT
s + > oe +
Legyen oldemte © - 2" cloku, Bior, ha by, =2,
kapjuk: , o
i(vx: ). L) L] J6)- J(“ )
E, 2)242 14
k, + k,
A ) %2 o _L = .
Z }MZ - ) JJ(( ) Z/M{fi+2kz)>0)
Létezik tohét o
C; v\) = lfum M
hattrérisk és Grvényes ”
"
(2.4) )ﬂﬁ__) - ?(’v\) é%ﬁg—
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k
Logyen most & sigaitett és < selativ prim (' — 1) hes,
elkkor @ 3.6, 65 3.5, lomma 6 (2 1) szerint

|4 - g09)] <

£ gt )4 4w - e

.
K

"‘ﬂrﬂ 1 =00 reiszésszerint, <>~ mint fent &
tecgt4(n? ~f!),dﬂnrc3.7. lemma szerint

H) g L0 440940 <

Wk A
£7(¢-5) ﬂ_&_t_,{_ﬂ_l_%@/

amibdl (5.2) &s + > folhosznéldesvel
_,(—y: A'mf) cM
£—>9o [l_(t—* B 9(“)] éj}?

adadik,

A baloldal k& =41 fuggetlen, lgy ha ~ —> ~= , akkor

. .
bw\ M - (3 (v\)/f— O A 0 K\M i%/) = ? (V\)
T2t t>oe




m;}("\)dd!ﬂv,hhm m,v1>N es (V‘« vt)=/f esetén

t
(mﬂ):L'M M: Liw, ﬂ_i)_*ﬁ_(y_\, ?(m)*-c;(n

% + >00 t £ oo
Az utslbl kbt eredményink () teljesen edditiv volidt Tgazolje,
ha v >N.

4 (1) éricimeatsl tariomdnydt kiterjeszthetjUi minden természetes
széra o kivetkee®bppen: "
lagyen Wwagm)ﬁﬁl‘—) mESN.
Wc}(m) thdﬂﬂv,-ww hiszen

glm®) _ g (m* #L___)

ke k., -k,

Kinnyl 1atni, hogy a kiterjesztett fuggvény is teljesen addifiv.
't‘(“):%“)"g“‘) korlétos, nevezetesen M(k)lf4/‘4 » ha
WON , mint ezt (3.1) mutetje, ha L-0. Exzel @ 3.4, ttelt bebizo=
nyitotiuk,

3.8, megiegyzéss A 3.4, t6tel birtokban kinnyen bebizonyishatiuk
e 2.1, el

Ha JiuenJ0050, ddor @ 34 1tel clepjin tetssbaszarinit
g(>0)-hozmg-d-ﬂobc\/\/ é olyon ¢ , hogy > N
esetén

| J(m)= g(m)] < £ .
q nytivénvaléon fuggetien ¢ vélasztdstrsl, hiszen ha kéi teljesen
edditiv flggvény nem azonosen egyeniS, akkor o kilunbsSglk nem
korlétos,



Legyen /1 tetszfleges. Keressink hozzé olyan 1 =et, hogy
w>N &8 (m,1)=1, ekior

[ D w)= 90| [ (mw) = glmw] +] R gt | < 26
igy sztkssgktppen { (W)= G (1) , azaz J() teljesen additiv,

fw| ¥

b n

N
legyen most ! >N &s M = zyét’izrﬂ
binéris slécllirdsa pedig

7N )

| i A\)
Jtw) 0N 4 .22?5:"*4“ >
4'—4) |

1«
Zi(z; +%(w2)-5)2,,,

Qy,
le

e LGy
i j(Z__ 0\)‘“,2 -~)+ $p =T

ety — (h)-<).
k fe
Mivel
s i&_ ; 2/4 fqumr <2/r+4
= ap
2 »\:fk_,r _&4 )
exzért .
M
Jowys SBET [ Jiepet) = 5
Hasonléen

WO D T mb Ty e gy (G&Sh:j),
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e kg“’.d& —S%fr—;jégzn » Tohdt
fog n ((2-£) <fw) £ log (JD+5).

Mivel & totsztemzerinti volt, { (n)=Llog v { (2),  qe.ol

A 3.2, 16tel WIRSING L10] féle bizonyitdsa:
Elsztr megmuiafuk, hogy

.2 A= p o Ol
ha | primsztm,

He > 6s primsztm, alkkor vagy (w4, o) =1
vagy (n44,p) =/ « Ha (n-1,pp) = [ o akkor a 3,5.lemma miatt
igez oz Gllitgs, ha (111, 0)= [, akkor ez Gilitds o 3.5, lemméhoz
hesonléon igazolhaté:

| (W) - p 4
{
< [l 2 )= p )

é‘f(wyoﬁfﬁ-\pf(h)’ + M=

74 =4 =0
o 5 |0t 5 ) Hen’ S e - 4) <
2‘:4 <=0 =0



Mivel « ')o-:,?wc&é. lemma speciélis esete, (3-3)-!
igazolivk,

Altaldnositsuk @.E)mmind.n T ~re. Ha JC=}%}"2“' Pk o
okkor (3.3)=bé! teljes indukcisval kepjuk:

,f(n{)-:tg(hh0(ﬂ)+0(;o1}02>+__.+0“04}01--‘W&),
Mivel az Bsszeadds s cz (| somendje felcserblhetd, tovdbbé,
mivel | =9

B.4)  JH=tfog+ Ol2t)= t o)« O1E).

H-(.?).Zr)-dclnﬁ leheiséges médon alkelmezzuk njt -2,

fﬁf)(nf) y O(c) = f(kst) :f‘_f{“{) 5
egyenldséget kapjuk, igy
o 547 06) 06
aml a Couchy féle konvergencic kritérium szerint @
G(n) = Lim !i(fi)

£ ~Soo

fuggvény létezését jelentl,

A bizenyiités fovdbbi része megegyezik ez els§ bizonyités be-
fejezd részével (I. 18~19. oidal),

A 4, t6tel bizonyitdstt a kivetkezd fejezetben fogjuk elvégezni,
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LOKALISAN JO TULAJDONSAGU TELJESEN ADDITIV
FUGGVENYEK

E.WIRSING [/ | bizonyitotia az aldbbi, az elézé fejezetben
mér kimondott tételt:
4, tétel: Ha | () teljesen additiv szémelméleti figgvény, és

(4”) *(V\M ;E(v\ < ,
ahor [ () = ¢ frg nilalu), chol Ji(n) kerléros Riggvény.

A, 4.t6tel bizonyitGsthoz eldszir megmutatjuk, hogy:
4.1, lommas Ha (1) edditiv szémelmélef fuggvény, & [(n)-J1)<M
minden W <-re, aldkor

Jo) = O llrg ),
(A wstel bizonyitGsGhoz elegendS lenne oz dllisést csupén tel-
jesen edditiv fuggvényekre bizonyitenl.)

Bizonyitds: Legyen V. = i1 o Ha mér X, definidlva van, akkor legyen
yZ3RRT PR T B9 A5 & ¥+3m¢.mdylk2-vdc¢m,
d““ﬂ"M/\ﬁM Pd!o‘;a /2 « He 222w < 2%, okion
/Y,zq=?>-|w

Jo=J0) = f(y,)-3M =
= Ji) + f2)-3M= .. 2 1@+ k( 2(2)-11‘4)

MdnbgynX'-n.l-bX'-tm&dahlmd:,ddm
v legyen X! ¥ -4 x.2 v—:ﬁm«.wz—umﬂm,d.
4-gyel nem, 6 ' =7, e o 2 < 2% 2 < 2% gy

X”k’,’ :/II.W\L» Xia =4 "



h” f ) 1
Jow=fx)= fl7.) +3M =

=dx))+ Q@)+ 3m= . =(-1)(L) Fam)

A fentl két eredmény o lemma &llinGsér igozolja.

Térjunk 6t a tétel bizonyitdséra,
Legyen
—
U = /Aw\ ‘4/:(—‘1—) de = Lim ‘%(‘4}
n—>o0 {rjn >0 ,é’o?b\ 5
ekkor )
i = éﬁ‘ﬁ-) £ A
g

minden 1t —ve (n =4,2,...) , mivel Jv) teljes edditiviréen

miatt
(;9 n Z’{} n

A tételt Indirekt uton fogjuk bizonyliteni. Tegytk fel, hogy (<"
Elkor az GltalénossGy megszoritisa nélkul feltehets, hogy L = -1 &
v =4 , mert ellenkezd esetben /(1) helyett alkalmas c4¥3[“/+('2f09n
linetris kombindcitro elkalmazhaindnk ez eljGrésunkat, Ezzel ¢ norma=
lizéciéval elérivk, hogy

If(M)J = j(»c}lm .

Legyen | primszdm, °C egyelbre teiszésszerinti eglsz szém,
& o= . Tekintstk ez »
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kifejezést, . (X

séghez jutunk,
Asrendezve és (1. /’)MWWM\-MM'

Saln)= 5 (Rt M;.L+M)>

) két féle Grolokitgséval egy fontos egyeniSilen—

anfan -4)

e %% [eN7%
V\‘,\/

Z Jo-g, (an - 4) (e)-M 5—

anfoein=A) o e

=]

Mn“mmw

£ a2 L e - M)/&»?“ﬁm

A bizonyites tovibbi részsben o' (V= 1,2,...) helyett

9, =t fogunk imi., Tobbsztr fogunk utalni oz Eldkésziiés részben ki~
z6lt eredményekre,

§o(x) mésik inényw Gralakirdshoz felhasznljuk oz (1) seljes
additivirgs@sl kiveikezd

Az elsé belsé teszeg Ures, ha c)éc\x,anb&.b g =X e

Legyen elészr ¥ <o) < ax o Hyen o eseién legleljebb egy olyem i
i6tezik, amelyre 1 < X & amzl(mw/c;) s 65 oz flyen 1« =te

ain~A z_q’ e
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lgy (o) =t felhesznalva:

( Z f(}a)z &/nb,’ " Z M(V’)} »

b T gl peyRaxrig
éZ })C:; /o?o\+0(/)*— ﬁ[//)
X<c1/$ox

ahol (), (/)

X =re vonatkozéan ((1)=t jelent, de O =16l fugg.

Most meghatrozzuk, hogy |, hatvényai mennyivel jéruinak hozzé
(o (x) éri6kehez, |0~ = miatt csok o mésodik szummdt kell sekintentnk,

m t
i&?,@c
- {_,Q(YJC) Z/—:— ~ (/00{?)('*))/40?}00*’6(/))-
pe£gX
A>2 p,
- mivel a po
> 7 (Vegp. 01)
sor konvergens - y
=2 dp) by 3 - 01)-
- .,")[;oo)f&gx _
=) + (1)



Arg x
NMM' /1" &’%)’O)J/(:
. \;é(/l = }00 p -
- [}
)75(0‘%,)( |
203)06 A/
A . ﬁ _)
o —

Osszefoglaiva @ (’4.2)_(4.5)-“;*? N
L (e L) )= 2) g 0 <

hg) U U S i s Ay
= T B
i <X,(9,a)=1 n<x, g lan-

¥ €t anh=4+myg,
h<

helyett, aklor
indexévé 11

Usszegabs

Ha "M =t tosszlk az

oo X — A

N/

jesvinie, ‘ mert M= cx/q
S aX/g, =t is ichatunk, -
"‘"‘WM v m :~:?MOJQ)W(42;:
mm W‘ Lm irividlis, Ez olopjén (/. oldaldt
a kivetkezd clakba irhatjuks

¥ s 4 _ S %)Jv@/ﬁ.
o T ( > I ::x/op
« oy W\; c~c1_q)
%‘ q %W\“—E'j[v\/\oo/a) m=0(m »
(Q]Q:/’

<

’E~4(V\/\cm/a)
és <IW\



A zé&rsjelen belUli teszegeket direndezve egy cstikens tagokbsl

Gll6 véges altemdls sorozaiot kapunk, emelynck elsS tagle /|
ahol

v=v(q), 9 al(g)=-Afmeda) es dcm(g)<a,
@ méeodiladl minden tag < |/~ o Eat, | {(n)]< log 1t 6

(o) =t folhasznélve

" & #( =6 ° 4 RATE
(cl,a):d

=S (A Lo(fee) gro-
(?;‘)( KI T(\(%) X 9 a
(9.,-‘*):4

R A, C YR ¥
qu-_x qm“((i) e

A > rel6eis ez egész levezetés egyetlen pontjérsl, « (4 1)
folhaszndlstbsl ered, Ha @ fuggvényink (/) helyett @

(Ll/m .E(V\M) > £(y\) - M



i el A il e oz ) i) 010
egyenldséget nyerjuk,

(h.1) sotjestités esstsn is kephatunk (7)) btz hasonté
fels8 becslést, csak o levezetés sorén o/ - [ helystt ci+ [ =gt
kell imunk, 6 ez

1[(&\«-4}4)5 i(‘*"‘) + M

egyenidséget alkelmazni, Az egyetlen kilkinbssg ez igy nyerhetd
(17%) es @ (4.7’)@&!&!.‘9 kizutt, hogy . (ﬁ/) helyett

.q’*:’)';:*(cp) ’ c}rr*s/(moc/a) ", 4_<_"r*<.‘6\,

Toljesen hesonléan, he (/. /') seljestl (4. 7) =ben + =et
¥ gal helysttesitve meghepiuk @ (.7"’) egyenidlenssget.

A bizonyitGs kivetkezd részében megmutetjuk, hogy “sok™ prim=
s26m eloget tesz az {(1°) < /9 o teszefUggéenek.
Py -d)cyw.l.qma=ioc°( é < olymn
negy, hogy
J(a)-K 2(4-2£) fog (e>0).

Eklor (4.7) b8l

G S Zﬂ}l_) > (4-26) 4 Mrg o tog x + (1)
<x 9 7%l9
(9,2)=1



kovetkezik, Hasonléan, = mivel a logaritmus figgvényre Is teljestl
(43) = ha < glég nagy, Grvényss o

L8 | e A : ,

17 =

Bsszeflggbs.
Legyen 7 =0( &
={b b prim, J4) 2 (4-m)hog I}
Elelcor
2 -{(ﬂ% 2> &?ﬁ—’”wt(fﬂ;/}" Lap

a)=1 Cl"?*(CV“ 7@9((3,6 A (7)
FGB (? 0\) /

S B (e Ly gn s 1)

Ezt Givendozve és (/r.ﬁ)-d Smzeveive
i [&i - //0% P

i) _>~_ = /)7 2_ 9 ’Y;\(oy) =
%éx Cl L},é)("(cl,.c‘)_/( J

> ((4-28) = (A= Y4+ E VL og o log x + C(4)2

(/’7 35) /wcé /00)( * f(//)

Mk.wwnﬂfzég egyenidssget, tovébbd axzt, hogy @
magesabb primhatvényok csak [ (/) =gyel jorulnek hozzé az Ssszeghez @

b ST B = B dge. g



.. =31 -

SeszofUggéshez jutunk, ami bizonyitja, hogy B bizonyes értelomben
pozitiv sUrlségl o primszdmok halmazdban,
logyen D, Cl olyan véges halmaz, hogy

R 6 o, b ) 2
.40) 26,_ T == (”7 Z /sz-_fi)

" Sy | oo b

beb, T beb, tedjr e .
(/%) jobb oldaléra érvényes @ kivetkezé becslés

o = K/!ﬂa.& WIE (i(—— K e+ 0110

- Oszogezzik oz utébbi kifejexéstinket o =t végigfuttatve B, elemein
(0(1) nelyott Whatunk (/) =at, mivel 5, véges /

( /Z //poax (4] =

g M

M- €
4

(02 D 5 B TR

L-€R, b-—4
FI‘ZW/> Lﬁﬁ_‘/onJr(W//
teg,

adédik, Az utolsé egyenldtlenség B,/ elég nagyre vélasidséval
teljesithets,

@?) bddddhw:mdmc
A s
Tt
1%

]

T (cl/)

IN

3

<



dsszeget kapjuk, ezt pedig oz

R::Jj& b
jolslés bovezetéssvel irhatjuk o
S-S5 L 0U)

C’l/ \/,(cl/,}Q) 1 O’ 17f€%

alakban is, mivel (> csok véges sok primszémot tartelmes, és totszbe-
sorint ¢ [, ~re @ 0,-p ) saémok figyslembevétele csok ('(//~gyel
vélioztatie az Ssszeget.

Most vizsgdljuk meg a
St / N
W(g) = 2 i) ((%/e)—l)

fuggvényt, Koanyb léini, hogy W értdke esok @ (voo/ ) maradékoszily=
#6! Rigg. Ho 0 egyenletes eloszbdsy @ (ool k)meradéloszitlyokon (1) =)
olkor 7 egyenletes elossldsy ez (2,..., I -/ &nbkeken, ./ pedig

ugy foghets fel, mint @ (vcd X) mwedskomitlyokon érielmezett [/
fuggetlen valdsinUssgl véltozsk teszege. lgy |/ Gilege & D szérbe-
négyzete az |/ velbszinisdgi véltozok Gtlagtnak, illetve sérdmnigyze~
tének oz Usszege. Azaz

-4
7 / N BT
E e X i e = a»-//_)-—— =
)€ & b€, =4
loo A
>
2 > b=4 )




.33~

illetve /o szokdeos médon () wnel az L =nsl kissbbb, * «hez
velativ primek szémét jolive/

1 < 2

B adi \X/( - = 2 =

VK) (%E):! ( k) - Ew) Dow
n(meel R)

bet, tew, ¢
b4 -
> =5 A Ay | /
= <L ETY';Z' '1&—42_ : S‘Z’ o =
L€, beR, T L-eB,
(4//2) < ;‘_‘ /L"Ogé 2
= . o ke =

folhasznaitk @ jol tamert S /it = T /¢ agyenidsbget, & b /g/et/s
Alklmezzuk ezeket o Usszefiggéseket o (// 7) egyeniéilensdy tsszogzé=
sdbens

s= e ey gamsT Loy, 0p)=

q/é)(,q,lq)=4 Y C} ( 07526‘3‘7 _ﬁ’/:;‘ ? ﬁ//
= (4'2/7)(4 ""7) E W(”&?xdk f///)z

(b4y) 2 U-3m) Ewlegx +O11),

BecsUljuk meg mekkora eltords keletkezik, ha oz egyenlGilenssy
Mw@)hﬂmt‘wqm

— o byr
> 'M(W@)-fw 2 i vilhe
gex n (mod K) ex
(ol/i ’4):/{ (“/ R:)=4 i‘:‘k[w\rm/ﬂ)

W(w) - Ew




R
Az Eldldiszinio-bon lsmartetot (1) deszafiiggés felhaszndidotval
< Lo x. > lW(lA)-EW/ ¢ 0’(4)5

©(R) L mod )
(n,R)= 4

(N

4
A . 9}~
Pror [ i “E + 0 (1) =
™ (Q)(R) nZ;W) (uty) - 07

(V\,y{):’(

jwc;x Dw +§(”)é

< /l7 Z M [Ocj K + f'(/f) ((4 12) J’zeﬂuu{”)

ben, L4

€ h Ew log x + o).

il

Eat (: /7)=ba behelyetissitve & £ v ~vel omtve
R P SN RN

c;Zx ) y=X

(i R)=A
adédik, Ha /) =t kezdetben elég kicsive vilasziottuk, & 1 elég
nagy eldor
) S Ao

g<x %

| Ha | helyott o - fuggvényt vessziik, aklor -/ rendelkezik @
(i 1) nlajdonstggal, Grvényes tehst o /. 7* egyontétlensig. Ex alapjén a

— ) 5,
Jo



- 35 -

agyeniéilenssghez jutunk Jelég nagy x esetén/, Ez nyilvin ellent-
mond (1 /4)=neke Az ollenimondds o

N ,@)31« [09‘4

Indirekt feltevés kivatkezménys, tehtt atételt bebizonyitothul:,
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LOKALISAN *HASONLO® TELJESEN ADDITIV
fUGGmm&ox

KATAI [ kiztite ez olébbi sojiésiz

1o sejiés Ha Jiv) & G0/ olyan edditiv szémelméleti Riggvény, hogy
vw) Q(u)l&l&gdﬂm ¥(n c@m}vw-u(m ()= cﬂr?l«-k’v(k)
-hol uih) € Vi) korldios figgvény,

A sejtésssl kepesolatban sikerUlt bebizonyitanom o kivetkezé
wtmlis
5.2, tétels Ha [0) &s 3(u)apu~mmmw
vény, hogy g+ - {(n) korldtos, akkor 4/(»‘) G () = Log n .

Bizonyltés Legyen | o (n+0) —{()|<M , ekor lg2n+)-f(2n+1)]<

< q aneD-Jl2us )|+ g(2med - Ja)] ¢ [Fow) - 92w +2)] <

(»‘JJ) <M + ’g nd) v\)’ llg ,{((27(£M /

diol M oliluins hovstin

Legyen | pérotlen primsim, " ftormészetes sém. Ekkor (S /)
wmiertt

M2 g(p™) - P07 = ~ | 940 - L)
Mivel it 1 tetsads sserinii volt = [ (p) = g () .

Host mie elegendS csok azt megmutetunk, hogy 4)(2) = 9(12),
eldor /()= (i) mictt ugyenis az Gilindsunket @ 4. iSielre vezeitik
vissza, Ezt indirekt uion bizonyltjuk. TegyUk fa!, hogy GHisdsunickal
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ellentétbon [ (2) > 92) (JW<9(2) oethen - & -9
=+ alkalmazhatjuk o= efjérdounkat ), &s lagyen > { eglsz.
J(27+4) = g(2"44)= 'Ja(z*u)-k(g*)[ W(27) =) -M,

D(a™4) 2= |P(2™4) - g(QT)‘wL 3(2™) = T9@)-M..
oy |
€0 J2"7-4) 2 v (f2)+ 9@)-2M
 Mésréezt

G5 v&(z’ﬁw—ﬁé ’ J(2"7-4) - g(zl"r){+ 9(2“)52«3,(2%{\4_

(52) & (.3)=bst
2+ 9@) +M > r({ () Hg(z)/ 2M,

ezt Stvendezve
4@ > @) L > J@), ke v>o0

odédik, emi ellentmond ez J(2) >9(2) indisekt feltevésmok, Ezzel oz
5.2, tétol bizonyitdsd: befejezitk, |
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Vélemény

Maté EBrs: Az additiv szémelméleti fliggvények és a logaritmus
fiiggvény kapcsolata c. egyetemi doktori értekezé&sérdl

Maté EBrs doktori értekezésében bizonyos additiv szémelmé-
leti fliggvényeknek a logaritmus fliggvény segitségével vald eld-
dllitéasaival, az additiv szémelméleti fiiggvények &s a logarit-
mus filiggvény egyéb kapcsolataival foglalkozik. ErdSs P&l kezd-
te vizsgdlni a lokélisan ill. aszimptotikusan "3jé tulajdonségu"
additiv szamelméleti fliggvényeket. A doktori értekezés ennek a
témakdrnek fontosabb tételeit tartalmazza. Ezek k&z8tt Erdds
egy midr l946-ban kdzdlt sejtésének bizonyitdsdt. Ennek elsd rész-
eredménye Maté EbSrst8l szirmazik. Bizonyitéisa egyuttal kiadja
Katai Imre egyik sejtésének specidlis esetét is. Ezenkiviil t&bb
ismert tételt sajit bizonyitéassal k&z8l,

Ertekezésében a jeldlt elég nagy szimu irodalmat dolgoz fel.
Sajat eredményeit ligyesen épiti be a disszerticid témajaval kap-
csolatos vizsgdlatokba. A dolgozat értékét emeli, hogy a szerd-
nek az értekezésben szerepld eredményei k&zilil a legértékesebb
mér publikédciét is nyert az Acta Sci. Math.-ban,

A dolgozat nyelvezete tOmdr, logikail felépitése vilégos.
Undllé munkaként is olvashatd, mert a szerzd az értekezésben
szereplS mindenegyes tételhez annak bizonyitdsit is kdzli.

A disszerticid tartalmi és formai szempontbél megfelel a
doktori értekezésekkel szemben timasztott kdvetelményeknek, ezért
annak elfogadésdt javascljuk cum laude minSsitéssel.

Szeged, 1973. janudr 8.
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