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BEVEZETÉS

Egy j(n) számelmélet! függvény - 

számok halmazán értelmezett függvény additív, he

~ | (W + $(*.)

tel fésül minden (m , и/ - 'i -re, ahol w és К természetes számok, 

(m , v\) pedig ez m és К legnagyobb közös ősz táját felöli.
Az Ifüggvény teljesen additiv, ha (ex.) 

párra teljesül.

(a)

Egy ^(к) számelméleti függvény multiplikativ, ha

c^( w\ n) - ( Ил ] Cj,(h)

teljesül (ил,и)-Л -re. ^(и) teljesen multiplikativ, ha minden

természetes számpárra teljesül. Az alábbiakban feltesszük, hogy egy 

) multiplikativ függvény semmilyen и.

(W

nulla.

additív függvények és a logaritmus 

függvény kapcsolatával fogunk foglalkozni. Látni fogjuk, hogy egy 

additiv függvény nem viselkedhet túl szabályosan sem lokális, sem

aszimptotikus szempontból, csak ha lényegében logaritmus függvény.

felvetése ERDŐS PÁL M-tél származik.A
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ELŐKÉSZÍTÉS

A bizonyítások során szükségünk lesz néhány, a számelmélet

kedvéért egy gyakran használt fogalomra.
Definíció: Legyen k(^)és кЫ1 tetszésszerinti, minden elég nagy и. 

természetes számra értelmezett függvény, továbbá к ( к) > 0 , 
minden elég nagy ц -re* Akkor mondjuk, hogy .k(*)- Ö(k(b)) 

(kM egyenlő' nagyordó k[vO) , ha к (1л)/кЫ) korlátosj,

Legyen a továbbiakban p primszám. Ekkor érvényes az alábbi

tyL , tn x t m>[0
p^x

Bizonyítás: A bizonyítás и í vizsgálatán alapul.

(с к К !— I I V> aUo-l
páR

[p], n
к 'i'i

>2Y
jelöli! (с-к) érvényességét könnyén beláthatjuk.C cxl X

hiszen ez sorozatból [и /р_/ szám osztható f -vei,

0/pzj osztható -tel stb. Ezeket az 

juk p kitevőjét и / prímtényezős előállitásában.

részét

Becsüljük meg a
й. / И Áo-öj. V\CrJ

különbséget.
К

и ! - x к ^ j X -

( ÍR 4- Л ) 1 ö-(^ (и. + 'í) — /к + ^ X1 ~ 2) - К Й1 -f 0 (и).
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MONOTON ADDITIV FÜGGVÉNYEK

ERDŐS PÁL [Л közölte a következő tételt:

1,1. tétel: Ha |(и.) valós értékű monoton additív számelméleti 

függvény, akkor -C io-a и.. (Itt és a továbbiakban C alkalmas

konstanst jelöl.)

A tételre az [A! -ben adott bizonyítás kicsit komplikált.

J. LAME EK ős L. MOSER M egyszerű bizonyítással közölte a követ­

kezőt:

1.2. tétel: Ha ^(Kiválás értékű monoton multiplikativ függvény, 

akkor ( Ía ) '- 1a .

Mivel mint látni fogjuk - az 1.1. és 1.2. tétel ekvivalens

cikk bizonyítása lényegében azállításokat fejez ki, ezért а [г)

1.1. tételre adott bizonyítás egyszerűsítését jelenti. Szellemes bizo­

nyítás található az 1.1. tételre még [3>J -bem (235-238 o.) is.

Először az 1.1. és az 1.2. tétel ekvivalenciáját mutatjuk meg.

Ha egy у O*) multiplikativ függvény monoton, akkor szükség­

képpen pozitív, ugyanis ^ (К(A) miatt fyOJ- A .Ha

valamely t -re tft)< 0 lenne, akkor csak monoton csökkenő lehet­
ne, és igy továbbá t^(t(t + j))< 0 lenne, másrészt c^(í(iu))

-Q^t) $ fa*- /l)> 0 , ami ellentmondásra vezetne. Tehát valóban

pozitív és emiatt iW <^.Ы) monoton és additív, ezért alkalmazhatá rá 

az 1.1. tétel, így az 1.1. tételből következik az 1.2. tétel. A for­

dított irányú következés nyilvánvalá.
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Érvényes az 1,1. léte! alábbi általános»rása:

1.4. tétel: Legyen ti, < nz < . . . « természetes számok egy A

felső sűrűségű X sorozaté. Ha olyan additív függvény, hogy

i(VJ-(A~'ílZf ), akkor 4 (^) - C loc^ к .* »

A tételt ERDŐS [ У sejtette, az alábbi bizonyítás KÁTAI

LA1 -tői ered.

Bizonyítás: Legyen К tetszésszerinti természetes szám. Az

(к-m) x - ky =/// (ia+ *j x)-4j {v^)Y)~4

egyenlet X , у megoldásai pozitív sűrűségű sorozatot alkotnak, 

így a fenti meg jegyzésűn két figyelembe véve kapjuk, hogy van olyan 

X, У megoldás, hogy У, У t 

Ekkor

l Ыу)
és az állítást az 1.1. tételre vezettük vissza.

(k + А) X ) к у €> X .

((м)+№)*&)-fa)* ос-г^т- )



• 10 -

ASZIMPTOTIKUSAN JO TULAJDONSÁGÚ

ADDITIV FÜGGVÉNYEK

ЗФО$ (Л] közölte в kővetkező’ tételt*

%MÁ) ~ |(K)
akkor fa) ~ С И- •

-5> 0 I

A 2,1. tételre RÉNYI [Sjmdatt egyszerű bizonyítást, előbb 

azonban ERDŐS Ю az 1*1. és a 2,1, tétel kővetkező közös óltaSáno- 

sifását közölte:

2,2, tételt Ha ((*) egy válás értéke additív számelméleti függvény, 

amelyre
i-i- kW + ~ I > 0 )

л И. ,
akkor |(к) = c J/crj vt .

a 2,1, tételt ab­
ban az esetben, ha |(и.) komplex értékű additiv Függvény, mert ekkor

I (tv) - j?4 ( к} + ^ | ü ^ /
ahol |л(^) és -fjn) vd6s értékű függvények, a pedig az imagindrius 

egység, igy о 2.2. tétel értőimében $A(h) = C4 ioj к, )-CzQ*y K/ 

tehát - fc^ +a'cz)/íh^ и..

A 2.2. tételt ERDŐS és RÉNYI közösen bizonyította, a bizonyí­

tást nem közölték.
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£z©kbcH «z ogyenló'tlenségökbáí következik, hogy

ШL - (M .m
*k^&°

v>
Használjuk ezt e relációt f - у és f = ^ esetén, ahol <y

teiszésszerinti primszám, ekkor kapjuk, hogy

1Я ^ _ у X* ^149
|(и) tettesen additív.

/к

legyen most f prirnszám. Legyen к elég nagy, és írjuk a

У
+■ A* • ”t" у Jft 

Á < a0< p

+• .К'л0 F
ahol У > i e'i

У

o ^<XÁ< f
I

(ZJ) felhasználásával kapjuk, hogy

|(“)ilív',+
- |(i»i - |fÄ»r 

(y-/+^|(y») - i^° f

j^ y> —. ^ > -f (X

t-A+ .
í-á

-f ..« + Q* Z-A>

Ha

M- íí^l,
m-c y)

akkor

Ifn)> (v-l+Okf)- M-£f(L2)

Figyelembe véve a
у +■ Aу

f ~ KL <1
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LOKÁLISAN JO TULAJDONSÁGÚ
мштшштшшшшмттшттшяшШвтштш* тншпттлитмтшт* mm >»><«,, л-ч»п»

ADDITIV FÜGGVÉNYEK

ERDŐS Й seitette e követkézéi Ételt:
3.1. tétel: He |(*) additív szőmelméletl függvény és f^v-м)- |М 

korlátos, akkor -|(^)^ c Po-Oj. к f k(к)ahot Й и.)

r^J-ben sikerült bebizonyítanom e 3.1. tétellel kcpcsolat-

3.2. téléi} Hb j(u) additiv számelmélet* függvény és |(к+^)--^(к)

korlátos, okkor ,|M - + K(^), ahol cj,(n) teljesen odditiv

Késébb WIRSING i'io] egyszerű bizonyítást adott a 3.2. tétel­

re és bebizonyította az alábbi tételt I«
4. tétel: Ha Jf(v,) teljesen additiv, és M, ekkor

кЫ) 9 «bol ivfit) korlátos függvény.I (*) ■= С Vo-y К +

A 3.2. és 4. tétel együtt bizonyltja az ERDŐS féle sejtést.

bizonyítani.

3.3. definíció: Az olyun függvényt, melynek az

mánya az

Ц(н + *) - |й|
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akkor létezik olyan (mindenütt értelmezett) teljesen additiv sj (a) 
és parciálison értei mezeit ii(n) függvény, hogy | Ы) - <j (n) 4-Jk (и.) 

és Jv(n) korlátos, nevezetesei |1\(*) | < 4M t ha И- ©lég nagy.

* Az alább közölt bizonyítás © 3.2* tételre adott [9] bizonyí­

tásom finomítása.

Legyen f(vv) értelmezve az К > №
tegyen w > Ni .

3.5.

II Us) -
Bizonyítás: Könnyű látni, hogy

S-4S-4
К ^ ( Иа к - а)^

i =
/С - Ол. =0

a femme feltétele szerint zl И.' relativ prím и.-// -liez, 
így (4^) -en nullát értve) egyszerű számításai kap fűk, hogy

+ M =

л

||(М--Фи)1-иА-А.г|(М
i-Á Z) - s |u)| + Mp ((w-и)J

A ~ 0

l(z
Я-ő

z d(£ f(í
Л.-0 *- -0

L |(É -
;*o *=°

■c.
f< M f

1M +
S-Á

+• >
'Г*
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vx^N (Vh, nj- 4Másrósz ír additív, hiszen w

Iíí^kiV
/

fa)Cá{vv\ n)~ A
v ~t ^>o^>

- A'
■fe

Az utóbbi két eredményünk <J(k) teljesen oddltiv volta igazolja.
he и. > Ni .

száraira о következőképpen®

í^Í*i ~*>v.legyen és
Mivel ^и) teljesen additiv, © kiterjesztés egyértelmű, hissen

о frv^'Mф^1 =
K2

Könnyű látni, hogy a ki terjesztő tt függvény is teljesen additiv.

vx>N* mint ezt fej) mutálj©, ha k=0* Ezzel a 3*4. tételt bebizo­

nyítottuk.

3.0. meg-jegygé« A 3.4. tétel birtokában könnyen bdbizonyitudjuk

« 2.1. tételt.

Ha J(u+J) -$(*)■* 0 t akkor e 3.4. tétel alapíte tetszésszermti 

£(>0) - hoz raegedhetó olyan U és olyan <j , hogy sw. > N 

esetén

кл

Ц(ь)1*4м . ha

I (**)- jí^)\ <■ £ <
j nyilván volőon független £ választásétól, hiszen he két teljesen

additív függvény nem 

korlátos.

egyenlő, akkor a különbségük nem



- 20 -

m> N és (w, и) = Á, ekkor

^ Ы) ~ <^(^)| — I (ил \я) - J (илк)| +| |(ил)~<^(ил) \< 2 £

igy szükségképpen -f Ы - <J, (и.) # azaz ,|(u) teljesen additiv.

Legyen most ,2 — N és M ~ 

bináris elállítása pedig

к —
и. = а

Iím\, * кил. сое
Л-+-1

Sm =0,0 (а.л
ÍX V<K11Z -*■

■^Аг■к л! /.<- -0
Ekkor

Xi?

-^иУ. Л ^aJm >
кк

Хге л 'jií X : в к - 2 (ш-к)Á >
•+■к

> - хс + 'г*X* кI ^ л^.-2 + к±^ЛЫ - с).>
■к

Mivel
X* ПГ bi

А - Sb + -Г
2 < Ч 2 /

п-Г^-гт

М(№-*)-? •к*) >
к

Hasonlőan

nr
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kifejezést. í *) két féle átalakításával egy fontos egyenlőtlen­

séghez jutunk.
Átrendezve is fr. 4) -et egyedül Itt felhasználva kapjuk:

j(aK -a) _ j(an-) - i + Ш)
CXK /sj*)= X.(

и 4,/

г _ у' Ml
/ ükfft. w— A)

лк(й.к --0 cv к.

^ téO - M V~ j/
64 iTTy K '

(\\л- a)
{

\Л ~4

fc-t) i* W - Jw- M)J+f * +
A bizonyítás további részében joV ( V - J f 2,... ) Helyett 

Oy -t fogunk Imi. Többször fogunk utalni ez Előkészítés részben kö­
zölt eredményekre.

i^tx) másik irányú átalakításhoz felhasználjuk az k) teljes 

odditivításábél következő

Jfn) = £ |и=£ W
4|и

К/R

_ у ifc )
ak-л <*_— ö\|a J 

<] )K '
£(x) = 2.

Íaa(e.
Z_

лV - Z a nevia-'l niX*

Az első belső összeg Uras, he ej ^ X , a második, he ^>A • 

Legyen először X'^op ^ <xx • Ilyen esetén legfeljebb egy olyan h 

létezik, amelyre és an Cj ) , és ez ilyen и *4*

л. к -и > ,
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Vélemény

Máté Eörs: Az additiv számelméleti függvények és a logaritmus
függvény kapcsolata c. egyetemi doktori értekezéséről

Máté Eörs doktori értekezésében bizonyos additiv számelmé­
leti függvényeknek a logaritmus függvény segitségével való elő­
állításaival, az additiv számelméleti függvények és a logarit­
mus függvény egyéb kapcsolataival foglalkozik. Erdos Pál kezd­
te vizsgálni a lokálisan ill. aszimptotikusan "jó tulajdonságú" 

additiv számelméleti függvényeket. A doktori értekezés ennek a 

témakörnek fontosabb tételeit tartalmazza. Ezek között Erdős 

egy már 1946-ban közölt sejtésének bizonyítását. Ennek első rész- 

eredménye Máté Eörstől származik. Bizonyítása egyúttal kiadja 

Kátai Imre egyik sejtésének speciális esetét is. Ezenkívül több 

ismert tételt saját bizonyítással közöl.
Értekezésében a jelölt elég nagy számú irodalmat dolgoz fel. 

Saját eredményeit Ügyesen épiti be a disszertáció témájával kap­
csolatos vizsgálatokba. A dolgozat értékét 

nek az értekezésben szereplő eredményei közül a legértékesebb 

már publikációt is nyert az Acta Sei. Math.-ban.
A dolgozat nyelvezete tömör, logikai felépítése világos, 

önálló munkaként is olvasható, mert a szerző az értekezésben 

szereplő mindenegyes tételhez annak bizonyítását is közli.
A disszertáció tartalmi és formai szempontból megfelel a 

doktori értekezésekkel szemben támasztott követelményeknek, ezért 

annak elfogadását javasoljuk summa cum laude minősítéssel

li, hogy a szerő-

í.

Szeged, 1973. január 8.

/Dr. Fodor Géza/ S
tanszékvezető egyetemi tanár

Ferenc/
tanszékvezető egyetemi docens




