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Introduction 

The systematic investigations of the convergence problems of trigonometric Fourier se-
ries was started in the middle of the 19th century. Among others, the classical convergence 
tests of Dirichlet and Dini as well as the first results relating to the divergence of Fourier 
series were obtained. In 1876 du Bois Raymond observed that there exists a continuous 
function which cannot be reconstructed from its Fourier series by means of the convergence 
of the partial sums. More exactly, he presented a continuous function, whose Fourier se-
ries diverges at some point. This example gave rise to a number of attempts to find other 
reasonable methods for evaluating Fourier series. In 1900 Lipót Fejér proved that the 
first arithmetic means of the partial sums of the Fourier series of anz continuous function 
converge to the function even uniformly. The same convergence result was known before 
for the Abel-Poisson means. 

In connection with Fejér's theorem the following question arises: What happens to 
the Fourier series if we form the arithmetic means of the Fourier coefficients instead of 
forming the arithmetic means of the partial sums of its Fourier series. It is known that 
in the case of a complete orthogonal system there is a one-to-one correspondence between 
the expanded functions and the sequence of their Fourier coefficients. Given a periodic 
integrable function / , in symbol: / G L\n, we form the sequence cosisting of the arithmetic 
means of its Fourier coefficients. The question is whether there exists a function g G L\n 

whose Fourier coefficients coincide with these arithmetic means. 
Hardy raised first this question in 1928 and proved that the L27r spaces for 1 < p < oo 

are invariant with respect to this averaging process (see [24]). In other words, if / G 
for some 1 < p < oo, then the function g, whose Fourier coefficients coincide with the 
corresponding arithmetic means of the Fourier coefficients of / , also belongs to the same 
space The operator which maps the function / G L^ to the function g G L27r is called 
the Cessáro operator acting on L^, while its adjoint is called the Copson operator. We 
note that the terminology is not consistent in the literature. The term "Hardy operator" 
is offen used in place of "Cesaro operator". 

In the last few years, the study of these operators has come into fashion again. R. 
Bellman, B. I. Golubov ,D. V. Giang,F. Móricz, V. Rodin, A. G. Sisakis, K. Stempak and 
others have proved a number of interesting theorems of these operators. 

In our PhD thesis, we study the behavior of these operators in the case of Walsh-
Fourier series. The methodsused here are essentially different from those used in the case of 
trigonometric series. In the classical case, integration by parts and ordinary derivative play 
base roles. In our investigations, the classical derivative is replaced by dyadic derivative, 
while the classical integral is replaced by dyadic integral (antiderivative). For example, 
an analouge of the integration by parts holds no longer in the dyadic setting. The dyadic 
integral is defined in terms of a convolution with a function which can be handled with 
some diffieulity. As a result, die computations are more compliated than in the case of the 
classical integral. This fact explains that the proofs arc longer and more technical for the 
Walsh series than those for the trigonometric ones. 

We define the Cesaro and Copson operators on the largest possible subclass of Walsh 
series, which can be identified with the space of dyadic martingales. Then we consider the 

7 9 



restrictions of these operators onto several important subspaces. A new representation of 
the Walsh-Dirichlet kernel plays a crucial role in our investigations, in which the notion of 
dzadic derivative is also used. 

We deal with four versions of the dzadic Cesáro and Copson operators. Namely, the 
ones defined on the space of martingales, the ones defined on the one-dimensional and two-
dimensional spaces of integrable functions, respectively, and their continuous extensions 
to the positive real half-axis. In the first three cases, the Cesáro operator is defined by 
means of the first arithmetic means of the Walsh-Fourier coefficients of the martingales or 
functions, respectively. In the fourth case, the Walsh-Fourier transform is substituted for 
the Walsh-Fourier coefficient. The functions in question are defined on the unit interval 
I := I1 := [0,1), on the unit square I 2 := I x I, and on the positive real half-axis R+ := 
[0, +oo), respectively. These operators can be represented in the form of integral operators 
on the corresponding A1 spaces, which are a special cases of the so-called local convolution 
operators introduced in Chapter 3. Beside the Cesáro operator, we also study these local 
convolution operators on the spaces A1 (I7) ( j = 1,2), A1(R+) as well as on the spaces Ap, 
Hardy and BMO. We formulate those properties of the local convolution operators, from 
which the boundedness of these operators follows on the spaces mentioned above. 

Dyadic Cesáro and Copson operators on L p spaces 

First of all we introduce the dyadic Cesáro and Copson operators. Where it is possible, 
we treat the one-dimensional case along with the two-dimensional case. For the proofs 
of the theorems of this chapter, see [11], [12], [13]. The operators mentioned above are 
defined on the broadest possible space, on the space of the dyadic martingales AAo(F). In 
the case j = 1, set 

(3.1) A4o(J) := { F G A4(l) : F(0) = 0}, 

and in the case j = 2 set 

(3.2) M0(í¿) := { F G M(l2) : F(k,i) = 0 k,t G N , m i n ( k j ) = 0}. 

The Walsh-Fourier coefficients of the dyadic martingale F = ( / „ , n G N7) ( j = 1,2) are 
defined by the limit 

i 

F(k) = lim f fnwkdx (k G N7'). 
min(ni .nj)->00 J 

0 

It is easy to see that if k < 2"° and n > no, then 

/ fn(x)v)k(x)dx = / fno(x)wk(x)dx, 
J n ./ n 
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consequently, this limit exists and 

1 

H*0 = J fno(x)wk(x)dx (fc < 2™°). 
0 

In the two-dimensional case, the existence of the limit can be justified similarly. The Walsh 
series of the dyadic martingale F is denoted by the symbol 

(3.3) / ~ S(F) := £ F(k)wk ( j = 1,2). 
fcgNJ 

Since there is a one-to-one correspondence between the Walsh-series, the coefficient se-
quences, and the dyadic martingales, for all dyadic martingales F £ Mo(P) there is 
exactly one dyadic martingale G £ Mo(P) such that the Walsh-Fourier coefficients of 
which are the arithmetic mean of the Walsh-Fourier coefficients of the dyadic martingale 
F, namely for which 

. 71 — 1 

(3.4) G{n) := 0 (n £ Nj, An = 0), G(n) := — £ F(k) (n £ P ' ) , 
n * k=o 

where n* = n j • n2 , An = min(ni ,n 2 ) , if n £ P2 , and An = n, if n £ P P = 1,2,.... The 
operator C : Mo(P) —» A4o(F), which is defined by the instruction 

(3.5) CF := G (F£Mq(P)) 

is called dyadic Cesaro operator. It is obvious that in this manner we defined a linear 
operator on Mq(V). 

We interpret the adjoint operator C* of the operator C in the first step on the space of 
the stationary martingales A4s(F) , that is, we consider such martingales, whose terms are 
constant from a certain index (there is no £ N such that fn = /„„, for n > no). We define 
the martingale G := C*F (F £ A4s(F)) in such a way that its Walsh coefficients are 

(3.6) G(n) := £ (n £ N>). 
k:n<k 

Since F(k) = 0 except of finitely many index k £ NJ hold, the above mentioned sum makes 
sense. The mapping C* is called the Copson operator. We introduce the bilinear functional 
(2.1.7) 

oo »1 
(F,G) = YHk)G(k)= lim / fngn (F = ( /„ , n £ N) £ Mo,G = (gn, n £ N) £ M) 

— J n - > o o / „ 
k=a 

on the space Ad(F) x M.o(IJ). The name adjoint operator is explained by the following 
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Lemma 3.1. The adjoint operator of the Cesaro operator C is the Copson operator C* 
defined under (3.6) with respect to the bilinear functional (2.1.7), namely 

(3.7) (CF,G) = (F,C*G) (F E M0(P), G £ MS(P)). 
We study the operators C and C* on several subspaces of the dyadic martingales. We 

give first an integral form of the Cesaro operator by showing that the martingale CF = 
G = (gn,n E BP) is of the form 

(3.8) gn(x) = J fn(t)K^(x,t)dt (x E P,F = ( f n , n E BP) £ M0(P))m, 
P 

where the kernel function Kn^ can be expressed in terms of the modified dyadic dif-
ference operator. Namely, denote by Xs the characteristic function of the interval 
Js := [ 2 - s , 2 ~ s + 1 ) (s E P ' ) and let 

(3.9) W<j) := S2n(W<j)) (n E BP) 

be the 2 n th partial sum of the series 

fce P»' 

We show that the kernel fun« 
:tion Kij) G L\P x P ) is of the form 

(3.10) / # > ( * , 0 = E X-(0(A;.1Wi">)(® + t) (x,t G F) , 
«61P» 

where in the case j = 1 the modified dyadic one-parameter difference operator is defined 
by 

(A' f ) ( x ) := E 2fc"] ( f ( x ) - f(x + 2-k~»)) - 2n~1(f(x) - f(x + 2 — > ) ) . 
k=0 

(For the definition of the two-parameter operator, see [3], [12].) We denote the dyadic 
addition by the symbol -j-. Since the supports of the functions Xs are disjoint, the sum in 
(3.10) converges absolutely at all points (x,t) E F x F . It is not difficult to verify that the 
sum in (3.10) is convergent in the L\F x F)-norm, and that I&3) E Ll(P x F) . 

Beside the kernel functions just introduced we shall use the function 

( 3 . 1 0 ' ) K^(x,t):= E X ^ ) ( A . R - I W < Y > ) ( ^ + <) ( M € F ) . 
.9 € 

Similarly to that what we have said above, we have K ^ £ L1(I J) . Motivated by these we 
define the integral operators 

(3.11) (IC{
n

j)h)(x) := J h(t)(Kij)(x,t)dt, h)(x) := J h(t)KU)(x,t)dt 
dj n> 

(:/; G I ' , 11. G Ll(P),j = 1,2), where L(,(F) consists of the functions in L ^ F ) , whose 
integral is zero over the interval F . 
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L e m m a 3.2. . The Cesaro transform CF := G = (gn, n £ N) of the dyadic martingale 
F = ( f n , n £ N J ) £ A D O ( F ) can be represnted in the form 

(3.12) gn = !C{nj)fn (n £ N"7). 

The operators ldj) : £* (F) -» L\V) (n £ N-7) are uniformly bounded, and the operator 
K.S^ : L1(V) —> ¿'(F) is bounded, that is, there exists a constant C > 0 such that 

(3.13) HAC^Hi < CWhh and ||/C<J>h||i < C\\h\\, (h £ L ^ V f n £ N>). 

In the following we consider the Cesaro operator on the subspace of the space of the 
I? -bounded martingales: 

A4 J (F ) := {F = ( f n , n £ W) : sup | | /B | | , < oo}. 

This subspace can be identified with the space of the functions of bounded variation on the 
interval F , and the corresponding Walsh series can be identified with the Walsh-Fourier-
Stielties series of the functions of bounded variation. 

T h e o r e m 3.1. The restriction of the Cesaro operator C onto the space of the L1 -bounded 
martingales is a bounded linear operator on Ad1 (I-7). 

Taking into account the connection between the spaces Ad 1 (F) and BV(F), we obtain 
the following 

Coro l l a ry 3.1. Let <& £ BV(V) be a function of bounded variation, and 

ak := [ wkd$ (keNj) 
JV 

the Walsh-Fourier-Stieltjes coefficients of <&. Then there exists a function V& £ BV(F) of 
bounded variation such that for the Walsh-Fourier-Stieltjes coefficients we have 

" o <e<k 

In the following we shall restrict the domain of the Cesaro operator. We proved in 
Lemma 3.1 that the integral operator K.^ : L ^ F ) —> L1 (F) , which is defined by means of 
the kernel function K ^ (see (3.10')), is bounded. We show that this operator is precisely 
the Cesaro operator on the space L j ( F ) . 

T h e o r e m 3.2. The operator fC^ : £ q ( F ) —> L1 ( F ) is identical with the restriction of 
the operator C onto the space F), that is, 

(3.2.1) (&»f)(k) (k 6 6 Lo(V')>j = W 
e<k 
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There is a strong connection between the one-parameter Cesaro operator C, which is 
defined on the space of martingales, and the Cesaro operator C, which is defined on the 
space of integrable functions, since for all martingales F = ( f n , n £ N) we have 

(3.2.3) (CF)n = En(Cfn) (n £ N), 

where 
( E n f ) ( x ) - . = [ f(t)dt (x€l,n€N) 

is the conditional expectation of / . Here I n (x) denotes the dyadic interval of length 2 - " , 
which contains x. The following notation is suggested by (3.2.3). Let $ : ir1 (I) —» A1 (I) 
be bounded linear operator. We call the operator $ defined on the spaces of martingales 
for which 

(3.2.4) ( « F ) m := Em($fm) (m <E N,F = ( / „ , n £ N) e M) 

holds, the diagonal extension of $ to M.. 
We studied the following problem: under what conditions imposed on the diagonal 

extension we obtain dyadic martingales from diagonal martingales. In connection with 
this we introduce the following notion. We say that the operator $ : A1 (I) —> JL1 (H) is 
spectrum-preserving if («/)T&) = 0 (k = 0 , . . . , 2 m — 1) follows from the conditions that 
/ 6 A1, m £ N and f ( k ) = 0 (Jfc = 0, . . . ,2m - 1). 

It can be proved that if the operator $ is spectrum-preserving, then the operator $ maps 
martingales to martingales, and the operator $ is the extension of the operator $ from 
AJ(H) to Ad0(I). Indeed, if the function / £ A1 is integrable, then = ( E m ( $ f ) , r n £ N) 
(see [15]). 

Starting with the properties of the Cesaro operator, we introduce a new class of oper-
ators, that of the local convolution operators which will be denoted by the symbol Af^ 
( j = 1,2). We define the elements of Af^ by a sequence of dyadic convolution operators 

} ' • — } * <i>n ^ (n E N7). We assume that the functions <f>7 (k £ N) are integrable, 
and in the two-parameter case the functions in question are the Kronecker product of the 
one-parameter functions, namely, 

(3.3.1) <¡>7 = x ^ (n = ( m . n a ) E N2). 

The operators <1?̂  E A f ^ is of the form 

(3-3.2) « « > / :== £ *S? W ) ( / G L i ( P ) , j = 1,2), 
n.e Wi 

where x». ( E P7 ) is the characteristic function of the interval ./„. 
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The convolution operators map the class of the Walsh polynomials onto itself, and 

(3.3.3) <*?>/,*) = ( f ^ g ) ( / € L\V),g £ P<» ,n £ 

where 

(/,<?)= f f(t)g(t)dt 
Jli 

denotes the usual inner product of / and g. The class AfW of operators contains the 
convolution operators. Namely, if = ... = <j>n ^ = ... = then = / * <f> .̂ 

The maximal operator of the sequence , n £ NJ) of operators is denoted by , 
and defined by 

(3.3.4) * ? > / = = sup |/ |*|<^'>l-
n g N ' 

It can be verified that a local convolution operator is spectrum-preserving, if the Walsh-
Fourier coefficients 4>j(k) (k < 2 ' - 1 ) are independent from j . 

The following theorem applies to the operator 

T h e o r e m 3.3. i) If for the sequence 
(n £ NJ) of functions generating the operator 

$0> G tfU) we have 

(3.3.5) M := sup H ^ l h < oo, 
rag ffJ 

then is a bounded linear operator from L1 (P) to L1 (F), and 

(3.3.6) | |*<»/lli < M\\f\U ( / e ¿¿ (F) ) . 

ii) Let 1 < p < oo, and 1/p + 1/p' = 1. If is a bounded operator from ¿ P ' ( F ) to 
Lv (F) , that is, if for some constant M* > 0 we have 

(3-3.7) \\*lj)9\\P> < M;\\g\\p. (g £ ¿ P ' ( F ) ) , 

then is a bounded linear operator from ¿ P ( F ) to ¿ P ( F ) , and 

(3-3.8) \\*U)f\\P<M;\\f\\p ( / G ¿ P ( F ) ) . 

If we apply this theorem for the Cesaro operator, then we get the following 

T h e o r e m 3.4. 
i) The Cesaro operator is a bounded linear operator from ¿ P ( F ) to ¿ P ( F ) if 1 < p < 

oo. 
ii) The Cesaro operator is not hounded from ¿ ° ° (F ) to ¿ ° ° (P) . 
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We define the adjoint operator C* of the Cesaro operator on the set of the Walsh-
polynomials V(P). Since 

Cf£L\(V) if feLl(P), and C*g £ V(V), if g £ V(P), 

by Lemma 3.1, (3.7) and (2.1.7) we get that 

(3.4.1) (f,C*g) = (Cf,g) ( / £ Aj (F) ,g £ V(V)). 

Relying onthis and using the well-known duality principle, we show that the operator 
C* can be extended from the subspace V(P) to a bounded operator C* : Lp(P) —» Lp(F) if 
1 < p < oo. In the case p = oo we consider the closure of the subspace "P(F) with respect 
to the A°°-norm, instead of the space A°°(F), and we denote this space by -X"°°(F), and 
in case 0 < p < oo let be Xp(P) := Lp(P). 

T h e o r e m 3.5. There exists a constant Cp > 0 depending only on p for all 1 < p < oo 
such that 

(3-4.2) l|C'*ll,<C,11*11, ( * € 

The Copson operator can be extended from "P(F) to a bounded linear operator C* : 
Xp(P) -» Xp(P), such that 

(3.4.3) = £ (g € Xp(I7"), k £ F) . 
k<e 

For the function w\ £ A1 (I), we have 

((1*1^)1» = £ ^ = °o ( * € N ) . 
k<e 

This shows that the condition p > 1 in Theorem 3.5 can not be replaced by the condition 
p> 1. 

The dyadic Cesaro and Copson operators on the dyadic Hardy-
and BMO spaces 

In this paragraph we consider the dyadic Cesaro operator on the dyadic Hardy space 
H(l) , and its adjoint operator, the dyadic Copson operator is considered on the closure 
of the space of the dyadic step functions with respect to the BMO-norm, on the space 
VMO(I). We show that these operators are bounded. These statements follow from those 
statements that concern the local convolution operators, which are the consequences of the 
properties of the kernel functions. For the proofs of the theorems of this chapter, see [11]. 
[15]. 
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We consider first the one-parameter operators introduced in the previous section, which 
are of the form (3.3.2) and belong to AT<1>. In the following we also assume that the 
generating sequence := (pi1^ (n € N) of the operator $ := obeys the condition 
(3.3.5). Then 

(4.1.1) = 

and this series is convergent in 
-norm. By Theorem 3.3 $ : T 1(I) —> L ^ I ) is a bounded 

operator, and the inequality (3.3.6) holds. The following theorem is connected with the 
restriction of this operator onto the Hardy space H(I) C L^ll). 
T h e o r e m 4.1. Assume that for the generating sequence (j)n (n £ N) of the operator 
$ g AW condition (3.3.5) holds. If one of the following three conditions 

i) jn(k) = 0 CO < k < 2n,n £ P), 
ii) (¡>n = D2n (n £ P), 

iii) <j>n = 2 n (S 2 -W - 5 2»-1W) 

holds, then $ is a bounded linear operator from H1 (I) to H1 (I), and 

(4-1.2) H'S/Hh! < M , | | / | | W I ( / € # ' ( I ) ) , 
where M\ is a constant, which depends on the constant M occurring in condition (3.3.6). 

Applying this theorem yields the following 

T h e o r e m 4.2. The dyadic Cesaro operator is bounded from H1 (I) to H1 (I), that is, there 
exists a C > 0 constant such that 

IIC/II«. < C | | / | | h . ( / e h 1 (I)). 

The BMO space is an intermediate one between the spaces Lp (p < oo) and L°°: 

L W ( I ) C BMO(I) C Lp(I) (p < oo). 

We have seen that C : Lp(I) —» LP(I) is bounded if p < oo, and is not bounded if p = oo. It 
comes naturally the question: What can we say about the restriction of C onto the space 
BMO? The following theorem answers this problem. 

T h e o r e m 4.3. The Cesaro operator is not bounded from the space VMOfl ) to the space 
BMO(I). 

We start with the Walsh-series 

iO](x) w2(x) + w3(x) ti>2»-i(a:)H 1- it»2»-i, 
f(x) = a, - y - + a2 + • • • + fl„ — + • • • 

oc 2U — i 

= E « » 2 - " E wk(x), 
n= I k=2'l~ 1 
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where an = l/y/ñ (n £ P). It. can be verified that / £ VMO, and Cf $ BMO. 
It follows from duality considerations, similarly as in Theorem 3.5, that the dyadic 

Copson operator is bounded from BMO(I) to BMO(I), and is not bounded from H(l) to 
77(11). 

In the following, we shall give sufficient conditions for the boundedness of the diagonal 
extensions of the local convolution operators on the dyadic Hardy spaces Hp (1/2 < p < 1). 
At the same time, we present a new proof in the case p = 1 for Theorem 4.1. 

Let é = (<j>n,n £ N) be a sequence of integrable functions. We introduce the following 
quasi-norm for 0 < p < 1: 

(4.2.1) U \ \ w : = s u p ( Y ( f \ón(t) \d^)P 

In particular, if p = 1 and <j> is a martingale, then ||<^||(i) is equivalent to the usual L 1 ^ ) -
norm of <f>-

T h e o r e m 4.4. Let 1/2 < p < 1. Assume that $ is a diagonal extension of the local 
convolution operator $ (see (3.2.4)), and for the generating sequence ó = (<¡>n,n £ N) one 
of the following conditions holds: 

(i) ón(k) = 0 (0 < k < 2n,n £ N), H^H(p) < °o; 
(ii) <j>n = D2n (n £ P) ; 

(iii) <j>n = 2 n ( 5 2 " W — S2»-i W). 

Then $ is bounded on the space Hp(I), that is, there exists a constant Cp depending only 
on p such that 

II^IIHP <Cp\\F\\H, 
holds for all F £ HP(I). 

By what has been said before Theorem 3.4, the local convolution operators playing role 
in Theorem 4.4 are spectrum-preserving, which means that their diagonal extension is an 
M —> M operator, indeed. 

It can be proved that the Cesáro operator can be represented as a sum of three operators, 
which statisfy one of the conditions of Theorem 4.4 if 1/2 < p < 1. 

T h e o r e m 4.5. The dyadic Cesáro operator is bounded on the dyadic Hardy space HP(I) 
if 1/2 <p < 1. 

The dyadic Cesaro operator on Lipschitz spaces 

In this paragraph we consider the dyadic Cesaro operator on Lipschitz spaces. We prove 
that the operator in question is bounded on the space Lip(ct,p) if 0 < cc < 1, 1 < p < oo, 
a. < 1 /p. Furthermore, we show that this condition can not be weakened if p > 1. For the 
proofs of these theorems, see [14]. 
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The Lv-modulus of continuity (1 < p < oo) of an / £ Lp[0,1) is defined by 

«'(/,*): = ^ p ||/ -Tyf\\p (S> 0), 
y<6 

where r means the dyadic translation operator. For arbitrary a > 0 we call the space 

Lip(a,p) := { / £ Lp : up(f,6) = 0(Sa) as 8 0} (1 < p < oo) 

Lipschitz space (or Holder space). It is known (see Sch-W-S-P [30] p. 189 Th.3) that a 
function / belongs to Lip(or, p) (1 < p < oo) if and only if 

(5.1.1) | | / - Enf\\p = 0(2~na), n oo (at > 0). 

We introduce the norm 

(5-1.2) ll/llLip(«,rt := sup 2 n a | | / - Enf\\p. 
reg N 

Consequently, the function / belongs to Lip(a,p) if and only if ||/||Lip(a,p) < 
In the following, we will estimate the 2 n th partial sum at the point zero of the Walsh-

Fourier series of the functions belonging to the spaces Lp and Lip(a,p), respectively. 

Lemma 5.1. If f £ Lp[0,1), then 

re —1 -

|(£re/)(0)| < £ 2 ^ ' p \ \ f - EkfWp + 1/(0)1 (1 < p < oo, - := 0). z—' oo 

Corol lary 5.1. If ot < l/p, 1 < p < oo, / £ Lip(a,p) and / (0 ) = 0, then 

\(Enf)(0)\<MPia-2^Pp-^\f\\Upia>ph 

where the constant MPiQ depends only on p and a. 

For the Lp-norm of the partial sums 

^ = 2 £ T ( n 6 N ) 
k=1 

of the Walsh-Fourier series of the kernel function of the dyadic integral W the following 
estimates are true: 

L e m m a 5.2. If n £ N, 1 < p < oo, then 

\\Wn+i-Wn\\p>l-2-«-lp. 
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Lemma 5.3. If 1 < p < oo, then there exist contstants 0 < cp < Cp < oo. for which 

The following theorem establishes the connection between the dyadic Cesaro operator 
and the operator of the conditional expectation. 

Lemma 5.4. If f £ Ao(I), ^ien 

By means of the above mentioned lemmas we prove the following two theorems. 

Theorem 5.1. If 0 < a < 1, 1 < p < oo and a < l/p, then the Cesaro operator is 
bounded on the space Lip(a. p). 

In the following theorem we prove that the condition a < l/p can not be weakened if 
p > 1. 

Theorem 5.2. For all 1 < p < oo there exists a function f £ Lip(\/p,p) such that Cf 
does not belong to the space Lip(l/p,p). 

We show that for the function 

we have / £ L i p ( l / p , p ) if p > 1, and C f £ L ip ( l / p ,p ) . 

The dyadic Cesaro operator on R+ 

We consider the continuous equivalent of the Cesaro operator in this section by replacing 
the Walsh-Fourier coefficient by the Walsh-Fourier transform. We give an integral form 
of the Cesaro operator in the form of a sum of local convolution operators. Similarly to 
the previous sections, we consider the interval R+ := [0, +oo), in place of the dyadic field 
(which is represented by this interval) in our investigations. For the proof of the theorems 
of this chapter see [16]. 

We interpret the Walsh-Fourier-transform with the help of the generalized Walsh func-
tions iby (y £ M+) according to the characters of the dyadic field. Namely, let 

2 < IIw - Wn\\p < Cp2~n/p, 

and if p — 1. there exits a constant C\, for which 

\\W-WN\U <CJ2-N. 

Cf - E n ( C f ) == C(f - E n f ) + ( E n f ) ( 0 ) • (W - W n ) ( n £ P ) . 

oo 

Tfryix) = ( - 1 ) 7 
E xjy-j-— oo 
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where the Xj,yj £ {0,1}() £ Z) are the binary coefficients of the numbers x,y £ R + in 
the dyadic representations 

E
xk _ yk 

2*+i ' y ~ 2*+i ' 
/t 62 k£Z 

In particular, if 

3*0 3*1 i 

x = Y + 22 + " ' + 2Ï+Ï" + ' " e a n d V = V*+y*2 + --- + y-i-I2' + • • • e N, 

then it follows from the interpretation (2.2.5) of the Walsh functions that 

wy(x) = if>y(x) (a; £ H,y £ N) , 

• and thus the functions ipy can be regarded as the extensions of the functions wn . It follows 
easily from the definition tha,t if k £ N, then the function ifik is periodic of period 1. 

The Walsh-Fourier transform of the function / £ £ 1 ( R + ) is defined by 

oo 

(6.1.2) f ( x ) := J f(t)xfx(t)dt (x £ R+). 
o 

If the support of / is a subset of I , and y £ N, then we get back the Walsh-Fourier 
coefficient of / . It is known that the Walsh-Fourier transform can be extended from 
L1(R+) n £2(M+) to a unitary map T : L2(R+) £ 2 (R+) , and 

2 n 

( T f ) ( x ) = l im / f ( t ) i f x ( i ) d t f o r a .e . x £ R + . 
n~*°°J o 

In the following we will use that decomposition of the interval [0, t] given in the following 

Lemma 6.1. If tk,k £ Z are the binary coefficients of t £ R+, and 

Ak :=[2~k~\2-k) (k £ Z), 

then 
(J (t + A*) = [0,t) 

kez,tk=i 

holds for almost every t £ M+, where t + Ak = {i + x : x £ A*}. 

The generalized Walsh-Dirichlet kernel is defined by 
i. 

D°t(y)= l^x(jj)dx ( ¿ , y € R + ) . 
(i 
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If t = n £ N, then Dt vanishes outside the interval I, and it is equal to the ordinary 
Walsh-Dirichlet kernel on L Namely, 

Do(vs f M y ) = Dn(y) (ye I), 
t K ) l o ( y e ( 1 ,00)) 

for all t = n £ N, and 

(6.1.5) D°fc = 2*X[o,2-fc) 

for all k e Z, where Dn denotes the ordinary Walsh-Dirichlet kernel (see Sch-W-S-P [30] 
p. 428 Ch.9.4). 

We prove that for every function / £ L1(R+) there exists exactly one function g £ 
Z1(M+), for which 

1 fx -
(6.2.1) g(x) = - f ( u ) du (x > 0). 

x Jo 

The map C from L 1 (R+) to I 1 ( R + ) defined by Cf := g is called the dyadic Cesa.ro operator 
on T1(R+). We shall show that C can be written as the sum of certain local dyadic wavelet 
operators. To describe these kernels of the wavelet operators, we start with the Walsh-
Fourier transform of the function a(t) := (t — [t])/t (t € R+): 

f2" t - \t\ 
(6.2.2) A(x) := (Fa)(x) = lim / l-Jwx(t)dt (x £ R+). 

n-r00 J0 t 

We shall prove in Lemma 6.2 that A £ L1(M+). To this end we introduce three new 
functions: 

n n 

fn(x):= Y 23-nYD°Ax + 2~i^ 
j=—00 i=j 

n 00 

gn(x):= Y 2jY2~iD°Ax + 2~jl 
j = —00 i=n 
00 

hn(x)-. = Y2n~i+2D°Ax\ 
i=n 

where n £ Z, and x £ K+. 

L e m m a 6.2. For all x £ R+ and n £ Z we have 

(6.2.3) |2"A(2"x)| < fn(x) + gn(x) + hn(x), 

consequently A £ L1(R+). 

In the proof of the most, important theorems of this paragraph we shall use the following 
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L e m m a 6.3. The maximal functions 

F*h := sup\h\ *\fn\. and G*h := sup |/i| * \gn\ 
n£Z n£Z 

are of weak type (1,1) and of strong type (oo, oo). 

Let a(x) := (x — [x])/x , 

(6.2.10) t>(x) := 2a(x) - a (2" 'x ) , V(x) := (Fv)(x) (x £ R+), 

and denote by Xn (n G Z) the characteristic function of the interval [ 2 - n ~ 1 , 2 _ n ) . Then 
by (6.2.2) and by the well-known properties of the Walsh-Fourier transform we get that 

V*(x) = 2(A(x) - A(2x)) (x > 0). 

We introduce the wavelet operator 

(6.2.11) ( W n / ) ( x ) : = 2n f(t)V(2n(x + t))dt ( / £ ¿ ' , n £ Z), 
Jo 

and then we form the following local convolution operator as follows: 

(6-2.12) W / : = £ W „ ( / X n ) ( / G L 1 ) . 
n£Z 

It is easy to see that the series in (6.2.12) converges a.e. as well as in ¿ ' -norm. We prove 
in Theorem 6.2 that the operators W and C are equivalent on the space ¿ ' ( R + ) . To prove 
the boundedness of the operator W in Lp := ¿ P (R+) , we use the maximal operator 

(6.2.13) (V/)(x) := sup 2" [ \f(x+t)V(2nt)\dt (x £ R + ) . 
REGZ J o 

Denote by | | / | |p the ¿"-norm of / £ LP(R+). 

T h e o r e m 6.1. The maximal operator V is of weak type (1,1) and of strong type (q,q) 
for every 1 < q < oo, that is, 

(6.2.14) \\Vf\\q < c;n/||9 (/ £ ¿ ' , 1 < q < oo), 

where the constant C'q depends only on q. 

T h e o r e m 6.2. The operator W is bounded from ¿' to ¿' and coincides with the dyadic 
Cesaio operator C, that is, 

(6.2.16) ( w / ) (*) = ! £ f(t)dt (x > 0 , / £ L1). 
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Moreover, W is bounded from Lp to Lp for every 1 < p < oo, that is, 

(6.2.17) \\Wf\\p < Cp\\f\\p (f 6 Lp), 

where Cp = C'q, 1/p + 1/q = 1 and C^ is from (6.2.14). The operator W is not, bounded 
on L°°. 
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