
EXTENDED ABSTRACT OF DOCTORAL THESIS

^>Sl2q

Combinatorial algorithms for the PNS and
online scheduling problems

Csanád Imreh

SZEGED
2001

1 Introduction
For many optimization problems their structures make it possible to develop
fast algorithms for their solution by using combinatorial ideas. On the other
hand, the original problem is often too difficult to find efficient algorithms.
In these cases, some combinatorial ideas can be used to develop algorithms
which can solve particular cases of the problem, or algorithms which do not
solve the problem, but give an approximate solution which is close to the
optimal one in some sense. In the first part of this work, we study a hard
optimization problem, called PNS problem. For solving this problem, we
develop and analyse some algorithms based on combinatorial ideas.

Another field where such algorithms are very useful is the online compu­
tation. In the second part of this work, we investigate three different online
problems which are closely related to online machine scheduling. We develop
and analyse some online algorithms for these problems, and also present some
general lower bounds.

2 The PNS problem
In a manufacturing system, materials of different properties are consumed
through various mechanical, physical and chemical transformations to yield
desired products. Devices in which these transformations are carried out are
called operating units, e.g. a lathe or a chemical reactor. Thus, a manu­
facturing system can be considered as a network of operating units which
is called process network. A process design problem in general, and flow­
sheeting in particular mean to construct a manufacturing system. A design
problem is defined from a structural point of view by the raw materials,
the desired products, and the available operating units, which determine the
structure of the problem as a process graph containing the corresponding
interconnections among the operating units. Thus, the appropriate process
networks can be described by some subgraphs of the process graph belonging
to the design problem under consideration. Naturally, the cost minimization
of a process network is indeed essential.

The importance of process network synthesis (for short PNS) arises from
the fact that such networks are ubiquitous in the chemical and allied in­
dustries. The foundations of PNS and the background of the combinatorial

1

model studied here can be found in [11], [12].
In the combinatorial approach, the structure of a process can be described

by the process graph (see [12]) defined as follows.
Let M be a finite nonempty set, the set of the materials. Furthermore,

let 0 / O C p'(Ai) x with M fl O = 0, where p'(M) denotes the set
of all nonempty subsets of M. The elements of O are called operating units,
and for an operating unit, u = (a,j8) € O, a and P are called the input-set
and output-set of the operating unit, respectively. The pair (M, O) is defined
to be a process graph or P-graph in short. The set of vertices of this directed
graph is MUO, and the set of arcs is A = AiUA2, where Ai = {(X, Y): Y =
(a,p) 6. O and X 6 a} and A2 = {(Y,X): Y = (a,P) G O and X 6 P}.

Now, let o C O and S C M be arbitrary sets. Let us define the following,
functions on the sets o and S:

matm(o) = |J a> = (J
(a^)Eo (aJJ)eo

mat(o) = matm(o) U mafml(o'),

and

A(S) = (u : u 6 OScS n maimt{o) / 0}.

Let the process graphs (m, o) and (Ai, O) be given, (m, o) is defined to
be a subgraph of (M, O), if m C M and o C O.

Now, we can define the structural model of PNS for studying the problem
from a structural point of view. For this reason, let M* be an arbitrarily fixed
possibly infinite set, the set of the available materials. By a structural model
of PNS we mean a triplet M = (P,R,O), where P, R, O axe finite sets,
0 / P C A/* is the set of the desired products, R C M* is the set of the raw
materials, and O C p'(M') x is the set of the available operating
units. It is assumed that P H R = 0 and M* n O = 0, moreover, a and j8 are
finite sets for every (ct,P) = u G O.

Then, the process graph (M,O), where M = U{aU£ : (a,P) G O},
presents the interconnections among the operating units of O. Furthermore,
every feasible process network, producing the given set P of products from
the given set R of raw materials using operating units from O, corresponds to
a subgraph of (M,O). Investigating the corresponding subgraphs of (M,O),

2

therefore, we can determine the feasible process networks. If we do not
consider further constraints such as material balance, then the subgraphs of
(M, O) which can be assigned to the feasible process networks have common
combinatorial properties. They are studied in [12] and their description is
given by the following definition.

A subgraph (m, o) of (M, 0) is called a solution-structure of (P, R, O) if
the following conditions are satisfied:

(Al) P Ç m,
(A2) VX e m, X G R <=> no (Y, X) arc in the process graph (m, o),
(A3) Vy0 6 o, 3 path [y0> KJ in (m, o) with Yn G P,
(A4) VX G m, 3(o, ft) 6 o such that X G a U fl.

The set of the solution-structures of M = (P, R, O) will be denoted by
S(P,R,O) or S(M).

PNS problem with weights

Let us consider PNS problems in which each operating unit has a weight.
We are to find a feasible process network with the minimal weight where by
weight of a process network we mean the sum of the weights of the operating
units belonging to the process network under consideration. Each feasible
process network in such a class of PNS problems is determined uniquely from
the corresponding solution-structure and vice versa. Thus, the problem can
be formalized as follows:

Let a structural model of PNS problem M = (P, R, O) be given. More­
over, let w be a positive real-valued function defined on O, the weight Junc­
tion. The basic model is then

(1) min{$2 w(«) = (”». °) 6 S(P, R, O}}.
u€o

In this work by PNS problem we always mean PNS problem with weight,
and the solution-structures are also called feasible solutions. It is known (see
[7]) that this PNS problem is NP-hard. In general, there are three basic
approaches to attack NP-hard problems.

The first approach is to develop exponential time algorithms for solving
the problem. In case of PNS problem, some exponential time algorithms

3

based on the Branch and Bound technique were developed and studied in
[14] and [15].

Another approach is to investigate specially structured instances which
can be solved efficiently. These classes are called well-solvable classes. In
case of PNS problem, well-solvable classes have not been developed earlier.
The first well-solvable classes are presented in [5], [18], and [19].

The third approach is to establish fast (polynomial time) algorithms
which do not guarantee an optimal solution in general, but always result
in a feasible solution which is close to the optimal solution in some sense.
Such algorithms, called heuristic algorithms or heuristics, are important for
several reasons. The feasible solutions found by such algorithms can be used
in exponential time algorithms, furthermore, there is often not enough time
to find an optimal solution or the size of the problem is too large to use
an exponential algorithm. In these cases, heuristic algorithms can be useful
again. For the PNS problem, heuristic algorithms have not been studied
earlier. The first heuristic algorithm for this problem is presented in [6].

2.1 Some well-solvable PNS classes
In this part we present our results on the well-solvable PNS classes. The
material of this part is based on [5], [18], and [19]. To present these results,
we need the following definitions.

A PNS problem is called turning back if for every material, there exists at
most one operating unit producing this material. A PNS problem is called
l-hierarchical if there exist partition Mo = R, Mi,..., Mi = P of M and
partition Oj,..., Oi of O such that 0« consists of operating units having input
materials from Af,_i and output materials from Mi, for t = 1,..., I. A PNS
problem is called k-wide ¡-hierarchical if it is an l-hierarchical problem, and
|Mi| < k is valid for i = 0,..., I; furthermore, |0,-| < k holds for i = 1,..., I.
A PNS problem is called (c, I)-ordered if there exist partitions Mo = R,...,
Mi = P and Oi,..., Oi, of M and O, respectively, such that Oi contains
only operating units having input materials from U{Afj: t — c < j < i} and
output materials from U{ Af,: i < j < *+c}, for i = 1,..., I. A (c, l)-ordered
problem is called k-wide if |Mi| < k and |0j| < k hold for t = 0,...,l,
j = 1,..., I. A PNS problem is called integer if every operating unit has a
positive integer weight.

4

We developed the well-solvable classes included in the following theorems.

Thesis 1
Theorem 2.1.1 ([18]) If a PNS problem is turning back, then there exists

a linear time algorithm which decides whether the problem has a feasible
solution, and if it does, then the procedure provides an optimal solution.

Theorem 2.1.2 ([5])Z/a PNS problem is k-wide ¡-hierarchical, then there
exists an algorithm with time complexity 0(1) which gives an optimal feasible
solution of the problem, or it gives that the problem has no feasible solution.
The constant in O may depend on k exponentially.

Theorem 2.1.3 ([19]) An integer ki-wide (c,l)-ordered problem can be
solved by an algorithm having time complexity 0(1 • |M| ■ |0|), where the
constant may depend exponentially on ki + kl(c — l)c.

2.2 Heuristic algorithms for the PNS problem
In this part we present our results on the heuristic algorithms for the PNS
problem. This part is based on [6]. We introduce two heuristic algorithms
here. The basic ideas of both algorithms are the same. They can be con­
sidered as the generalizations of the well-known Chvatal’s algorithm (see [8])
for the set covering problem. They use a cost function c defined in [14]. The
algorithms select one operating unit in each iteration step. The difference
between the two algorithms is in the rule for selecting the operating unit.
The algorithms work with two sets, the set of the selected operating units
and the set of the required materials. At the beginning of the procedure,
the set of the selected operating units is empty, and the set of the required
materials is P. Later, in each iteration step, we extend the set of the selected
operating units with one operating unit and delete the output materials of
this operating unit from the set of the required materials. Moreover, every
input material of the operating unit considered, which is neither raw material
nor input material of any of the selected operating units, is placed into the
set of the required materials. The procedure terminates when the set of the
required materials becomes empty. We obtain the feasible solution (m,o),
where o is the set of the selected operating units, and m = mat(o). For
completing the description of the algorithms, we have to define the rules for

5

selecting the succeeding operating unit. We select an operating unit v for
which the quotient

w(u) + the inputs' cost of v
the number of the required outputs of v

is minimal. The difference between the two algorithms is in the calculation
of the inputs’ cost of an operating unit. In the first algorithm, called Asumc,
this cost is estimated by c(X). In the second algorithm, called
Amaxe, this cost is estimated by max(c(X): X 6 mat’n(u)}.

The algorithms are studied by worst-case analysis. To present our results,
we recall the following definitions. For a heuristic algorithm A, C is called
a worst-case bound of the algorithm on a class P of instances if for every
instance from P, the algorithm gives a feasible solution with at most C
times higher cost than the optimal cost. C is called tight if it is the smallest
possible worst-case bound. We investigated the worst-case bounds for some
particular PNS classes. To present the results, we have to define them. A
PNS problem is called a PNS1 problem if every material is a raw material or
a desired product; moreover, every operating unit produces desired products
from raw materials. For each fixed positive integer k, a PNS problem belongs
to the class Si, if every operating unit is of separator type (it has only one
input material), the graph of the problem does not contain a cycle, and the
number of the desired products is exactly k.

For the worst-case analysis of the algorithms, the following theorems are
valid.

Thesis 2
Theorem 2.2.1 ([6]) There is no polynomial time heuristic algorithm

with constant worst-case bound for the class of PNS problems unless P=NP.

Theorem 2.2.2 ([6]) For any problem from the PNS1 class, the algo­
rithms Asumc and Amaxc give the same result. Furthermore, they have the
tight worst-case bound E™ 17 on the PNS1 class where m is the maximum
size of the output sets.

Theorem 2.2.3 ([6]) For any problem from the class S/,, the algorithms
Asumc ond Amaxc give the same result. Moreover, they have the tight worst­
case bound k on St, for every positive integer k.

6

3 Online scheduling
In online computation, an algorithm must produce decisions based only on
past events without secure information on future. Such algorithms are called
online algorithms. Online algorithms have many applications in different
areas, such as computer science, economics and operations research.

One basic approach for studying online algorithms is the average case
analysis where we hypothesize some distribution on events and we study the
expected total cost. Another approach is the competitive analysis where on
each input sequence the cost produced by the online algorithm is compared
to the offline (in the offline version we have the full knowledge of future)
optimal value. We will use the competitive analysis, therefore, we give the
definition of the competitive ratio below.

An online minimization algorithm is C-competitive if the object value of
the solution produced by the algorithm is never greater than C times the
offline optimal value. The competitive ratio of an algorithm is the least C
such that the algorithm is C-competitive. The competitive ratio of a problem
is the best competitive ratio any online algorithm can achieve.

The problems we investigate are closely related to parallel machine schedul­
ing, therefore, we present its basic model here. In the simplest model, we
have a sequence of jobs, each of which has a processing time, and we have to
process them on the available uniform machines. A schedule specifies for each
job a machine and a time interval on the machine when the job is processed
on the machine. The length of the time interval must be the processing time,
the starting and ending point of the time interval are called the starting and
finishing time of the job. A schedule is feasible if for each machine the time
intervals do not overlap. Our goal is to minimize the maximal finishing time.
Sometimes, it is allowed to preempt the jobs. In this case, we have to specify
for each job a sequence of machines with not overlapping time intervals (one
machine can have more time intervals), where the total length of the time
intervals must be the processing time.

Probably the most fundamental example of an online machine scheduling
problem is where the jobs arrive one by one. In this problem, we have a
fixed number m of identical machines. The jobs and their processing times
are revealed to the online algorithm one by one. When a job is revealed, the
online algorithm must irrevocably assign the job to a machine. The starting

7

time of the job is the completion time of the previous job on the machines.
Our goal is to minimize the maximal completion time. By the load of a
machine we mean the sum of the processing times of all jobs assigned to the
machine. It is easy to see that in this case the maximum load is the maximal
completion time, this value is often called the makespan. The first result
is due to Graham [13]. Although the terminology of competitive analysis
was not used by him, it was shown that a simple greedy algorithm, the List
Scheduling, is (2 — l/m)-competitive.

Another online machine scheduling problem is where the jobs arrive over
time. Here again there is a fixed number of machines. Each job has a
processing time and a release time. A job is revealed to the online algorithm
at its release time. For each job, the online algorithm must choose which
machine the job will run on and assign a starting time. No machine may'
simultaneously run two jobs. Note that the algorithm is not required to
immediately assign a job at its release time. However, if the online algorithm
assigns a job at time t, then it cannot use information about jobs released
after time t, and it cannot start the job before time t. The objective is to
minimize the makespan. For details and results on these models, we refer to
the survey [23].

We investigate here three different problems which are closely related
to online scheduling problems. The first problem, studied in [21], is such
a variant where we have to purchase the machines. In the second case we
consider some generalized scheduling problems, where the machines have
a two-layer multiprocessor architecture. These problems are considered in
[16] and [17]. Finally, the third problem, investigated in [20], is a modified
strip packing problem, where we use some idea from the area of machine
scheduling.

3.1 Online scheduling with machine cost
In machine scheduling, we typically have a fixed set of machines. The schedul­
ing algorithm makes no decision regarding the initial set of machines, nor is
it allowed to change the set of machines later. It is usually assumed that the
provided machines can be utilized without cost.

We investigate how scheduling problems change when machine costs are
considered. We have several reasons for studying this idea. Most obviously,

8

real machines have cost. If we do not have the necessary machines, then they
must be obtained. Even if we already possess machines, we may still incur
a fixed start up or conversion cost proportional to the number of machines
used. Also, we still have an opportunity cost. By this cost we mean that
if we use some machines for a given problem, we lose the chance to use
them for something else. Farther, in many cases it is desirable to buy or
lease additional machines. A second reason, we might allow the number
of machines to be determined by the algorithm, is that the performance of
an algorithm on a given input can be highly dependent on the number of
machines. A third reason is that by considering such a variant we may find
other interesting problems and/or gain insight into the original.

We consider two scheduling problems with machine cost. The first one is
a variant of online scheduling jobs one by one, and the second is a variant of
scheduling jobs arriving over time. The differences in both cases are that 1)
no machines are initially provided, 2) when a job is revealed, the algorithm
has the option to purchase new machines, and 3) the objective is to minimize
the sum of the makespan and cost of the machines. We will refer to the first
problem as the List Model, and the second problem as the Time Model.

We studied a class of online algorithms for these problems. For an increas­
ing sequence g = (0 = ft ■■■), we will define an online algorithm
Ae. When job jt is revealed Ae purchases machines (if necessary) so that the
current number of machines i satisfies Qi < Pt < Qi+u where Pt is the sum
of the processing times of the first t jobs. Algorithm At then assigns the job
jt by the following greedy algorithm: In the List Model it assigns the job
to the least loaded machine; in the Time Model, whenever there is at least
one machine that is not processing a job and at least one job that has been
released but not started, Ae assigns the job with the largest processing time
to an idle machine.

Analysing particular algorithms from these classes, and looking for gen­
eral lower bounds, we obtain the following results.

Thesis 3
Theorem 3.1.1 ([21]) The competitive ratio of Ae is (1 + >/5)/2 for the

List Model for o = (0,4,9,16,..., i2,...). In the Time Model this algorithm
is (6 + V205)/12 « 1.693-competitive.

Theorem 3.1.2 ([21]) No online algorithm can have a competitive ra­
tio smaller than 4/3 in the List Model and no online algorithm can have a
competitive ratio smaller than (>/33 — l)/4 ~ 1.186 in the Time Model.

3.2 Online scheduling with two-layer multiprocessor
structure

Here we consider a scheduling problem where the machines have two-layer
structure. In this problem we have two sets P and S of identical machines
containing k and m machines with k < m. The jobs arrive one by one.
Each job j has two different processing times pj and Sj, one for each set of
machines. We have to decide in an online way on which set of machines to
schedule each job. Finally, when the stream of jobs has come to an end, •
we schedule the jobs assigned to P (respectively, the jobs assigned to 5)
on the machines of P (respectively, 5) so as to minimize the preemptive
makespan. Let Cp (respectively, C§) denote this optimal makespan. In the
first problem, which is investigated in [17], and called problem SLS(k,m)
(Sum Layered Scheduling), the cost of the constructed schedule is the sum
(Cp + Cs) of the two makespans. In the second problem (cf. [16]), which is
called MLS(k,m) (Maximum Layered Scheduling), the cost of the constructed
schedule is the maximum (max{Cp, Cs}) of the two makespans. The general
problems without fixing the number of machines in the sets are denoted by
SLS and MLS.

Problem SLS is a generalization of the semi online version of scheduling
with rejection. In these scheduling problems with rejection, jobs arrive one
by one, and we have to schedule each job online or we can reject it at some
penally. The cost of the schedule is the makespan, and we are to minimize
the sum of the cost of the schedule and the penalties of the rejected jobs.
Nonpreemptive scheduling with rejection was introduced in [4], the preemp­
tive version and some randomized algorithms for it were studied in [22]. In
[4], a 2.61-competitive algorithm is presented and it is also proven that this
algorithm is optimal. In [22], the problem, where preemption is allowed is in­
vestigated and a randomized algorithm is developed. The semi online version
is when we have to decide whether we reject or schedule the job in an online
fashion, but we do an offline scheduling at the end. One can see immediately
that SLS contains this problem as a particular case (if one of the considered

10

sets contains only a single machine). Problem MLS is a generalized version of
the online two machines scheduling problem with unrelated machines which
is investigated in [1], where it is proven that the greedy algorithm is optimal
and it is 2-competitive for two machines.

We studied the following online algorithms for these problems. The first
algorithm is a simple greedy type algorithm, the second is a more difficult
one, which is the generalized version of the reject total penalty algorithm
from [4] and [22]. In fact, this algorithm is a class of algorithms since it
depends on two parameters 0 < a < 1 and 0 < 7 < 1.

Algorithm LG: If a job j arrives, then it is assigned to P if Pj/k < Sjfm,
otherwise it is assigned to 5.

Algorithm A(a, 7)

• 1. Initialization. Let R := 0.

• 2. When job j arrives

- (i) If pj/k < Sj • y/m, then assign j to P.

- (ii) Let r be the cost of the optimal offline preemptive scheduling
of the set R U {j} on P. If r < a- Sj, then

* (a) Assign j to P,
* (b) Set R = R U {j}.

- (iii) Otherwise, assign j to S.

Analysing these algorithms and looking for general lower bounds we ob­
tained the following results.

Thesis 4
Theorem 3.2.1 ([16], [17]) The competitive ratio of LG is

on SLS(k,m) and max{2, m/fc} on MLS(k,m).

11

Theorem 3.2.2 ([16], [17]) The algorithm A(a, 7) has competitive ratio
C on problems SLS and MLS, where

Theorem 3.2.3 ([16], [17]) If an online algorithm is c-competitive for the
MLS(k,m) problem, then c > (1 +a/5)/2 « 1.618. If an online algorithm is
c-competitive for the SLS(k,m) problem with k > 2,m > 2, then c > 2.

3.3 Online strip packing with modifiable boxes
In the strip packing problem there is a set of two dimensional boxes, defined
by their widths and heights, and the task is to pack them without rotation
into a vertical strip of width 1 by minimizing the total height of the strip.
This problem appears in many situations. Usually, scheduling of tasks with
shared resources involves two dimensions, the resource and the time. We can
consider the widths as the resource and the heights as the time. Our goal is
to minimize the total amount of time used. Some applications can be found
in computer scheduling problems.

Only few online algorithms are presented for this problem. The first
algorithms, the shelf algorithms are developed in [3]. The best presented
algorithms are 7.46 and 6.99 competitive. A lower bound of 2 for the com­
petitive ratio of any online strip packing algorithm is presented in [2]. An
improved shelf algorithm and a generalized definition of shelf algorithms are
introduced in [9].

Let us suppose that the two dimensions of the boxes are the required
resource and time. The given parameters, however, show only one possible
configuration: one can also satisfy the task by using less resource. Of course,
using less resource means that it takes more time to satisfy the task. We can
give a mathematical model for this extended problem by slightly changing
the strip packing model. In the modified model the width of the box gives
the maximal resource, which can be used to satisfy the task and the height of
the box gives the time which is necessary using this amount of resource. The
fact that we can use less resource for more time means that we can lengthen
the box, keeping the area fixed. A similar question with different model is

12

investigated in [10]. The main difference between the two models that in
[10] the resource is measured by the number of the used processors and the
geometrical structure of the processors network is also considered.

In [20] we examine the online version of this problem where the boxes
arrive from a list and we have to lengthen and pack each box without any
knowledge on birther boxes. One basic way of packing into the strip is to
define shelves and to pack the rectangles into the shelves. By shelf we mean
a rectangular part of the strip with the width of 1. Shelf packing algorithms
place each rectangle into one of the shelves. If the algorithm decides which
shelf will contain the rectangle, then first the rectangle is lengthened to have
the same heights as the shelf has. The lengthened rectangle is placed into
the shelf as much to the left as it is possible without overlapping the other
rectangles placed earlier into the shelf considered. Therefore, after the arrival
of a rectangle, the algorithm has to make two decisions. The first decision
is whether to create a new shelf or not. If the algorithm creates a new shelf,
it also has to decide the height of the new shelf. The created shelves always
start from the top of the previous shelf. The first shelf is placed to the bottom
of the strip. The algorithm also has to choose the shelf into which it puts the
rectangle. In what follows, we will say that it is possible to pack a rectangle
into a shelf, if there is enough room for the lengthened rectangle in the shelf.

We consider two algorithms for this problem. The first algorithm is an
extended version of the NFSr (next fit shelf r) algorithm, which is presented
in [3]. We also denote the extended algorithm by NFSr- This algorithm
depends on a parameter r > 1, and we can describe it by the following rule.

When a rectangle p< = (w<, /i<) arrives, choose a value for k that satisfies
r* < hi < r*+1. Lengthen the rectangle to the form (w< • hi/r*+l,r*+I). If
there is an active shelf with height rfc+1 and it is possible to pack the rectangle
into it, then pack it there. If there is no active shelf with height ri+I, or it
is not possible to pack the rectangle into the active shelf with height r*+1,
then create a new shelf with height r*+1, put the rectangle into it, and let
this new shelf be the active shelf with height r*+l.

The second algorithm uses similar idea like the scheduling algorithm from
[24]. It can be defined as follows.

Algorithm DS
After the arrival of the first rectangle create a shelf with height hlt and

13

let this shelf be the active shelf. Later, when a rectangle arrives, use the
following iteration to pack it.

Step 1. If it is possible to pack the rectangle into the active shelf, pack it
(first lengthen it), otherwise go to Step 2.

Step 2. Create a new shelf which is twice higher than the active shelf, let
the new shelf be the active shelf and go to Step 1.

Analysing these algorithms and looking for general lower bounds we ob­
tained the following results.

Thesis 5
Theorem 3.3.1 ([20]) The competitive ratio of algorithm NFST is 2+^.

By choosing an optimal r, we obtain a 6-competitive algorithm.

Theorem 3.3.2 ([20]) The competitive ratio of algorithm DS is 4.

Theorem 3.3.3 ([20]) There is no online algorithm for the strip packing
with modifiable boxes that has smaller competitive ratio than C, where C ~
1.73 is the solution of the equation = c — 1.

References
[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, O. Waarts, On-line load balanc­

ing with applications to machine scheduling and virtual circuit routing,
J. ACM, 44(3), 1997, 486-504.

[2] B. S. Baker, D. J. Brown, H. P. Katseff, Lower bounds for two dimen­
sional packing algorithms, Acta Informatica, 8,1982, 207-225.

[3] B. S. Baker, J. S. Schwartz, Shelf algorithms for two dimensional packing
problems, SIAM J. Computing, 12,1983, 508-525.

[4] Y. Bartal, S. Leonardi, A. Marchetti-Spaccamela, J. Sgall, L. Stougie,
Multiprocessor scheduling with rejection, Proceedings of the Seventh An­
nual ACM-SIAM Symposium on Discrete Algorithms, 1996, 95-103.

[5] Z. Blázsik, Cs. Holló, B. Imreh, Cs. Imreh, Z. Kovács, On a well-solvable
class of the PNS problem, Novi Sad Journal of Mathematics, 30, 2000,
21-30.

14

[6] Z. Blázsik, Cs. Holló, Cs. Imreh, Z. Kovács, Heuristics for the PNS Prob­
lem, Mátraháza Optimization Days editors: F. Gianessi, P. Pardalos, T.
Rapcsák, Kluwer Academic Publisher, to appear.

[7] Z. Blázsik, В. Imreh, A note on connection between PNS and set cover­
ing problems, Acta Cybemetica, 12, 1996, 309-312.

[8] V. Chvatal, A Greedy Heuristic for the Set-Covering Problem, Math.
Oper. Res., 4, 1979, 233-235.

[9] J. Csirik, G. Woeginger, Shelf algorithms for on-line strip packing, In­
formation Processing Letters, 63, 1997, 171-175.

[10] A. Feldman, J. Sgall, S. H. Teng, Dynamic scheduling on parallel ma­
chines, Theoretical Comput. Sci., 130(1), 1994, 49-72. (Also in Proc.
FOCS’91 111-120.)

[11] F. Friedler, L. T. Fan, B. Imreh, Process Network Synthesis: Problem
Definition, Networks, 28, 1998,119-124.

[12] F. Friedler, K. Tarján, Y. W. Huang, L. T. Fan, Graph-Theoretic Ap­
proach to Process Synthesis: Axioms and Theorems, Chem. Eng. Sci.,
47(8), 1992, 1973-1988.

[13] L. R. Graham, Bounds for certain multiprocessing anomalies, Bell Sys­
tem Technical Journal, 45, 1966, 1563-1581.

[14] B. Imreh, F. Friedler, L. T. Fan, An Algorithm for Improving the Bound­
ing Procedure in Solving Process Network Synthesis by a Branch-and-
Bound Method, Developments in Global Optimization, editors: I. M.
Bonze, T. Csendes, R. Horst, P. M. Pardalos, Kluwer Academic Pub­
lisher, Dordrecht, Boston, London, 1996, 301-348.

[15] B. Imreh, G. Magyar, Empirical Analysis of Some Procedures for Solving
Process Network Synthesis Problem, Journal of Computing and Infor­
mation Technology, 6, 1998, 373-382.

[16] Cs. Imreh, An online scheduling algorithm for a two-layer multiprocessor
architecture, submitted to Acta Cybemetica.

15

[17] Cs. Imreh, Online classification with offline scheduling, submitted to
Algorithmica.

[18] Cs. Imreh, Some well-solvable PNS class (In Hungarian), New lines in
the Hungarian Operations Research editors: Komlósi, S. and Szántai T.,
Dialóg Campus Kiadó, Budapest-Pécs, 1999,168-181.

[19] Cs. Imreh, A new well-solvable class of PNS problems, Computing, to
appear.

[20] Cs. Imreh, Online strip packing with modifiable boxes, submitted to
Operations Research Letters.

[21] Cs. Imreh, J. Noga, Scheduling with Machine Cost, In Randomization
Approximation and Combinatorial Optimization Algorithms and Tech­
niques editors: D. Hochbaum and K. Jansen, 1999,168-176.

[22] S. Seiden, Preemptive Multiprocessor Scheduling with Rejection, Theo­
retical Comput. Sci., to appear.

[23] J. Sgall, On-line scheduling, in Online algorithms: The State of the Art
editors:A. Fiat, and G. J. Woeginger , Vol. 1442 of Lecture Notes in
Computer Science, Springer-Verlag Berlin, Heidelberg, pp. 196-231.

[24] D. B. Shmoys, J. Wein, D. P. Williamson, Scheduling parallel machines
online. SIAM J. Computing, 24,1995,1313-1331.

16

