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Chapter 1

Introduction

For many optimization problems their structures make it possible to develop
fast algorithms for their solution by using combinatorial ideas. On the other
hand, the original problem is often too difficult to find efficient algorithms.
In these cases, some combinatorial ideas can be used to establish algorithms
for solving some particular cases of the problem, or algorithms which do not
solve the problem, but give an approximate solution which is close to the
optimal one in some sense.

In the first part of this work we study the following hard optimization
problem, called PNS problem. In a manufacturing system, materials of dif-
ferent properties are consumed through various mechanical, physical and
chemical transformation to yield desired products. Devices in which these
transformations are carried out are called operating units, e.g. a lathe or
a chemical reactor. Thus, a manufacturing system can be considered as a
network of operating units which is called process network. A process design
problem in general, and flowsheeting in particular mean to construct a man-
ufacturing system. A design problem is defined from a structural point of
view by the raw materials, the desired products, and the available operating
units, which determine the structure of the problem as a process graph con-
taining the corresponding interconnections among the operating units. Thus,
the appropriate process networks can be described by some subgraphs of the
process graph belonging to the design problem under consideration. Our goal
is to find a process network with minimal cost. The importance of process
network synthesis arises from the fact that such networks are ubiquitous in
the chemical and allied industries.



This minimization yields a combinatorial optimization problem. In [9] it
is proven that this optimization problem is NP-hard.

In general there are three basic approaches to attack NP-hard problems.
The first approach is to develop exponential time algorithms for solving the
problem. In case of PNS problem, some exponential time algorithms based
on the Branch and Bound technique were developed and studied in [25] and
[26]. Another approach is to investigate specially structured instances which
can be solved efficiently. These classes are called well-solvable classes. In
case of PNS problem, well-solvable classes have not been developed earlier.
In this thesis we present some of them. The third approach is to establish
fast (polynomial time) algorithms which do not guarantee an optimal solu-
tion in general, but always result in a feasible solution which is close to the
optimal solution in some sense. Such algorithmns, called heuristic algorithms
or heuristics, are important for several reasons. The feasible solutions found
by heuristics can be used in procedures based on the Branch and Bound
technique. Moreover, in practical problems there is often not enough time
to find an optimal solution by an exponential algorithm, or the size of the
problem is too large to use an exponential algorithm. In these cases, heuristic
algorithms can be useful again. It can also occur that one does not need an
optimal solution, it is sufficient to find a feasible solution the cost of which
is not far from the optimal cost. For the PNS problem, heuristic algorithms
have not yet been studied. Now we introduce and analyse some heuristics
for the PNS problem.

Another field where algorithms based on combinatorial ideas are very
useful is the online computation. The theory of online algorithms and com-
petitive analysis is a new, rapidly developing area. In the second part of this
work, we investigate three different online problems which are closely related
to online machine scheduling. We develop and analyse some online algo-
rithms for these problems, and we also present some general lower bounds
for the possible competitive ratios.

The first problem considered is a particular scheduling problem. Usually
in scheduling problems, the number of the available machines is a fixed pa-
rameter of the problemn. We study the problem of scheduling with machine
cost. Here we also have to purchase the machines, and the total cost, which



we want to minimize, is the sum of the cost of purchasing the machines and
the cost of the produced schedule. The second problem we investigated is
a scheduling problem where a two-layer multiprocessor architecture is given.
In this problem there are two sets of machines, and the decision maker has
to make an online assignment of jobs to one of the machine sets. The jobs
are scheduled in an optimal offline preemptive way within a set. We study
two models here. In the first one the goal is to minimize the sum of the
makespans of the machine sefs, in the second model we want to minimize
the maximum of these makespans. The third problem which we consider is
a strip packing problem with modifiable items. We investigate the online
strip packing problem, where the sizes of the items are not fixed, so we can
lengthen them.

The thesis is organized as follows. In the following chapter we give the
mathematical model of the PNS problem, furthermore, we recall the most
fundamental definitions and results concerning this problem. Then, in Chap-
ter 3, some new results on the well-solvable classes of the PNS problem are
presented. The material of this chapter is based on [7], [29] and [30]. In
Chapter 4, two heuristic algorithms are introduced for the PNS problem,
and they are studied by the worst-case analysis. This chapter is based on
[8].

We start to present our results on online algorithms in Chapter 5. This
chapter contains the most fundamental definitions of the competitive analy-
sis, and we also present some basic scheduling models. Later, in Chapter 6,
the online scheduling problem with machine cost is studied. We investigate
this problem in two different models. This chapter is based on [32]. Chapter
7 contains our results on the scheduling problem with two-layer multiproces-
sor architecture (cf. [27], [28]). Finally, in Chapter 8, a strip packing problem
with modifiable items is investigated. This chapter is based on [31].



Chapter 2

The mathematical model of the
PINS problem

This chapter is devoted to the foundation of PNS problem. First in Section
2.1, the necessary notions and notation are introduced. Section 2.2 contains
the corresponding optimization problem, and we recall here the proof which
shows that this optimization problem is NP-hard.

2.1 The structural model of PNS problem

The foundations of PNS and the background of the combinatorial model
studied here can be found in [18], {19], [20].

In the combinatorial approach, the structure of a process can be described
by the process graph (see [19]) defined as follows.

Let M be a finite nonempty set, the set of the materials. Furthermore,
let @ # O C p'(M) x p'(M) with M N O = 0, where p'(M) denotes the set
of all nonempty subsets of M. The elements of O are called operating units
and for an operating unit, u = (o, 8) € O, o and B are called the input-set
and output-set of the operating unit, respectively. The pair (M, O) is defined
to be a process graph or P-graph in short. The set of vertices of this directed
graph is MUO, and the set of arcs is A = A;UA,, where A; = {(X,Y):Y =
(0,) €O and X € a},and A3 = {(Y,X):Y =(a,f) € O and X € §}.

Now, let 0o C O and S C M be arbitrary. Let us define the following
functions on the sets o and S:



mat™(0)= | o mat®™(o)= |J B,

(a,B)€0 (a.B8)€0
mat(0) = mat™ (o) U mat®(o),

and
A(S)={u: u€ O & SNmat™(u) # 0}.

Let process graphs (m,o0) and (M,O) be given. The P-graph (m, o) is
defined to be a subgraph of (M,0), it m C M and o C O.

Now, we can define the structural model of PNS for studying the problem
from a structural point of view. For this reason, let M* be an arbitrarily fixed
possibly infinite set, the set of the available materials. By structural model
of PNS, we mean a triplet M = (P, R,0), where P, R, O are finite sets,
@ #£ P C M* is the set of the desired products, R C M* is the set of the raw
materials, and O C p'(M*) x p/(M*) is the set of the available operating
units. It is assumed that PN R =@ and M* N O = B, moreover, a and S are
finite sets for every (o, 8) =u € O.

Then, the process graph (M,0), where M = U{a U : (a,B) € O},
presents the interconnections among the operating units of O. Furthermore,
every feasible process network, producing the given set P of products from the -
given set R of raw materials by using operating units from O, corresponds to
a subgraph of (M, O). Investigating the corresponding subgraphs of (M, O),
therefore, we can determine the feasible process networks. If we do not
consider further constraints such as material balance, then the subgraphs of
(M, O) which can be assigned to the feasible process networks have common
combinatorial properties. They are studied in [19] and their description is
given by the following definition.

A subgraph (m, o) of (M, O) is called a solution-structure of (P, R, O) if
the following conditions are satisfied:

(A1) P Cm,

(A2) VX € m, X € R & no (Y, X) arc in the process graph (m, o),
(A3) VY, € o, 3 path [¥,Y;] in (m,0) with Y;, € P,

(A4) VX € m, I, f) € o such that X € a U B.



The set of the solution-structures of M = (P, R,0) will be denoted by
S(P,R,0) or S(M).

Checking the desired conditions (A1),..., (A4), one can prove the follow-
ing statement, which is presented in [19)].

Proposition 2.1.1 Let M = (P,R,0) be a structural model of PNS. If
(m,0) and (m',0') are solution-structures of M, then (m,0)U(m/,0') = (mU
m’,o0U ') is also a solution-structure of M.

Proposition 2.1.1 indicates that the set S(M) of the solution-structures
is closed under the operation of finite union. Since S(M) is a finite set,
the union of all its elements also yields a solution-structure which is the
greatest with respect to the subgraph ordering relation. The significance of
the greatest element is revealed in the following definition. Let M = (P, R, O)
be a structural model of PNS. By the mazimal structure of M we mean the
solution-structure defined as

pM)=|J (m,o0).

(m.0)esS(M)
If S(M) = 0, then u(M) = @; as such, u(M) is termed degenerate.

The above definition obviously leads to the following observation.

Remark 2.1.2 For any structural model of PNS, the set of solution-structu-
res is nonempty if and only if the mazimal structure of this structural model
is not degenerate.

One basic question is how we can obtain the maximal structure from a
structural model. In [20] and [21] a simple polynomial time algorithm is
presented which can evaluate if S(M) is empty, moreover, if S(M) is not
empty, the algorithm generates the corresponding maximal structure. Since
we will not use this algorithm, we do not give the details here, we just note
the following theorem.

Theorem 2.1.3 For the structural model of PNS, a polynomial time algo-
rithm ezists, which generates the mazimal structure.



To show the importance of the maximal structure, we need the following
definition. For any structural models M = (P, R,0) and M’ = (P, R',0"),
M is defined to be equivalent to M’ if the sets of desired products as well as
the sets of solution-structures are identical for these structural models, i.e.
P = P’ and S(M) = S(M).

Let M = (P, R,0) be an arbitrary structural model with S(M) # 0.
For (M) = (M, 0), let us form the triplet M = (P, R,0), where R =
RN M. This structural model is called the reduced structural model of M.
An important property of this reduced model that its P-graph is a solution-
structure. For the reduced model the following statement is valid.

Proposition 2.1.4 M = (P, R,0) is a structural model of PNS, and it is
equivalent to M.

With regard to Proposition 2.1.4, note that the structural model M de-
pends only on the maximal structure of M. Therefore, by Theorem 2.1.3, we
obtain the following observation.

Theorem 2.1.5 For any structural model, the reduced structural model can
be generated by a polynomial time algorithm.

2.2 PNS problems with weight

Let us consider structural models of PNS problems in which each operating
unit has a weight. We are to find a feasible process network with the minimal
weight where by weight of a process network we mean the sum of the weights
of the operating units belonging to the process network under consideration.
Each feasible process network in such a class of PNS problems is determined
uniquely from the corresponding solution-structure and vice versa. Thus, the
problem can be formalized as follows.

PNS problem with weights

Let a structural model of PNS problem M = (P, R, O) be given. More-
over, let w be a positive real-valued function defined on O, the weight func-
tion. The basic model is then

min{)_ w(u) : (m,0) € S(P,R,0)}.

u€o



In what follows, by PNS problem we mean this optimization problem, and
the solution-structures are called feasible solutions.

It is known (see [9]) that this PNS problem is NP-hard. We recall here
the basic idea of the proof since we will use it later. First we have to define a
particular class of PNS problems. A PNS problem is called a PNS1 problem if
every material is a raw material or desired product; moreover, every operating
unit produces desired products from raw materials. In [9], it is proven that
the PNS1 problem is equivalent to the set covering problem. These problems
are not only equivalent from the complexity theoretical point of view, but
they have the same mathematical model.

Now, we define the set covering problem, which is a well-known NP-hard
problem (see [23]). In a set covering problem, a finite set I and a system of
its subsets P,..., P, are given, where each subset has some positive cost.
A set of indices J* C {1,...,m} is called a cover if U{P; : j € J*} = I. By
the cost of a cover we mean the sum of the costs of the subsets belonging to
it. The problem is then to find a cover with minimal cost.

Now, we outline the equivalence proof of the PNS1 and set covering prob-
lems. Let (P, R,O) be an arbitrary PNS1 problem with weight function w.
Let u; = (o, B;) € ' (R) x '(P), j =1,...,n, denote the operating units.
Then, one can prove that this problem is equivalent to the set covering prob-
lem in which the basic set is P and the system of its subsetsis 8;, 7 =1,...,n,
and the costs are w'(B;) = w(y;), j = 1,...,n, respectively.

For the other direction, consider an arbitrary set covering problem. Let
P be the basic set and B;, j = 1,...,n be the system of its subsets with
costs w'(B;), respectively. Let R be an arbitrary set with RN P = . Let
us consider the operating units u; = (R, B;), j = 1,...,n, and the weight
function w(u;) = w'(B;), j =1,...,n. Then, it is easy to see that the PNS1
problem (P, R,O), where O = {uy,...,u,}, is equivalent to the set covering
problem under consideration.
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Chapter 3

Some well-solvable PINS classes

In the previous chapter it is proven that the PNS problem is NP-hard. In
general, when a problem is NP-hard or NP-complete, then the studies of some
particular classes can result in effective procedures for solving the instances of
these classes. Well-solvable classes were investigated for many optimization
problem, a nice overview on them can be found in [11]. For the PNS problem,
the first well-solvable PNS classes are developed in (7], [29], and [30]. In this
chapter we present these particular classes and the corresponding polynomial
algorithms for solving their instances.

3.1 Turning back PNS problem

The first well-solvable class of PNS problems is the class of turning back PNS
problems. This class is introduced in [29].

A PNS problem is called turning back if for every material, there exists
at most one operating unit producing this material. This restriction yields
so nice structure of the process graph which admits a linear time algorithm
for solving the problem. This is comprised in the following statement.

Theorem 3.1.1 ([29]) If a PNS problem M = (P, R,QO) is turning back,
then the following algorithm decides whether the problem has a feasible solu-
tion, and if it does, then the procedure provides an optimal solution.

11



Algorithm 3.1.1

Initialization

Set Ag=P,Ko=R, My=0,00=0,7:=1.
Iteration (r-th iteration)

e Step 1. Choose one material from A,_,; it is denoted by X. Terminate
if there is no operating unit producing X directly; no feasible solution
exists. Otherwise, let v = (o, §) denote the operating unit producing
X directly and proceed to Step 2.

e Step 2. Terminate if there exists a Z € R such that Z € §; no feasible
solution exists. Otherwise, proceed to Step 3.

e Step 3. Let K, = K,_1U{X}, A, = (A,.1Ua)\ K;, O, = O, U {u},
and M, = M,_;UaURB. If A, #0, then set r := r + 1 and proceed to
the succeeding iteration. If A, = @), then proceed to Step 4.

e Step 4. Terminate; the P-graph (M, O) is an optimal feasible solution
where M = M, and O = O,.

Proof: To validate the procedure, first of all, let us observe that the
procedure is executed in linear time. Indeed, by |K,| > |K,-,|, we have that
after at most |M]| iterations the procedure terminates where M denotes the
set of the materials appearing in the problem.

Prior to proving the validity of the procedure, we show the following
lemma.

Lemma 3.1.2 During the procedure, A, C m and O, C o are valid, for all
r and for any feasible solution (m, o).

Proof: The statement concerning A, is proven by induction on the number
of the iteration steps. Since Step 1 and Step 2 do not change A,, it is
sufficient to investigate Step 3. Before the first iteration step, Aq = P, and
hence, the statement follows from condition (A1) of the feasible solutions.
Now, let » > 1, and let us suppose that the statement is valid before the r-th

12



iteration step. Then, we show that it is valid after the r-th iteration step
as well. In the iteration step considered, an element X is chosen from A,_,.
Then, X is contained in every feasible solution by the induction hypothesis,
furthermore, R C K,_; and A,_; N K,_; = @ imply X ¢ R. Therefore,
by condition (A2), every feasible solution contains an operating unit which
produces X directly. Since the considered PNS problem is turning back,
there is exactly one operating unit v producing X which is chosen by the
procedure. Consequently, « is contained in every feasible solution. But each
feasible solution is a P-graph, and thus, it contains both the input and output
materials of u. On the other hand, by the induction hypothesis, each feasible
solution contains also A,_;, and thus, from A, C A,_; U« it follows that the
statement is valid for r as well.

To prove the statement regarding O,, let (m,0) be an arbitrary feasible
solution, and u be such an operating unit which was involved in O, during
the r-th iteration phase. Then, there exists an X € A,_, which is an output
material of . On the other hand, by the statement concerning A,, we have
X € m, furthermore, by the definition of A,, X ¢ R. Therefore, by condition
(A2), there exists an operating unit in o which has X as its output material.
Since the considered PNS problem is turning back, there exists exactly one
operating unit which has X as output material, namely, the operating unit u
which is chosen by the procedure. Consequently, v € o0 which ends the proof
of Lemma 3.1.2.

a

Using Lemma 3.1.2, we prove the correctness of the algorithm. Firstly,
consider the case when the algorithm terminates in the first step of the r-
th iteration. Then, it is shown that no feasible solution exists. To prove
by contradiction, let us suppose that the algorithm terminates in the first
step of the r-th iteration and the problem has a feasible solution denoted
by (m,o0). Lemma 3.1.2 yields that A,_; C m, and thus, X € m for the
material X chosen in the rth iteration phase. Furthermore, by R C K, _;
and A,_; N K,_; =0, we have X ¢ R. This observation and condition (A2)
imply that there is an operating unit producing X which contradicts our
assumption on the termination.

Now, let us suppose that the algorithm terminates in Step 2 of the r-th
iteration. Then, it is shown that no feasible solution exists. For verification

13



by contradiction, let us assume that (m, o) is a feasible solution. Then, in
the light of Lemma 3.1.2, v € o is valid for the operating unit » selected in
the r-th iteration phase. On the other hand, » has an output material Z
with Z € R by our assumption on termination. This yields, that there is an
edge (u, Z) in (m, 0) where Z € R, which contradicts condition (A2).

Finally, we prove that the procedure provides an optimal feasible solution
if it terminates in Step 4 of the r-th iteration phase. First, we show that the
algorithm provides a P-graph (M, O) which is a feasible solution.

During the procedure, if an operating unit u is involved into the set O,,
then we put its input and output materials into M,, and thus, 0 C ¢'(M) x
o' (M )- On the other hand, O # 0 from our assumption. Consequently, M
and O determine a P-graph. Therefore, we have to prove conditions (A1),
(A2), (A3), (A4).

According to the procedure, in Step 3, we take the material chosen from
A,_; into set M,, and K, contains only materials from P which are in M,.
These observations give that starting with Ay = P, A, = 0 implies P C M,.
In addition, M = M,, thereby resulting in the validity of condition (A1).

There is no operating unit in O with output material from R since the
procedure does not terminate in Step 2. This implies that there is no (Y, X)
arc in (M,0) if X € R and X € M. On the other hand, we put each
material X ¢ R which is placed into M, and not produced by any operating
unit from O, into A, in Step 3. Thus, if A, = §}, then each material from M,
which is not a raw material is produced by an operating unit from O,. The
observations above provide the validity of condition (A2).

Condition (A3) is proven by induction. If r = 1, then O, contains only one
operating unit which has an output material from P, and thus, condition (A3)
is satisfied. Now, let 7 > 1, and let us suppose that condition (A3) is true for
O,_1. We show that condition (A3) is valid for O, if the procedure has not yet
been terminated in the 7 — 1-th iteration phase. Since O, = O,_1 U {u}, and
by our induction hypothesis, condition (A3) is true for O,_,, it is enough to
prove that there exists a path [u, Z] in (M, 0) with Z € P for the operating
unit u selected in the r-th iteration phase of the procedure. The operating
unit » has the output material X from A,_,. On the other hand, X € A,_,
is possible only if X € P or X is an input material for some operating unit
v € O,_;. In the first case, [u, X] is a suitable path in (M, 0). In the second
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case, (M, O) contains a path [v, Z] with Z € P by the induction hypothesis.
Equipping this path with u and X, we again get a suitable [u, Z] path.

Finally, since we put only materials into M, which are input or output
materials of the operating units from O, the validity of condition (A4) is
obvious. :

Hence, we have proven that the algorithm gives a feasible solution. Now,
it is shown that this feasible solution is optimal. Since the weight of each
operating unit is positive, it is enough to prove that each operating unit from
O is contained in every feasible solution. On the other hand, this statement
is an obvious consequence of Lemma 3.1.2.

a

3.2 Hierarchical PNS problems

In this section we present our results on the hierarchical PNS problems which
are introduced in [7]. These results were developed by a joint research with
the coauthors, and it is impossible to separate the parts which belong to the
author. The structure of these problems makes it possible to solve further
particular classes by polynomial algorithms.

Let | be a positive integer. A PNS problem M = (P, R,0) is called
l-hierarchical if there exist a partition My = R,...,M; = P of M and a
partition Oy,...,0; of O that for each i, i = 1,...,l, O; contains operating
units which have all input materials from M;_, and output materials from
M;. If a PNS problem is [-hierarchical for some /, then it is called hierarchical.
Such hierarchical PNS problems, which are thin in the sense that the size
of O0;,1=1,...,l, and the size of M;, i = 1,...,] are bounded by a fixed
constant, are well-solvable. To form this statement more precisely, we need
the following definitions. A PNS problem is called k-wide l-hierarchical if it
is an [-hierarchical problem, moreover |M;| < k is valid for i = 0,...,[; and
|Oil <k holds fori =1,...,L

Theorem 3.2.1 ([7]) If a PNS problem M = (P, R, O) is k-wide l-hierarchical,

then the following algorithm gives an optimal feasible solution of the problem
or it gives that the problem has no feasible solution. The time complexity of

15



the algorithm is O(l), where the constant in O may depend on k exponen-
tially.

Algorithm 3.2.2
Subprocedure 1 (Computing functions F; and G;)

o Initialization. Let N be a fixed number greater than |O| - q, where ¢
denotes the maximum of the weights of the operating units.

e Part 0. Let Go(S) = 0 and Fy(S) = 0, for all S C M,.
e Parti(i=1,...,1).

— Step 1.1. If there exists a set S C M; for which the functions F;
and G; have not yet been determined, then choose one of them
and perform the following steps for it. Otherwise, proceed to the
1 + 1-th part if ¢ < [, and proceed to Subprocedure 2 if i = [.

— Step 1.2. Consider the subset A(S) of O;, and for every set @ C
A(S), investigate the validity of S C mat®(Q). If this relation
is false for every @, then proceed to Step 1.4. Otherwise, let the
sets satisfying the relation above be denoted by @;,...,Q; and
proceed to Step 1.3.

— Step 1.3. For every Q;, j = 1,...,1, calculate the following value:
¢j = Gi-1(mat™(Q;)) + Y. w(u).
uEQ;

Let us denote a set with minimal value by Q;. If there are more
sets with the same minimal value, then choose the set which has
the smallest index. Furthermore, let F;(S) = Q;, Gi(S) = ¢;, and
proceed to Step 1.1.

— Step 1.4. Let Fy(S) =0, Gi(S) = N, and proceed to Step 1.1.

Subprocedure 2 (Finding an optimal solution)

16



o Initialization. If G|(P) 2 N, then terminate; the problem has no
feasible solution. Otherwise, let Ay = P, Op = 0, and r = 1.

e Iteration (r-th iteration)

— Step 2.1. Let
Or = Or—l U Fl+1—r(Ar—1.)’ A= matin(-Fl+1—r(Ar—1))-

If r = [, then proceed to Step 2.2, otherwise let r := r + 1 and
proceed to the next iteration.

— Step 2.2. Terminate; the optimal solution is the P-graph (m, o),
where o = O, and m = mat(o).

Proof: First, we prove that if the algorithm gives a solution, then the
produced sets m,o yield a P-graph, which is a feasible solution. By the
definition of m, it is obvious that for the sets m, o, the P-graph (m, o) exists
and satisfies condition (A4). Let us observe that ifi < [, then for each element
of A;, there exists an operating unit in o producing it. This observation
follows from the definition of the functions F}, j = 1,...,l. Thus, by Ay = P,
we have that (m,o) satisfies condition (Al). Since in a hierarchical PNS
problem there is no operating unit producing raw material, we get that in
(m, o) there is no edge leading into a raw material. To prove the second part
of condition (A2), let X € m be a material with X ¢ R. Since X € m,
thus X is an output or input material of some operating unit from o. In
the first case, we get by the definition of the P-graph that there exists an
edge leading into X. In the second case, let u € o be an operating unit
which has X as an input material. Since u € o, there exists an index r for
which v € Fj41-,(Ar-1). This gives that X € A,. On the other hand, by
induction on the number of iterations it is easy to see that A; C M,_;, for all
1,7 =0,...,l. This observation results in r # [. Thus, X € A; for some i < [,
which yields that there exists an edge in (m, o) leading into it. Consequently,
condition (A2) is also valid for (m,0). To prove condition (A3), it is enough
to show that for each operating unit from O;, i = 1,...,1, there exists a path
in (m, o) leading from it into a desired product. We prove this statement by
induction on 7. For the case i = 1, we have Ay = P, thus, by the definition of
the function Fj, the validity of the statement follows. Now, let 1 < i < [, and
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let us suppose that the statement is valid for . We show that it is also valid
for i+ 1. Since O;41 = O;U Fi41-(i41)(Ai), thus, by the induction hypothesis,
it is enough to prove the statement for the operating units contained in
Fii1-(i+1)(Ai). Let w € Fiyi_iy1)(Ai) be arbitrary. By the definition of the
function Fi;;_(;i41), we obtain that u has an output material from the set
A;. (Otherwise, during Step 1.2, Fii1-(i+1)(Ai) € A(A4;) is not valid which
is a contradiction.) Let such a material be denoted by Z. By the definition
of A;, it follows that Z is an input material of some operating unit v € O;.
Then, by the induction hypothesis, there exists a path [v,Y] in (m, 0) where
Y is a desired product. If we complete the beginning of this path with u and
Z, we get a path in (m, o) leading from v into the desired product Y. Thus,
we have proven our statement for i + 1, which yields that condition (A3) is
valid for the P-graph (m,0). Consequently, the P-graph determined by the
algorithm is a feasible solution.

Now, we prove the correctness of the procedure. To do this, first we show
the following statement concerning Gj.

Lemma 3.2.2 For every feasible solution, the weight of the feasible solution
is at least Gi(P).

Proof: Let (m,0) be an arbitrary feasible solution of the problem. Let
0; = O;No, fori = 1,...,1. Since (m, o) is a feasible solution and the materials
of P can be produced only by operating units from O, by conditions (A1)
and (A2), we have that P C mat®(o;). The definition of the function G,
and this observation yield the following inequality:

G[(P) < Gl_l(ma,t""(o;)) + Z 'll)(’u)
ueo;
On the other hand, (m, o) is a feasible solution, thus mat**(0;) C m. The
input materials of the operating units from o; are in the set M,_;, thusifl # 1,
then they are not contained in 2. This yields that for each of them, there
exists an operating unit in o having it as an output material. Furthermore,
the problem is hierarchical, and hence, the materials from the set M;_, are
produced only by operating units from O;_,. These observations yield that
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mat™ (o)) C mat®(0;_1). This relation and the definition of the function
G- imply the following inequality:

Gi-1(mat™(a)) < Gi_a(mat™(0-1)) + Y w(u).

u€o;_y

In the same way as above, we obtain that the following inequality is valid,
foralli,z=1,...,l-1:

Gi(mati"(o,-+1)) S Gi_l(mati"(o,-)) + Z 'LU('U.)
uEo;
Summarizing the obtained inequalities, by Go(S) = 0, we get the following
inequality:

Gi(P) < _i > w(u),

which gives the required result.
a

By Lemma 3.2.2, we can prove the correctness of the procedure.

First, we prove that there is no feasible solution of the problem if G;(P) >
N. Contrary, let us suppose that there is a feasible solution of the problem.
Let us denote the weight of this solution by K. By the definition of N, we
have N > K. On the other hand, Lemma 3.2.2 states that G|(P) < K,
which results in the contradiction N > N.

Now, we show that the feasible solution produced by the algorithm is
optimal if G;(P) < N. First, let us observe that the weight of the produced
feasible solution is G;(P). This observation follows immediately from the
construction of the algorithm. Thus, by Lemma 3.2.2, we obtain that the
weight of any feasible solution is at least as large as the weight of the produced
feasible solution, which means that we get an optimal solution.

Let us investigate the time complexity of the procedure. In Subprocedure
1, we perform ! parts. During a part, we examine every subsets of A(S), for
each subset S of M;. Since the problem is k-wide [-hierarchical, M; has at
most 2* subsets, and since for each such subset S, A(S) C O;, thus, A(S) can
have only 2* subsets. Consequently, we obtain that the number of operations
performed in each iteration is independent of the size of the problem (it
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depends only on k). In Subprocedure 2, which is based on functions F; and
G, we perform [ iterations, and the number of operations in each iteration
is a constant. This yields that the number of operations performed by the
procedure is bounded by O(l).

O

Thus, for each fixed k, the above algorithm solves any k-wide hierarchi-
cal problem in linear time. However, we have to note that the constant in
the complexity of the algorithm is exponential in k. This shows that our
procedure can be really effective only for small k.

Investigating the presented algorithm, one can conclude an interesting
observation on the solvability of the hierarchical PNS problems.

Corollary 3.2.3 For a hierarchical PNS problem, if every material, distinct
from the raw materials, is produced by some operating units, then the problem
has a feasible solution.

Proof: Let us perform the algorithm for the problem. By the above
assumption, we obtain that S C mat®*(A(S)) for each subset S of materials,
which gives that Step 1.4 is not performed in Subprocedure 1. This yields
that G;(P) < N, and then the problem has a feasible solution.

a

3.3 Enlarging and c-ordered PNS problems

To close this chapter, we present a new method called enlarging, which is
introduced in [30]. The idea of this method is to enlarge the problem with
new duminy operating units having weight 0. However, this is not allowed
in our model since each operating unit must have a positive weight. But if
we assign a sufficiently small weight to the new operating units, then we can
obtain the same result. By this method, we prove that more difficult PNS
problems are reducible to hierarchical PNS problems. First, we introduce
the following definitions.

A PNS problem M = (P, R, 0) is called reducible to M' = (P',R',0’)
if there is a bijective mapping ¢ from S(M) onto S(M') that the image
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under ¢! of any optimal solution of M is an optimal solution of M. A PNS
problem is called cycle free if the P-graph of the problem does not contain any
directed cycle. Furthermore, a problem is called integer if every operating
unit has a positive integer weight. Then, the following statement is valid.

Theorem 3.3.1 ([30]) Bvery integer cycle free PNS problem M = (P, R, O)
is reducible to a hierarchical PNS problem.

Proof: Let us consider an integer cycle free PNS problem. Without loss
of generality, we may assume that the model is a reduced structural model
since if it has a feasible solution, then by Theorem 2.1.5, one can obtain
the equivalent reduced model. The case when the problem has no feasible
solution is not interesting, since this fact also turns out by the maximal
structure generation algorithm. Let the P-graph of our problem be (M, O).
Since we have a reduced model, (M,QO) is a feasible solution. Now, we
construct a suitable hierarchical PNS problem in two phases.

Phase 1. (Classifying) In this phase, we do not change the model, we
just order the sets of the materials and operating units in an appropriate way.
Let M, be the set of the raw materials. Furthermore, let O, be the set of the
operating units whose input materials are from Mp. At the i-th step of the
ordering, when sets My, ..., M;_; and O,,...,O; are already determined, we
construct the sets M; and O;,., as follows. Let M; be the set of the materials
which are produced only by operating units from O, U ... U O;, and which
are not contained in' Mo U...U M;_;. If Ui_; M; = M, then the ordering is
finished, otherwise, let O;,; be the set of the operating units which have each
input materials in MyU...UM;, and which are not contained in O, U...UO;.
Some properties of this ordering are summarized in the following statement.

Lemma 3.3.2 The classifying is finished in a finite number of steps. Fur-
thermore, if the ordering is finished after | steps, the sets My,..., M; and
Oy, ..., 0; form partitions of M and O, respectively. Finally, every edge in
(M, O) leading from an operating unit into a material leads from O; into M;
with i < j for some i,j € {1,...,l}, and every edge in (M, O) leading from
a material into an operating unit leads from set M; into set O; with i < j
for somei€ {0,1,...1 -1} and j € {1,...,1}.

21



Proof: The classifying phase of the algorithm is based on the same idea
as the well-known procedure to assign indices to the vertices of a cycle free
directed graph in a way that the starting vertex of every arc has index smaller
than the ending vertex (see [33]). The difference is that our procedure does
not choose only one source, but all of them in each step. The proof of Lemma
3.3.2 can be done in the same way as the correctness proof of this well-known
procedure. Therefore, we omit the details here.

a

Phase 2. (Enlarging) First, we extend the set of the materials with a
new material P’ and the set of the operating units with a new operating unit
u, which has the original desired products as its input materials and P’ as
its output material, furthermore, let the new desired product be P’. Let the
weight of the new operating unit be 1. One can easily see that the original
problem is reducible to this new problem M' = ({P'}, R,O U {u}). (From
a feasible solution of the original problem we can obtain a feasible solution
of the new problem completing the first feasible solution with both the new
material and new operating unit. On the other hand, from a feasible solution
of the new problem we can obtain a feasible solution of the original problem
deleting from the first feasible solution both the new material and new op-
erating unit.) Furthermore, if we extend the partitions with Oy and M,
where Oy, contains the new operating unit, M;,; contains the new desired
product, then the properties presented in Lemma 3.3.2 still hold. Now, we
construct a hierarchical PNS problem to which this problem is reducible.
For the edges in (M, O), we define some new operating units and some new
materials as follows. Consider first the edges leading from a material into an
operating unit. Let (X,Y’) be such an edge. Then, by Lemma 3.3.2, X € M;
and Y € Oj, where j > i. We do not define new operating units and ma-
terials if j = 1 + 1. Otherwise, we define j — 7 — 1 new operating units and
j—i—1 new materials; let us denote them by u(X,Y,i+1),...,4(X,Y,j—1)
and A(X,Y,i+1),...,A(X,Y,j — 1), respectively. fi+1<p < j-1,
then let the input and output of u(X,Y,p) be A(X,Y,p—1) and A(X,Y,p),
respectively, moreover, let u(X,Y,i + 1) = ({X}, {A(X,Y,i + 1)}. Further-
more, let us change the input set of Y replacing X by A(X,Y,7 —1). In
other words, replace the arc (X,Y) by the path which contains the vertices
X,u(X,Y,i+1),A(X,Y,i+1),u(X,Y,i+2),...,A(X,Y,j —1),Y. Consider
now the edges leading from an operating unit into a material. Let (Y, X) be
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such an edge. Then, by Lemma 3.3.2, Y € O; and X € M;, where 7 < j.
We do not define new operating units and materials if 7 = i. Otherwise, we
define j —i new operating units and j —7 new materials, let us denote them by
w(Y, X,i+1),...,u(Y, X, j) and A(Y, X,1),...,A(Y, X, j — 1), respectively.
Let the input and output of u(Y, X, p) be A(Y, X,p — 1) and A(Y, X, p), re-
spectively if i+1 < p < j, moreover, let u(Y, X, j) = ({A(Y; X,5-1)}, {X}).
Furthermore, let us change the output set of Y replacing X by A(Y, X,4). In
other words, replace the arc (Y, X) by the path which contains the vertices
Y, A(Y, X,i),u(Y, X,i + 1), A(X,Y,i + 1),...,u(Y, X, j); X. Finally, let us
assign the weight € = 1/(]M| - |O] - ) to each new operating unit. Let M
be the set containing both the new materials and original materials, further-
more, let O be the set containing the new operating units and the original
operating units. (If we changed the input or the output set of an original
operating unit, then here we consider the modified operating unit.) In such
a way, we obtain a new PNS model having the same raw materials and de-
sired products as M'. This is M = ({P'}, R,0) and by equipping it with
the defined weights, we obtain a hierarchical PNS problem as the following
leinma shows.

Lemma 3.3.3 The new PNS problem defined above is hierarchical.

Proof: Forevery i,1=0,1,...,l4+1, let N; be the set of the new materials
which are of the form A(X,Y,1) or A(Y, X, i), and let M; = M;UN;. On the
other hand, for every j, j = 1,...,1, let U; be the set of the new operating
units which are of the form u(X,Y,j) or w(Y,X,j), and let O; = o; U
Uj, where O; contains the original or the modified version of the original
operating units from O;. Using sets My, ..., M4y and Oy, ..., Oy, it follows
immediately by the definition that the new problem is hierarchical.

O

Furthermore, the original PNS problem is reducible to this new hier-
archical one as the following lemma states.

Lemma 3.3.4 The original PNS problem belonging to M is reducible to the
new hierarchical PNS problem.
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Proof: Let us define a mapping ¢ on S(M) as follows. For every feasible
solution (m, 0) € S(M), let us assign to (m, o) the subgraph (m, ) of (M, O),
which we obtain by performing the enlarging on (m, 0). From the definition
of the enlarging, it follows immediately that the subgraph (7n,8) satisfies
conditions (A1), (A2), (A3), (A4), thus, the obtained subgraph is an element
of S(M). On the other hand, since each new material is produced by only one
operating unit in M, it follows by condition (A2) that if a feasible solution of
M contains a new operating unit defined in the case of an edge (X,Y), then
it contains all of the new operating units and materials defined by considering
(X,Y). This yields that every element (i1,5) of S(M) can be obtained by
performing the enlarging on a suitable subgraphs of (M, 0). We can obtain
this subgraph if we perform the inverse process of the enlarging on (m,d),
we replace the sets of the new operating units and materials by the original
edges and delete operating unit v and material P'. Checking conditions
(A1), (A2), (A3), (A4), it is easy to sec that the subgraph of (M, O) obtained
in such a way is a feasible solution of M. Therefore, the mapping ¢ defined
above is a bijective mapping of S(M) onto §(M). Finally, we prove that the
image of an optimal solution of M under ¢! is an optimal solution of M.
Let (i71,5;) be an optimal solution of M, and let its image under ¢~! be
(mq,01). Then, (my, 0,) is a feasible solution of M. Let us suppose that it is
not optimal. This yields that there exists a feasible solution of M, denoted
by (mg, 03), which has smaller weight. Let (72, 63) be the image of (my, 05)
under . Then, it is a feasible solution of M. On the other hand, since the
number of the new operating units is smaller than |M|-|O|-l and w(u) = 1, we
get that w(mg, 62) < w(msg,0;) + 2. Furthermore, since the original problem
is integer, w(/, 01) > w(my,01) + 1 > w(may, 02) + 2. Therefore, we obtain
that w(7mg, 82) < w(my,61), which contradicts the optimality of (771, 5;).

We have to mention the following remarks regarding Theorem 3.3.1.
Remark 3.3.5 The assumption that the PNS problem is integer is not a

strong restriction from practical point of view. We can obtain integer PNS
problems if we choose a sufficiently small unit of weight.

Remark 3.3.6 If we consider a more general model in which some operating
units can have 0 weights, then the integer assumption is not necessary since it
is only used to define a sufficiently small weights for the new operating units.
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This more general model is considered in [30], the results of this section are
presented there without the integer assumption.

Remark 3.3.7 Unfortunately, in the general case, the constructed hierarch-
ical problem can be very wide, thus, the algorithm for solving hierarchical
problems can be not effective enough to solve the general problem.

However, if we make some further assumptions, then the problem con-
structed above is k-wide hierarchical for a constant k. Let us call a PNS
problem (c, l)-ordered if there exist such partitions My = R, ..., M; = P and
O1,...,0, of M and O, respectively, that O; contains only operating units
which have input materials from U{M; : i — ¢ < j < i} and output materials
from U{M; : i < j <i+c}, for every 4, i = 1,...,l. Furthermore, a (c,1)-
ordered problem is called to be k-wide if |M;| < k and |O;| < k are valid for
i=0,...,l,7=1,...,1. The following statement holds for the (c, !)-ordered
problems.

Proposition 3.3.8 An integer k-wide (c,l)-ordered problem is reducible to
a k-wide l-hierarchical problem where k = k; + k¥(c — 1)c.

Proof: Let us consider an arbitrary integer k;-wide (c, })-ordered problem,
and denote it by M = (P,R,0). The problem considered is an integer
cycle free problem, thus, we can reduce it to a hierarchical problem as it is
presented in the proof of Theorem 3.3.1. Let us observe that the first part
of the enlarging is necessary only to ensure that M;,; contains the desired
products. On the other hand, in a (c,[)-ordered problem M; = P, thus in
case of ordered problems we can omit this part. Let the new PNS problem
be M = (P, R,0). We know that this problem is hierarchical with the sets
M; =M;UN;,j=0,...,l,0,=0,UU;,i=1,...,l, presented in Lemma
3.3.3. Let us consider the number of elements in U;. We define a new
operating unit which is placed into U; for each edge (X,Y’), where X € M,
and Y € O, with p < i < g, and for each edge (Y, X), where Y € O, and
X € M, with ¢ < ¢ < p. Since the problem is c-ordered, it is easy to see
that the pair (g,p) can get in both cases at most (¢ — 1)c/2 possible values.
Furthermore, since the problem is k;-wide, we can choose the edge (X,Y) or
(Y, X) in k,? ways for a fixed pair p,q. This yields that |U;| < k?(c — 1)c.
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Therefore, |0;| < ky +k%(c—1)c. One can prove the same inequality for |M;]|
in a similar way. This ends the proof of Proposition 3.3.8.
0O

By Proposition 3.3.8 and by investigating the time complexity of the
enlarging procedure, we can conclude the following result.

Theorem 3.3.9 ([30]) An integer k,-wide (c,l)-ordered problem can be solved
by an algorithm having time complezity O(L - |M| - |O|), where the constant
may depend on ki + ki(c — 1)c exponentially.

Proof: First, we may construct the hierarchical problem of Theorem 3.3.1.
Since the problem is in ordered form, we need not perform the classifying
part. Furthermore, as it is mentioned in the proof of Proposition 3.3.8, we
can also omit the first part of the enlarging phase. Therefore, to construct
the suitable hierarchical problem, we have only to replace the edges with
the new operating units and materials. This procedure can be performed in
2-1:|M|-|O| time. By Proposition 3.3.8, the obtained problem is k; +k2(c—1)c-
wide, thus, by Theorem 3.2.1, it can be solved by a C-[ time algorithm where
C is a constant depending on k; + k%(c — 1)c exponentially. Finally, from the
optimal solution of the new problem we obtain the optimal solution of the
original problem in at most 2-1-|M| - |O| time, by the inverse process of the
enlarging.

O
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Chapter 4

Heuristic algorithms for the
PNS problem

For NP-hard problems, the construction and analysis of heuristic algorithms
is a rapidly developing area. By heuristic algorithms we mean fast (polyno-
mial time) algorithms which do not guarantee an optimal solution in general,
but always result in a feasible solution which is close to the optimal solution
in some sense. One can find more details on heuristic algorithms in [23] and
[36].

For the PNS problem, heuristic algorithms have not yet been earlier stud-
ied. The first heuristic algorithms for the PNS problem are developed in [8].
This paper also contains an empirical analysis which belongs to the coauthors,
the theoretical part contains mainly the results of the author. We present
these algorithms in Section 4.1, and some theoretical worst-case bounds are
proven for them in Section 4.2.

Throughout this chapter we will consider PNS problems which are in
reduced form. By Theorem 2.1.5 we can do it without loosing the generality.

4.1 The heuristic algorithms

The basic ideas of both algorithms are the same. They can be considered as
the generalizations of the well-known Chvatal’s algorithm (see [14]) for the
set covering problem. Both algorithms use a cost function defined on the
materials, which gives a lower bound on the producing cost of the material
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considered. By this function, the algorithms select operating units step by
step, which finally form a feasible solution. First, we define the cost function,
and then the algorithms are presented.

4.1.1 Definition of the cost function

The general definition of the cost function, denoted by c, is given in [25]. This
definition is long and difficult. Moreover, in the worst-case bound proofs, only
cycle free subclasses are investigated, and therefore, the general definition of
the function c is not recalled here. On the other hand, the definition of this
function is very simple for the cycle free case. Thus, we present this particular
definition here. We define the function ¢ by presenting the algorithm which
determines it. Before the description of the algorithm, we outline its basic
idea. In each iteration step, we have two sets I") and J®). I js the set
of materials for which the costs have already been determined and J( is
its complement. Initially, I contains the raw materials. In the r-th step,
we select a material X from J) which is produced only by operating units
having all inputs from the set (). We determine the cost for X and move
X from J into I"). At the beginning of the procedure, zero is assigned as
the cost of the elements of I(¥). Now, the algorithm determining the function
c is presented in details.

Algorithm 4.1.1
o Initialization
Set IO =R, JO =M\R, r=0,
and ¢(X) =0, for all X € M.

e lteration (r-th iteration)

Terminate if J = (). Otherwise, choose a material X € J), for which
the input materials of all the operating units uy,...,u; producing X
directly are in I"=1), For every u,, calculate the value

¢ = w(u) + max{c(V) : V € mat™(u;)},
and let ¢(X) be the minimal ¢, value, moreover, let
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I+ = 1) y {X}, JO+Y = J\ {X}. Set 7 := 7 + 1 and proceed to
the next iteration.

To verify the correctness of the algorithm, we have to show that if J(") £ @,
then there exists an X € J() for which the input materials of all the operating
units uy,...,u; producing X directly are in I"). We prove this statement
by contradiction. Let us suppose that for every X € J(), an operating unit
exists which produces X and has input material in J). Let us choose a
material Ay from J). Then, we have an operating unit A; that produces
Ay and has an input material A, € J). The same statement is valid for
A;. Hence, we have an operating unit A3z which produces A; and has an
input material A; € J). If we continue this list, we obtain a sequence of
materials Ay, A, ... and operating units A;, As, ... for which Ay; and Agi 2
are output and input materials of Aj;,, respectively. On the other hand, the
set of materials is finite, and consequently, Ay = Agx for some k& > . Then,
Agg, Aog—1, - .., Agiy1, Agr is a cycle in the P-graph, which is a contradiction.
Therefore, the algorithm is correct and it determines a nonnegative function
¢ in a finite number of steps.

Now, we can present our heuristic algorithms.

4.1.2 The algorithms

The algorithms select one operating unit in each iteration step. The difference
between the two algorithms is in the rule for selecting the operating unit.
The algorithms work with two sets, the set of the selected operating units
and the set of the required materials. At the beginning of the procedure,
the set of the selected operating units is empty, and the set of the required
materials is P. Later, in each iteration step, we extend the set of the selected
operating units with one operating unit and delete the output materials of
this operating unit from the set of the required materials. Moreover, every
input material of the operating unit considered, which is neither raw material
nor input material of any of the selected operating units, is placed into the
set of the required materials. The procedure terminates when the set of the
required materials becomes empty. We obtain the feasible solution (m, o),
where o is the set of the selected operating units, and m = mat(o). For
completing the description of the algorithms, we have to define the rules for
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selecting the succeeding operating unit. We select the operating unit v for
which the quotient

w(v) + the inputs’ cost of v
the number of the required outputs of v

is minimal. The difference between the two algorithms is in the calculation
of the inputs’ cost of an operating unit. In the first algorithm, called Asum,,
this cost is estimated by 3 xematin() ¢(X). In the second algorithm, called
Amax,, this cost is estimated by max{c(X) : X € mat™(v)}. Since this is
only the difference between the two algorithms, we present here only. one of
them, namely, the algorithm Asum,.

Algorithm Asum,

e Initialization. Set Ny = P, Oy =0, Ky = R, and i = 0.

e Iteration. (i-th iteration)

— Step 1. Proceed to Step 3 if N; = (). Otherwise, for each operating
unit u ¢ O; producing material from N;, take the quotient

‘U)(U) + ZXGmat""(u) C(X)
’U,(N,) ’

where u(lV;) denotes the number of those elements of N; which are
produced by u. Select an operating unit for which this quotient is
minimal and denote it by v.

— Step 2. Lf!t Oiy1 =0; U {v}, K;y, = K; U mat°"‘(v), and Ny, =
N; Umat™(v) \ Ki41. Increase the value of i by 1, and proceed to
the next iteration.

— Step 3. Let o = O;, and m = mat(o).

First, let us consider the correctness and finiteness of the procedure.
Though we consider only the algorithm Asum,, the same proof is valid for
Amax, as well. We have to show that for every material A € Nj;, there exists
an operating unit producing A. Let us observe that for every i, K; contains
the raw materials and the materials which are produced by some operating
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units from O;. Therefore, there are no raw materials in N;. On the other
hand, (M, O) is the maximal structure, and hence, every material A ¢ R
is produced by some operating unit. These observations yield the required
statement. Moreover, we put one new operating unit into the set O; dur-
ing each iteration, and therefore, the set I; will contain all the materials for
some %, and the procedure terminates in the next step, provided that the pro-
cedure does not terminate earlier. Consequently, the algorithm terminates
after finitely many steps and produces the sets m and o. The definition of m
shows that these sets determine a P-graph. We prove now that this P-graph
is a feasible solution.

Theorem 4.1.1 Algorithms Asum, and Amaz, result in a feasible solution.

Proof: We prove the statement for Asum,; the same proof is valid for
Amax,. as well. We have to show that the P-graph (m, o) satisfies the condi-
tions given in the definition of the feasible solution. First, consider condition
(Al). By the earlier observation on K;, it follows that the procedure removes
from the set IV; only those materials which are produced by some operating
units from O;. On the other hand, Ny = P at the beginning, and at the end
of the procedure N; = @), and therefore, for each desired product, o contains
some operating unit producing it. Hence, by the definition of m, the validity
of condition (A1) follows. For verifying condition (A2), first observe that
(M, O) is a feasible solution, thus there is no operating unit producing some
raw madterial in it. On the other hand, o C O, which yields that the same
statement is valid for o. Moreover, in a similar way as in case of condition
(A1), one can prove that all other materials from m are produced by some
operating unit from o. As far as condition (A3) is concerned, we show by
induction on i that for each operating unit in O;, there is a path leading
from it to some desired product. The statement is obvious for 7 = 1 since
O, contains one operating unit producing some material from Ny = P. Now,
suppose that the statement is valid for 2 > 1. We show that it is also valid
for i + 1, provided that O;4, exists. Since O;4; = O; U {v}, by the induction
hypothesis, it is sufficient to prove that there is a path leading from v into
some desired product for the operating unit v selected in the i+ 1-th iteration
step. The operating unit v has an output material B in the set IV;. This
material is a desired product or it is an input material of some operating
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unit u € O;. In the first case, there is an edge from v into a desired product
and the statement is valid. In the second case, there is a path from u into a
desired product (by the induction hypothesis), and completing this path with
(B,u) and (v, B), we obtain a path leading from v into a desired product.
Therefore, condition (A3) is satisfied by (m,0). The validity of condition
(A4) is obvious by the definition of m.

(W]

4.2 Worst-case bounds

In the worst-case analysis of a heuristic algorithm, we are to find a bound for
the quotients calculated as follows. For every problem, we divide the cost of
the produced solution by the cost of the optimal solution. To give the formal
definition for the PNS problem, we need some further notation. Let A be a
heuristic algorithm for solving the PNS problem. For every PNS problem M, |
let the weight of the solution determined by A and the weight of the optimal .
solution be denoted by A(M) and OPT(M), respectively. Then, C is called
a worst-case bound of algorithm A if

A(M)/OPT(M) < C

is valid for every M. C is called tight if it is the smallest worst-case bound.
We can also define the worst-case bounds for some subclasses. C is called a
worst-case bound of the algorithm for a class P of PNS problems if

A(M)/OPT(M) < C

is valid for every M € P. C is called tight if it is the smallest worst-case
bound on the class considered. Sometimes worst-case bounds are used in
a more general sense. It is possible to use some functions depending on
the problem instance instead of a general constant C in the definition. In
Theorem 4.2.1 we present such a result.

For some difficult problems, it has been proven that no heuristic algo-
rithms exist with a constant worst-case bound under some complexity as-
sumption (usually under the assumption P # NP). First, we prove that the
PNS problem belongs to this class.
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Theorem 4.2.1 ([8]) There is no polynomial time heuristic algorithm with
constant worst-case bound for the class of PNS problems unless P=NP.

Proof: It is proven in [6] that there is no polynomial time heuristic al-
gorithm with constant worst-case bound for the set covering problem unless
P=NP. This result and the equivalence between the set covering and PNS1
problems validates the statement of Theorem 4.2.1.

0

By Theorem 4.2.1 it is very unlikely to find a heuristic algorithm with
a constant worst-case bound for the PNS problem. However, considering
particular PNS classes, we can prove some tight worst-case bounds for the
presented algorithms. First, we determine the worst-case bound for the PNS1
class.

Theorem 4.2.2 ([8]) For any problem from the PNS1 class, the algorithms
Asum, and Amaz, give the same result. Furthermore, they have the tight

worst-case bound 31, 1 on the PNS1 class where m is the mazimum size of

the output sets.

Proof: To prove this statement, first we have to recall Chvatal’s following
algorithm for the set covering problem.

Algorithm 4.2.1 (Chvatal [14])

e Initialization. Let J* = 0.

e Step 1. Terminate if P; = (), for all j; J* is the cover produced by the
algorithm. Otherwise, choose an index for which the quotient |P;|/c;
is maximal. Denote it by k and proceed to Step 2.

e Step 2. Put k into J*, replace every P; with P; \ P and proceed to
Step 1.

For this algorithm the following worst-case bound is proven:

Proposition 4.2.3 ([14]) The tight worst-case bound of Algorithm 4.2.1 is
Y4 | 1/i, where d is the number of elements of the largest set from the subset
system.
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Now, wec can use the equivalence betwcen the PNS1 and set covering
problems. For PNS1 problems, each operating unit has only raw materials as
input materials, and c¢(X) = 0 for every z € R. This yields that the selection
rules of both algorithms are reduced to the following rule. We always select
the operating unit for which the ratio obtained by dividing the weight of the
operating unit by the number of the required output materials is minimal. If
we investigate the behaviour of this algorithin using the correspondence to
the equivalent set covering problem, then it is easy to see that the algorithm
selects the operating units corresponding to the sets chosen by Algorithm
4.2.1. Therefore, Proposition 4.2.3 implies the validity of Theorem 4.2.2.

Further classes of PNS problems for which we determine the worst-case
bounds are the classes Sk, k = 1,2,.... For each fixed positive integer k, a
PNS problem belongs to the class Sy if every operating unit is separator type
(it has only one input material), the graph of the problem does not contain
a cycle, and the number of the desired products is equal to k.

Theorem 4.2.4 ([8]) For any problem from the class Sy, the algorithms
Asum, and Amaz, give the same result. Moreover, they have the tight worst-
case bound k on Sy, for every positive integer k.

Proof: Let k be an arbitrarily fixed positive integer. In what follows,
we study the class Sy for this fixed k. Consider an arbitrary reduced model
from this class. Let (M,O) be its P-graph. Since each operating unit is a
separator, '

> o(X) = max{c(X) : X € mat™(u)}
Xemati®(u)

is valid for each operating unit u, which yields that the two algorithms are
the same. In the remaining part of the proof, this algorithm is denoted by
A. First, we prove a lemma on the function c.

Lemma 4.2.5 For every material X, the cost of every path leading from a
raw material into X is at least c(X).
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Proof: We prove that this statement is valid for the elements of the set
I, by induction on r. Since Iy = R, the statement is obviously valid for
r = 0. Now, let » > 0 and let us suppose that the statement is valid for
each nonnegative integer which is not greater than r. We prove it for r + 1.
During the r + 1-th iteration, we extend the set I, with one new material.
Let us denote it by Y. Suppose that the statement is not valid. This yields
that for some Z € R there is a path [Z,Y] in (M,O) with cost smaller
than ¢(Y). Consider the last two vertices in this path, denote them by u
and V. By the construction of the function ¢, it follows that V' € I, and
c(Y) < ¢(V) + w(u). On the other hand, since V € I,, by the induction
hypothesis, each path leading from a raw material to V has a cost at least
¢(V'). This yields that the cost of the path considered is at least ¢(V') +w(u),
which is a contradiction. Therefore, we proved the statement for r + 1, which
ends the proof of Lemma 4.2.5.
O

Now, we prove that algorithm A has the worst-case bound k. First,
consider an optimal solution. Let P; be a desired product for which the
value of ¢ is maximal. Since the optimal solution is a feasible solution, it
must contain P;. Furthermore, it follows immediately, by condition (A2) and
by the cycle free property of the P-graph of the problem, that in the P-graph
of the optimal solution there is a path leading from a raw material into the
material P;. By Lemma 4.2.5, this yields that the cost of this path is at least
¢(P;). Therefore, we proved that

“OPT(M) > max{c(X): X € P}.

Let us investigate the weight of the solution produced by algorithm A.
We show the following lemma.

Lemma 4.2.6 A(M) < Y xep c(X).

Proof: Consider the sequence D; = Y xen, ¢(X)+Xyco, w(u),2=0,1,....
We prove that this sequence is monotone decreasing as i is increasing. In the
i-th step of the algorithm, we obtain N;y; by choosing an operating unit
u, deleting its output materials from N; and enlarging N; \ mat®**({u}) by
mat™(u) if mat™(u) ¢ K;y1. Therefore, we have that
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!
D; = Diy1 2D c(Xs) — c(mat™(u)) — w(u),
i=1
where u is the operating unit selected in the i-th iteration step and X1, ..., X
are the output materials of u which are contained in INV;. On the other hand,
by the selection rule of A, it follows that

c(mati®(u)) + w(u)
l

is valid for every operating unit v producing X;. Consequently, by the con-
struction of ¢, we obtain that

c(mat™(v)) + w(v) >

c(mati(u)) + w(u)
l .

Summing up the inequalities concerning the values c(X;), we get the following
inequality

C(Xi) Z

!
> e(X;) — e(mat™(u)) — w(u) > 0.

i=1
Therefore, we proved the validity of D; — D;yy > 0.
On the other hand, Dy = Y xepc(X), and D, = A(M) holds at the end

of the procedure, and hence, by the decreasing property of the sequence D;,
the statement of the lemma is valid.

a

Therefore, we proved that OPT (M) > max{c(X) : X € P} and A(M) <
Y xep ¢(X) are valid. These inequalities and |P| = k yield that

A(M)
OPT(M)

which means that k is a worst-case bound for A.

<k,

Now, we prove that this bound is tight. We show that for every ¢ > 0,
there exists a PNS problem M, having maximal structure (M, O,) from the
class Sy for which )

A(M,
_—_—OPT(ME) >k —e.
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First, let us observe that it is sufficient to prove this for ¢ < 1. In what
follows, let 0 < £ < 1 be an arbitrarily fixed real number.

Moreover, let 0 < § < 5. Define the following PNS problem M, from
the class Si. Let the set of operating units be

O= {uo,ul,---,'U'Ic,'Ul,---,Uzk},

where ug = ({Ro}, {X1,...,Xk}), vi = {X:},{B}), + = 1,...,k, further-
more, v; = ({R:}, {Yi}), and weys = ({Yi}, {R.}, i = 1,...,k. The P-graph
of the problem is shown in Figure 4.2.1.

In this problem, Ry,...,R; are the raw materials, Py,..., P are the
desired products, moreover, w(up) = 1, w(u;) = %, i=1,...,k and w(y;) =
2, i=1,...,2k.

Performing the algorithm A on the problem considered, we obtain the
feasible solution (77, 6), where

m = {Rl,...,Rk,xfl,...,Y;‘;,Pl,...,Pk} and 6 = {'U],,...,'Uzk}.

The weight of this solution is equal to &, and hence, A(M) = k. On the other
hand, (m, o) is also feasible solution, where m = {Rg, Xy, ..., Xk, P1, ..., Px}
and o = {ug, u1,...,ur}. The weight of this solution is 1+4, thus, OPT (M), <
1 + 4. Therefore, we obtain that

A(My) > k
OPT(M,) — 1446
is valid. On the other hand,
k S k
1+46 7 145

=k —¢.

This means that we proved for M, that

A(M,)
ekl Sebin 7 SN N
oPTv;) 2 F®
which shows that the bound k is tight.

By the theorem above, we immediately obtain the following corollary.

Corollary 4.2.7 For the class S, A results in an optimal solution.
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Figure 4.2.1 The P-graph of the defined problem.
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Chapter 5

Online scheduling problems

In the second part of the thesis we consider online problems which are closely
related to online machine scheduling. First, in Section 5.1, the most impor-
tant definitions of the competitive analysis are presented. Then, in Section
5.2, we introduce some basic scheduling and online scheduling models.

5.1 Competitive analysis

In online computation, an algorithm must produce decisions based only on
past events without secure information on future. Such algorithms are called
online algorithms. Online algorithms have many applications in different
areas, such as computer science, economics and operations research.

One basic approach to studying online algorithms is the average case
analysis, where we hypothesize some distribution on events, and we study the
expected total cost. Another approach is the competitive analysis, where for
each input sequence the cost produced by the online algorithm is compared
to the offline (in the offline version we have the full knowledge of future)
optimal value. Since we use the competitive analysis, we present here its
most important definitions. One can find more details on the analysis of the
online algorithms in [10] and [17)].

We will consider minimization problems with nonnegative cost function,
and therefore, we give the definitions only for this case. The definitions can
be easily modified for the other optimization problems. Let a problem P be
given by the set of its instances I, and the cost function w. For each instance,
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denote the cost of the optimal offline solution by OPT(I). Let A be an
arbitrary online algorithm. Denote A(I) the cost of the solution produced
by A on the problem instance I.

Algorithm A is called C-competitive if for each instance,

A(I) < C - OPT(])

is valid. The competitive ratio of an algorithm is the least constant C such
that the algorithm is C-competitive. The competitive ratio of a problem is
the best competitive ratio any online algorithm can achieve.

5.2 Scheduling problems

The problems which we investigate are closely related to parallel machine
scheduling, therefore, we present some basic scheduling models here. In the
simplest model, we have a set J of jobs, each of them has a processing time
Pj, and we have to process them on the available uniform machines. The
number of machines is denoted by m. A schedule specifies for each job a
machine and a time interval on the machine when the job is processed. The
length of the time interval must be the processing time, the starting and
ending point of the time interval are called the starting and finishing time
of the job. A schedule is feasible if the time intervals do not overlap for each
machine. Our goal is to minimize the maximal finishing time, which is called
the makespan. In a more difficult model the jobs also have a parameter r;,
which is called release time. Then, we have the assumption that the starting
time of job j can not be smaller than r;.

In the second model which will be used it is allowed to preempt the jobs.
With preemption a job may be scheduled on multiple machines. A time slot
is a non-empty interval (g,t) with ¢ > 0. In preemptive scheduling we have
to assign time slots to each job on one or more machines. The sum of the
sizes of the time slots must be the processing time of the job, and if time
slots (g1,t1),...,(g:,t;) are assigned to a job, then ¢; < g;j41 must be valid
for j = 1,...,i — 1. Furthermore, no two jobs may have overlapping time
slots on the same machine. One can easily prove the following result for this
problem.
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Proposition 5.2.1 For any sets of jobs J the makespan of the optimal
schedule is

max{)  p;/m, maxp;}.
j€J jes
We introduced only the simplest parallel machine scheduling problems

here. For details on the area of parallel machine scheduling we refer to [34],
[40], and [37).

Now, we present the basic online parallel machine scheduling problems.
Probably the most fundamental example of an online machine scheduling
problem is where we schedule the jobs one by one. In this problem, we have
a fixed number m of identical machines. The jobs and their processing times
are revealed to the online algorithm one by one. When a job is revealed,
the online algorithm must irrevocably assign the job to a machine. There
has been a great deal of work on this problem including [1], [12], and [22],
but the best possible competitive ratio for this problem is still unknown for
m > 3. The first result is due to Graham [24]. Although the terminology
of competitive analysis was not used by him, it was shown that a simple
algorithm, the List Scheduling, is (2 — 1/m)-competitive.

Another online machine scheduling problem is where the jobs arrive over
time. Here again there are a fixed number of machines. Each job has a
processing time and a release time. A job is revealed to the online algorithm
at its release time. For each job the online algorithm must choose which
machine the job will run on and assign a starting time. No machine may
simultaneously run two jobs. Note that the algorithm is not required to
immediately assign to a machine the job at its release time. However, if
the online algorithm assigns a job at time ¢, then it cannot use information
about jobs released after time ¢ and it cannot start the job before time ¢.
The objective is to minimize the makespan. For details and results on this
model, we refer to [35] and [39].

In what follows, we investigate three different problems which are closely
related to online scheduling problems. The first problem, studied in [32], is a
variant where we have to purchase the machines. In the second problem some
generalized scheduling problems are considered, where the machines form a
two-layer multiprocessor structure. These problems are investigated in [27]
and [28]. Finally, in the third problem (cf. [31]) we investigate the problem

41
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of scheduling with shared resources. This problem leads to a modified strip
packing model, where it is allowed to lengthen the items which are packed
into the strip. For the solution of this problem, we use some idea from the
field of machine scheduling.
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Chapter 6

Online scheduling with machine
cost

In this chapter we investigate a scheduling problem, where the number of
machines is not fixed, and the decision maker has to purchase the machines.
First we define the mathematical model of the problem and introduce also
the model where the jobs have release time. Then, we establish a class of
online algorithms for this problem, and prove a theorem on the competitive
ratio of some particular elements of this class. Some general lower bounds are
also presented. These results are published in [32]. The paper was written
while the author was visiting TU Graz. The published algorithms and lower
bounds were developed through many ideas by a joint work with John Noga,
therefore it is impossible to separate which results belongs to the author.

6.1 Problem definition

In machine scheduling, we typically have a fixed set of machines. The schedul-
ing algorithm makes no decision regarding the initial set of machines nor is
it allowed to change the set of machines later. It is usually assumed that the
provided machines can be utilized without cost.

We investigate how scheduling problems change when machine costs are
considered. We have several reasons for studying this idea. Most obviously,
real machines have cost. If we do not have the necessary machines, then they
must be obtained. Even if we already possess machines we may still incur
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a fixed start up or conversion cost proportional to the number of machines
used. Also, we still have an opportunity cost. By this cost we mean that
if we use the machines for a given problem, we lose the chance to use them
for something else. Further, in many cases it is desirable to buy or lease
additional machines. A second reason we might allow the number of machines
to be determined by the algorithm is that the performance of an algorithm on
a given input can be highly dependent on the number of machines. A third.
reason is that by considering such a variant we may find other interesting
problems and/or gain insight into the original.

We consider two scheduling problems with machine cost. The first one is
a variant of online scheduling jobs one by one. The differences are that 1) no
machines are initially provided, 2) when a job is revealed, the algorithm has
the option to purchase new machines, and 3) the objective is to minimize
the sum of the makespan and cost of the machines. We will refer to this
problem as the List Model for scheduling with machine cost. The second
problem which we consider is a variant of scheduling jobs arriving over time.
The differences are that 1) no machines are initially provided and 2) the
algorithm may purchase machines at any time, and 3) the objective is to
minimize the sum of the makespan and the cost of the machines. We will
refer to this problem as the Time Model for scheduling with machine cost.
Throughout the remainder of the chapter we will use the following notations.
The jobs will be labeled 7,,..., 7, and presented to the online algorithm in
this order. We denote the processing time of the job j; by p; and the largest
processing time by L = max{p;}. For a fixed algorithm, the starting time of
the job j; is s; and its completion time is ¢; = s; + p;. The total amount of
processing needed by the first ¢ jobs is P, = Zf=1 pi- In the Time Model the
release time of the job j; is ;. We will assume that the cost of purchasing a
machine is 1. Since we could simply rescale the machine costs and job sizes,
any other constant cost function is equivalent.

This scheduling problem is somewhere between the original scheduling
and bin packing problems. In the original scheduling problem the number of
machines is fixed and our goal is to minimize the time. In the bin packing
problem the size of the bins (we can consider it as the time) is fixed and we
want to minimize the number of bins (we can consider them as machines). In
this scheduling problem with machine cost neither the time nor the number
of machines is fixed, the goal is to minimize the sum of them.

The offline version of machine scheduling under both the List Model and
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Time Model can easily be seen to be NP-complete by simple transformations
from PARTITION. Since finding the exact optimal offline solution is a hard
problem, in our upper bound proofs we will use the following lower bound
on the optimal offline solution.

Lemma 6.1.1 For both the List Model and Time Model, the optimal offline
cost is at least 2/P. Further; if L > /P, then the optimal offline cost is at
least L + P/L.

Proof: Let m be the number of machines and M be the makespan of the
optimal solution. Since the largest job must be placed on some machine,
L < M. Since the total load on any machine is no more than M, the
maximum amount of processing which can be accomplished is mM. - So,
P < mM. Therefore, the optimal offline cost must be greater than the
solution to the following optimization problem: minimize m + M subject to
P <mM and L < M. It is easy to see that this value is the one described.

a
We study a class of online algorithms for the List Model. For an increasing
sequence ¢ = (0 = g4, 02,...,0i,...) we will define an online algorithm A,.

When job j; is revealed, A, purchascs machines (if nccessary) so that the
current number of machines 4 satisfies g; < P, < gi41. Algorithm A, then
assigns the job j, to the least loaded machine.

For the Time Model, we define a very similar class of online algorithms.
For an increasing sequence ¢ = (0 = gy, g2, . - - , 8, - . -.) we will define an online
algorithm B,. When job j, is revealed, B, purchases machines (if necessary)
so that the current number of machines ¢ satisfies g; < Py < gi+1. Whenever
there is at least one machine that is not processing a job and at least one job
that has been released but not started, A, assigns the job with the largest

processing time to an idle machine.

6.2 List Model

6.2.1 Lower Bound

Theorem 6.2.1 ([32]) No online algorithm can have a competitive ratio
smaller than 5.
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Proof: Consider a very long sequence of jobs with each job having a very
small processing time, p; = € for all . It is easy to see that any algorithm
which never purchases a second machine is not C-competitive for any C. So
assume that the algorithm purchases a second machine when the job j¢ is
released. If P, < 2, then the offline algorithm can serve all jobs with one
machine and the competitive ratio can be no smaller than

Po—e+42 >4—E
P+1 — 3

If P, > 2, then the offline algorithm can split the jobs nearly evenly between
two machines and the competitive ratio can be no smaller than
Pr—e+2 > 4
Pef2+2+e ™ 3+¢€

Since we can choose € to be arbitrarily small, we obtain the result.

6.2.2 Upper Bound

Throughout this section we will consider the algorithm A = A, for p =
(0,4,9,16,...,42,...). The basic intuition for selecting ¢ comes from Lemma
6.1.1. If the optimal cost is close to 2v/P, then the optimal algorithm uses
approximately /P machines. If P > 4, then A tries to mimic this behavior
by purchasing at most v/P machines.

Theorem 6.2.2 ([32]) The competitive ratio of A is (1 + V5)/2.

Proof: For the sake of simplicity, in the following part of this chapter
the number (1 + v/5)/2 is denoted by ¢. We will first prove that A is -
competitive.

Consider an arbitrary sequence of jobs ¢ = ji,...,J» and fix an optimal
schedule. Let M* be the optimal makespan, m* be the optimal number of
machines, M be the makespan of A, and m be the number of machines used
by A. Let j, be the last job that A completes and & be the number of
machines that A owns after j, is released.

Case A: If A purchases only one machine, then the cost of the algorithm
is 1+ P and P < 4. If the optimal offline schedule also uses one machine,
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then the ratio of costs is 1. If the optimal offline schedule uses two or more
machines, then the optimal cost is at least 2 + % Since P < 4, the cost ratio
is no more than 5/4.

In the remaining cases we will repeatedly use several simple inequalities.
By our choice of A, we knowm < VP <m+1land k< VP <k+1. We
use Lemma 6.1.1 to estimate OPT(0). Since A always assigns a job to the
machine with the smallest load,

Py —pe

P, k-1
A(O’) < m+—-k—+pe=m+fe+ % De-

Case B: If m > k and p, < VP, then using the inequalities given above:

Alo) _ m+(k+1)*/k+ (k- 1)VP/k
OPT(o) ~ 2v/P
 m+k+2+1/k+VP—VP/k
= 2P
< 3VP + (m — VP)/(m - 1)
< Wiz

Case C:If m = k > 1 and p; < VP, then since (m + P/m + vP)/2V/P
is increasing in PP, we have that .

<3/2< .

A(o) m+P/m+ P 3m+3+1/m 19
oy S < <S5 2
OPT (o) 2vP 2(m+1) 12

Case D: If m > k and p, > v/P, then using the inequalities given above
we obtain that

A(o) < m+ (k+ 1)2/k + pe(k — 1) /k < 2v/P + p,
OPT(o) ~ pe+ P/pe ~ pe+ P/pe
2+ pe/ VP <
pe/VP+VP[py ~ ’

The last inequality follows from the fact that the maximum of f(z) = (2 +
z)(z + 1/z) is ¢.
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Case E: If m = k > 1 and p; > V/P, then since (m + P/m — p,/m)/2v/P
is increasing in P, we obtain that

m + P/m — ps/m < m+ (m+1)%/m —py/m 1+ 1 - pe 1
2P - 2(m +1) - 2m(m+1) —
Therefore, m + P/m — pg/m < 2/P and
A(o) < 2VP + pe _ 2 + pe/VP

OPT(0) ~ pe+Plpe ~ peo/VP +VP/p, < e

where the final inequality follows from the fact that the maximum of f(z) =
2+z)(z+1/z)is @.

We now wish to show that A is not C-competitive for any C < . Con-
sider a sequence of N? jobs of size 1/N followed by one job of size @N. A
will schedule the first N3 by purchasing N machines and putting N? jobs
on each machine. The final job will be placed on an arbitrary machine.
Therefore, A’s cost will be N + N + @N. The optimal cost is no more than
@N + [(N + ¢)/p]. So, the competitive ratio of A is at least

(2+ )N Nsoo 249
eN +[(N + ¢)/¢] XSV

Consequently, the competitive ratio of A is ¢.

6.3 Time Model

The Time Model differs from the List Model in two respects. The online
algorithm has the advantage of not having to immediately assign a job to
a machine. However, the online algorithm has the disadvantage that if a
machine is purchased at time ¢, then it cannot be used before time {. For
these reasons neither our upper nor lower bounds from the List Model directly
apply to the Time Model.
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6.3.1 Lower Bound
Theorem 6.3.1 ([32]) No online algorithm can have a competitive ratio

smaller than
V33-1

C= 1

~ 1.186.

Proof: Fix an online algorithm and let S = C + 1/2. Consider two jobs
(p1,71) = (p2,m2) = (S,0). Let ¢t = max{s;,s2}. If t < S — 1, then we will
present a third job (p3,7r3) = (25 — t — €,t + €). The optimal offline cost is
S + 2 for the first two jobs and 25 + 2 if all three are given.

If t > S, then the algorithm’s makespan is at least 25. So, the cost ratio
can be no smaller than (25 +1)/(S+2)=C. f S—1 <t < S, then the
algorithm must run the two jobs on different machines and have makespan at
least 25 — 1. So, the cost ratio can be no smaller than (25+1)/(S+2) =C.
Ift < §—1, then the third job is presented. Once again the algorithm
must run the first two jobs on different machines. If it purchases exactly two
machines, then the makespan is at least 3S — ¢t — €. If it purchases at least
three machines then the makespan is at least 2S. So, the cost ratio can be
no smaller than min{3S —t —e+2,25 —e+3}/(2S +2). As ¢ tends to zero
this value tends to C.

Regardless of how the online algorithm schedules the first two jobs in this
sequence, the cost ratio can be made arbitrarily close to C. Therefore, the
competitive ratio must be at least C.

(]

6.3.2 Upper Bound

Throughout this section we will consider the algorithm B = B, for g =
(0,4,9,16,...,i%,...). Once again we attempt to mimic the behavior of an
offline algorithm which achieves a cost near 2v/P.

Theorem 6.3.2 ([32]) Algorithm B is &bl@ ~ 1.693-competitive.

Proof: Consider an arbitrary sequence of jobs o0 = j;,...,J, and fix an
optimal schedule. Let M* be the optimal makespan, m* be the optimal
number of machines, M be the makespan of B, and m be the number of
machines used by B.
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Case A: Suppose m = 1. If B’s machine is never idle, then let ¢=0.
Otherwise, let ¢ be the latest time that B’s machine is idle. Let W < P < 4
be the total processing time of all jobs released at or after time ¢. The cost
of Bis 14+t+W. The optimal cost is at least m* +t+ W/m*. For this case:

B(o) 1+t+W
< .
OPT(o) < mat+Wim = 4

Case B: Suppose m > 1. Then we claim that M — M* < 5. Suppose
that this was not true. Let j; be the last job to finish in B’s schedule and ¢
be the number of machines owned by B at time M* — p;. Note that none of
B’s machines can be idle during the time period I = [M* —p;, M —p;]. So at
least (M — M*)¢ processing is completed during I. Further, if p; < M — M*,
then an additional (M — M* — p;)(m — £) processing is completed during
[M*, M — p;] by the remaining m — ¢ machines that B purchases.

If £ = m, then more than P processing is completed, which is a contra-
diction. If £ < m, then P; < (£ + 1)2. Since the processing time of any job
released after M — p; must be less than p;, the job j; will start before any
job released after M — p;. Therefore,

P,', 2 (M—M*)€+pi+ma.x{(M—M*——p.-)(m——f),O}
> (M —M)(E+1) > P/m(+1) > (£+1),

which is also a contradiction. So the claim must be true.

Since m > 2, P < (m + 1)?, and (P/m + m)/+/P is increasing in P, it is
easy to verify that P/m +m < 13v/P/6.

Putting these facts together we get:

Blo) < M*+P/m+m < M +2,/169P/144
< ey S8 VIB)M (6 + VEO5)P
= 12 12M+

S+ V5 (o + Py < S 0pr),

The third inequality is an application of the arithmetic-geometric mean in-
equality. So we have shown that B(o) is (6 + v/205)/12-competitive.
a
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Chapter 7

Online scheduling with
two-layer multiprocessor
architecture

In this chapter we investigate a particular scheduling problem where the ma-
chines form a two-layer multiprocessor structure. We define two different but
related problems: the SLS (Sum Layered Scheduling) and MLS (Maximum
Layered Scheduling) problems. We establish two algorithms, and we deter-
mine their competitive ratios. Soine general lower bounds are also presented.

7.1 Problem definition

Here we consider a scheduling problem where the machines have two-layer
structure. In this problem we have two sets P and S of identical machines
containing k and m machines with & < m. The jobs arrive one by one.
Each job j has two different processing times p; and s;, one for each set of
machines. We allow oo processing time, this means that the job cannot be
executed on the machines of the set. We have to decide in an online way on
which set of machines to schedule each job. Finally, when the stream of jobs
has come to an end, we schedule in an offline way the jobs assigned to the set
P (respectively, the jobs assigned to the set S) on the machines of P (respec-
tively, S) so as to minimize the preemptive makespan. Let Cp (respectively,
Cs) denote this optimal makespan. In the first problem, which is investigated
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in [28] and called problem SLS(k,m) (Sum Layered Scheduling), the cost of
the constructed schedule is the sum (Cp + Cs) of the two makespans. In
the second problem, (cf. [27]) which is called problem MLS(k,m) (Mazimum
Layered Scheduling), the cost of the constructed schedule is the maximum
(max{Cp, Cs}) of the two makespans. The general problems without fixing
the number of machines in the sets are denoted by SLS and MLS.

Problem SLS is a generalization of the semi online version of scheduling
with rejection. In these scheduling problems, jobs arrive one by one, and we
have to schedule each job in an online way or we can reject it at some penalty.
The cost of the schedule is the makespan, and we are to minimize the sum of
the cost of the schedule and the penalties of the rejected jobs. Nonpreemptive
scheduling with rejection was introduced in [5], the preemptive version and
randomized algorithms for it were studied in [38]. The main result of [5]
is that they define a 2.61-competitive online algorithm for the problemn, and
prove that this algorithin is optimal. In [38] their algorithm is investigated for
the problem where preemption is allowed, and a randomized version is also
presented. In the semi online version we have to decide whether we reject
or schedule the job in an online fashion, but we do an offline scheduling
at the end. We denote this problem by SOSR. One can see immediately
that SLS contains SOSR. as a particular case (if one of the considered sets
contains only a single machine). Problem MLS is a generalized version of
the online two-machine scheduling problem with unrelated machines which
is investigated in [2].

To present our results we need the following definitions.

For any subset I of jobs, we use the following notations:

Sr=Y_sj, Pr=)_pj, Smax;=max;gsj, Pmax; = max;esp;.
jer Jjel

Using these notations for the case of the problem SLS(k,m), the cost of
a schedule SC can be written in the form

w(SC) = max{%, Pmaxp} + max{%, Smaxg},

where R and @ are the sets of jobs assigned to P and S, respectively. In the
case of the problem M LS(k,m), the cost of a schedule SC can be written in
the form
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P
u(SC) = max{TR, Pmaxn,%z—, Smaxg},

where R and Q) are the sets of jobs assigned to P and S, respectively.

We study two online algorithms for these problems. First we present a
simple greedy type algorithm. The second algorithm is a more difficult one,
which is a generalized version of the reject total penalty algorithm from [5]
and [38]. In fact, this algorithm is a class of algorithms since it depends on
two parameters 0 < a<land 0 <y < 1.

7.2 The load greedy algorithm

In this section we present and study the load greedy algorithm. The basic
idea is to assign each job to the set where its load is smaller. We can define
algorithm LG as follows.

Algorithm LG: If a job j arrives, then it is assigned to P if 4 < i,
otherwise it is assigned to S.

The competitive ratio of this algorithm on the problem SLS(k,m) is
determined by the following statement.

Theorem 7.2.1 ([28]) The competitive ratio of LG on SLS(k,m) is

1+ ifk>2,
- Crm(LG) = {m ¢ Z‘tk =1.

Proof: Consider first the case k > 2. Let a and b denote the makespans
obtained by LG on P and S, respectively. Furthermore, let us fix an optimal
solution. First assume that a > b. Suppose that the makespan a is defined by
the maximal processing time. Denote the job with this maximal processing
time by j. Then p; = a, and since our algorithm assigned this job to P, we
get s; > Ta. Hence, the optimal cost is at least a, and this yields that for
the competitive ratio, Cym(LG) < “ff—‘! <2 <1+ %. Now, suppose that the
makespan is defined by the load of the jobs. Let P denote the set of the jobs
assigned by the algorithm to P, and let R and @ denote the sets of the jobs
from P which are assigned to P and S in the optimal solution, respectively.
Then the optimal cost is at least f,f- + %‘1 Furthermore, by the definition of
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LG, we get that Pf < %‘f This yields that the cost of the optimal solution

. P, . .
is at least L;‘i + =2 = a, and our statement follows in the same way as in the
previous case.

Let us assume that a < b. Now, consider two cases depending on the
makespan on S. If the makespan is the load, then in the same way as above
we obtain that the optimal cost is at least b, which yields that the algorithm
is 1 + T competitive. Now, suppose that the makespan is defined by the
maximal processing time. Denote the job with this maximal processing time
by j. Then s; = b and since our algorithm assigned this job to S, we have
that p; > £b. Hence, the optimal cost is at least £b. Furthermore, we
proved above that if the makespan on P is a, then the optimal cost is at
least a. This yields that our optimal cost is at least ma.x{ﬁb, a}. Hence, the

algorithm is

_oatb _.m

max{-2b,a} k
competitive. We can handle the case £ = 1 in a similar way. If m = 1, then
the algorithm is obviously 1-competitive. If m > 2, we consider four cases,
and we can obtain the upper bound 2 in the first three cases in the same
way as we got it for £ > 2. The only difference is in the case when a < b
and b is defined by the processing time of a maximal job j. In this case, if
the optimal algorithm assigns j to S, we obtain the upper bound 2. If it
assigns j to P, then it causes "%b cost there. On the other hand, since k£ =1,
we cannot schedule the jobs which cause the makespan on P on the other
machines from P. This yields that these jobs will cause at least a extra cost

in the optimal solution. Thus, the algorithm is

competitive.

To prove that the above analysis is tight in the case £ > 1, consider the
sequence of two jobs: (1,2 —¢€) and (1,m). Algorithm LG assigns the first
job to S and the second job to P with cost 1 + ¥ — €. Since the optimal
cost is 1, choosing € to be sufficiently small, the competitive ratio on this
sequence is arbitrarily close to 1 + 5. The tightness of the analysis for the
case k = 1 follows if we consider the job (1, % —¢).

a
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For the M LS(k, m) problem we obtain the following result.

Theorem 7.2.2 ([27]) Algorithm LG has the competitive ratio max{2, m/k}
on problem MLS(k,m).

Proof: Consider an arbitrary list L of jobs, and denote a and b the
makespans obtained by LG on P and S, respectively. Suppose that a > b. If
the makespan is defined on P by the maximal completion time, then denote
the job with this maximal processing time by j. Then p; = a, and since our
algorithm assigned this job to the set P, we get s; > Jta. Hence, the optimal
cost is at least a, and this yields that we have an optimal solution. Now,
suppose that the makespan is defined by the load of the jobs. Let P denote
the set of the jobs assigned by LG to P, and let R and @ denote the sets
of the jobs from P which are assigned to P and S in an optimal solution,
respectively. Then the optimal cost is at least ma,x{flf, %?} Furthermore,

by the definition of LG, we get that -PEQ < —sﬁ- This yields that the cost of the
optimal solution is at least max{Z&, %Q} > a/2, and our statement follows.

Suppose that a < b. Now, consider two cases depending on the makespan
on S. If the makespan is the load, then in the same way as above we obtain
that the optimal cost is at least /2, which yields that the algorithm is 2-
competitive. Now, suppose that the makespan is defined by the maximal
processing time. Denote the job with this maximal processing time by j.
Then s; = b and since our algorithm assigned this job to set S, we obtain
that p; > "%b. Hence, the optimal cost is at least ﬁb, which proves our
statement.

To prove that the above analysis is tight, consider one job (1, — ¢).
Algorithm LG assigns this job to S with cost 2 — ¢. Since the optimal cost
is 1, for a sufficiently small €, the competitive ratio on this job is arbitrarily
close to 3. To prove that the bound 2 is tight, we have to consider a sequence
of jobs where the load of each job is the same in the two sets.

a

The above results show that Algorithm LG works well only in the cases
when m/k is small. In the next section we present an algorithm which is also
efficient in the cases, when m/k is large.
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7.3 Better algorithm for the general case

This algorithm can be considercd as a generalization of the reject total
penalty type algorithms for scheduling with rejection, presented in [5] and
[38]. The algorithm has two parameters: 0 < & < 1and 0 < v < 1. The com-
petitive ratio depends on these parameters. We determine the competitive
ratio on problem SLS an MLS for arbitrary pair (e, 7).

Algorithm A(a, )

e 1. Initialization. Let R := {).

e 2. When a job j arrives

— (i) If % < X . 55, then assign j to P.

— (ii) If not (i), then let r be the cost of the optimal offline pre-
emptive scheduling of the set R U {j} on P. Formally, r =
ma,x{P"—:m-, Pmaxpy(y}. If r < - 55, then

* (a) Assign j to P,
* (b) Set R = RU {j}.

— (iii) Otherwise, assign j to S.

Consider first the case of problem SLS. We prove the following statement.

Theorem 7.3.1 ([28]) Algorithm A(c,y) has competitive ratio C on SLS,
where .
1. 1
C’=max{1+a,l+a+'y,l+;}.

Proof: We prove the above theorem in two steps. First we show that
the algorithm is C-competitive, and then we prove that this bound is tight.
To prove the upper bound, let us consider an arbitrary sequence L of jobs.
Fix an optimal schedule of the jobs. Denote P, the set of jobs which are
assigned to P in this optimal schedule. Let Py be the set of the jobs with
B < X.s;, and P be the set of the jobs assigned to P by our algorithm. Let
us observe that, by the definition of the algorithm, we have P, C P. Define
the following sets
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X =L\ (PpUP), Y=P,\P,
Z=PpuN(P\PR), U= PynP,

V=P()\Popg, W=(P\P0)\Popt

Then the algorithm gives the following cost on L:

Pz + Py + Py + P,
A(L) = max{ Z v % 4 W, Pma.XZUUUva}+
max{g)i:r;—sy—', Smax xyuy }-

Furthermore, the optimal cost is 0; + 02, where

Py + Pz + P,

0; = max{—~ kz z, Pmaxyyzur}
Sx + Sy + Sw

0, = max{ = , Smaxxuvuw }

are the makespans on the sets P and S, respectively. To prove the upper
bound, we have to show that A(L) < C(o0; + 0;). First let us observe that
C > 2 is obviously valid for each (c,7). Furthermore, let us prove the
following inequalities, which will be used many times.

Lemma 7.3.2 The following inequalities are valid:

(1) %VK < o+ Smaxyy, '

(2) Pmaxwy < a- Smaxw,

P .
(3) «- Sma.Xy < ma.x{ PZ + IDkW + Y, PmaszWUy}. i
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Proof: We first prove (1). Let j be the last job from W. At the time when
it was assigned to P by the algonthm we had r < o s;. On the other hand,
j is the last job in W, thus —,EL < r. Furthermore, obviously s; < Smaxy,
and the validity of (1) follows. We can prove (2) in the same way as (1).
Indeed, let j be a job from W with p; = Pmaxy. When it was assigned to
P, we had p; < r < - s5. This inequality yields (2).

There exists a job j € Y with s; = Smaxy. At the time when it was
assigned to S, we had r > as;. On the other hand, RU{j} C ZUuWUY
was valid for the considered set R, thus r < max{Z2tE%+l - Pmax; wyy}
was also valid by definition. Hence, the required inequality follows.

0

Using this lemma we can prove the desired upper bound. For this reason
consider the following cases.

Case 1: Suppose that A(L) = FztfutPviPw 4 Sx3S¢ The definitions of
the sets V,Y and the algorithm yield the following inequalities

— <
(4) k SV’
(5) _Sl'. < _I_)Y_
m -y
By inequality (5), we obtain that
Pz + Py Sy 1

- — < __1_<...
IG +m 1+( ) 701

On the other hand, by inequalitics (1), (4) and by v < 1, we obtain that

Pv+Pw+SX <Sv+Sx
k m m

+ o+ Smaxwy < 0x(1 + @).

Thus, we proved that A(L) < C(o; + 0) in this case.
Case 2: Assume that A(L) = Ez+PutPutPw | Smaxyy. If Smaxxyy =

Smaxx, then by inequalities (1) and (4), we obtain that
Py + Py

p + Smaxy < —% Sy + @+ Smaxw + Smaxy < 0o(1 +a+7).
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On the other hand, £2+22 < 0,. Hence, we proved that A(L) < C(o; + 0,)
in this case. Suppose that Smaxy,y = Smaxy. By inequality (3), we have
the following two possibilities depending on the value of Smaxy.

Cuse 2.a: Suppose that

Sma.xY<P7+1 +Py
k-w
Then we have
P. P, b
k7(1+ )+—X—+%_ 1(1+ )

Furthermore, by (1) and (4),

(1+ )+P < Smaxw(l+a)+7- S—<02(1+a+'y)

Consequently, we proved that A(L) < C(o; + 07).

Case 2.b: Now suppose that Smaxy < Lﬁiﬁw If Pmaxzuwoy =
Pmaxzyy, then 224 + Smaxy < 0;(1+1), and 2422 < o5(a+1), hence
our statement follows. If Pmaxzywuy = Pmaxw, then by (2), Pmaxy <
o Smaxyy, thus

Py + Py
k
and the desired bound on A(L) follows.
Case 8: Suppose that A(L) = Pmaxzuyuvuw + ‘51,',';—5*’- Now, we have
to distinguish three cases depending on the value of Pmaxzyyuvuw-

Case 3.a: Suppose that Pmaxzyyuvuw = Pmaxzyy. In this case, by
(5), we obtain that

+ Smaxy < %Sv + (a@+1) Smaxwy < 0x(1 +a+7),

S P, 1
Pmaxzuy + =Y < Pmaxzuy + i 45 <o(l+=).
m k- v

Thus, by —S;f < 04, we obtain that A(L) < C - (01 + 03) in this case.
Case 3.b: Suppose that Pmaxz yuvuw = Pmaxy. Then, by the defini-

tion of V, we have —m,;ﬂ‘ﬁ <7- S—n:,?x—l, and thus

Sx
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Furthermore, by (5), % < %, hence we proved our statement for this case.
Case 3.c: Suppose that Pmaxzuyuvuw = Pmaxw. Then, by (2),
Pmaxy < aog, and thus, A(L) < %ol + (1 + @)oz, and the statement

follows. -

Case 4: Suppose that A(L) = Pmaxzyyuvuw + Smaxxyy. In this case,
if Smaxyyy = Smaxy, then it is upper bounded by 0;. Furthermore, as we
have seen in the earlier cases

k-
Pmaxzyyuvuw < max{oy, — 02,0+ 03, }.

This yields that A(L) < 20, +2-0,. Therefore, it is enough to consider the
case Smaxyyy = Smaxy. Then, we have an upper bound on Smaxy from
(3). If Smaxy < m‘fﬂm"—, then we have (c¢f. Case 2) that

Smaxy < max{%,oz}.

This inequality and the above bound on Pmaxz,yuyuw imply the upper
bound in this case. Therefore, the only remaining case is that

Pz + Pw + Py

k-o )
Then, by (1) and the definition of 0; and 0;, we obtain that Smaxy < % +0,.
This bound together with the bound on Pmaxzyyyyuw imply immediately
the desired statement.

Since we considered all the possible cases, we proved that our a,lgorithm
is C-competitive.

Smaxy <

Now, we prove that the upper bound C is tight for the algorithm. We
show this statement by the following examples. First let € > 0 be arbitrary,
and choose a value of k and m for which - (X —¢) > 1land I-+§ <1
are valid. Consider the following sequence of jobs. The first part contains
k jobs of size (1, i —¢€), and the last job is the size of (mﬁl,, + & )

Algorithm A(c, v) assigns the first k jobs in Step (ii) to P. Then the k+ 1th
job arrives. Since

by
k + m-a—7y +e

€ 0% a-m
=1+-+ > )
k k m-a—7 m-a—v
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this job is assigned to S. This yields that the schedule, produced by the
algorithm has 1+ cost. If we assign each job to P, we obtain a schedule

M-t— 'y
with cost
k+ﬁ+e m-o €
k m-a—vy k

This yields that by choosing a sufficiently small €, the competitive ratio on
the considered sequence can be arbitrarily close to

1+(1——)—

As m increases to infinity, we obtain that the first bound is tight.

To prove the tightness of the second bound, consider the followmg se-
quence of jobs. The first part contains m - k jobs of size (—(-——2 ""‘ m=2), the
second part contains k jobs of size (« - m,m), finally, the last job has size
(00, m). Then, A(a,y) assigns the first m - k jobs to P in Step (i), and the
next k jobs in Step (ii). Finally, it assigns the last job to S. It has a cost
(1 + a)m + y(m — 1). If we assign each job to S, then we have the cost

mm—-1)+m+k-m
m

=m + k.

Hence, considering this sequence, the algorithm has the competitive ratio

(1+a)m+y(m—1)
m+k

Fixing k£ and increasing m to infinity, we obtain that the second bound is
tight.

To prove the tightness of the third bound, choose again a small € > 0 and
a great integer M, and consider the following sequence of jobs. The first job
is (p1, 51), where

m2

m
p1=a-——+£, 31=a'm

k-
The second part contains M jobs of size (1 + ¢,7%) and the last job is
(leif)lﬂ, M %5)- One can easily see that we can choose such k and m for

which A(a 'y) a.ss1gns the first job in Step (ii) to P. Then, it will assign the
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next M jobs to S, and finally, the last job to P. This yields that its cost is

at least
(1+e)M + M

k-1 kv

If we assign each job to P, then the cost is %)IM + BL. As M increases to
infinity and € decreases to 0, the competitive ratio of the algorithm tends to

k-1 1

14+ 2—=
kv
and the tightness of the last bound follows.
O
To optimize the competitive ratio over the possibilities of o, y, we have

to choose @ = v = 1/4/2. Substituting these values into Theorem 7.3.1, we
obtain the following result.

Corollary 7.3.3 ([28]) The algorithm A(1/v/2,1/v/2) is 1+ /2 competitive
on SLS.

For the SOSR problem, the algorithm has a better competitive ratio.
It is worth noting that in this case the algorithm is reduced to the total
rejection scheme from [38).

Theorem 7.3.4 ([28]) Algorithm A(w,7) has a competitive ratio C on the
SOSR problem where

1 1
C = 1+ =,1 =y
max{ +a’ +a+y 7}

Proof: To prove that the algorithm is C-competitive, we just have to
simplify the upper bound proof of Theorem 7.3.1. Since k = 1, the makespan
on P is the sum of the jobs. This yields that we just have to consider Case
1 and Case 2. Moreover, in this case we can give a sharper upper bound
for Smaxy: it is not greater than (Pz + Pw + R + Py)/a, and this yields
that in Case 2 we have to consider only Case 2.a. We can apply the first
two examples from the proof of Theorem 7.3.1 to show the tightness of the
first two bounds. Morcover, we can show the tightness of the last bound as
follows. (This example was considered in [38]). Let 0 < € < @ — «/m, and
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consider M jobs of size (y/m + €,1). From this sequence the first i jobs are
assigned to P, where ¢ is the greatest integer with i(y/m+¢€) < a, the others
are assigned to §. Thus, by choosing a sufficiently great M, the cost of the
assignment produced by the algorithm is i(y/m + ) + (M — i)/m. If we
assign each job to P, then we have M(y/m + €) cost, hence, fixing m and
increasing M to infinity, the tightness of the third bound follows.
a
To minimize the competitive ratio over (e,7), we have to choose the
values @ = 0.802 and 4 = 0.445. By substituting to Theorem 7.3.4, we
obtain the following result.

Corollary 7.3.5 ([28]) Algorithm A(0.802,0.445) is 2.247-competitive on prob-
lem SOSR. '

In case of the problem M LS, we can do a similar analysis. We can prove
the following theorem.

Theorem 7.3.6 ([27]) The competitive ratio of algorithm A(e,7) is C on
the problem M LS, where

1 1
C’=ma.x{l+a,1+a+'7,1+;}.

Proof: First we prove that the algorithm is C-competitive. Let us consider
an arbitrary sequence of jobs, and denote the list of the jobs by L. Fix an
optimal schedule of the jobs. Define the sets Poy, %, X,Y, Z,U,V,W in the
same way as in the proof of Theorem 7.3.1.

Then the algorithm gives the following cost on L:

Pz + Py + Py + Py
k

A(L) = max{ , Pmaxz, Pmaxy,

Sx + Sy

Pmaxy, Pmaxy, , Smaxy, Smaxy }.

The optimal cost is

Py + Pz + Py

OPT(L) = max{ 3

, Pmaxy, Pmaxg,
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Pmaxy, Sx + i‘; + SW, Smaxy, Smaxy, Smaxw}.

Let us observe that the proof of Lemma 7.3.2 depends only on the def-
inition of the algorithm, therefore, this lemma is also valid for the MLS
problem.

Using this leinma, we can prove the desired upper bound. For this reason,
let us consider the following cases.

Case 1: Suppose that A(L) = max{ Pmaxz, Pmaxy, Smaxx}. In this
case A(L) < OPT(L), thus the algorithm results in an optimal solution.

Case 2: Suppose that A(L) = £ztPutPvtPw Then, the definition of the .
set V yields that £« < X .Sy < yOPT(L). On the other hand Batby <
OPT(L). Furthermore, by Lemma 7.3.2, we have that Py /k < o Smaxy <
aOPT(L). Therefore, A(L) < (1 + a+v)OPT(L) in this case.

Case 8: Suppose that A(L) = Pmaxy. Then, by the definition of the
set V, Pmaxy/k < v Smaxy/m. Since k < m, this yields, that Pmaxy <
v Smaxy < yOPT(L). This is possible only in the case when v = 1, and in
this case the algorithm results in an optimal solution.

Case 4: Suppose that A(L) = Pmaxw. Then, by Lemma 7.3.2, Pmaxy <
a Smaxwy < a-: OPT(L), therefore, this case is possible only if & = 1 and
the algorithm gives an optimal solution.

Case 5: Suppose that A(L) = £x£5¢. Now, by the definition of the set
Y, we have that 2% < '—;}c’— < OPT(L)/v. Thus, we obtain that A(L) <
(1+1/7)OPT(L).

Case 6: Suppose that A(L) = Smaxy. By Lemma 7.3.2, this yields that

Pz + Py + Py
k

Consider three subcases. If A(L) < ZztfwtPr then since £ < Smaxy <
OPT(L) (by Lemma 7.3.2), we obtain that A(L) < (1 + 1/a)OPT(L). If
A(L) < 1/a Pmaxzyy, then we obtain immediately that A(L) < OPT(L)/a.
Finally, if A(L) < 1/« Pmaxy, then by Case 4, we obtain that A(L) <
OPT(L).

A(L) S —;-ma,x{ ’ Pma.XzUWUy}.
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Since we considered all the possible cases, we proved that the algorithm
is C-competitive. We can prove that the bound C is tight by the following
examples.

First assume that k =1 and m > - (1 + @)/a. Consider the following
sequence, which contains two jobs. Let the first job be (a: M, M), the second
one be (M +¢&, M(1+ a)/a) for some great M and small €. By the definition
of m we have that aM > yM/m, thus the first job is assigned to P in Step
(ii). The second job is assigned to S. Therefore, the cost of the algorithm is
M(1+ o)/o on this sequence. The optimal cost is M + ¢, we assign the first
job to § and the second to P. As M tends to oo, the ratio of these costs
tends to 1+ 1/a, hence we proved that the first bound is tight.

To prove the tightness of the second bound, fix the value of k£ and let
m be much greater than k. Consider the following sequence of jobs. First
consider M (m — k) jobs of size (v k/m,1). The second part of the sequence
contains k jobs of size (M, 00), finally the third part contains k jobs of size
(- M, M). Then the first and second part is assigned to P in Step (i), the
third part is also assigned to P in Step (i) or in Step (ii). Therefore, the cost
of the algorithm is

M(m — k)yk/m + Mk + oMk
p .

The optimal solution assigns the first and the third part to S, and the second
part to P and its cost is M. As m tends to oo, the ratio of these costs tends
to 1 + « + <, hence,.we proved that the second bound is tight.

To prove that the third bound is tight, consider such k£ and m that satisfy
the inequality c/k > v/m and the following sequence of jobs. The first part
of the sequence is one job of size (a(m/(vk)+2¢), (m/(vk)+2¢)). The second
part contains Mk jobs of size (1, m/(vk) +¢), and the third part contains m
jobs of size (0o, M). Then, the algorithm assigns the first job to P in Step
(ii), and assigns the other jobs to S. Therefore, its cost is

Mk(m/(vk) +€) + mM.

There is a feasible schedule which assigns the second part of the jobs to
P and the third part to S, therefore, the optimal cost is no more than
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M + m/(vk) + 2. As M tends to co and € tends to 0, the ratio of these
costs tends to 1 + 1/7, hence, we proved that the third bound is tight.

O

To find the best values of c,7y, we have to choose o = v =1/ V2. By

substituting these values into Theorem 7.3.6, we obtain the following result.

Corollary 7.3.7 ([27]) The algorithm A(1/v2,1/V?2) is 1+ \/i-comf)étitive
on MLS.

7.4 Lower bounds

In this section we present some lower bounds, one for the SOS R problem, one
for the SLS(k, m) problem with k > 2, and one for the M LS problem. The
first lower bound is presented in [5] for the online scheduling with rejection,
but it is also valid with the same proof for SOSR. Therefore, we only recall
here this result and we omit the proof of the statement.

Theorem 7.4.1 ([5], [27]) Assume that an online algorithm is c-competitive
on the problem SOSR(m). Then c satisfies the following inequality:

cm—l + cm—2 +...4+1 S cm.

Theorem 7.4.1 yields immediately the following statement for the SOSR
problem.

Corollary 7.4.2 (|27]) If an online algorithm is c-competitive on the prob-
lem SOSR, then ¢ > 2.

For the case k > 2, we can obtain a lower bound as follows.

Theorem 7.4.3 ([28]) If an online algorithm is c-competitive on the problem
SLS(k,m) with k > 2, then c > 2.

Proof: Consider a job which is (1,1). If the algorithm assigns it to P,
then the second job is (2, 1), otherwise it is (1,2). This yields that the cost of
the algorithm is 2. The optimal algorithm assigns the two jobs to the same
set and it has cost 1.

a

By this observation and Theorem 7.2.1, we obtain immediately the fol-
lowing result.
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Corollary 7.4.4 Algorithm LG is optimal for SLS(k,k).
We can prove the following statement for the problem MLS.

Theorem 7.4.5 ([27]) If an online algorithm is c-competitive on problem
MLS(k,m), then ¢ > (1 + v/5)/2 ~ 1.618.

Proof: We prove this statement by contradiction. Suppose that there is a
pair (k,m) and an algorithm A which is ¢ < (1 + v/5)/2-competitive for the
problem MLS(k,m). Consider the following list L of jobs. Let the first k&
jobs be ((v/5 —1)/2,1) and the next k jobs (1,00). In this case, the optimal
offline algorithm assigns the first k jobs to S, and the next &k jobs to P, hence
OPT(L) = 1. On the other hand, since A is c-competitive it must assign the
first k jobs to P, otherwise we omit the next k jobs, and the offline optimum
is (v/5 — 1)/2, while the cost of the algorithm is 1. Therefore, the online
algorithm must assign every job to P, thus it has a makespan (1 + v/5)/2.
This yields that A(L)/OPT(L) = (1 + /5)/2, which is a contradiction.

a

We can obtain a sharper, general lower bound as follows. '

Theorem 7.4.6 ([27]) Let k be a fized constant. If an online algorithm is c-
competitive for every m on the problem MLS(k,m), thenc > (3+V17)/4 ~
1.781.

Proof: We prove this statement by contradiction. Suppose that there
exist such k and an online algorithm A that is c-competitive for every m on
the problem MLS(m, k), where ¢ < (3 + v/17)/4. For the sake of simplicity,
in the rest of the proof we denote the number (3 + v/17)/4 by b. Let m be
greater than 5k and consider the following sequence of jobs. Let the first &
jobs be (1/b,1) and the following m — k jobs be (=17, 1). Finally, depending
on the decisions made by A, we finish the sequence with k£ jobs which are
(1, 00), this is list L;, or we finish the list with m — k jobs which are (o0, 1),
this is list L,.

Consider first the offline optimum. In the first case we can assign the first
m jobs to S and the last k jobs to P, which assignment gives makespan 1. In
the second case, we can assign the first k£ jobs and the last m — k jobs to S,
and the other m — k jobs to P, thus we can obtain makespan 1. Therefore,
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Consider the algorithm A. Since A is online algorithm, it cannot see any
difference between L, and L, before it gets the m + 1-th job, thus it has the
same behaviour in both cases. Furthermore, A is c-competitive with ¢ < b,
therefore it must assign the first k jobs to P, otherwise we get a contradiction
in the same way as in the proof of Theorem 7.4.5. From the next m — k jobs
A can assign z to P and m—k —z to S. Therefore, in case of list L, we have
that A(L;) > &
The algorithm can choose z to be any integer between 1 and m — k, and we
can choose the list which yields the larger makespan. Therefore, since the
offline optimum is at most 1 for both lists, and A is c-competitive, we have
that

T 2m — 2k —
c> min ma.x{ +— L——x}
1<z<m—k -k m

Here we omitted the condition that z is an integer. This does not cause any
problem since it decreases the right side of the inequality. It can be easily
seen that the function of z, which is on the right side of the inequality is
minimal for

_ m(m —k) (m 2k 1)
T 2m—k m b
If we substitute this value into the bound we have for ¢, we obtain that

1 + 3m —3k m
b 2m—k (2m—k)b

Since this inequality is valid for arbitrary m, it is also valid if we let m
to tend to infinity. Therefore,

c> -

e2d L
20

On the other hand, b = % + 51,;, and thus, we obtain that ¢ > b, which is
a contradiction.
a
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Chapter 8

Online strip packing with
modifiable boxes

In this chapter a modified strip packing model is introduced, which describes
the problem of scheduling with shared resource. We establish and analyse
two online algorithms for the solution of this problem. Finally, a general
lower bound is presented.

8.1 Problem definition

In the strip packing problem there is a set of two dimensional boxes, defined
by their widths and heights, and the task is to pack them without rotation
into a vertical strip of width W by minimizing the total height of the strip.
This problem appears in many situations. Usually, scheduling of tasks with
shared resource involves two dimensions, the resource and the time. We can
consider the widths as the resource and the heights as the time. Our goal is
to minimize the total amount of time used. Some applications can be found
in computer scheduling problems.

Only few online algorithms are presented for this problem, the first algo-
rithms, the shelf algorithms are developed in [4]. The best presented algo-
rithms are 7.46 and 6.99-competitive. A lower bound 2 for the competitive
ratio of any online strip packing algorithm is presented in [3]. An improved
shelf algorithm and a generalized definition of shelf algorithms are defined in
[15).
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Let us suppose that the two dimensions of the boxes are the required
resource and time. The given parameters, however, show only one possible
configuration: one can also satisfy the task by using less resource. Of course,
using less resource means that it takes more time to satisfy the task. We can
give a mathematical model for this extended problem by slightly changing
the strip packing model. In the modified model the width of the box gives
the maximal resource which can be used to satisfy the task and the height of
the box gives the time which is necessary using this amount of resource. The
fact that we can use less resource for more time means that we can lengthen
the box, keeping the area fixed. A similar question with different model is
investigated in [16]. The main difference between the two models that in
(16] the resource is measured by the number of the used processors and the
geometrical structure of the processors’ network is also considered.

In [31) we study the online version of this problem where the boxes arrive
from a list and we have to lengthen and pack each box without any knowledge
on further boxes. The mathematical model of the problem can be given as
follows. There is a list of rectangles p; = (w;, h;), ¢ = 1,..., where each
rectangle is defined by two parameters: by its width and its height. Our
goal is to pack the rectangles into a vertical strip so as to minimize the total
height of the strip needed. Before packing the rectangles, we can lengthen
them, we can increase the height and decrease the width, keeping the area
fixed. After lengthening the rectangle, we have to pack it into the strip, the
rectangles cannot be rotated and they cannot overlap. We call this problem
strip packing with modifiable bozes. In the following part of this chapter we
will assume that the width of the strip is 1.

For the analysis of the online algorithms, the following observation on the
offline optimal solution will be useful.

Proposition 8.1.1 The optimal solution of the offline strip packing problem
with modifiable bozes has

OPT(L) = max{S, H}

total height, where S = 3 ;c; w; + h; and H = max;er h;.

Proof: First consider the case when S > H. Then, it is possible to
lengthen each rectangle so as to have S height. Packing the lengthened
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rectangles into the bottom of the strip, we get a packing with S total height.
On the other hand, the sum of the areas of the rectangles does not change,
thus it is not possible to pack the rectangles so that they have smaller total
height than S. The other case is similar, the only difference is that we have
to lengthen each rectangle to the same height as the highest one.

a

8.2 Online algorithms

One basic way of packing into the strip is to define shelves and pack the
rectangles into the shelves. By shelf we mean a rectangular part of the strip
with the width of 1. Shelf packing algorithins place each rectangle into one of
the shelves. If the algorithm decides which shelf will contain the rectangle,
then first the rectangle is lengthened to the same height as the shelf has.
The lengthened rectangle is placed into the shelf as much to the left as it is
possible without overlapping the other rectangles have already placed earlier
into the shelf considered. Therefore, after the arrival of a rectangle, the
algorithm has to make two decisions. The first decision is whether to create
a new shelf or not. If the algorithm creates a new shelf, it also has to decide
the height of the new shelf. The created shelves always start from the top of
the previous shelf. The first shelf is placed to the bottom of the strip. The
algorithm also has to choose the shelf to which it puts the rectangle. In what
follows, we will say that it is possible to pack a rectangle into a shelf if there
is room enough for the lengthened rectangle in the shelf.

We consider two algorithms for this problem. The first algorithm is an ex-
tended version of the NF'S, (nexzt fit shelf r) algorithm, which is presented in
[4). We also denote the extended version by NFS,. This algorithm depends
on a parameter r > 1 and it works as follows.

Algorithm NFS,

When a rectangle p; = (w;, h;) arrives, choose a value for k that satisfies
r*¥ < h; < r**1. Lengthen the rectangle to the form (w; - h;/r*+!, rk+1). If
there is an active shelf with height 7*+! and it is possible to pack the rectangle
into it, then pack it there. If there is no active shelf with height r*+1, or it
is not possible to pack the rectangle into the active shelf with height r*+1,
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then create a new shelf with height 7%+, put the rectangle into it, and let
this new shelf be the active shelf with height r*+1,

The following theorem gives the competitive ratio of our algorithm.

Theorem 8.2.1 ([31]) The competitive ratio of algorithm NFS, is 2 + %
By choosing an optimal r, we obtain a 6-competitive algorithm.

Proof: First we prove that the algorithm is 2 + r'—_zf-competitive. Consider
an arbitrary list L of rectangles. Let H, denote the sum of the heights of the
shelves which are active at the end of the packing, and let Hp be the sum
of the heights of the other shelves. Let & be the height of the highest active
shelf, and let H be the height of the highest rectangle. Since the algorithm
created a shelf with height /i, we have H > h/r. As there is at most 1 active
shelf for each height

X hr Hr?
Hysh) r=-—3 <=

i=0
Consider the shelves which are not active at the end. Let S be one of
these shelves with height r*. The next shelf S’ with height r* contains one
rectangle which (after the lengthening) would not fit into S. Therefore, the
total sum of the rectangles’ areas packed into S and S is at least r*. If for
each k we pair the shelves of height r* in this way, using the active shelf if
the number of the shelves of the considered height is odd, we obtain that Hp
is not greater than twice the sum of the rectangles’ areas. This yields that
Hp < 20PT(L). Using this inequality and the fact that H < OPT(L), we
obtain the desired statement.

Now, we prove that the upper bound on the competitive ratio is tight.
Let € > 0 be arbitrary, and let n be an integer with the property »™ < e.
Consider the following list L, of rectangles. Let the first 2 - |r"] rectangles
be (1/2 +¢&/r", ™), and let the second part of the list be p; = (¢,77% +¢),
i=mn-—1,...,0. Using these lists, a simple calculation shows that the ratio
NFS,(L;)/OPT (L) tends to 2 + '—21 as € tends to 0.

r—

a
Choosing an optimal value for r we obtain the following corollary:

Corollary 8.2.2 The competitive ratio of algorithm NF'S, is 6.
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The NFS, algorithm is called next fit shelf algorithm since it can be
interpreted as an algorithm which considers the shelves like bins and uses the
well-known bin packing algorithm to pack them. There are similar algorithms
for the original strip packing problem with the difference that they are using
more efficient bin packing algorithms to pack the shelves. Many of these
algorithms can be modified for this problem. On the other hand, we present
a more efficient algorithm below so we do not deal with the improved versions
of this algorithm. ‘

The second algorithm uses a similar idea like the scheduling algorithm
from [39]. It can be given as follows.

Algorithm DS

After the arrival of the first rectangle create a shelf with height A, and
let this shelf be the active shelf. Later, when a rectangle arrives, use the
following iteration to pack it.

Step 1. If it is possible to pack the rectangle into the active shelf, pack it
(first lengthen it), otherwise go to Step 2.

Step 2. Create a new shelf which is twice higher than the active shelf, let
the new shelf be the active shelf and go to Step 1.

The competitive ratio of the algorithm is given by the following theorem.

Theorem 8.2.3 ([31]) The competitive ratio of algorithm DS is 4.

Proof: First we show that the algorithm is 4-competitive. Consider an
arbitrary list of rectangles. Denote the list by L. Let H denote the height
of the shelf which is active at the end. When the algorithm created this
shelf, it was not possible to pack the rectangle into the previous active shelf,
hence, we obtain that the height of the previous active shelf is smaller than
OPT(L). Therefore, H < 2:OPT(L). On the other hand, the heights of the
other shelves are H/2, H/4,..., H/2'. Thus, the total height of the packing
is smaller than 2H, and the result follows. To see that the upper bound is
tight, consider the following list L; of rectangles. Let the first 7 rectangles
be (1/4,29), j = 1,...,1, and let the last rectangle be (1/4,2+1). A simple
calculation shows that the ratio DS(L;)/OPT(L;) tends to 4 as 7 tends to
infinity, which yields the tightness of the upper bound.
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Algorithm DS has a better competitive ratio than algorithm NF'S,. On
the other hand, NF'S, has some advantage, it does not create much higher
shelves, than the maximal height of the rectangles. Therefore, it can be also
useful in some more restricted models.

8.3 Lower Bounds

First we introduce the following definitions. For any rectangle p; we denote
the lengthened rectangle by pj. Furthermore, two rectangle p; and p; are
called to be colateral in a packing if there is a horizontal line which intersects
both p; and p;. Using these definitions, we can prove the following lower
bound.

Theorem 8.3.1 ([31]) There is no online algorithm for the strip packing
with modifiable bozes that has smaller competitive ratio than C, where C =~
1.73 is the solution of the equation e~(*1/c=2) = ¢ — 1,

Proof: Contrary, let us suppose that we have an algorithm with smaller
competitive ratio than ¢. Consider such an algorithm and denote it by A,
further denote its competitive ratio by d. Investigate the following list L,, of
rectangles. Let the first rectangle be p; = (1,1). This rectangle is lengthened
to p} = (z,1/z), with 1 £ z < d. Furthermore, z > 1 since in the opposite
case a second rectangle (g, 1) with a small € implies that the algorithm is not
better than 2-competitive. Let the second rectangle be p; = (1 — 1/z, z),
and the 7 + 2-th rectangle be (1/n,z(;2;)") for i = 1,2.... The sequence of
rectangles is stopped when the first rectangle is packed which is not colateral
with the others. Suppose that the sequence is finished after the j + 2-th
rectangle. Then by Proposition 8.1.1, we obtain that the optimal offline cost
is
n

x(1+i11/n-( ) = x( ).

Since the first rectangle is lengthened to z and all the others are higher than
z, the algorithms cost is at least

n—1 n—1

nooy;
j
z + z( 1).
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Therefore,

(n 1)] n‘—l :
___;__ 1+ (——).
z nzl)J ( n )

On the other hand, it follows by Proposition 8.1.1, that the optimal offline
cost after the i + 2-th rectangle, i = 0,...,5 — 1 is z(;% )J thus the d-
competitive algorithm can lengthen these 1ectangles at most d times higher.
Therefore, the sum of the widths of the first j 4+ 1 lengthened rectangles is
at least

A(L,)/OPT(L,) >

j-1
1/z+1/d(1—1/z+ Y 1/n).
=1
Since these rectangles are packed colateral, this total width is not greater
than 1. Consequently, j < n(1—1/z)(d—1)+1. Using this bound, we obtain
that

A(L,)/OPT(L,) > 1 +( - )n(l 1/a)(d-1)+1

The function on the right side of the inequality is decreasing in z on the
interval (1, d], therefore it is minimal when z = d. Furthermore, (21)" tends
to e~! as n goes to infinity, and d > A(L,)/OPT(L,) for each n. This yields
the following inequality

d> 14 e WVD-D 1 4 g~(d+1/d-2),

On the other hand, taking the derivative, it can be easily seen that the
function d—1 —e~(¢+1/4=2) jg strictly monotone increasing in d on the interval
d > 1 and it is 0 if d = ¢, therefore the above inequality cannot be true for
any d < c¢. This means that we obtained a contradiction, which ends the
proof of the theorem.
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Summary of the doctoral thesis

For many optimization problems their structures make it possible to de-
velop fast algorithms for solving them by using combinatorial ideas. On the
other hand, often the original problem is too difficult to find efficient algo-
rithms. Then some combinatorial ideas can be used to establish algorithms
for solving some particular cases of these problems. Combinatorial ideas can
also be used to develop algorithms which do not solve the problem, but give
an approximate solution which is close to the optimal one in some sense. In
the first part of this work we study a hard optimization problem, called PNS
problem and develop some combinatorial algorithms for its solution.

In a manufacturing system, materials of different properties are consumed
through various mechanical, physical and chemical transformations to yield
desired products. Devices in which these transformations are carried out are
called operating units, e.g., a lathe or a chemical reactor. Thus, a manu-
facturing system can be considered as a network of operating units which is
called process network. A process design problem in general means to con-
struct a manufacturing system. A design problem is defined from a structural
point of view by the raw materials, the desired products, and the available
operating units, which determine the structure of the problem as a process
graph containing the corresponding interconnections among the operating
units. Thus, the appropriate process networks can be described by some
subgraphs of the process graph belonging to the design problem under con-
sideration. Our goal is to find an appropriate process network with minimal
cost. This minimization yields a combinatorial optimization problem. It is
known that this optimization problem is NP-hard.

In general there are three basic approaches to attack NP-hard problems.
If a problem is NP-hard, then we do not expect to find a polynomial algorithm
which solves the problem, thus the first approach is to develop exponential
time algorithms for solving the problem. For the solution of the PNS problem,
more exponential algorithms were developed, most of them are based on
Branch and Bound technique.

Another approach is to investigate specially structured instances which
can be solved efficiently. These classes are called well-solvable classes. In the
case of PNS problem well-solvable classes have not been developed earlier. In
this thesis we present the first well-solvable PNS classes. First we consider
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the turning back problems and establish a linear time algorithm for their
solution. Then, we introduce the hierarchical PNS problems. For some
restricted cases we also present a linear time algorithm. Finally, by proving
a reduction theorem, we show that a further class, called the class of ordered
PNS problems, is also well-solvable.

The third approach to attack NP-hard problems is to establish fast, (poly-
nomial time) algorithms which do not guarantee an optimal solution in gen-
eral, but always result in a feasible solution which is close to the optimal solu-
tion in some sense. Such algorithms, called heuristic algorithms or heuristics,
are important for several reasons. The feasible solutions found by heuristics
can be used in exponential time procedures. Moreover, in practical problems
often there is no time enough to find an optimal solution by an exponential
algorithm, or the size of the problem is too large to use an exponential algo-
rithm. Then heuristic algorithms can be useful again. For the PNS problem,
heuristic algorithms have not been studied earlier. The first heuristic algo-
rithms are presented in this thesis. We analyse these algorithms by worst-case
analysis, and establish the tight worst-case bounds for some particular PNS
classes. Furthermore, we prove that there is no heuristic algorithm with
constant worst-case bound for the PNS problem while P # NP.

Another field, where algorithms based on combinatorial ideas are very
useful, is the area of online computation. The theory of online algorithms
and competitive analysis is a new, rapidly developing area. In the second part
of the thesis we investigate three different online problems which are closely
related to online machine scheduling. We develop some online algorithms for
the solution of these problems. These algorithms are analysed by competitive
analysis. Some gencral lower bounds are also presented.

The first problem considered is a particular scheduling problem. Usually
in scheduling problems, the number of the available machines is a fixed pa-
rameter of the problem. We study the problem of scheduling with machine
cost. Here the number of the machines is not given, we also have to purchase
the machines and the total cost which we want to minimize is the sum of
the cost of purchasing the machines and the cost of the produced schedule.
We consider two models for this online problem. In the first one the jobs
arrive one by one, and after the arrival of a job the decision maker must
purchase the new machines (if he wants to purchase some) and schedule the
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job without any information about the further jobs. This model is called
List Model. In the second model the jobs arrive over time, each job has a
release time, and the jobs cannot be scheduled before their release time. This
model is called Time Model. We establish two online algorithms for solving
these scheduling problems. The algorithms are investigated by competitive
analysis. The first algorithm has a competitive ratio of (1 + +/5)/2 for the
List Model, the second algorithm is 1.693-competitive for the Time Model.
We also prove some general lower bounds. It is proven that there exists no
online algorithm which has a smaller competitive ratio than 4/3 for the List
Model. Moreover, we prove that there exists no online algorithm which has
a smaller competitive ratio than 1.186 for the Time Model.

The second problem considered is a scheduling problem where a two-layer
multiprocessor architecture is given. In this problem there are two sets of ma-
chines P and S, containing k and m machines with k£ < m. The jobs arriving
one by one, and each job has two processing times, one for the machines in
set P and one for the machines in set S. The decision maker has to make an
online assignment of jobs to one of the machine sets. The jobs are scheduled
in an optimal offline preemptive way within a set. We studied two models.
In the first one the goal is to minimize the sum of the makespans of the
machine sets, this model is called SLS(k,m). In the second model we want to
minimize the maximum of these makespans, this model is called MLS(k,m).
We consider two algorithms for these problems. First we investigate a greedy
type algorithm and establish the competitive ratio of this algorithm for both
problems. The competitive ratios are linear in m/k, therefore, the greedy
algorithm is effective for these problems only in the cases when m/k is small.
We also consider a more difficult algorithm, its competitive ratio is also de-
termined for both problems. This algorithm has constant competitive ratio
for both problems, even in the general cases without fixing the numbers &
and m. We also present some general lower bounds. It is proven that there
exists no online algorithm which has smaller competitive ratio than 2 for the
SLS(k,m) problem, and there exists no online algorithms which has smaller
competitive ratio than (1 + v/5)/2 for the MLS(k,m) problem.

The third problem which we consider is a strip packing problem with
modifiable items. We investigate the online strip packing problem, where
the sizes of the items are not fixed, we can lengthen them. This mathemat-
ical problem is interesting since it models the problem of scheduling with
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shared resources. We establish two online algorithms called NF'S, and DS
for the solution of this problem. We determine the competitive ratios of both
algorithms. It is proven that by choosing an optimal r, the competitive ra-
tio of NF'S, is 6, moreover, the competitive ratio of DS is 4. Furthermore,
we present a general lower bound. It is shown that there exists no online
algorithm having smaller competitive ratio than 1.73.
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A disszertacio osszefoglalasa

Optimalizédlasi problémdk esetén a feladatok struktiirdja gyakran lehetévé
teszi, hogy kombinatorikus tulajdonsigaik alapjin gyors megoldé eljarasokat
fejlessziink ki. Masrészt sokszor a probléma tulsigosan nehéz ahhoz, hogy
hatékony megoldé eljarast taldljunk. Ezekben az esetekben kombinatorikus
meggondoldsok hozzdjarulhatnak olyan eljardsok kifejlesztéséhez, amelyek
hatékonyan megoldjak a probléma néhany specidlis esetét. Szintén ilyen meg-
gondoldsok alapjan gyakran kifejlesztheték olyan gyors eljarasok, amelyek
nem minden esetben adnak optimalis megoldast, de olyan kozelité megoldast
eredményeznek, amely az optimaélis célfiiggvényértékhez kozeli értéket ad. A
disszertacid elsd részében egy nehéz optimalizalasi feladatot mutatunk be, a
halézati folyamatok szintézisének problémajat, a probléma megoldésara koin-
binatorikus tulajdonsagokra épiilé eljardsokat fejlesztiink ki és analiziljuk
ezeket.

Kiilonbozo ipari, f6képp vegyipari alkalmazisokban sokszor fordul eld,
hogy nyersanyagok adott halmazabdl bizonyos végtermékeket kell eléallitani.
A gyartas soran végrehajthaté elemi lépéseket olyan adott koltségii gépeknek
tekinthetjiik, amelyek mindegyike anyagok egy halmazat - ezek az illet6 gép
input anyagai - anyagok egy mdsik halmaziba - ezek az illetd gép output
anyagai - alakitja 4t. Ezen interpreticié mellett a probléma az, hogy a
rendelkezésre 4llé6 gépekbdl egy olyan kollekcidt kell kivilasztani, amely az
adott nyersanyagokbél legyartja a kivant végtermékeket. Ezt a feladatot
kiegészitve azzal a gyakorlati szempontbdl fontos céllal, hogy a vilasztott
kollekcié egyiittes koltsége minimélis legyen, egy optimalizdldsi feladathoz
jutunk. A vézolt problémdat Hdlézati folyamatok szintézise (roviden PNS)
problémdnak nevezziik. A probléma az NP-nehéz feladatok csoportjiba tar-
tozik.

Altaldban az NP-nehéz feladatokat hirom alapvet mddszerrel szokds
vizsgalni.

Mivel NP-nehéz problémakra nem véarhatd, hogy gyors polinomidlis idejii
megoldé algoritmust taldljunk, ezért egy lehetséges megkozelités exponencidlis
id6igénytli eljarasok kidolgozdsa a feladat megolddsira. A PNS problémira
tobb ilyen eljirds is kifejlesztésre keriilt, ezek tobbsége a Korlatozas és szétvalasztas
elvén miikodik.
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Egy maésik megkozelités az, hogy igyeksziink olyan specidlis részosztalyait
meghatdrozni a problémaosztilynak, amely részosztilyba es6 feladatok mar
megoldhatéak polinomiilis idében. Ezeket a feladatosztédlyokat j6l megold-
hat6 osztdlyoknak nevezziik. A PNS problémdra kordbban nem dolgoztak
ki jol megoldhaté osztdlyokat. A disszertdciéban mutatjuk be az elsé jél
megoldhaté PNS osztdlyokat. Elséként a visszafejthetd problémék osztilyat
vizsgaljuk, és egy linedris idejii megoldo algoritmust adunk meg ezen problé-
mak megoldasara. Ezt kovetéen a szintezett problémakkal foglalkozunk, és
ezen problémdk egyes részosztilyaira is egy linedris idejii megoldé eljirast
prezentalunk. Végiil egy redukcios tétel alapjan meghatirozunk egy tovabbi
jol megoldhaté osztilyt, a rendezett PNS problémak osztdlyst.

Az NP-nehéz problémék harmadik megkozelitése olyan gyors polinomiélis
idejii algoritmusok kifejlesztése, amelyek nem garantdljik az optimélis megol-
dést, de egy olyan lehetséges megoldast szolgaltatnak, amelyre a célfiiggvény
értéke nem sokkal nagyobb, mint az optimadlis célfiiggvényérték. Ezek az
eljarasok, amelyeket heurisztikus algoritmusnak vagy heurisztikdknak neve-
ziink t6bb szempontbdl is rendkiviil fontosak. A heurisztikus algoritmusok
altal el6allitott megoldasok jol hasznalhatok exponenciilis idejii eljarasokban.
Tovabba gyakorlati alkalmazasokban sokszor nincs elegend6 id6 az optimalis
megoldast meghatarozni, ebben az esetben is j6l hasznalhatok a heurisztikus
algoritmusok. A PNS problémara korabban heurisztikus algoritmusok nem
késziiltek. Az els6 heurisztikus algoritinusokat a disszertaciéban mutatjuk be.
Ezeket az eljarasokat a legrosszabb-eset analizissel vizsgaljuk meg. Nevezete-
sen meghatarozzuk az algoritmusok éles legrosszabb-eset korlatjat bizonyos
specidlis PNS osztilyokra, tovdbbé igazoljuk, hogy amennyiben P # NP,
akkor nincs konstans legrosszabb-eset korlattal rendelkez6 polinomislis heu-
risztikus eljards a PNS problémara.

Egy masik jelentos teriilet, ahol kombinatorikus algoritmusok igen jol
hasznilhaték az online algoritmusok témakore. A disszertdcié masodik ré-
szében hiarom olyan online problémat vizsgilunk, amelyek szorosan kap-
csolédnak az online litemezés témakoréhez. Ezen problémak megolddsira
kiilonb6z6 eljarasokat dolgozunk ki és vizsgdlunk kompetitiv analizissel, to-
vabba igazolunk néhiny altalanos alsd korlatot.

Az els6 probléma egy olyan iitemezési feladat, amelyben a gépek szama,
nem adott paraméter, hanem a gépeket is meg kell vasirolnunk. Ebben
a problémiban a minimalizdlandé célfiiggvény a gépekre Gsszesen koltott
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osszeg plusz a kapott iitemezésben a maximalis befejezési id6. Ezt a problé-
mét két kiilonboz6 modellben vizsgdljuk. Az els6 modellben a munkdk egy
listardl érkeznek, és a munka érkezése utan kell 4j gépeket venni és litemezni
a munkdt, a tovabbi munkakra vonatkozé informdciék nélkill. Ezt a mo-
dellt Lista modellnek nevezziik. A masodik modellben, amit Id6 modellnek
neveziink, a munkaknak egy érkezési ideje van, és a munkékat csak az érkezési
idejiik utan lehet elkezdeni végrehajtani. Egy - egy online algoritmust fej-
lesztiink ki az egyes modellekre. Az algoritmusokat a kompetitiv analizissel
elemezziik. Az els§ algoritmus kompetitiv hdnyadosa (1 + v/5)/2 a Lista
modellre, a masik algoritmus 1.693-kompetitiv az Id6 modellre. Szintén iga-
zolunk néhany altaldnos alsé korlitot. Nevezetesen megmutatjuk, hogy a
Lista modellben nincs olyan online algoritmus, amelynek kisebb a kompetitiv
hényadosa, mint 4/3, tovibb4 az Id6 modellre nincs olyan online algoritmus,
amelynek kisebb a kompetitiv hanyadosa, mint 1.186.

A masodik vizsgdlt probléma egy olyan iitemezési feladat, ahol a gépek
egy két csoportbdl 4ll6 géprendszert alkotnak. A problémdban adott két
géphalmaz P és S. A halmazok k és m gépet tartalmaznak, a tovibbiakban
feltessziik, hogy k¥ < m. A munkak egy listin érkeznek. Minden munkihoz
két iitemezési id6, p; és s; tartozik, ezek azt adjdk meg, hogy mennyi ideig
tart végrehajtani a munkit a P illetve S halmazokba es6 gépeken. Az
egyes munkdk érkezése utan online mddon, a tovabbi munkdkra vonatkozd
ismeretek nélkiill meg kell hatiroznunk, hogy melyik géphalmazon hajtjuk
végre a munkat. Végiil, amikor a munkasorozat véget ér, litemezziik az
egyes géphalmazokhoz rendelt munkakat a megfelel6 géphalmazokon offline
moédon, minimalizdlva a maximalis befejezési id6t, megengedve a munkak
megszakitdsat. Az els6 vizsgilt modellben, amit SLS(k,m)-el jel6liink, a kon-
strudlt iitemezés koltsége a két maximalis befejezési ido6 Osszege, és a célunk
ezen Osszeg minimalizdldsa. A masodik vizsgilt modellben a minimalizdlandé
érték a két befejezési id6 maximuma, ezt a problémdat MLS(k,m) jeloli. Két
eljardst vizsgdlunk meg ezekre a problémakra. Az els6 egy mohé algorit-
mus. Erre az eljarasra meghatarozzuk a kompetitiv hanyadost mindkét mod-
ellre. Mindkét kompetitiv hanyados linearis m/k-ban, tehat a mohé eljaras
csak azon esetekben hatékony, amelyekben ez a hanyados kicsi. Szintén
bevezetiink és megvizsgalunk egy bonyolultabb eljirdst. Ezen eljarasra is
meghatirozzuk a kompetitiv hinyadost mindkét modellre. A kompetitiv
hényados konstans mindkét modellre, mindkét altalanos problémara is, ahol
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nem rogzitjiik a k és m szdmokat. Szintén bizonyitunk als6 korldtokat. Meg-
mutatjuk, hogy nincs olyan online algoritmus, amelynek kisebb a kompetitiv
hényodosa, mint 2 az SLS(k,m) problémaira, és nincs olyan online algoritmus,
amelynek kisebb a kompetitiv hinyadosa, mint (1 + v/5)/2 az MLS(k,m)
problémara.

A harmadik megvizsgdlt probléma egy olyan savpakolasi probléma, amely-
ben nydjthatéak a savba elhelyezendd téglalapok. Ez a matematikai kérdés
azért érdekes, mert modellezi a megosztott er6forrdsok melletti iitemezés
problémdjit. Két online algoritmust fejlesztiink ki ezen probléma megolda-
sara. Ezeket az eljarasokat NF'S, és DS jeloli. Meghatdrozzuk az eljardsok
kompetitiv hanyadosat. Igazoljuk, hogy az r érték optimadlis megvalasztasa,
mellett az NF'S, algoritmus kompetitiv hanyadosa 6, és megmutatjuk, hogy
a DS algoritmus kompetitiv hinyadosa 4. Tovabba igazolunk egy altalanos
alsé korlatot, nevezetesen beldtjuk, hogy nincs olyan online algoritmus, amely-
nek a kompetitiv hanyadosa kisebb, mint 1.73.
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