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I n t r o d u c t io n

In theoretical computer science tree transducers have been studied since the early 
seventies. They are finite devices processing terms over ranked alphabets. Such 
terms are called trees in this area. A tree transducer induces a binary relation 
over tree sets, called a tree transformation.

Several types of tree transducers have been defined. Namely, the concept 
of the top-down tree transducer was introduced in [Rou] and [Thai]. Then the 
notion of the bottom-up tree transducer was defined in [Tha'2]. Later on. in order 
to increase the transformational capacity, more powerful devices were introduced, 
such as top-down tree transducers with regular look-ahead (see [Eng2]), macro 
tree transducers (see [EngVogl]), attributed tree transducers (see [Füll]), high 
level tree transducers (see [EngVog2]), modular tree transducers (see [EngVog3]). 
and high level modular tree transducers (see [Vog]).

In this thesis we shall consider only deterministic top-down tree transducers 
and tree transformations induced by such tree transducers.

The motivation of studying top-down tree transducers is that they serve as 
formal models of syntax-directed compilers, thus tree transformations induced by 
top-down tree transducers are abstract models of translations realized by syntax- 
directed compilers, see [Eng4].

Several restricted subtypes of deterministic top-down tree transducers have 
been defined and investigated. In this thesis we work with, among others, total, 
linear, nondeleting, and homomorphism deterministic top-down tree transducers.

In our sense, a tree transformation class is generally a class of tree transfor­
mations induced by tree transducers of a certain type. Thus we can distinguish 
the class of deterministic top-down tree transformations, denoted by DT, and 
its subclasses of total, linear, nondeleting, and homomorphism deterministic top- 
down tree transformations, denoted by t-DT, l-DT. nd-DT. and H O M , respec­
tively. Moreover, type properties can be combined resulting more special devices. 
For instance, we can speak about linear and nondeleting deterministic top-down 
tree transducers, of which the induced tree transformation class is denoted by 
l-nd-DT.

Investigating a certain type of top-down tree transducers, the questions nat­
urally arise, what sets of trees can be processed by top-down tree transducers of 
that type, and what sets of trees can occur as results of such processings. For a
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top-down tree transducer, the sets of possible input and output trees are called 
the domain and the range of the induced tree transformation, respectively.

Tree sets are also called tree languages. Similarly to string languages, for tree 
languages there also exist finite state recognizers. Using these devices, we can 
define the classes of recognizable and deterministic recognizable tree languages, 
see [GécSted]. It turned out that the domains of deterministic top-down tree 
transformations are exactly the deterministic recognizable tree languages. More­
over, the class of ranges of linear deterministic top-down tree transformations is 
exactly the class of recognizable tree languages.

Since tree transformations are binary relations over tree sets, the concept of 
their composition, denoted by o, is clear. Moreover, the composition operation 
can naturally be extended to classes of tree transformations.

Compositions and decompositions of deterministic top-down tree transforma­
tion classes are of special interest, because they model consecutive applications of 
deterministic top-down tree transducers of certain types to tree languages in such 
a way that the output of a device is the input of its successor. The motivation of 
studying compositions comes from the fact that applying deterministic top-down 
tree transducers in succession can yield extra computational power in the sense 
that the resulting tree transformation cannot be induced in general by a single 
deterministic top-down tree transducer. Similarly, the investigation of decom­
positions is motivated by the intention that one would like to know whether a 
deterministic top-down tree transformation of a certain type could also be in­
duced by the consecutive application of two or more deterministic top-down tree 
transducers of simpler types.

Top-down tree transducers and top-down tree transformations were studied 
in a large number of papers.

In pioneer works [Rou], [Thai], [Engl], [Eng3], [Baki], [Bak2] and [Bak3] 
several restricted types (toted, linear, nondeleting, etc.) were defined, the trans­
formational power of different types were compared to each other, and some clo­
sure properties of the corresponding tree transformation classes were explored. 
A good survey of these results can be found in [GécSte4], Moreover, [FülVágl] 
also contains important observations concerning closure properties of the class of 
deterministic top-down tree transformations and its subclasses.

Recognizability of domains and ranges of top-down tree transformations also 
have been studied very intensively, see [Rou], [Eng2], [GécSte4], [FülVágl], and 
[FülVág3].

The undecidability of equivalence problem of top-down tree transducers in the 
general case immediately follows from the result of [Gri] on the undecidability 
of equivalence problem of GSM’s. On the other hand, it turned out that the 
equivalence is decidable in the deterministic case, see [Esi 1] and [Zac]. Moreover, 
the equivalence problem were studied for some other restricted nondeterministic 
types in [AndBos]. The decidability of some other properties (injectivity, rec­
ognizability of the range tree set, etc.) have also been investigated, see [Esilj,



[Esi2], [Fiil-lJ, and [FiilGyej.
Compositions and decompositions of tree transformation classes have been 

studied very intensively. Almost all papers regarding tree transducers contains 
such results and hence a huge number of decomposition and composition equa­
tions have been obtained. It was desirable to find a uniform way for researching 
this area. In [FiilVagd] and [FiilVag6] a general method was proposed for devel­
oping an algorithm, which, for an arbitrarily fixed base set of tree transformation 
classes, can decide the relationship concerning the inclusions between tree trans­
formation classes obtained by composition from base classes. The method has 
numerous applications using different base sets of tree transformation classes, see 
[FiilVag4], [FiilVagoj, [Fiil2], [SluVag], and [GyeVag].

The subject of this thesis is the characterization of a new subtype of de­
terministic top-down tree transducers, called superlinear deterministic top-down 
tree transducers. We denote the class of superlinear deterministic top-down tree 
transformations by sl-DT. Superlinear deterministic top-down tree transducers 
are specialized linear deterministic top-down tree transducers and it holds that 
sl-DT C l-DT.

The concept of superlinear deterministic top-down tree transducers was pro­
posed by H. Vogler during a personal communication with Z. Fiilop in 1992. It 
was motivated by the well known decomposition equation DT  =  nd-HOM ol-DT, 
which appeared first time in [Engl] and [Bak3]. They discussed whether l-DT 
in the above equation can be substituted by an even more restricted subclass of 
DT. It was guessed that a proper subclass of l-DT would be suitable, namely 
the class sl-DT  of superlinear deterministic top-down tree transducers.

In this work we investigate properties of superlinear deterministic top-down 
tree transducers and the corresponding tree transformation class sl-DT. Al­
though the starting point of the research was the decomposition equation DT — 
nd-HOM o sl-DT, we have explored many other interesting results concerning 
superlinear deterministic top-down tree transducers and transformations. The 
problems we have arisen and answered were motivated by the earlier works re­
garding tree transducers (see, e.g., [Engl], [Eng3], [Bak3], [FiilVagl], [FiilVag2]). 
These are as follows:

• What is the relationship between sl-DT  and the known tree transformation 
classes, such as DT  or l-D TI In other words, how does the superlinear 
deterministic top-down tree transducers compare with the known types 
regarding transformational power?

• Is the class sl-D T  closed under the composition?

• What kind of tree languages can be domain and range tree languages of 
superlinear deterministic top-down tree transformations? •

• How can we characterize the compositions of sl-DT  with other known 
classes?
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This thesis is strongly based on the papers [DanFiill], [DanFul2] and [Dan]. 
All results presented here appear in the above works. We shall refer to the 
corresponding paper at the beginning of each chapter.



R e s u lts  a n d  o u tl in e  o f  th e  th e s is

C h a p ter  1: P re lim in a r ie s
Here we introduce notions and notations. Moreover, we recall some earlier results 
used in later chapters.

In this abstract we introduce only that concepts and notations, which are 
necessary to understand the results presented here.

Let A, B. and C be sets, moreover, let 9 C .4 x B and p C B x C be 
relations. The sets dom(fl) =  {a £ A \ there is a 6 £ B such that aOb} and 
range(S) = {6 £ B | there is an a € A such that aOb} are called the domain and 
the range of 9, respectively. The composition 9 o p of 9 and p is a relation from 
A  to C defined as 9 o p. = {(a, c) | there is a b € B such that adb and bpc}.

Let C and C  be classes of relations. The domain and the range of C are defined 
by dom(C) =  {dom(0) | 9 £ C} and range(C) = (range(0) | 9 £ C}, respectively. 
The composition of C and C' is the relation class CoC' = {9op, | 9 £ C and ¡j. £ C'}.

A ranked alphabet E is an alphabet, in which every symbol has a unique rank 
in the set of nonnegative integers. For each m > 0. the set of symbols in E having 
rank m is denoted by Em.

Let E be a ranked alphabet. For a set H, the set of trees over S indexed 
by H  is denoted by Ts(H) and it is defined as the smallest set U satisfying the 
following two conditions:

(i ) f fUEoCCL

(ii) . . . .  fm) £ U , whenever m > 0, a  £ Em, and i j, . . . , tm £ U .

The set 7e(0) of ground trees over S is written as Tv.
We specify a countable set X  = • • •} of symbols, called variables, and

we put X m = {xi,. . . ,  i m}, for every m > 0. We assume that X  is disjoint to 
any ranked alphabet. We write Tv m for Tv(Xm). We distinguish a subset Tv m 
°f Ts.m as follows. A tree l £ Tv m is in 7s,m if and only if each variable in X m 
appears exactly once in t and the order of the variables from left to right in t. is 
exactly Xi,. . .  ,xm.

We introduce the concept of tree substitution. Let m. > 0. t £ 7V;.m, and 
______ ,sm £ S  where S  is an arbitrary set of trees. We denote by i[s i, ........ sm!



the tree, which is obtained from t by replacing each occurrence of x, in t by s,, 
for every 1 < i < m.

A tree language L over a ranked alphabet E is a subset L C TV. Let S and 
A be ranked alphabets. A tree transformation from TV; to is a relation from 
Tr to T&. We specify the class I = {id(Ts) | S is a ranked alphabet} of identity 
tree transformations.

A to-p-down tree transducer is a 5-tuple T  =  (Q, S, A, qo, R), where

• Q is an unary ranked alphabet, meaning that Q = Q\, called the set of 
states, such that Q fl (E U A) = 0.

• E and A are ranked alphabets, called the input and the output ranked 
alphabet, respectively.

• qo € Q is a distinguished element of Q, called the initial state.

• R is a finite set of rules of the form

q(cr{xu . . . , x m)) ->■ <7„(x,n)], (*)

called (q, cr)-rules, where m, n > 0, cr € Em, 1 < ¿i, . . . ,  <  m, q, q\ , . . . ,  qn
G Q, and t €  Ta,„. The rule is said to be reducing if t =  Xi holds, i.e. it is 
of the form q(<r(xl, . . . , x m)) -> q'(ii), for some q' G Q and 1 < i < m .

The rules in R induce a relation, called derivation, denoted by =>t , over the 
set T&(Q(Tr)), where Q(Tz) denotes the set {<?(f) | q 6 Q ,t G Te}. For any trees 
r, s G T&(Q(Tz)), r =>x s holds if and only if there is a rule q(a (x i,. . .  ,x m)) —¥ 
i[9x(x,,),. . . , 9n(ii„)] in R such that ,s is obtained from r by replacing an occur­
rence of a subtree q(cr(tu .. . , t m)) of r by .. .,<?„(*;„)], where tu . . . , t m e
Te- The tree transformation tt induced by T  is defined as tt = {(r, s) G 
Te x Ta | q0(r) s}.

We say that T  is deterministic if, for any q G Q and cr G E, there is at most 
one (q, <i)-rule in R. The expression deterministic top-down tree transducer is 
abbreviated to dt tree transducer in the sequel. A tree transformation r  is called 
a dt tree transformation if a dt tree transducer T  exists so that r  =  tt- The class 
of all dt tree transformations is denoted by DT.

Suppose that T is deterministic and consider an arbitrary (q,ir)-rule in R of 
the above (*) form. Then the term i[qi(x(,),. . . ,  qn(^„)] is called the right-hand 
side of the rule and it is denoted by rhs(q, a).

Let T  =  (Q, S, A ,q0, R) be a dt tree transducer. We say that T is:

• Total (t) if, for any <r G E and q& Q , there is a (q, <r)-rule in R.

• Linear (1) if. for every rule q(cr(x1, . . . ,  xm)) —¥ i[qi(x,-t ) , . . . ,  qn(i>„)] in R. 
each of the variables Xt, . .. , x m appears at most once in the right-hand side.
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• Superlinear (si) if it is linear and, for every rr 6 Em with m > 0 and 
1 < i < m, there is at most one state q € Q such that x, occurs in rhs(<7. a).

• .Vondeleting (nd) if, for every q (a (x \,. .. , xm)) —► i[<yl(re,,), . . . ,  in
R. each of the variables i j , . . . ,  xm appears at least once in rhs( q. cr).

• Homomorphism (hom) if it is total and Q is a singleton set, i.e. Q = {<?o}-

These attributes can be combined. For instance, by an 1-nd-dt tree transducer, 
we mean a linear and nondeleting dt tree transducer.

A top-down tree recognizer (ttr) T  =  (<3,S,S,(?o, R) is a top-down tree trans­
ducer, of which the rules are of the form

q(cr(xu . . . , xm)) -> er(qi(xi) , . . . ,  qm(xm)).

where m > 0, <t € £ m, and q, qi, . . ., qm 6 Q. If T  is deterministic, then it is 
called a deterministic top-down tree recognizer (dttr).

Let T  =  (Q, S, S, qo, R) be a dttr. VVe say that a state q € Q is universal, if. 
for all t 6 7s, q(t) t holds, i.e. {f € 7V | q(t) =>? <} = Ts-

We say that T recognizes the tree t 6 7V if qo(0 =?t t. The tree language 
recognized by T  is L (T ) =  {i € 7s | <?o(0 *}• A tree language is recognizable
(resp. deterministic recognizable) if it is recognized by a t tr  (resp. dttr). We 
denote by REC  (resp. D REC ) the class of recognizable (resp. deterministic 
recognizable) tree languages.

C h a p ter  2: P r o p e r t ie s  o f  sl-d t tree  tr a n sd u c e r s
In this chapter we investigate some properties of superlinear deterministic top- 
down tree transducers.

2.1 B asic  p rop erties
The main results are as follows.

T heorem  2.1.4 [DanFiill] sl-D T2 — DT ^  0
This implies that the tree transformation class sl-DT is not closed under the 

composition.

Lem m a 2.1.5 [DanFiill] l-DT  C nd-HOM  o sl-DT
The following two results can easily be derived from the above lemma: 

T heorem  2.1.6 [DanFiill] DT — nd-HOM  o sl-DT 
C orollary  2.1.7 [DanFiill] DT2 = nd-HOM o sl-D T1



We note that, by earlier results (see [FiilVagl]), any tree transformation de­
fined by composition of dt tree transformations can be substituted by composition 
of two appropriate dt tree transformations, i.e. DT2 consists of all tree transfor­
mations, which can be realized by any sequence of dt tree transducers.

It is known (see, e.g., [FiilVagl]) that the syntactic composition of dt tree 
transducers preserves the properties t, 1, nd, and hom. We have studied this 
problem for the si property and have obtained the following:
Lem m a 2.1.11 [DanFiill] The syntactic composition T" = T  o T ' of two sl-dt 
tree transducers T = (Q, S, A, qo, R) and T ' =  (Q', R') is an sl-dt tree
transducer if and only if T  has no reducing rule or Q' is a singleton set.

Theorem 2.1.4 shows that there are two sl-dt tree transformations such that 
their composition cannot be induced by a dt and hence by an l-dt tree transducer. 
This suggests that the consecutive application of a sequence of sl-dt tree trans­
ducers can have big transformation power. However, the next theorem shows 
that this is not the case. Namely, we show that generally even the total l-dt tree 
transformations cannot be induced by sequences of sl-dt tree transducers.
T heorem  2.1.13 [DanFiill] t-l-DT -  sl-D T+ ^  0

2.2 D om ain  tree languages
We give a characterization of the class dom(sl-DT). Moreover, we show that, for 
any L 6 DREC, it is decidable whether L G dom(sl-DT) holds.

Let T  = (Q, E, S, qo, R) be a dttr. We say that T  is a semi-universal deter­
ministic top-down tree recognizer (su-dttr), if the following condition holds. For 
any m >  1, a G Em, and two different states q,p £ Q, if q {a (x \,. . .  , i „ ) )  —>■ 
'r(<h(xi)T-.,qm(xm)) and p(cr(i1, . . . , i m)) -s- <r(pi(x,),. . . ,pm(xm)) are in R, 
then, for each 1 < i < m, at least one of and pt- is universal. We denote by 
su-DREC  the class of tree languages recognized by su-dttr’s.
T heorem  2.2.3 [Dan] dom(sl-DT) = su-DREC

T heorem  2.2.6 [Dan] For any tree language L 6 DREC given by a dttr T  
recognizing L, it is decidable whether L G dom(sl-DT) holds.

2.3 R ange tree languages
We have obtained the following characterization of range tree languages of sl-dt 
tree transformations:
T heorem  2.3.2 [Dan] range(sl-DT) = range(l-DT) = REC
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C h ap ter  3: H ierarch y  th eo r e m s  o f  s l-d t tr e e  
tra n sfo rm a tio n s

It turned out in the previous chapter that, similarly to the classes DT and l-D T. 
the class sl-DT  is not closed under the composition.

However, in Section 3.1 we show that, in contrast with the classes DT and 
l-DT, the hierarchy {sl-DTn | n > 0} never collapses. More exactly, we prove a 
stronger statement, namely that {dom(sl-£>Tn) | n > 1} is a proper hierarchy. 
Moreover, we prove in Section 3.2 that even the hierarchy {t-sl-DTn \ n > 0} is 
proper.

3.1 T h e h ierarchies d om (s/-D T rl) and s l-D T n
T heorem  3.1.3 [DânFüll] For any integer n > 1, the following inclusions hold:

(1) dom(sl-DTn) C dom(sl-DTn+l).
(2) dom(sl-DTn) C DREC.
(3) sl-DTn C sl-DTn+l.

Moreover, we present the inclusion diagram (see Figure 3.2) of the classes 
DT2, DT, l-DT2, l-D T. and sTDTn with n > 1.

3.2 T h e  h ierarchy t-s l-D T n
T heorem  3.2.3 [DânFüll] For any integer n > 1, t-sl-D Tn C t-sl-D Tn+l holds.

Moreover, we present the inclusion diagram (see Figure 3.3) of the tree trans­
formation classes t-D T , t-l-DT, and t-sl-DTn with n >  1.

C h a p ter  4: C o m p o sitio n s  w ith  s l-d t  tr e e  
tra n sfo rm a tio n s

In this chapter we explore how the class sl-DT  behaves when composing with 
other known tree transformation classes. These other classes are HO M , l-D T, 
nd-DT , and DT.

On behalf of this, we fix the set M  =  {HOM, sl-DT, l-DT, nd-DT, DT} of 
tree transformation classes. Then vve consider the monoid [M\ of all tree transfor­
mation classes of the form .Vi o . . .  o X m, where m > 0 and the .Y.'s are elements 
of M. For arbitrary composition classes C\ and Ci of the above form, we want to 
know whether some inclusion, equality, or incomparability holds between them. 
Clearly, it is enough if vve can decide whether Ci C Ci holds.

As the main result of the chapter, we give an effective description of the 
monoid [.Vfj with respect to the inclusion. This means that we present an algo-

')



rithm, which can decide, given arbitrary two elements of the monoid, whether 
some inclusion, equality, or incomparability holds between them.

The main steps of the development of this algorithm are as follows:

(1) We consider the free monoid (¿W; •, e) of strings generated by .V/. Then a
unique homomorphism | | : .V/’ -» [Af] exists such that, for any „Yi,. . .  ,X n G jXI, 
\Xi ■ ■ Xn\ = X i o . . .  o X n (see [BurSan]). We denote the kernel of | | by 9,
that is, for any strings u, v G ¿Vi*, u6v if and only if |u| =  |u|.

(2) We present a confluent and terminating rewriting system R C M ' x jV/* 
(see Figure 4.1) such that <̂"R— 9. where <^R is the reflexive, symmetric, and 
transitive closure of the reduction relation =>r over M ‘.

Moreover, we show that the set of H-normal forms is exactly the following:
XF{R) = {l-DT2, l-DT ■ RO M ,l-D T2 ■ nd-DT, DT2}U 

{sl-DTn | n > 0}U 
{sl-DTn • ROM \ n > 0}U 
{sl-DTn ■ l-DT | n > 0}U 
{sl-DTn ■ nd-DT | n >  0}U 
{sl-DTn • l-DT o nd-DT \ n > 0}U 
{st-DTn ■ D T \n  >0}

(3) We present the inclusion diagram (see Figure 4.2), i.e. the Hasse diagram 
with respect to the inclusion of the set |AÍF(H)| =  {¡u| | u G NF(R)}.

The main result of this chapter sounds as follows:
T heorem  4.2.8 [DánFül2] For any two tree transformation classes Xi o X i o 
. . .  o X m and Y\ o Y2 o . . .  o Yn in [M\, it is decidable whether the inclusion Xi o 
X 2 o . . .  o X m C Yi o Y2 o . . .  o Y„ holds.

The deciding algorithm works as follows. Given two arbitrary composition 
classes C — X  i o .. .o X n and D — Y2 o . . .o Ym, we form the strings x = X \- .. .■ X„ 
and y =  Yi • . . .  • Ym, and compute the corresponding R-normal forms x=$-~Ru 
and y=>'Rv. Since R is terminating and confluent, u and v exist and unique. 
Moreover, |z| =  |u| and \y\ = |u| hold by ^ 'R= 9. Hence C C 27 if and only if 
ju| C |u|. However, this latter can be decided by direct inspection of the inclusion 
diagram of NF(R) (see Figure 4.2).

We note that the results of this chapter can be found in [DánFül2].
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DT-

l-DT2

sl-DT3 

sl-DT2

Figure 3.2: The hierarchy of .sl-DT"

t-DT

•  t-l-DT

•  t-sl-DT3

•  t-sl-DT2

t-sl-DT

Figure 3.3: The hierarchy of t-sl-DT"

11



(1) l-D T2 ■ HOM /-z?r • h o m

(2) H O M ■HOM —► HOM

(3) D T ■ HOM —» D T2

(4) sl-D T ■ l-DT ■ HOM —► /-£>T ■

0 ) l-D T3 —y l-DT2

(6) l-D T ■ sl-DT -> l-D T2

(7) l-D T ■ DT —► D T2

(8) HO M  l-DT —>■ DT

(9) HO M  • sl-DT —► DT
(10) HOM  ■ DT DT

(11) D T ■ l-DT —► DT2
(12) DT ■ sl-DT —>■ D T2

(13) D T3 -> D T2
(14) sl-D T  • l-DT2 -> l-D T2
(15) sl-D T ■ DT2 ->■ D T2
(16) nd-DT ■ HOM -> DT2
(17) nd-DT ■ sl-DT -> DT2

(18) nd-DT l-DT —>• DT2
(19) nd-DT ■ nd-DT -> nd-DT
(20) nd-DT ■ DT -> DT2

(21) l-D T ■ HOM  ■ nd-DT -» l-D T2 ■ nd-DT

(22) D T ■ nd-DT ->• DT

Figure 4.1: Rewriting rules of R
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Figure 4.2: The inclusion diagram of normal forms
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C o n c lu s io n s

In this thesis we have considered superlinear deterministic top-down tree trans­
ducers and the class sl-DT of superlinear deterministic top-down tree transfor­
mations. Our main results are as follows:

• The classes sl-DT and t-sl-DT are not closed under the composition.

• t-l-DT — sl-DT+ ^  0, where sl-DT+ is the transitive closure of the class 
sl-DT under the composition. Roughly speaking, even the consecutive 
application of arbitrary many sl-dt tree transducers has no enough trans­
formational power to generate all 1-dt tree transformations.

• DT = nd-HOM  o sl-DT, that is sl-dt tree transducers have enough com­
putational capacity to generate all dt tree transformations with the help of 
nondeleting homomorphism top-down tree transducers.

• The class dom(sl-DT) is exactly su-D REC , i.e. the subclass of DREC  
consisting of those tree languages which are recognized by semi-universal 
deterministic top-down tree recognizers.

• For any deterministic recognizable tree language L, it is decidable whether 
L is in dom(sl-DT).

• The class range(sl-DT) is exactly R E C , that is the class of all recognizable 
tree languages.

• The hierarchies
{dom(s/-DTn) | n > 0},
{sl-DTn | n > 0}, and 
{t-sl-DTn | n > 0} 

are proper.

• We have considered a monoid [M] generated by the tree transformation 
classes HOM , sl-DT, l-DT, nd-DT, and DT with the operation composi­
tion.
Using string rewriting techniques, we have developed an algorithm which.
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given any two elements A'i o ,V; o . . .  o X m and V’i o Vj o . ., o Y„ of [XI]. can 
decide whether the inclusion ,Y[ o X 2 0 . . .  o .Y„, Ç V) o Vi 0 . ..  0 V'„ holds. 
We have represented elements of [A/] by strings, and have presented a ter­
minating and confluent string rewriting system R as well as the inclusion 
diagram of the normal forms with respect to R.
The inclusion between two elements of [¿V/] can be decided in the following 
way. We reduce the strings representing the tree transformation classes 
.Yi o .Y2 o . . .  0 X m and Yi 0 V2 0 • • • 0 Y„ to normal forms with respect to R. 
The string rewriting system R is constructed in such a way that Ç (resp. 
D, = , incomparability) holds between the two tree transformation classes if 
and only if the same relation holds between the tree transformation classes 
represented by the corresponding normal forms. However, this latter can 
be read from the inclusion diagram depicted in Figure 4.2.
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