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P reface

The current speech recognition technology is built on very simple statistical principles 
instead of speech-specific knowledge. Although there are constant attempts to incor­
porate what we know about human speech perception, these usually result in novel 
preprocessing methods and leave the statistical framework untouched. In particular, 
the 3-state left-to-right hidden Markov phone modelling methodology has been practi­
cally unchallenged for the last decade. Rather, performance improvement was attained 
mainly by collecting enormous training corpora and by building sophisticated language 
models. However, nowadays the technology seems to have reached its limits, its abil­
ities still being far from that of humans. Probably it is time to step back and refine 
the acoustic models as well, retaining the statistical approach but narrowing the gap 
between the properties of the models and human speech comprehension.

This dissertation is written in this spirit and starts out by listing the general prop­
erties of an envisioned alternative speech recognition framework. In the subsequent 
chapters two acoustic modelling techniques are proposed that meet some of these re­
quirements (although not all of them by far). Also, great care is taken to analyze and 
compare the behavior of the conventional HMM and these novel models on very basic 
tasks. Surely, understanding how they work -  or do not work -  and how they fulfill 
our intuitive expectations is a vital step in constructing novel -  and hopefully better -  
speech recognition solutions.
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N o ta tio n s

In a general pattern classification context:

X  the space of measurement vectors
x measurement vector; x E X
C =  {c i , ...,cK } the set of possible class labels

In a speech recognition context:

C {c i, ..., cK }
U =  {U l, ...,u N)
W  =  (u i, ...,uN)

X  =  (x i, ...,XT) 
S =  (so,..., sn)

Si (si - 1, si )
x„

X i

{ Qi, ...,QM }

the set of possible phonetic class labels 
a sequence of N  phonetic units; ui EC 
a sequence of N  phonetic units that forms a word or a series 
of words; ui E C
a frame-based acoustic observation sequence of length T  
a segmentation consisting of N  segments given as a sequence 
of segment boundary time indices; 1 <  si <  T  
the ¿th segment of a segmentation
a short notation for (xsi-1 ,. ..,x s i- i), the observation vector 
subsequence of the zth segment
the acoustic data of the zth segment, in particular when rep­
resented by a fixed-length segmental feature vector 
the states of an HMM model; when using 1-state phone mod­
els it coincides with {c i ,...,cK }
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C h a p te r 1 

In tro d u c tio n

“A physicist, a computer scientist and a mathematician are each 

locked into a room with canned food. After a week the cells are 

opened. [..] In the room of the mathematician the walls are full of 

formulas but the can is untouched and the mathematician is dead.

The top line on the wall says: «We assume the can is open.»”

Most of the early attempts at automatic speech recognition tried to achieve their 
goals by exploiting phonetic/linguistic knowledge. The most sophisticated of these 
knowledge-based systems were built on the then-popular rule-based expert systems 
framework and combined several knowledge sources of different levels (features, seg­
ments, syllables, words, etc.). However, because of our incomplete understanding of 
the factors behind the immense variability of speech signals the rule-based experts 
were fragile and their combination strategy was heuristic, cumbersome and far from 
optimal. The advent of the statistical machine learning algorithms, and especially the 
hidden Markov model promised a very elegant solution to these problems, as it offers 
the automatic trainability of its components, a very simple combination scheme and 
the mathematical guarantee of optimal performance at the highest level. During the 
90s huge training corpora were collected, and thanks to the rapid increase in processor 
speed, memory and hard drive capacity, the HMM-based recognizers can now perform 
large vocabulary continuous speech recognition in real-time. However, their abilities are 
still a magnitude worse than those of human speech perception, and the technology 
now seems to have reached its limits. Probably it is time to find the way of pho­
netic/linguistic knowledge back into speech recognition research. There seems to be 
no reason for totally giving up on the statistical approach, as currently nothing better 
is known. A more suitable strategy seems to be to analyze the behavior of the current 
models, find their weakest points -  where they differ the most from what intuition 
would expect -  and refine them by incorporating linguistic knowledge. Of course, many 
such refinements were proposed in the last two decades, but most of these are related 
to the feature extraction step and leave the HMM phone models intact. This was done 
in spite of the fact that the HMM structure is overly simplistic and in many respects 
quite counter-intuitive.
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2 Introduction

The main motivation behind this dissertation was to find such alternative mod­
els that are still statistics-based, but hopefully are somewhat more closer to what we 
know about human speech perception. Two such models will be proposed in the sub­
sequent chapters. One of them objects to the sequence-based nature of current speech 
recognizers, that is that they seek to identify every centisecond of a speech signal. 
As an alternative, the segment-based technology is proposed which tries to find and 
model whole phonetic segments in one. Another debatable feature of HMM models 
is that they combine the local probability estimates by multiplication, corresponding 
to an AND-like scheme (in the sense that one zero component can bring the whole 
product to zero). Intuition says that speech is a redundant code and so it is illogical 
to demand all the measurements to support a hypothesis. The other proposed model 
follows this spirit and recommends combining the local evidence by summation rather 
than multiplication.

One great appeal of HMM models is that they can be trained at the level of 
utterances. The importance of this is, of course, that optimality can be guaranteed at 
this level. It also has a side-effect, however, that the behavior of the model at lower 
levels can be ignored. Nowadays most papers deal with the recognition of continuous 
and/or noisy speech over large vocabularies -  giving the false impression that ‘simple’ 
phonetic decoding is already solved. This is, however, far from being the case. But 
improving the very low levels would require taking the models apart and analyzing their 
behavior on very basic tasks, which does not sound too attractive to most developers. 
In this dissertation I always test the phonetic classification and phonetic recognition 
capabilities of a model before moving to word recognition or decoding tasks. I think 
that understanding what is going on at these levels is a prerequisite if we intend to 
identify those points where improvements are possible and if we want to bring the 
behavior of the models closer to that of humans. I consider the insight I gained from 
these experiments a much more important result of this dissertation than the proposed 
models themselves.

1.1 S um m ary by Chapters

There are two chapters in the dissertation that do not contain scientific contributions 
from the author but has the goal of reviewing certain areas. Thus, Chapter 4 gives 
an overview of the software environment and speech databases used throughout the 
dissertation, and Chapter 5 collects all the research results that I judged to be related 
to my investigations and I was familiar with during the period of my studies.

The remaining chapters basically follow the chronological order of my research ef­
forts. Chapter 2 gives a detailed description of the critical issues of the current technol­
ogy and presents some of the basic features that I would prefer to see from a alternative, 
novel one. It also introduces the mathematical tools used in current models, since our 
alternative models will apply the same decomposition tricks, only in slightly different 
ways.

Chapter 3 presents a generalized algorithmic framework that forms the basis of the



1.2 Summary by Results 3

implementation of our speech decoder. All the models tested in the dissertation -  
including the HMM -  will be a special case of this decoding routine.

Chapter 6 introduces the posterior-based segmental model, our team’s first attempt 
to create a viable alternative to HMM-based phone models. Although it turned out 
not long after that the segment-based representation could easily outperform HMMs 
in classifying phonetic segments, it took a lots of effort to bring it up to the level of 
HMMs in phonetic decoding or word recognition tasks. Hence, a large part of this 
chapter is concerned with improving the segment-based model by refining its so-called 
segmentation probability component.

Another consequence of confronting the difficulties with the segmental model was 
that I realized HMMs are in fact rather good -  in spite of the quite obvious arguments 
against them. This revelation led to Chapter 7, in which a profound analysis is given on 
how HMMs perform phonetic decoding and why they can solve the problem of phonetic 
segmentation and classification while their probability estimates are very inaccurate. 
The unusual segment-based view and the comparison with the segmental model brought 
me a new insight into these issues.

In Chapter 8 the technique of segment-based interpretation is extended to the so- 
called HMM/ANN hybrid. Namely, we identify which component of the hybrid model 
corresponds to which component of the segment-based model. This analysis leads to 
the suggestion of an alternative hybrid model in which the frame-based posteriors are 
combined by averaging instead of multiplication. This ‘averaging hybrid’ turns out to 
behave similarly or slightly better than the conventional one on phone classification, 
phone recognition and word recognition tasks as well.

Chapter 9 proposes two slight refinements over the hybrid model of Chapter 8. 
One of these is the application of an explicit gamma-distribution based duration model 
instead of the exponential one inherent to HMMs. The other refinement concerns the 
training of the neural nets used in the hybrid. Both modifications result in a modest 
improvement in the word error rates.

1.2 Sum m ary by Results

In the following a thesis-like listing of the most important results of the dissertation is 
given. Table 1.1 shows which thesis is described in which publication by the author.

I. ) The author developed a segment-based feature set for the representation of pho­
netic segments. He tested this feature set on several speech corpora and in 
combination with various machine learning algorithms, and demonstrated that in 
most cases it results in better phone classification scores than the conventional 
HMM phone models.

II. ) The author developed various strategies for estimating the segmentation proba­
bility component of the posterior-based segmental model, based on the concept 
of anti-phones. He tested the proposed modelling schemes by comparing their 
speech recognition performance on several speech databases.



4 Introduction

Table 1.1: The relation between the theses and the corresponding publications

III.) The author investigated the applicability of replicator neural networks for the 
estimation of the segmentation probability component of segmental models.

IV. ) The author investigated how the modelling bias caused by the naive Bayes as­
sumption influences the performance of HMM phone models. Based on the 
observations he argued that this bias is such that it does not deteriorate the 
phone classification performance of the models and it helps them in finding the 
correct segmentation of the input signal. These arguments together help explain 
why HMMs are good at phonetic decoding while their probability estimates are 
quite inaccurate.

V. ) The author examined the behavior of the conventional HMM/ANN hybrid model
from a segment-based point of view. Based on the findings of this, he introduced 
a novel type of HMM/ANN hybrid which combines the frame-based posterior 
estimates by averaging instead of multiplication. He justified experimentally that 
the averaging hybrid is capable of a similar or slightly better performance than 
the conventional hybrid.

VI. ) The author examined the efficiency of using explicit duration models in the
HMM/ANN framework. He found that the gamma-distribution based duration 
model leads to increased recognition performance over the conventional exponen­
tial model in both the conventional and the averaging hybrid.

VII. ) The author proposed a resampling-based training scheme for the training of the
neural nets used in the hybrid models. In experiments the proposed algorithm 
resulted in modest improvements in recognition accuracy.



C h a p te r 2

T h e  D e co m p o s itio n  P ro b le m  in 

S ta tis t ic a l Speech R e co g n itio n

"All models are wrong, but some models are useful".
George E.P. Box

The main goal of this chapter is to explain our motivations for experimenting with 
the models introduced in the subsequent chapters. Our basis argument will be that 
having chosen to apply the statistical methodology to speech recognition inescapably 
leads us to a decomposition problem. Unfortunately, probability theory offers only 
a very limited range of tools for performing this decomposition, hence the resulting 
mathematical models will have several assumptions that contradict our intuition on how 
speech perception works. Giving up the statistical framework does not seem reasonable 
at present, but the models can probably be brought closer to our intuitive expectations. 
Most importantly, we propose that the generative and independency-based modelling 
structure should be replaced by a decoding-oriented one that aims at identifying familiar 
data blocks and combining them in a way that can exploit their redundancy.

2.1 T he  Basic Issues o f S ta tis tica l M ode lling  in 

Speech R ecognition

Out of the several theoretical frameworks of machine learning the most popular in 
practice is that of statistical pattern recognition [26], At its core is the relatively simple 
Bayes decision rule, stating that if the task is to classify certain objects into one of 
the classes C =  {c l ,...,cK } based on some measurement vector x, and we intend to 
minimize the number of misclassifications on the long term, then the optimal choice 
is the class having the largest posterior probability P (ck\x). Thus, the problem of 
learning boils down to obtaining an estimate of P(ck\x) that is as accurate as possible 
based on the set of training examples available. Several learning algorithms fulfilling 
this task have been invented over the decades and have been successfully applied to

5



6 The Decomposition Problem in Statistical Speech Recognition

many practical fields. Hence, it is reasonable to use the statistical modelling approach 
to speech recognition as well.

However, the (general) speech recognition task has a special problem: the huge size 
of the space to be modelled. That is, the length of the utterances can be quite large, and 
even if we assume a reasonable upper bound on their length (the speaker sometimes 
must take a breath, after all), the number of corresponding possible transcriptions 
(phone or word strings) is so large that they cannot be managed directly. Moreover, 
the conventional algorithms developed for statistical pattern recognition assume both 
the class set and the feature set to be of a fixed and relatively small size.

Hence, it seems necessary to decompose both the transcript label ck and the mea­
surement vector x into some smaller units C and x 1. Direct probability estimates 
P (d \x ') are then created only over the subspaces of these units, and an estimate of 
the global probability P(ck\x) is obtained by properly combining the local estimates of 
the units. The necessity of decomposition makes the following modelling issues crucial 
in statistical speech recognition:

1. What is a proper choice for the recognition units C and for the corresponding 
measurement subspace P I

2. What is the best way to model (parameterize and train) these units?

3. What is the proper way of combining the local probabilities P (d \x ') into a global 
utterance-level probability P(ck\x)7

There are two main driving forces when answering these modelling questions. One 
of them is, of course, a priori knowledge about human speech perception and language 
comprehension. The other one is mathematical tractability. Unfortunately, there are 
controversial issues with both.

First, human speech perception is a terribly complex problem that requires inter­
disciplinary knowledge from such fields as phonetics, neurophysiology and cognitive 
psychology. Moreover, it still has many uncharted spots. Even worse, the partial 
knowledge we have about it is not written in a language for electrical and software 
engineers. Because of these difficulties, the current speech recognition modelling tech­
nology is built almost exclusively on mathematical (more precisely, statistical) principles. 
Quoting Jelinek [63]:

«Statistics wins because its techniques are well developed. "Knowledge" loses 
because those who think they have it do not know how to incorporate what they have. 
So far, it has turned out more profitable to estimate reliably very simple parameters 
than to introduce a complex model whose parameter values cannot be verified.»

That is, the main advantage offered by the statistical approach is that its models 
are trainable from data. The price is that trainability requires relatively simple models. 
Moreover, probability theory yields a very limited toolkit for decomposing the probability 
P(ck\x) -  at least, in a simple way. Hence the resulting models ignore even those quite 
basic facts that are known about how speech works and their behavior is in many cases 
counter-intuitive.
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In terms of machine learning, we suspect that our statistical models are significantly 
biased. This means that increasing the amount of training data is in itself not sufficient 
to obtain perfect speech recognizers: the models themselves should also be refined. 
The easiest way of reducing the model bias is to make the model more flexible via the 
introduction of more free parameters -  this of course increases variance and hence the 
proper tuning of the model parameters will require more and more training data. The 
other option is to replace the (mathematically inspired) bias with a priori speech-specific 
information. These two types of improvements do not really clash, and in fact could 
be pursued in parallel. But in general we can say that in the last decade significantly 
more effort has been devoted to improving the models by adding more parameters 
(and more training data) than by bringing them closer to what is known about speech 
perception1. The main motivation of this thesis is to propose alternative models that 
retain the statistical modelling framework, but hopefully are somewhat closer to what 
intuition and prior knowledge suggest.

Before going into the details of modelling techniques, there is one more general 
issue to be discussed, that of model verification. There seems to be the wide-spread 
misconception among engineers that the solid mathematical background of a model is 
sufficient to justify its use. In fact, however, mathematics perse cannot guarantee that 
a certain kind of model is suitable for describing a certain kind of natural phenomenon. 
It can only ensure the mathematical soundness of the model, and its practical usefulness 
can be verified only by experimentation. However, the ‘no free lunch theorem’ [26] says 
that for every model there are possible data sets that it would fit well and data sets 
that it would fit poorly. Hence, justifying that one model is better than another one for 
a certain type of task would require comparing their average performance over as many 
data sets as possible. Unfortunately, as training and testing a speech recognition model 
can take quite long, we usually confine ourselves to comparing the models on a few 
standardized databases only. A further complication is that we can only approximate the 
optimal parameters and the training process is prone to under- or overtraining. Thus, 
from one bad result it is hard to conclude whether there is a conceptional problem 
with the model or the training process has failed or the given data set has some kind 
of unwanted speciality. This again reinforces the need for exhaustive testing on many 
databases.

In the following section we will briefly summarize how the utterance-level probability 
is decomposed in conventional models. First, it will allow us to discuss and scrutinize 
its key features. Second, it will allow us to collect the mathematical tools that are 
applicable during decomposition. This is important because the alternative decompo­
sitions we are going to suggest in subsequent chapters utilize the same methods, only 
in slightly different ways.

1The reader may protest here saying that countless novel front-end algorithms were proposed based 
on speech perception and auditory principles. But these papers usually end with testing the new feature 
set within a conventional recognizer -  and our point here is that the recognition algorithm should also 
be reviewed.



8 The Decomposition Problem in Statistical Speech Recognition

2.2 D ecom position  in C onventiona l S ta tis tica l 

Speech R ecognition M odels

In the following we will assume that the speech signal is given as a sequence of uniformly 
sampled observation vectors X  =  (x1,...,x T) and the result of recognition is required 
in the form of a series of phonetic symbols W  =  (u1, ...,uN) over a fixed set of phone 
labels {c1, ..., cK } 2.

For an optimal Bayesian decision we need an estimate of P (W \X ). Here we need 
the first decomposition technique: Bayes’ rule. When applying it we obtain3

P  (W \X )
p (X \W  )P  (W )

P X )
( 2.1)

During the recognition of a given observation sequence p (X ) is constant, so it can 
be dropped because it does not influence the maximization with respect to W. From 
the remaining two factors P (W ) does not depend on the acoustic observation X , hence 
it is usually called the language model, while the other component p (X \W ) is referred 
to as the acoustic model.

Although the motivation for applying Bayes’ rule in Eq. (2.1) was to separate the 
acoustic and language models, it has another very important technical aspect: as the 
possible values of W  always form a finite set, while the observation vectors X  are usually 
from a continuous measurement space, quite different techniques are required to model 
the posterior probability P (W \X ) of the classes than the class-conditional distribution 
p (X \W ) of the feature vectors. In the literature the algorithms that approximate the 
latter are usually called generative while those that approximate the former are referred 
to as discriminative models4. Note that theoretically it does not matter which type of 
model we work with, as they can always be converted to each other via Bayes’ rule (with 
the help of the priors). But in practice they produce only an approximation based on 
the training data, and because of their different structure and training algorithm these 
estimates might be quite different. The most important advantage of discriminative 
models over generative ones is that they are easier to train for optimal discrimination 
(hence their name). However, discriminative training algorithms also exist for generative 
models, so we prefer to call them posterior-based models instead of discriminative ones. 
The most well-known representative of the class of generative learners is the Gaussian 
mixture model (GMM), while the most popular posterior-based learner is the artificial 
neural network (ANN).

The second decomposition technique we apply is the introduction of latent vari­
able^). For this we will have the simplifying assumption that speech is a sequence of

2The symbol set used usually does not fully coincide with the phone or phoneme set of the language 
to  be recognized. So technically we should talk about “ phone-like units", but for brevity we simply say 
phones or phonemes.

th ro u g h o u t the dissertation discrete probabilities will be denoted by P  and continuous probability 
densities will be denoted by p.

4ln speech recognition some authors refer to  “ recognition"[89], or “ perception"[83] vs. “production" 
models.



phonetic segments -  this view is also known as the "beads-on-a-string" paradigm. Al­
though it is debated by modern phonetics/phonology, currently it is a standard assump­
tion in speech recognition models. Based on this, the speech signal can be decomposed 
into a sequence of phonetic segments by segment boundary time markers. With this 
view phonetic decoding requires solving two problems in parallel: finding the segment 
boundaries and identifying the segments. Let us denote the possible segmentations by 
S and introduce it as a latent variable. Then, using the law of total probability, the 
acoustic model likelihood p (X \W ) can be written as

p (X \W ) =  £ p(X , S |W ) =  £ p(X \S , W )P (S \W ), (2.2)
S S

where in the second step the chain rule was applied (the third decomposition technique).
Here the P (S \W ) factor is responsible for finding the most probable segmentation, 

and it is the task of p ( X \S, W ) to identify the segments defined by a given segmentation 
S. In practice it is usually not feasible to evaluate the sum over all possible S, so it is 
approximated by a maximization. This is based on the assumption that there is only one 
correct and hence high probability segmentation, and the contributions of the remaining 
ones are negligible. With this modification the phonetic decoding problem becomes a 
parallel search for a maximum over both W  and S. Note that the simplification of 
substituting a maximization for the summation was introduced based on purely practical 
computational reasons and not out of any good phonetic or perceptional argument.

The fourth decomposition scheme that is very frequently applied is the assumption of 
independence (also known as the naive Bayes assumption)5, which allows a multivariate 
probability density function to be decomposed into a product of densities of fewer or 
one variables. In fact, probability theory offers no other trivial way of decomposing a 
multivariate probability, so there is a serious pressure to apply it even in cases when the 
independence assumption is quite obviously false.

We use the independence assumption to decompose p (X \S ,W ) and P (S \W ) into 
segment-level scores. We will denote the zth segment by Sit the signal section that 
belongs to it as x^.- !  and the corresponding phone label by ui . Using this notation, 
the decomposition leads to the following approximations

p ( X \S, W ) «  P(xS~l\Ui) (2-3)

2.2 Decomposition in Conventional Statistical
Speech Recognition Models 9

and

P (S \W ) « n P(Si\ui). (2.4)
i

Here the task of the p ^ t ^ U )  components is to tell us how likely the acoustic 
observations of the zth segment belong to (were generated by) the phone ui . The other 
component, P (S^u^ has to tell us how probable the markers of the zth segment select

5 A somewhat weaker assumption is to  presume Markovian dependence on the preceding couple of 
events, but this is usually applied to the linguistic units and not the acoustic data.
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a phonetic segment. Notice that this component has no access to the measurements 
xSi-1 . but knows only the place of the boundaries of Si. This is why P (Si\ui) is 
implemented as a duration model in practice.

2.2.1 Hidden Markov Models
The currently dominant technology in speech recognition is hidden Markov modelling 
(HMM). In conventional HMMs the naive Bayes assumption is applied again to estimate 
the segment-level values p ^ S ^ U )  and P(Si \ui ) from likelihood estimates calculated 
over each observation frame. This results in a naive Bayes-type spectral model

p {xssiJ \u i
S i - 1

Ck ) ~  Y l  p(x 3 \ui  =  ck ),
j  =  S i - 1

and in a geometric duration model

(2.5)

P(Si|Ui =  ck) «  (1 -  at )a'd 1, (2.6)

where d =  si —  si- 1 is the length of the segment and ak is a value specific to phonetic 
class ck (in HMM terminology ak is a self-transition probability).

The way we introduced the hidden Markov model here may seem slightly unusual. 
We did so because in the subsequent chapters we will prefer working with a segment- 
based view on the decoding process, and we wanted to emphasize here that the conven­
tional left-ro-right HMMs are just a special case of it. One reason why the derivation 
given here seems unexpected is that the usual way of discussing HMMs is to talk about 
state sequences and not segmentations. But it is quite easy to see that talking about 
state sequences or segments is practically the same. To see this, recall that the HMM 
works in such a way that it stays in the same state for a couple of steps, but every now 
and then it moves to a different state. Those time instances where the HMM changes 
state can be interpreted as the segment boundaries of the segmental view, while the 
state-homogeneous sections can be interpreted as the segments themselves. Thus, a 
bijective mapping is possible between state sequences and segment sequences.

The other slightly unusual thing with our decomposition is that we interpreted the 
ck labels and the corresponding segments as phonetic labels and segments. This way 
equations (2.5) and (2.6) define a 1-state HMM. However, in HMMs the states usually 
correspond to smaller units -  mostly the three pronunciation phases of a phone. But 
if these units are combined to form phones in the usual left-to-right manner, that is 
we apply the simplest 3-state models, then the segment-based interpretation is still 
viable. In this case simply the ck labels and the segments will correspond to these 
smaller building units. Also, the language model will require a slight modification, as 
its items now have to be constructed from phone thirds instead of phones. But if no 
state-skipping is allowed in the phone models, then this requires only a simple automatic 
replacement of the phone symbols with the corresponding three building units in the 
pronunciation dictionary.
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2.3 Some C ritica l Remarks and th e  Key Features 

o f an Envisioned A lte rn a tive

As we saw earlier, the conventional HMM is constructed mainly along mathematical 
lines, practically ignoring what is known about human speech perception. This is why 
many of its key features can be argued against. Namely, we saw that the HMM is

•  frame-based, that is it calculates a likelihood estimate over each observation 
frame;

•  generative, that is the estimates calculated over the data frames are class-conditional 
likelihoods;

•  independence-based, that is the frame-based likelihood estimates are integrated 
into a segment-based estimate by multiplication, corresponding to the naive Bayes 
assumption.

The argument against classifying frames (even if we do not make binary decisions 
but only estimate likelihoods) is that humans cannot really identify such small fragments 
of sounds, so it seems that trying to extract the phonetic information from these small 
uniform-sized chunks is not necessarily a good idea (in fact, this type of processing was 
again introduced simply for technical convenience). More and more research actually 
indicates that the acoustic correlates of phonetic information are such windows of 
the time-frequency plane that are longer along the time axis (up to 250 ms) and are 
narrower along the frequency axis (up to 1-2 octaves) than the conventional frames [73],
It is relatively simple to apply time windows larger than one frame at the probability 
estimation step, and in fact it is quite usual: ANN-based systems sometimes use time 
windows as large as 1 second [53], and in conventional HMMs it is a common practice 
to extract the so-called A  and A A  features that correspond to derivative-like values 
estimated over a couple of neighboring frames. Hence one is tempted to claim this 
issue has been solved, but by using larger -  and thus more overlapping -  time windows 
we obviously infringe the independence assumption, so by alleviating one problem we 
exacerbate another.

Before discussing the problem of the independence assumption, we should mention 
that the fact that we process the frames -  it does not matter which size -  uniformly 
can also be debated. There is an alternative trend that suggests looking for the acous­
tic correlates of phonetic distinctive features -  let them be called acoustic cues [66], 
acoustic events [67] or acoustic landmarks [48], As each feature has different correlates, 
in this approach the signal may go through several quite different processing steps in 
parallel. This methodology has been repeatedly proposed over the decades, but it never 
broke into the mainstream -  probably because its increased complexity did not result 
in a significant improvement in recognition performance.

Among the properties of the HMM, the strongest objection is obviously that against 
the independence assumption of the frames (see, for example [57] and [93]). Knowing
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the techniques by which the feature vectors are extracted (the A  and A A  features, 
RASTA filtering, etc.), it is easy to argue (or even mathematically point out) that the 
neighboring frames are highly correlated.

But besides the mathematical arguments, one can also argue from an information 
combination point of view that the product combination rule should be replaced by a 
more general scheme. To see this, recall that speech as a code is very robust -  thanks 
to its redundancy. That is, the same information is represented in it in several different 
ways. For example, the identity of a plosive is coded in its burst shape, the formant 
transitions before and after the burst, and also the linguistic context. In most cases one 
or a couple of these is ample for a full understanding of what was said. However, the 
independence-based generative modelling scheme has to account for every observation, 
and even worse, requires the hypothesis to be supported by each of them. That is, 
each frame-based likelihood is always made use of, and just one of them giving a value 
of zero is enough to zero out the whole product. We try to make this model more 
robust by filtering out everything we cannot deal with in the signal preprocessing step, 
and by collecting an enormous amount of data in the hope of covering all combinations 
possible. The author thinks that better robustness could be obtained by replacing the 
independence-based model by one that looks for such cues that are sufficient to indicate 
the presence of a feature and combines these by an OR-like rule.

In this thesis two main alternative modelling approaches will be proposed in the 
spirit of the above critical remarks. One of them will still use frame-based values, 
but combine them in an OR-like manner instead of the independence-based product 
rule. This will be the averaging HM M /ANN hybrid presented in Chapter 8. The 
other approach builds complex models to estimate the segmental probabilities ‘in one 
go’, instead of estimating them by combining frame-based scores. The latter type of 
systems will be referred to as segment-based models, and they will be presented in 
Chapter 6.

As regards the third issue, generative modelling, we have already mentioned that 
applying posterior-based learners instead of generative ones has certain technical advan­
tages, a key one being that they are easier to train discriminatively. Another important 
issue is that if we intend to experiment with expert combination schemes other than the 
naive Bayes one, then working with posteriors is much more natural and easier. Because 
of these motivations most of the models presented and tested in this dissertation are 
built on posterior estimates. Note that the generative components can be turned into 
posterior-based ones (by applying Bayes’ rule) either at the frame or at the segment- 
level, so we can create both frame-based and segment-based posterior models. Chapter 
6 of this dissertation will deal with posterior-based segmental models. The HMM/ANN 
hybrids discussed in Chapter 8 belong to the class of frame-based and posterior-based 
models, while generative segmental models will appear in Chapter 7. And, of course, 
conventional HMMs represent the fourth combination, frame-based generative models.

Although this dissertation will focus on alternative modelling and combination tech­
niques within segments, we should mention here that the multiplication-based combi­
nation method can be challenged at higher levels too. For example, at the very first
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step of decomposition (see Eq. (2.1)) we separated the acoustic and language models 
into a product form. Notice that their combination by multiplication is an AND-like 
combination in the sense that a hypothesis W  gets a non-zero probability only if there 
is both acoustic and linguistic evidence for it. This is counter-intuitive, as humans can 
recognize nonsense speech quite well under clean acoustic conditions, or deduce words 
totally buried in noise when the linguistic context is very restricted.

Besides human perception arguments, there are also practical problems with the 
product combination rule: in practice it is known that better recognition results are 
obtained if the language model score is raised to a proper (usually empirically tuned) 
power before multiplying it with the acoustic model score. This clearly contradicts the 
decomposition suggested by Eq. (2.1), and is normally explained by the fact that "the 
acoustic probability is usually underestimated” [58], Although raising to a power can 
indeed be thought of as a compensation for this underestimation, there is also another 
possible interpretation: that the acoustic an linguistic models are combined via raising 
to a power and multiplication. The fact that it works better than simple multiplication 
-  which was found to be disputable anyway -  supports the idea that other, more flexible 
combination rules should be tested in place of the simple product rule.

In this spirit, a quite different model could be obtained if we explicitly denoted the 
language model by L  and decomposed P (W \X ,L )  like so

P (W \X, L) «  f  (P (W \X ),P (W \L )) , (2.7)

where P (W \X ) is an acoustic expert, P (W \L ) is a linguistic expert, and f  (.) is some 
kind of properly chosen expert combination rule. For example, Bourlard proposed com­
bining the acoustic and linguistic evidence by weighted summation, the weights being 
proportional to the reliability of the experts [15]. Although this sounds quite reasonable, 
we do not know of any research group that is currently pursuing this approach.

2.4 Sum m ary

In this chapter we emphasized that the conventional HMM technology of speech recog­
nition is not a classification algorithm in a strict sense, but a generative model for 
stochastic random processes. Moreover, most of its properties are chosen for mathe­
matical simplicity instead of psychoacoustic arguments.

Like Jelinek [63], we think that speech recognition should instead be considered as a 
code breaking activity. In particular, we propose that a proper speech recognition model 
should look like an expert combination framework with the following key features:

a) The local units of processing (probability or likelihood estimation) should not 
be frames but some larger (and not necessarily uniform-sized) time-frequency 
windows.

b) Because of redundancy, it is not necessary to make use of every single data block. 
Rather, the algorithm should spot and pick out those acoustic events from the
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observation stream that are informative and reliable and ignore the rest.

c) The local information content of these events should be combined in a fash­
ion that allows for an OR-like fusion of information, and not simply and AND- 
like scheme (multiplication). Quite probably a two-level (OR-AND) combination 
method would work best.

In the next chapter we present a generalized speech decoding algorithm that al­
lows us to experiment with combination schemes invented in this spirit. In the rest of 
the dissertation two types of models will be examined in more detail. The ‘posterior 
segment-based’ model satisfies (a), as it models whole phonetic segments as one unit 
instead of combining them from frames. The ‘averaging HMM/ANN hybrid’ model sat­
isfies (c), as it combines the frames by averaging, which is an OR-like scheme. In both 
cases the segment-level experts are combined by multiplication after raising to a power, 
which is a generalization of the conventional AND-like combination (multiplication).

Although these models are admittedly less general than what the items above would 
allow and suggest (for example satisfying (b) is not pursued in this dissertation at all), 
we still think that these first steps are in the right direction.



C h a p te r 3

A  G enera lized Speech D e co d in g  

A lg o r ith m

"Measure with a micrometer. Mark with a chalk. Cut with an axe."
Ray’s rule o f precision

In the following we present a general speech decoding scheme. Instead of the con­
ventional generative view, this algorithm interprets the recognition task as a decoding 
process where certain building blocks have to be found, identified, and the information 
they provide has to be combined. That is, this approach considers speech recognition 
as a task of classifier combination integrated in a search process. We will show that 
this framework is general enough to allow experimentation with combination schemes 
that satisfy the requirements defined in Chapter 2. In addition, the conventional HMM 
model can be regarded as a special case of it. Furthermore, the two alternative models 
proposed in the subsequent chapters are also built on this decoding algorithm. Hence, it 
can serve as a general framework of all the models and experiments in this dissertation.

3.1 T he  Speech D ecoding A lg o rith m

Algorithm 1 shows the pseudo-code of our generalized speech decoder. Expressed 
simply, the algorithm works in the following way. Let us assume that our building 
blocks are denoted by the elements of the symbol set C =  {c i, ...,cK }. Let the speech 
signal be given by the series of measurements X  =  (x i ,. .. ,x T). The goal of recognition 
is to map the speech signal X  into a series of symbols U =  (ui , ...,uN) , where u  e C. 
The algorithm works from left to right, and stores its partial results in a priority queue. 
Having processed the signal up to a certain point t, the algorithm looks ahead in time 
and, from the corresponding measurements, it collects evidence that the next symbol 
belongs to the time interval being inspected. As neither the exact length nor the identity 
of the next segment is known, we examine every time index t' =  t +  l , t  +  2,... that 
might be the end point of the segment. Each element ck of the symbol set is matched 
to the interval <  t , t '  >, and from each (t',c k) pair a new hypothesis is formed and

15
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A lgorithm  1 A Generalized Speech Decoding Algorithm 
solutions :=  0
hypothesis queue :=  h0(t0, ” ” , 0)
/ / a  hypothesis consists of a time index, a phoneme string, and a score 
while there is an extendible hypothesis do

select an extendible hypothesis H (t, U,w) according to some strategy 
if  t  =  T  then

if  only the first solution is required then 
return H  

else
put H  on the list of solutions 

end if  
end if
for t ' =  t +  1 ,t +  2, ••• do 

fo r all c <e C do
wc :=  g1(c, < t , t '  > ) / /  where g1 estimates the cost of fitting c to <  t , t '  > 

/ /  based on the relevant Xj measurements 
W :=  g2(w, wc) / /  whe re g2 is a proper aggregation function 
if  pruning-criterion(wc,w ') then

construct a new hypothesis H '( t ', Uc,w ') and put it in the hypothesis queue 
end if 

end for
i f  stopping-criterion(< t , t '  > ) then 

break 
end if  

end for 
end while

put in the hypothesis queue. As every hypothesis has several extensions, this means 
creating a search tree. By adjusting the hypothesis selection strategy, the pruning and 
the stopping criteria one can control how the search space is traversed and pruned.

When the whole signal has been processed, the best scoring leaf (or the ^-best 
leaves) is (are) returned as the result. The score of a hypothesis is calculated in two 
steps. First, there is a function (g1) to combine the evidences for each symbol as 
collected from the local information sources. Second, this local evidence is combined 
(via g2) with the prefix of the hypothesis to obtain a global score. So, in effect, classifier 
combination occurs at two levels.

3.2 Discussion

Let us now examine the components of the algorithm and suggest some possible choices 
for them. As regards the selection of the building units, the most reasonable choice is 
the phoneme since phonemes are the smallest information carrying units of speech (in 
the sense that the insertion/deletion/substitution of a phoneme can turn a word into 
another one). Furthermore, in many languages (e.g. Hungarian) there is an almost one-
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to-one correspondence between phonemes and letters, so working with phonemes is an 
obvious choice when converting sound to its corresponding written form. Still, smaller 
or larger units could be used as well. For example, there are arguments that syllables 
give a more suitable representation of the English language [43], Going the other way, 
current recognizers mostly decompose phonemes into three articulation phases [58], 
In this dissertation we will always work with phonemes (more precisely, phoneme-like 
units).

The acoustic information sources Xj  display the greatest variation from system 
to system. Traditionally the acoustic signal X  is processed in small uniform-sized 
(20-50 ms) chunks called ‘frames', and the spectral representation of these serves as 
the Xj  input vectors for the model. In HMM systems the spectral data is usually 
augmented with the A  and A A  features which are a kind of first and second-order 
derivative estimates obtained with the help of a couple of neighboring frames [58], 
In ANN-based systems it is usual to consider 4-4 neighboring frames from both sides 
during classification [14]. In TRAP-based systems the frequency bands are processed 
separately, but from each band data streams as long as 1 second may be used [52], 
These examples show that acoustic information lying relatively far from the segment 
< t , t '  >  may also be relevant for the identification of it. This is why in the algorithm we 
generally allowed to make use of any acoustic data that may be relevant for classifying 
a segment and not only those that fall within the time interval <  t , t '  >.

The choice of the functions g\ and g2 determines what scores are associated with 
the hypotheses examined during the search. There is a common agreement that the 
hypothesis evaluation should work on probabilistic grounds. In this case Bayes’ decision 
theorem guarantees optimal performance, and statistical pattern recognition provides 
methods for approximating the probabilities from training corpora. The acoustic mea­
surement vectors Xj  provide their information in the form of p(x j \ck ) or P (ck \xj ) esti­
mates. These are then integrated into a segment-level probability by g2; this integration 
may consider further factors as well, for example phone duration models or prior phone 
probabilities. Finally, this newly hypothesized phone is attached to the hypothesis pre­
fix with the help of g2. As this function is responsible for concatenating the building 
units into a string of symbols, linguistic information like phone or word X-grams, pro­
nunciation dictionaries or formal grammars can be incorporated into the recognition 
process via g2. Probabilistic language models would take the form of multiplying fac­
tors (transition probabilities), while formal grammars would appear as constraints that 
reject (associate a probability of zero to) certain unit combinations.

As regards traversing the search space, the strategies fall into two chief categories. 
One of them is the breadth-first search, which in our case can also be called time- 
synchronous search. As its name implies, it extends all hypotheses in parallel so that 
their ending points in time always coincide. The other strategy, best-first search keeps 
the hypotheses ordered and always extends the most promising path. With a proper 
heuristic this technique helps one find the best hypothesis in a depth-first manner, 
avoiding the evaluation of a lot of low-scoring paths in vain. Whichever strategy we 
choose, the number of hypothesis paths can grow exponentially, especially when the
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linguistic constraints are weak. In such cases for acceptable execution speed the effective 
pruning of the search space is crucial. In time-synchronous search the common strategy 
for pruning is to remove the paths that are farther away from the best hypothesis than 
a certain ‘beam width’ [64], In best-first search (usually called stack decoding) the size 
of the ordered stack is limited, so paths pushed out of the stack because of their low 
score are automatically discarded [64],

Our implementation of algorithm 1 performs a depth-first search. To make the 
recognition process more efficient we apply multi-stack decoding with several search 
tree pruning heuristics and a few refinements. More details on these can be found in 
the publications of my colleague, Gábor Gosztolya [39-42], In our experiments we did 
not focus on execution speed; rather we chose such safe pruning parameter settings 
that guaranteed no degradation in recognition performance.

Lastly, we should mention two main weaknesses of the generalized algorithm. First, 
it insists on the conventional beads-on-a-string paradigm, that is it assumes that speech 
is a sequence of phonetic segments. However, this point is debatable, especially in the 
case of fluent, spontaneous speech. In that case the segments boundaries are frequently 
hard to identify, and modelling the signal as parallel streams of distinctive features seems 
more suitable. Although from time to time there is a renewed interest in making use of 
distinctive features in automatic speech decoding, they have never been able to break 
in to the mainstream of speech recognition technology. Such a level of generalization 
would have required too many changes in our algorithm, so we disregarded it.

The other controversial issue is the left-to-right nature of the decoding process. One 
could argue that it frequently occurs to us humans that some new piece of information at 
the end of a sentence makes us suddenly understand the very beginning of it. Although 
in theory it may happen to our algorithm (thanks to language modelling constraints) 
that a new word at the end corrects all the previous words, in practice it is more 
common that the search goes wrong at the beginning and later correct words are not 
able to put it back on the right track. A more reasonable decoding algorithm would 
first detect reliable ‘islands’ (either in acoustical or linguistical sense) and then fill 
in the holes. Although such an island parsing technique would be possible, it would 
require such big changes that we did not consider it for implementation. As both these 
further generalizations (distinctive feature technology and island parsing) are definitely 
unusual in speech recognition, our algorithm is much general even without these than 
the conventional speech decoding technology.

3.3 Special Cases

In the following we discuss how the models occurring in this dissertation can be evalu­
ated in the framework of Algorithm 1, and especially how the functions g\ and g2 are 
chosen in their cases. The exact explanation of why they are chosen so will be given in 
subsequent chapters.



3.3 Special Cases 19

3.3.1 Hidden Markov Models

In spite of its unusual appearance, Algorithm 1 is not so different from the standard 
technologies. In particular, its components can be chosen so that it becomes mathemat­
ically equivalent to the left-to-right hidden Markov models preferred in large-vocabulary 
speech recognition. In this setup the set of states of the Markov model will play the 
role of the symbol set in our algorithm. For the sake of simplicity, let us first assume 
that we are working with 1-state phone models. Then the phone symbols in ck directly 
correspond to the states of the HMM (as each phone model has exactly one state) and 
any state sequence determines a segmentation based on how long the model stayed in 
a given state. Owing to this, the probability corresponding to a given segmentation is 
calculated in two steps. The gl function of Algorithm 1 will compute the probability 
corresponding to a given segment <  t , t '  >  and state ck. That is, according to Eq. 
(2.5) and Eq. (2.6),

t '- i
g i(ck,<  t , t  > ) =  (1 -  ak )a(k - t - l )  • J J p(x j \ck ). (3.1)

j =t

In HMMs the probability corresponding to the whole segmentation is obtained by 
multiplying the segmental probabilities (cf. Eq. (2.3) and (2.4)). In terms of Algorithm 
1, this multiplication will be performed by g2. That is, if we have a hypothesis prefix 
U that fits the input up to time index t with a cost (probability) of w, then the cost 
(probability) associated with the hypothesis that extends U to Uck  and fits the signal 
up to time index t' is calculated as

g2 (w ,g i(ck, <  t , t  > )) =  w • g i(c k , <  t , t  > ). (3.2)

Equations (3.1) and (3.2) together define how the acoustic model score for a given 
phone series U and segmentation (state series) S is evaluated. In practice we usually 
have a language model component as well, given in the form of P (U ). Multiplication 
by this factor can be incorporated into Eq. (3.2).

In practice, better results are normally obtained if the phones are decomposed 
into three states, one corresponding to the middle steady-state part, and two others 
describing the transitional phases before and after. These 3-state HMMs can also be 
simulated with our generalized model. The only modification required is that in this case 
the symbols ck will correspond to these phone thirds (the states of the models). Also, 
a multiplication by the state transition probabilities P (u i \ui - l ) has to be incorporated 
into g2 (Equation (3.2)). These may also be interpreted as parts of the language model, 
so taken together we can say that decoding with 3-state models is the same as with 
1-state models, but the interpretation of the symbols and the language model both 
have to be modified slightly.
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3.3.2 Hybrid HMM/ANN Models
Another class of models that will be used in this thesis is the class of HMM/ANN 
hybrids [14]. Fortunately, the conventional hybrid model is very similar to the HMM, so 
its simulation with Algorithm 1 requires just one small modification. The only change 
will be that in Eq. (3.1) the estimates of p (x j\ck) will be replaced by estimates of 
P(ck\x j) /P (c k). Nothing else is changed in the formulation, so everything said about 
HMM simulation will hold true for these models as well.

In Chapter 8 we will introduce the averaging hybrid model. In its simplest configu­
ration Eq. (3.1) is replaced by

gi{ck, <  >)
E j= t  P(ck\xj )

i t ' -  t )

K t'-1

■ E n p(ck\x j )) ■ (1 -  ak )ak - t - i)
k=i j=t

(3.3)

When compared with Eq. (3.1), we see that in this model the average of the frame- 
based posteriors is taken instead of the product of the frame-based likelihoods. The 
geometric duration model is retained, but a new third factor is introduced. It will be 
called the segment probability value and is calculated from the frame-based posteriors 
P (ck\x j) (for a detailed explanation on why this factor is necessary see Chapter 8). 
In a more general form of Eq. (3.3) the geometric duration model is replaced by 
a gamma distribution and the three factors are combined by raising to a power and 
multiplication. The other components of the decoding process, that is g2 (Equation 
(3.2)) and combination with the language model work exactly the same way as with 
the HMM.

3.3.3 Segmental Models
The family of segmental models [93] recommends modelling phonemes in one step, 
instead of estimating their probabilities by combining frame-based scores. In our frame­
work this means that gi in Eq. (3.1) is replaced by some more sophisticated approxi­
mation

g i ( c k > ) =  p(X i\ck), (3.4)

where X i denotes some specific set of acoustic features that is able to represent the 
whole segment. There are several possibilities available for parametrizing phonetic 
segments as one unit. The most popular approach is to create special models that fit 
parametric curves on the feature trajectories [34; 37; 55; 93], Alternatively, we have 
the option of applying discriminative models. In this case the formula for g1 becomes

gi(ck, <  t , t '  > ) =  P(ck\X i) ■ P (<  t , t '  >  \X i), (3.5)

where P (<  t , t '  >  \X i) denotes the probability that the segment being investigated 
does indeed correspond to a phone. In this dissertation we will focus primarily on this
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latter type of formulation for segmental models. We will see in Chapter 6 that it is 
very straightforward to provide such an X i representation where the segmental model 
outperforms the conventional HMMs in phone classification. The more problematic 
component will be the segmentation probability factor P (<  t , t '  >  \X i) and we will 
propose several alternative methods to estimate its value.

Whichever technology is applied for modelling the segments, in every cases combina­
tion by multiplication will be retained at the level of g2. The independence assumption 
between the segments seems quite reasonable because the presence of all phonemes is 
required for the identity of a word. This makes an AND-like combination logical and 
this is why this combination strategy of HMMs is inherited by the segmental models.

3.4 Sum m ary

This chapter presented a general speech decoding scheme that will serve as a framework 
for implementing all the models studied in the following chapters. Here we explained 
just how they fit the generalized decoding scheme but did not give a detailed derivation 
for them. This will be done in the following chapters. The posterior-based segmental 
model will be introduced and tested in Chapter 6, and the HMM/ANN hybrids will be 
presented in Chapter 8.





C h a p te r 4

S o ftw a re  and D a tabase  Resources

4.1 T he  OASIS System

All the recognition experiments presented in this dissertation were performed using the 
OASIS Speech Laboratory. This software system was developed by our Research Group 
on Artificial Intelligence. The system was designed with the aim of creating a general 
framework that is flexible enough to allow the experimentation with a wide range of 
techniques in speech recognition. In the following we will give a short overview of the 
system.

4.1.1 The Modular Structure and The Script-based User In­
terface

The basic execution units of the OASIS Speech Lab are the so-called objects. Similar 
to the VBScript system of Microsoft, the objects are handled by the component object 
model (other examples are COM, JavaBeans). Most of the objects may contain further 
objects and one can assign names to them for identification. On each object services or 
functions may be defined, and these may depend on other objects given as parameters.

Most of the objects used in the OASIS Speech Lab are so-called modules. The mod­
ules are, practically speaking, the kind of special objects that execute some sub-task of 
the whole signal processing or recognition process. The modules can be interconnected 
to form a processing work-flow graph -  a directed acyclic graph that defines the data 
flow between the modules. The user’s task is to construct a graph from modules and to 
start the processing. Then the system automatically performs the computations while 
any of the modules receive a new data block at its input.

The objects of the OASIS Speech Laboratory can be handled through a script- 
based user interface. Via the Oasis Script Language the user can create the objects, 
construct a graph from them by specifying their input-output relations, and finally start 
the processing chain. We will not give a detailed description here of the keywords of 
the script language and its syntax; rather we will only present an example script at the 
end of the chapter, for the reader to get an impression of how the system works.

23
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4.1.2 Auxiliary Modules
The collective term "auxiliary module” here refers to all those modules that do not 
perform such scientific tasks as signal processing, machine learning or speech decoding. 
Rather, they are there to make the system more user-friendly. The most important from 
this group is the “ DatTraverse” module. It facilitates the batch processing of files 
by scanning the lines of a file list and passing its items to the input of the subsequent 
module one by one. The other group of important auxiliary modules are of those that 
allow the user to graphically display some data. Spectral maps, feature values and 
segmentation boundaries can all be displayed using them. A special display module 
helps visualizing the winning hypothesis of a recognition step.

A third category of important auxiliary modules is of those routines that can read in 
and write out data blocks. In particular, sound files (in Microsoft PCM WAV format) 
can be read in and written out, but there are of course many other types of data that 
can be exported or imported (for example, spectrographic representations may be saved 
in BMP format). An interesting case is when we save train and test feature vectors in 
a text file, so that they can later be processed by machine learning algorithms. The 
system saves these data blocks in the data format common to the C4.5 learner and the 
UCI data repository [84],

A very special input module is the “ M ic ln ”  module that can accept sound data from 
the microphone. It has to be combined with the “VoiceD etect”  module the detects 
speech activity -  but this is now signal processing and leads us to the next group of 
modules.

4.1.3 Signal Processing and Feature Extraction Modules
The OASIS System implements most of the common signal processing algorithms such 
as FFT-based spectrum calculation, linear prediction coding and the extraction of cep- 
stral coefficients. The FFT-based spectrum can be transformed to a logarithmic fre­
quency scale by the simulation of Bark-band frequency filters. From these the conven­
tional MFCC coefficients can also be readily obtained. But the HCopy routine of the 
HTK package [125] can also be called as an external executable, this way guaranteeing 
a front-end processing identical to that of the HTK.

The pre-processing algorithms listed above all result in a series of vectors -  which 
are all 2-dimensional data sets, and hence in the OASIS system they are called “ Maps” . 
The other group of data are of those that are 1-dimensional -  in the system they have 
the collective name “ Feature” . Of course, any component of a ‘map’ can be extracted 
and converted to a ‘feature’ stream (for example the zth cepstral coefficient or the 
energy of the zth spectral band). But such basic features as the short-term energy of 
the signal can also be calculated. Also, several different processing steps can be applied 
to the features like mean and deviance normalization, differentiation in time (i. e. the 
computation of A  coefficients), RASTA filtering, adaptive gain control, and so on.

A special characteristic of the OASIS speech decoders is that they require a list 
of hypothesized segment boundaries -  in short, a segmentation. Segmentations are
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stored in the so-called “ C lusterBound” objects of the sytem. As the simplest type of 
segmentations, we can create a ‘fake’ segmentation of the signal by assuming a possible 
segment boundary at each frame. Using this fake segmentation in the decoder, the 
search space will be the same as that of the conventional frame-based recognizers. But 
we also have the option of constructing sophisticated segmentation algorithms that 
yield a much sparser segmentation -  thus reducing the search space and speeding up 
the decoding process. In addition, as a special case of segmentations, we can read in 
the manually positioned phonetic segment boundary markers of a labelled database. 
This can be useful, for example, when we are interested in evaluating the classification 
abilities of a learning algorithm.

For segment-based recognition every segment has to be represented by the same 
number of features, independent of its duration. This feature set is called the segment- 
based features or acoustic cues. Such “ ACue” objects can be constructed from frame- 
based features by calculating their mean, deviance, cosine transform coefficients and so 
on over the duration of the segment. Another way of creating segment-based features 
is to extract the value of certain frame-based features at special positions such as the 
start, end or middle points of the segment. Last, but not least, the duration of the 
segment is yet another important cue that can be extracted as a segment-based feature.

4.1.4 Evaluators
The task of the "Evaluator” modules of the system is to associate probabilities to a 
given set of a data. In the default case the data is a block of segment-based features, 
and hence the evaluator returns segment-based phone posteriors or class-conditional 
phone likelihoods. It is also possible to operate evaluator modules over a set of frame- 
based features -  but, as the decoders work over segments, in that case an additional 
“ Com bineEvaluator”  module is required to fuse the frame-based probability estimates 
into a segment-based one. Both the segment-based and frame-based evaluators have 
implementations that work with an artificial neural network (ANN), Gaussian mixture 
models (GMM), support vector machines (SVM) and a projection pursuit learner (PPL) 
-  but so far we conducted extensive tests only with the ANN and GMM based evaluators.

Currently there are two special kinds of evaluators in the system that do not work 
with spectral data. One of them is the “ AprioriEvaluator” . As its name suggests, it 
simply returns the a priori probabilities of the phone classes, based on the frequency 
counts of the phone labels in the train set. The other one is the “ D urationEvaluator” 
that models the phone durations using advanced techniques. Their estimates can be 
combined with the estimates of the conventional evaluators using proper “ CombineE­
valuator”  modules.

4.1.5 The Matching Engine
The generalized decoding scheme presented in Chapter 3 is performed by the “ M atch­
ing Engine“ component of the system. The task of the matching engine is to traverse 
all the possible hypotheses (the search space being defined by the segmentation and
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the phone set), evaluate them (the score of a hypothesis being defined by the acoustic 
evaluators, the language model and the aggregation strategy inherent to the engine), 
and to return a ranked list of the best hypotheses. Currently there are three different 
matching engine modules implemented in the system; they differ in the strategy they 
apply for traversing the search space. The ‘Viterbi Engine’ performs a Viterbi-style 
decoding, that is, a time-synchronous or breadth-first search. The ‘Priority Queue En­
gine’ implements stack-decoding that corresponds to a best first-search. The ‘Multiple 
Priority Queue Engine’ is a refined version of the previous one in the sense that it stores 
the hypothesis belonging to different time end points in separate queues.

Although in theory the evaluation of all possible hypotheses guarantees optimal 
performance, in practice the processing time required for this is prohibitively long. 
Hence, for fast execution it is very important to find search space pruning heuristics 
that can throw away unpromising hypotheses without losing the good solutions. In 
Viterbi encoding it can be done by applying the so-called beam search. In the stack 
decoding scheme a natural solution is to limit the size of the stacks and thus allow them 
to discard the least promising partial solutions. These techniques are both implemented 
in OASIS; more details about efficient decoding in OASIS can be found in the articles 
by Gábor Gosztolya who developed the matching engines of the system [39-42],

The result of the recognition is evaluated by comparing it to the transcript belonging 
the sound file in the database. This may be an orthographic or a phonetic transcript, 
depending on whether we perform word or sentence-level recognition, or just phonetic 
decoding. In the case of isolated word recognition the comparison is quite simple and 
can be performed by the “ CompareResult”  module. In the case of recognizing phone 
or word sequences the comparison corresponds to an edit distance calculation. This 
can be executed by the “ C om pareEditD ist”  and the “ CompareSentence” modules 
(for word and phone sequences, respectively).

4.1.6 Language Models
In most recognition tasks we have linguistic restrictions on the possible phone sequences. 
The role of the language model is to provide the decoder with the possible phone 
sequences, along with their corresponding probabilities. In line with the philosophy of 
the OASIS system, the language models are special kinds of evaluators, but because of 
their complexity and the conventional separation of the acoustic and language models 
we discuss them in this separate subsection.

Essentially, we can group the language models into three main categories. In the 
simplest case we are dealing with an isolated word recognition task. In that case 
it is sufficient to construct a pronunciation dictionary that simply lists the possible 
pronunciation(s) of each word. This simple form of language models is implemented 
by the “ D ictionary”  module of the OASIS system. For efficient storing and decoding, 
the dictionary is stored in a tree-like compressed form.

Another group of language models are the statistical ones. From these the so- 
called N-grams [58] are the most popular in speech recognition. These estimate the
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probability of a word or phone based on its ‘history’ , that is the previous N  —  1 words 
or phones. The OASIS system is capable of supporting the usage of both word and 
phone N-grams. They are implemented via the “ BLanguage” module of OASIS.

In the most difficult case the language model is formal (grammar-based), or a com­
bination of formal and probabilistic techniques. In Hungarian the creation of such a 
language model raises special problems because of the agglutinative nature of the lan­
guage. The “S im pleR TN ” module of the OASIS system contains an implementation 
of a complex language model that combines context-free grammars and finite state 
systems to solve these problems. We intended to keep the structure of this module 
as similar to the language description techniques of other recognizers as possible. So, 
when designing this sophisticated language model we initially followed the interface of 
the Microsoft Speech API. It provides an XML description scheme for the definition 
of context-free grammars, the words themselves being the terminals of the language. 
However, in Hungarian listing all the agglutinated forms of a word stem is intractable. 
As it happens, Hungarian morphology can be well modelled by finite state systems [32], 
Moreover, we observed that the agglutinated forms of a stem can be stored in a much 
smaller space with transducers than with a traditional compression algorithm. This led 
us to extend the SAPI description so that transducers could be embedded in the place 
of terminals. This results in a context-free grammar with its terminals being the words 
recognized by the transducer. Further compression can be achieved by applying special 
automaton compression algorithms which create the smallest possible transducer that 
models the same language [68], Additional savings in storage are possible by storing 
the resulting transducer in a special data structure [71].

As regards the technical details, the implementation of the storage and traversal 
of the transducers was relatively straightforward. Managing the context-free grammar, 
however, required the implementation of a recursive transition network that was built 
on a stack automaton. We also had to store the actual values of the stack, which 
required special technical solutions.

The SAPI handles probabilities by allowing the user to associate weights with the 
right hand side alternatives of a rule. The transducers embedded in our extended 
scheme also allow the weighting of the transitions. So, by combining the two levels, 
the system is able to associate a probability to any phone sequence.

Independent of the type of modelling, the interface of the language models is ad­
justed to suit the requirements of the decoder modules. During the extension of a 
hypothesis the decoders ask for the possible extensions of a phone sequence, so the 
task of the language model is to return all the possible subsequent phones of a prefix. 
Based on this, the interface of the language models consists of two functions, together 
making it possible to iteratively traverse all the phone sequences of the model. These 
functions are:

E n te r: Returns the first possible extension of a prefix, along with its probability 
(or returns a null pointer if there is no extension).

N e x t: Return the next possible extension of the same prefix, along with its proba­
bility (or returns a null pointer if there are no more extensions).
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4.1.7 An Example Script

//this line is needed for displaying the results in a graphical window 
sys "w in  =  new W in d o w ()";
mod { //listing the elements of the work flow graph
//a boolean variable controlling when we are going to train or test
tra in  =  0;
//reading the phone symbol table from a file
ph =  new S im pleP honem es(root.m nt.data .’phonemes.gr’ );
//loading the pronunciation dictionary
diet =  new D ic tio n a ry (ro o t.m n t.d a ta .’d ic t . tx t ’ , ph);
//this module goes through the elements of the file list one by one 
d t =  new D atT rave rse(roo t.m n t.’f i ie iis t.tx t ’ );
//reading the wave file obtained from the DatTraverse module 
w fi =  new W a vF ile ln (d t);
//the following modules calculate the MFCC coefficients along with
//their ‘delta5 and ‘delta-delta5 values; the processing steps are:
//preemphasis - Fourier spectrum - mel filter bank energy estimation -
//cosine transform - delta and delta-delta coefficient calculation
w fp =  new PreEm pSB(wfi, 0.97);
sp =  new S pectrum (w fp, 400, 160, 512, 1);
fbb =  new F ilte rB ankB A (sp, 26);
mfee =  new M FC C B A (fbb, 12, 22, 1);
d e l =  new D e ltaM apB A (m fcc);
de2 =  new D e lta M a p B A (d e l);
//collecting the coefficients into the feature vector fe[0..38] 
fo r i:0..12 fe [i] =  new FBand(m fcc, [i]); 
fo r i:0..12 fe [i+ 1 3 ] =  new F B a n d (de l, [i]); 
fo r i:0..12 fe [i+ 2 6 ] =  new FBand(de2, [i]);
//extraction of segment-based acoustic cues; here they are simply the 
//feature averages over the segment parts divided in a 3-7-3 ratio 
fo r i:0..11 a [i] =  new AC M ean(fe [i], 0.0, 0.3); 
fo r i:0..11 b [i] =  new AC M ean(fe [i], 0.3, 0.7); 
fo r i:0..11 c[i] =  new AC M ean(fe [i], 0.7, 1.0);
//a further cue will be the segment duration 
acd =  new A C D urationQ ;
//reading in the annotation file belonging to the wave file; it 
//contains the orthographic transcript and may also contain manual 
//segmentation and labelling info; the former is required for testing; 
//the latter are required for training 
d f =  new D atF ile (d t, sp, ph);
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if(n o t tra in ) {  //a block for testing the recognizer
//fake clustering by placing a boundary marker at every 2nd frame
cfall =  new FakeCIusters(2, sp);
//loading the parameters of the ANN-based Evaluator and specifying 
//the segmental features as its input
anne =  new A N N E va Iua to r("a nn .w ts", 1, a[0..11], b [0..11], c [0 ..11], acd); 
//the evaluator results are cached in order to avoid processing 
//the same segment twice 
canne =  new EvaICache2(anne);
//recognition using the Multiple Priority Queue Engine; its input 
//modules are the evaluator, the segmentation, and the dictionary 
//(along with the phonetic symbol table); the segments are 
//restricted to be at least 3 frames and at most 200 ms long;
//the size of the stacks is set to 150
te  =  new M PQEngine(canne, 0, cfall, diet, ph, 200, 0, 3, 150);
//the resulting word is compared with the orthographic transcript 
//given in the annotation file; the results are collected in cr 
cr =  new Com pareResuIt(te, d f) ;
//a block that displays the spectrogram, the manual segmentation 
//markers and the segment boundaries of the winning hypothesis 
md =  new M apDisplay(sp, parent.w in, "S P ", 1, 50, 0, 32767); 
cbd =  new C IusterBoundDispIay(df, parent.w in, "C B ") ; 
cbd =  new HypothesisD isplay(te, cfall, parent.w in, "H Y P ") ;
//building the graph of the modules and starting processing
bu ild ();
s ta rtQ ;
//after processing all the files, this module displays the 
//recognition statistics collected by CompareResult 
? cr;

}
i f ( t r a in ) { / /  a block that extracts training data from the files 
//this module goes through all the segments given by the manual 
//segmentation, labels them according to the labels given in df, 
//and extracts the segmental features from them; the strategy of 
//how to create anti-phone examples is specified by the code "162"; 
//the data extracted is then saved by StringFileOut 
m kt =  new M K T ra in (d f, "1 6 2 ", ph, a[0..11], b [0 ..11], c[0..11], acd); 
sfo =  new S trin g F ile O u t(m kt, " tra in d a ta .d a ta ");
//building the graph of the modules and starting processing
bu ild ();
s ta rtQ ;

}}
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4.2 Speech Databases Used in th is  D isserta tion

4.2.1 The OASIS-Numbers Database
The OASIS-Numbers database consists of spoken Hungarian numbers. It was collected 
at the Research Group on Artificial Intelligence of the Hungarian Academy of Sciences 
within the framework of the SZT-IS-10 national grant. Thanks to the governmental 
support, the database is freely accessible to everyone. The recordings of the corpus are 
of reasonably good quality, having been recorded with several types of microphones at 
a sampling rate of 22050 Hz in 16-bit quality. The speakers of the database are mostly 
university students -  62 males and 49 females.

The utterances recorded can be grouped into two main categories. One of them 
contains the so-called base words. These correspond to 26 words that are selected so 
that from them all the Hungarian numbers between 0 and 1,000,000 can be constructed. 
All the base word recordings of the corpus are manually segmented and labelled at the 
phone level. Altogether 28 different phonemic labels occur in these transcripts.

The other group of recordings contain randomly chosen numbers between 0 and 
1,000,000; these files are intended to be used for testing.

In the selection of the the train and test utterances we followed the recommenda­
tion of the database documentation. Thus, 2185 base word recordings were used for 
training and 1247 random utterances for testing purposes, respectively. For the test 
utterances we applied the pronunciation dictionaries given with the database. The pho­
netic transcripts for the compound numbers were simply generated by concatenating 
the transcripts of the proper base words.

4.2.2 The M TBA Hungarian Telephone Speech Database
The MTBA Hungarian Telephone Speech Database is the result of an IKTA project 
carried out in 2001-2003 by the Department of Informatics, University of Szeged, and 
the Department of Telecommunications and Media Informatics, Technical University of
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Budapest. The MTBA Hungarian Telephone Speech Database is the first Hungarian 
speech corpus that is publicly available and has a reasonably large size. Besides several 
groups of recordings that contain isolated words (numbers, company names, city names, 
etc.), the database contains 6000 sentences recorded from 500 speakers (12 sentences 
from each). These sentences are relatively long (40-50 phones per sentence) and were 
selected so that their phonetic transcripts contains evey possible phone connection that 
occurs in Hungarian. Recordings were made via both mobile and line phones, and 
the phone calls were organized so that the recordings covered the whole area of the 
country. The speakers were chosen so that their distribution corresponded to the age 
and gender distribution of the Hungarian population. All the sentences were manually 
segmented and labelled at the phone level. A set of 58 phonetic symbols was used for 
this puprose, but after fusing certain rarely occurring allophones, we worked with only 
52 phone classes in the experiments.

For the selection of training and test utterances, we first removed those sentences 
from the database that contained significant noise and/or half-cut phones (denoted 
by [spk] and [cut] symbols in the phonetic transcript). From the remaining sentences 
1367 were randomly chosen for training purposes (containing 68333 phone instances). 
For phone recognition tests we used another set of 687 sentences (containing 34532 
phone instances). The word recognition results reported in the dissertation are isolated 
word recognition tests performed on another block of the database that contained city 
names. All the 500 city names (each pronounced by a different caller) were different. Of 
the 500 recordings only 431 were employed in the tests as the rest contained significant 
non-stationary noise or were misread by the caller. The language model employed in the 
word recognition tests was a simple pronunciation dictionary (created by an automatic 
phonetic transcription routine) that contained one phonetic transcript for each word 
and assumed that each of them had equal priors.

In certain experiments reported in this dissertation several parameters will be fine- 
tuned on the city name recordings. In these cases further testing is required on an 
independent data block. For this purpose we chose an additional group of 438 recordings 
from the database, again containing city names, but this time over a smaller vocabulary.

More details about the construction and contents of the MTBA database can be 
found in [120] (in Hungarian).

4.2.3 The BeMe-Children Database
The BeMe-Children database was collected as part of an IKTA project carried out in 
2002-2004 by the Department of Informatics, University of Szeged, the Gyula Juhász 
Teacher Training School of the University of Szeged and the School for the Hearing 
Impaired in Kaposvár. The goal of the project was the construction of the "SpeechMas­
ter” software package for speech therapy and teaching reading, and the BeMe-Children 
corpus was originally recorded for the purpose of training and testing the software. 
The corpus contains recordings from 500 children from the lower classes of elementary 
schools and from a further 200 pupils with various levels of hearing impairment. In the
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experiments reported in this dissertation just the former block of data was used, so we 
give details only on these recordings.

The database contains samples of 100 words from each of the 500 children. From 
these 40 words were the same in every case and the remaining 60 words varied from 
speaker to speaker. Only the latter recordings were made use of in the experiments. To 
construct this data set the most frequent 2000 words were collected from 14 teaching 
reading books that are currently used in elementary schools. These 2000 words were 
distributed in the 500*60 recordings according to their frequency in the books, that is 
the more frequent words occur in more recordings. The recordings were collected in 14 
schools all around the country from children of age 6-7, from 250 boys and 250 girls. 
The database is phonetically segmented and labelled.

For the experiments presented in this dissertation 4000/920 utterances were se­
lected for training/testing purposes, respectively. For language modelling the phonetic 
transcripts of the 2000 words were created automatically. Owing to the high variability 
in the children’s voices and the recording conditions, and because of the many similar­
sounding words in the dictionary, this recognition task appeared to be quite difficult.

More details about the construction and contents of the BeMe-Children database 
can be found in [103], The "SpeechMaster” software is described in [4] (both papers 
are in Hungarian).
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R elated W o rk

In this chapter we give a brief survey of those speech recognition research efforts that 
deviate from the mainstream and have something in common with our work. These 
will be grouped into three main categories. The first section will overview the segment- 
based solutions. The second one is theoretically dedicated to posterior-based models in 
general, but as -  apart from very few exceptions1 -  in practice these apply artificial neu­
ral nets (ANNs) as posterior estimators, the section will bear the title ‘neural networks 
for speech recognition’. Finally, the third section seeks to collect those examples where 
some combination rule different from the naive Bayes rule is applied to fuse certain 
speech-related knowledge sources.

5.1 Segm ent-Based Speech R ecognition

The concept of segment-based modelling seems to have arisen around 1989-1993 in 
several different research groups and under various guises [2; 24; 33; 55; 80], Usually 
the false conditional independence assumption of HMMs and their limitations in mod­
elling segmental features -  especially duration -  are mentioned as the main motivations 
for developing these models [3][93], The generative and the posterior-based models 
appeared practically in parallel, but since then there has been more effort devoted 
to the generative ones. This is because their connection with HMMs is much more 
obvious, and because researchers were much more familiar with generative modelling 
techniques. The family of posterior-based models in practice always corresponds to 
ANN-based models. In the early days the connection between neural nets and posterior 
probabilities was not fully understood, hence the early papers simply talk about a de­
coding paradigm that combines neural nets and dynamic programming [121]. When it 
became widely known that ANNs can estimate posterior probabilities, researchers’ dis­
like of neural nets quickly ceased, and soon many papers appeared that combined ANNs 
-  now as probability estimators -  with the conventional probabilistic HMM framework. 
A review of ANNs in speech recognition will be given in the next section, and in this 
section we focus only on those models that apply them in a segment-based manner.

1For example, many researchers have recently tried to  use Support Vector Machines for this purpose.
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The solutions belonging to the family of generative models seek to describe whole 
feature trajectories along a segment using parametric or nonparametric methods. The 
Segmental Hidden Markov Model (SHMM) of Gales and Young extends the HMM tech­
nology with an additional conditional dependency on the mean of the segment [33], 
Holmes and Russel introduce the probabilistic trajectory segmental HMM (PTSHMM) 
that describes a segment via a stochastic process whose mean varies as a function of 
time according to the parameters of the trajectory. This model makes a distinction be­
tween two types of variability: the extra-segmental variation in the underlying trajectory 
and the intra-segmental variation of the observations around the trajectory [55], The 
parametric trajectory model of Gish and Ng explicitly models the dynamics in a variable 
duration speech segment by using a time varying trajectory model of the features in the 
segment. The segment is represented by the trajectories (characterized by a constant, 
linear or quadratic curve), the residual error covariance around the trajectories, and the 
number of frames in the segment [34], This model was later refined by Yun and Oh 

[126].

The basic idea behind the Mixture Stochastic Trajectory Model (MSTM) of Gong 
et al. is that speech can be considered as a point that moves in the acoustic observation 
parameter space as the articulatory system changes. A sequence of parameter vectors 
corresponding to the subsequent positions of this moving point is called the trajectory 
of speech. The model assumes that a trajectory can be represented by a fixed number 
of points; to find these points, a linear sampling of the observation vectors is used [37],

Another valuable source for generative segmental models is the Ph.D. dissertation 
of Digalakis. He employs the collective term ‘Stochastic Segment Model (SSM)’ for 
the class of models he introduces, and then defines and investigates several special 
cases that are based on the theory of dynamical systems [24], He is a co-author of 
the key paper by Ostendorf et al. that provides a nice, unified theoretical view for all 
the generative segment-based models. Moreover, this paper gives a summary of the 
possible implementation techniques, such as the constrained mean trajectory models, 
the conditionally Gaussian models, the dynamical system models, the nonlinear models 
and the segment-level mixture models. The posterior-based models are just mentioned, 
along with the comment that "since the area of posterior distribution modelling has 
received less attention than models based on class-conditional distributions, many of 
the questions of interest are not yet fully answered, and problems raised here will 
undoubtedly be addressed with further work" [93],

Before turning our attention to the posterior-based models, there is one more gen­
erative segmental system that we should mention: the SUMMIT recognizer of MIT. 
Although it employs generative phone models, it has many things in common with 
our approach. First, instead of applying the elaborated trajectory modelling techniques 
mentioned above, it uses a very simple downsampling strategy to represent the variable- 
length segments with a fixed number of features. The basic feature set obtained this 
way is practically the same as the one we are going to use in Chapter 6; however, 
both their team and ours extend this features set with several additional features that 
are more or less distinct. Second, they realize the necessity of normalizing the various
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segmentation paths during evaluation, and introduce the concept of the ‘anti-phone’ 
to handle this problem. Although we have admittedly borrowed this term from their 
work, we model and employ the anti-phones in a fundamentally different way, as we 
use a posterior-based decomposition and modelling scheme, while their framework is a 
generative one. They also experimented with pre-segmentation to speed up the recog­
nition process -  trying both signal processing and machine learning strategies -  but 
their methods are totally different from the one we propose in Chapter 6. The details 
of the SUMMIT system were essentially published just in conference papers, masters 
theses and Ph.D. dissertations, by quite recently they wrote a thorough review paper 
in Computer Speech and Language [36],

The ANN-based segmental systems usually apply the very simple downsampling 
strategy (sometimes along with smoothing and a linear transform) to represent the 
segments with a fixed-length feature vector. As we shall see from our own experiments, 
even the very basic energy features are enough to produce a classification result similar 
to those of the HMM’s, and with additional well-chosen segment-based features they 
can be easily outperformed. The really critical issue is how these models normalize the 
segmentation paths examined during decoding or, in other terms, how they approximate 
the segmentation probability component. The simplest solution for this is to run a 
conventional frame-based recognizer, take its N-best list of hypotheses, and evaluate 
the segmental models only over this, as a second pass. The advantage of this is that 
the hypotheses retained in the N-best list may be considered to have a similarly high 
segmentation probability. This way this component can be ignored (considered to have 
the same value) during the ANN-based evaluation of a segmentation. This strategy 
is followed in the BBN segmental neural network (SNN) of Zavaliagkos et al. [2], 
It is interesting to note that in a later version of the system they still use the N - 
best paradigm, but they extend the training of the net by providing it with negative 
examples encountered during recognition -  this can be considered as an precursor of 
our anti-phone concept, but yet without a full mathematical formalism [3],

A rescoring of The N-best output of an HMM recognizer is applied in Kimball’s 
Ph.D. dissertation as well. He investigates generative (the segment-mixture model, 
SMM) and posterior-based models too; in his terminology the latter framework is called 
the "classification-in recognition” (CIR) scheme. In his CIR experiments he estimates the 
posteriors with the help of his generative SMM models. To estimate the segmentation 
probabilities he combines frame-based boundary probability estimates [69], A similar 
strategy is applied in the ANN-based Stochastic Explicit Segment Model (SESM) of 
Zue et al. They use a special net to estimate boundary probabilities on a frame-by­
frame basis, and then the segmentation probability is obtained as the product of the 
boundary probabilities [80],

Finally, we should mention the work of Verhasselt et al., which is the most recent 
one on posterior-based models and is the most similar to ours. In their earlier papers 
they simply call their model a "Dynamic Programming /  Multi-layer Perceptron System” 
[121], but in later versions a precise mathematical formulation is given -  with a posterior 
probability decomposition that is the same as the one we are going to use in Chapter
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6. Their research results are summarized in the Speech Communication paper titled 
"Assessing the importance of the segmentation probability in segment-based speech 
recognition” [119]. As the title suggests, besides describing their models, the main 
message of this article is that the segmentation probability factor has an important 
role in speech decoding. This exactly coincides with our findings in Chapter 6, where 
we will conclude that the estimation of this component is much more difficult than 
that of the phone posteriors, and that the poor estimation of this term is responsible 
for our models not being able to outperform the HMM. To estimate the segmentation 
probability factor Verhasselt et al. use both a frame-based and a segment-based ANN; 
the former one estimates segment boundary probabilities at each frame, while the latter 
one combines these and further segment-based features into a segment-based estimate. 
Hence, it is similar to our anti-phone model, but is more complicated. It is as if our 
anti-phone model (see Section 6.5.1) contained the output of the pre-segmentation 
network (see Section 6.9) among its input features.

5.2 Neural N etworks fo r Speech R ecognition

In parallel with their rise in popularity in other fields of machine learning in the mid­
eighties, artificial neural networks were tested for speech recognition as well. These 
early attempts applied the nets to classify short-time acoustic-phonetic units such as 
phones or short words [81]. It was soon realized that although their discriminative and 
context-modelling abilities are very good, ANNs are poor in handling time-sequences. 
Several modifications were suggested to adjust the ANN structure to the time-varying 
nature of speech; the most notable ones being Time-Delay Neural Networks (TDNN) 
[122] and Recurrent Neural Nets (RNN) [99], Though with the latter top-performance 
results were reported, nowadays these technologies do not seem to be pursued any 
longer. The other group of solutions that addresses the problem of managing time 
sequences with ANNs proved more successful and more lasting. These proposed that 
-  rather than modifying the neural network itself -  they should be combined with 
another technique that can handle information integration along the time axis. In the 
early papers dynamic programming is used as a framework to deal with this -  in fact, 
in certain cases the dynamic programming algorithm was directly incorporated into 
the ANN itself [44], But dynamic programming was soon abandoned in favor of the 
hidden Markov scheme, as the latter offers a sound statistical formulation. Of course, 
this required the realization and promulgation of the fact that ANNs can function as 
posterior probability estimators [12]. Remarkably quickly after this, the first algorithm 
appeared for training HMM/ANN complexes globally at the utterance level [5],

Although a number of different ways were suggested for combining ANNs and 
HMMs, the ‘hybrid HM M /ANN’ scheme of Bourlard and Morgan [14] became the 
most wide-spread from among these. In this model the net is applied to estimate the 
HMM state posterior probabilities. This approach forms the most fundamental class 
of hybrid models, which had a powerful influence on a number of other approaches. 
The popularity of these systems is probably due to the fact that they can be very easily
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interpreted as HMMs that underwent a minor modification: the Gaussian mixture based 
observation emission likelihood estimates were replaced with ANN-based state poste­
rior estimates. These state posterior estimates, after a division by the state priors, can 
be considered as (scaled) observation emission likelihood estimates, and this way the 
hybrid can be traced back to the conventional HMM. This is the interpretation we are 
going to use in Chapter 8, where it will be explained in more detail and in a more formal 
way. However, there is another possible view of how these models work: Hennebert 
et al. showed that the hybrid produces an estimate of the global (i.e. utterance-level) 
posteriors, and they also provided a global forward-backward training algorithm for the 
model [51], In this dissertation the issue of global optimization is not pursued at all; the 
interested reader should check [65], where a brief comparison of hybrid architectures 
relying on global discriminative training can be found.

A further interesting combination of neural nets and HMMs is when the net is 
used as a nonlinear feature transformation algorithm. An early example of this is the 
work of Bengio et al. [6], More recently, Ellis at al. apply such an approach, called 
by them the ‘tandem’ scheme. Here the output of the ANN -  possibly after some 
further transformation - is used as the input feature vector of a conventional GMM- 
based recognizer. This way the recognizer itself does not have to be modified at all, 
hence the advantages of the ANN-based feature set over a conventional one can be 
demonstrated much more easily and clearly [54],

Another case of neural nets applied in the preprocessing step is when they are 
used as vector quantizers in combination with a discrete HMM. This class of hybrids 
is characterized by distinct training steps for the ANN and the HMM. The lack of a 
combined, global optimization scheme is compensated for by the reduced complexity 
of the overall machine -  mainly due to the use of discrete HMMs versus continuous 
ones. An example of this type of hybrid can be found in [97], where a feedforward net is 
trained to perform vector quantization using an unsupervised training algorithm based 
on the maximum mutual information criterion.

Lastly, we mention that some very good survey papers [116], book chapters [16][115] 
and books [7][14] are available on the topic of applying neural nets to speech recogni­
tion. We recommend these for those readers more interested in this.

5.3 Knowledge Source C om bina tion  Schemes in 

Speech R ecognition

Although the conditional independence assumption of HMMs has been criticized almost 
since their introduction, papers that experiment with other knowledge source combina­
tion schemes are surprisingly hard to find. The most notable exceptions can be found 
in the so-called multi-stream recognizers; but before discussing these, we will briefly 
mention some simpler constructs. One such example is in the work of Saul et al., who 
propose a two-level model along with a corresponding training algorithm. The model 
performs an AND-like combination at one level and an OR-like combination at the
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other level, resulting in a noise-robust integration scheme. Unfortunately, it is applied 
for the recognition of just one phonetic feature, so it would require a further extension 
for the classification or recognition of phones [100],

The reader probably gets a similar ‘unfinished’ feeling with the ‘elitist’ approach of 
Chang et al. Here an ANN-based classifier is used, and the term ‘elitist’ in their paper 
refers to the very simple concept that the frames where the net’s self-confidence is low 
are simply dropped. But the technique is tested only for the recognition of certain gross 
phonetic categories, so it is not obvious whether the method could yield improvements 
in phone or word recognition results [21].

A concept which is more decoding-oriented is the one by Ming et al., who introduce 
the probabilistic union model. As the name suggest, this model replaces the conjunc­
tive (AND-like) combination of the information sources with a scheme that contains 
disjunctive (OR-like) steps as well. The model is tested both for the combination of 
frames [85] and for the combination of frequency bands [61]. Recently, an efficient 
computation algorithm was proposed for this model by Chan [19].

Fuzzy HMMs and graphical models are two quite different approaches to the gen­
eralization of hidden Markov models. The first replaces probability measures by fuzzy 
measures that have weaker constraints; the resulting model is more flexible and does not 
require the statistical independence assumption of the HMM [86], A further example 
of using fuzzy integration techniques for information aggregation in speech recognition 
can be found in [20], Here the fuzzy operator is applied to evaluate the proximity of 
syllables, and the training of the operator is performed by a gradient-based algorithm. 
Graphical models represent the dependence relations by a graph-like structure, and the 
HMM can be considered as a special case of them. Various further special cases -  
which are all more general than HMMs -  such as the dynamic Bayesian multinets and 
directed graphical models were tested for speech recognition tasks by Bilmes [9], Both 
the fuzzy operator-based systems and the graphical model-based ones require quite a 
lot of involved mathematics, and only time will tell whether these are worthwhile.

The averaging combination rule employed in Chapter 8 of this dissertation is taken 
from the field of multiple classifier systems. There are other combination techniques 
preferred by this community, and these sometimes appear in the speech recognition 
literature too. Such examples are the articles by Kirchhoff and Bilmes [10][72], These 
techniques are mostly quite simple and empirical, and there seems to be an aversion 
to these in electrical engineers who favor those methods with a sound mathematical 
basis. However, in [10] it is pointed out that the simple combination rules like the 
sum and product rule are just special cases of the directed graphical models. This 
yields a formal background for these models, and -  besides allowing the introduction 
of novel combination rules -  hopefully also makes them more attractive for the speech 
community.

The most important sub-field of speech recognition where the need for combination 
methods arises is that of multi-stream systems. This main motivation behind these 
systems is the general principle of statistics that if we have several different ways of 
obtaining an estimate of a value, then usually a better estimate can be obtained by
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combining these estimates. In speech recognition combination can be applied at several 
stages. One may combine various feature streams, the probability estimates gotten from 
these, or even the hypotheses obtained from different recognizers [27], The combination 
of hypotheses can occur at the level of frames, phones, words or whole utterances. As 
for the merging technique, quite a few formulations are suggested and tested in the 
literature. The simplest of these coincide with those known from multiple classifier 
systems like the product or sum rules. Another popular combination scheme is that of 
weighted linear (sometimes log-linear) combination, where the weights are proportional 
to some kind of reliability measure. Yet another possibility is to merge the experts via 
an additional machine learning algorithm [105], The multi-stream systems normally use 
neural nets, since these yield posterior estimates and these are easier to combine than 
the conventional GMM-based likelihoods.

A special case of the multi-stream approach is when spectral sub-bands play the role 
of the individual information streams. This arrangement is motivated by psychoacoustic 
evidence which shows that humans process the frequency bands quite independently of 
each other [1], Thus, researchers of the multi-band paradigm train individual classifiers 
(almost always neural nets) on the frequency bands, and then merge the score of these 
for a final hypothesis. The optimal strategy for this merging has not yet been found, 
so quite a few possible ways are pursued in the papers. The goal is, of course, to find 
a scheme that can pick out reliable bands, or at least de-emphasize the contribution 
of the unreliable ones. A measure of reliability can be obtained by assessing the local 
data mismatch in the sub-bands [90], To merge the scores of the classifiers a weighted 
linear combination (either in the linear or in the logarithmic domain) is applied in 
most cases [90], Obviously, better results are obtained when the weights have been 
dynamically adapted to the properties of the underlying signal [90], Alternatively, an 
additional neural net may be used for the fusion of the experts [105], Entropy or mutual 
information based combination schemes have also been suggested [92], An exhaustive 
solution is the ‘full combination’ method of Bourlard et al. This scheme examines 
every possible subset of the frequency bands, assuming that there is one good such 
subset, and handles this subset as a latent variable in the probability decomposition 
[17], Although this is mathematically appealing, in practice it has the problem that the 
number of possible subsets increases exponentially with the number of bands. Finally, 
we should mention the union model again [61] -  as it can be applied in the context 
of multi-band combination as well. For the reader interested in the technical details 
of these methods, we recommend the articles by Bourlard [17], Morris [90] and Hagen 
[45], and the papers of the "Multi-Stream ASR” Session of Eurospeech’99 as a starting 
point.





C h a p te r 6

A  P oste rio r-B ased  S egm enta l 

Speech R e co g n itio n  M od e l

"It is easier to write ten volumes on theoretical 

principles than to put one into practice."
Leo Tolstoy

As was summarized in Chapter 2, the HMM technology constructs its utterance- 
level likelihood scores from frame-based likelihood estimates, and these local estimates 
are obtained via generative modelling techniques. We also introduced arguments on 
why the signal should be processed in larger units and that posterior-based modelling 
techniques should be preferred instead. In this chapter we present an alternative mod­
elling scheme where the utterance-1 eve I scores are built directly from segmental posterior 
estimates. Building this alternative model will require the derivation of a probability 
decomposition that is different from that in Chapter 2. As we shall see, the resulting 
model has two main components, the segment-based phone classifier and a segmenta­
tion probability component. The proposed segment-based model will be tested on two 
different databases. It will turn out that the phone classifier component has several 
technical advantages over the conventional HMM model and that in practice it also 
significantly outperforms it. Unfortunately, the segmentation probability component 
proves much more problematic, which is why the second half of the chapter deals with 
various methods of how this component can be parametrized and estimated.

6.1 A  D ecom position  in to  Segm ent-Based Poste­

rior P robab ilities

As in previous chapters, in the following the acoustic observation vector will be denoted 
by X  and the possible transcriptions by W. We are looking for the kind of decompo­
sition of P (W \X ) that is built from segment-based posterior probabilities. One way 
of obtaining such a decomposition is to start from the conventional derivation. That

41
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is, we first separate the language model and acoustic model components by applying 
Bayes’ rule. With this step the optimal solution W * can be written as

W  * =  argma x P  (W  ¡X )
W

p (X  ¡W )P  (W )
argmax-------- — -------

w p (X )
(6.1)

Now the latent variable S is introduced, denoting an element from the space of 
possible segmentations. This way we obtain the approximation

p (X ¡W ) =  ^2 p(X , S |W ) =  ^2 p ( X |S, W )P (S ¡W ) & m axp ( X ¡S, W )P (S ¡W ). 
s s

( 6.2)

In the next step both components are decomposed into the product of segment-level 
values, based on the naive Bayes assumption:

p (X ¡S ,W ) & p (X ^S i,u i) (6.3)
i

and

P (S ¡W ) P(S i ¡Ui ), (6.4)
i

where we suppose that Si  denotes the zth segment of S, X i  denotes the corresponding 
portion of acoustic data X , and that the possible transcriptions W  are given as a series 
of phonemic labels W  =  (u i,u 2, ...,u N ).

Note that so far we have followed the conventional derivation described in Chapter 
2. This is the point where we now deviate, since we do not intend to decompose the 
segments further. Moreover, we want to see the segmental posteriors in our description, 
rather than the class-conditionals. This is why we apply Bayes’ rule to p X ^ S i, ,^ ) ,  
and get the following:

p X ^ S ip i^ P  (s m
P (S i,u i\X i)p (X i)

P  (Si ,u i)
p  ( s u  =

P  ( S iP M X X X i) 

P  (S i[u i)P  (ui)
P  ( s u

p  ( s ^ u ^ p X )  

P  (ui)
(6.5)

p (X ), the prior probability of the observation vector X  appears in the denominator 
of Eq. (6.1). Assuming that p (X ) & n i p (X i ), p (X j)  cancels out from the formula. 
A similar assumption cannot be made about P (W ) and P (u )  because the language 
model is usually not simply a product of phonetic unit probabilities, but operates with 
word probabilities. In the next section we provide an alternative derivation that does 
not contain the division by the phone priors; moreover, we will see in Chapter 8 that 
the necessity of this division is controversial in HMM/ANN hybrids, too. So in practice 
it seems to be the best solution to test the recognizers both with and without this 
division.
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Figure 6.1: An illustration of the relation of observation vectors (solid boxes), phonetic 
segments (between dotted lines) and anti-phone segments (dotted brackets on top)

After the decomposition and the reductions outlined above, what is left to be 
evaluated for each segment is P (S i,U i\X i). It can be modelled directly or can be 
decomposed like so

P  (Si, U i\Xi) ^  P  (Si \X i )P  (u i\X i) (6.6)

Let us now discuss how these component might be interpreted. Given a segment X i 
of the observation vectors, the P (u i \X i ) component has to estimate the probability that 
the segment belongs to phone class c1,. . . ,ck . Hence, this components is practically 
responsible for the identification of the segment, which is why we will refer to it as the 
"phone classifier” module.

What is the role of P(Si \X i )7 A randomly chosen signal segment does not nec­
essarily correspond to a phone, but might be a subsegment of it, or might cover a 
longer portion of the signal (see Fig. 6.1 for examples). We will refer to these non­
phonetic signal segments as "anti-phone” segments, and the component responsible 
for distinguishing these segments from real phonetic ones as the "anti-phone” model 
of the system1. Note that the phone classifier component is not capable of handling 
the anti-phone segments, as it assumes that its input belongs to one of the phone 
classes, and its posterior probability estimates over these classes add up to 1. This 
is why the estimate P(Si \X i ) is also required. Alternatively, one could use only one 
segment-based estimator which is, besides the phone classes, also suitable to report 
the (K  +  1)th class of the anti-phones. Such an implementation would correspond to 
modelling P(Si ,u i \X i ) directly, rather than in the decomposed form given in Eq. (6.6).

6.2 A  D ire c t D ecom position

The derivation given in the previous section began the decomposition by applying Bayes’ 
rule. This immediately turned the posteriors into class-conditionals, so in the end we 
had to apply it again -  this time on the segmental components -  to convert the class- 
conditionals back into posteriors. Now we give an alternative derivation that avoids this

1This terminology was borrowed from the MIT SUMMIT system. Perhaps it would have been 
better to  call these segments “aphones" rather than "anti-phones".
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step. To achieve this we directly represent the language model L  on the conditioning 
side, so we start from P (W \X ,L ). In the first step the acoustic and language models 
are separated assuming that

P (W \X ,L ) «  P (W \X )P (W \L). (6.7)

Next the latent variable of segmentations S is introduced, which is eventually re­
moved by marginalization. Formally,

P (W \X ) =  Y_l P (W S \X ) =  Y_l P (W \S ,X )P (S \X ) «  max P (W \S ,X )P (S \X ). 
s s

( 6.8)

For a given S, P (W \S ,X ) can be calculated using equation

P (W \X ) P (u i \X ) «  H  P (u i \X i ), (6.9)

where the first equation makes the assumption that the phones are independent (we 
presume that phonetic correlation is modelled by the language model), and the sec­
ond equation assumes that the identity of a particular phone ui depends only on the 
corresponding segment X i of the acoustic data.

The more problematic issue is with the segmentation probability P (S \X ). The 
simplest way to approximate P (S \X ) from the values P(Si \X i ) is

P (S \X ) « n  P (S i\X i), (6-10)
i

but in Section 6.5 more sophisticated estimates will be given for this component.

Note that with this derivation we arrived at the same components P (U i\X i) and 
P(Si \X i ) as in the previous section, but this time their combination formula does not 
contain the division by the phone priors P (u ). In the following we shall provide a very 
detailed analysis on both of these components. But before proceeding with this, we 
mention a possible way of generalizing the decomposition and certain implementation 
questions.

6.3 A  Generalized M odel fo r C om bin ing  th e  K now l­

edge Sources

In Chapter 2 we argued that most of the decomposition steps are based on mathe­
matical considerations and are hard to explain perceptually and sometimes are quite 
counter-intuitive. This might persuade us to regard our components as discriminative 
knowledge sources, and combine them following some more general scheme borrowed 
from expert combination theory. Of course, in practice we cannot use very compli­
cated combination techniques, since the more sources we combine the more complex
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the problem of finding the optimal combination becomes. Fortunately, the problem 
of knowledge source combination has recently become an area of active research, and 
optimization techniques that support discriminative modelling are becoming evermore 
popular in speech recognition [101]. One such possibility is the Discriminative Model 
Combination scheme of Beyerlein [8], which optimizes a combination scheme of the 
form:

P (W \X , L i , L r ) «  max J ]  P (ui , Si \ X) a o P( u i \L i )a i

i

■ ■ ■ P  (Ui\Lr )ar , (6.11)

where -  besides the acoustic information X  -  we have r  knowledge sources L 1, ...,L r 
voting on the symbols ui in the form of posterior probabilities. Combining them is then 
performed by raising the values to a power and multiplying them.

In the following we will apply Eq. (6.11) for the combination of our three com­
ponents -  the language model, the phone classifier and the segmentation probability 
estimator. Note that it is more general than the product combination rule applied 
earlier only in one aspect: it allows one to raise the estimates of the components to 
a power. To find the optimal exponents of Eq. (6.11) we apply a global optimization 
algorithm called SNOBFIT [59],

6.4 T he  Phone C lassifier C om ponent

The task of the phone classifier component is to estimate the segmental posterior 
probabilities P (Ui \X i ). Put another way, it has to associate a posterior probability to 
any given (<  t , t '  > ,c k ) segment-phone pair and so implement the g\ function of the 
general decoding scheme of Chapter 3.

There are several ways of parameterizing phonetic segments as one unit. The most 
popular approach is to create special models that fit parametric curves on the feature 
trajectories [30; 34; 37; 55; 93], Another possibility is to represent the variable-length 
segmental data by a fixed number of segmental features [35][23], What makes this 
latter method attractive is that this way all the standard classification algorithms that 
are able to produce a probabilistic output become applicable to the segmental modelling 
task. Thus, while the segmental trajectory models are usually built on Gaussian curves, 
representation by segmental features allows one to use almost any machine learning 
algorithm. This is why we really prefer this approach. In our studies we reported 
experiments with a broad range of classifier methods, some of them being very new 
and not well known by the speech community [74], Moreover, these classifiers permit 
the application of feature space transformation methods prior to classification. This 
introduces further room for experimentation and improvement in classification accuracy.

In the following subsections we will give a short general overview of all three com­
ponents of segmental posterior modelling: the segmental features, the feature space 
transformation algorithms, and the classifiers. The exact details -  like parameter set­
tings -  will be given in the experiments section for each individual experiment.
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6.4.1 Segmental Features
General-purpose machine learning classifiers assume that each data item is represented 
by the same number of features. However, speech signals are conventionally processed 
at a uniform frame rate, resulting in different amounts of data (frame-based measure­
ment vectors) for segments of different duration. This is why we needed a method to 
convert the frame-based measurements to a segmental feature set that has the same 
number of features, independent of the segment duration. To obtain a basic segmen­
tal feature set, we applied a very simple calculation that was proposed in the MIT 
SUMMIT system [35], but we found similar solutions from other authors as well [23], 
This method takes the frame-level representation of the speech signals and calculates 
the averages of these features over segment thirds (divided in a 1-2-1 ratio). This 
calculation practically corresponds to a non-uniform smoothing, and its advantage is 
that it requires only trifling additional calculations following the computation of the 
frame-based features.

The feature averages over the segment thirds acts only as a basic feature set and 
we introduced several further features to improve the classification results (see Section
6.6.1 for a detailed example of how the step-by-step introduction of these features 
contributes to the overall classification performance). These additional features help not 
only in separating the phone classes but also in discriminating phones from anti-phones. 
We introduced the variances of the frame-based features along the segments as further 
segmental features in the hope of separating anti-phone segments that overlap phonetic 
boundaries. The derivatives of the frame-based features at the segment boundaries were 
introduced as additional segmental features so as to help recognize and reject segments 
with improbable start and end-points.

A special segmental feature is the duration of the phone. We consider it especially 
important for languages like Hungarian where phonetic duration can play a discrimina­
tive role. As our preliminary experiments found duration to be indeed useful, it was 
employed as a segmental feature in all our experiments.

6.4.2 Feature Space Transformations
Feature space transformation algorithms rearrange the input data in a way that hope­
fully reflects its internal structure more clearly and makes the separation of the classes 
easier. These methods may aid classification performance and can also reduce the 
dimensionality of the data. Linear discriminant analysis (LDA), principal component 
analysis (PCA) and independent component analysis (ICA) are the traditional (linear) 
transformation techniques [31][102], Recently the non-linear version of these linear 
transformations have become a popular research topic in statistical learning theory. 
Our team performed experiments applying the so-called "kernel non-linearization idea” 
[117][102] to all of the methods mentioned above and published several papers that 
apply these pioneering techniques to phone classification. However, both the theo­
retical investigation of these methods and their empirical testing was carried out by 
my colleague András Kocsor, so for further details the reader should see his doctoral
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dissertation of his survey paper [77], Apart from one case, the results reported in this 
thesis will all be obtained without applying any feature space transformation. In gen­
eral, we can say that the transformation algorithms could bring about a 10-20% relative 
improvement over the phone classification results reported here.

6.4.3 Classifiers
For classifying the segments, one may use any general-purpose machine learning algo­
rithm that is able to produce a probabilistic (posterior-like) output. It is well-known 
that the outputs of an artificial neural network (ANN), under proper conditions, ap­
proximate the posteriori probabilities of the classes [96], But other machine learning 
methods such as support vector machines (SVM) [117] or decision trees algorithms 
(C4.5, CaRT) [95][18] can be adjusted so that their outputs can be interpreted as class 
posteriors. Another algorithm that we implemented and experimented with is the rel­
atively less-known projection pursuit learner (PPL) [60], In a thorough study [74] we 
compared the algorithms listed above and found AN Ns to be the best choice, taking into 
consideration such aspects as classification performance, reliability, numerical stability, 
training and evaluation time. Thus most of the results reported in this dissertation 
were obtained using artificial neural nets.

In the simplest case the phone classifiers can be trained on a manually segmented 
and labelled corpus. If there is no such corpus available or some part of the training 
data is not segmented, then forced alignment can be applied to approximately segment 
the corpus. This can either be performed by our own -  possibly partially trained -  
model or by a conventional HMM recognizer. Fortunately, all the corpora that we are 
going to experiment with contain a considerable portion of hand-segmented data, so 
we always used just manually segmented training data in the experiments we carried 
out.

6.5 T he  Segm enta tion  P ro b a b ility  C om ponent

As we saw in the previous sections, decomposing P (W \S ,X ) into a series of segmental 
phone probabilities P (u i\X i) and then modelling these units by a segmental classifier 
is quite intuitive and straightforward. But understanding the role of the segmentation 
probability component P (S \X ) and how to get a reasonable estimate for it is less clear. 
A possible practical interpretation is that it corresponds to the aggregation function g2 
of the generalized decoding scheme given in Chapter 3, and so its role is to weight 
the different phone model series and thus normalize the various segmentation paths. 
An alternative, segment-based interpretation is as follows. Let us assume that the 
recognizer works with posterior estimates P (u i \X i ) over segmental units -  just the way 
it was described in the previous section -  and examine the workings of the generalized 
decoding algorithm. We can then see that during recognition the algorithm encounters 
such < t , t '  >  segments that do not correspond to real phones. The phone classifier is 
not automatically able to detect and report these segments. First, it was not trained
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on such segments; second, it has to return phone posteriors that add up to one and 
hence has neither a direct output assigned to ‘outlier’ segments nor any indirect way of 
reporting them. This is why the segmentation probability factor P (S \X ) is required. 
In the usual generative decomposition (see Chapter 2) this component does not arise, 
so the importance of this factor in posterior-based segmental models was realized and 
emphasized only relatively recently [119].

In the following we list several possible ways of modelling P (S \X ). Only the last 
two of these will be pursued further in the experiments, for reasons that are also given 
below.

•  One might try constructing a heuristic ‘aggregation function’ that combines the 
segment-based classifier outputs in some weighted manner. Although this is 
theoretically viable, the resulting function will not guarantee optimal preformance 
and a bad strategy could lead to such typical errors as the preference of short or 
long words.

•  The easiest solution for avoiding the problems associated with P (S \X ) is to run 
a frame-based (e.g. HMM) recognizer, take the N  best paths yielded by it, and 
evaluate only these paths by using the segmental model [127], In this case one 
may assume that the segmentations proposed by the frame-based recognizer all 
have similarly high probabilities, and so the factor P (S \X ) can simply be ignored. 
Another advantage of this approach is that it enables one to combine the scores 
the of the frame-based and the segment-based recognizers. The price of this is, 
of course, increased computational complexity, as two recognition models have 
to be evaluated instead of just one.

•  Alternatively, one may define frame-based scores, the proper combination of which 
can be used to assess the probability P (S \X ) of a segmentation [80], Hence, this 
approach applies frame-based calculations for obtaining P (S \X ) and segment- 
based modelling to estimate P (W \X , S).

•  The method we are going to opt for here is to construct an estimate of P (S \X ) 
from segmental probabilities P(S i \X i ). The simplest way to doing this is by 
multiplying the segment-based estimates, as we did in Eq. (6.10). The main 
advantage of this approach is that it allows one to model both P (u i \X i ) and 
P(S i \X i ) using the same segment-based features and so the parallel computation 
of both a segment-based and a frame-based model is not required, unlike in the 
case of the previous two methods.

A special problem of this approach is that a manually segmented training corpus 
contains only examples of real phonetic segments, so we have no natural training 
samples of the ‘anti-phone’ segments. These kind of learning tasks are known as 
‘outlier modelling’ or ‘1-class learning’2 problems in the machine learning litera-

2The task is 1-class learning in the sense tha t the classes of phonetic segments together form one 
class tha t has to  be separated from the class of anti-phone segments, and for these latter we have no 
training examples.
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Figure 6.2: a) A 2D illustration of a 1-class learning task with its positive examples 
( ’O’s), outliers ( ’X ’s), and the outlier samples we try to generate ( ’X ’s in bold), b) A 
phonetic segment and the six anti-phone samples we generate from it

ture. There are dedicated algorithms that handle these tasks; one of these, the 
replicator neural net, will be introduced in Section 6.5.3.

•  With the intention of keeping the computations as fast and as simple as possible, 
we looked for a way that allowed us to apply the same classifier for modelling 
both P (u i \X i ) and P(Si \X i ). Unfortunately, the conventional perceptron-based 
neural nets that we were using as a phone classifier could not easily be modified 
to handle an outlier class. But it was not hard to extend the neural net with 
an additional output that corresponds to the class of anti-phone segments. This 
way the same segmental feature set and segmental classifier can be used to 
describe and model the various phone classes and the anti-phone class at the 
same time. The only problem with this approach is that we had to artificially 
generate training examples for the anti-phone class, as the training corpus does 
not naturally contain such annotations. The next section describes the scheme 
that we followed for this purpose.

6.5.1 How to Generate Anti-Phone Examples
Having decided to model the anti-phone segments by extending the phone classifier 
with a further class responsible for reporting these segments, it was necessary to define 
a scheme for generating training examples for this new class. In essence, this class 
corresponds to each such segment that is a part of or a composite of some phonetic 
segments (see Fig. 6.1), so extracting all these segments from a corpus is clearly not 
feasible in practice. Hence we needed an algorithm that extracts those anti-phone 
samples that are most important for separating the anti-phone segments from the 
phonetic ones. Obviously, these are those points of the sample space that lie close to 
the border of the two classes, and so we sought to generate such anti-phone examples 
that hopefully form a hull around the set of points corresponding to phonetic segments 
(see Fig. 6.2a for a visualization).

To generate such examples we focused on those segments that are ‘almost’ correct 
phonetic segments in the sense that both of their boundaries lie close to a real phonetic
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boundary. Fig. 6.2b shows six such possible anti-phone segments associated with a real 
phonetic segment. In the experiments these six anti-phone examples were generated for 
each phone example, their boundaries being 30 ms away from the manually annotated 
phone segment boundaries.

6.5.2 A More Sophisticated Approximation of P ( S \ X )
With the strategy proposed in the previous section, we are able to generate anti-phone 
examples and hence create segment-based P (Si \X i ) estimates using a conventional 
multi-layer neural net. From these estimates an approximation of P (S \X ) can be 
obtained using

P (S \X ) « n  P(S i \X i ). (6.12)
i

Unfortunately, in practice we found that this formula does not guarantee a proper 
normalization between different segmentations. That is, in many cases the system 
tended to prefer shorter words. It is very difficult to tell whether the formulation of Eq. 
(6.12) or a poor estimation of the components P(S i \X i ) themselves is responsible for 
this, but it led us to try other formulations as well.

One such alternative formula can be obtained if, for the evaluation of a segment, 
we consider not only the estimate P(s i \X i ) belonging to this segment, but all of its 
‘rivals’ -  precisely, these can be defined as all those possible segments that overlap its 
middle point [35], Based on this concept, we arrive at the approximation

P (S \X ) «  n  P (S iX i)  n < !  -  P (s \X (s))), (6.13)
i s6S

where S denotes the set of all other segments that occur in any other segmentation 
that is evaluated during the decoding process. That is, this formula always makes use of 
every segment-based estimate, each of these falling into the first or the second product 
depending on whether it is a part of the segmentation under evaluation or not. This is 
why we can expect a more balanced behavior from this formulation.

However, in practice the space of all segments is prohibitively large and cannot be 
efficiently evaluated. So we approximated the second product in (6.13) by considering 
only those elements of S that are "near-misses” of the elements of S. More precisely, 
for a given segment Si  we made use of the anti-phone probability of the four nearest 
segments in S that miss one of the boundaries of Si  (see Fig. 6.3). To get the best 
performance from the system the component P (S \X ) had to be raised to an empirically 
tuned power -  as was suggested in Section 6.3.

6.5.3 Anti-Phone Modelling by Replicator Neural Nets
In the previous sections we proposed modelling the anti-phone segments encountered 
during recognition by extending the segmental classifier with an additional class that 
corresponds to these segments. This way no significant modification of the segmental
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Figure 6.3: An illustration of near-miss segments. The bars along the time scale denote 
segment boundary hypotheses; the green arcs below denote a possible segmentation; 
the red arcs above show the corresponding near-miss segments. For the ease of com­
prehension, one segment and its near misses are displayed with dotted lines

modelling technique is required, that is the same multi-layer neural net technology can 
be applied. The price is that we have to artificially generate anti-phone samples, but 
this is tedious, error-prone and significantly increases the training time. In the following 
we examine an alternative technique, replicator neural nets, that requires relatively 
little modification in the neural net structure, but promises to handle the anti-phone 
segments without training examples. That is, this technology falls in the category of 
the ‘outlier modelling’ or ‘1-class learning’ techniques.

The scheme proposed in Section 6.5.1 for generating anti-phone examples created 
six anti-phone samples per phone, and thus seriously increased the amount of data 
required to train the system. Still, in practice we found that these examples were 
not representative enough in the sense that the recognizer behaves unexpectedly in 
many cases (i.e. it accepts obvious outliers as phones). Generating even more outlier 
examples did not seem really attractive for several reasons. These are the following:

•  Apart from obvious cases (e.g. segments that strongly overlap a real boundary) 
it is not a trivial matter to see how the anti-phone segments should be generated. 
It might, for example, be that the segments generated following the scheme of 
Fig. 6.2b could still sound like one phone so, perceptually, they are not really 
anti-phones. In addition, the manual segmentation of the training corpus may 
also contain mistakenly positioned boundaries.

•  Generating even more anti-phones per segment would cause the training data to 
be overwhelmed by one class which, as we observed, has a detrimental effect on 
the learning process.

•  One characteristic of speech recognition is that the training databases are enor­
mous. Even the training corpora that are considered ‘small’ contain hundreds of 
thousands of phone instances. Creating dozens of outlier examples for each of 
these really did not seem appealing, especially when one considers the training 
time involved.

This is why we looked for a method that allows 1-class learning, that is learning 
from positive examples (in our case phonetic segments) only. Unfortunately, standard 
perceptron-based neural nets are not suitable for this task -  mainly because their re­
sponses are not localized. A network with radial basis functions (RBFN) would have
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Figure 6.4: The staircase-like activation function and the ramp-like one obtained when 
increasing the number of steps to infinity

been a possible choice, but we did not want to give up our well-tried multilayer percep- 
tron network. Instead, we sought some simple extension of our current system. This is 
where replicator neural networks came in the picture.

The basic idea behind a Replicator Neural Net (RNN) [49][50] is simple enough: 
the input data is also used as the desired output data. Consequently, by minimizing the 
mean square error during training we force the net to reconstruct its training patterns 
with the smallest error possible. During testing we hope that outlier patterns (patterns 
not in the training set) will be less well reproduced by the trained RNN and have a 
higher reconstruction error. Thus the reconstruction error can be used as a measure of 
’outlyingness’ of a test pattern.

RNNs were originally introduced in the field of data compression [50], Hawkins et 
al. proposed using it for outlier modelling in the field of data mining [49], In both 
papers a 5-layer structure is recommended, with a linear output layer and a special 
staircase-like activation function in the middle layer (see Fig. 6.4). The role of this 
activation function is to quantize the vector of middle hidden layer outputs into grid 
points and so arrange the data points into a number of clusters. Although this com­
ponent plays a theoretically important role in the performance on the RNN, it makes 
learning by back-propagation practically impossible because its derivative is close to zero 
almost everywhere. Fortunately, Hecht-Nielsen argues that, by increasing the number 
of quantization levels to infinity, we arrive at a ramp-like activation function (see Fig. 
6.4) by which "real-world problems might be solved" [50],

To go for sure, in the experiments we tried both the staircase, the ramp-like and 
the traditional sigmoid activation functions in the middle layer. All the other neurons 
were tested with both sigmoid and tanh activations. In addition, we experimented with 
varying the number of layers and hidden neurons as well (for the experimental results 
see Section 6.8).
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6.6 Phone R ecognition Results on the  M T B A  Cor­

pus

The aim of this and the following sections is to demonstrate the effectiveness of the 
posterior-based segmental model on real recognition tasks. In this section we per­
form recognition experiments on the phonetically rich sentences of the MTBA Hun­
garian Telephone Speech Database (see Chapter 4 for details on the database). As 
this database contains phonetically balanced sentences recorded from telephone calls 
from all parts of the country and from people of varying gender and age, we can say 
that it presents a very general and challenging problem for the acoustic component of 
any recognizer. Furthermore, this is currently the largest available speech corpus for 
Hungarian, and very few results have been reported on it so far. Unfortunately, this 
recognition task is too general in the sense that there was no way of applying any com­
plex (word-level) language model. Hence, the tests reported leave the language model 
component of the system practically unexploited, and just assess the performance of 
the acoustic components. That is, we will report only phone recognition results and 
not word recognition scores. This allows us to focus on the performance of the acoustic 
models alone, which is advantageous in the sense that the application of a language 
model may hide the weaknesses of the acoustic level and give us a false impression of 
the acoustic component’s performance.

The performance of the segmental model will be compared to HTK’s, which is a 
sort of standard HMM recognizer in the speech community.

6.6.1 Acoustic Features and Phone Classification Scores
For the classification of segments we applied a 2-layer feed-forward neural net with 200 
hidden neurons and a softmax output layer. The net was trained with the minimum 
cross-entropy training criterion, and training was stopped based on a cross-validation 
criterion [11],

To find a proper segmental feature set we started from a rather simple representation 
and gradually extended it with additional features. This process of gradual introduction 
of the features also allows one to demonstrate and understand the importance of the 
various features. In the following we present the segmental features and the phone 
classification results obtained with them.

Baseline segmental features. As a traditional frame-based representation, ener­
gies in 18 Bark-bands were calculated (via FFT, with triangular weighting and cube root 
compression) at a frame rate of 333 frames/sec3. Note that performing a cosine trans­
form on these data vectors would result in the conventional MFCC coefficients. Our 
earlier results [74] however indicated, that while the conventional Gaussian modelling 
technique requires this step (for decorrelation), the neural net results do not improve 
following it. So we worked directly with the Bark-band energies.

3This is about three times more than the usual 100 frames/sec. We used this bigger value because 
in many experiments we found tha t it resulted in a slightly better classification performance.
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Figure 6.5: An example of how the baseline energy features tile a phonetic segment in 
the time-frequency plane

As the number of frames within a segment varies and the neural net used for 
segmental classification requires a fixed number of inputs, a conversion is necessary into 
a fixed-dimensional segmental feature set. At this stage we followed the very simple 
idea of the SUMMIT system [35]: the band energies were averaged over phone thirds, 
which essentially means a kind of non-uniform smoothing. We may say that the inputs 
to the neural net are really just average energies in cells that tile the time-frequency 
space in a special manner (see Fig. 6.5).

The Im portance o f Phone D uration. In Flungarian most phones have a ‘short’ 
and a ‘long’ counterpart, thus duration seems to be a vital piece of information. To 
model the duration we extended the baseline feature set with another feature containing 
the length of the segment. This way the neural net had the opportunity of forming 
any kind of durational description, based on the data. The introduction of the duration 
feature resulted in a significant error rate reduction, as shown in Table 6.1.

Channel Norm alization and Gain C ontrol. The variance in the transfer charac­
teristics of telephone lines is known to have a detrimental effect on speech recognition. 
A somewhat similar issue is the varying (average) amplitude of the signal. Many nor­
malization techniques have been suggested to counter these effects. Some of them are 
off-line, which means that they work after the whole signal has been recorded (and, 
consequently, are not suitable for real-time recognition). As we work directly with 
band energies and not MFCC coefficients, the most suitable normalization technique 
was to set the mean of the sentence-level energy to 0 and its variance to zero. This 
normalization can be performed either on the full signal or for each frequency channel 
separately.

The on-line algorithms base their processing on the last couple of (centi)seconds. 
We can normalize the means and deviances by calculating these values just over the 
most recent data block. Alternatively, we can apply a non-linear adaptive gain control 
(AGC) algorithm. This applies a 1-pole lowpass filter with time-constant t (for more 
details on these AGC algorithms, see [70]).

As the results in Table 6.2 indicate, off-line methods performed slightly better than 
on-line ones. Out of the on-line methods the non-linear AGC was the best, with a 
time-constant of 1 second.

Adding Observation Context. In fluent (and fast) speech, phones may become 
so short that they cannot be recognized without their observation context. Auditory 
research suggests that approximately a 220-250 ms interval contains information about
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Classification error rate
Baseline features Baseline plus duration

47.72% 42.15%

Table 6.1: Phone classification error rates without and with the duration feature

Off-line methods CER%
Mean and dev. normalization (full spectrum) 40.27%
Mean and dev. normalization (per channel) 37.75%

On-line methods
RASTA filtering 43.86%
Mean and dev. norm, (per channel, t =  250ms) 41.12%
Mean and dev. norm, (per channel, t =  Isec) 40.36%
Nonlinear AGC (per channel, t =  250ms) 39.64%
Nonlinear AGC (per channel, t =  Isec) 38.49%

Table 6.2: Phone classification error rates with various channel normalization methods

Classification error rate
Normalization t =  150msec t =  250msec t =  1sec
Off-line mean and dev. norm. 33.18% 34.49% 36.12%
Nonlinear AGC (Jsec) 33.51% 34.85% 36.25%

Table 6.3: Phone classification error rates when using observation context

CER with onset/offset feat, (off-line norm., 150ms obs.cont.) 32.17%

Table 6.4: Phone classification error rates with onset/offset features

the identity of a phone, but some researchers use observation windows as large as one 
second [52], We tried three different settings of the observation length, defined as the 
phone length plus the context length. This means that a variable-sized observation 
context was considered, depending on the segment size. The context was represented 
by its average energy values in each Bark-band, resulting in two additional feature 
‘columns’ on both sides of the phones (cf. Fig. 6.5). As Table 6.3 shows, the shortest 
observation length (150ms) performed best, which might be due to the large variance 
of the context over the training set.

Adding Onset and O ffset Detectors. Human hearing has cells tuned to detect 
signal onsets and offsets. These onset and offset detectors may play an important role 
in the segmentation of a sound stream, especially in finding the boundaries of (certain) 
phonetic segments. So we implemented an algorithm to simulate these detectors, based 
on the directions described in [28], Our detectors calculate the derivatives of the Bark­
band energy trajectories and sum them over 3 (6-Bark wide) channels. These curves 
were evaluated at the phone start and end points and their values were added to the 
feature set as further features.

We combined these features just with the best feature set found so far. The



56 A Posterior-Based Segmental Speech Recognition Model

result shown in Table 6.4 indicates that these new features brought only a marginal 
improvement in the classification scores. We should mention, however, that they seem 
to be very important in separating the phone and anti-phone segments.

6.6.2 Phone Recognition Results
To separate real phonetic segments from the anti-phones, a two-class neural network 
was used. The segmental feature set was similar to that of the phone classifier, but 
instead of the means of the band energy averages the variances were employed. This 
separate modelling of the phone classifier and the anti-phone probability proved slightly 
better than utilizing the same feature set and classifier for both tasks, as was suggested 
in Section 6.5. In all other respects the generation of the anti-phone training examples 
and their utilization in the decoding process followed the scheme that we described in 
Sections 6.5.1 and 6.5.2.

Although the anti-phone model could be evaluated in isolation if we generated test 
examples similar to the generation of the training data, its effect can only really be 
assessed by its influence on the decoding process. Hence we shall now report phone 
recognition results. These were obtained as follows.

As the vocabulary of the sentences in the corpus is not restricted in any sense, 
there was no way we could apply any sophisticated (word or morpheme-based) language 
model. The only thing we could do was to work with a statistical model like phone 
N-grams. From these we chose the simplest possible one, that is every phone was 
allowed at every position and with the same probability.

The evaluation of the recognition results was performed by comparing the manual 
phonetic transcription of a sentence to the transcription hypothesized by the recognizer. 
Clearly, the recognizer output may contain substitution, insertion and deletion errors as 
well. To count these the two strings are matched by calculating their edit distance with 
weights (4,3,3) for substitutions, insertions and deletions, respectively, these weights 
having been proposed by the HTK toolkit [125], The scores reported below were 
calculated using the formula

^  N  -  S -  D
Correct = -------— -------, (6.14)

where N  is the number of all phone instances and S and D  are the number of sub­
stitutions and deletions, respectively. Obviously the recognizer can increase this value 
by producing many insertion errors as the number of insertions is not included in the 
formula. To prevent this, the number of insertions was forced to stay around 10-12% 
by suitably punishing phone transitions in the aggregation formula. This value was 
suggested by [79],

Table 6.5 lists the recognition scores obtained with and without applying the anti­
phone models. The figures clearly show the importance of the anti-phone component, 
with a slight preference for the complex model. Whether these scores are good or not 
is difficult to judge per se, so in the following subsection we will furnish some possible 
bases of comparison.
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Sentence-Level Recognition Scores
Without anti-phones anti-phone model Eq. (6.12) anti-phone model Eq. (6.13)

53.44% 58.74% 61.34%

Table 6.5: Phone recognition scores (% correct) on the MTBA corpus

6.6.3 Related Work
To our knowledge, apart from us only three teams have used the MTBA corpus so far. 
Unfortunately, the TSP Lab of the Technical University of Budapest and Hexium Ltd. 
have to date performed only isolated word or connected word recognition tests over a 
restricted vocabulary [29][107], Although the LSA Lab of the Technical University of 
Budapest has experimented with a task similar to ours, in their tests both the train/test 
division of the data and the phonetic label set were slightly different. Hence, the phone 
recognition score of 55-60% they reported [118] allows only a gross comparison.

To obtain a more precise basis for comparison we trained the HTK Toolkit [125], 
which is a freely available HMM-based recognizer, and is very frequently used to obtain 
a baseline result when evaluating new technologies. The HTK recognizer was trained 
with 3-state monophone phone models, all having 15 diagonal Gaussian components 
(this was reported to be about optimal in [29]). Naturally the same train/test setup 
and phonetic labelling was employed as with the OASIS system, and the language 
model was also set up in a similar way. For signal processing we applied the standard 
39-component MFCC vector proposed by the HTK manual. With these settings HTK 
recognized 61.60% of the phones correctly, with an insertion error rate very close to 
the one obtained with the OASIS system. This means that our system is capable of 
practically the same recognition performance as other common recognizers.

Alas, HTK cannot measure phone classification directly, so we could not obtain 
comparative scores to assess the performance of the phone classifier module in isolation. 
However, in the following section we will compare the phone classifier of our system to 
an HMM-based recognizer on a number recognition task. Moreover, we recently tested 
our phone classifier on the TIM IT corpus, for which several classification results are 
available in the literature [77], In both cases we found that our segmental representation 
(along with an ANN or SVM classifier and suitably chosen transformation methods) 
yields slightly better results than the conventional HMM technology.

6.7 E xperim enta l Results on the  O A S IS -N um bers 

Database

In this section we evaluate the posterior-based segmental model on the OASIS-Numbers 
database. This database contains spoken numbers recorded directly via a PC sound 
cards. Consequently, these recordings are of better quality than the sound files of the 
MTBA corpus and only a limited number of speech phones occur in them, so much 
better recognition results can be expected. Moreover, here the vocabulary of the files is
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restricted, so it is easy to create a simple (dictionary-based) language model for these 
utterances. Hence in this case we are going to report word-level recognition results as 
well (see Chapter 4 for a detailed description of the database).

For a comparison, an HMM system was also trained on the same corpus using 
monophone models (the corpus is too small to train triphones). This recognizer was 
developed by Máté Szarvas and his colleagues, and will allow us to make comparisons 
at the phone classification level too. The description of the HMM recognizer can be 
found in Szarvas [106],

6.7.1 Phone Classification Results
The speech segments were represented by a feature set quite similar to that described 
in Section 6.6.1. The speech signals were converted into critical-band log-energies, and 
the averages of the 24 critical-band log-energies over the segment thirds (divided in a 
1-2-1 ratio) served as baseline segmental features. The variance of the band energies 
and the onset/offset features were also extracted, in order to support the separation of 
anti-phones. These latter features were calculated only over 4 wide frequency bands, 
as this proved sufficient. Thus, including duration, 77 features altogether were used to 
represent the segments.

For classification we tried both ANN and SVM classifiers. In the experiments below 
"ANN” means two-layer MLPs trained with back-propagation. The number of hidden 
neurons was 150 in the phone classification, and 50 in the phone/anti-phone classifica­
tion tests. In all the experiments with SVMs a second-order polynomial kernel function 
was applied. Moreover, the effect of applying feature space transformations prior to 
classification was also tested. We experimented with linear discriminant analysis (LDA) 
and the kernelized version of it (K-LDA). These transformation methods are beyond 
the scope of this thesis and more detailed information on them can be found in the 
papers by András Kocsor [76][77],

Table 6.6 shows the resultant segmental classification errors. In the case of the 
phone classification task (28 classes) we have a comparative result from the HMM 
which shows that the segmental discriminative models give significantly better results. 
In addition, one should notice that the classifiers attained the same performance after 
LDA and K-LDA, in spite of fact that the transformations considerably reduced the 
number of features. Similar observations hold for the phone plus anti-phone (29 classes) 
and phone/anti-phone classification tasks (in the latter case no transformation was 
applied, as there were only two classes).

6.7.2 Word-Level Results
All the word-level recognition experiments were executed with ANN classifiers. Anti­
phone modelling and training were performed as described in Sections 6.5.2 and 6.5.1. 
During recognition the possible segment boundaries were defined by a 5-frame uniform 
segmentation, that is the recognizer examined all possible segments that can be com­
posed from 5-frame chunks of the signal. Two types of experiments were executed;
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No transf. 
(77 feat.)

LDA
( 27 feat.)

K-LDA 
(27 feat.)

28
phone­

mes

HMM 9.34% — —
ANN 7.78% 7.81% 5.79%
SVM 5.81% 5.12% 4.59%

28 ph. 
+  antiph.

ANN 6.78% 6.87% 6.54%
SVM 7.90% 6.14% 5.89%

phone/
antiph.

ANN 6.92% — —
SVM 5.10% — —

Table 6.6: Segmental classification error rates

Segmental Model HMM
No division by the priors Division by the priors (3-state monophone models)

2.48% 0.95% 0.80%

Table 6.7: Word error rates

in the first one the segmental probability estimates were divided by the corresponding 
class priors, while in the second one they were not.

Table 6.7 shows the word-level error rates. The results clearly indicate that the 
division by the class priors is necessary, as it reduces the word-level error rate by about 
a factor of 2.5. In Chapter 8 we will see that this division has a very similar effect 
on the behavior of HMM/ANN hybrids and we will return to this issue there. As 
regards a comparison with the HMM, we see that the better score obtained from the 
segmental model is still slightly worse than that for the HMM. As the segmental model 
was clearly superior in the segment classification task, the word-level scores show that 
our sophisticated anti-phone modelling technology is still not as good as it should be. 
In the following two sections we examine two further further ways of improving the 
segment probability estimates.

6.8 Experim ents w ith  R eplica tor Neural Nets

In the experiments with replicator neural nets the BeMe-Children database was utilized. 
This consists of isolated words pronounced by children from the lower classes of elemen­
tary schools, originally recorded for the purpose of a teaching reading software package. 
This recognition task proved quite difficult owing to the high variability in the children’s 
voices and recording conditions, and because there were many similar-sounding words 
in the dictionary (for more details on the database see Chapter 4).

For the signal representation we tried two different segmental feature sets. One of 
them consisted of the 77 features described in the previous Section. The other set was 
an MFCC-based one, suggested by the literature [23] and contained 61 features.

The speech recognizer was run with three possible arrangements. In one case no 
anti-phone model was used at all -  that is, the ANN was trained only on correct phonetic
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Anti-Phone Model
Feature Set

OASIS SUMMIT

No anti-phone model 67.17% 68.58%
Anti-phone class /w  examples 72.28% 77.28%
RNN 72.39% 75.21%

Table 6.8: Word recognition accuracies on the two feature sets, depending on the 
anti-phone model used

segments. In the second arrangement the ANN was extended with an outlier class and 
its training examples were generated as described in Section 6.5.1; anti-phone modeling 
was performed as described in Section 6.5.2. Finally, in the third arrangement there 
was again no outlier class in the ANN, but an additional RNN was used to model the 
anti-phone segments. As mentioned earlier, the reconstruction error of this net can be 
used as an indicator of the outlyingness of a sample. We converted it into the (0,1) 
interval by a sigmoid, so this way it could be interpreted as a probability value.

With the RNN, we first experimented with the special staircase-like activation func­
tion of the middle layer. As expected, we could not get back-propagation to converge 
when using the staircase-like activation function. However, it converged nicely both 
with the ramp-like and sigmoid activations and these produced very similar results. In 
all the other layers both sigmoid and tanh activations were employed, and the sigmoid 
was found to converge somewhat faster. Because of these findings, we applied sig­
moid activations in all layers (apart from the linear output layer) in all the subsequent 
experiments.

When varying the structure of the net, we found no advantage of using five layers. 
We obtained similar results with just four or three layers, and with a faster training time, 
so we settled on using a 3-layer model. When varying the number of hidden neurons 
in its hidden layer, the optimal performance was found to be at about 25 hidden units. 
It was optimal in the sense that adding more units did not bring any further significant 
improvement.

The speech recognition results are listed in Table 6.8, both for our classic feature set 
(OASIS) and the one taken from the literature (SUMMIT). The first thing to notice 
is that the feature set we developed previously performed worse here than the one 
suggested by the literature, no matter which anti-phone model was applied. This is 
probably because our representation was fine-tuned to the MTBA telephone speech 
recognition task.

As regards the need for an anti-phone component, the definite improvement they 
bring over the "no anti-phone model" case clearly justifies their importance. It is hard 
to see, however, why they were less helpful on one feature set than on the other.

Now, let us examine how the RNN performs as an anti-phone model compared to 
our earlier methodology. In one case it led to exactly the same performance, while 
in the other it yielded only slightly worse results. This shows that RNN is a viable 
alternative to our previous method that required the generation of a huge amount of 
outlier samples and, consequently, a prolonged training time.
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6.9 Speeding Up th e  R ecognition by A coustic  Pre­

S egm entation

The search space the decoder algorithm has to traverse during recognition is the Carte­
sian product of the set of possible phone sequences and the set of possible segmenta­
tions. Hence, by reducing the number of the possible segment boundary positions we 
could significantly decrease the size of the hypothesis space. Apart from an increase in 
speed, the recognition scores might also improve by such a reduction due to the removal 
of such incorrect hypotheses that the engine might otherwise not reject. Unfortunately, 
the automatic segmentation of speech signals is one of the most difficult problems of 
speech processing, and finding the perfect segmentation using signal processing tech­
niques alone seems impossible. Actually, this difficulty is one of the reasons why the 
hidden Markov model that solves the recognition and segmentation in parallel is so 
successful. Still, we can say that assuming that every phonetic segment may start at 
any frame and end at any frame -  although very safe -  is an overkill. In the following 
we propose a method that yields a relatively sparse segmentation and hence speeds up 
the decoding process without causing a deterioration in the recognition accuracy.

The signal processing approaches to segmentation all work by measuring the changes 
in the signal. This strategy is based on the assumption that a change in the underlying 
phonetic quality always shows itself in a large spectral change. Although it is not always 
true, this is the best that signal processing can offer. After tedious experimentation we 
found a certain set of feature extraction steps to be generally the best for detecting 
these changes. This is the following:

First, the spectrum is decomposed into four bands. The bands were originally chosen 
to roughly correspond to formant bands, but we later realized that they practically cover 
6 Bark wide ranges on the Bark scale. The frequency bands processed by the system 
are:

[20Hz;635Hz],
[635Hz; 1790Hz],

[1790Hz; 4490Hz],
[4490Hz; 11000Hz],

The system detects the changes of energy within these f  bands. The simplest way 
to measure changes is by examining the derivative. To avoid the detection of minor 
changes the data is smoothed first by the simplest possible method, averaging (however, 
a more sophisticated filter could obviously be used as well). After this, differentiation is 
approximated simply by calculating the difference between neighboring (or, depending 
on parameter 5, positioned farther apart) data values:

d iit) =  \ f i i t  +  5) -  f i ( t  -  5)|. (6.15)

We saw in Section 6.6.1 that the normalization of the channel energies can signif­
icantly improve the phone classification results. A similar normalization seemed useful
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here, too. For this purpose we applied a simple non-linear adaptive gain control (AGC) 
strategy that has the formulation

Vi (t)
f j CO

1 +  K  • f j  (t) ’
(6.16)

where K  is a constant that controls the strength of non-linearity and f i denotes a 
smoothed version of the signal. In our implementation this smoothing is performed 
by a 1-pole HR filter, so it has only one parameter that can be used to control the 
strength of the smoothing. The AGC function can be employed both on the band 
energies and on their derivatives, and besides normalization it also has the advantage 
that it amplifies the changes.

As we mentioned earlier, simple signal processing methods cannot by themselves 
solve the segmentation problem. Hence we applied neural nets to automatically learn 
the phonetic boundaries. As inputs for the net we used the energy values of the four 
bands along with their derivatives, both with and without AGC processing. We also 
tried varying the number and width of the frequency channels, but the best results were 
obtained with the four bands stated above.

The training data was constructed using the manually segmented parts of our 
databases. Theoretically the frames where the boundary markers are positioned should 
have been used as positive examples, and the rest of them as negative ones. There 
are two problems with this simple strategy. First, there would have been many more 
negative examples than positive ones, and this imbalance can result in training inac­
curacies. Second, the manually positioned markers can themselves be inaccurate. To 
avoid these problems we trained the neural nets to perform regression rather than clas­
sification. To construct target values for this regression we fitted the x 6 curve between 
the boundaries in such a way that it took a value of 1 at the boundaries and 0 in the 
middle of segments (see Fig 6.6). This way we created a continuous transition between 
the boundaries and the mid-points of the segments. The approximation that the neural 
net returned for this curve is shown in Fig. 6.7. Only 20 hidden neurons were required 
to obtain this result, owing to the small number of the features used.

The simplest way to convert the net’s output to segment boundaries is to detect 
its local maxima (see Fig. 6.8). Upon inspection we found that this method is able to 
detect most of the segment boundaries. It makes mistakes mostly in those cases which 
are hard to determine even for humans -  for example, the vowel-semivowel transitions. 
The other problematic case was found to be the detection of the end of the burst of 
voiced plosives. We examined the behavior of the algorithm on the first hundred words 
of the MTBA city name database (see Chapter 4 for details) and we have found that 
apart from one case, all the missed boundaries were related to plosives (the remaining 
case was a vowel-semivowel transition).

To quantify the efficacy of a segmentation algorithm we can compare its proposed 
boundaries with those of the manual segmentation. For this purpose we applied an edit 
distance algorithm. This algorithm pairs the boundaries of the two segmentations in 
such a way that the sum of the distances of the associated pairs is minimal (this can be



6.10 Conclusions and Summary 63

Segmentation Method WER Testing Time

5-frame uniform segmentation 0.95% 549,250 msec
ANN-based sparse segmentation 0.78% 204,734 msec

Table 6.9: Word error rates on the OASIS-Numbers Database when using ANN-based 
pre-segmentation

performed by dynamic programming). Obviously, if the number of the boundaries of the 
two segmentations differ then there will be boundaries left out. Moreover, we should 
reject those pairs that have a distance greater than a given threshold. Afterwards, we 
can count the number of the boundaries that has no pairs in both segmentations, and 
these scores will correspond to the number of insertion and deletion errors.

We evaluated our segmentation algorithm on the OASIS-Numbers database (for 
details, see Chapter 4). At a threshold of 30 ms there were 28,262 insertion errors and 
88 deletion errors -  over 10,488 real boundaries. This means that the algorithm detected 
about four times more boundaries than there were in reality, but the number of deletion 
errors was less than 1%. Although this may seem very good at first sight, the problem 
with deletion errors is that the recognition engine is not able to compensate for these, 
so just one deletion error can result in the misrecognition of an entire word. For this 
reason we implemented a safer strategy that positions segment boundaries essentially 
everywhere, but with a density proportional to the neural net output. An example of the 
result of this segmentation strategy is shown in Fig. 6.9. With this method both the 
recognition scores and the decoding speed improved on the OASIS-Numbers database, 
as Table 6.9 clearly shows.

6.10 Conclusions and Sum m ary

Our basic motivation for introducing the posterior-based segmental model was to over­
come two main weaknesses of the conventional HMM technology. The segmental 
framework was chosen because it handles the phones as one unit -  instead of build­
ing them up from frames -  and thus eliminates the flaw caused by the independence 
assumption. Moreover, we opted for the posterior-based technology instead of the con­
ventional generative one because it gives a better classification performance with fewer 
parameters. The phone classification tests justified our expectations, as our phone 
models always outperformed the conventional HMM phone models, even with a very 
simple segmental feature set. This accords with the findings of other authors (see [23], 
[35] or [55], for example).

However, when it comes to the recognition of phone series or words, one finds that 
the segmental model needs an additional component that estimates the probabilities 
of the segmentations evaluated during decoding. There are several possible ways of 
explaining the role this factor, but we preferred to interpret it from a segment-based 
point of view. According to this, the role of this component is to reject those outlier 
or ‘anti-phone’ segments that do not correspond to phones, and hence to help the



64 A Posterior-Based Segmental Speech Recognition Model

decoding process in finding the proper segmentation of the input. We experimented 
with two types of technologies to handle these anti-phone segments. One of these 
was to extend our segment classifier neural net with an additional class for the anti­
phones. The main advantage of this approach was that it required almost no change 
in the phone models, hence their simplicity and evaluation speed could be retained. 
The price was that an involved algorithm was necessary to generate anti-phone training 
examples and, of course, the training time also became much longer. Even worse, the 
resulting recognition scores were not really satisfactory, which led us to introduce a 
more sophisticated combination scheme for the anti-phone estimates, one introduced 
in Section 6.5.2. But while this actually brought about a modest improvement, the 
model lost its appealing conceptual simplicity.

The other approach was to apply a modelling technology that can learn outliers 
without training samples. We applied replicator neural networks for this purpose. This 
was motivated by the hope that, by doing this, a relatively simple and efficient model 
could replace the tedious process of generating and training outlier samples for a tradi­
tional MLP. The experiments justified our belief that RNNs indeed have the potential 
for this task as they yielded a performance similar to our anti-phone based methodology, 
but without the need for a huge amounts of outlier data.

Although with the application of the anti-phone model or the replicator neural net­
work we could raise the performance of the system to the level of a traditional HMM 
recognizer, we certainly could not surpass it, as we had hoped. In the number recog­
nition task the segmental system managed to catch up with the HMM only when an 
ANN-based acoustic pre-segmentation algorithm was applied. Even if its computational 
cost is negligible, it adds a further complexity to the system and hence makes its less 
attractive overall.

From our results (and the similar ones found in the literature) we have to conclude 
that although segmental models can quite easily outperform HMMs at the phone level, 
this gain can be easily lost at the utterance level. The simple strategies we proposed 
for modelling the anti-phones were not sufficient to make the system perform better 
than HMMs in phone and word recognition tasks. It seems that for this the segment- 
based models have to be combined with frame-based ones (the latter being used just 
for estimating the segmentation probabilities or yielding phone probability estimates as 
well). In the following chapter we will try to shed light on why the frame-based HMM 
is so good at finding the segmentation of a signal.



6.10 Conclusions and Summary 65

Figure 6.6: The manual segmentation of a sound file and the target function generated 
from it for the ANN-based regression

Figure 6.7: The ANN-based estimate of the boundary position probability

Figure 6.8: Segment boundary hypotheses generated based on the local maxima of the 
ANN output

Figure 6.9: Segment boundary hypotheses generated based on the local density of the 
ANN output





C h a p te r 7

O n N aive Bayes in Speech 

R e co g n itio n

"The purpose o f computing is insight, not numbers."
Richard W. Hamming

This dissertation began in Chapter 2 by introducing intuitive arguments about why 
hidden Markov models are very poor approximators of speech signals and why segment- 
based modelling seems to be more reasonable. However, in the experiments of Chapter 
6 we saw that -  in spite of their better phone classification ability -  segment-based 
models have problems even in catching up with HMMs, and even after the introduc­
tion of elaborated additional components and a lot of tinkering they can just slightly 
overcome them. This is in accordance with the literature: besides segmental models, 
many sophisticated alternatives to HMM have been suggested over the decades, but 
these have demonstrated only modest improvements and brought no paradigm shift in 
technology. Having seen the strong arguments against HMM, it may seem amazing 
that it has been able to preserve its number one position for over two decades. It is 
also strange that although many authors have criticized the HMM technology, we never 
saw any of them putting the question the other way round: why does it work then, if 
it should not?

This is exactly the goal of this chapter: to gain an insight into the behavior of HMMs 
-  especially their incorrect bias due to the naive Bayes assumption -  and to understand 
why it does not significantly harm their performance. To this aim we shall consider the 
simplest possible HMM structure and compare its performance with a segmental model 
(also kept as simple as possible). As the segmental model is free of the bias peculiar to 
naive Bayes, such a comparison can shed light on how this bias influences the recognition 
process. In addition, to help our understanding, the subtasks of segment classification 
and finding the best segmentation will be examined separately. From the results we 
will argue that the bias peculiar to the naive Bayes rule is not really detrimental to 
its phoneme classification performance. Furthermore, it ensures a consistent behavior 
in outlier modelling, allowing the efficient management of insertion and deletion errors 
and thus helping HMMs to find the best phonetic segmentation during decoding.

67
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7.1 In tro d u c tio n

The main appeal of the hidden Markov technology is its mathematical tractability -  
in particular, that its (locally) optimal parameters can be found relatively easily [58], 
But the price for this is that quite simplistic modelling assumptions have to be made 
that do not necessarily accord with the real behavior of the signals to be modelled. In 
such cases on may argue that optimal performance does not necessarily mean good 
performance, and that the gap between the two basically depends on the rate of the 
discrepancy -  that is, the modelling bias -  between the modelling assumptions and the 
real properties of the data.

When applied to speech signals we have good reasons to think that the modelling 
bias of HMMs is quite large. This led us to introduce the segmental modelling frame­
work in Chapter 6. We introduced intuitive arguments of why these models have more 
reasonable modelling assumptions and hence a smaller modelling bias -  and we had 
hoped that this automatically would result in significantly better recognition results. 
However, the experiments did not justify this and in this chapter we aim to gain an 
insight into the factors behind it. The question can be raised in two different forms. 
The more obvious one is to ask why the segment-based model did not perform much 
better -  relative to the HMM? But it is just as good to turn the question around: 
why is the HMM so good -  in an absolute sense -  in spite of its unrealistic modelling 
assumptions? Why does its oversimplified structure, and especially the naive Bayes 
assumption does not harm its performance?

We will mainly focus on this form of the question, and for the ease of understanding 
we will examine the two subtasks of speech recognition in isolation. That is, first we 
shall analyze why HMMs are good at classifying phonetic segments. Then we will 
investigate why HMMs are also able to find the proper segmentation of the input 
series.

After collecting our arguments regarding these issues, we will also perform a series 
of experiments. In some of these we intend to examine what happens when the naive 
Bayes combination rule -  that is, simple multiplication -  is replaced by something else. 
Basically the segment-based based model will represent this case, but combination by 
averaging will also be tried. In the other group of experiments we will test what happens 
when we try to compensate for the naive Bayes modelling bias by root taking or imitate 
a similar bias in the segmental model by powering.

In the subsequent discussions the segment-based and the HMM terminology will 
be used interchangeably. As was explained in Section 2.2.1, any state sequence can 
be uniquely associated with a segmentation, where the segments corresponds to those 
subsequences when the HMM stays in the same state. For the sake of simplicity we will 
assume 1-state phone models, so the states will directly represent phone classes and 
the segments will correspond to hypothetized phonetic segments. But the arguments 
would also be valid for 3-state models after a simple substitution of ‘phone thirds’ for 
‘phones’.
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7.2 Naive Bayes: T he  Cons

The naive Bayes assumption arises in HMMs in the form of the state-conditional inde­
pendence assumption of acoustic vectors. In contrast, the neighboring speech frames 
are obviously correlated as speech is produced by a continuous movement of the articu­
lators. Moreover, many signal processing methods applied in the feature extraction step 
(e.g. RASTA filtering) increase the correlation as they linearly combine the neighboring 
data vectors. To top of it all, we usually extend out feature set with the so-called delta 
features, which are again obtained as a combination of a few neighboring frames [58],

Based on speech perception experiments, we can also argue against combination 
by multiplication. Namely, it is known that humans can recognize speech quite well 
even when large portions of the spectral information are removed. In comparison, the 
production combination rule is too restrictive in the sense that any frame can ’veto’ 
the classification by making the product zero.

As a final argument, classifier combination literature suggests that in general the 
production rule performs well when the classifiers work on independent features. When 
the features contain similar information -  as in our case -  then other schemes like 
combination by averaging are likely to yield better classification results [108],

7.3 Naive Bayes: T he  Pros

Many have critized the use of the naive Bayes assumption in HMM. But we are unaware 
of anyone in the speech community putting the question the other way round: why 
does it work so remarkably well when, in theory, it should not? Fortunately, we can find 
partial answers in the machine learning literature, since the unexpectedly good behavior 
of naive Bayes in classification attracted much research in that field. Most pertinently, 
it has been pointed out that in many cases naive Bayes provides optimal classification 
even though it incorrectly estimates the probabilities [25], One such case is when there 
is full functional dependency among the features [98], Even when the dependency is 
not completely deterministic, naive Bayes classification was found to perform nearly 
optimally in [98], The explanation is that in these cases all features yield approximately 
the same probability estimates, so when we combine them by multiplication it is like 
raising one output to the number of classifiers combined. The resulting estimation 
tends to underestimate the real probabilities. Besides this, the probability value of the 
winning class dominates over that of the others. Quoting Hand, "the model will have a 
tendency to be too confident in its predictions and will tend to produce modes at the 
extremes 0 and 1" [47]. However, these values still lead to the same classification as 
raising the estimates to a power preserves rank order.

Knowing that the feature vectors in speech recognition are highly correlated, we 
might suspect that a similar effect must occur with HMMs. It has indeed been reported 
that HMMs are "overconfident of their recognition results" [57], and that "primarily due 
to invalid modelling assumptions, the HMM underestimates the probability of acoustic 
vector sequences" [124], These observations support our argument and taken together
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may explain why HMMs perform well in phone classification in spite of the manifestly 
false independence assumption.

7.4 From  C lassification to  R ecognition

The arguments above explain how the HMM is able to correctly classify phonetic seg­
ments in spite of the probability estimates being inaccurate. However, as part of the 
recognition system, the phone models are embedded in an utterance-level model, and 
their role is not classification, but rather probability estimation! At first sight this seems 
to invalidate all our arguments for naive Bayes, making the explanation of its efficient 
classification irrelevant.

Fortunately, we should immediately realize that the utterance-level recognition per­
formance is evaluated by the number of word/phone hits and not by the precision of 
the probability estimates. So our arguments can be saved if we can also explain why 
HMMs are able to find the proper segmentation of their inputs. Combined with the 
reasoning on good segment classification, these arguments together will explain the 
good recognition performance of HMMs -  in spite of their probability estimates being 
very poor. As Jelinek wrote: "there is no question that HMMs estimate absolute prob­
abilities (densities!) P (X \W ) very badly: just tty to generate acoustic strings X  by 
HMMs! Yet the relative ratios P (X \W )/P (X \W ')  between two alternative hypotheses 
W  and W ' may well provide a sufficiently accurate approximation for a choice between 
them” [63],

Let us now try to clarify what happens when we move from classification to recogni­
tion. During classification we assumed that the start and end points of the phonemes -  
that is, the correct segmentation of the signal -  was known. Consequently, the only task 
was to identify the segments. During recognition, however, the proper segmentation 
also has to be found. Theoretically it is the state transition probabilities that govern 
what state sequence the HMM goes through during operation. From this one would 
suspect that it is these probabilities that largely determine which segmentations are pre­
ferred during decoding. Quite surprisingly, however, in practice it has been reported by 
many researchers that they "per se have virtually no effect on recognition performance" 
[15]! The probable explanation for this is that the observation emission likelihoods are 
usually many orders of magnitudes smaller than the state transition probabilities.

Having ruled out the state transition probabilities, the only possible explanation left 
is that in reality it is the naive Bayes combination rule that drives the system towards 
finding the correct segmentation. This requires preferring real phonetic segments to 
‘anti-phone’ ones. Note that at the frame-level we have neither models dedicated 
to these non-phonetic segments nor training examples for them. In accordance with 
the explanations regarding segmental modelling in Chapter 6, this means that at the 
segment level we are faced with an outlier modelling problem. If our phone model is 
not able to reject these outliers, it will be prone to commit insertion and deletion errors. 
That is, it is going to cut the phonemes into more segments or fuse the frames of a 
segment with neighboring segments.
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Let us now examine how the hidden Markov model behaves when it is allowed to 
evaluate all state sequences and segmentations. Obviously, the naive Bayes rule has a 
strong preference for short segments. This is because the frame-based likelihoods are 
very small (non-negative) values, so when we multiply them we will get progressively 
smaller values for progressively longer segments. In fact, the product of the emission 
likelihoods would give the highest value if the signal was cut into 1-frame long segments, 
and to each of these the state with the highest likelihood was selected. In practice this 
behavior is avoided with the help of the language model that forces the system to fuse 
neighboring frames: when using pronunciation dictionaries, a phone series containing a 
lot of phone insertion errors will quite probably be rejected as an impossible one. The 
preference of short segments becomes more obvious when performing phone recognition 
without a language model or with a phone N-gram only: in such cases usually the 
introduction of a large phone transition penalty factor is required to counterbalance the 
insertion errors.

Let us now see how the implicit rejection of the outliers occurs. When forced to 
fuse neighboring frames, the model will prefer those subsegments in which one of the 
states provides consistently high values. If the system performs reasonably well at the 
frame level, these subsegments will mostly coincide with correct phonetic segments. It 
is also known that the frame-level classification tends to be more stable in the middle 
of the segments and more inconsistent at the segment boundaries. This will ‘push’ the 
model towards fusing frames and thus forming segments close to the central portions 
of the real phonetic segments and position the state transitions near the real segment 
boundaries1.

7.5 Experim ents

Since our goal here was comprehension and not peak performance, we worked with 
very simple models. In order to keep the HMM and the segment-based model as 
similar as possible, the HMM applied 1-state phone units and the segmental model was 
a generative one. With these simplifications the probability of a phone sequence U over 
an observation vector X  and a phonetic segmentation S is estimated as

P (U, S \X ) K p(X \S , U )P (S \U )P (U) (7.1)

in both types of models. As usual, p ( X \S, U) is calculated as a product of the corre­
sponding phone unit probabilities p (X i\u i). Only the estimation of these components 
was varied, the language model P (U ) and the duration model P (S \U ) was the same in 
every case. This way we ensured that all the differences in the systems’ behavior were 
due to the differences in the component p (X i \ui ).

To justify our reasoning we conducted experiments that help assess the influence

H t is interesting to  note that in Chapter 6 those segments tha t are part of a real segment were also 
considered anti-phones by us. The HMM, however, will reject only those anti-phones tha t overlap at 
least one segment boundary.
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of naive Bayes both on classification and recognition performance. For this purpose 
we replaced the naive Bayes product rule p (X i \ui ) n rs L  p( Xj\ui ) with alternative
combination formulae to obtain an estimate of p (X i \ui ). From a comparison of these 
results we hoped to get an indication of how beneficial or detrimental naive Bayes was 
on classification and on outlier modelling.

In the experiments the "Oasis-Numbers" speech corpus was used (see Chapter 4). 
For feature extraction we utilized the HCopy routine of the HTK toolkit [125], We 
extracted 13 MFCC coefficients from each frame, along with their first and second 
derivatives. This feature set is the most widely used one in speech recognition [58],

The segment-based model requires an additional step, namely that the variable- 
length frame-based representation has to be converted into a fixed-dimensional feature 
set. To achieve this we extracted the simple baseline segmental feature set introduced 
in Chapter 6. That is, the segments were divided into three parts along the time axis, 
and each frame-based feature was averaged over these thirds. Additionally, the length 
of the segment was also included in the segmental feature set.

To model the frame-level and segmental likelihoods Gaussian mixtures were applied, 
which is again a standard technology in speech recognition. The model parameters 
were initialized by K-means clustering and trained with Expectation Maximization. 15 
Gaussian components performed the best in the frame-level and 10 in the segmental 
modelling task. In both cases the covariance matrices were kept diagonal.

7.5.1 Classification
In the classification experiments we utilized the manual segmentation information of the 
database. This means that the search part of our decoding algorithm was deactivated 
by restricting the decoder to evaluate only the correct segmentation. All phoneme 
priors were assigned equal values in these experiments.

The percentage of correctly classified segments is shown in the first column of 
Table 7.1. The rows of the table correspond to the various methods applied to obtain 
the segment-based estimates p (X i\u i). Besides the segmental representation and the 
standard frame-based one that combines the frame-level likelihoods by multiplication, 
out of curiosity we also tried combination by averaging. Furthermore, we tested two 
further possibilities. The first one was to compensate for the bias of the product rule 
by taking the nth root of its segmental likelihood estimates, where n is the number 
of the frame-based scores multiplied (as suggested in [47]). The other idea was to 
introduce a similar bias into the segmental model by raising its estimates to the nth 
power. These manipulations clearly do not influence classification. However, they result 
in quite different likelihood estimations that may seriously affect the search process.

We have to emphasize again that our goal here was not to achieve high-performance 
classification but to compare the two approaches. The product rule combination of the 
frame-based likelihoods corresponds to a 1-state hidden Markov model, which could be 
outperformed by the usual 3-state representation. The segmental model could also be 
improved by adding further features. The results nevertheless reflect quite well the usual
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findings when comparing segmental models with HMMs, that is the modest superiority 
of the segmental representation.

We did not mention earlier that the frame-based Gaussian models were able to clas­
sify 71.54% of the frames correctly. The product rule brought a substantial improvement 
compared to this, while averaging outperformed it only modestly. In Chapter 8 we will 
see that when using neural nets instead of Gaussian mixtures, averaging will yield results 
quite similar to those of multiplication. A possible explanation is that the Gaussian- 
based and the ANN-based estimates behave quite differently. In particular, when a 
frame is classified correctly, the Gaussian-based likelihood estimate of the correct class 
is much higher than those of the competing ones. And if a frame is misclassified, the 
likelihood estimate of the correct class is still relatively high. As a consequence, the 
product rule does not get fooled by the erroneous frames, but the dominance of the 
correct ones tilts the product in the right direction. Averaging profits less from the high 
confidence of the correct decisions, and so is more vulnerable to the incorrect ones.

7.5.2 Recognition
In the recognition experiments the decoder algorithm was allowed to evaluate every 
possible segmentation. The segmental probabilities -  that is, the p ( X (S', U) component 
of Eq. (7.1) -  were calculated exactly as described in at the classification experiments, 
but now as a part of the whole search process. The duration modelling component 
P (S(U ) was simply implemented by using the same constant (0.5) for each transition 
probability. We did so because in the earlier discussions this components was judged 
to have a negligible effect on the decoding process.

As regards language modelling -  that is, the prior probabilities P (U ) of phone 
sequences -  two extreme cases were tried. In one case every phone was allowed to 
follow a phone, and with equal probability. This could be called a ‘unigram’ language 
model. In the other case the possible phone sequences were restricted to the 26-word 
vocabulary of the words in the database, with each word being equally probable. This 
corresponds to a very small vocabulary isolated word recognition task.

The scores reported when using the dictionary are simply the percentage of words 
recognized correctly. In the case of the unigram model, however, the result of recog­
nition is a phone sequence that, besides misclassifications, can contain insertion and 
deletion errors as well. These strings were evaluated by comparing them to the manual 
phonemic transcription by calculating their edit distance [125], Having obtained the 
best match, all three types of error are counted and included in the accuracy score.

When testing the product rule with the unigram model we found that -  in ac­
cordance with our expectations -  insertion errors tended to overwhelm the result. We 
compensated for this by introducing an empirically tuned phone insertion penalty factor. 
Following [79], this factor was adjusted so that the insertion errors went down to about 
10% of the number of phone instances. A similar language model compensation was 
applied in every case when the number of insertion or deletion errors became seriously 
imbalanced.
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Phoneme Model
Classification

Accuracy
Recognition Acc.

Unigram Vocabulary

Frame-based, product rule 92.33% 82.05% 96.87%
Frame-based, averaging rule 78.04% — 86.28%
Frame-based, product rule, nth root 92.33% — 41.78%
Segmental 94.58% 46.25% 87.00%
Segmental, nth power 94.58% 57.99% 88.29%

Table 7.1: Classification and recognition accuracies

The results are listed in the last two columns of Table 7.1. The most important 
finding is that the frame-based model with the product rule performed the best with 
both language models, and the segmental model could not even come close. This shows 
that better phoneme classification does not automatically warrant better recognition. 
This confirms our earlier observations that segmental modelling has difficulties with 
refusing outliers, and so the segmental recognizers need further component(s) to handle 
them. This means a further algorithmic and computational burden compared to HMM 
that ‘automagically’ handles this problem.

A further observation was that the product rule displayed a very consistent behavior 
regarding insertion and deletion errors. This means that by adjusting the phone inser­
tion penalty we could easily tune the ratio of insertions and deletions in the Unigram 
experiments. In comparison, with the averaging rule we were unable to obtain reason­
able results because certain phones tended to ‘eat up’ their neighbors, while some others 
were cut into lots of small segments. The segmental model displayed a quite similar 
capricious behavior, although to a lesser extent. Besides insufficient outlier modelling, 
weak duration modelling may also contribute to this. Although the segmental duration 
was one of the features and, in theory, the model had the option of making use of it, 
we noticed that the model still allowed ridiculously long or short segments.

As regards the compensation experiment, taking the nth root had a fatal result 
on recognition, leading to the chaotic behavior just mentioned. However, we have 
probably overcompensated for the bias of the product rule, so the experiment where 
we introduced a similar bias into the segmental model might be expected to yield more 
conclusive results. It showed that raising to a power did not cause any harm. Actually, 
it led to a slight improvement. This justifies our belief that the special bias of the 
product rule that gives preference to short segments is in practice helpful in finding 
the correct segmentation. Generally speaking, it indicates that an incorrect bias that 
severely punishes long segments performs better in finding the correct segmentation 
than a model that has not been trained to refuse fake segments and is not really good 
at duration modelling anyway.

Finally, we should also mention that segmental models are more prone to variance 
problems due to insufficient data. This is because the segmental models have more 
parameters than the frame-based ones and in a given training corpus there are of 
course many more examples of frames than of phones. This may also contribute to the 
instability of the segmental system.
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7.6 Conclusions

This chapter sought to gain an insight into why HMM speech recognizers, built on the 
naive Bayes assumption, perform so well. We argued that speech recognition consists 
of two subtasks, namely phone classification and outlier modelling, and that the naive 
Bayes rule does well in both tasks -  in spite of the fact that its probability estimates 
are very poor. As regards classification, we pointed out that the data frames are not 
independent, but are in fact just the opposite: they are highly correlated. However, 
we found evidence from the literature that this condition, although being detrimental 
on the resulting probability estimates, does not necessarily lead to poor classification. 
But this still does not explain why the recognition process is not fooled by the naive 
Bayes assumption, since during recognition the probability estimates are used, and 
not simply the classification results. We explained this here by pointing out that the 
probability estimates of the naive Bayes rule are such that they get smaller and smaller 
for longer and longer segments. This biases the model towards a strong preference 
for short segments, especially where the probability of one class is consistently high. 
This was clearly justified by the fact that in practice, when only a phone-unigram 
was used, a phone insertion penalty term had to be introduced, otherwise insertion 
errors overwhelmed the result. However, by carefully tuning this parameter or by using 
a pronunciation dictionary, this bias of the model could be nicely counterbalanced, 
so altogether we can say that naive Bayes reveals itself in a consistent and nicely 
manageable behavior from an outlier modelling point of view.

To underpin our arguments, a small set of experiments was also carried out where 
we compared the product rule with a segmental representation. We found that the 
segmental model performed only slightly better in classification and, in spite of be­
ing a better classifier, provided much worse recognition. Overall this shows that the 
simple product rule, although giving bad likelihood estimates, warrants stable and reli­
able behavior along with a decent recognition performance. In comparison, segmental 
recognizers have to take special care of outliers in order to obtain similar or better recog­
nition results. The complications and inconveniences introduced by this fact makes the 
segmental modelling paradigm less attractive. We think that our arguments and ex­
periments helped to shed light on why HMMs -  in spite of their simplicity -  behave 
so well in practice that quite complex alternative models like the segmental model can 
hardly compete with them.





C h a p te r 8

T h e  A ve ra g in g  H yb rid  

H M M /A N N  M ode l

"She’s a model and she's looking good."
Kraftwerk

This chapter deals with HMM/ANN hybrids. As the name suggests, this technol­
ogy is rooted in the conventional hidden Markov model. The only difference is that 
the observation emission likelihoods are estimated via neural nets instead of Gaussian 
mixtures. The hybrid model inherits most of the properties from the HMM, most im­
portantly the frame-oriented processing of data and the product combination rule based 
on the naive Bayes assumption. However, a significant difference is that, owing to the 
replacement of AN Ns for the GMMs, in the hybrid model class posteriors rather than 
class-conditional likelihoods are combined. This will be important for us for two rea­
sons. First, this makes the hybrid model much more analogous to the segment-based 
posterior models of Chapter 6 than the conventional HMM. Second, the multiplication 
of the frame-based posterior estimates can be interpreted as a multi-expert combina­
tion strategy. In the first part of this chapter we examine how this multiplication could 
be replaced by other combination rules like averaging. We shall argue that averaging 
actually gives a more accurate estimate of the segmental phone posteriors than the 
product rule. The second part aims to highlight the analogy between the hybrid model 
and the segment-based model. In particular, we try to identify the equivalent of the 
segmentation probability component of the segmental model, which at first look seems 
to be missing in the hybrid. We will argue that the product rule inherently contains 
this component. Having extracted the corresponding formula, we combine it with the 
averaging rule and we find that the resulting hybrid system outperforms the standard 
one on a phone recognition task and a word recognition task as well. The resulting 
new hybrid scheme will be named "the averaging hybrid” .

77
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8.1 In tro d u c tio n

In Chapter 6 we applied AN Ns to estimate the phone posteriors of whole segments. 
A more conventional way of using AN Ns in speech recognition is to apply them for 
classifying data frames only. The advantage of this is that the resulting system will be 
more closer to the standard HMM, hence easier to develop and to understand. The 
drawback is that by doing this we will again face the problem of how to combine the 
frames -  the main motivation that led us to introduce the segmental representation. 
Luckily, building a model on neural nets rather than on the Gaussian mixtures still has 
several advantages. First, AN Ns yield estimates of phone posteriors that are easier 
to interpret. In particular, it will allow us to argue that the integration of the frame- 
based probabilities is practically a multi-expert combination problem, and people in this 
scientific field prefer to work with posterior probabilities. Second, the hybrid system will 
be quite similar to the posterior-based segmental model introduced in Chapter 6. To 
reinforce this, we will identify those components of the hybrid that correspond to the 
segment-based phone classifier and the segmentation probability estimator components 
of the segmental model.

Regarding its structure, the hybrid model lies somewhere between the conventional 
HMM and the segment-based model. We start to analyze its behavior by approaching 
it from the HMM side. However, as in previous chapters, we prefer to interpret the 
decoding process as a search over phonetic segmentations rather than state sequences. 
This will lead us to argue in Section 8.4 that the observation probability calculated over 
a segment can be interpreted as a segmental phone posterior estimate. In a standard 
HMM/ANN hybrid this segmental estimate is obtained by multiplication, which is based 
on the disputable independence assumption. We suggest trying other combination rules 
from multi-expert technology like averaging and then look at the results.

Before trying the averaging rule within the speech decoding process, we will first 
assess how accurate the segmental posterior estimates are. Although we are usually 
only interested in the utterance-level performance, we considered this step an important 
one towards a more complete understanding of how the model actually works. Evalu­
ating the phone classification performance of the phone models is an obvious idea, but 
unfortunately not necessarily a proper indicator of the probability estimation accuracy. 
In Section 8.5 we propose an alternative technique that is based on the investigation 
of the marginal distributions. Both the phone classification error rate and the proposed 
method support the idea that averaging yields better segmental estimates than the 
product rule.

In Section 8.6 we test the averaging phone model in both word recognition and 
phone recognition. In the former it performs fairly well, but in the latter it fails. This 
urges us to reconsider our formulas, in particular to look for the equivalent of the 
segmentation probability component of the segmental model. We argue that although 
in theory the product of the state transition probabilities corresponds to this, they do 
not fulfill their task as they are not sufficient to force the model to find the correct 
segmentation. Instead, the product rule inherently contains a factor that expresses the 
incoherence of the frame-based experts. More precisely, by examining the (simplified)
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product rule we find that its posterior estimates do not sum to one, but rather their sum 
is proportional to a value that can be regarded as an indicator of the incoherence of the 
frame-based estimators. Hence we claim that the product rule is a very lucky choice in 
the sense that it automatically accounts for the segmentation probability factor as well. 
We will borrow this feature from the product rule and combine it with the averaging 
posterior estimation scheme. We find that with it this novel model outperforms both the 
conventional HMM and the standard HMM/ANN hybrid in both the phone recognition 
and word recognition tasks. We will call this new framework the "averaging hybrid” .

8.2 Database and Baseline Results from  H T K

All the results presented in this paper were obtained using the MTBA Hungarian Tele­
phone Speech Database. For training we employed 1367 sentences; for the isolated 
word recognition tests we used a block of 431 city name recordings. For a more de­
tailed description of the database and the train/test data see Chapter 4.

To have a reference baseline result on this database, we trained standard Gaussian 
phone models with the well-known Hidden Markov Model Toolkit (HTK) [125], For 
testing we used our own decoder (the OASIS MPQEngine -  see Chapter 4), but first 
of course we made certain that it produced results that were practically equivalent to 
those of the Hvite module of HTK. For preprocessing we applied the default preprocessor 
configuration. That is, we extracted 13 MFCC coefficients from each frame, along with 
the corresponding delta and delta-delta values, thus obtaining the usual 39-element 
feature vector. We should remark here that the same front-end and decoder algorithms 
were used in all the experiments carried out by us.

First we trained 3-state monophone models by using the manual segmentation, that 
is no embedded training was applied. The best results were obtained with 9 Gaussians, 
yielding a word recognition error rate of 7.66% on the city name test set. Embedded 
training brought only a slight improvement over this, resulting in an error rate of 6.73%.

Hybrid HMM/ANN systems have only one state per phone so, to be comparable, 
we also created phone models with just one state. The performance dropped dramat­
ically, producing a word error rate of 17.17%. Then we slightly modified our decoder 
algorithm, forcing it to remain for at least three frames in every state (this can also 
be interpreted as using a 3-state model with all states sharing the same distribution). 
Somewhat surprisingly, the error rate decreased significantly, almost attaining that of 
the 3-state model. Considering that 3-state modelling was invented to account for 
the three pronunciation phases of phones, it is interesting to see that the bulk of the 
improvement of switching from a 1-state model to a 3-state one was in fact due to the 
minimal duration restriction. We obtained slightly better results than the previous one 
by increasing the minimum duration restriction to 4 frames, so this restriction was ap­
plied in every subsequent experiment (see Table 8.1 for a summary of the HMM/GMM 
results).

It is mentioned in the literature that the state transition probabilities have practically 
no effect on recognition performance [15]. We replaced all self-transition probabilities
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HMM/GMM Setup WER

3-state, embedded training 6.73%
3-state, isolated training 7.66%
1-state, isolated training 17.17%
1-state, min.duration=3 9.52%
1-state, min.duration=4 8.13%
1-state, min.dur=4, shared trans. prob. 8.13%

Table 8.1: Word error rates of a conventional HMM/GMM recognizer

Setup WER

division by the priors 6.97%
no division by the priors 23.44%

Table 8.2: Word error rates of a standard HMM/ANN hybrid

by 0.6 in the 1-state model, and indeed found that the word error rate did not change. 
This finding is important in two respects. First, in HMM/ANN systems it is common 
practice to use the same fixed value for each transition probability [45], as we did in our 
HMM/ANN hybrid. After introducing the same simplification in the standard HMM 
we could be sure that all differences in the behavior of the two types of systems are due 
to the differences in how they model the observation emission probabilities. Second, 
this result indicates that it is not the state transition probabilities that drive the model 
to find the correct segmentation of an observation sequence, but rather the emission 
probabilities handle this. We will return to this point in Section 8.7.

For the sake of completeness we should mention here that no context-dependent 
models were tried and, to our knowledge, nobody has yet performed such tests on 
this database. However, considering the size of the corpus and its richness in phone 
connections, a very severe amount of parameter tying would be required to construct 
triphone models, say.

8.3 Results O bta ined from  a S tandard H M M /A N N  

H ybrid

In the past one and half decades several ways of making use of AN Ns in speech recog­
nition have been proposed. The most successful approach is probably the HMM/ANN 
hybrid suggested by Morgan et al. [88], Here the basic idea is very simple: in a con­
ventional HMM, replace the state-conditional emission likelihood estimates p(x t \qk) by 
ANN-based posterior estimates1. That is, one should

xWe will use the caret symbol to  denote estimates.
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•  create frame-based posterior estimates P(qk\xt ) using AN Ns.

•  apply Bayes’ rule to convert the posteriors to state-conditional likelihoods. (This 
would require calculating P(qk\xt )p(xt ) /P (q k), but the p (x t ) values do not in­
fluence the maximization process and hence can be discarded. So in practice we 
only divide P(qk\xt ) by the state priors P(qk), obtaining a scaled version of the 
state-conditional likelihoods.)

•  integrate the frame-based estimates obtained this way into the usual HMM frame­
work.

Compared to the usual Gaussian mixture based modelling, AN Ns offer a more flexible 
representation with far fewer parameters, and a naturally inherent discriminative training 
(at the frame level). The training of the neural net can be performed on a manually 
segmented data set, but a Viterbi-style iterative embedded training is also viable [88], 
Moreover, sophisticated training algorithms have been proposed that are discriminative 
at the utterance level as well [13].

In our experiments we chose to optimize the net at the frame level only, based on 
the manual segmentation. The neural net applied was a 2-layer MLP with 150 hidden 
neurons and a softmax output layer. Training was performed by back-propagation, with 
a cross-validation stopping criterion. The frame-level classification error obtained was 
46.47%, and the word error rate of the HMM/ANN hybrid built on this net was 6.97% 
on the city name database.

Morgan et al. discuss whether the division by the state priors is really necessary, 
or if the recognizer could work by using the posteriors only [88], We also carried out 
tests by omitting the division by the priors. Then the word error rate was 23.44% 
(see also Table 8.2). Morgan et al. observed a similar drop in the performance and 
conjectured that it might be due to the fact that, owing to their discriminative nature, 
hybrid models are more sensitive to discrepancies between the pronunciation dictionary 
and the real content of an utterance. They suggested that with the proper design of 
the pronunciation alternatives of a word this performance gap might be reduced [88], 
Unfortunately, we could not find any paper in the literature that thoroughly examines 
this issue; we will return to it later and draw our own conclusions.

8.4 A lte rn a tive  W ays o f C om bin ing  the  Posteriors

In the previous section HMM/ANN hybrids were introduced as a special kind of HMMs. 
In the following, however, we are going to examine them using the segment-based view 
that was applied throughout this dissertation. As we saw in Chapter 7, this view lead us 
to very important conclusions about how HMMs work. HMM/ANN hybrids are much 
closer to the segment-based models of Chapter 6 than HMMs, as they also work with 
phone posteriors. Hence, comparing the hybrid model with the segment-based model, 
and in particular identifying how the two main components of the latter -  the segmental
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phone posterior estimate and the segmentation probability estimate -  are computed in 
the former could be quite instructive.

First of all, let us examine how the hybrid model evaluates a supposed segment. 
Let X  =  (x 1}...,xt ) denote the observation sequence, U =  (u 1}...,un ) be a sequence 
of phonetic units over a phone set {q1} ...,qM }, and S =  (s0, ..., sN ) be a segmentation 
(given as N  +  1 segment boundary time indices). In a standard HMM each phonetic 
unit has to account for x S -  =  (x S i—1 ,. ..,x S i-1 ), the signal segment mapped to it. 
More precisely, the model requires an estimate of p (x SS i~1\ui  =  qk ), the likelihood that 
the given segment was generated by the corresponding phonetic unit. This likelihood 
is approximated by multiplying the frame-based likelihood estimates:

p(x Si -1 
si— 1\ui)

Si - 1

n  p(xj \ u i) .
J=Si—1

(8.1)

In the hybrid model Bayes’ rule is invoked, and the above formula is replaced by

P(xt _ 1i
Si—1\ui )

Si - 1n
j  =  Si —1

P(ui\X j )p(Xj )

P  (ui)
(8.2)

The p (x j) terms are common in every hypothesis, so moving them to the other side 
of the equation does not influence the recognition result. Furthermore, assuming that

Si-1

p (x^ ~ î ) =  n p (x j ^  (8-3)
j  =  S i —1

we obtain

p (x S j - 1: \u i ) 

p (x sd ) J = Si—1

P(uj\X j )

P  (ui)
(8.4)

the left-hand side being a scaled version of what the HMM requires, and the right-hand 
side is how we actually compute it in the hybrid model.

Let us now examine Eq. (8.4). For a clearer interpretation we apply Bayes’ rule on 
the left and take the P(ui) constant out from the product on the right. This leads to

P  (ui\xSiJ1) 
P  (ui)

nSi-1
j  = Si—1P (u i\Xj )

P  (u i)l(i)
(8.5)

where l( i)  =  si —  si-1 is just a more compact notation for the length of the segment. 
If we had multiplied both sides by P (ui ) the formula would have been

P  ( u i \ x S i ! )

nSi-1
j = Si—1P(u i \Xj  )

P  (u i)l(i)-1
(8.6)

In classifier combination theory Eq. (8.6) is known as the product rule for obtain­
ing an estimate of the class posteriors from the estimate of l( i)  independent classifiers 
[108],
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Based on this, the operation of the hybrid model can also be interpreted as consisting 
of the steps

•  Take the frame-based posterior estimates.

•  Apply the product rule to combine them into a segmental posterior estimate.

•  Divide by the class prior to convert the posterior to a scaled version of the class- 
conditional likelihood.

•  Integrate the segmental estimates obtained this way into the HMM framework.

The product rule is derived from the assumptions that both the {x j  1 and the
{x j  ¡Ui j SL-s^  1 values are independent within a segment. This is, however, far from being 
true, and is one of the chief criticisms of the HMM approach [93], We listed the most 
important arguments against the independence assumption in Chapter 2, and these 
arguments lead us to introduce the segment-based modelling framework in Chapter 6 .

In Chapter 6  the segment-based posteriors P (u i  {xSi. — ) were estimated in one step by 
sophisticated segmental models. According to Eq. (8 .6 ), the HMM/ANN hybrids can 
also be interpreted as if they were working with segment-based estimates P (u i \xss i — ), 
but this time these are obtained via combining frame-based estimates using the product 
rule. A possible alternative of segment-based modelling is that we insist on working 
with frame based-scores, but -  knowing that the product rule is based on an incorrect 
assumption -  we try other (maybe similarly incorrect) combination rules and see what 
happens. For example, we could omit the division by the class priors and estimate the 
segmental posteriors as Si-

Si- 1

p {u i K i i ) ~  n  p (u i \x i )•
J=Si- 1

(8.7)

From now on we will refer to this formula as the simplified product rule.
As a third possibility, we could use the averaging rule of classifier combination 

theory:

P (ui\x li-  )
p ( u i \ x j )

i( i)
(8.8)

It is important to note that while averaging directly guarantees that the segmental 
estimates of the different phone classes add up to one (if the frame-based ones do), in 
the case of the product rule it would hold only if the independence assumption were 
correct. And we have neither direct, nor indirect guarantees that this is so in the case of 
the simplified product rule. Hence we will also experiment with versions of the product 
rules where the sum of the estimates is normalized to one. These will be referred to 
as the normalized product rule and the normalized simplified product rule, 
respectively.
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Combination rule PhER

product rule 43.19%
simplified product rule 42.44%
averaging rule 43.29%
normalized product rule 43.19%
normalized simplified product rule 42.44%

Table 8.3: Phone classification errors of the different segmental posterior estimators

8.5 Assessing th e  A ccuracy o f the  Segm ental Pos­

te r io r Estim ates

In a HMM speech recognizer we create a hierarchy of embedded models (frames - 
phones - words - sentences). Such a model can be optimized directly for a minimal 
error rate at the highest hierarchical level, in which case the parameters of the building 
units are tuned implicitly. This sort of embedded training is very appealing if we are 
interested only in the best global performance. Theoretically, however, it might happen 
that global optimality requires that the embedded components behave suboptimally. 
Even worse, it might force the components to represent different things that they were 
intended to by the creator of the model. For example, a HMM might have very good 
utterance-level performance even if the values returned by its phone models had nothing 
to do with phone likelihoods or posteriors. This may not bother us if performance is 
all that matters, but it is most discouraging if we expect speech recognition to mimic 
human speech perception in all its components. This is our motivation here to examine 
and compare the five combination rules from the viewpoint of how well they fulfill their 
intended task -  the modelling of the phone posteriors.

The motivation behind probabilistic pattern recognition is the theorem that by 
having the class posteriors we could do optimal classification (in the sense of minimal 
risk) [26], In practice, however, we can only estimate the posteriors. First, the models 
themselves may be built on incorrect assumptions, and hence be biased. Second, 
the training algorithms would require an infinite amount of training data for an ideal 
approximation. Third, because of categorical perception, human subjects are not able 
to express the identity of, for example, a phonetic segment in terms of probabilities. 
Hence we cannot directly check the accuracy of our estimates. We have only an indirect 
indicator, the classification error rate. Examining the phone classification performance 
of the five posterior models, we obtained the results shown in Table 8.3. These scores 
suggest that averaging is in practice just as good as the product rule, and the simplified 
product rule, although not justified theoretically, is slightly better than the other two.

Unfortunately, good classification does not necessarily mean a good estimate of the 
probabilities. It is easy to see this when we realize that correct classification requires 
only that the correct class had the maximal probability score; the values themselves 
may not be related to the real probabilities at all. Obviously, this is the reason why 
normalizing did not influence the performance of the product rules, although it might 
have significantly changed the estimates themselves.
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Rule MSE

product rule 8 . 1 2  • 1 0 110

simplified product rule 7.16 • 10“ 4

averaging rule 5.77 • 10- 5

normalized product rule 1.34 • 10“ 4

normalized simplified product rule 5.09 • 10- 5

Table 8.4: Mean squared difference between P(u) and X  x P(u\x)dx

Because of this weak connection between the estimation accuracy and the classifi­
cation error rate we introduced another, more sensitive strategy to assess the accuracy 
of the posterior estimates. This is based on the simple identity

/  p (x)P (u\x)dx =  P(u). (8.9)
J  X

With this, having an estimate P(u\x), we can examine how precisely the marginal 
of the distribution p (x)P (u\x) & p(u, x) over x coincides with the class priors P(u). Of 
course, in practice p(x) and P(u) are available only in the form of estimates, but since 
they have much smaller spatial dimensions, we can assume them to be more accurate 
than P(u|x). In our case an estimate of the right-hand side (P(u)) is obtained as 
the average occurrence of the different class labels in the data set. An estimate for 
the left-hand side is calculated by supposing that p(x) is faithfully represented by the 
distribution of the data items, so we simply average the combination rule outputs over 
the corpus. The final step is a comparison of the two estimates, both visually and by 
calculating their mean-squared difference.

This operation was performed for each of the five combination rules. Figures 8.1.a 
and 8 .1 .b clearly show that the estimates of the averaging rule are much closer to 
P(u) than those of the simplified product rule that significantly underestimate the 
posteriors. Division by the priors could offset this, but in practice it results in an 
overcompensation: estimates obtained with the product rule are frequently bigger than 
one, and often have such large values that we could not even visualize the averages on 
a single scale with P(u). It is easy to understand how this might occur. Imagine a 
segment where the neural net very confidently identifies all frames, so the product of 
its outputs corresponding to the correct class is close to one. If the a priori probability 
of this class is around 1/50 and the segment consists of 11 frames, then the posterior 
estimate yielded by the product rule will be around 5010.

Evidently, normalization considerably alleviates the underestimation-overestimation 
problem of the product rules, which is clear from comparing Fig. 8 .l.b  with Fig. 8.1.c. It 
is also justified by the mean squared differences listed in Table 8.4. Based on the results 
of both this investigation and the phone classification performance, we may conclude 
that the normalized simplified product rule is the best estimator. The averaging rule is 
just slightly worse, while the product rule derived from the independence assumption is 
worse in both respects.
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Figure 8.1: The estimates of P(u) obtained from using P(u), (white columns) and 
from marginalization (black columns) based on the estimates of (a) the averaging rule, 
(b) the simplified product rule and (c) the normalized simplified product rule

8.6 D ecoding using th e  Segm ental Phone Poste­

riors

Now let us examine how the different segmental posterior estimates behave when in­
tegrated into the recognition process. For this we have to give a decomposition of 
the utterance-level probabilities and see what other components are required besides 
the segment-based posteriors. The derivation given here is very similar to those given 
in Chapter 2 and Chapter 6 , but for the sake of completeness we briefly repeat the 
workings.

First of all, HMM is a generative model, which means that although P (U \X ) 
is required, we model p (X \U )P (U ) instead. P(U), the prior probability of a word, 
is produced by the language model, and the HMM is responsible for p (X \U ). This 
factor is approximated by examining all possible state sequences or, in our terminology,
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segmentations S. That is,

p (X \U ) =  p (X , S\U) =  p(X \S , U)P (S \U) «  maxp(X \S , U)P (S \U).

(8.10)

Now both p ( X \S, U ) and P  (S \U ) are decomposed into phone-lev el scores. P  (S \U ) 
corresponds to the probability of a state sequence in a HMM, but from a segment-based 
aspect it is better to regard it as a product of exponential phone duration models, 
P(S i \ui ) representing the probability that the zth unit corresponds to the segment 
Si  =  (si -1 ,s i ). With these duration models

N

P (S \U ) « n  P  (Si \ui ), (8.11)
i=1

and, as mentioned earlier, we employed the same duration model P(S i \ui ) =  0.6l(i) 
for each unit.

The other term, p ( X \S, U ) is written as

N

p ( X \s , u  ) «  n  p (xss - i \ u i )- (8 i2 )
i= 1

Substituting Eq. (8.1) for p(xSi - 1L\uj)  yields a standard 1-state HMM, while taking 
the five segmental posterior estimates of Section 8.4, dividing them by P (u )  and 
substituting them for p (x SSl~1\ui ) results in five possible HMM/ANN hybrids. The 
product rule corresponds to the standard HMM/ANN hybrid, the simplified product rule 
to the standard HMM/ANN hybrid without division by the priors, and the remaining 
three are new ones.

Let us now compare the five different hybrid models on the city name recognition 
task. The word error rates are shown in Table 8.5 and clearly indicate the superiority 
of the product rule. Only the averaging rule could get reasonably close to it, all the 
other rules performing dismally. It is interesting to note that normalization had a 
detrimental effect on both product rules, in spite of our earlier finding that it improves 
their accuracy as segmental posterior estimators. Moreover, the product rule yielding 
the worse segmental estimates resulted in the best word error rates, while the normalized 
simplified product rule yielding the best segmental estimates gave the worse word-level 
results. This severe discrepancy between the phone level and the word level suggests 
the presence of some conceptual flaw. In the following we try to shed light on it with 
phone recognition tests.

There is no doubt that restricting the possible recognition results to a dictionary of a 
moderate size considerably influences the recognition process. To examine more closely 
how some new acoustic model behaves, it might be instructive to evaluate it without 
the help of a dictionary, that is on a phone recognition task. Hence we performed 
such tests, using only a phone-unigram language model assuming that P (u L, ...,u N ) =  
P  (uL) ■ ■ ■  P  (uN  ). In the case of the hybrid models it was implemented by omitting 
the division by the prior in Eq. (8.5), while in the conventional Gaussian HMM a
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Combination Rule WER

product rule 6.97%
simplified product rule 23.44%
averaging rule 8.13%
normalized product rule 32.66%
normalized simplified product rule 49.19%

Table 8.5: Word error rates of the HMM/ANN hybrid with the different combination 
rules

Model GMM Prod. S.Prod. Avg. N.Prod N.S.Prod

PhIP 7.0 4.0 0.3 3.9 2.505 2.5002
CORR 56.29% 56.82% 57.46% 17.04% 34.90% 34.22%
ACC 46.38% 46.44% 47.71% 8.63% 23.34% 21.64%
INS 9.91% 10.38% 9.74% 8.41% 11.55% 12.58%

Table 8 .6 : Phone recognition performance of the various models. GMM: 1-state GMM 
with 4 frames minimum duration; Prod: hybrid with the product rule; S.Prod: hybrid 
with the simplified product rule; Avg: hybrid with the averaging rule; N.Prod: hybrid 
with the normalized product rule; N.S.Prod: hybrid with the normalized simplified 
product rule; PhIP: the value o f the phone insertion penalty, CORR: correctness; ACC: 
accuracy; INS: insertion rate

multiplication by P (u i) was included in the evaluation of a segment.
The phone strings obtained from the recognizer were quantified by their correctness 

and accuracy, calculated in the usual way from the phone insertion, deletion and substi­
tution errors [125], Because in certain settings the insertion or deletion errors swamped 
the result, the introduction of a phone insertion penalty factor [58] was required. Fol­
lowing [79], we empirically tuned the insertion penalty for each case until the number 
of insertion errors became about 10% of the number of phones. The results with a 
conventional HMM/GMM and the five HMM/ANN hybrids are summarized in Table 
8.6.

Examining the results, we see that the conventional Gaussian model and the hybrids 
with the product rule and the simplified product rule performed just as well. The other 
three hybrids were not able to produce a reasonable recognition result. Having found 
earlier that all models performed very similarly in the phone classification task, this 
leads us to think that their failure in phone recognition was due to their inability to 
find the proper segmentation of the signal. It is reinforced by the fact that without a 
transition penalty (or, in this case, reward) they would have covered any sound file with 
a single phone. Overall these observations lead us to make the following conjectures:

•  Normalization undermines the ability of those models built on the product rules to 
find the segmentation of a phone sequence. This indicates that the exponential 
duration models are not able to fulfill their role of forcing the system to find the 
correct segmentation, but the product rules themselves solve this problem. That 
is, the fact that their segmental posterior estimates do not sum to one is not a 
drawback, but is actually a very useful feature.
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•  The dictionary can be very helpful. With it the averaging model that proved 
useless in phone recognition performed quite well in word recognition.

•  The dictionary can be harmful too. The simplified product rule that was the best 
in both phone classification and phone recognition was not really good at word 
recognition, perhaps because it could not work consistently with the dictionary.

8.7 T he  Need fo r a S egm entation  P ro b a b ility  C om ­

ponent

The findings of the previous section seem to be in accord with those of Chapter 7 
where we concluded that the naive Bayes rule can automatically handle the outlier or 
’anti-phone’ segments. The same thing appears to happen here with the product and 
simplified product rules. Our suspicion is reinforced by the fact that the normalization of 
the segmental posterior estimates obtained from these rules ruins the results. A possible 
explanation for this is that normalization destroys the inherent outlier modelling ability 
of these rules.

In the following we try to explain precisely why and how the normalization step 
influences the recognition process. To get a better insight of what is going on, we 
have to revisit the derivations of the previous section. We need to do so because they 
seem to contradict the decomposition derived in Chapter 6 . That is, although in both 
cases we arrived at formulas built on segmental phone posteriors, in Chapter 6  the 
segmentation probability factor P (S \X ) appeared explicitly, while in equations (8 .1 1 ) 
and (8.12) it seems to be missing. Upon re-examination we can see that we made a 
small mistake in Eq. (8.12) where, during decomposition, we did not explicitly denote 
S among the conditions of the segment-based phone probabilities. This formula should 
have been

N
P( X \S ,U ) ~  P(xtiZl;\Si,U i) , (8.13)

i=1

where Si can be interpreted as the event that x ss _  is a correct phonetic segment. 
After applying Bayes’ rule on the components we would have arrived at

p  (Si ,u i \x %_])p(x%

P (S i,u i)
(8.14)

Ignoring the observation prior probability and decomposing P(S i ,u i ), we would have 
obtained

p  (Si , Ui\xSi _ l ) 
P  (S i\u i)P  (ui)

(8.15)

Substituting this into Eq. (8.10) we see that, after multiplication by the correspond­
ing factor from Eq. (8.11), the duration probability P(Si \ui ) cancels out. The other
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difference is that now we have P{Si ,u i \xSi ~! ) instead of P {u i \xSSi ~! ). That is, rather 
than having a separate duration model, the phone posterior estimator has to handle Si 
as well. An intuitive interpretation is that because a randomly chosen segment xS—  
does not necessarily coincide with a phone, the model should accommodate not only 
the various phone classes but also the possibility that the segment does not belong to 
any of these.

Alternatively, we could decompose P{Si ,u i \xssi - 1 ) like so:

P{S i ,U i \ x 8* ) «  p {S i \ x Ssi _l )p {Ui \ x S ij _l ) (8.16)

then we can interpret it as follows: the component P(n^xS. - ! )  can be kept as before, 
but we have to introduce a further factor, P(S^xS . - ! ) . Its role is to compute the 
probability that the given segment corresponds to a phone, and so to guide the model 
towards finding the correct segmentation of the signal.

Let us now examine how we could modify our averaging hybrid so as to conform with 
Eq. (8.16). To achieve this we have to introduce a further component that represents 
how much the given segment corresponds to a phone. The duration models used so far 
can be regarded as possible candidates because the duration information is implicitly 
present in xS. - ^. But we can do much more, as xsSi —  is now on the conditioning side, 
so we can make use of the frame-based posterior estimates as well. A disagreement of 
the frame-based experts is likely to refer to a phonetically inhomogenious segment, so a 
reasonable idea is to look for a formula that expresses the coherence of the frame-based 
scores.

We could create such formulas from scratch, but rather than doing so, let us first 
examine why the simplified product rule did so well in phone recognition. From the 
phone recognition tests we suspected the fact that it was not normalized to be somehow 
connected with this. So let us examine the sum of the estimates produced by the 
simplified product rule. Knowing that our frame-based estimates are correct in the 
sense that they are guaranteed to add up to one (a softmax output layer was used), we 
can write

S. - l  S. - l  /  M

1 =  n 1 =  n  ( j2 P){ui = qk\x j )
j = Si - i  j = Si - i  \k = 1

(8.17)

Si 1M  /  S . - l  \

1 1 1  P {u i  =  qk \x j n +  ^  ( n P {u i  =  qk j \ x )
k=i \ j =S i - 1 )  i  <  kS - i ,  ̂  ̂  ̂ , k . - 1 <  M  \ j =S i - 1

3p, r  : kp  =  kr

Here the first term is the sum of the segmental posterior estimates of the simplified 
product rule, so we can rearrange it like so
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M

=  qk \x s i-D
k=i

£
1 <  ks — , ■ ■ ■ , k s i - i  < M  

3p, r  : kp  =  kr

S i - 1

n  P ( u i  =  qk j \ x j )
J  =  S i - 1

(8.18)

The term on the right-hand side of Eq. (8.18) contains all products with mixed qk 
class targets. The larger the disagreement between the frame-based experts, the larger 
this term becomes. Consequently, it may be interpreted as a measure of incoherence of 
the frame-based posteriors. So we see that the posterior estimates obtained from the 
simplified product rule do not add up to one, but rather to a term that can be viewed 
as an estimate of P (S'i\xSi - 11). Then we can say that the simplified product rule not 
only estimates the class posteriors, but also inherently accounts for the outlierness of 
a segment. This effect is still present when we divide by the priors. The discovery in 
Section 8.5 that with normalization the estimates become much more accurate also 
strengthens the notion that we will obtain a better interpretation of the product rules if 
we view their result as a product of a phone posterior estimate and a segment probability 
estimate.

In the following we tried to use J2kL1 P (ui =  ck IxS- 1 ) of the simplified product rule 
as an approximation for the P (^ i \xSi - 11) component of the averaging hybrid. The best 
performance was found when the exponential duration models were also kept. Table 
8.7 presents the phone recognition results with this extended model. As one can see, 
the introduction of this factor raised the performance of the averaging hybrid so that 
it achieved results similar to those obtained earlier.

The next step was to try this extended averaging model on the word recognition task. 
In this case we found that the model tended to prefer longer words, so we had to scale 
the newly introduced segmentation component (by raising it to a power). Although this 
is discouraging, since the formulas do not explain why such a scaling factor is necessary, 
a similar scaling is usually done with the language model of the HMM recognizers [58], 
Moreover, we can find examples in the literature where the duration model is scaled 
in a similar way [91], so we think that scaling the segmentation factor the same way 
is not a bigger crime. The best word error rates here were obtained with exponents 
around 0.1, and the smallest error rate was 6.04%, beating all the previous results (cf. 
Tables 8.1 and 8.5).

As the exponent was optimized on the test dataset, correctness required that we 
repeat our testing on a different database. For this purpose we selected another block 
of 438 recordings from the MTBA database, again containing city names, but this time 
over a smaller vocabulary (see Chapter 4 for details on this test set). All the models that 
attained a reasonable score on the other test set were evaluated on these recordings, 
and the results are listed in Table 8 .8 . The scores show that the segmentation factor 
significantly improved the performance of the averaging hybrid, actually pushing it into 
the top position.
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Segm. prob. factor exponent 1.0
PhIP 0.5
CORR 57.01%
ACC 47.92%
INS 9.09%

Table 8.7: Phone recognition performance of the averaging hybrid with a segmentation 
probability factor

Model WER

3-state HMM/GMM 4.80%
1-state HMM/GMM, min.dur=4, shared trans. prob. 5.26%
standard HMM/ANN hybrid with division by the priors 4.57%
averaging hybrid without segm.factor 5.26%
averaging hybrid with segm.factor exp=0.1 3.20%

Table 8.8: Word error rates of the different models on the second test set

8.8 Discussion and Conclusions

In this chapter we argued that if the independence assumption does not hold, the 
product rule is just as ad hoc as any other rule, and we proposed to try the averaging rule 
instead. Although we focused on proving its viability through recognition results, one 
can also supply intuitive arguments for it. From an expert combination point of view, 
the product rule is a better choice if the frames all contain complementary information, 
and all of this is required for a correct classification. Averaging is preferable if the 
frames all carry similar information, so their combination only reinforces the estimate, 
but brings no new knowledge. Intuitively we can say that in the case of speech frames 
the truth is somewhere in between, so neither of the two rules is optimal. It is also 
interesting to note that the error rates for phone classification seen in Section 8.5 
are just slightly better (around 42%) than those for the frame classification given in 
Section 8.3 (46.47%). This is rather disappointing, and it also indicates that either 
the frames do not contain complementary information or that the combination rules 
fail to properly integrate their information content. The latter is supported by the fact 
that with a rather simple segmental representation we were able to obtain a phone 
classification error of 32.17% on the same database in Chapter 6. Both the intuitive 
argument and this result indicates that it is worth searching for better combination 
rules, either by selecting them empirically or by taking a family of parametric rules 
and optimizing their parameters algorithmically. Actually, experimenting with different 
posterior combination rules has now a long tradition when the posteriors are provided 
by different preprocessors or frequency bands (these are known as the multi-stream and 
multi-band approaches) [45], But they are rarely applied to frames, probably because 
the usual decoding process has to be slightly modified. A notable exception is the 
’extended union model’ of Ming et al. [85] and Chan et al. [19], which is reported to be 
robust against short-time temporal noise corruptions. Although we did not test it, one 
expects the averaging rule to be more resistant to impulse-like noises than the product
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rule as averaging dampens the local classification errors, while multiplication amplifies 
them [108], Hence robustness suggests a preference for an OR-like combination rule to 
an AND-like one, irrespective of whether we work with frames or frequency bands.

Our other main conclusion of the chapter was that, similar to the posterior-based 
segmental models of Chapter 6, the segmentation probability factor is present in the 
conventional HMM/ANN hybrid too, although in a somewhat hidden form. We argued 
that the simplified product rule implicitly contains this factor in the sum of its estimates. 
We proved it by removing this factor by normalization, after which the simplified product 
rule gave a more accurate estimate, based on its marginal distributions, but was no 
longer able to perform phone recognition. Moreover, when we incorporated this factor 
into the averaging model, its phone recognition performance became comparable to 
that of the simplified product rule. The formula that was found to approximate the 
segment probability value can be interpreted as a measure of the incoherence of the 
frame-based results, but is not optimal in any sense. Hence it would be a good idea to 
look for other formulations, possibly ones that can also be algorithmically optimized.

Comparing the phone recognition and word recognition tests, we can confirm the 
earlier reports that better phone recognition does not necessarily indicate better word 
recognition, and vice versa. In particular, we find it disturbing that the simplified 
product rule -  found to be the best segmental estimator and the best model for phone 
recognition -  did not perform well in word recognition. Division by the priors actually 
makes the segmental estimates worse, so we can say that it does not help by improving 
the acoustic models (as independence would suggest), but by making the cooperation 
with the language model more successful. The way of how and when the dictionary 
helps the recognition is not fully clear to us and deserves further analysis. Another 
unsatisfactory issue is that, in the case of our newly proposed averaging hybrid, a 
different scaling factor of the segmentation probability component was optimal for the 
word and the phone recognition tasks. A possible explanation for this is that with 
the introduction of an additional expert -  the dictionary -  a smaller weight is required 
for the segmentation expert. These two information sources can work quite well on 
their own, so we have the impression that combining them by multiplication is far from 
optimal and reasonable, but this issue requires additional study.

Another interesting finding is that the averaging rule and the normalized simpli­
fied product rule gave very similar results in the phone classification and the marginal 
distribution experiments. However, in the word recognition task they behaved quite 
differently (with a segmentation probability factor and without it). This suggests that 
the distributions they represent are rather different, but the classification results and the 
marginals are not able to reflect this difference. This phenomenon definitely deserves 
further investigation.





C h a p te r 9

E x p lic it  D u ra tio n  M o d e llin g  and 

R esam pling -B ased  T ra in in g  in 

H M M /A N N  H yb rids

"Speech recognition is more a craft than a science. "
Paul Heisterkamp

This chapter proposes two relatively small, but interesting refinements over the 
HMM/ANN hybrids of Chapter 8. One of them is the replacement of the implicit 
phone duration models (determined by the state transition probabilities) by explicit 
duration models built on the gamma distribution. The other refinement proposes a 
minor modification to the training method of the neural net used in the hybrid. Both 
improvements will bring a modest increase in the recognition performance.

9.1 E xp lic it D ura tio n  M ode lling  in H M M /A N N  

H ybrids

In some languages like Finnish or Hungarian phone duration is a very important dis­
tinctive acoustic cue. The conventional HMM speech recognition framework, however, 
is known to poorly model the duration information. In this section we compare dif­
ferent duration models within the framework of HMM/ANN hybrids. The tests will 
be performed with both the conventional hybrid and the averaging hybrid proposed in 
Chapter 8. Independent of the model configuration, we report that using the usual 
exponential duration model has no detectable advantage over using no duration model. 
Similarly, applying the same fixed value for all state transition probabilities, as is usual 
with HMM/ANN systems, is found to have no influence on the performance. However, 
the practical trick of imposing a minimum duration on the phones turns out to be very 
useful. The key part of the section is the introduction of the gamma distribution du­
ration model, which proves superior to the exponential one, yielding a 12-20% relative
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improvement in the word error rate, thus justifying the use of sophisticated duration 
models in speech recognition.

Explicit Duration Modelling and Resampling-Based Training in
____________________________________ HMM/ANN Hybrids

9.1.1 The Need for Better Duration Modelling

In Hungarian the duration of a phone is very important, as in some cases it may be 
the only clue in discriminating certain words. Good duration modelling can therefore 
be an important issue. The conventional HMM speech recognition framework however 
does not really make use of the duration information. Though the state transition 
probabilities can be regarded as a geometric duration model, this model is not that 
effective. First, the geometric distribution is a very poor approximation of real phone 
durations. Second, several authors have reported that the state transition values have 
practically no influence on the recognition scores [15]. In this section we examine the 
issue of duration modelling within the framework of HMM/ANN hybrids. The proposed 
alternative duration models will be evaluated in combination with both the conventional 
and the averaging hybrids presented in Chapter 8 . In both cases we seek to answer 
two questions. First, we want to either prove or refute the common view that the 
geometric duration model is wholly ineffective. Second, we would like to know whether 
the replacement of the geometric model with a more sophisticated gamma distribution 
can improve the performance of the two hybrids.

Since the models used here are basically the same as those described in Chapter 
8 , we will not re-introduce and repeat all the notations and derivations here. We will 
simply remind the reader that in our models the decomposition into segment-level scores 
has the form

p (X ,S \U )
NnP ( u i \ x S s i J )  • P (S i \x S:_1l )

P (u i)
(9.1)

Eq. (9.1) has two main components. The first, P (u ^x ^ - !) , which will be referred to 
as Pu later on, represents the fact that each phonetic unit ui has to be identified from 

xSSi- 1 =  (xSi-1, ■ ■ ■ ,xSi- 1), the signal segment mapped to it. For the estimation of this 
segment-based posterior probability we proposed the product rule and the averaging rule 
in Chapter 8 . The other component, P (Si \xSi - 11) can be interpreted as the probability 
that x sJ-~_1 is a correct phonetic segment, and its role is to guide the model towards 
finding the correct segmentation of the signal. Although in theory the state transition 
probabilities are responsible for this, in Chapter 8  we argued that they do not fulfill this 
task. We also argued that the product rule inherently contains a formula (Eq. (8.18)) 
for this and proposed to use the same formula in the averaging hybrid. In the following 
we will refer to (8.18)) as PS, and the product of the state transition probabilities will 
simply be denoted by PD. As in the models both PS and PD are present, we can 
say that altogether the PS • PD product estimates P (Si \xSi- 11) in the hybrids. In the 
experiments we are going to replace PD with various sophisticated duration models. 
The next section is devoted to a detailed discussion of the duration models possible.
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9.1.2 Duration Models
No Duration Model. It has been observed by several researchers and reported in the 
literature that the values of the state transition probabilities have practically no effect 
on the recognition result [15]. Thus it is theoretically possible to have no duration 
model at all. The results obtained this way can serve as a baseline for comparing the 
effect of the various duration models.

Exponential (Geometric) Duration Model. Hidden Markov models incorporate 
an implicit duration model coded by the self-transition probabilities of the states. If the 
self-transition probability of a state q is denoted by aqq, then the probability that the 
models stays in state q for d steps (the duration of d frames) is PD(d) =  (1 —  aqq)adq-1 . 
This corresponds to a discrete geometric distribution, or an exponential one if we think 
in term of a continuous distribution. The great advantage of this exponential duration 
model is that it can be calculated recursively, that is PD(d) =  PD(d —  1 ) • aqq, so it 
nicely fits the dynamic programming framework of HMMs. However, in practice the 
duration of phones does not follow an exponential distribution. The example in Fig. 
9.1 clearly demonstrates this fact.

The proper values for aqq can be found quite easily. We only need one piece of 
data for this, namely the average duration for the model to stay in state q. In our 
one-state model the states q directly correspond to phones, so this average duration 
can be estimated as the mean of the phone durations over a manually segmented 
speech corpus. From M q, the empirical mean of the data aqq can be estimated by 
aqq =  (M q —  1 )/M q or aqq =  exp(— 1 /M q), depending on whether we are using a 
discrete geometric or a continuous exponential distribution.

Shared Exponential Duration Model. While in conventional HMM systems the 
state transition probabilities are estimated as part of the expectation maximization 
training procedure, in HMM/ANN systems it is common practice to use the same fixed 
value for all state transition probabilities [45], It may be interpreted as if all phones 
had the same shared duration model. In our experiments the shared parameter value 
was set to 0.7.

Exponential Duration Model w ith M inimum Duration Restriction. If we com­
pare the data histogram and the exponential curve fit over it in Fig. 9.1, we see that 
the largest mismatch is with small durations. A relatively simple remedy for this is to 
impose a minimal duration on the phones during the decoding process. For the duration 
model this corresponds to zeroing out the first couple of values (see Fig. 9.1). It is 
also interesting to observe that, in a 3-state model, phones are implicitly constrained to 
have at least 3 frames (if the skipping of states is forbidden). Restricting the minimal 
duration to 3 frames in a 1-state model will have a similar effect. Actually, in the 
experiments we set this value to 4 rather than 3 because this yielded slightly better 
results.

Gamma Distribution Duration Model. Quite evidently, the exponential duration 
model gives a very poor approximation of the real distribution, even with a minimum 
duration restriction. It is natural, then, to look for another type of distribution that is 
only slightly more complicated, but fits the data much better. One possibility is to use
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Figure 9.1: Fitting a duration histogram using various probability density functions

the gamma distribution for this purpose. Mathematically it has the form [104]:

Pd (d)
(d /p  )Y-1e-d/l3

P rY )
(9.2)

where 7  is the shape parameter, P is the scale parameter, and r  is the gamma function. 
The method of moments estimators of the gamma distribution are 7  =  M qf/Vq and 
P =  Vq/M q, where M q and Vq are the empirical mean and variation of the data [104],

A purely practical issue is that the gamma function cannot be computed directly but 
requires numerical approximations. Note, however, that it does not influence the shape 
of the curve but simply acts as a normalizing constant. Realizing this, we replaced it 
by a third parameter whose value is estimated by minimizing the mean square error 
between the histogram of durations and the approximation given by PD(d).

Fig. 9.1 shows that a gamma distribution indeed fits the data much better than 
an exponential distribution. The price to be paid for this is that the former cannot be 
computed recursively, so the usual dynamic programming decoding scheme has to be 
modified. This brings some additional complexity to the decoding process. Fortunately, 
this extra burden is manageable, because the other components (Pu and PS) can 
still be computed recursively, and evaluating PD (d) for d if fere nt d values is not cpu 
demanding. The reader should see [94] and [91] for more on how the conventional 
FIMM or FIMM/ANN structure has to be modified to incorporate explicit duration 
models in them.

9.1.3 Experimental Settings
Database. All the results presented here were obtained using the MTBA Flungarian 
Telephone Speech Database. For training we applied 1367 sentences; for the isolated 
word recognition tests we used a block of 431 city name recordings. For a more detailed 
description of the database and the train/test data see Chapter 4.
Preprocessing. For acoustic preprocessing we applied the Fl vite module of the well- 
known FHidden Markov Model Toolkit (FITK) [125], We used the most popular pre­
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processor configuration, that is we extracted 13 MFCC coefficients along with the 
corresponding A  and A A  values, thus obtaining the usual 39-element feature vector 
[125], For recognition we used our own HMM/ANN decoder implementation, which 
was earlier found to have a performance similar to that of the standard HTK recognizer. 

Model Configurations. The 2-layer neural net employed in the system contained 
150 sigmoidal hidden neurons and a softmax output layer. Training was performed by 
conventional backpropagation. The net was trained by making use of the manual seg­
mentation of the database, that is no embedded training was applied here (although 
a Viterbi-like embedded training scheme is known to be applicable to hybrid models

[14]).
In our shorthand notation, the formula evaluated for each segment is

r>au  r>as  r)<*D  t
PU ' PS ‘ PD ‘ 1

P  (ui)
(9.3)

Note that it is slightly more general than the formula given in Eq. (9.1). The a 
exponents were introduced based on experience with a similar weighting factor for the 
language model [58], l isa phone insertion penalty that can be used to balance the 
phone insertions and deletions; again, such a factor is known to be useful in language 
modelling [58],

Two different model configurations were examined in the experiments. In the first 
model configuration PU is calculated using the product rule (Eq. (8 .6 )), PS is obtained 
from Eq. (8.18), and the duration model PD and the value for the insertion penalty I  
will be varied from experiment to experiment. Both the a U and a S exponents will be 
set to 1. Notice that this configuration is equivalent to the conventional HMM/ANN 
model -  apart from, of course, the duration component that we are going to experiment 
with.

In the second configuration PU is calculated using the averaging rule (Eq. (8 .8 )), 
PS is obtained from Eq. (8.18), and the du ration model PD and insertion pe nalty I  will 
again be varied. a U will be set to 1 , but a S in this case will be set to 0 .1 , which was 
found to be optimal in Chapter 8 . We will refer to this configuration as the averaging 
hybrid model.

9.1.4 Results and Discussion
In the first series of experiments we were interested in finding out how the minimum 
duration restriction and/or sharing a common number base influences the performance 
of the exponential duration model. In these experiments the a D exponent and the 
insertion penalty I  were always set to 1. Table 9.1 summarizes the results. From the 
scores it is quite apparent that the minimum duration constraint significantly improves 
the recognition performance (not to mention that it also dramatically decreases the run 
time). As regards the other question, it was surprising to see that both exponential 
models can be detrimental to the recognition score, and the model using the same fixed 
value performed better than the phone-specifically tuned one. But this was probably
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Duration Model
Model Configuration

Conventional Averaging

No duration model 18.10% 34.11%
No dur. model, min.dur=4 6.04% 12.06%
Shared exponential 15.32% 1 0 .2 1 %
Shared exp., min.dur=4 6.96% 5.10%
Exponential 13.00% 1 0 .2 1 %
Exponential, min.dur=4 7.20% 9.28%

Table 9.1: Word error rates for various exponential model settings

Duration Model
Conventional Hybrid Averaging Hybrid

a D I WER a D I WER

No duration model - 1.511 5.80% - 0.254 4.87%
Shared exp. dur. mod. 0.266 2.036 5.80% 0.934 0.806 4.87%
Exponential dur. mod. 0.340 3.804 5.80% 0.560 1.098 4.87%
Gamma duration model 0.382 3.311 5.10% 0.306 0.415 3.94%

Table 9.2: Word error rates (WER) after fine-tuning a D and I

due to an improper choice of a D and I  (the averaging hybrid turned out to be especially 
sensitive to these). So the optimization of these parameters was a reasonable next step.

In the second set of experiments the weight factor a D and insertion penalty I  were 
fine-tuned (with the minimum duration restriction always being turned on). The opti­
mal parameter values were found by a global optimization algorithm called SNOBFIT 
[59], The resulting values along with the recognition scores are shown in Table 9.2. 
The results apparently underpin the belief that the exponential duration model brings 
no advantage over using no duration model at all (and, according to Table 9.1, with 
an improperly chosen exponent it can be even detrimental!). Furthermore, the practice 
of using one shared exponential base value instead of phone-specific ones also proved 
reasonable, as these models did not differ in performance. These findings seem inde­
pendent of the model configuration used -  conventional or averaging. In both cases 
only the gamma duration model was better than not applying a duration model at all. 
It achieved a 12-20% relative improvement in the word error rate, depending on the 
system configuration.

9.1.5 Conclusions
This section investigated the feasibility of applying sophisticated duration models -  
in our case the gamma distribution -  within the framework of HMM/ANN hybrids. 
In addition, we were also curious to see whether the exponential duration model was 
indeed ineffective. Two kinds of hybrid model configurations were examined in the tests, 
the conventional one and the "averaging hybrid” . Independent of the configuration 
used, we found that the exponential duration model had no detectable influence on 
the recognition performance. Hence the practice of replacing the phone-based self­
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transition probabilities by a quasi-ad hoc constant is indeed harmless -  as this simplified 
exponential duration model is just as ineffective as the original one. On the contrary, we 
found that imposing a minimum duration constraint on the phonetic segments not only 
speeds up the decoding process, but also significantly improves the results. The other 
thing that yielded an improvement was the gamma duration model. Thus, altogether 
we are justified in saying that the exponential duration model inherent to the HMM is 
a really poor one, and that replacing it with just a slightly more complicated model can 
certainly bring a modest improvement to the error rate.

Finally, let us remark that we did not discuss the differences between the con­
ventional and the averaging hybrids because we were more interested in the duration 
models. But the scores clearly show the superiority of the averaging hybrid -  at least, 
on this corpus. Moreover, during the experiments we found that the averaging model 
is much more tunable so, hopefully, with the introduction of new components it can be 
more easily improved.

9.2 T ra in in g  H M M /A N N  H ybrids by P robab ilis tic  

Sam pling

Throughout this dissertation we assumed that the neural nets applied give a very precise 
estimate of the phone posteriors -  frame-based or segment-based, depending on the 
actual structure of the system. Reality is not that nice, however. For example, it 
is known that most machine learning algorithms are sensitive to class imbalances of 
the training data and tend to behave inaccurately on classes represented by only a few 
examples. The case of neural nets applied to speech recognition is no exception, but this 
situation is unusual in the sense that the neural nets here act as posterior probability 
estimators and not as classifiers. This fact may introduce difficulties, because most 
remedies designed to handle the class imbalance problem in classification invalidate the 
proof that justifies the use of neural nets as posterior probability models. In this section 
we examine one of these, the training scheme called probabilistic sampling, and show 
that it is fortunately still applicable when training HMM/ANN hybrids. First, we argue 
that theoretically it makes the net estimate scaled class-conditionals instead of class 
posteriors, but for the hidden Markov model speech recognition framework this causes 
no problems, and in fact fits it even better. Second, we will carry out experiments to 
demonstrate the feasibility of this training scheme. In the experiments we create and 
examine a transition between the conventional and the class-based sampling, knowing 
that in practice the conditions of the mathematical proofs are unrealistic. The results 
show that the optimal performance can indeed be attained somewhere in between, and 
is slightly better than the scores obtained in the traditional way.
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9.2.1 The Class Imbalance Problem
Most machine learning algorithms are prone to inferior performance when the training 
data is imbalanced, that is when the number of training examples accessible from the 
various classes is significantly different. In such cases it is frequently observed that the 
classifier is biased towards predicting the more common classes, performing worse on 
the rarer classes. Although the precise explanation of this behavior may differ from 
algorithm to algorithm (see [123] for general reasons), in the hope of an improvement 
it is always possible to alter the effective class frequencies by presenting more examples 
from the rarer classes to the learning algorithm. These methods come under the general 
name of "resampling techniques" [123], (See the material of the workshops [22] and 
[62] for more details on techniques proposed to handle imbalanced classes.)

The class imbalance problem is also present in speech recognition because the 
natural distribution of speech sounds (phones) is not uniform. However, the solutions 
proposed by the machine learning community are not necessarily applicable here. This 
is because most machine learning papers dealing with the topic focus on classification 
performance, while in speech recognizers the sub-unit models are used as probability 
estimators. In particular, the HMM/ANN hybrid recognizers presented in Chapter 8 
apply AN Ns to estimate the posterior probabilities of the classes. This is made possible 
by a nice theoretical proof which shows that, under ideal conditions, AN Ns estimate 
the class posteriors [11], In practice, however, the class imbalance of the training set 
can lead to inaccurate estimates. A natural idea is to apply the resampling techniques, 
but these invalidate the proof, so their application is theoretically questionable. In 
this section we examine one peculiar resampling method, the "probabilistic sampling” 
training technique recommended by Lawrence et al. [78], and argue that it is still 
usable in training ANNs for HMM/ANN hybrids. First, in Section 9.2.2 we point out 
that theoretically it forces the network to estimate scaled class-conditional probabilities 
instead of class posteriors and this poses no real problem as the recognizer can be easily 
modified to work with these. Then we show experimentally in Section 9.2.3 that when 
the recognizer is built on a net trained by probabilistic sampling, it yields the same 
good or slightly better performance than that with the conventional training.

In the subsequent discussions and experiments we will use the conventional (product 
rule based) HMM/ANN hybrid as described in Chapter 8. As we explained there, in 
the hybrid model the ANN is employed to approximate the class posteriors. That is, 
denoting the local feature vectors by x and the set of class labels by C  =  { ci , ...,cK }, 
we can use them to estimate P(ck|x). In the hybrid model the HMM states play the role 
of the classes of the ANN, and the states usually directly correspond to phone classes. 
The HMM framework requires the class-conditionals p (x \ck), which can be calculated 
from the posteriors by Bayes’ rule as p (x \ck) =  P (ck|x) • p (x ) /P (ck). From the HMM 
optimization point of view p(x) is a constant scaling factor and can be ignored. So the 
HMM/ANN hybrids work with P(ck \x ) /P (c k), which thus gives an estimate of p (x lck) 
to within a scaling factor. The P(ck|x) values are produced by an ANN, and the P(ck) 
values are in practice obtained by a simple frequency counting of the class labels over 
the training corpus.



9.2 Training HMM/ANN Hybrids by Probabilistic Sampling 103

9.2.2 Probabilistic Sampling
Let us now see why and when AN Ns estimate the class posteriors, and what happens 
if training is performed by probabilistic sampling. Let us assume that the network has 
K  outputs denoted by yk (k =  ), and that it is trained by minimizing the
sum-of-squares error1. We will also assume that the training data is sampled in such 
a way that its distribution follows the real distribution p(x) of the data points. Under 
these conditions it can be shown that if the size of the training data is allowed to go 
to infinity, the error function can be written as

where B  is a constant that is not important here, and <  t k \x >  is the conditional 
average of the target values t k at x [11], Obviously, Eq. (9.4) takes its minimum when 
Vk  = <  t k \x >. Now, if the network structure and the labelling of the training data 
follow the 1-of-K coding scheme (that is t k  takes a value of 1 for the correct class 
output and 0  for the rest), it is easy to show that <  t k \x >  approximates P(ck \x) 
(again assuming a representative sampling and an infinite amount of sample data at 
point x).

Examining Eq. (9.4) more closely, we see that at any point x of the input space 
X  it is <  t k \x >, the local ratio of positive and negative examples from class ck , 
that determines the optimal value for yk - The local errors of these estimates are in 
turn weighted by p(x), which forces the network to give a closer approximation in 
those regions of the input space where the density of input data is high, and permits 
it to give a poorer approximation in regions where the data density is lower. If class 
labels correlate well with certain regions of the input space X  (which we may assume, 
otherwise the learning task would be insoluble), then the data density will be lower in 
those regions where the sparsely represented classes lie. This is the main reason why 
the network will perform worse on these classes.

This observation leads to the idea of altering the effective class frequencies by pre­
senting more examples from the rarer classes to the learner. In practice, of course, 
we usually have no way of generating further samples from any class, so resampling is 
simulated by replicating some of the samples of the rarer classes. An extreme case of 
this is when the training data set is manipulated so that it contains the same amount 
of training examples from each class. When training an ANN with the backpropagation 
algorithm, there is of course no need to really replicate the samples: only the algorithm 
has to be modified slightly. Usually the training data items are presented to the algo­
rithm in a random order, that is at each iteration a data item is randomly chosen from 
the full database. We will refer to this method as "full sampling” . A possible alter­
native is to first choose a class at random, and then randomly pick a training sample 
from the samples belonging to this class. We will call this general, two-step sampling 
scheme "probabilistic sampling” [78], and the special case when each class is chosen

XA similar proof exists for the minimum cross-entropy error criterion as well [11].

(9.4)
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with uniform probability "uniform class sampling” . In general, however, the choice of 
the class can follow any distribution, not just a uniform one. For example, if class ck 
is chosen with probability P (ck), that is its own prior probability, then the two-step 
sampling approach will be practically equal to the traditional one-step full sampling 
scheme. This will allow us to generate a continuum between full sampling and uniform 
class sampling by linearly interpolating the probability of class ck between P(ck) and K  

Let us now discuss how the optimum of the error function of Eq (9.4) changes when 
using uniform class sampling instead of full sampling. We will see that manipulating the 
class frequencies influences both the global data distribution and the local conditional 
averages. First let us examine the data distribution, which was originally written as

Explicit Duration Modelling and Resampling-Based Training in
____________________________________ HMM/ANN Hybrids

p(x) =  I > ( x\ck)P (ck). (9.5)
k

The manipulation of the class frequencies can be formalized by weighting the terms as

P (x ) =  ^ 2  P(x\ck  )P  (ck  )W k , (9.6)
k

where W k  are class-dependent weights. From this we can see that modifying the class 
frequencies changes the focus of the error function, as it modifies p(x). If class labels 
correlate well with certain regions of the input space, then giving more samples from 
the sparse classes indeed corresponds to giving more samples from the low data density 
regions, thus forcing the net to give a better approximation in these areas.

However, the local posterior probabilities are also influenced by this weighting. 
Clearly, the new P '(c k \x) values can be written as

Pi (c , ) =  P(x \ck)P (ck)W k
( k \ ) E j p(x\c3) P c ) W j

(9.7)

We can think of the denominator as a normalizing factor required to make the local 
estimates add up to one. In the case of uniform class sampling Wk is inversely propor­
tional to P(ck) and cancels it out, so overall the P l (ck\x) values will be proportional 
to p(x\ck). These will be the local targets of the network, so we can say that with 
uniform class sampling the neural network learns the class-conditionals p(x\ck) within 
a scaling factor. This causes no problem when integrating the network into the HMM 
framework, and in fact makes it even simpler: the division by the class priors P(ck) can 
be omitted, and the scaling factor will not affect the final maximization process.

9.2.3 Experimental Results
All the results presented here were obtained using the MTBA Hungarian Telephone 
Speech Database. The train/test sets were exactly the same as those used in Section
9.1.3 , that is 1367 sentences were employed for training and 431 city name recordings 
for testing. For more details on the database please see Chapter 4.

For acoustic preprocessing we applied the Hvite module of the well-known Hidden
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Figure 9.2: Word recognition accuracies (%) as a function of A, with and without 
division by the priors

Markov Model Toolkit (HTK) [125], We used the most popular preprocessor configu­
ration, that is we extracted 13 MFCC coefficients along with the corresponding A  and 
A A  values, thus obtaining the usual 39-element feature vector [125], For recognition 
we used our own HMM/ANN decoder implementation, which was earlier found to have 
a performance similar to that of the standard HTK recognizer.

The neural net used in the system contained 150 sigmoidal hidden neurons and a 
softmax output layer. Training was performed by conventional backpropagation. Be­
sides comparing the full sampling and uniform class sampling methods, we decided to 
create a transition between them by making the algorithm select class ck  with a prob­
ability (1 —  A)P(ck ) +  AK  and tested it with various A values between 0 and 1. We 
did so for purely empirical reasons. It should not be forgotten that the whole investi­
gation here originated from the observation that the mathematical proof regarding the 
estimation of the posteriors assumes ideal conditions, and that in practice problems 
with imbalanced classes were reported. Our argument of Section 9.2.2 regarding the 
estimation of scaled class-conditionals also assumes ideal conditions that do not hold 
in reality. So while full sampling tends to behave poorly on rarer classes, uniform class 
sampling may do just the opposite due to over-compensation. This is why it seemed a 
good idea to create a transition between the two extremes.

As regards division by the class priors, we argued that theoretically it is required 
when using full sampling and not when using uniform class sampling. However, it is not 
obvious whether we should use it when the training scheme is somewhere in between. 
Furthermore, there is evidence that under certain conditions even the conventional 
model may not require this division [14]. Owing to these uncertainties, we decided to 
always run the recognizer with the division factor and without it.

The stopping criterion is always a critical issue with every gradient-based algorithm. 
With our system we have the long-known observation that a certain fixed number of 
iterations (with a gradually decreased learning rate) produces a nearly optimal solution 
which cannot be significantly improved either by further iterations or applying subtle 
stopping criteria. However, because uniform class sampling changes the distribution
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of the data, we could not be sure that the usual amount of iterations was enough in 
this case. So in each case we allowed two further series of 10 iterations. The results 
reported are the averages of the three scores obtained after the three iteration cycles. 
We should mention here that these never differed significantly, their deviation always 
being around 1-1.5%, which can be attributed to the random factors present in the 
whole training process.

Figure 9.2 shows the recognition results for different A values, both with and without 
division by the priors. Clearly, a A around 0.1 seems optimal when dividing by the priors, 
and a A of 0.7 yielded the best results when no division by the priors was applied. These 
are both better than the corresponding results at A =  0.0 and A = 1 .0  which should have 
performed the best, according to the proofs discussed in Section 9.2.2. This justifies 
our belief that in practice it is worth using the probabilistic sampling scheme for the 
training of ANNs of HMM/ANN hybrids as it can bring about a modest improvement 
over the conventional method (A =  0.0, division by the priors).

9.2.4 Conclusions
This section investigated the feasibility of the probabilistic sampling training scheme for 
the training of the ANN components of HMM/ANN hybrid speech recognizers. First we 
examined uniform class sampling, which is a special case of probabilistic sampling. We 
argued that although it invalidates the a posteriori probability proof of the conventional 
training scheme, it is still usable because it gives estimates of the class-conditional 
probabilities (within a scaling factor) and, in fact, the recognition system requires just 
these anyway. Second, we suspected that in practice it might be worth interpolating 
between the conventional full sampling and uniform class sampling, as the mathematical 
proofs made unrealistic assumptions. In the experiments we indeed found that the 
optima are somewhere in between -  around A =  0.1 and A =  0.7 respectively, depending 
on whether we divide by the class priors or not. In both cases our results were slightly 
better that those obtained by the conventional approach (A =  0, division by the priors). 
This justifies our use of the proposed training scheme in HMM/ANN hybrids.

Explicit Duration Modelling and Resampling-Based Training in
____________________________________ HMM/ANN Hybrids

9.3 Sum m ary

In this chapter we proposed two refinements of the HMM/ANN hybrids. One of them 
was the replacement of the state transition probabilities with gamma-distribution based 
explicit duration models. The experiments confirmed that these duration models in­
deed bring a modest improvement -  while the conventional exponential ones have no 
advantage over having no duration model. It is interesting to note that the averaging 
hybrid phone model with a gamma duration representation has almost nothing in com­
mon with an HMM -  as it inherits neither the product combination rule nor the state 
transition probability products specific to the HMM.

The other modification proposed concerned the training scheme of the neural nets 
embedded in the models. The most important conclusion of this section was that
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although we have theoretical proofs both for full sampling and uniform class sampling, 
in practice neither of them is optimal. Rather, the best performance was obtained 
when we interpolated between the two strategies. This example very nicely reflects 
what makes the construction of good speech recognizers so difficult: although we 
have neat mathematical models -  good science -  behind them, in practice a number 
of experimental refinements and tunings are possible (and necessary) to obtain really 
good recognition results. And as this requires a lot of experience, it makes speech 
recognition more of an art than a science.
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C onclus ions

Probability theory offers only a very limited range of tools for decomposing a multi­
variate probability distribution. Yet, by applying these in different ways we can obtain 
various kinds of speech models. In this dissertation we examined two alternatives of the 
conventional hidden Markov technology. The decomposition applied in these alternative 
models differs from the conventional decomposition in two basic ways. First, they are 
both built on posterior probability estimates instead of the more common generative 
approach that estimates the class-conditional likelihoods. Second, both models try to 
replace the independence assumption of the frames (within a segment) with some other 
decomposition technique. In the case of the segment-based model this was done simply 
by not decomposing the segments into frames -  rather, they were modelled as one unit. 
The experiments convincingly justified that this technology is much better at classi­
fying phonetic segments than HMMs. However, when it came to the recognition of 
phone sequences or words, we had to face the fact that the segment-based models have 
serious difficulties with finding the proper segmentation. We overcame this problem 
by introducing a sophisticated anti-phone modelling scheme and by applying replicator 
neural networks. Although with these extensions the model performed practically the 
same as the HMM, it has, admittedly, lost its attractive simplicity. We are convinced 
that with further refinements -  for example, by combining it with a frame-based model 
-  it could be even better, but it is questionable whether the increased complexity and 
computation time would make it all worthwhile.

In the other alternative model we returned to the conventional frame-based ap­
proach, but now we tried to combine the frame-based posterior estimates by averaging 
instead of multiplication. Although this may seem nonsensical at first, we found sev­
eral arguments for it from classifier combination literature. The phone classification 
experiments and our investigation of the marginals showed that averaging is indeed 
not worse than multiplication. However, to make it suitable for recognition tasks we 
had to extend it with a segmentation probability component -  a lesson learned from 
the segmental model approach. To achieve this, we analyzed the product-rule based 
conventional HMM/ANN hybrid and studied how it handles the segmentation problem. 
Afterwards we extended the averaging phone model with the segmentation probability 
component identified in the conventional model and called the resulting framework the
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‘averaging HMM/ANN hybrid’. In all the experiments we did -  phone recognition and 
isolated word recognition tasks -  the averaging model performed the same as or better 
than the conventional hybrid.

For me the most important result of the dissertation is not the two proposed models, 
but the insight gained with their help. The segment-based model taught me that 
phonetic segments can be classified better via a simple and intuitive representation than 
by HMMs. Although the segment-based approach did not prove superior in decoding 
tasks, the segment-based view itself provided me with a new insight into what is going 
on in frame-based recognizers. Both the conventional HMM and the HMM/ANN 
hybrid were examined from a segment-based point of view, and in both cases it led 
to the conclusion that it is basically the multiplication-based combination rule that 
enables these models to hypothesize reasonable segmentations. Having seen that both 
the segmental model and the averaging rule performed the same or better in phone 
classification, this means that the principal contribution of the product rule to the 
decoding process lies in its segmentation ability rather than its classification ability. For 
me this was definitely a surprising finding and justified the view that sometimes it is 
worth examining an old problem from an unorthodox angle.
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S u m m a ry  in English

The current speech recognition technology is built on statistical principles instead of 
speech-specific knowledge. Although there are constant attempts to incorporate what 
is known about human speech perception, these usually refine only the preprocessing 
step and leave the statistical framework untouched. In particular, the 3-state left- 
to-right hidden Markov phone modelling (HMM) methodology has been practically 
unchallenged for the last decade. Rather, development efforts have focused mainly on 
collecting enormous training corpora and on building sophisticated language models. 
However, nowadays the technology seems to have reached its limits, its abilities still 
being far from that of humans. We think that now is a good time to step back and 
refine the acoustic models as well, retaining the statistical approach but narrowing the 
gap between the properties of the models and human speech comprehension.

The dissertation began by gathering the main critical remarks on hidden Markov 
models from a speech perception point of view, and we also discussed some general 
properties of an envisioned alternative recognition framework. After, we pointed out 
that the main issue of statistical modelling in speech recognition is that the utterance- 
level probabilities have to be decomposed into the probabilities of some smaller units. 
Unfortunately, probability theory offers only a very limited range of tools for decompos­
ing a multivariate probability. Yet, by applying these in different ways we can obtain 
various kinds of speech models that differ from HMMs in several aspects. A com­
mon property of the models we used in the dissertation is that they combine posterior 
probabilities, while the HMM builds from class-conditional likelihoods. As posterior 
probability estimators we applied neural networks (ANN) -  this approach is known to 
have a number of advantages over modelling class-conditional likelihoods by Gaussian 
mixtures, as is usual in HMMs.

The most dubious feature of the hidden Markov model is that its probability de­
composition goes down to the level of speech frames -  which are then assumed to be 
conditionally independent, and their likelihood values are combined by multiplication. 
We proposed two alternative decompositions that avoid this so-called ‘naive Bayes’ 
assumption. In one case we simply did not decompose the phonetic segments into 
frames, but modelled them as one unit. This approach leads to the family of segment- 
based models, and a significant part of the dissertation dealt with the issues of how to
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parametrize and train these. As it turned out, they have their advantages, for example, 
they are much better at classifying phonetic segments. But their special drawback is 
that they have difficulties in finding the proper segmentation during decoding. Hence 
we suggested and tested various methods to overcome this problem.

Seeing the special problems of the segment-based framework, in the other model ex­
amined we returned to the conventional frame-based approach, but we tried to combine 
the frame-based posterior probabilities by averaging instead of multiplication. Although 
this may sound nonsensical at first, we introduced several arguments for it from classifier 
combination literature. The experiments showed that in classification tasks averaging 
is indeed no worse than multiplication. However, to make it able to perform phonetic 
decoding, it had to be extended with a segmentation probability component -  a les­
son learned from the segmental model approach. We called the resulting framework 
the ‘averaging HMM/ANN hybrid’ . In all the experiments we did -  phone recogni­
tion and isolated word recognition tasks -  the averaging model performed the same 
as or better than the conventional hidden Markov model. In the next chapter we in­
creased its performance even more by extending it with an explicit duration model and 
a resampling-based training scheme.

An interesting feature of the dissertation is its segment-based view on the decoding 
task. It came from the experiments with the segment-based model, but we applied 
it to the frame-based systems as well. Most importantly, it turned our attention to 
the question of how the frame-based models solve the segmentation problem of the 
decoding task. Both the conventional HMM and the HMM/ANN hybrid were exam­
ined from a segment-based point of view, and in both cases we concluded that it is 
basically the multiplication-based combination of the frames that enables these models 
to hypothesize reasonable segmentations. This insight gained into the workings of the 
frame-based systems was probably a more important result of this dissertation than the 
two posterior-based models suggested and studied.

All the recognition experiments of this dissertation were carried out on Hungarian 
speech databases. As in most cases there were no comparative results available, in each 
case the well-known hidden Markov model toolkit (HTK) was used to obtain a basis 
for comparison.

A . l  Sum m ary by Chapters

There are two chapters in the dissertation that do not contain scientific contributions 
from the author but has the goal of reviewing certain areas. Thus, Chapter 4 gave 
an overview of the software environment and speech databases used throughout the 
dissertation, and Chapter 5 gathered all the research results that was judged to be 
relevant to the topics and experiments described in the dissertation.

The remaining chapters essentially followed the chronological order of the author’s 
research efforts. Chapter 2 gave a detailed description of the critical issues of the 
current speech recognition technology and presented some of the basic features that 
would be preferable for a alternative, novel one. It also introduced the mathematical
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tools used in current models, since the alternative models proposed in the thesis apply 
the same decomposition tricks, only in slightly different ways.

Chapter 3 presented a generalized algorithmic framework that forms the basis of 
the implementation of our speech decoder. All the models tested in the dissertation -  
including the HMM -  are special cases of this decoding routine.

Chapter 6 introduced the posterior-based segmental model, our team’s first attempt 
to create a viable alternative to HMM-based phone models. Although it turned out 
not long after that the segment-based representation could easily outperform HMMs 
in classifying phonetic segments, it took a lot of effort to bring it up to the level 
of HMMs in phonetic decoding or word recognition tasks. Hence, a large part of this 
chapter was concerned with improving the segment-based model by refining its so-called 
segmentation probability component. Most importantly, two methods were suggested 
for this. One of them proposed modelling those segments that do not correspond to 
phones by extending the phone classifier with an additional class, and artificially creating 
training examples for this ‘anti-phone’ class. The other solution applied replicator neural 
networks (RIMNs) to handle these outlier segments. Briefly summarizing the results 
of this chapter, we found altogether, that in phone classification the segment-based 
method is superior to HMMs, but in decoding tasks it requires involved extensions to 
give a performance similar to those of HMMs.

By confronting the difficulties with the segmental model, we had to realize the fact 
that HMMs are in fact rather good -  in spite of the quite obvious arguments against 
them. This revelation led to Chapter 7, in which an in-depth analysis was given on 
how HMMs perform phonetic decoding and why they can solve the problem of phonetic 
segmentation and classification while their probability estimates are very inaccurate. In 
order to understand its behavior, the HMM was compared experimentally with a gener­
ative segment-based model; moreover it was analyzed from the unusual segment-based 
point of view. The findings show that the controversial naive Bayes modelling assump­
tion does not significantly harm the HMM’s ability of classifying phonetic segments, 
and it even helps them solve the problem of phonetic segmentation.

In Chapter 8 the technique of segment-based interpretation was extended to the 
so-called HMM/ANN hybrid. Namely, we identified which component of the hybrid 
model corresponds to which component of the segment-based model. This analysis led 
to the suggestion of an alternative hybrid model in which the frame-based posteriors 
are combined by averaging instead of multiplication. This ‘averaging hybrid’ turned out 
to behave similarly or slightly better than the conventional one on phone classification, 
phone recognition and word recognition tasks as well.

Chapter 9 proposed two slight refinements over the hybrid model of Chapter 8. One 
of these was the application of an explicit gamma-distribution based duration model 
instead of the exponential one inherent to HMMs. The other refinement concerned the 
training of the neural nets used in the hybrid. Both modifications resulted in a modest 
improvement in the word error rates.
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A .2 Key Points o f th e  Thesis

In the following a listing of the most important results of the dissertation is given. Table 
A .l summarizes which thesis is described in which publication by the author.

I. ) The author developed a segment-based feature set for the representation of pho­
netic segments. He tested this feature set on several speech corpora and in 
combination with various machine learning algorithms, and demonstrated that in 
most cases it results in better phone classification scores than the conventional 
HMM phone models.

II. ) The author developed various strategies for estimating the segmentation proba­
bility component of the posterior-based segmental model, based on the concept 
of anti-phones. He tested the proposed modelling schemes by comparing their 
speech recognition performance on several speech databases.

III. ) The author investigated the applicability of replicator neural networks for the
estimation of the segmentation probability component of segmental models.

IV. ) The author investigated how the modelling bias caused by the naive Bayes as­
sumption influences the performance of HMM phone models. Based on the 
observations he argued that this bias is such that it does not deteriorate the 
phone classification performance of the models and it helps them in finding the 
correct segmentation of the input signal. These arguments together help explain 
why HMMs are good at phonetic decoding while their probability estimates are 
quite inaccurate.

V. ) The author examined the behavior of the conventional HMM/ANN hybrid model
from a segment-based point of view. Based on the findings of this, he introduced 
a novel type of HMM/ANN hybrid which combines the frame-based posterior 
estimates by averaging instead of multiplication. He justified experimentally that 
the averaging hybrid is capable of a similar or slightly better performance than 
the conventional hybrid.

VI. ) The author examined the efficiency of using explicit duration models in the
HMM/ANN framework. He found that the gamma-distribution based duration 
model leads to increased recognition performance over the conventional exponen­
tial model in both the conventional and the averaging hybrid.

VII. ) The author proposed a resampling-based training scheme for the training of the
neural nets used in the hybrid models. In experiments the proposed algorithm 
resulted in modest improvements in recognition accuracy.
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Table A.l: The relation between the theses and the corresponding publications
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A p p e n d ix  B

S u m m a ry  in H u ngarian

A jelenleg használatos beszédfelismerési technológia matematikai alapelvekre épül és 
csak minimálisan veszi figyelembe az emberi beszédpercepcióra vonatkozó eredménye­
ket. Történnek ugyan kísérletek ezen ismeretek felhasználására, de ezek a próbálkozások 
általában csak az előfeldolgozási lépést finomítják, a statisztikai keretrendszert érintet­
lenül hagyva. A háromállapotú rejtett Markov-modellekre (HMM) épülő, beszédhang­
alapú modellezési technológia célszerűségét nagyon kevesen kérdőjelezték meg az elmúlt 
évtizedben. A fejlesztők az eredmények javítása céljából inkább az adatbázisok méretét 
növelték és a nyelvi modelleket finomították. Egyre inkább úgy tűnik azonban, hogy a 
jelenlegi metodológia elérte képessége határait. Talán itt az ideje, hogy az akusztikai 
modelleken is javítsunk, közelítsük tulajdonságaikat az emberi hallás működéséhez -  
mindeközben a statisztikai megközelítést is megtartva.

Jelen disszertáció indításaként összegyűjtjük a rejtett Markov-modellek azon jel­
lemzőit, amelyek az emberi beszédpercepció tulajdonságainak ellentmondanak, majd 
felvázoljuk, hogy ezek helyett mit várnánk el egy fejlettebb megoldástól. Rávilágítunk a 
beszédjelek statisztikai modellezésének kulcskérdésére, miszerint a mondatokhoz rendelt 
valószínűségi értékeket valamely kisebb egységek valószínűségéből vagyunk kénytelenek 
összerakni. A valószínűségszámítás sajnos elég kevés eszközt nyújt egy sokváltozós 
valószínűségi eloszlás felbontására. Mégis, ezeket a szokványostól eltérő módon al­
kalmazva különféle, a HMM-től eltérő modelleket vezethetünk le. A disszertációban 
vizsgált modellek közös jellemvonása, hogy az építőelemek posterior valószínűségét 
közelítik és azokból építkeznek, míg a HMM az adatok osztályonkénti eloszlását igyek­
szik leírni. A posterior valószínűségek közelítésére mesterséges neuronhálókat (ANN) 
alkalmazunk. Ennek különféle előnyei vannak a szokványos -  az osztályonkénti elosz­
lások Gauss-komponensekkel történő -  modellezésével szemben.

A rejtett Markov-modelles technológia leginkább vitatható tulajdonsága, hogy a 
valószínűségek felbontásával egészen a beszédkeretek szintjéig megy le. Ezekről aztán 
feltételezi, hogy az egyes szegmentumokon belül függetlenek (ez az ún. naív Bayes 
feltételezés), s ezért a hozzájuk rendelt valószínűségi értékeket összeszorozza. A disz- 
szertációban két olyan modellezési megoldást vizsgálunk meg, amelyek elkerülik ezt a 
felbontási lépést. Az egyik esetben egyáltalán fel sem bontjuk a szegmentumokat kere­
tekre, hanem egy egységként parametrizáljuk őket. így jutunk el az ún. szegmentum­
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alapú modellek családjához, és a disszertáció egy jelentős része ezekkel foglalkozik. 
Mint kiderül, ennek a reprezentációnak számos jó tulajdonsága van, például sokkal 
jobbnak bizonyul a fonetikai szegmentumok osztályozásában. Nehézségei vannak vi­
szont a felismerés során a helyes szegmentálás megtalálásában, így ez utóbbi probléma 
megoldására többféle megoldást javasolunk és vetünk össze.

A szegmentum-alapú módszercsalád gyenge pontjaival szembesülve a másik vizsgált 
modellben visszatérünk a keretalapú feldolgozáshoz. Azonban, váratlan módon, a ke­
retekhez rendelt valószínűségi értékeket szorzás helyett átlagoljuk. Ez első pillanatra 
ésszerűtlennek tűnhet, de számos érvet hozunk fel a használhatóságára. A beszédhang­
osztályozási kísérletek is azt igazolják, hogy az értékek átlagolása nem rosszabb me­
goldás, mint a szorzás. A teljes felismerési feladat megoldására azonban az átlagolós 
modell csak akkor képes, ha kiegészítjük egy, a szegmentálás valószínűségét megadó 
komponenssel - a szegmentum-alapú rendszerrel szerzett tapasztalatokkal összhangban. 
Az ily módon előálló rendszert ‘átlagolós HMM/ANN hibridnek’ nevezzük el. Ez az új 
konstrukció mind a beszédhang-felismerési, mint az izolált szavas felismerési feladatok­
ban valamivel jobb teljesítményt nyújt, mint a hagyományos HMM. Az utolsó fejezetben 
egy picivel még tovább fokozzuk a hibrid modellek képességeit, amikor is kiegészítjük 
őket egy explicit hosszmodellel, illetve egy újramintavételezés-alapú tanítási sémával.

A disszertáció egyik különlegessége, hogy az összes előforduló modellt szegmentum­
alapú nézőpontból vizsgálja. Ezt a látásmódot eredetileg a szegmentum-alapú model­
lekkel való kísérletezés tette szükségessé, de a keretalapú rendszerek elemzésében is 
nagyon hasznosnak bizonyult. Ami a legfontosabb, ráirányította a figyelmünket a szeg- 
mentálási részfeladat megoldásának fontosságára. Mind a hagyományos, mind a hibrid 
HMM modellt megvizsgáltuk ebből a szemszögből, és mindkét esetben arra jutottunk, 
hogy lényegében a keretek valószínűségének szorzással való kombinálása teszi képessé 
ezeket a rendszereket a beszédjel fonetikai szegmentumainak megtalálására. Maga ez 
a szemléletmód és az általa nyert betekintés a keretalapú rendszerek működésébe fon­
tosabb eredménynek tűnik, mint a két javasolt újszerű modell.

A disszertációban előforduló beszédfelismerési teszteket magyar beszéd korpuszokon 
hajtottuk végre. Mivel néhány kivételtől eltekintve más még nem végzett hasonló 
vizsgálatokat ezeken az adatbázisokon, ezért összehasonlítás céljából a HTK nevű rend­
szerrel állítottunk elő rejtett Markov-modelles eredményeket.

B . l .  A  fe jezetek á ttek in tése

A dolgozat 4. és 5. fejezete nem a Szerző eredményeivel foglalkozik, hanem áttekintő 
jellegű. Előbbi a disszertációban használt szoftver-környezetet és beszédadatbázisokat 
mutatja be, míg az utóbbi összegzi azokat a korábbi tudományos munkákat, amelyeket 
a Szerző a saját kutatásai előzményeként relevánsnak ítélt.

A disszertáció többi fejezete lényegében időrendben követi a Szerző tudományos 
vizsgálódásait. A 2. fejezet részletesen elemzi a jelenlegi beszédfelismerési technoló­
gia gyenge pontjait és összegzi azokat a fő tulajdonságokat, amelyeket egy reménybeli 
újszerű megközelítéstől várnánk. Áttekintjük továbbá a jelenlegi technológiában alkal-



B .l A fejezetek áttekintése 119

mázott matematikai eszközöket, ugyanis az általunk javasolt alternatív megoldások is 
ezeket fogják használni, csak némileg más módon.

A 3. fejezet egy általánosított algoritmikai keretet mutat be. Az általunk hasz­
nált beszédfelismerő-implementáció erre a dekódoló rutinra épül, és a disszertációban 
előforduló összes felismerési algoritmus -  a rejtett Markov-modellt is beleértve -  ezen 
rutin speciális esete.

A 6. fejezet bemutatja a posterior valószínűségekre épülő szegmentális beszédmo- 
dellt -  beszédkutató csoportunk legkorábbi próbálkozását a HMM-től eltérő beszédmo- 
dell kifejlesztésére. Habár a vizsgálatok elég hamar igazolták, hogy a szegmentum-alapú 
reprezentáció sokkal kézenfekvőbb, és jobb eredményeket nyújt a beszédhangok osztá­
lyozásában, mint a HMM, később szembesülnünk kellett a ténnyel, hogy a rendszer 
megbízhatatlanul viselkedik a fonémafelismerési és izolált szavas felismerési feladatok­
ban. Ennek oka, hogy a modell pontatlanul becsli a jelekhez rendelt ún. szegmentálási 
valószínűséget. Ennek javítására két fő megoldást javasolunk és tesztelünk a fejezet­
ben. Ezek közül az egyik külön osztályként kezeli azokat a szegmentumokat, amelyek 
nem felelnek meg semmilyen beszédhangnak, és ezen új osztály tanulásához automati­
kusan generál ‘antífón’ tanítópéldákat. A másik megoldás ún. replikátor neuronhálókat 
alkalmaz ezen szegmentumok kezelésére. Röviden összefoglalva a fejezet eredményeit, 
azt találjuk, hogy a szegmentum-alapú megközelítés jobb a beszédhangok modellezésé­
ben, de a teljes beszéd-dekódolási feladatban csak különféle komplikált kiegészítések és 
finomítások után tudja utolérni a HMM-et.

A szegmentum-alapú rendszer nehézségeit látva rá kellett döbbennünk, hogy a HMM 
az egészen nyilvánvaló elvi gyengeségei ellenére is bámulatosan jó megoldás. A 7. fe­
jezetben a szegmentum-alapú szemszögből nézve vizsgáljuk meg a HMM működését, 
különösképpen azt, hogy miért képes jól megoldani a beszédjelek szegmentálásának 
és azonosításának feladatát, miközben valószínűségi becslései a naív Bayes feltételezés 
miatt meglehetősen pontatlanok. Az elméleti okfejtés mellett néhány egyszerű kísér­
letet is elvégzőnk, amelyekben a HMM-et egy generatív szegmentális modellel vetjük 
össze. Az eredményekből arra következtetünk, hogy a naív Bayes feltevés nem rontja 
számottevően a HMM beszédhang-azonosítási képességét, a szegmentálásban pedig 
határozottan segíti.

A 8. fejezetben a szegmentum-alapú látásmódot kiterjesztjük az úgynevezett hibrid 
HMM/ANN modellekre. Egész pontosan, megvizsgáljuk, hogy a szegmentális mo­
dell egyes összetevőinek a hibrid mely komponensei felelnek meg. Következtetéseinket 
felhasználva egy újszerű hibrid modellt vezetünk be, amelyben a keretekhez tartozó 
valószínűség-értékeket szorzás helyett átlagoljuk. Ez az újszerű ‘átlagolós hibrid’ mind 
a beszédhang-felismerési, mind az izolált szavas felismerési tesztekben kicsit jobbnak 
bizonyul, mint a hagyományos hibrid.

A 9. fejezet két további finomítást javasol a hibrid modellek javítására. Ezek egyike 
a gamma-eloszlásokon alapuló explicit hosszmodellek alkalmazása a HMM-ben implicit 
módon megtalálható exponenciális hosszmodell helyett. A másik finomítás a hibridek 
részét képező neuronháló tanításának módját változtatja meg kissé. Mindkét módosítás 
kisebb javulást eredményez a hibrid modell szófelismerési pontosságában.
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B.2. Az eredm ények tézisszerű összefoglalása

Az alábbiakban hét tézispontba rendezve összegezzük a Szerző kutatási eredményeit. 
A kutatásokból származó publikációkat, valamint azok tartalmának az egyes tézispon­
tokhoz való viszonyát a B.l. táblázat tekinti át.

I. ) A Szerző összeállított egy fonetikai szegmentumok parametrizálására alkalmas
szegmentális jellemzőkészletet. A jellemzőkészlet reprezentációs erejét többféle 
adatbázison, többféle tanulóalgoritmussal kombinálva tesztelte. Ezek alapján azt 
találta, hogy a jellemzőkészlet segítségével általában jobb beszédhang-felismerési 
eredmények érhetők el, mint a hagyományos HMM beszédhangmodellekkel.

II. ) A Szerző különféle, az ún. ‘antifón’ koncepción alapuló stratégiákat fejlesztett ki
a posterior-alapú szegmentális beszédmodell szegmentálási valószínűségeket leíró 
komponensének közelítésére. A javasolt modellezési módszerek beszédfelismerési 
képességeit több magyar beszéd korpuszon is kiértékelte.

III. ) A Szerző megvizsgálta a replikátor neuronhálók alkalmazhatóságát a szegmentum­
alapú modell szegmentálási valószínűségének közelítésére.

IV. ) A Szerző tanulmányozta a naív Bayes feltevés által okozott modellezési torzítás ki­
hatását a HMM beszédhangmodellek beszédfelismerési képességeire. A vizsgála­
tok alapján amellett érvelt, hogy a torzítás tulajdonságainál fogva csak kis mér­
tékben ártalmas a HMM beszédhang-azonosítási képességére nézve, miközben 
számottevően segíti a modellt a beszédjelek fonetikai szegmentumokra tagolásá­
ban. Az eredmények megmagyarázzák, hogyan lehet képes a HMM nagyon jó 
felismerési eredmények elérésére annak ellenére, hogy a valószínűségi becslései 
meglehetősen pontatlanok.

V. ) A Szerző megvizsgálta a HMM/ANN hibrid modell működését, összevetve azt
a szegmentum-alapú modellel. A levont következtetések alapján bevezetett egy 
újszerű hibrid struktúrát, amely a keretekhez rendelt posterior valószínűségi ér­
tékeket szorzás helyett átlagolással kombinálja. Felismerési kísérletekkel igazolta, 
hogy az ‘átlagolós hibrid’ hasonló vagy jobb felismerési eredményekre képes, mint 
a hagyományos hibrid.

VI. ) A Szerző megvizsgálta a gamma-eloszláson alapuló explicit hosszmodellek al­
kalmazhatóságát hibrid HMM/ANN beszédfelismerőkben. Azt találta, hogy a 
gamma-eloszlást használó hosszmodell mind a hagyományos, mind az átlagolós 
hibrid felismerési teljesítményén javít.

VII. ) A Szerző egy újramintavételezési sémán alapuló tanítási technológiát javasolt a
hibrid modellekben alkalmazott neuronhálók betanításához. A kísérletekben a 
javasolt módszer a felismerési eredmények kis mértékű javulását eredményezte.
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