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The three chapters of my dissertation are based on the papers [18, 19] 
and [20], respectively. The first paper is not related to  the m ain topic of the 
dissertation—decidability problems—but gives a complete description of the 
simple algebras in the  variety of semilattices expanded by an abelian group of 
autom orphism s. In the second paper we study the decidability of the near­
unanim ity problem, posed ten  years ago in [5], and prove a partial version 
of it to  be undecidable. In the  last, unpublished paper we show th a t the 
original problem, contrary to  expectations, is decidable. As a consequence, we 
obtain the decidability of the  natu ra l duality problem for finitely generated, 
congruence distributive quasi-varieties.

We assume basic knowledge of universal algebra and direct the reader to 
either [2] or [23] for reference. A lthough the  study of the near-unanim ity prob­
lem stems from th a t of na tu ra l dualities (see [4, 5, 6]), the reader is not required 
to  know this theory. For easier reference, we kept the  original num bering of 
definitions and theorem s of the dissertation.

F-sem ilattices

One of the prim ary goals of universal algebraic investigations is the  full de­
scription of broad classes of algebras. According to  a theorem  of G. Birkhoff, 
in equational classes of algebras, such as in the  varieties of groups, rings and 
lattices, every algebra can be expressed as a subdirect product of subdirectly 
irreducible members of the  class. Therefore, these subdirectly irreducible al­
gebras can be considered as the  building blocks of varieties. The description 
of subdirectly irreducible algebras is particularly  im portant because the  study 
of m any algebraic properties can be reduced to  th a t of subdirectly irreducible 
algebras.

This description is trivial in the  variety of semilattices because only the  two- 
element sem ilattice is subdirectly irreducible. The situation is not th is simple 
in other varieties, e.g., every subdirectly irreducible algebra in the  variety 
generated by tournam ents is a tournam ent, bu t not every algebra is [21]. There 
are (residually large) varieties, such as the variety generated by the quaternion 
group, where the subdirectly irreducible algebras form a proper class, and 
their full description is practically beyond hope. Therefore, in many cases we 
restrict ourselves to  the study of simple algebras, i.e., subdirectly irreducible 
algebras th a t have only trivial congruences. Even this problem is extremely 
difficult in general, as witnessed by the  classification of finite simple groups.

Algebras w ith a commuting sem ilattice operation, i.e., satisfying the  iden­
t ity

f  (xi A y i  , . . , x n  A y i ) «  f  (xi , . . . , Xn ) A f  (yi  , . . . , y n  )

for all basic operations f , have been studied in various forms. In many respects 
these algebras behave similarly to  modules. For example, it is proved in [15]
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th a t if a locally finite variety of type-set {5} satisfies a term -condition similar 
to  the term -condition for abelian algebras, then  it has a semilattice term  th a t 
commutes w ith all other term  operations.

W ithin the class of modes—th a t is, idem potent algebras whose basic opera­
tions commute w ith each other—those having a sem ilattice term  operation play 
an im portant role (see [28, 29]); these algebras are called semilattice modes. 
The structure  of locally finite varieties of sem ilattice modes is described in [14].

An interesting class of algebras w ith a commuting sem ilattice operation 
arises if we add autom orphism s, as basic operations, to  a semilattice. This is 
a special case of the  construction studied in [3]. In general, one can expand 
any variety V by a fixed monoid F  of endomorphism s in a na tu ra l way. The 
expanded variety is the variety of V-algebras A  equipped w ith new unary 
basic operations, acting as endomorphism s on A . We study only the following 
special case.

D e f in it io n  1.1. An algebra S =  (S ; A ,F ) w ith a binary operation A and a 
set F  of unary operations is an F -semilattice, if F  =  ( F ; •,- 1 , id) is a group 
and S satisfies the  following identities:

(1) the  operation A is a sem ilattice operation,

(2) id(x) ~  x,

(3) f  (g(x )) -  ( f  • g )(x) for an f , g e  F , and

(4) f  (x A y ) -  f  (x) A f  (y ) for a  ̂ f  e  F .

Note th a t every sem ilattice can be considered as an F-sem ilattice in a 
trivial way: every unary operation of F  acts as the identity function. A much 
more interesting example of an F-sem ilattice is the  following.

D e f in it io n  1.2. For a group F  =  ( F ; •,- 1 , id) let P ( F ) =  (P (F ); A, F )  be the 
F-sem ilattice which is defined on the set P ( F ) of all subsets of F  by setting

(1) A A B  =  A  n  B  for all A, B  C F , and

(2) f  (A) =  A • f -1 for all f  e  F  and A C F .

Our first im portant statem ent reduces the study of subdirectly irreducible 
F-sem ilattices to  th a t of the subalgebras of P ( F ).

L e m m a  1.6. I f  S is a subdirectly irreducible F-semilattice, then S is isomor­
phic to a subalgebra U  of P ( F ). The algebra U  can be selected so that it has 
a unique element M  C F  with the following properties:

(1) id e  M  and M  • M  =  M ,
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(2) A =  M  • A for all A  E U, and

(3) M  =  p |{ A e U | id e A }.

In [12] J. Jezek has described all subdirectly irreducible (Z; +)-sem ilattices. 
Using our lemma above, we can easily describe the  finite subdirectly irreducible 
F-sem ilattices (Proposition 1.4), and all subdirectly irreducible F-sem ilattices 
when F  is locally finite (Corollary 1.7). In these special cases the subdirectly 
irreducible subalgebra U  of P ( F ) contains the em pty set and some subgroup 
M  of F . These elements also play an im portant role in the following class of 
simple F-sem ilattices.

D e f in it io n  1.8. If F  is a fixed group and M  is a subgroup of F , then let S m  
denote the subalgebra of P (F ), the  elements of which are the em pty set and 
the right cosets of M .

Thus the  em pty set is the least element in S m  , and the  right cosets of 
M  are the  atom s. The set F  of unary operations of S m  acts as a transitive 
perm utation group on the set of atom s. It is not hard  to  show th a t the  algebras 
S m  are exactly those simple subalgebras of P ( F ) th a t have a least element 
and some atoms.

In [11] J. JeZek has described all simple algebras in the  variety of semi­
lattices expanded by two commuting autom orphism s, th a t is, in the variety 
of (Z x Z; +)-sem ilattices. We generalize th is result to  arb itrary  com m utative 
groups, which is our m ain result in th is chapter.

D e f in it io n  1.13. Let F  be a fixed com m utative group. Then for every non­
constant homomorphism /3 from F  to  the additive group (R; + ) of the real 
num bers let us define an F-sem ilattice R g =  (R ;m in ,F ) as follows:

(1) m in(a, b) is taken w ith respect to  the  natu ra l order of R, and

(2) f  (a) =  a — 3 ( f ) for all f  E F  and a,b E R.

D e f in it io n  1.16. A homomorphism 3 : F  ^  (R ;+ ) is called dense if for each 
real num ber e > 0 there exists an element f  E F  such th a t 0 < 3 ( f )  <  e.

If the homomorphism 3  in Definition 1.13 is not dense, then the  range of 
3  is isomorphic to  (Z ;+ ). We will consider th is case separately:

D e f in it io n  1.18. Let F  be a fixed com m utative group. Then for every sur­
jective homomorphism a  from F  onto the additive group (Z; + ) of the  integers 
let Z a =  (Z;m in, F )  be the  F-sem ilattice defined as follows:

(1) m in(a, b) is taken w ith respect to  the  natu ra l order of Z, and

(2) f  (a) =  a — a ( f ) for all f  E F  and a, b E Z.
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T h e o re m  1.21. I f  F  is a commutative group, then every simple F -semilattice 
is isomorphic to one of the following algebras:

(1) S m  , where M  is a subgroup of F ,

(2) Z a , where a : F  ^  (Z ;+ ) is a surjective group homomorphism, and

(3) the subalgebras of R g , where f t : F  ^  (R ;+ ) is a dense group homomor­
phism.

Furthermore, these simple F -semilattices are pairwise nonisomorphic, except 
for the case when fti  ,ft2 are dense homomorphisms, S i , S2 are subalgebras of 
R gx, R g2 respectively, and there exist real numbers t > 0 and d such that 
ft2 =  tfti  and S2 =  tS i +  d.

We conclude th is chapter by noting th a t there exists a simple F-sem ilattice 
in the  nonabelian case th a t has a least element but no atom  and its sem ilattice 
order is not linear.

Duality theory and the near-unanimity problem

General duality theory is capable of describing various well-known dualities— 
for example Pontryagin’s, Stone’s and Priestley’s—between a category A  of 
algebras w ith homomorphisms and a category X of topological structures with 
continuous structure  preserving m aps (see [6]). In these cases the  class A  is a 
quasi-variety generated by a single algebra P  £ A, and X  is the  class of closed 
substructures of powers of an object P  £ X  having the  same underlying set 
as P . W ithout getting into the  details, we note th a t the points of the dual 
A  £ X of an algebra A  £ A  are the homomorphisms p : A  ^  P ; while the 
elements of the dual X  £ A  of a topological structure X  £ X are the  f : X  ^  P  
continuous structure preserving maps.

E x a m p le . For the Pontryagin duality, A  is the class of abelian groups, P  =  
(P ; •, , 1 ) is the circle group on the set P  =  { z £ C : |z| =  1} of complex
numbers with multiplication, X  is the category of compact topological abelian 
groups, and P  =  ( P ; •,- i , 1, t ) where t  is the restriction of the natural topology 
of the complex plane to P .

E x a m p le . For the Stone duality, A  is the category of Boolean algebras, P  =  
({0,1}; A, V ,', 0,1) is the two-element Boolean algebra, X  is the category of to­
tally disconnected Hausdorff spaces, and P  =  ({0,1}; t ) where t  is the discrete 
topology. It is easy to see that the ultra filters of a Boolean algebra A  £ A  
correspond to the homomorphisms of A  onto P .
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E x a m p le . For the Priestley duality, A  is the category of bounded distributive 
lattices, P  =  ({0,1}; V, A, 0,1) is the two-element bounded distributive lattice, 
X  is the category of totally order-disconnected spaces, and P  =  ({0,1}; < , t )  
where t  is the discrete topology. It is easy to see that the prime filters of a 
distributed lattice A  e  A  correspond to the homomorphisms of A  to P .

We say th a t an algebra P  admits a natural duality, if there exists a topo­
logical structure  P  defined on P  such th a t the quasi-variety generated by P  is 
dually represented, as defined by duality theory, by the category X of closed 
substructures of powers of P . Therefore, to  leverage the  power of duality, it 
is na tu ra l to  ask which finite algebras adm it a na tu ra l duality. Is this charac­
terization possible? Is it decidable of a finite algebra P  w hether it adm its a 
na tu ra l duality? This second question is known as the natural duality problem. 
Currently, we do not know the answer to  th is problem, but m any expect it to 
be undecidable.

The natu ra l duality problem was partially  reduced to  a pure algebraic 
problem in the following way. We call a term  t of an algebra P  a near-unanimity 
term if it satisfies the following identities:

t (y, x , . . . ,  x) ~  t (x , y , x , . . . ,  x) ~  t (x , . . . ,  x , y) ~  x.

An algebra is congruence join-sem i-distributive if its congruence lattice satisfies 
the quasi-identity

x V y =  x V z = ^  x V (y A z) =  x V y.

B. A. Davey and H. W erner proved in [6] th a t in the  presence of a near­
unanim ity term  of P , the quasi-variety A  generated by P  adm its a natural 
duality. The converse was proved in [5] under the assum ption th a t A  is con­
gruence join-semi-distributive:

T h e o re m  (B. A. Davey, L. Heindorf and R. McKenzie [5]). Let P  be a finite 
non-trivial algebra and let A  be the quasivariety generated by P . The following 
are equivalent:

(1) P  has a near-unanimity term;

(2) P  admits a natural duality, and every algebra in A  is congruence distrib­
utive; and

(3) P  admits a natural duality, and every finite algebra in A  is congruence 
join-semi-distributive.

This theorem, known as the  near-unanimity obstacle theorem, m otivates the 
near-unanimity problem, the problem of deciding whether a finite algebra has
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a near-unanim ity term . Clearly, if the arity  of the near-unanim ity term  of P  
is known, then  finding the near-unanim ity term  is easy by simply calculating 
the free algebra in A  generated by the appropriate num ber of elements. The 
difficulty lies in the  fact th a t we do not even have an upper bound for the arity  
of a possible near-unanim ity term .

N ear-unanim ity term  operations come up naturally  in the  study of algebras. 
For example, all lattices have a ternary  near-unanim ity term

(x A y) V (y A z ) V (z A x).

From E. L. P o s t’s classification [26] we know th a t almost all clones on a two 
element set contain a near-unanim ity operation. It is also well known th a t an 
algebra having a near-unanim ity term  lies in a congruence distributive variety, 
and has a finite base of identities provided it is of finite signature (see [30]).

It is easy to  decide w hether the  quasi-variety A  generated by a finite algebra 
P  is congruence distributive because it is enough to  search for Jonsson term s 
among the  finitely m any ternary  term s of P . Therefore, by the near-unanim ity 
obstacle theorem, if the near-unanim ity problem were undecidable, then the 
natu ra l duality problem would also be undecidable.

The undecidability of a partial near-unanimity term

In an a ttem pt to  prove the undecidability of the  near-unanim ity problem the 
following approach was taken by R. McKenzie.

D e f in it io n  2 .1 . Let A  be a fixed finite algebra, t(x 1 , . . . ,  xn ) be a term  of A, 
and S C A. We say th a t t is a partial near-unanimity term on S  if

t (y, x , . . . ,  x) =  t(x  , y , x , . . .  , x) =  ••• =  t(x  , . . . ,  x , y) =  x

for all x, y E S .

Clearly, a term  of A  is a near-unanim ity term  if and only if it is a partial 
near-unanim ity term  of the  two-generated free algebra in the  variety generated 
by A  on the  set {x, y} of generators. Thus it is na tu ra l to  study the decidability 
of the partial near-unanim ity problem on some fixed subset of a finite algebra. 
It is proved in [22] th a t the  existence of a partia l near-unanim ity term  on a 
fixed two-element subset is undecidable. In C hapter 2 we extend th is result to 
a subset excluding two fixed elements:

T h e o re m  2.2 . There exists no algorithm that can decide of a finite algebra 
A  and two fixed elements r,w  E A if  A  has a partial near-unanimity term on 
the set A \  {r, w}.
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This theorem  does not seem to  be significant after learning the  decidabil­
ity of the near-unanim ity problem. Nevertheless, the  m ethods used in the 
proof are interesting on their own and may be useful for the  study of other 
decidability problems.

In the proof of th is theorem  we employ Minsky machines, which are equiv­
alent to  Turing machines (see [24, 25]). The “hardw are” of a Minsky machine 
consists of a pair of registers th a t can contain arb itrary  natu ra l numbers. The 
“software” is a finite set of states containing an initial and a halting state to ­
gether w ith a list of commands. There are two types of commands: the first 
instructs the machine to  increase the  value stored in one of the registers by 
one, and then to  go to  another state. The second command first checks the 
value stored in one of the  registers; if it is zero, then the  machine goes to  one 
sta te ; otherwise the value stored in the  register is decremented by one and the 
machine goes to  another state. The computation of the  machine is a possibly 
infinite sequence of states together w ith the values of the  registers a t each step.

Since the halting problem for Minsky machines is undecidable, it is enough 
to  construct (by an effective algorithm ) for each Minsky machine M  an algebra 
A (M ) w ith two special elements r, w E A (M ) such th a t A (M ) has a partial 
near-unanim ity term  on the  set A (M ) \  {r, w } if and only if M  halts.

In the  construction the universe and the  set of basic operations of A  (M ) 
depend on the  set of states and commands of M , respectively. O ur goal is to 
encode the  halting com putation of M  into a partia l near-unanim ity term . The 
key step is to  show th a t given a partia l near-unanim ity term  t on A (M ) \{ r , w} 
one can reconstruct the halting com putation of M  from the term  tree of t. 
The definition of the basic operations forces the  shape of the  tree to  be almost 
“linear” w ith the  basic operations encoding a sequence of commands of M . 
W ith  the proper definition of the  basic operations, for example m aking their 
range pairwise disjoint, we can easily ensure th a t the  sequence of states is 
correct except possibly those steps where the next sta te  depends whether the 
content of a register is zero or not. We solve th is difficulty by encoding whether 
the contents of registers are zero at each step together w ith the  states. We 
cannot encode the  actual values of the  registers, which can be a rb itrary  large 
natu ra l numbers, because A (M ) m ust be finite. Our final task  is to verify 
whether the  sequence of states together w ith these special m arkings for zero 
values correspond to  the  halting com putation of M . We achieve this by forcing 
an appropriate m atching of the  variables of t via the known value of t a t near­
unanim ous evaluations.

The element w E A (M ) has (essentially) the absorbing property: for all 
basic operations f  (xi , . . . , x n ) and elements x i , . . . , x n E A (M ) the implication

w E { x i , . . . , x n  } f  (xi , . . . , x n  ) =  w

holds. We use w to indicate th a t either the shape of t is incorrect, or the
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sequence of encoded states does not correspond to  th a t of the halting compu­
tation. If some local inconsistency is detected, then one of the basic opera­
tions in the  term  tree returns w at an appropriate near-unanim ous evaluation 
(x̂ , . . . ,  x̂ , ŷ, x  . . .  , x  ). Then the element w propagates to  the root of t by the 
absorbing property, thus t ( x , . . . ,  x , y , x , . . .  , x) =  w, which is a contradiction.

An improvement of this m ethod might be possible to  the subset A (M ) \  
{w}, which could be formulated, analogously to  the results in [13], as the 
undecidability of the  near-unanim ity problem for partia l algebras:

P ro b le m  1. Given a finite partial algebra, decide whether it has a term that 
is defined on all near-unanimous evaluations and satisfies the near-unanimity 
identities.

The decidability of a near-unanimity term

In the  last chapter of the dissertation we prove the  decidability of the  near­
unanim ity problem, a rather surprising development after the negative partial 
results. We sta te  this theorem  in the  language of clones:

T h e o re m  3 .17 . Given a finite set A and a finite set F  of operations on A, 
it is decidable whether the clone generated by F  contains a near-unanimity 
operation.

Instead of working w ith operations and their composition, we introduce an 
equivalence relation on the  set of operations in such a way th a t

(1) the  near-unanim ity operations form an equivalence class of the relation,

(2) a new notion of composition can be introduced on the equivalence classes, 
and

(3) it is possible to  algorithm ically com pute the  closure of equivalence classes 
under th is new notion of composition.

Based on these requirements, our next definition might not be so surprising. 
We will need the  following notations. Let w and w+ be the  set of all finite and 
countable cardinals, respectively. Let O a be the set of all operations on the 
set A, and for n £ w let O A ' =  AA , th a t is, the set of all n-ary operations on 
A. Given an operation f  £ O a , we consider those binary operations— called 
polymers—with their m ultiplicities th a t arise as f  (x , . . . ,  x , y , x , . . . ,  x) where 
the lone y is a t a fixed coordinate:

D e f in it io n  3 .1 . For f  £ o A) and i £ w, the  i th  polymer of f  is f  |i 
defined as

f  |i ( x , y)

i th

f  ( x , . . . ,  x , y , x , . . . ,  x) if 0 <  i <  n,
f  (x , . . . ,  x) if i >  n  ,

£ O (2)
A
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where y occurs at the i th  coordinate of f  in the  first case. The collection of 
polymers of f  together w ith their m ultiplicities is the characteristic function 
of f , which is formally defined as the m ap Xf : O ^  ^  w + where

Xf (b) =  l{i e  w : f  \i =  b } | .

Clearly, near-unanim ity operations are characterized by their polymers; 
namely all of them  m ust be equal to  x. Therefore, the characteristic functions 
of near-unanim ity operations are the  same and equal to

Xnu (b)
w if b(x, y) ~  x, 
0 otherwise.

Let Xa be the  set of characteristic functions of operations on A . Now the 
kernel of the operator

X : ° a ^  XA, X: f  ^  Xf

satisfies our condition (1) sta ted  above.
We do not give the  technical definition of the  composition operator Cf  as 

the following shall be sufficient. We distinguish the “ou ter” set F  C Oa of 
operations from the “inner” objects on which we apply the  members of F . For 
F , G C O a the  set Cf (G) contains all operations t of the  form

t(y 1 , . . . , yk) =  f  ( g(x 11 , . . . , x 1n ) , . . . ,  g (xm1 , . . . ,  xmn )) ,

where f  e  F  and g e  G are m  and n-ary operations, respectively, and 
{x11, . . . ,  xmn} C {y1 , . . . , y k }. We employ the  same operator symbol Cf  for 
characteristic functions, thus Cf (U) C Xa for every U C Xa . The connection 
between the  two composition operators, the  real meaning of condition (2), is 
expressed by the next lemma.

L e m m a  3.6 . XCf (G) =  Cf X(G) for all F , G C O a .

Up to  this point, we showed th a t the clone (F ) generated by F  C O a 
contains a near-unanim ity operation if and only if the characteristic function 
Xnu can be obtained from the characteristic function Xid of the unary projection 
by finitely m any applications of the  composition operator Cf . However, we 
are still far from establishing requirement (3), our ultim ate goal.

Suppose th a t the sets A  and F  C O a are finite, and th a t the clone (F) 
contains a near-unanim ity operation. Then, using a theorem  of L. Lovasz 
on the chrom atic num ber of Kneser graphs [17], we can show th a t (F ) must 
contain an operation g of bounded arity  (dependent only on |A|) th a t satisfies 
a set of technical identities similar to  th a t of near-unanim ity operations. We 
can effectively find g since its arity  is bounded.
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Recall th a t a partially  ordered set is called well-ordered, if it has no infi­
nite anti-chains and satisfies the descending chain condition, i.e., contains no 
strictly decreasing infinite sequence of elements. Using the properties of g, we 
introduce a well-ordered partial order on a special subset of X a . By applying 
the composition operator Cf  to  an order filter of characteristic functions, we 
get another order filter whose minimal elements can be effectively com puted 
from th a t of the  original filter. If we apply the  composition operator iteratively, 
we get an increasing sequence of order filters under inclusion. However, a well- 
ordered partially  ordered set cannot have a strictly increasing infinite chain 
of order filters, therefore this process must term inate in finitely m any steps. 
This proves th a t the closure of characteristic functions under the composition 
operator can be effectively calculated.

As an imm ediate consequence of the decidability of the  near-unanim ity 
problem and the near-unanim ity obstacle theorem  from [5], we also obtain  the 
decidability of the natu ra l duality problem for finite algebras in a congruence 
join-sem i-distributive variety.

Since there are only finitely m any algebras on a fixed n-element set whose 
basic operations are at most r-ary, by the decidability of the  near-unanim ity 
problem, there exists a recursive function N (n , r) th a t puts an upper limit on 
the minimum arity  of a near-unanim ity term  operation for those algebras th a t 
have one. Consequently, given an algebra P  whose operations are a t most r- 
ary, one can decide the  near-unanim ity problem by simply constructing all a t 
most N ( |P  |, r)-ary  term s and checking if one of them  yields a near-unanim ity 
operation. If no such is found, then  P  has no near-unanim ity term  operation. 
We know th a t such recursive function N (n , r) exists, but currently we do not 
have a formula for one.

A very interesting group of open problems is related to  the constraint sat­
isfaction problem, which we do not define here and refer the reader to  [8] for 
details. It is proved in [10] th a t if a set r  of relations on a set adm its a com pat­
ible near-unanim ity operation, then  the corresponding constraint satisfaction 
problem C S P (r) is solvable in polynomial time. Therefore, it is na tu ra l to 
consider the near-unanimity problem for relations:

P ro b le m  2. Given a finite set r  of relations on a set, decide whether there 
exists a near-unanimity operation that is compatible with each member of r .

Currently we are unable to  solve th is problem, even in the light of our 
result. We know th a t if a clone has a near-unanim ity operation, then  bo th  the 
clone and its dual relational clone are finitely generated (see [30]). Inspired by 
this fact, we ask the  following:

P ro b le m  3. Given a finite set of operations and a finite set of relations on 
the same underlying set, decide if the functional and relational clones they 
generate are duals of each other.
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