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1 In troduction

The investigated optimization problems. Bound constrained global optimization 
problems have the form

( 1)x£S
where /  : R” —>• R is the objective function and S C 1" is the search space. 
Constrained global optimization problems are formalized as

min f(x)
subject to gi{x) < 0 (i = 1, . . . ,  l) (2)

x E S,

where & : R" —>• E for all? E {1, . . . ,  /}.
Constraint satisfaction problem are of the form (2) without the objective function.
The set of points that satisfy problem (2) or a constraint satisfaction problem is called 
the set of feasible solutions. The points that are not satisfying the constraints are called 
infeasible solutions.
The topic of the thesis belongs to the held of complete global optimization. Complete 
methods are in exact arithmetic guaranteed to find the global minimizer (with some 
tolerances) with a predictable amount of work. Here predictable only means relative to 
known problem eharaeterestie such as Lipsehitz constant or other global information 
needed for the convergence proof. A subclass of the complete methods consists of the 
rigorous methods. A rigorous method reaches a global minimum with certainty and 
within given tolerances even in the presence of rounding errors. The interval arithmetic 
based braneh-and-bound type global optimization methods belong to this class.

2 A ccelerating  interval global op tim ization  m eth 
ods

In this chapter real numbers are denoted by small letters while intervals are denoted 
by capital letters.
Interval arithmetic. The interval X  is generally indentihed with the (nonempty) set 
of points between its lower and upper bound: X  = [X_,X] =  {x E R | X_ < x < X},  
so that x E M is contained in interval X ,  i.e., x E .V ill' ,V < x < ,V. We write X_ for 
the lower bound and X  for the upper bound of X. In ease of an n dimensional interval 
vector X  = ( W , . . . ,  X n)T denotes the components A-/, = [X_k, X k] (k = 1 ,.. .  ,n).
The set of all n dimensional intervals is denoted by I”. If I) C R" then 1(D) := 
{V | X  E I, X  C £)}, The width of X  e l  is wid (JA) = X  — X_ > 0, while the width of 
X  E I” is defined by wid (X) = maxj=lv..>n wid (AQ).
Interval operations. The real type elementary arithmetic operations are extended to 
interval arguments by X  o Y  := {x o y \ x E X , y E Y } E I, where o e {+, —, •, /}. 
Since the elementary operations are eontinous these operations can be done easily.
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Interval inclusion functions. We call a function F  : I(W) —>• I an inclusion function 
of /  in X  if x e Y  implies f(x )  E F(Y)  for all Y  E I(W), The range of the function 
/  on W is denoted by f (X ) .  Moreover, f ( X )  denotes the lower bound of the range, 
while F_(X) and F(X)  denote the lower and the upper bound of the interval inclusion 
of the range, respectively.
In the following the derivative (vector) of function /  is denoted by / '  and its interval 
inclusion by F '.
Properties of inclusion functions. We call F  an inclusion isotone function over X ,  
if for all Y, Z  E I(X) Y  C Z  implies F(Y)  C F(Z).
We call the inclusion function F  an a-convergent inclusion function over X  if for all 
Y  E I(W) wid (F(Y)) — wid ( f(Y)) < k(wid(Y))a holds, where a and k are positive 
constants.
The function F : I” —y I is said to be Lipschitz continous on the interval X  E I" if 
there exists such a i e l  that wid (F(Y)) < k wid (F) holds for all Y  C X.

C en tered  form s

For the sake of simplicity the endpoints of the considered subinterval Y  are denoted by 
a and b. The elements of the gradient vector are denoted by [/¿, uf\ i = 1, . . . ,  n, where 
the indices are simply neglected in the one dimensional ease.
In the following we assume that £* < 0 < u* holds for all? = 1, . . . ,  n. If u* < 0 or 
ii > 0 for some i then /  is monotonie, thus the range can easily be calculated.
The one dimensional ease is considered first.

Optimal centered forms. The centered form is defined as

/ ( x) E Fcf(Y, c) := / ( c )  + F '(Y)(Y  -  c).

Here, by the argument of B aum ann , c can be chosen to be optimal in the sense that 
the lower bound of the range inclusion would be maximal (using centered forms).
Linear boundary value form. Following the idea of N eu m a ier  the linear boundary 
value form (lbvf) gives a lower bound for the range as

— L B V f O- ) — Vs
uf{a) ~ l/(&)

u — £
+ (b a)

£u
u — £

This is stated in Theorem 4 in the thesis.

K ite  inclusion function  -  one dim ensional case

Based on the results of V in k o , L agouanelle  & C sendes [3] one can see that the 
simultaneus use of the two methods above leads to a considerably better bound for the 
range inclusion.
Define the function F K(Y,c) := min{yr(c),yt(c)}, where

u f ( a ) ^ £ f ( c ) + £ u ( c ^ a )  u f (c )^ £ f (b )+ £ u (b ^ c )yr(c) := ^ and yi(c) := X X I -----^
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The value F ^ Y , c) 'IS called the lower bound of the kite.
Using a similar argument, the upper bound F K(Y, d) can also be defined. This can be 
found in the thesis too.

Theorem 5 [3] The inequalities max{FLBFF(Y), F_cf(Y, c) }  < F_K(Y,c) < f (Y )  hold.

Optimal center. Consider now the optimal choice of the center of the kite. This is 
such a point c* that

F k (Y,c*) = max F_K(Y, c) = max min{yr{c),yt{c)}
c£|_a,o| c£|_a,o|

holds. The next theorem summarizes some properties of the optimal center.

Theorem 6 [3] There is a unique c* E [a,b] such that yn(c*) = yrfc*), and c* is a 
maximizer of F K (Y, c).

Properties of the kite inclusion. Theorem 7 of the thesis says that if the inclusion 
F' is isotone then also F(Y)  =  [F_k (Y, c*), F k (Y, c')] is isotone for all Y  E I(df) 
intervals. By Theorem 8 the kite inclusion is quadratically convergent. The pruning 
effect is explained as follows.

Theorem 9 [3] Let Y  = [a, b] C X  be the current considered subinterval, c* E [a, b] be 
a maximizer of F K(Y,-), and f  be the current guaranteed upper bound for the global 
minimum value of f . Let us define the following values:

p = o +

* ir = c +

/  ~ f{a)
l

J - J ( c * )
l

% iq =  c +
S - S E )

u
, , / - / Ms =  b H--------- -—

u

If  i  < 0 < u, then a pruning technique based on the kite algorithm can be used in the 
sense that

(a) I f  f  < min{ f  (a), f  (b), f  (c*)} then all the global minimizes points of Y  are con
tained in the intervals \p, q] and [r, s].

(b) I f  f{b) < f  < min{/(o), f(c*)} then all the global minimizes points of Y  are 
contained in the intervals \p, q] and [r, b].

(c) I f  f  (o) < /  < min{/(&),/(c*)} then all the global minimizes points of Y  are 
contained in the intervals [a,q] and [r, s],

(d) I f  f  [(f) < f  < m in{/(o),/(&)} then all the global minimizes points of Y  are 
contained in the interval \p, s].

(e) I f  m ax{/(6), f(c*)} < f  < /(o) then all the global minimizes points of Y  are 
contained in the interval [p, b].
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(f) I f  max{/(o),/(c*)} < /  < /(&) then all the global minimizer points of Y  are 
contained in the interval [a, s].

(g) I f  max{/(o), /(&)} < f  < f(c*) then all the global minimizer points of Y  are 
contained in the intervals [a,q] and [r,b\.

Numerical results. The numerical computation was done and reported in section 
2.4.5 of the thesis to show the performance improvement. We tested 40 one dimensional 
functions. Two implementations were studied. The first was based on the usage of the 
first derivative, while the other one used second derivative to made a Newton step. It 
was shown that the test functions can be solved with less computational effort compared 
to the traditional algorithm. Another comparison with two recently published methods 
(one which uses lbvf inclusion and a pruning method and the other one uses the optimal 
centered form with a pruning) was made as well. The kite method performs better (at 
least on the used test functions) than those two algorithms.

K ite  inclusion -  m ultid im ensional case

In this section a possible extension of the kite inclusion function is given based on
V inko  & R atz [5].

For the remaining of this chapter an inclusion of the gradient vector f'(y)  is denoted 
by F'(Y), while the ith component of this vector we use the notation F[(Y) = [£i,Ui\. 
We assume that igxi < 0 holds for all? = 1, . . . ,  n.
Componentwise extension of the kite. Let /  : D C !"  —s> S  and Y  = )) x . . .  x
Yn C D. Let us define g, : C 1  4  i ¡i (■ {1.......n}) by

gi(w) := f ( Y i , . . .  IWi, w, Yi+h . . . ,Y n),w E  Yjt.

Using this one dimensional interval valued function we are able to use the one dimen
sional version of the kite enclosure method. If we have V D gi(Yf),W D gi{Yf) and 
Z  D gi(ci) where (c* E Yf), then the componentwise kite enclosure can be built up with 
the usage of the componentwise centered form, i.e.

/•)•/. (V. c, i) = Z  + F>(Y)(Yi -  a), ((7 e Yi),

and the componentwise linear boundary value form

—LBVF 5 *)
UjV -  £jW 

H'i £%
+ (Yi Y*)

(■iUi
H'i £-i

This leads to the following result.

Theorem 10 Let F_K(Y, c, i) = min{yR(c, i), yr(c, i)}, where c E Y ,

Vr (c, i) 

Ut (c, i)

u % V  ~  h Z  +  U j i i ( c i  -  Y j )

H’i £-i
UjZ_ -  ljW_ + UjijhYi -  Cj)

£-i
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Z  D fji(ci), V  D and W  D gi(Yf, and i = 1, , , , ,  n. Then

ma*{F lbvf(Y, i ) , E c f (Y, c, ?)} <  F K(Y, c, i) <  f ( Y)  

hold for every i =  1, , , ,  n.

In the inequality above the parameter c can be set to be optimal. That is we can find 
the point c* such that

F k (Y, c*, i) = max F k (Y, c , i) = maxmin{t/E(c, i), yT(c, ?)}.c£Y c£Y

To obtain this optimal c* Theorem 6 can be used for every coordinate direction.

Theorem 11 [5] For all i =  1, , , ,  ,n  there is a unique c* E Y  such that yn(c*,i) = 
yT(c*,i), and c* is a maximizer of F K(Y,c,i).

Since the computational cost of the componentwise extension is high, it is not rec
ommended to be used in the interval global optimization algorithms as an inclusion 
function. This approach is used better in the construction of a new accelerating tool.
Componentwise pruning. Using the computed value needed for the construction of 
the componentwise kite inclusion function, a pruning method can be developed. The 
following theorem gives the necessary formulas.

Theorem 12 [5] Let Y  C X  C I” be the current considered subinterval, c E Y , F '(Y ) 
be an enclosure of the gradient of f (Y ) ,  and f  be the current guaranteed upper bound 
for the global minimum value. I f  we have Z  D gi{cf), V  D gi(Yf) an<̂  W  — 9iiXi),

x. , f - Y  , f - z
Pi=  Li +  —0— > Qi = Ci + -------- ,

hi m

f - Z  — f - W
r i — c i -\ -Q------> s i — H )ti lí¿

then for every i E {1, , , , ,  n} the following statements hold.

(a) I f  f  < min{U, W, Z} then all the global minimizes points o fY  are contained in 
the intervals Yf x , , ,  x x [pi, qf\ x U+i x , , ,  x Yn and Y\ x , , ,  x x [;r s f  x 
 ̂¿+i x , , ,  x 1 n.

(b) I f  W_ < f  < min{U, Z} then all the global minimizes points o fY  are contained
in the intervals Yi x , , ,  x x [pi, qf\ x Y+i x . . .  x Yn and Yi x , , ,  x x
[U; X Y  +  l  X . . . X I jj.

(c) IfYL< f  < min{Z, W } then all the global minimizes points o fY  are contained
in the intervals Yi x , , ,  x x \Y_v ft] x i x . . .  x Yn and Yi x , , ,  x Ŷ _i x
[ft;  f t ]  X Y + l  X , , , X I jj.

(d) I f  Z_Y f  < min{U, W } then all the global minimizes points o fY  are contained 
in the interval Yi x , , ,  x x [pi, s f  x Yi+1 x . . .  x Yn.
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(e) If  max{UU Z} < f  < V then all the global minimizer points of Y  are contained
in the interval 1 i  x , , ,  x x [pi, Yf\ x Yi+1 x . . .  x Yn.

(f) I f  max{U, Z} < f  < W_ then all the global minimizer points of Y  are contained
in the intervals 1\ x , , ,  x x [1% sf\ x Yt+1 x . . .  x Yn.

(g) If  max{U, W } < f  < Z  then all the global minimizer points of Y  are contained
in the intervals 1\ x , , ,  x x [1% qf\ x Yi+i x . . .  x Yn and 1\ x . . .  x x
\j* i ; U] X U+l X .. .  X n.

A javasolt algoritmus. Based on the above result a new braneh-and-bound type 
inteval global optimization algorithm was proposed in subsection 2.5.3. Corollary 3 
of the thesis states that using this algorithm we cannot loose global minimizer points 
which are in the starting interval X.
Numerical results. In this section the discussion of the implementation of the pro
posed algorithm and the numerical comparison with the traditional one is given. Sum
marizing the numerical results we can conclude that the new algorithm using the prun
ing technique proved to be better than the traditional one on the test problems. The 
improvements are larger on the harder to solve problems. A comparison was made 
with two recently proposed technique (namely AMIGO and MIAG). The kite method 
was better in general, the performance improvement was 15% and 35% compared to 
AMIGO and MIAG, respectively. However, calculating the average of the percentages 
for each of the test problems we obtained worse results. This shows that the other two 
techniques are a little bit better on the harder to solve problems.

3 A  m eth od ology  for benchm arking global optim iza
tion  solvers

In this chapter an algorithmieal procedure is introduced to compare and benchmark 
complete global optimization solvers. N eu m a ier  et al. [1] gives the results of a 
benchmark we performed. In this thesis the underlying methodology is described.

A rrangem en ts

The test set. The test set consists of 1322 models varying in dimension (number of 
variables, this is the COCONUT Benchmarking Set). The problems are divided into 3 
libraries. In each library the problems are sorted with respect to their sizes (number 
of variables) as sizel (n < 10), size2 (10 < n < 100), and size3 (100 < n < 1000).
Timing. Because of the large number of models to be solved, we performed our 
tests on a number of different computers. There are many proposition to measure the 
computational time. After some considerations we decided to norm with the CPU 
frequency in MHz.
Uniform input. A good benchmark set must be one that can be interfaced with 
all existing solvers, in a way that a sufficient number of comparative results can be
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obtained. Our test sets are coded in the AMPL language. Converters are provided 
which are able to produce different input formats.
Converters. We provided several converters that mediate between different input 
formats for the same model. For a correct solution of the models, and for reliable com
parisons between different solvers based on different input formats, it is very important 
that these converters behave correctly. To cheek the correctness of the converters we 
used the following general working scheme: From a collection of models in AMPL, 
make several converted formats. Solve each models with different solvers and then 
compare the results. Note that in the last Step the differences between the results 
could also have been caused by the solvers.
Performance criteria. Since the testing was made on different computers the time 
limits must be normalized to compare the results. Different time limits were set for 
the problem sizes: ^ û mhz0 The reliability of the claimed results is the most poorly 
documented aspect of current global optimization softwares. We proposed categories to 
describe the quality claimed. These made easier to compare the success of the different 
solvers,
Cheking for best function value. In the first step all the output of the solvers were 
uniformed. Then the program solcheck form the COCONUT Environment cheeks the 
feasibility of putative solutions of solver results. The feasible results were taken into 
account, and the best function value was chosen from the minimum of the (nearly) 
feasible solutions by any solver.
The making of the hitlist consists of the following steps. We take all the benchmarking 
results and choose the best function values. If there are more than one such a candidate 
then the one for which the maximal infeasibilitv is minimal. This value is the best 
solution. If there was no feasible solution for a given model the (local) solution with 
the minimal residual was chosen (but the result marked as infeasible).
The hitlist is available online from a website.

N o ta tio n  in tab les

The testing environment produces tables about the performance of the solvers.

Summary statistics: how often the solution was in fact global, how often it was in 
fact not global and how many models are in fact infeasible.

Detailed tables: one can consider the behaviour of a solver based on the introduced 
output classification.

Comparison of running times: two or more solvers can be compared with respect 
to their speed and success.

Reliability analysis: gives a summary of the reliability of the solvers.

Short review on the bechmarking results. Among the tested global solvers, 
BARON is the fastest and most robust one, with LINGO and OQNLP being close.
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None of the current global solvers is fully reliable, with one exception: for pure con
straint satisfaction problems, ICOS, while slower than BARON, has excellent reliability 
properties when it is able to finish the complete search.
The benchmarking was helpful for the developers of the solvers. The authors of BARON 
and ICOS were able to improve the performance and the reliability of their solvers on 
this basis.

4 A tom  cluster problem s

In this chapter atom cluster problems are investigated. The results are based on the 
articles V inko  [2] and a V inko  & N eu m a ier  [4],
Definitions. Given a cluster of n atoms in a d-dimensional space (d > 1), define the 
coordinate vectors X i E  Rd (i = 1 ,. . . ,  n) as the center of the ith atom. The thesis 
deals with potential energy functions that contain only pair potential functions, i.e,,

E (x) = Y ^ v (rij),
i< j

where r¿j = ||ay — Xj ||2 is the Euclidean distance of Xi and Xj and v(r) is the value of 
the pair potential for two particles at distance r. The introduced methods are general 
in the sense that only some properties are fixed to be satisfied by the pair potential 
functions.
Notation. The following notation will be used, A global minimizer of the function 
E  is any configuration x* E  Rd" with E* := E(x*) =  minxeRdn E(x), where d > 1 is 
the dimension of the space containing the cluster, (Of interest are mainly d = 2 and 
d = 3.) Let rij be the Euclidean distance of the points x* and x* (i , j  = 1,, , ,  ,n). 
The potential energy of particle i in an arbitrary configuration x is defined as E^x)  = 
J2i^jv (\\x i ~  Till) (* = 1 ,■■■ ,n) and we set E* = Ejfx*). Clearly, the total energy 

1 U
is E(x) = ~'ŝ ^ E i(x). The minimal inter-particle distance in the optimal structure isLi

i= 1
r* = minjj r¿j (i,j = 1, . . . ,  n). The lower bound for the minimal distance is denoted 
by q, i.e,, our task is to find a good underestimation q < r*. The only positive root of 
the pair potential function is denoted by t, if any.
Without loss of generality let us suppose that x\ = 0 and 0 = rq < r2 < . . .  < rn, 
where rj = ||Xj — 11 = 11a;j 11 (j = 1 , , , , ,  n),
In the remains of the paper we consider only the eases n > 2,
Requirements to be satisfied by the pair potential. For the pair potential v(r) 
we set the following requirements to be satisfied:

(PI) v is eontinous,

(P2) There exists a unique s with v(s) < 0 and if then v(r) > v(s) (single stable 
state property),

(P3) v{r) -A 0 (r —>• oo),

(P4) v(r) is strictly decreasing if r < s and strictly increasing if r > s.
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Size d ependen t bounds

In this section we suppose that the pair potential function v satisfies the properties 
(P1)-(P4).

Lemma 1 [4] An optimal n-atom duster has total energy bounded by

^ |t;(g)| < E*{n) < —d(n — d +  l)|tj(s)|,
Li

Lemma 2 [4] In the optimal configuration the potential energy of particle i can he 
bounded by —(n — l)|tj(s)| < E*{n) < ^efivfs)], where ea = 1.

The upper bound in Lemma 2 is in fact independent from the dimension and the size 
of the given optimal cluster. The optimal structure most likely has d contacts, but 
showing this rigorously seems to be nontrivial, so that the statement remains open. In 
the following the upper bound of E* will be denoted by —ed|w(s)|.

Lemma 3 [4] I f  n > 2 + ed then

q(n) = w((n -  2 -  ed)|u(s)|)

is a lower hound for the minimal inter-particle distance in the optimal configuration. 
Here w is the inverse function of v

w{x) = \ r

defined by

iff x = v{r) and r > s, 
otherwise.

Size independen t bounds -  first version

The following results are based on V inko [2],
Requirements to be satisfied by the pair potential. For the usage of the method 
the restriction of properties (P1)-(P4) are needed. Namely, let us suppose that the 
pair potential v satisfies properties (PI) and (P2) and

(P3’) if r < s then v is strictly decreasing and v(r) > r -4,

(P4’) if r > s then v is strictly increasing and v(r) > ^ r -4.

The auxiliary bounds. It is easy to see that rm¡n < s holds for the optimal structure. 
This is stated in Lemma 4, Moreover, the following statements hold.

Lemma 5 [2] For |  < a < b, the index set J ab = {j \ a < r-j < b} has size

\ffab\  <
2 b + q 

<1
2a — q 

<1
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Lemma 6 [2] I f  pq > s, then E q<rj<Pqv(rj) ^  v (d) “  ((2p+ l)d -  1)) \v(s)\.

Lemma 7 [2] Let s < pq = Rq < R\ < R^ < . . ,  be an infinite strictly increasing se
quence and define the index set T/, = {j 2 < j < n, R k < rj < R^+i} (k = 0,1, 2,,, ,).  
I f  pq > s, then E rj>M v (rj) ^ ^  J2kLov (R k) \(2Rk+i + +q)d -  (2-R* -  h)d) ■

Minimal inter-particle distance. Using the above lemmas the following method 
can be introduced to obtain the minimal interatomic distance in the optimal potential 
energy function E. In Lemma 7 we use an increasing sequence R k which represents an 
infinite sequence of spherical shells. Instead of this sequence one can use the function 
R  : M+ x N0 —*■ M_|_ having the properties R(Q, k) < R(Q ,k + l) and R(Q, 0) = c, where 
c e K+ is a constant (in the proof of Lemma 7 this constant is pq, the staring point of 
the infinite sequence). For technical reasons we use the notation R® for the functions 
R(Q, k). Moreover, we write Uff := {R jj? | R® < R^+l and R® = c and k = 0,1,. . .}.
Let us define now

F(q,p) := v(q) — ((2p+ l)3 — l) |w(s)|,

S(q,p.R) ■.= f f ^ v ( R ^ ) ( h R ^  + f d - h R ^ - q Y ) ,
^ k= 0 '  '

G(q,p,R) := F(q,p) +  S(q,p,R).

Theorem 13 [2] Define the function gv(q,P,Q) ■= G(q,p,R). I f  gv(q,P,Q) > ^00 
then in the optimal atom cluster problem the minimal inter-particle distance is greater 
than or equal to the solution q of the nonlinear system of equations

dgv(g,p,Q) n
dp ’

dgv(q,P,Q) _  
dQ ’

gv(q,P,Q) -  v(s) = 0.

One can improve the result that can be achieved with Theorem 13. If we substitute 
the first m  term of the sequence R k with variables p i , . . .  ,pm then we have a function 
G with m  + 2 variables. Namely,

TO—1
G { q , p i , . . . , p m,R)  :=  F{q,p)  +  ^  v(piq) ((2pi+i +  l ) 3 -  (2pj -  l ) 3))

i=1
1

 ̂ 3 qA

OO / 0
£ > ( « ? ) (  (2K«+1 + , )  - ( 2 Rvt - q
k= 0 '

where F(q,p) is defined in (3), piq > s, and R® e U®Pm.q-
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Corollary 1 [2] Define the function gv(q,pi, ■ ■ ■ ,pm,Q) := G(q,pi,. . .  ,pm,R). I f  gv > 
^oo then in the optimal atom cluster problem the minimal inter-particle distance is 
greater than or equal to the solution q of the nonlinear system of equations

dgv(q,Pi,--- i Pm, ; Q)
dpi

dgv(q,Pu--- -, Pm -, Q )
dPm

dgv(q,Pu--- ; Pm-, Q)
dQ

9v ( q , Pl , - - - , Pm, Q) - v ( s )  =  0 .

Linear bound for the optimal energy. Using the results of the previous subsection 
we can establish linear lower bounds for the optimal objective function value. These 
bounds are valid for arbitrary large clusters.

Theorem 14 [2] I f  q is a lower bound obtained by the usage of Corollary 1 for the
B

minimal inter-particle distance, then there exists a constant Bi such that — — n < E*.L
Moreover, B\ can be computed using the value of q.

Size independen t bounds -  im proved version

The motivation for the improved version was the fact that the above method cannot be 
used directly if the pair potential function diverges as the distance between the atoms 
taken into account is decreasing. The following results are from V inko  & N eum aier

[4]-
Requirements to be satisfied by the pair potential. For the usage of the im
provement method we assume that the pair potential function satisfies properties (PI) 
and (P2) and

(P3”) There is some R  e [0,s] such that

v'(r)dr < min (v(R f  +  |tj(s)|, -v(R)  +  -|tj(s)| j ,v Li Li *
2 r n d 
B + 1

Note that this property is automatically satisfied if the potential v{r) diverges for 
r —>• 0.
The auxiliary bounds. We write Rk for the minimum over i of the kth smallest 
distance of some atom from Xi. Then Ri = 0, and

#2 = rmin := min m  (i, j  = 1, . . . ,  n)

11



is the minimal distance in the optimal configuration. We give some atom (to be de
termined later) the label 1 and label the remaining atoms such that r* := ru satisfies 
o = n  < r2 < . . .  < rn.
To get size-independent lower bounds on E* and linear lower bounds on the total 
energy, we proceed to find upper and lower bounds on sums of the form

m
:= y > ( r fc).

k=2

Let Nd(r) be the maximal number of disjoint open unit balls fitting into a ball of radius 
r. By a simple volume comparison one can easily find the upper bound Nd(r) < [rdJ, 
which we shall use in the following.

Assertion 1 [4] Let

Kir)  := min (m — l)fVd(-^ -  +  lY
V-Rro /

Then K  is an increasing function of r, and k < K(rif) for all k 
particular,

K(r)  < (m 1)
/ 2r
\ E ~  +  1- v 11 m

for all m  = 2,3, . . . ,

1,2, . . . .  In

Assertion 2 [4] I f  rm < s then < ^rn\v(s) \ + +

h i > 2 and Rrn < s then

OO

K(r)v'(r)dr. Moreover, if

(rn -  1 )v(Rm)  + (rn + ed)|t;(s)| <
OO

K(r)v'(r)dr.

Minimal inter-particle distance.

Theorem 15 [4] Let [R, R] C [0, s] he such that

v'(r)dr < v(R) + |w(s)| for all R  e [R,R],
2 r
~R +

(2 r \ d
( l  + 1 v'(r)dr < min i v(R)  + |w(s)|, ~v(R) + (1 +  y^)|^(s)||.v. Z Z /

Then the function defined by

(2 r
I ---- h iV q

v'(r)drf(q) := v(q) + (2 + ed)\v(s)\ - 

has a smallest zero q in ]R, oo[, and we have then rm;n > q.

Note that property (P3”) implies the satisfiability of the assumption (take R = R = R.

12



Linear lower bound for the optimal energy.

Theorem 16 [4] I f  f?2 := — |v(s)| + / K(r)v'(r)dr < oo then E* > —B2 for all
J S

i = 1, . . . ,  n. Moreover, for any such constant B2 < E* holds.

Corollary 2 [4] I f  q is a lower hound on the minimal inter-particle distance rn
(2 r Nd

then

E* > B K*)l + I -  +  1 V q
)'{r)dr.

L ennard -Jones c lusters

In general form the Lennard-Jones pair potential function is

where t is the zero of the pair potential, e is the pair well depth and

s = 2 l/H

is the pair separation at equilibrium. In the literature, one usually considers either 
the scaled version (with s = l ,e  = 1) or reduced units (with t = l ,e  = 1). The 
Lennard-Jones potential function is defined by

LJt,e{x) = ^  Vt,£(\\Xi -  Xj\\).
l<i<j<n

Size dependent bound for the minimal inter-particle distance. Lemma 3 gives 
Vt,e < (n — 2 — ed)|tj(s)|. From this inequality it follows for the optimal Lennard-Jones 
atom cluster problem that if n > 2 +  ed, then

q{n) = s
^Je2 + e\vt,e{s)\{n -  2 -~ef) -  e 

(n -  2 -  ed)\vt,£(s)\

1
6

is a lower bound for the minimal inter-partiele distance.
Size independent bounds for the minimal inter-particle distance. The trans
lation between the general and the sealed Lennard-Jones pair potential is

Va,e(r) = ev2-i/6,tl (r/s),

thus the minimal distance scales with s and the potential scales with e. We give the 
calculation for the sealed version; then the result for the general ease is straightforward. 
Using Theorem 13 one obtains rm¡n > 0.6187, while Theorem 15 gives rm¡n > 0.6547 
for d = 3.
Linear lower bounds for the optimal energy. The values from the numerical result 
of Theorem 13 give ^138.6775911n-e < LJ*e (n = 2, 3,. . .) for d = 3. From Theorem 
15 and Corollary 2 it follows that ^68.9554en < LJt*e for d = 3 and —i). 1178 // < LJt*e 
for d = 2.
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M orse c lusters

Another famous model cluster is the Morse cluster, for which the pair potential function 
is vp(r) =  ep(1-r) (ep(1_r) — 2) , Here, p > 0 is a parameter. The Morse potential is 
defined as

Mp[x) = ^ 2  v p (\\x % ~ xi\\)-
l < i < j < n

Size dependent bounds for the minimal inter-particle distance. Lemma 3 
gives (exp(p(l — r)) — l)2 — 1 < (n — 2 — ed)|tJp(s)|, From this inequality it follows that

q{n) = max - |l  — p^1 In l(n — 2 — e^) +  1^,0

is a lower bound for the minimal inter-partiele distance of an optimal Morse cluster 
with n > 2 +  ed particles.
Size independent bounds for the minimal inter-particle distance. The general 
method from subeetion 4,3,1 is not applicable directly here since the Morse potential 
does not satisfy property (P3’), The reason for it is that function vp is defined even in 
the ease when r = 0 (i.e,, when two particles are in the same position). In this ease 
information on the minimal interatomic distance could help, L ocatelli & Schoen  
considered such a property of the Morse clusters and proved that if 6 < p < 15, then 
the minimal distance remains strictly positive. This can substitute property (P3’),
The following table contains the calculations obtained by the above methods. The 
results obtained by the first method are in the column three. The improved method 
was able to establish lower bounds for p > 4,967, It is important to note that in this 
ease no previous information about the value of rmin is needed.

p
lower bound for 

Mp by Theorem 14
value of q by 
Theorem 13

lower bound for 
Mp by Corollary 2

value of q by 
Theorem 15

15 ^30.370n 0.854645 —21.6176n 0.865683
14 — 32.2 10// 0.842336 —22.5917// 0.854691
13 ^34.581n 0.827767 -23.8037n 0.841725
12 — 37.-”»9 1 // 0.810249 —25.3520// 0.826193
11 —41,617n 0.788778 —27.3977// 0.807236
10 — 17.255// 0.761821 -30.2230n 0.783551
9 ^55.712n 0.726898 -34.3707n 0.753054
8 ^69.762n 0.679650 —41,0345n 0.712129
7 — 97.522// 0.611312 —53.1116// 0.653727
6 -177.619n 0.498595 ^84.4438n 0.560668
5 — - ^365.2798n 0.333473

4.967 — - —461,7701n 0.306227

Linear lower bounds for the optimal energy. The table above contains the 
results obtained by the introduced methods. The second column gives the lower bounds 
calculated with the first method, while those provided by the improved version are in 
column four.
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