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1 Introduction
Automatic Speech Recognition (ASR) is a key topic of speech technology, where 
the goal is to transcribe an audio recording (an utterance) in an automatic way. 
For decades the traditional ASR systems used Hidden Markov Models (FIMM) with 
Gaussian Mixture Models (GMM) and, until very recently, these FIMM/GMM models 
represented the state-of-the-art technology in ASR. Nowadays, with the advent of 
Deep Neural Networks (DNN) the original FIMM/GMM models have been replaced by 
the new FIMM/DNN hybrids (shown in Figure 1) [1]. DNNs are a new type of Artificial 
Neural Networks, which differ in one important aspect from the previous ones, namely 
that they have many hidden layers. The addition of extra hidden layers creates several 
problems that make the training of these networks hard. So besides adding new hidden 
layers, other modifications are also needed, like changing the activation function of 
the neurons or the learning algorithm itself.

Figure 1: The standard workflow of a FIMM/DNN-based ASR system.

The new HMM/DNN hybrids are now routinely used in state-of-the-art ASR sys­
tems, but they inherited many of the algorithms from their predecessors (the standard 
HMM/GMM systems). However, the optimality of these algorithms is not guaranteed 
with the new models. In this dissertation we describe how we modified some of these 
earlier methods in speech recognition, so that they better suit the new DNN-based 
acoustic models. Our main goal is to create new solutions that allow the training of 
HMM/DNN acoustic models without relying on GMMs during the training process. 
To achieve the GMM-free training of a HMM/DNN hybrid, we have to solve two key 
problems, namely the initial alignment of the frame-level state labels and the creation 
of context-dependent (CD) states.

The methods proposed here will be evaluated using various English and Hungarian 
corpora, but for the sake of continuity, the Szeged Hungarian Broadcast News Cor­
pus [2] will be used in all chapters as a large vocabulary continuous speech recognition 
(LVCSR) task.
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2 A Comparison of Deep Neural Network Train­
ing Methods for Large Vocabulary Continuous 
Speech Recognition

The second chapter focuses on comparing the performance of four DNN training 
algorithms. The first one is the original algorithm proposed by Hinton et al. [3] 
(DBN ), and the second one is called discriminative pre-training (D P T )  by Seide et 
al. [4], Both of these methods apply a pre-training phase before they finetune the 
DNN. Deep Rectifier Network [5] (R E C T ), our third approach, differs greatly from 
the previous two in the sense that it modifies the activation of the hidden neurons 
instead of the training process. The fourth training algorithm that we examined is 
a régularisation method called Dropout [6], which simply turns off neurons during 
training. The Dropout method was applied with standard sigmoid networks (Sigmoid- 
DO) and with rectified ones as well (RECT-DO ).

Figure 2: Word error rates for the broadcast news corpus as a function of the number 
of hidden layers.

In our experiments, we compared the recognition accuracies of these methods 
on the Szeged Hungarian Broadcast News Corpus. Figure 2 shows the word error 
rates (W ER) got by using different methods. As can be seen, the four algorithms 
yielded quite similar recognition results, but rectifier networks achieved better accuracy 
scores and their training was considerably faster. Based on these findings, in my later 
experiments deep rectifier networks became the preferred choice.
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Database Method Dev. set Test set
CTC + DRN 26 .69% 28 .60%

Monostate (39) MMI + DRN 
Hand-labeled

27.70%
27.26%

30.94%
29.35%

Forced Alignment 27.10% 28.92%
CTC + DRN 26 .07% 27 .34%

T IM IT  [7] Monostate (61) MMI + DRN 
Hand-labeled

25.16%
26.42%

27.89%
27.94%

Forced Alignment 25.92% 27.55%
CTC + DRN 23.20% 24.41%

Tristate (183) MMI + DRN 20 .32% 22 .76%

Hand-labeled 22.75% 24.7%
Forced Alignment 22.78% 24.48%
CTC + DRN 17.85% 16.55%

Monostate (52) MMI + DRN 16 .95% 16 .12%

Audiobook [8] Forced Alignment 17.76% 16.98%
CTC + DRN 12.58% 11.67%

Tristate (156) MMI + DRN 10 .08% 9 .67%

Forced Alignment 12.53% 11.96%
CTC + DRN 25.96% 25 .58%

Monostate (52) MMI + DRN 35.66% 65.26%

Broadcasts [2] Forced Alignment 25 .82% 25.64%
CTC + DRN 21.62% 21.23%

Tristate (156) MMI + DRN 20 .74% 20 .42%

Forced Alignment 22.13% 21.74%

Table 1: The phoneme error rates got for the different DRN training methods.

3 Sequence Training Methods for Deep Rectifier 
Neural Networks in Speech Recognition

After determining our preferred choice of DNN, we turned our attention to the task 
of flat start training, which is the first step of training a speech recognition system. 
The goal of flat start is to create time-aligned context independent labels for the 
database. Our aim here was the comparison of two sequence training approaches that 
could be used to train randomly initialised DNNs without having force-aligned labels. 
The first one was the Connectionist Temporal Classification (C TC ) [9] and the second 
one was the Maximum Mutual Information (MMI) method [10]. Both of them were
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used to train Deep Rectifier Networks (DRNs). We proposed several modifications 
to the standard MMI method, which were essential to make it suitable for the flat 
start process. The key modifications that we propose in order to make MMI training 
suitable for DNN flat start are:

1. The frame-level phonetic targets are determined by a forward-backward search.

2. We employ only phoneme-level transcripts and Cl phoneme states.

3. We do not apply state priors or language model.

4. The denominator is estimated by just using the most probable decoded path.

5. We measure the error on a hold-out set; when it increases after a training 
iteration, we restore the parameters of the network and decrease the learning 
rate.

In the experimental part, we evaluated the two methods on several phone recog­
nition tasks, Table 1 shows the results we got. For all the databases we tested, we 
found that the sequence training methods gave better results that those obtained with 
force-aligned training labels produced by an HMM/GMM system. From the experi­
mental results, it was also clear that the MMI-based approach using tri-state models 
gave better results than the CTC-based one. Furthermore, DRNs trained with CTC 
could not produce forced-aligned labels. Based on these findings, we concluded that 
MMI was the better algorithm for flat start training.

4 A GMM Free Training Method for Deep Neural 
Networks

Next, we modified the standard state-tying algorithm with the goal of getting rid of 
its GMM dependency. The context-dependent states used to train DNNs are usually 
obtained using the standard tying algorithm, even though it is based on likelihoods of 
Gaussians, hence it is more appropriate for HMM/GMMs. Recently, however, several 
new refinements have been published which seek to adapt the state tying algorithm to 
the HMM/DNN hybrid architecture.

Some of the new methods change only the input of the clustering algorithm, by 
feeding the output or the activations of the neurons in the last hidden layer to the 
clustering method while the whole state tying algorithm remains intact [11, 12, 13, 14]
. Other studies proposed novel decision criteria as well for the clustering method, which 
better suit the new input provided by a DNN[15, 16].

In an article [15], we proposed a KL-divergence-based approach. We evaluated it 
along with three other state-tying methods on the same LVCSR tasks, and compared
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their performance under the same circumstances. We combined them with our MMI- 
based flat start method, and showed that the whole training procedure of context- 
dependent HMM/DNNs can be performed without using GMMs.

Method Dev. Test

Iterative CE 28.63% 20.47%
MMI 15.78% 10.07%
MMI+CE 15.43% 9.64%

Table 2: W ERs got by using different Cl flat start methods on the W SJ.

To test our algorithms the 81-hour long Wall Street Journal (W SJ) English read 
speech corpus [17] (specifically the s i-2 8 4  set) was chosen as it is a well-known 
and widely used corpus. The experimental results confirmed that the MMI based flat 
start approach is far better than the procedure of iterative CE DNN training and re­
alignment (see Table 2). Furthermore, as can be seen in Table 3, the replacement of 
the decision criterion used during state clustering is also beneficial for DNN training.

Flat start strategy Clustering method Development Test

MFCC + Likelihood 11.02% 8.20%
DNN + Likelihood 11.48% 7.64%

Iterative CE DNN (hidden) + Likelihood 11.05% 7.81%
Kullback-Leibler 10.47% 7 .27%

Entropy 10 .24% 7 .27%

MFCC + Likelihood 8.58% 6.13%
DNN + Likelihood 8.7% 6.47%

MMI DNN (hidden) + Likelihood 8.85% 6.04%
Kullback-Leibler 8 .06% 5 .72%

Entropy 8 .03% 5.92%

MFCC + Likelihood 8.79% 5.97%
DNN + Likelihood 9.14% 6.45%

MMI + CE DNN (hidden) + Likelihood 9.43% 6.77%
Kullback-Leibler 8.5% 6 .15%

Entropy 8 .09% 6.20%

Table 3: W ER values obtained on the development and test sets, got by using the 
different flat-start and CD state tying methods.
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Lastly, we examined our best Hungarian HMM/DNN system to see what type 
of errors are most common. For this, we collected the word errors and their local 
context, then we manually categorised and analysed them. Our conclusion was that a 
new metric is needed to measure the accuracy of Hungarian ASR systems, since the 
current one (W ER) treats some errors more seriously than human readers do.

5 Training Context-Dependent DNN Acoustic 
Models using Probabilistic Sampling

Next, we turned our attention to the CD training phase of the ASR system. In the 
current HMM/DNN speech recognition systems, the purpose of the DNN component 
is to estimate the posterior probabilities of tied triphone states. It is well-known that 
the distribution of the CD states is uneven, meaning that we have a markedly different 
number of training samples for the various states. This imbalance in the training data 
is a source of suboptimality for most machine learning algorithms, and DNNs are no 
exception to this.

Here, we experimented with the so-called probabilistic sampling method [18] that 
applies downsampling and upsampling at the same time, to improve the accuracy of 
CD acoustic models. This re-sampling method defines a new class distribution for 
the training data, which is a linear combination of the original and the uniform class 
distributions, and the A parameter determines the weights of the two distributions. As 
an extension to previous studies [18, 19], we also proposed a new method to re-estimate 
the class priors, which is required to remedy the mismatch between the training and 
the test data distributions introduced by re-sampling.

Figure 3 shows the results we got with probabilistic sampling on the TED-LIUM  
corpus. Clearly, dividing the DNN outputs by the original priors gives worse results as 
A increases, and we found that small A values (here 0.4) work best. Additionally, with 
the use of the adjusted priors, the models became more robust. Using the modified 
probabilistic sampling algorithm we achieved relative word error rate reductions of 
5% and 6% on two fair-sized corpora (TED-LIUM  [20] and AMI [21]). We also 
showed that this re-sampling method can improve our GMM-free system outlined in 
the previous chapter. Our experimental results strongly suggest that the re-estimation 
of the priors is essential to handle the mismatch between the training and the test 
data distributions introduced by the re-sampling step. These adjusted priors made the 
re-sampling method more robust, and the recognition results varied only slightly as the 
class distribution was shifted with a bigger A value, towards a uniform distribution.

We also managed to apply DRNs, trained with probabilistic sampling, on several 
paralinguistics tasks successfully, and these tasks were part of the Computational Par­
alinguistics ChallengE (ComParE) series. The main goal in paralinguistics is to extract
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A
Figure 3: Word error rates got for the test set of the TED-LIUM corpus using proba­
bilistic sampling.

and identify phenomena present in the audio signal other than the words uttered. In 
2014, we created a system to detect the intensity of cognitive and physical load of the 
speaker [22], Later, we examined the possibility of detecting deceit from speech [23]. 
Last year, we won the Cold Challenge, where our system had to separate healthy 
speakers from those who had a cold [24],

6 Conclusions and future directions
In this thesis, we successfully adapted the standard methods of the old HMM/GMM 
acoustic models to better suit the new HMM/DNN hybrid. We revised both the initial 
training phase (flat start) and the CD state-tying phase, and introduced new strictly 
DNN-based solutions to these problems. By combining these methods, we created a 
new training pipeline that does not depend on GMMs at all. We also demonstrated 
that the final training phase could be improved by employing a simple re-sampling 
method. On the Szeged Hungarian Broadcast News corpus, a traditional HMM/GMM 
gave a W ER of 20.07%, the best DNN that still relies on GMMs produced a W ER of 
only 16.59%; while our best GMM-free system managed to achieve a W ER of 15.79%. 

Naturally, many experiments have been left for the future, mainly due to lack of
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time or because they lay outside the scope of the present study. The following list 
presents some of the possible future research directions.

• Firstly, we should consider applying a new DNN type, namely the Convolutional 
Neural Network (CNN), since it has provided impressive results both in image 
processing and speech recognition.

• To further extend the results of this research work, it would be worth examining 
other sequence learning methods such as minimum phone error (M PE) or state- 
level minimum Bayes risk (sM BR), and adapt them so they are suitable for flat 
start training.

• It is worth investigating what would happen if we had more CD clusters in our 
GMM-free systems. The hypothesis here is that with more states we should get 
better results, of course, at the cost of increased training and evaluation times.

• It would be interesting to learn how the CD DNNs trained with probabilistic 
sampling perform after a final sequence discriminative training phase, which is 
nowadays a common practice.

7 Key points of the Thesis

[2] [25] [26] [15] [27] [28] [22] [23] [24]
1 •
l l / l •
11/2 • •
l l l / l •
111/2 • • •
IV • • • •

Table 4: Correspondence between the thesis points and the publications.

In the following we list the key results of the dissertation. Above, Table 4. summarizes 
the relation between the theses and the corresponding publications.

I. The author compared the performance of four deep learning methods empirically; 
two of these methods were pre-training algorithms, the third one applied the 
rectifier activation function and the fourth was a régularisation technique called 
Dropout. The experiments were also carried out using a Hungarian speech 
corpus, and this study was among the first to apply a HMM/DNN system to
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Hungarian speech recognition. The results indicated that the new HMM/DNN 
systems can outperform the traditional HMM/GMM system significantly. The 
conclusion of the experiments was that, although the four algorithms yielded 
quite similar recognition performances, rectifier networks consistently produced 
the best results.

11/1. The CTC algorithm was originally proposed for the training of recurrent neural 
networks, but here the author showed that it can also be used to train conven­
tional feed-forward networks. Using several corpora, deep rectifier networks were 
trained with the CTC method, in order to determine whether this approach was 
suitable for the flat start training phase. The results told us that CTC can be 
used to train randomly initialised networks without time-aligned labels.

11/2. As a competitor, the MMI-based training algorithm was also examined. The 
author proposed several modifications to the standard MMI, to make it suit­
able for the task (flat start training). The experimental results indicated that 
the modified MMI is a far superior alternative to CTC, for training randomly 
initialised networks without time-aligned labels.

111/1. The author created a new DNN-based state-tying method by changing the de­
cision criterion used by the standard algorithm during the clustering step. Since 
this new state tying method uses posterior probability vectors produced by DNNs 
as input, KL-divergence seemed a logical choice for decision criterion. The ex­
perimental results also supported this view, as the new method markedly out­
performed the original one.

111/2. By combining the MMI-based flat start training algorithm with the KL-divergence- 
based clustering method, the author built an ASR system that did not rely on 
GMMs. He compared this GMM-free solution with other recently proposed al­
ternatives, and found that it was competitive with the other approaches used. 
Furthermore, the results demonstrated empirically that the GMM-free systems 
were capable of producing better results than those that relied on GMMs.

IV. The author examined the probabilistic sampling method for the training of CD 
DNNs. He hypothesised that when the training data is re-sampled, the prior 
probability values need to be re-estimated. He justified this experimentally, and 
showed that re-sampling with adjusted priors greatly improves the performance 
of CD DNNs. This re-sampling algorithm was also applied with great success in 
several paralinguistic tasks.
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