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Notation

B(X)
Res(f(2))
LAQ
LAMN
LAN
PLAMN
MLE
N, 0%)

Nd(l"’) E)

set of positive integers

set of non-negative integers

set of real numbers

set of non-negative real numbers

set of positive real numbers

set of non-positive real numbers

set of negative real numbers

set of complex numbers

min(z,y) for z,y e R

max(x,y) for z,y e R

Euclidean norm of a vector & € R¢

induced matrix norm of a matrix A € R%*¢
Kronecker product of matrices A and B
the d-dimensional unit matrix

convergence in probability

convergence in distribution

convergence almost surely

convergence of the finite dimensional distributions

the Banach space of continuous functions from the interval I C R
to the set R?, d € N with the supremum norm

the Borel g-algebra on a topological space X

residue of the function f at A

local asymptotic quadratic, see Definition 2.1.4

local asymptotic mixed normal, see Definition 2.1.5

local asymptotic normal, see Definition 2.1.6

periodic local asymptotic mixed normal, see Definition 2.1.7
maximum likelihood estimator

the normal (or Gaussian) distribution with expected value p € R
and variance o% € Ry,

the d-dimensional normal (or Gaussian) distribution with expected
value p € R? and covariance matrix 3 € R%x¢






Chapter 1

Introduction

In this thesis the local asymptotic properties of time delayed linear stochastic differential equa-
tions are studied. This section is intended to explain, why this topic was chosen for math-
ematical investigation. In Section 1.1 some time delayed models are presented to emphasize
how useful and applicable are these type of models in many area. In Section 1.2 we introduce
the local asymptotic normality, which is the basic concept of asymptotic statistics. Finally, in
Section 1.3 we give an overview of the papers concerning results of this topic.

1.1 Some motivational applications for delayed models

Many dynamical systems can be well described with deterministic differential equations. How-
ever in many cases, it would be desirable to raise the complexity of our model by using time
delay. Indeed, in many real world phenomena time delay or feedback occurs in the dynamics.
An illustrative example is the logistic equation, which is given by

)

d](\i[it(t) =rN(t) (1 =
where N(t) is the size of a population at time ¢, r and K are the growth rate and the
carrying capacity of the population, see, e.g., Erneux [15]. This model describes the population
dynamics well in the case, when the underlying organisms’ birth and/or death rates respond
instantaneously to changes in population size. However, there are organisms that exhibit pulses
of reproduction and have some lag time before they reproduce again. Thus time delay occurs
in the dynamics. Hutchinson introduced the following so-called delayed logistic equation or

Hutchinson’s equation

(1.1.1) d](\ifit(t) - rN(t)(l _ W)

where 7 is the time that is required for an individual to be able to reproduce.



The so-called Wright’s equation is defined by

dz(t)
e
which is connected to the density of prime numbers (see Wright [47]) is in strong relationship

with the delayed logistic equation. Although this is one of the simplest but nonlinear delay
differential equation, it has been researched intensively, see, e.g., Banhelyi et al. [4].

(1.1.2) —a(e™=Y 1),

Time delay occurs in many other fields, e.g., biology, chemistry, physics, (see, e.g., Erneux
[15]), economics (see, e.g., Liz and Rost [34]) or in epidemics (see, e.g., Rost and Wu [43]).

If we would like to make our model more complex and hence more precise, we can consider
stochastic delay differential equations. Indeed, many dynamical systems are difficult to describe
accurately or it is impossible with deterministic setup. This is the case especially in financial
applications. A good example for this the following, which was presented in the paper by
Appleby, Riedle and Swords [2]. They studied the asymptotic behaviour of an stochastic delay
differential equation modeling the evolution of the cumulative return of a risky security. In the
model, the traders of the security determine their investment strategy by comparing short— and
long-run moving averages of the security’s returns.

The following results can be founded in Appleby, Riedle and Swords [2]. Let (S(¢))eo
denote the prices of a risky asset which satisfy

(1.1.3) dS(t) = S(t) dR(t) t >0,

where R(t) denotes the cumulative return at time ¢. We assume that the cumulative returns
R follow a linear trend p. Suppose that there are N traders in the economy, who determine
their demand based on the cumulative de-trended returns Y (t) := R(t) — ut on the asset. The
trading strategy of the j-th agent at time ¢ is as follows: they consider a short-run moving
average of the cumulative de-trended returns price over the last 6; units of time

/ Yt +u) s;(du),
[_0]'701

where s; is a signed Borel-measure on [—6;,0], and also calculate a long-run average of
cumulative de-trended returns over the last 7; > ¢; units of time

/ Y+ w) L(du),
[_TJ7O]

where [; is a signed Borel-measure on [—7;,0]. The measures s; and [; reflect the weights the
agent puts on the different past values. In order to make the short-run and long-run comparable
the measures s; and [; are chosen such that

sj([=04,0]) = l;([—75,0]).

We extend s; to a Borel-measure on |[—7;,0] by setting s;(I) = 0 for any Borel set
I C [—7;,—0;). These averages can be distinguished as being "short-run" and "long-run" by
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hypothesising that the short-run average always allocates at least as much weights to the most
recent ¢ time units of return as the long-run average does. Mathematically, this means that

s;([=t,0]) > 1,(|—¢,0]) for all t € [0,7,].

The averages are distinguishable by presuming that s; # [;.

Trader j then has planned demand at time ¢, which depends upon the strength of the
signal received from the market, the signal being stronger the greater the difference between
the short-run an long-run average. We assume that the trader buys the asset if the short-run
average exceeds the long-run average and they sell the asset if the short-run average lies below
the long-run average. The planned excess demand of trader ; at time ¢ is

5j</[_9j70] Y+ u) s;(du) /[_ijo]Y(tJru) zj(du)>,

where [; > 0. Therefore, the overall planned excess demand of all N traders is

ﬁ;ﬁj ( /[ o Yt 4 w) sj(du) — /[_T%O] Y(t+u) b(du)) :

The constants 3; model the different influence of each trader on the total excess demand.
Speculators react to other random stimuli — "news" — which are independent of past returns.
The increments of this news are independent, so if the stimulus is a continuous process, this
may be thought of as adding a further o(W(ty) — W(t1)) to the traders’ excess demand over
the time intervall [¢y, 3], where W is a Brownian motion and o > 0.

Finally, we suppose that the de-trended returns increase when there is excess demand, with
the rise being larger the greater the excess demand. One way to capture this is to suppose that
the evolution of the de-trended returns is described by

(1.1.4)  dY(t) = Zﬁj</[_9, ) Yt +u) s;(du) — / Yt +u) lj(du)> dt + o dW (t).

[_TJ7O]

We extend all measures s; and [; to the interval [—7,0], where 7 =max{m,...,7n} by
setting them to zero outside their support. By introducing the Borel-measure v on [—7,0]
defined by

N
v(du) = B;(s; — 1) (dw)
j=1
and the linear functional L defined by

L:C(-7,0,R) - R, L¢= d(u) v(du),

[_7—70]

we can rewrite Equation (1.1.4) as

(1.1.5) dY (t) = L(Y}) dt + o dW (1), >0,

3



where Y; is the segment of Y at time ¢, namely Yi(u)=Y(t+ u), where u € |[—7,0|.

Because of (1.1.3), the evolution of the price of the risky asset (S(f))i>0 is now given by
dS(t) = pS(E) dt + S(t) dY'(t), t>0.

Applying [t6’s formula shows as in the standard Black—Scholes model that the asset price S
can be represented by

S(t) = S(0)exp (Y(t) + (1 — %U2>t>, t>0.

In the case, when the feedback traders are absent, i.e., 8; =0, forall j=1,..., N, we have
dY (t) = odW(t), in which case S is a Geometric Brownian motion, evolving according to

dS(t) = pS(t) dt + oSt dW(t), t> 0.

In this case this model coincides with the standard Black—Scholes model and can be considered
as a generalisation of it.

Needless to say there are numerous results in the literature dealing with modeling financial
problems via stochastic delay differential equation (see, e.g. Arriojas et al. [3]), but the above
presented example was one of the most motivational one for the birth of this thesis.

1.2 Local asymptotic normality

One of the most important and fundamental notion in asymptotic statistics is the local asymp-
totic normality. As one can read in the book of van der Vaart [46], a sequence of statistical
models is locally asymptotic normal if, asymptotically, their likelihood ratio processes are sim-
ilar to those for a normal location parameter. Local asymptotic normality implies convergence
of the models to a Gaussian model after a rescaling of the parameter. The precise definition
of local asymptotic normality and the other notions and results of asymptotic statistics can be
found in Chapter 2. In this section some parts of the book of van der Vaart [46, Chapter 7| be
recalled to introduce the basic concept of asymptotic statistics.

Suppose we observe a sample Xi,...,X,, from a distribution Py on some measurable
space (X, A) indexed by a parameter 6 that ranges over on open subset © of RF. For
simplicity, assume that k& equals to one. Then the full observation is a single observation from
the product P, of n copies of Py, and the statistical model is completely described as the
collection of probability measures {P} : 0 € ©} on the sample space (X", A"). In this context
we shall speak of a statistical experiment, rather than of a statistical model. It is shown that
many statistical experiments can be approximated by Gaussian experiments after a suitable
reparametrization.

The reparametrization is centered around a fixed parameter 6y, which should be regarded
as known. We define a local parameter h = /n(0 — 0y), rewrite Py as Py ., o, and thus
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obtain an experiment with parameter h. In the case of local asymptotic normality, for large
n, the experiments

(1.2.1) (P, SR R) and (N(h,J,') : h €R)

are similar in statistical properties, where the second experiment consists of observing a single
observation from a normal distribution with mean % and known covariance matrix (equal to
the inverse of the Fisher information matrix). This is a simple experiment, which is easy to
analyze, whence the approximation yields much information about the asymptotic properties
of the original experiments. This information concerns both asymptotic optimality theory and
the behaviour of statistical procedures such as maximum likelihood estimator and hypothesis
testing, see Section 2.2.

To see the similarity of the experiments in (1.2.1), we show the similarity of the corre-
sponding likelihood ratio processes. For this, assume for simplicity, that exists the density py
of Pp with respect to some measure g, and that the log-likelihood #p(x) = logpe(x) is
twice-differentiable with respect to 0, for every , with derivaties fy(x) and fy(x). Then,
for every fixed x,

. 1 ..
log ]%(x) = hlo(w) + 5h*lo(x) + 0, (h?).
(7

The subscript z in the reminder term is a reminder of the fact that this term depend on x
as well as on h. It follows that

+f 1h? <
ogH X;) \/—Zﬁe +——Z€9 ) + Rem,, .
i=1

Here the score has mean zero, [ by dPy = 0, and — il Uy APy — il (¢9)? dPy = Jp equals the
Fisher information for @ (see, van der Vaart [46, Section 5.5]). Hence the first term can be
rewritten as hA, 5, where A, o =n"1/23" lo(X;) is asymptotically normal with zero mean
and variance Jp, by the central limit theorem. Furthermore, the second term in the expansion
is asymptotically equivalent to —%thg, by the law of large numbers. The remainder term
should behave as o(1/n) times a sum of n terms and hopefully is asymptotically negligible.
Consequently, under suitable conditions we have, for every A,

(1.2.2)

= hAng — —h Jo + Ope(l)

Because this expansion concerns the likelihood process in a neighborhood of 6, we speak of
local asymptotic normality of the sequence of models {Py : 0 € ©}.

The second experiment in (1.2.1), thus the experiment, which consists of observing a single
observation X with the distribution A(h,J;'). The log-likelihood ratio process of this
experiment equals
dN(h. ;)
dN(0, ;)

If we compare (1.2.2) and (1.2.3), we can see, that the corresponding likelihood ratio processes

1
(1.2.3) log (X) = hJpX — §h2J9.

of the experiments (1.2.1) are asymptotically equal in distribution.
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1.3 Historical background

The list of the papers dealing with investigation of the local asymptotic properties of delay
models is not so extensive. The majority of the literature is the works by Gushchin, Kiichler
and their co-authors. One of the first paper was made in 1999 by Gushchin and Kiichler [16].
They study the local asymptotic properties of the equation

AX() = (aX () + bX(t — 1)) dt + dW(2).

It is shown, that eleven different cases — consisting LAN, LAMN, PLAMN and LAQ (for the
definitions, see, Section 2.1) — are possible if the value of the parameter @ = (a, b) runs through
R2 TIn 2001 an addendum was published by Gushchin and Kiichler [18]. In this paper they
strengthen the result in one of the cases. With an other, periodic normalization function they
show that in on of the PLAMN case the usual LAMN property holds.

In 2003 the paper written by Gushchin and Kiichler [19] consists the equation

dX(t) = X(t+ u)ag(du) dt + dW (t),
[_7'701
which is a more complex model then the previous one. Here ag is a finite signed measure
depending on the parameter 6, which belongs to an open set © C R*. Conditions are derived
under which this model satisfies the LAN property. These conditions are the stationarity of the
solution and some regularity conditions for the smoothness of the dependence of ag on 6. A

necessary and sufficient condition is proved for stationary solutions in the paper by Gushchin
and Kiichler [17].

The exhaustive doctoral dissertation written in 2001 by Putschke [37] study the model

N
AX(t) =) 0:X(t—rs) dt+dW (L),
=0
where 7, € Ry and 0 =1y <r; <--- <ry. Depending on the parameter 8 = (6y,...,0y) €

RN+ the local asymptotic properties are derived.

The investigation of the asymptotic behaviour of the maximum likelihood estimator is
strongly connected to the local asymptotic properties. Kiichler and Kutoyants [27] investi-
gated in 2000 the equation

dX(t) =0X(t —0) dt +dW (1),

where 0 is a known negative parameter and the delay parameter 6 € R is unknown. It is
shown that the MLE is consistent and its limit distribution is described. Gushchin and Kiichler
[20] considered a generalisation of this model in 2011. They study the model

dX(t) = X (L + wag(du) dt + AW (1),

[_7'701



with stationary solutions, where the parameter @ € ©, © = (0y,0,), —0c0 <0y <0< ) < ©
and the finite signed measures ag are of the form a9 = a + bg — b, where a and b are
finite signed measures, and by is the translate of b by 6, namely bg(B) = b(B — 0)
for any Borel set B. The limit behaviour of the normalized likelihoods are studied, and it
turns out, that under some additional conditions the limit can be described with the help of a
fractional Brownian motion with index H € [1/2,1], and everyv H € [1/2,1] may occur in

this framework.

All of the mentioned studies and this thesis were concerned with continuous observation of
the solution process. Kiichler and Sgrensen [28], [29] considered delayed models with discrete
time observations.

Nonparametric estimators for delayed stochastic differential equations were investigated by
Reifs [38], [39], [40].






Chapter 2

Asymptotic statistics

In this chapter the main definitions and results from the topic of asymptotic statistics are
recalled. Furthermore these results are illustrated on the Heston model, which is a well-known
model in financial mathematics. At the beginning in Section 2.1 the local asymptotic properties
of the likelihood function or likelihood ratios of statistical experiments are defined and the Le
Cam’s lemmas are recalled. In Section 2.2 some useful consequences are stated. Finally in
Section 2.3 the Heston model is considered. The results have been published in Benke and Pap
[12].

2.1 Local asymptotic properties of statistical experiments

The following definitions and statements concerning quadratic approximations to likelihood
ratios based on Jeganathan [26], Le Cam and Yang [31], van der Vaart [46], Shirvaev and
Spokoiny [44], Kutoyants [30] and Hépfner [23].

If P and @Q are probability measures on a measurable space (X, X), then

dP

— X =R

aQ TN
denotes the Radon—Nyvkodym derivative of the absolutely continuous part of P with respect to
Q. If (X, X,P) is a probability space and (Y,))) is a measurable space, then the distribution
of a measurable mapping ¢ : X — Y under P will be denoted by L({|P) (e, L({|P) is

the probability measure on (Y,)) defined by L(¢|P)(B) =P e B), Be)).

2.1.1 Definition. A statistical experiment is a triplet (X, X APy : 0 € @}), where (X, X)
is a measurable space and {Py : 0 € O} 1is a family of probability measures on (X, X). Iis
likelihood ratio process with base 0y € © s the stochastic process

(&)
dPOO 6co .




2.1.2 Definition. A family (Xp, Xp, {Por : 0 € O})rer,. of statistical experiments con-
verges to a statistical experiment (X, X, {Py:0 € O}) as T — oo if, for every finite subset

H C © and every 6y € O,
P P
c((#s), 7r) =< ()
dPOo,T 0cH dPOO 0cH
Py T

i.e., the finite dimensional distributions of the likelithood ratio process ((E%—TL . under Py,
0T/ ge

IP’90> as T — oo,

converges to the finite dimensional distributions of the likelihood ratio process ((;g; g )9 under
0

Py, as T — oo.

If (Xp, Xp,Pr), T € Ry, are probability spaces and fr: Xy — RP, T € R, are
measurable functions, then

fr =50 or Jfr=op(1) as T — oo

denotes convergence in (Pr)rep, , -probabilities to 0 as T — oo, ie., Pp(||fr] >¢) = 0 as
T — oo forall e e Ry;. Moreover,

fT:OPT(1)7 TGRJrJr)

denotes boundedness in  (Pr)reg,  -probabilities, ie., suppeg, Pr(|fr| > K) — 0 as
K — oc.

2.1.3 Remark. Note that if (€, A,P) is a probability space and for each T € R,,, &r:
0 — Xr is a random element with L(&p|P) = Pr, then fr = op,(1) as T — oo or
fT = OPT(l), T e R++, if and only if fT o} ST = O]p(l) as T — oo or fT o ST = O]p(l),
T € Ry, respectively. Indeed, Pr(||fr| > ¢) = P(||fr(&r)| > ¢) forall T € Ry; and all
c € Ry, Moreover, fr = Op.(1), T € Ry, if and only if the family (L(fr|Pr))rer. .
of probability measures is tight, and hence, for each sequence T, € R,,, n € N, with
T, — co as n — oo, there exist a subsequence 7T, , k € N, and a probability measure
poon (RP,B(RF)), such that L(fr, [Pz, )= p as k— oco. In this case, p is called an
accumulation point of the family (L(fr|Pr))rer,. - O

2.1.4 Definition. Let © C R? be an open set. A family (Xq, Xp,{Por:0 € O})per,. of
statistical experiments is said to have locally asymptotically quadratic (LAQ) likelihood ratios

at O € © if there exist (scaling) matrices ror € RP*P. T € Ry, measurable functions
(statistics) ANor: Xy —RP, T €eRyy, and Jor: Xp = RP*P, T e Ry, such that

APy vy phr,r

2.1.1 1
(2.1.1) T

1
= h;AgyT — ih;Joth + O]P’Q,T(l) as T — o0

whenever hr € RP, T € Ry, s a bounded fanuly satisfying 0 + rerhr € © for all
T e RJer

(212) (AgyT, J@yT) - O]P’H,T(l)? T e R++)

10



and for each accumulation point g of the family (L((A¢x,Jor)|Por))rer, . as T — oo,
which is a probability measure on (RP x RP*P B(RP x RP*P)), we have

(2.1.3) 1o ({(A, J) € RP x RP*P . J is symmetric and strictly positive deﬁm'te}) =1

and
1
(2.1.4) / exp {hTA — ihTJh} po(dA dJ) =1
RP xRPXP

whenever h € RP  such that there exist T, € Ryy, ke N, and hy, € R?, ke N, wih
hy, —h as k— o0, @+ 1o hy, € © forall keN.

2.1.5 Definition. Let © C R? be an open set. A family (Xq, Xp,{Por:0 € O})per,. of
statistical experiments is said to have locally asymptotically mized normal (LAMN) likelihood
ratios at @ € © if it is LAQ at 0 € ©, and for each accumulation point e of the family
(L((Aar1,Jo1) | Por))rer., as T — oo, we have

/ A (A, dT) = / eI (AALAT), B e BR™P), heR?,
Rrx B RPx B

i.e., the conditional distribution of A given J wunder pg is NH(0,J), or, equivalently,
pe = L((neZ,neng ) |P), where Z :Q — RP and ng : Q@ — RP*P  are independent random
elements on a probability space (Q,F,P) such that L(Z|P)= N,(0,1,).

2.1.6 Definition. Let © C R? be an open set. A family (X, Xp,{Por : 0 € O})ren, .
of statistical experiments is said to have locally asymptotically normal (LAN) likelihood ratios
at @ € © ifit is LAMN at 0 € ©, and for each accumulation point une of the family
(L((Aar1,Jo1) | Por))rer., as T — oo, we have

o = N,(0,Jg) X 05,

with some symmetric, strictly positive definite matriz Jo € RP*P, where 05, denotesthe Dirac
measure on (RP*P B(RP*P)),  concentrated in Jg. The matriz Jg is called the information
matri.

These definitions of LAQ, LAMN and LAN are well-known. However in most of the appli-
cations, including in the most of the models in this thesis, a special case occurs, namely when
the family (L((Aq,7,Jo,1)|Po7))rer, . has only one accumulation point as 17" — oo, hence
a pair of random variable (Ag, Jg) € (RP, RP*P) exists such that

<A07T, J07T> i> (Ag, J@) as T — oo.

Nevertheless there are examples, when not only one accumulation point exists. This is the case
in the following definiton, which was introduced by Gushchin and Kiichler [16].

11



2.1.7 Definition. Let © C R? be an open set. A family (Xq, Xp,{Por:0 € O})per,. of
statistical experiments is said to have periodic locally asymptotically mized normal (PLAMN)
likelihood ratios at @ € © if it 1s LAQ at 0 € ©, and

(2.1.5) (Agspid, Jornid) — (Ag(d), Jo(d))  as k — oo

for all d € 10,D), and for each d € [0,D), the conditional distribution of Ag(d) given
Jo(d) is N,(0,J¢(d)), or, equivalently, there exist a random vector Z : Q) — RP and a
random matriz ne(d) : @ — RP*P  such that they are independent, Z 2 N,(0,1,), and
Ag(d) =ne(d)Z, JTo(d) = ne(d)ng (d).

According to the definition of LAMN (2.1.5) PLAMN is a special case of LAMN, when the
family (L((Ag¢7,Jo,1) |Por))Ter, . has uncountably infinitely many accumulation points as
T — o0, and these accumulation points can be reached by arithmetic subsequences with the
same common difference (D), which is called period, but with different initial terms (d).

We will need Le Cam’s first lemma, see, e.g, Lemma 6.4 in van der Vaart [46] or Hopfner [23,
Lemma 3.5]. For this the definition of contiguity of families of probability measures is recalled.

2.1.8 Definition. Let (Xp, Xr), T € Ry, be measurable spaces. For each T € Ry, let
Py and Qg be probability measures on (Xp,Xr). The family (Qr)rer,, is said to be
contiguous with respect to the family (Pr)rer., if Qp(Ar) — 0 as T — oo whenever
Ap € Xp, T € Ry, such that Pp(Ar) — 0 as T — oo. This will be denoted by
(Qr)rer, . < (Pr)rer... The families (Pr)rer,. and (Qr)rer., are said to be mutually
contiguous if both (Pr)rer, ., <(Qr)rer., and (Qr)rer,, < (Pr)rer,., hold.

2.1.9 Lemma. (Le Cam’s first lemma) Let (Xp, Xr), T € Ry, be measurable spaces.
For each T € Ry, let Ppr and Qi be probability measures on (X, Xrp). Then the
following statements are equivalent:

1) Qp)rer,. < (Pr)rer., ;

P,

(i) I £

T — oo, where v is a probability measure on (R, B(R,)), then v(R,;)=1;

QTk> = v as k — oo for some sequence (Ti)renw with Tp — oo as

(i) If c(dQTk

d]P’Tk
T — oo, where u is a probability measure on (R, B(R,)), then fR++ xu(dr) =1;

IP’Tk> = u as k — oo for some sequence (Ti)renw with T, — oo as

(iv) L(fr|Qr) = 0 as T — oo whenever fr: Xy — RP, T € Ryy, are measurable
functions and L{fr|Pr)=0 as T — oo.

We will need a version of general form of Le Cam’s third lemma, see, e.g., van der Vaart
[46, Theorem 6.6] or Hopfner [23, Lemma 3.6].
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2.1.10 Theorem. Let (Xp, Xrp), T € Ry, be measurable spaces. For each T € Ry, let
Pr and Qp be probability measures on (Xp,Xr). Let fr: Xy = RP, T € Ry, be
measurable functions. Suppose that the family (Qp)rer., s contiguous with respect to the

Jamily (Pr)rer, ., and
dQr
‘C((fT’E) ‘PT>:>V as T—>OO,

where v is a probability measure on (R? x Ry, B(R? x R})). Then L(fr|Qp) = p as
T — oo, where  1is the probability measure on (RP B(RP)) given by

W(B) - /R OV IARAY), e BR)

The following convergence theorem is Proposition 1 in Jeghanathan [26]. In fact, it is a
generalization of Theorems 9.4 and 9.8 of van der Vaart [46], which are valid for LAMN and
LAN families of experiments. For completeness, here is the proof as well.

2.1.11 Theorem. Let © C R? be an open set. Let (Xp,Xr,{Por : 0 € O})rer., be a
family of statistical experiments. Assume that LAQ s satisfied at 0 € ©. Let T, € R,
k € N, be such that Ty, — oo and L{((A¢r,,Jor.)|Per) = pe as k — oco. Then, for
every hr, € R, ke N, with hy, > has k—oco and 0+ rerhr, € © foral keN,
we have L((Agm,, Jom.) | Potror hr, 1) = Qon as k — oo, where

Qon(B) = / exp {hTA - %hTJh} ne(dA,dJ), B e B(R? x RP*P).
B

Consequently, the sequence (X, Xr,, {P0+T9,Tkh7Tk ch € RP})en  of statistical experiments
converges to the statistical experiment (R? x RP*P B(R? x RP*?) {Qg 4, : h € RP}) as k — oo.

Note that for each h € R”, the probability measures Qg ), and Qy, are equivalent, and

dQg p,
dQe,0

(A, J) = exp {hTA — %hTJh} , (A, J) € RP x RP*P,

Proof. Let (Q, A, P) be a probability space and let (A, J): Q — RP x RP*P be a measurable
function such that L((A,J)|P) = ue. Using L((Aem1.,Jo1.)|Por,) = e as k— oo, by
Slutsky’s lemma,

<d]P>0+7'8,Tk h, Ty
dPe 1,

1
PO,TR> =L <eXp {hTA — 5fﬂ.fh}) as T — oo.

By (2.1.3) and (2.1.4), applying Lemma 2.1.9, we conclude that the sequences (Pg .y 1, 0.1, )ker
and (Pgr, )ken are mutually contiguous. Therefore, for each h,hy € RP, the probability of
the set on which we have

dPo-rg 1 1y dPo-rg 1 1y APo-tr 1, ho, T,

=log ————— — log ———————,

0g
dP0+7’e,Tk ho Ty AP,z dPo,m,
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converges to one. By (2.1.1), one can obtain

dIPO r h,T; 1 1
0g —— OBk (p ho)" Ag1, — sh'Jog b+ shy Jom ho + op, (1) as T — oo,
dPOJrrg,Tkho,Tk 2 2 |

Hence it suffices to observe that L((Agr,,Jo1,) |Potryrn1) = Qon as k — oo for all
h € R? follows from Theorem 2.1.10. O

The following statements are trivial consequences of Theorem 2.1.11, and they can also be
derived from Theorems 9.4 and 9.8 of van der Vaart [46].

2.1.12 Proposition. Let © C R? be an open set. Let (Xp,Xr,{Por:60 € O})rer,. be a
family of statistical experiments. Assume that LAMN 1s satisfied at 0 € ©. Let T € R,
k €N, be such that L((Agr1,,Jor.)|Por,) = LI(NeZ, 1016 ) |P) as k — oo, where Z :
Q= R? and ng : QL = RP*P are independent random elements on a probability space (), F,P)
such that L(Z|P) = N,(0,1,). Then, for every hr, € R?, k €N, with hr, — h as k —
and O +ror.hr, € © forall keN, we have L(Agm,, Jo1.) | Potrer nr 1) = L6 Z +
neng b, neng ) |P) as k — oco. Consequently, the sequence ()(Tk,?(Tk,J[IE%;JF,,H’TRh,T,c - h €
RPVrer, . of statistical experiments converges to the statistical experiment (RP x RP*P B(RP x
RO) ({102 + nond B o) | P) : h € RPY) as k= oo,

2.1.13 Proposition. Let © C R? be an open set. Let (Xp, Xp,{Por : 0 € O})rer., be
a family of statistical experiments. Assume that LAN is satisfied at 0 € ©. Let T €
Ry, k €N, be such that L(Aeor,,Jor,)|Por,) = Np(0,Jg) X 05, as k — oo with
some symmetric, strictly positive definite matriz Jo € RP*P. Then, for every hg € RP,
ke N, with hrf — has k — oo and 0+ rerhy, € © forall k € N, we have
L{(Ao1 To1) | Poyrgr ne, 1) = Np(Joh, Jg) x5, as k — oco. Consequently, the sequence
(X1, X1, {Potrg b1 * B € RV )7, of statistical experiments converges to the statistical
experiment (RP, B(RP), {N,(Joh,Jg) : h € R’}) as k — oo.

2.2 Consequences of the local asymptotic properties

The first and most important consequence is the following. If one can prove any of the local
asymptotic properties of the likelihood function, get information for the asymptotic of the
maximum likelihood estimator (MLE). If for a fixed 7" € Ry}, we have a continuous sample

jﬁ” (X) in O gives the MLE of 0 based on the observations
0,7

X = (X(1))sepo,), maximizing log
X denoted by éT . Then we have

- Agr
- )
Jor

ro (07 — 0)

and using the local asymptotic properties of the likelihood function and the continuous mapping
theorem, we obtain the asymptotic behaviour of the MLE. For example in the case of LAN,
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asymptotic normality can be derived. For a detailed discussion see Section 3.2.3 and Section
3.3.3.

The next consequence is connected to the question of efficiency. If LAMN property holds
then we have the following local asymptotic minimax bound for arbitrary estimators, see, e.g.,
Le Cam and Yang |31, 6.6, Theorem 1] or Hopfner [23, Theorem 7.12.

2.2.1 Proposition. Let © C R? be an open set. Let (Xp,Xr,{Por:0 € O})rer,. be a
family of statistical experiments. Assume that LAMN is satisfied at 0 € ©. Let T, e R,
k € N, be such that L(Agr,Jet,)|Per,) = L((NeZ,memg)|P) as k — oo, where
Z:Q =R and ng : Q — RP*P  are independent random elements on a probability space
(Q, F,P) such that L(Z|P)=N,(0,I,). Let w:RP — Ry be a bowl-shaped loss function,
i.e., for each c € Ry, the set {xr € RP : w(x) < ¢} is closed, convex and symmetric. Then,
for arbitrary estimators (statistics, i.e., measurable functions) 5T Xy = RP, T eRy, of
the parameter @, one has

lim lim inf sup /X w(ryh, B, (x) - 8)) Po, (dr) > E[w((ng) "' 2)].

c—o0  k—oo _ ~
{reXn, :Ilrg}fk (01, (x)—0)||<c} %

Maximum likelihood estimators attain this bound for bounded loss function w, see, e.g.,
Le Cam and Yang [31, 6.6, Remark 11]. Moreover, maximum likelihood estimators are asymp-
totically efficient in Hé&jek’s convolution theorem sense (for example, see, Le Cam and Yang
[31, 6.6, Theorem 3 and Remark 13]; Jeganathan [26]).

The local asymptotic properties of the likelihood function are useful in hypothesis testing
as well.

2.2.2 Definition. A (randomized) test (function) in a statistical experiment (X, X, {Py: 0 €
©}) is a Borel measurable function ¢ : X — [0,1]. (The interpretation is that if x € X is
observed, then a null hypothesis Hy C © s rejected with probability ¢(x).)

The power function of a test ¢ is the function 0 — [, ¢(x)Pg(dz). (This gives the
probability that the null hypothesis Hy is rejected.)

For a€(0,1), atest ¢ isof level o for testing a null hypothesis Hy if
sup {/ d(x)Po(dx) : 0 € Ho} < a.
X

If the LAN property holds then one obtains asymptotically optimal tests in the following
way, see, e.g., Theorem 15.4 and Addendum 15.5 of van der Vaart [46].

2.2.3 Theorem. Let © CR? be an open set. Let (Xp, X, {Por:0 € O})rer,, be a family
of statistical experiments such that LAN is salisfied at 0y € ©. Let T, e Ry, ke N, be
such that L((De,1,, Joo1.) | Poy.1.) = Np(0,J8,) X 05, as k — oo with some symmetric,
strictly positive definite matriz Jo, € RP*P. Let 1 : © — R be differentiable at 0y € © with
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(00) =0 and '(0y) #0. Let o€ (0,1). Foreach keN, let ¢p: Xy, — [0,1] be a test
of level o for testing Hy : ¢(0) < 0 against Hy : (@) >0, i.e., it is a Borel measurable
function such that

sup{ Or(x)Por, (dx) : @ € O, ¥(0) < O} < a.
X,

Then for each h € R? with (¢'(60),h) >0, the power function of the test ¢y salisfies
| '(00), h
lim sup ¢k($) ]POOJrT’HO,Tkhsz(d'x) LK1 —-® |z, — <fb ( 0) >

koo Jxp \/<J50 Y"(600),7'(00))

where ® denotes the standard normal distribution function, and 2z, denotes the upper -
quantile of the standard normal distribution.

)

Moreover, if Se,r: X1, = R, k€N, are Borel measurable functions such that
<J501A00,Tk ) 77bl(00)>
VT 5l (00), ' (00))

then the family of tests that reject for values Sg,r exceeding z, 15 asymptotically optimal
for testing Hy : ¢(0) < 0 against Hy : (@) > 0 in the sense that for every h € RP with

{¢'(60), h) > 0,

SOO,k — + O]P’go,k(l)7 ke N)

(W' (60, h)
VT8 (00), ' (0))

IP’(SOO,k(x) > za) —1—-® |z, — as k — oo.

2.3 An example for a Heston model

2.3.1 A short introduction and preliminaries

Heston models have been extensively used in financial mathematics since one can well-fit them
to real financial data set, and they are well-tractable from the point of view of computability
as well, see Heston [22]. These models have been investigated with many statistical techniques.
In the introduction of Barczy and Pap [7] one can find a detailed overview on the topic of
parameter estimation, e.g. parameter estimation on discrete and continuous time observations,
maximum likelihood estimator, quasi-maximum likelihood procedure and (weighted) condi-
tional least squares estimator. In this section the local asymptotic properties of the likelihood
ratios are studied.

Let us consider a Heston model
{dYt — (a—bY,)dt + o1/Y, AW,

2.3.1)
( dX; = (o = BYy) dt + 00/Yi (0 dW; + /1= 02dBy),

o~
WV
=
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where a >0, b,a, €R, 01 >0, 00 >0, g€ (—=1,1) and (W, B;)s=o is a 2-dimensional
standard Wiener process. Here one can interpret X, as the log-price of an asset, and Y, as the
stochastic volatility of the asset price at time ¢ > 0. The squared volatility process (03Y:)s0
is a Cox—Ingersoll-Ross (CIR) process. The parameter o; is the so-called volatility of the
volatility, and ¢ is the correlation between the driving standard Wiener processes (Wy)i>o
and (odW;++/1 — ¢?dB;)i>0. One can distinguish three cases: subcritical if b > 0, critical if
b =0 and supercritical if b < 0. We study local asymptotic properties of the likelihood ratios
of the model (2.3.1) concerning the drift parameter (a,«,b, ). The parameters oy,00 and o
are supposed to be known, because using continuous time observations these parameters can
be calculated almost surely, see Barczy and Pap (|7, Remark 2.6]).

The original Heston model (see Heston [22]) takes the form

t >0,

232) {dYt — k(60— Y,)dt + oY, AW,

dX; = pSydt + SV (o dW, + /1 — 2 dBy),

where (X;)i>0 is the price process of an asset, p € R is the rate of return of the asset,
0 > 0 is the so-called long variance (long run average price variance, i.e., the limit of E(Y})
as t— 00 ), k>0 is the rate at which (Y});>0 reverts to 6, and o > 0 is the so-called
volatility of volatility. We call the attention that there are two differences between the models
(2.3.1) and (2.3.2). Namely, in (2.3.2) the coefficient x can only be positive, while in (2.3.1)
the corresponding coefficient b can be an arbitrary real number. In other words, the first
coordinate process in (2.3.2) can be subcritical, critical or supercritical, but in (2.3.2) it can
only be subcritical. Morover, the second coordinate process in (2.3.2) is the price process, while
in (2.3.1) it is the log-price process.

In case of the one-dimensional CIR process Y, Overbeck [36] examined local asymptotic
properties of the likelihood ratios concerning the drift parameter (a,b), and proved the follow-
ing results under the assumption a € (?, oo), which guarantees that the information matrix
process tends to infinity almost surely. It turned out LAN is valid in the subcritical case. In the
critical case LAN has been proved for the submodel when 0= 0 is known, and only LAQ has
been shown for the submodel when a € (?, oo) is known, but the asymptotic property of the
experiment locally at (a,0) with a suitable two-dimensional localization sequence remained
as an open question. In the supercritical case LAMN has been proved for the submodel when
a e (?, o) is known. Kutoyants [30] investigated statistical inference for 1-dimensional er-
godic diffusion processes. LAN for the one-dimensional CIR process Y in the subcritical case
also follows from his general result (see Proposition 2.2).

For the Heston model (2.3.1), we assume again a € (%%,oo). We prove LAN in the
subcritical case (see Theorem 2.3.7), LAQ in the critical case (see Theorem 2.3.10), and is
shown that LAQ does not hold in the supercritical case, although we can describe the asymptotic
property of the experiment locally at (a,«,b,5) with a suitable four-dimensional degenerate
localization sequence (see Theorem 2.3.12). In the critical case LAN will be shown for the

submodel when b =0 and § € R are known (see Theorem 2.3.10). In the supercritical

17



case LAMN will be proved for the submodel when « € (%%, c0) and a € R are known (see
Theorem 2.3.12).

If the LAN property holds then one can obtain asymptotically optimal tests (see Remarks
2.3.9 and 2.3.11) based on Theorem 15.4 and Addendum 15.5 of van der Vaart [46]. If the
LAMN property holds then exists a local asymptotic minimax bound for arbitrary estimators,
see, e.g., Le Cam and Yang [31, 6.6, Theorem 1] or Hopfner [23, Theorem 7.12]. Moreover, any
maximum likelihood estimator attains this bound for bounded loss function (see Le Cam and
Yang [31, 6.6, Remark 11]), and it is asymptotically efficient in Hajek’s convolution theorem
sense (for example, see, Le Cam and Yang [31, 6.6, Theorem 3 and Remark 13]; Jeganathan
[26]). Asymptotic behaviour of maximum likelihood estimators are described in all cases in
Barczy and Pap [7].

The next proposition is about the existence and uniqueness of a strong solution of the SDE
(2.3.1), see, e.g., Barczy and Pap |7, Proposition 2.1].

2.3.1 Proposition. Let (Q,]:, IP’) be a probability space. Let (Wt,Bt)teR+ be a 2-dimensional
standard Wiener process. Let (no,(o) be a random vector independent of (Wi, By)ier.
satisfying P(ng € Ry) = 1. Then for all a € Ryy, ba,f € R, o1,00 € Ry,
0 € (—1,1), there is a (pathwise) unique strong solution (Y;, X¢)ier, of the SDE (2.3.1)
such that P((Yo, Xo) = (o, () =1 and P(Y; € Ry forall t€Ry) = 1. Further, for all
s,t e Ry with s <t,

Y, = e (=) (YS +a fst e~ du + oy fst e bs—u) Y qu> ,

(2.3.3)
X=X+ [Ho = BY) du+ oy [ /Yy (0dW, + /1= 2dB,).

Next we present a result about the first moment of (Y}, Xi)ser, , see Barczy and Pap [7].
We note that Hurn et al. [24, Equation (23)] derived the same formula for the expectation of
(Y, Xi), t € Ry, by a different method. Note also that the formula for E(Y;), ¢t € R, is
well-known.

2.3.2 Proposition. Let (Y;, Xi)ier, be the unique strong solution of the SDE (2.3.1) satis-
fying P(Yo e Ry) =1 and E(Yp) < oo, E(|Xy|) < oco. Then

E(Y, bt 0| |E(Y; embu 0
(Y2) _ i (¥o) 1 tfoeu u “ , teR,.
E(X;) —B Jye ™ du 1] |E(X) =B [y (Jy e dv)du t] |a
Consequently, if b€ Ry, then
. 8 it _a_Pe
tlg& E(Y,) = b’ tlg&t E(X)) =a b’

if 0=20, then .
lim t ' E(Y;) = a, lim t 2 E(X;) = —=fa,
t—00 2

t—o0
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if beR__, then

lin U E(Y) = B(YG) ~ %, im ME(X) = FB(G) - o

t—o00 b t—oo b’

Based on the asymptotic behaviour of the expectations (E(Y;),E(X;)) as t — oo, one
can classify Heston processes given by the SDE (2.3.1).

2.3.3 Definition. Let (Y, Xi)ier, be the unique strong solution of the SDE (2.3.1) satisfying
P(Yo e Ry) = 1. We call (Y;, Xi)er, suberitical, critical or supercritical if be Ry, b=0
or be R__, respectively.

The following result states ergodicity of the process (Y;)ier, given by the first equation in
(2.3.1) in the subcritical case, see, e.g., Cox et al. [13, Equation (20)], Li and Ma [32, Theorem
2.6] or Theorem 4.1 in Barczy et al. [6].

2.3.4 Theorem. Let a,b,01 € Ry . Let (Y,f)teR+ be the unique strong solution of the first
equation of the SDE (2.3.1) satisfying P(Yy € Ry) = 1.

(i) Then Y; r, Yo as t— oo, and the distribution of Y, 1is given by

2 —2&/0%
(2.3.4) (e ) = (1 + %A) , ANERy,

i.e., Yo has Gamma distribution with parameters 2a/o? and 2b/c?, hence

E(Y;)Ffiﬂ, mG( 2a oo>.

BE K
Especially, E(Yy)=4%. Further, if a e (?,oo), then E(i) = ﬁ.

(ii) For all Borel measurable functions f:R — R such that E(|f(Ys)|) < oo, we have

(2.3.5) %/O FV)ds 25 B(F(Va))  as T — oo,

2.3.2 Radon—Nikodym derivatives for Heston models

From this section, we consider the Heston model (2.3.1) with fixed 01,00 € Ry, o€ (—1,1),
and fixed initial value (Yo, Xo) = (yo,70) € Ry X R, and we consider 0 := (a,a,b, ) €
R,, x R*=: © as a parameter. Note that © C R* is an open subset.

Let Pg denote the probability measure induced by (Y, X;)ier. on the measurable space
(C(Ry,R?),B(C(R},R?))) endowed with the natural filtration (Gi)ier,, given by G =
@;1(B(C(R+7R2)))7 le RJra where Pr C(R+7R2) — C(R+7R2) is the mapping Spt(f)(s) =
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JtAs), s,teRy, feCR,R?). Forall T € Ry, let Pgr :=Pglg, be the restriction of
Po to QT.

Write the Heston model (2.3.1) in the form

dyy
dX;

a— by,
a— fBY;

dW;
dB;

J1 0

020 02\/1 — 0?

AP ~
In order to calculate Radon—Nikodym derivatives dPZ’; for certain 0,0 € ©, we need the

following statement, which can be derived from formula (7.139) in Section 7.6.4 of Liptser and
Shiryaev [33], see Barczy and Pap [7, Lemma 3.1].

dt + Vs

(2.3.6)

2.3.5 Lemma. Let a,a € [%%,oo) and b,z,a,&’,ﬁ,g e R. Let 0 := (a,a,b,8) and
0 = (a,a,b,8). Then for all T € Ry, the measures Por and Pgp are absolutely

continuous with respect to each other, and

T
S—l

dP; , T 1| @=0Y.) = (a—byy)
I : - = -
8 T, ) A Yo (@ - BYs) — (@ — A7)

1/T1
2 /0 Y

dY;
d X

(@—bY,) — (a—bYy)

~ dS)
(@ = BYy) = (a = fY})

T51[@E@+«zbn>
(@ = BY) + (0= BY.)

where

(2.3.7) S =

oy 0 oy 020 B o 00102
20 0a\/1— 02| |0 oay/1 — 0? 00109 05 '

Moreover, the process

dP;
(2.3.8) < ”)
dPg,r TERy

is a Pg-martingale with respect to the filtration (Gr)rer. -

The martingale property of the process (2.3.8) is a consequence of Theorem 3.4 in Chapter
IIT of Jacod and Shirvaev [25].

Introduce the family

(2.3.9) (Er)rer. . = (C(R,,R?), B(C(R,,R?)),{Por: 6 c R, x R*})

TeR, +

of statistical experiments. Since the log-likelihood function is a quadratic polynomial of the
parameters, (2.3.9) is a so-called (v, T’; ¢)-model, see, e.g., Shiryaev and Spokoiny [44]. In
order to investigate convergence of the family (2.3.9), we derive the following corollary.
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2.3.6 Corollary. Let a € [%%,oo), b,a,B3,€ R and T e R, . Put 0:= (a,a,b,0). If

rer1 0O 0 0 b
0 0 0 h
ToT = TeT2 c R4, hr=| | eR?
0 0 rors O hrs
0 0 0 Tora4 hr4

2
such that a+ reri1hr) € [0—21, oo), then

AP 1o rhp.T

1
1Og (Y7 X) - h;Ag T(Y7 X) - —h;Jg T(Y7 X) hT)
dPe 1 ’ 2 ’
where ~
T aw,
0 VY:
-1 T 4B,
g 020 0 A
Apr(Y,X) i=ror | Lo | ? 2] i Vi
0 oav1—0p — [, VY. dW,
- foT v Y, dB;
and
T ds _T
Jor(V,X) :=ror | |7 4 ©8™" | rar,
~T J; Yods

where A @ B denotes the Kronecker product of matrices A and B. Consequently, by
Remark 2.1.3, the quadratic approzimation (2.1.1) is valid.

Proof. Using equations (2.3.6), one can get

1 dPgT(Y X) /T 1
0 : , =
g 0 O 0'2\/1—Q2

dPe 1 VY
(@ —a)— (b— b)Y, T51[@a>@wn

@—a)— G- b,
@)= (G- B,

dWs
dB,

T -1
01 020 ]

1 (71
S — - - ds.
2/0 Ys [(@—a)— (8- B)Ys (a@—a)— (8- B)Y,

Writing r = rgr and h = hr for the sake of simplicity, we obtain

Po. 1
w(ij) — I, - 5]2’

log

dPe 1
where
T -1
I — /T 1 Tlhl — Tghg}/s J1 020 dWs
o 0 \/}78 T2h2 — T4h4}/s 0 024/ 1— Q2 dBS ’
T
I — /T 1 rihy — r3hsYs g1 rihi — r3hsYs ds.
o Vs |[rahy — rihaYi roha — 14haY
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We have

T T T
1 Tlhl — Tghg}/s - 1 h1 T 0 _ \/? hg T3 0
\/}78 Tghg — T4h4}/s \/78 h2 0 T2 ’ h4 0 T4 ’
hence
T —1 T dW,
I — hy ri 0 01 020 0 VY,
1=
h2 0 1) 0 0'2\/1—Q2 OTil/%
T -1 T
h3 rg 0 o1 020 - fo \/YSdWS
- ' ; — Ao r(Y, X),
hal |0 14| |0 o02y/T—0 — [P Y. dB,
and
T 4T T
12 _ / % h1 ™ 0 S_l ™ 0 hl _7 h1 ™ 0 S_l T3 0 h3
0 }/s hg_ 0 T2 0 T2 h2 h2 0 T2 0 T4 h4
he] [rs 0 o] [n T hel 0 o] [n
L | T3 g1 T 1 +/ Y. ds 3 T3 g1 T3 3
h4 _O T4 0 1) h2 0 4 0 T4 0 T4 h4
- JoyT(Y7 X))
hence we conclude the assertion. a

2.3.3 Subcritical case

2.3.7 Theorem. If a € (U—g,oo), beRyy, and o, € R, then the family (Er)rer,.
of statistical experiments, given in (2.3.9), is LAN at 0 := (a,a,b,3) with scaling matrices
ToT ﬁh; T eR,,, and with information matric

Jo = E<é> 1 los
1 E(Ys)

Consequently, the family (C(Ry,R?), B(C(R,R*), Py, yzr:h € R e, of statistical
experiments converges to the statistical experiment (R* x R¥4 B(R* x R¥>) {N (Jgh, Jg) :
hcR'}) as T — oc.

For the proof we need a so-called stable central limit theorem for multidimensional contin-
uous local martingales.

2.3.8 Theorem. (van Zanten [48, Theorem 4.1]) Let (Q,F,(F)er,,P) be a filtered
probability space satisfying the usual conditions. Let (M)ier, be a d-dimensional continuous
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local martingale with respect to the filtration (Fi)ier, such that P(My = 0) = 1. Suppose
that there exists a function Q : Ry — R¥™? such that Q(t) is an invertible (non-random,)
matriz for all t € Ry, limy. ||Q()]| =0 and

QM) Q)T —mm™  as t— oo,
where 1 is a d x d random matriz. Then, for each R*-valued random vector v defined on
(Q,F,P), we have

(Q)M;,0) = (nZ,v)  as t = o0,

where Z is a d-dimensional standard normally distributed random vector independent of

(n,v).

The Theorem 2.3.8 remains true if the function @ is defined only on an interval [ty 00)
with some tp € Ryy.

Proof of Theorem 2.3.7. By part (i) of Theorem 2.3.4, E(Y.) =% and E (%) =2

b 20—07%

and hence, part (ii) of Theorem 2.3.4 implies

1 (Tds as 1
Thus, using rer = ﬁ(Ig @ I,), T € Ry, and applying the identity (A @ B)(C @ D) =
(AC) @ (BD), we obtain

Tds

Jor(V, X) = (I, oI 0 Vs
i )<[ SRR

®S_1> (I, @ I,)

a.s. E (%) —1 1
- >~ @87 =Jg as T — oo.

Moreover,

VY
fT dB,
My = VYo ., TeR,,
_fo \/idWS

__ fOT \/ZdBS_

is a 4-dimensional continuous local martingale with quadratic variation process

- T 4
<M>T: 0 T

@ I, teR;.
=T [, Yeds 2 "

By (2.3.10), we have

w [E(E) -
—<M>T—> - ®I2 as T — oo.
r -1 E(Yx)
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Hence, Theorem 2.3.8 vields

o (o [EGE)
—MT—>M 0, °° @ I, as T—>OO,
va —1  E(Ya)

consequently, as T" — oo, we have

o -1

1
Ao,T(Y, X) _ e o1 020

\/T 0 0'2\/1—Q2_
B _IE( ! ) .
g g v -
L 1,0 1 20 N, 0, Yoo oI,
0 o2y/1— ¢ —1  E(Y.)
B _IE( ! ) .
g g v -
2./\/21 0, I:® ! 20 Yoo = P
0 o2y/1— ¢ —1  E(Yy)

X | I, ®

-1
01 020
0 o24/1— 0?

=N, |0, E<é> ! @ 87| = Ni(0,J0).

Thus,
L((Aor.Jor)|Por) = Ni(0,Jg) X b5, as T — oo,
vielding by Remark 2.1.3, that the family (£7)per,. of statistical experiments is LAN at 6.
(I

2.3.9 Remark. Applying Theorem 2.2.3 for functions ¢,(a, a,b,8) := a—agp, Ya(a,a,b, ) =
o — Qp, 77b3(a7 al, b)ﬁ) =b— bOa and 77b4(a7 al, b)ﬁ) = ﬁ - 507 (a7 al, b)ﬁ) € R++ X RS) one cal
obtain that the family of tests that reject for values

2 _
i = M ot / fo— bo S 1Y, — (a — bYs) ds],

ap boT

2&0—0’% Tao—bo}/s

§@ . VT dX — (a0 — FoY5) d
bo,T 0102V aobOT 0 }/3 [ (ao 50 ) S]’
200 — 02 — 2byY,
ooy = \/260 / : 1 = [dYs — (ag — hoY%) ds,
(4) 2CLO 260
_ X, — (a0 — oY) ds],
Soo.1 0102/ Qbo / " (0= )
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exceeding z,, respectively, are asymptotically optimal for testing Hé” ca < ap against
Hi” S a > ag, H82> o < ap against H£2> D a > ap, Hé?’) :b < by against Hf)’) 2 b > by,
and H§4> : B < By against HYD : > o, respectively, where @y = (ag, g, b, o) with
ao € (&,00), bo € Ryy, ao,fo € R. Indeed,

&

—1
E(L) 1 2a0— 02 [2 1
s |G g 2ot |3 o

—1 E(Yoo) O-% 1 2&?2)0%
hence
1 ! -1
E (—) 1 | o1 a0
Jg Ay, — Yoo 08| —=|Lo My
8o =0 ~1  E(Ys) VT 0 o2y/1—¢?
-1 _
020 02+/1— 0? 0 —VY] d B,

T _E(é) —1__1'\/% ®<01 0 ] dWs>
4B,

d}/s — (CLO — bo}/s) ds
dXs - (aO - 50}/8) dS

1 Ey.)| |1

[ (2a0—02)(a0—boYs)

1 r o3boY,
T 0 (20,0—0’%—21)0)/5)

U%Y$

d}/s — (CLO — bo}/s) ds
dXs - (aO - ﬁOYS) dS

where we used

dW,
dB;

g1 0 1 d}/s - (CLO - bO}/s) ds
020 0'2\/1—Q2 \/}78 dXs— (Oéo—ﬁo}/s)ds
following from (2.3.6), and (v;)'(ao, aw, bo, Bo) = €;, @ € {1,2,3,4}.

2.3.4 Critical case

2.3.10 Theorem. If a € (U% oo), b=10, and o,f € R, then the family (Er)rer.. of

PR
statistical experiments, given in (2.3.9), is LAQ at 0 := (a,a, b, ) with scaling matrices

1
Tor = [ oz @Iy, TeRy,

0 7
and with
(2.3.11) (Apr(Y, X), Jor(Y, X)) =5 (Ag,Jg)  as T — oo,
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where

~1
-2\~1/2 | oy 020
a——1> Z
Ag = ( i [O U2V1_Q2] i —
a—Y 0 Jo Veds
O[—Xl

S—l

where (Vi, Xp)ier. 15 the unique strong solution of the SDE

(2.3.12)

{dytadtJrUl\/Eth, {eR
+>

A = adt + ooV (0 dWs + /1 - 2 dBy),

with initial value (Yo, X)) = (0,0), where (W, Bi)ier. 15 a 2-dimensional standard
Wiener process, Z5 is a 2-dimensional standard normally distributed random wvector in-
dependent of (;)il,fol ytdt,Xl), and S s defined in (2.3.7). Consequently, the family
(C(R4,R?), B(C(R,R?)), {Po1rornr : B € R} )rer,, of statistical experiments converges
to the statistical experiment (R* x R¥* B(R* x R**) {Qpp, : h € R*}) as T — oo, where

1
Qon(B) :=E <eXp {hTAg — 5hTJ@h} 15(Ay, J,,)) , B e B(R* x R*™), heR.

If b=0 and B € R are fized, then the subfamily

2

(C(R+,R2), B(C(R,,R?), {IP&T La€ (% oo), ae R})TGR++

of statistical experiments is LAN at (a,a) with scaling malrices rf;’)T = \/%TIQ, T e

~1
R, ., and with information matric Jé,l) = (a— ?) S~'. Consequently, the family

(C(Ry,R?), B(C(Ry,R*)), {Py 1y yioarr : b1 € R*})rer., of statistical experiments converges
to the statistical experiment (R? x R¥*2 B(R2 x R®?) {Ny(JS Ry, ) + hy € R?}) as
T — oo, where h:= (h;,0)T € R%.
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Proof. We have

T aw,
0 VY,
L 0 o - .
o
AgyT(Y,X) _ <[\/logT 1 ®I2> I,® 1 20 ] TO VYs
0 7 0 o2/l -0 — Jy VYodW,
— i VYLdB,
- fg(j/v% -—
(g ¢)'”
LT a5\ -1 OTi
(&0 ) RO ] ()
0 (2 Jy vads) 0 o2y/1—¢? _ g VYedws
(J7 vaas)™””
_ ) VYeds
(Ji voas)™"
and
1 T@ -T 1 0
JO,T(Y;X) — ViegT X ® I2 0 Ys T ® S—l logT X ® I2
1 T gs 1
_ | logT JO Y, ViegT ®S_1.
— s &) Yads
L og T T2 J0

It is known that

1 T dS P 02 -1
2.3.13 = _ 21 T 5 o0
( ) 108;T/o Y <a 2 > * ’

see, e.g., Overbeck [36, Lemma 5| or Ben Alaya and Kebaier |8, Proposition 2|. Consequently,
(2.3.11) will follow from

oW R VY. VB ve 1T
(g ) () () vads) 2 (f vads) 2 10T o

(2.3.14)

D Yi—a !
— Z27 1 1/27Z3)y17 ySdS
Ul(fo ;)/st> 0

as 1T — oo, where Z3 is a standard normally distributed random variable independent of
(Z2, D1, f; Ysds). Indeed,

<A07T<(}/87XS)SE[O,T]>7JO,T((}/S;Xs)se[O,TO) Ly (A, Jg)  as T — oo,
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where, by (2.3.7),

52\ —1/2 —1 Z,
30 (a - 7) 0 [01 020 ] a=)1 :
= 1/2 o 1 x 1/2
0 (fol A s) 0 o2y/1—¢? 1”0_3’22 )

-1
o2 —-1/2 g1 020
a — —1> Z
( 2 [O oa+/1 — Q2] 2
a— ’
1/2
%(a—yl)—agx/l—Q2Z3 <f01y3d8> i

and (A, Jg) 2 (Ag,Jg), since
1 o 1 — 2 1 X, —
yl)/ ySdS’ULQ Jfl a + 021 Q1/2Z3 2 <y1)/ ysdsyllia>7
0 o1 fy Yeds  (f) Veds) 0 Jo Vs ds

and Z, is independent of (Z3,)), fol V.ds) and of (), fol V. ds, X)), see Barczy and Pap
|7, Equation (6.9)].

We prove (2.3.14) using continuity theorem. We have

T 2 T
dW o ds
2.3.15 f — log Yy —1 - — TcR
( ) o1 Vs og Yr ogyo+<2 a)/o v e Ry,

see Barczy and Pap |7, Formula (6.16)]. By (2.3.1) and by the assumption b = 0, one can
obtain

T
01/ VY dWe =Yr —yo — al’, T e Ry.
0

Consequently, fOT % and fOT VY, dW, are measurable with respect to the o-algebra o (Y, s €
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6 .
) . 1, ) ) » V1 >
[0,7]). For all (uq,us, us,ug,v1,v2) € R® and T € R,,, we have

T aw, T 4B
= > L dW, L dB,
E<6Xp{ml<f W e W i fo VY, Jo VY.

T qen1/2 V127 1/2 1/2 Ty 172
0 ¥) h ) (i veds) v ds)
o1 1 (7
+wlTYT+wgﬁ Yids | Ys,5€(0,7T]
e S Vaws 17
= exp{lul o ‘”“1/2 Fiug - YD) +ivy=Yr +wg—2 Y. ds
f #) " veds) ! !
xE<e p{i/T< up 1 t \/}7>dB} Y, s €0 T])
X 1/2 1/2 s s KR )
o \(fy ¥) Y (Jy Yidt)

T aw,
oo VY, dW, T
exp{i (f Yo 4 fo iy {1y sts}
0

1u +ivy=Yr +iv,—
T (T )

T T2
1 (T w3 1 u? QUally
X exp ——/ —+ Y + ds
{ 2 Jo <on7fY’°’ o Yedt ™ (T vean'?

% AT S B
= expy iu T e ‘”“1/2+ 1/2+w1—YT+wg—2/ Y. ds
{ ) (Jo Yeds) g = Jo

0 Y,

1 2 2 TU2U4
ool g0 - (detfondt>”2}’

where we used the independence of Y and B. Consequently, the joint characteristic function
of the random vector on the left hand side of (2.3.14) takes the form

T aw, T dB,
E| exp< iuy fT \/7‘”“1/2 i1y fT \/}7‘1/2 + iu fo \/7dV1V/2 + iy fo \/7dBi/2
b #) b #) (T veds) () veds)

0 Ys

0 Ys

T 17

T
(Jo 52 Jy Yedt)

1 1 /T
i =Yr +ive— Y. ds

where
Jy UL 1T Y dw, 1 i
Ep(uy, us, vy, vg) 1= iuy ] g2 " i =Y+ ivy— Y, ds.
» U3y UL TT as\1/2 T 812 2
(o %) (fy Yods) g = Jo
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Ben Alaya and Kebaier |9, proof of Theorem 6| proved

0'2 S
(st =08 e 1) o (o
S

2
a7
Va&— 2

ViegT TT?
as T — oo, where /Z; is a l-dimensional standard normally distributed random variable
independent of (;)/1, fol Vi dt). Using (2.3.15) we have

1
Zl,yl,/ Vs ds
0

T ds
fT dWs B \/@Ul <10gYT — 10gyo -+ ( a) 0 %)
T aen1/2 1/2
( 0 Z) (@ OT ?;—j)
and, by (2.3.13), we conclude

T
Jo e VYWl ve 1T
< T£>1/2’ <fOTYSdS>1/2’ T’ T2 s

0 Y,

D Yi—a !
— <Z1, . 1/2,;)/1,/ ;)/sds> as T — oo,
g1 (fo ysd8> 0

) Te Ry,

(2.3.16)

thus we derived joint convergence of four coordinates of the left hand side of (2.3.14). Hence

E(exp{&r(u1, us, v1,v2)})

_ 1
— E(exp{iulZl +1U3 yl a 172 +1U1y1 +1U2/ ys dS})
01 (fol ys dS) 0

(2.3.17)

as T — oo for all (up,us,vi,v;) € R Using |exp{&r(uy,us,vy,v2)} = 1, we have

TU2U4
(fo % J5 Yedt)

exp { TU2U4 } 1
X _ _
(e Jy vedt)'”?

>—>O as T — oo,

E <exp{§T(u1, Uz, U1, U2) -

1/2 }) — E(exp{&r(ur, us, U1,U2)})‘

)

< E<| exp{&r(ur, us, vi,vz) }|

E( e p{ Tuaus } 1
- XPY T T T 12 (
(Jo §% Jo Yedt)

by the moment convergence theorem (see, e.g., Stroock [45, Lemma 2.2.1]). Indeed, by (2.3.13),

(2.3.16), continuous mapping theorem and Slutsky’s lemma,

UaUy

TU2U4
eXp 1/2}_1‘ - exp{— — T T 1/2}
{ <fT o fO Kdt) lOg7j<logT 0 d?f % fO Kdt)
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as T — oo, and the family

(% Jy vedr)'”

is uniformly integrable, since, by Cauchy-Schwarz inequality,

TU2U4 T|U2U4|
exp{ — — 1] <exp + 1 < exp{|uguq|} + 1
‘ { <Tdtfomt>”2} ‘ {< CiEl e

for all T'e Ry;. Using (2.3.17), one can conclude

; T€R++}

T aw, T 4B,
oo ST, S L
(

1Usg + uy
)™ e ) () vads)
i 1Y ! TYd
+1U1T T‘|‘1U2ﬁ s 4ds

B 1
—y e (uitul)/2 E(eXp{iU1Z1 + ius Sl 7z TivY v / Vs dS})
1 0
o8] (fO ys dS)

as 1T — oo. Note that, since Z; is independent of (;)/1, fol Vs ds), we have

B 1
e (ustu)/2 E(exp{iulZl + ius oo iz " i Y1 + iUg/ Vs ds})

_ 1
E(eiu1Z1)E(eiuzZz)E(eiung)E<eXp{iu3 M%) a 7 ~|»iU1y1 +1U2/ ys dS}),
01 (fol ys dS) 0
where (75, Z3) is a 2-dimensional standard normally distributed random vector, independent
of (Zl,;)il,fol Vs ds), thus one can obtain (2.3.14) with Z, := (71, Z3), and hence (2.3.11),
which yields (2.1.2).

It is known that P( fol Vsds € Ryy) =1 (which has been shown in the proof of Theorem
3.1 in Barczy et al. [5]), hence (2.1.3) holds. Finally, (2.1.4) will follow from

2.3.18 E | exp hTAg—lhTJgh —
2

for all h € R*. Writing h = (hy,hy)", hi, hy € R% and using the independence of Z, and
(W1, Jy Vedt, X)), we have

1
E <€Xp {hTAg — ih—rjgh}> - ElEg,
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where

o2\ ? o1 020 B 1 o2\ 7!
Ey:=E | exp <a — —1> h{ Zy— < <a - —1> h{S 'h ;

2 0 o2/ 1— ¢?
Ey, =E <exp {hQTS_1

. 1
“= —1</ ;)/sds> hl S 'h, V).
a— X 2 \Jo

The moment generating function of the 2-dimensional standard normally distributed random
vector Z, has the form

(2.3.19) E(e? %2} = elelP/2 - 4 e R?,

since

E(e 22y L/ o0 Zo w22 g L/ o lle—vl2/20l2/2 g0 — (Jleli2/2,
R2 2T R2

Applying this with

T o s T |91 720 B 2 T o B To-1
v =|la— — h , v|f=vv=(a—— h, S "h,
( 2) Y10 oy /T— o2 o ( 2> !

we obtain
| dPeyrh,1

1
By VX)) =R B (V. X) = SR o2 (Y, X) R,

where
T aw,

0 VVs

-1 Tst
01 020 ] 0 VY,

o2/ 1 = ¢? — fy VYW,
|-y VY. dB, |
— _h] [01 20 ]1 fondWS — _hl§ ! [01 0 ] fondWS

210 op/1 = 0? fOT VY, dB, ? 020 02\/1—¢? fOT VY, dB;

ol — yT]

h'Agr(Y,X)=h'" <lg 0

®I2> I,®

— h]S~!
ol — XT
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and

h'Jor(Y,X)h =h' <[g 0

T ds _
=T fy Vsds
T
</ ysds> 1S h,.
0

By Lemma 2.3.5, the process

dPo.rh,7 > T 0T —Yr 1</T > T el

Lornty )}~ (exp{nls —5 (] Yeds)nrish

( Por 0V ) e < p{ 27 ar -] 2\ e
is a martingale, hence

o (dPoyrn dParn,0
- (Tt ) B (TR a) -1

Sl

®I2>h

TeR

and we conclude that the family (Er)reryq of statistical experiments is LAQ at 6. O

2.3.11 Remark. If 0y = (ag, ag, by, fo) with ag € (%%,oo), bp =0 and ap, [y € R, then
applying Theorem 2.2.3 for the functions 4 (a,a,b,5) :=a—ap and s(a,a,b, 3) := a — ay,
(a,a,b,8) € Ry, x R® one can obtain that the family of tests that reject for values

S<1) . \/2&0—0'1/ dY O_bO )dS
00, T

)

V2logT
g2 .V 2a0 — 0} TdX, — (o — BoYs) ds
bo.T V2IogT J, Y, ’

exceeding z,, respectively, are asymptotically optimal for testing H(gl)

Hi” ca > ag, and H(§2> o < op against Hf)

(ao — U;)S,

a < ap against

Ca > ap, respectively. Indeed, ( JgO))—l _

~1
1 T
oo ([ Pl V() )
0 7 0 o3y/1.0% Y,
/T lolgT O 1Ys 2 g1 020 dWs
0 0 % —/Y, 0 o2v/1.0? d By

d}/s — (CLO — bo}/s) ds
dXs — (a0 — BoYs) ds

)

d}/s — (CLO — bo}/s) ds
dXs - (aO - 50}/8) dS

where we used

dWs
dB,

_ S_l 01 0
o20 024/ 1
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following from (2.3.6), thus

ao—bo )dS

A—l
007T Oéo — ﬁoY) ds

e | lax

hence
d}/s — (ao — bO}/s) ds

dXs — (Oéo — 50}/3) ds

T
(n ! o 1
(T00)" Aol = <a0 logT/
and wé(a())aO)bO)ﬁO) = €4, 1€ {1,2}

2.3.5 Supercritical case

2.3.12 Theorem. If a € [%%,oo), beR__, and o, €R, then the family (Er)rer., of
statistical experiments, given in (2.3.9), is not LAQ at 0 := (a,«a,b,) with scaling matrices

although
(2.3.20) (Apr(Y, X), Jor(Y, X)) =5 (Ag,Jg)  as T — oo,
with
—155
-1 04 A% /b

g g yu 0
Ag= (Lo ]! 20 2] Z . Jo = Jo 5., 287",

0 o2/l -0 (_371/b>1/2z2 0 T

b

where (j\jt)t@&L is a CIR process given by the SDE

dj\jt = qdt + o1 j\jt th, te R+,

with initial value ;)Nio = yo, where Wi)er, is a standard Wiener process,

~ ~ o? A
YV =log Y_1 — logyo — <a — j) Y, du,
0

Zy s a 1-dimensional standard normally distributed random variable, Z, is a 2-dimensional
standard normally distributed random vector such that (J/_l/b, fo ey Vodu), 7y and Z, are
independent, and S is defined in (2.3.7). Moreover, (2.1.3) also holds, but (2.1.4) is not valid.

If a€ (%%,oo) and o« € R are fized, then the subfamily

(CR,R?), B(CR,R*)), {Por:beR__, 3 €R})

TeR 4
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of statistical experiments is LAMN at (b, 3) with scaling matrices 7“4(9) ITRI,, T e Ry,
~1

and with
o\ y
—1/b 01 020 (2) —-1/b —1
- Z,,  J9 == et
< b ) [0 o/T— ’ < b )

Consequently, the family (C(Ry,R?), B(C(R4,R?)),{Pp prr2p1 - b2 € R*})per,,  of statisti-
cal experiments converges to the statistical experiment (R? x R?*? B(R? x R?*?), {E((Aé,2> +
J<02>h2,J<02>) |P) : hy € R?}) as T — co, where h:= (0,hy)T € R

A4<92> :

Proof. We have

T aw,
b

-1 fT dB,
020 ] VY
o/1=¢] | |- [T yvam,
- VYeaB,

r T dW. 9
o

(IT ds)1/2

Agr(Y,X) = <[1 ’

0 ebT/2

®I2> I,®

T dBs
T ds 1/2 _1 0 Jyjl _

_ ( 0 7) 0 o1 020 e

1/2

0 (ebT fTsts> / _ g VYedws
0 T 172

(fy Yods)

_ ) VYeds.
(f vaas) " ]

and

Jor (Y, X) = L 0 1
0,T( 3 )* 0 ebT/2 ® 2

T ds bT /2
_ 0 Y —Te

__TebT/2 obT fOTstS

We have

T aw, o2
v =logY¥r —logy + | — — —+bT T eRyy.

see Barczy and Pap [7, Formula (4.10)]. Moreover,

T T o]
a.s. a.s. V d a.s. d
My 25y J/n@—%ﬁ -3H/—i as T — oo,
0 b o Y o Ys
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see Barczy and Pap |7, Formulae (4.7) and (4.9)]. Thus,

T aw,

o1 fy R log(eTYy) — 1o o? as logV —1lo o?

(2.3.21) A &l ;ﬁ)ds & 4o +d et RS +—a
0 Y 0 Y, 0 Y,

as T — oco. By Theorem 4 in Ben Alaya and Kebaier [9],

d -1/6 _
<V)/0 é) <y—1/b7 Vu du) )

hence -
logV —lo 2 loeY_1 — lo o? ~
eV ok o, » bedon g ot s,
0 75 f yu
Further,

< L vaw, [T YidB,
312’ 1727 1/2
(o 8)"% (J Yeds) " (f vids)”

0 Y,

) i>(Z1,—Z2) as T — oo,

see Barczy and Pap |7, Formula (7.6)]. Hence we obtain (2.3.20).

It is known that under the condition a € [U—% oo), we have IP’(;)N/_l/b eER ) =1 (see,

2
e.g., page 442 in Revuz and Yor [42]) and P( fo_l/ "Y.ds e R;y) = 1 (which has been shown
in the proof of Theorem 3.1 in Barczy et al. [5]), hence (2.1.3) holds.

If ac€ (%%, oo) and o € R are fixed, then LAMN property of the subfamily will follow

from
1
(2.3.22) E <eXp {h;A;,2> - 5h;J§f>h2}> — By =1

for all h, € R%2. We have

- -1 -
V-1 ~l2 T |01 020 L Yo R
Ey=E — Zy——| — h, S™"h
: <€Xp{< ) =2 2\ :
- 1
y—l/b>_1/2 T o1 020
=E|[E( exp <— h Z
< < { b ‘1o oo/ 1 — 0? ’

1/ Yo\ ~
5(-75) s 1h2}‘y‘1/b>>1

by (2.3.19), thus we conclude (2.3.22).

Finally, we show that (2.1.4) is not valid for the whole family (&r)rer,, of statistical
experiments, given in (2.3.9), i.e., there exists h € R*, such that

(2.3.23) E <eXp {hTA — —hT }) £ 1.
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Indeed, using again (2.3.19), for h = (0,1,0)T € R x R x R?, we have

1
E <exp{hTAg — 5hTJ@hD

T -1
0 o1 020 aflv
= ex
P 1 0 021/ 1-— Q2 Z1
T
1/ [~V < 0 0
— —< YV du> St })
2\ Jo 1 1

1 1 —1/b
IE(GXP{*O_2 kl_Q2Z1_ 720‘%(1—Q2) . yudU}>
1 1 —b
=K exp le E exXp —m . yu du
1 1 pRiAP
I CEErl N U o N S U A

since, by Lemma 1 in Ben Alaya and Kebaier [8],

2 s _%‘21 211y0
E( exp< —2u VYodu p | = cosh(out) 1 exp . tanh(oqpt)
0

for pu,t e Ry,
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Chapter 3

Statistical models for linear stochastic
differential equation with time delay

In this chapter the main results are presented. Assume that we have a stochastic process
(X(t))te[-rm, which satisfies the linear stochastic delay differential equation

AX() =0 [ X tuwaldu)dt +dW(@),  t>0,

[_7'701

where ¢ is a finite signed measure on [—r,0] and W is a standard Wiener process. The real
parameter ¢ is unknown, hence a good estimation from the continuous sample (X (¢))sel—r1]
is needed. For this, the local asymptotic properties of the likelihood function are studied.

In Section 3.1 we state some useful results from the topic of delay differential equations.
In Section 3.2 the main results for a special case are presented, where the delay is uniform on
[—1,0]. Finally in Section 3.3 the general case is considered, where the delay measure a is an
arbitrary finite signed measure on [—r, 0]. The results for the uniform case have been published
in Benke and Pap [10], and for the general case in Benke and Pap [11].

3.1 Preliminaries for linear stochastic differential equa-
tions with time delay

Consider the linear stochastic delay differential equation (SDDE)

(3.1.1) {dx(’f) =0 [ X(t+w)a(du) dt +dW(t), t€Ry,

X(t) = Xo(t), te|—r0],

where r € (0,00), (W(t))icr, is astandard Wiener process, ¢ € R, and a is a finite signed
measure on [—7,0] with a # 0, and (Xo(f))iej—ro Is a continuous process independent of
(W(t))ter,. We say that the SDDE (3.1.1) is a linear SDDE, because it can also be written
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in the form

(3.12) dX(t) =0F(Xy) dt +dW (t), teRy,
- X(t) - XO(t)7 te [_T7 O])
where [ is a continuous and linear functional on C([—r,0],R) and X, is the segment of

X at time ¢, namely X;(u) := X(t + u), where u € [—r,0]. Indeed, by Riesz representation
theorem, every continuous functional F can be written in the form

F(y) = [ ]w(U) a(du),
—r,0
where ¢ € C([-r,0],R) cf., e.g., Appleby, Mao and Riedle [1].
The SDDE (3.1.1) can be written the integral form

(3.1.3) {X(t) = Xo(0) + 9 [y fiyg X (s +w)a(du)ds + W(t), teR,,

X(t) = Xo(t), te|-r0]

as well. Furthermore SDDE (3.1.1) is a special case of the affine stochastic delay differential
equation

(3.1.4) {dx(’f) = [0 Xt + u)ag(du)dt + AW (1), teRy,

X(t) = Xo(t), te|-r0],

where r >0, and for each ¥ € O, ay is a finite signed measure on [—r, 0], see Gushchin and
Kiichler [19]. In that paper local asymptotic normality (LAN) has been proved for stationary
solutions. In Gushchin and Kiichler [16], the special case of (3.1.4) has been studied with r = 1,
© = R? and ay = U0y + ¥20_; for ¥ = (¥1,92), where ¢, denotes the Dirac measure
concentrated at x € R, and they described the local properties of the likelihood function for
the whole parameter space R2. In Section 3.2 a special case is studied, where r =1 and ay
is the Lebesgue measure multiplied by o € R.

The solution (X)) (¢))er, of (3.1.1) exists (cf., e.g., Mao [35]), and obeys a variation of
constants formula (see, Reif, Riedle and van Gaans [41] or Gushchin and Kiichler [19]). This
implies that the solution is pathwise uniquely determined and can be represented as

XDty = 20,9(t)Xo(0) + 19/ /O x5t +u — 8) Xo(s) ds a(du)
[=7,0] Ju
(3.1.5)

+ W(t —s)dwxos(s), teR,,
[0,¢]

where (20.9(t))tej—r00) denotes the so-called fundamental solution of the deterministic homo-
geneous delay differential equation

{x(t) = 20(0) + 9 Jiorg @(s Hw)aldu) ds, teRy,

3.1.6
( ) x(t) = xo(t), t e |—r0l.
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with initial function

0, te|—r0),
ZCo(t) = [ )
1, t=0,

which means that 1z, is absolutely continuous on Ry, wxps(t) = 0 for ¢t € [—r,0),
209(0) = 1, and doe(t) = ¥ f_, g Too(t + u)a(du) for Lebesgue-almost all ¢ € Ry. The
domain of integration in the last integral in (3.1.5) includes zero, i.e.,

i
Wt —s)drge(s) = W(t) + Wit —s)dxos(s) = / xo9(t — s) dW(s), teR,.

[0,¢] (0,4) 0

Due to the variation of constants formula (3.1.5) to analyze the asymptotic behaviour of
the solution, we have to know the asymptotic behaviour of the corresponding deterministic
equation, thus the behaviour of the fundamental solution xy. The following results can be
found e.g., in Diekmann et al. [14] and in Hale [21] or see Gushchin and Kiichler [19]. In the
trivial case of ¥ = 0, we have xqo(t) =1 for all t € R, and X©O(t) = X,(0) + W(t) for
all ¢ € R;. The asymptotic behaviour of xy4(t) as ¢ — oo is connected with the so-called
characteristic function hy : C — C, given by

(3.1.7) ho(A) == A — 19/ e a(du), reC,
[_7'701

and the set Ay of the (complex) solutions of the so-called characteristic equation for (3.1.6),

(3.1.8) A— 19/ e a(du) = 0.
[_7'701

Note that a complex number A solves (3.1.8) if and only if (eM)iej—ro0) solves (3.1.6) with
initial function xo(t) = e, t € [-r,0]. We have Ay # 0, Ay = Ay, and Ay consists of
isolated points. Moreover, Ay is countably infinite except the case where «a is concentrated at

0, or ¥ =0. Further, for each c € R, theset {A € Ay: Re()\) > ¢} is finite. In particular,
(3.1.9) vo(¥) :=sup{Re(N\) : A € Ay} < 0.
For A € Ay, denote by my()) the multiplicity of A as a solution of (3.1.8).
The Laplace transform of (zgs(t))ier, is given by
/Ooo e Moo o(t) dt — #(A) NeC,  Re(A) > uy(0).
Based on the inverse Laplace transform and Cauchy’s residue theorem, the following crucial

lemma can be shown (see, e.g., Diekmann et al. [14, Lemma 5.1 and Theorem 5.4] or Gushchin
and Kiichler [17, Lemma 2.1]).

3.1.1 Lemma. For each ¥ € R and each c € R, the fundamental solution (x0.9(t))iel—r.c0)
of (3.1.6) can be represented in the form

xo9(t) = Z 13:6/\8 < eZt > + 1y (1) = Z po(t) e + by (1), as t — 00,

AEAy ho(2) AEA
Re(N)=ce Re(N)=e
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where . : Ry — R is a continuous function with 1y .(t) = o(e”) as t — oo, and for
each ¥ € R and each A € Ny, po is a complex-valued polynomial of degree my(A) —1 with
Pox = Po- More ezactly,

mg(A)—1
Ag _1_0(X
por(t) = Z %ﬁ()tﬁ,
£=0 )

where Ay r(N), k€ {—my(N),—ms(N)+1,...} denotes the coefficients of the Laurent’s series
of 1/ho(z) at z= A, i.e,

1 = k
ho(z) Z(A) Az = A

k=—my

in a neighborhood of .

As a consequence, for any ¢ > vp(9), we have xg4(t) = o(e”) as ¢t — oco. In particular,
(0,0(t))ser, is square integrable if (and only if, see Gushchin and Kiichler [17]) vo(¢) < 0.

3.2 The special case of uniformly distributed time delay

In this section the main results in a special case are presented, when the delay is uniform. The
results of this case can be derived from the general one, which are in Section 3.3. However the
proofs are made in a same manner in the two cases, but the general one is more technical and
complex. Hence this section can be useful to understand the proofs.

The other difference between the two cases, that in this uniformly delay case we have more
information about the set Ay. This fact implies that we can determine the exact values of the
parameter 1, where the appropriate local asymptotic property is valid. In the general case we
can add only a sufficient condition for this.

Assume (X (t));ep, is the solution of the SDDE

(3.2.1) {dX(t) =0 [2, X (¢ +u)dudt +dW (L), t€Ry,

X(t) = Xo(t), tel-1,0].

Indeed, this equation is a special case of the SDDE (3.1.1), where r = 1, and « is the
Lebesgue measure on [—1,0]. This is, why we call this the uniformly distributed delay case.
In the trivial case of ¥ = 0, we have oo(t) = 1, t € Ry, and XO(t) = Xo(0) + W(),
teR,. Incaseof ¢ € R\ {0}, the characteristic function hy, has the following form
0

(3.2.2) ho(X\) =\ — 0/ e du, e C.

-1
Applying usual methods (e.g., argument principle in complex analysis and the existence of local
inverses of holomorphic functions), one can derive the following properties of the set Ay, see,
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e.g., Reils [38]. Let wvg(¥) be as before,

vo(¥) := sup{Re(A) : A € Ay},

and put
v1(9) :=sup{Re(A) : A € Ay, Re(\) < vo(D)},
where sup ) := —co. We have the following cases:
(i) If 9e (—,0) then wvy(¥) < O0;
(i) If ¢ = —W—; then uo(¥) =0 and wvo(9) & Ay;
(iii) If 0 € (—o00,—Z) then wy(¥) >0 and v(0) ¢ Ay;
(iv) If 9 € (0,00) then w(¥) >0, ve(¥) € Ay, m(ve(¥)) =1 and v (¥) < 0.

The Lemma 3.1.1 has now the following form.

3.2.1 Lemma. For each 0 € R\ {0} and each c € (—oo0,v9(¥)), there erists v € (—o0,c)
such that the fundamental solution (z09(t))ic—1,00) 0f (3.1.6) can be represented in the form

Too(t) = S + Y ep(NeM o), as t— oo,

AEAy
Re(N)€[e,v0(9))

with some constants cy(N), A€ Ny, and with

vo ()
Sou(t) = vo(9)2 4 200(9) — 0’
Ao (D) cos(ko(D)t) + Bo (V) sin(rko(9)t) if vo(P) ¢ Ay,

if vo(¥) € Ay and m(vy(9)) =1,

with ko(V) := |Im(Ao(D))|, where Xo(0) € Ay is given by Re(Ao(9)) = vo(¥), and
_ 2[(vo(¥)? — ro()?) (w0 (V) — 2) — Pvo (V)]
Al @7 o0 T 200(0) — 0 1 Ao (en(0) 1 17
o 2(1}0(19) +I€o( ) +19)/£0( )
Bo(9) := (v0(19)2 — Ko ()2 + 2u0(9) — V)2 + 4k (9)*(vo (W) + 1)

3.2.1 Radon—Nikodym derivatives

From this section, we consider the SDDE (3.2.1) with fixed continuous initial process
(Xo(t))tel-1,00- Further, for all T € Ry, let Pyr be the probability measure induced by
(XD))eermy on (C([—1,T],R), B(C([—1,T],R))). In order to calculate Radon-Nikodym
derivatives jge L for certain 0,9 € R, we need the following statement, which can be derived

from formula (7 139) in Section 7.6.4 of Liptser and Shirvaev [33].
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3.2.2 Lemma. Let 0,9 € R. Then for all T € Ry, the measures Pyr and Pyr are
absolutely continuous with respect to each other, and

dPy 1
o
& dPy 1

T /0 02 — 92 [T 0 2
S / / Xt 4 ) dudXO0) ~ / ( / XD (¢ 1) du> dt
0 —1 0 —1

(9—ﬁ)/OT/:X<ﬁ>(t+u)dudW(t)— (9_219)2 /OT (/jx<ﬁ>(t+u)du>2dt.

In order to investigate convergence of the family

1 (XD Zm)

(3.2.3) (Er)rer,, = (C’(R+,R),B(C(R+,R)), Py 0 € R}>

TER 4
of statistical experiments, we derive the following corollary.
3.2.3 Corollary. For each v € R, T eRy;, rgr €R and hr € R, we have

dPﬁer,ThT,T

1
T APy

1
(XN _1m)) = heDgr — §h2TJ19,T,

with

2

T 10 T ; 10
ANy = r,gyT/ / XD+ u) dudW (1), Jor = T1297T/ </ XDt 4 ) du> dt.
o J-1 0 —1

Consequently, the quadratic approzimation (2.1.1) in the definition of LAQ is valid.

3.2.2 Local asymptotics of the likelihood ratios

3.2.4 Proposition. If ¢ € (—g,O) then the family (Er)rer,. of statistical experiments

given in (3.2.3) is LAN at ¥ with scaling ror = %, T eR,,, and with

o) 0 2
Jﬁ = / </ $0719(t -+ U) du) de.
0 -1

3.2.5 Proposition. The family (Er)rer,. of statistical experiments given in (3.2.3) is LAQ

at 0 with scaling ror = %, T eRyy, and with

Ay = /OlVV(t) dW(t), Jo = /01W(t)2dt,

where (W(t))iepp,1) 15 a standard Wiener process.
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3.2.6 Proposition. The family (Er)rer,. of statistical experiments given in (3.2.3) is LAQ
T eRyy, and with

2 . .
at —%- with scaling r_,»
2 b

A, Jo OVi(8) AWa(s) — Wh(s) AW (s)) — 4r [, Wi(s) AWy (s) + Wals) dWa(s))
- (w2 + 16)

1
T 1

)

16 5 9
T2 = =g [ OV W)

where (Wi (), Wa(t))ep,1) 5 a 2-dimensional standard Wiener process.

3.2.7 Proposition. If ¥ € (0,00) then the family (Er)rer. . of statistical experiments given
in (3.2.3) is LAMN at 0 with scaling ror = e T T cR,,, and with

(1 o e—vo(ﬁ))2

Ay = 7/ Ty, o = 200(0) (0o (V)* + 2v0(0) — 0)?

(U2,

with 0 0 o
U? = Xo(0) + 0 / / e~ 0= X0 (5) ds du + / e AW (s),
—1Ju 0

and 7 is a standard normally distributed random variable independent of Jy.

3.2.8 Proposition. If 1 € (—oo, —”—22) then the family (Er)rer., of statistical experiments

given in (3.2.3) is PLAMN at ¢ with period D = H07(T19)7 with scaling rgp — e 0T
T eRyy, and with

Bold) = 2T, aod) = [T s de o),

where

0 40
V(1) = Xu(0)pu(t) + 19/ / 0ot 4+ u — s)e” X (5) ds du
—1Ju

+ / wolt — 5)e™ oW W (s), teR,,
0

with
wo(t) = Ag(D) cos(ko(V)t) + Bo(F) sin(ko(¥)t), teR,

and 7 is a standard normally distributed random variable independent of Jy(d).

3.2.3 Maximum likelihood estimates

For fixed T € R,,, maximizing log jﬁi’; (XD _y7) in ¥ €R gives the MLE of 9 based
on the observations (X(¢))iej—1,7] having the form
S o JL X ) dudXO)

S X0+ uydu)

)
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2
provided that fOT (ff)l Xt + ) du) dt > 0. Using the SDDE (3.2.1), one can check that

o I 2 XDt w) dudW )
o’ (ff X >(t+u)du> dt
hence
Py (O — ) = ?:; .

Using the results of Section 3.2.2 and the continuous mapping theorem, we obtain the following
result.

3.2.9 Proposition. If ¥ € ( 2,0) then
VT (07— 9) =5 N0, 131 as T — oo,

where Jy 1s given in Proposition 3.2.4.

If 9 =0 then
T(@T—ﬁ):TgT P fo 440 as T — oo,
fo 07
where (W(t))iepp,1) 15 a standard Wiener process.
If 9= —%2 then
~ ~ 71'2
T(ﬁT—ﬁ) T(ﬁT*F?)
L 167T fO dWQ( ) Wg(t) dWl( — 47T2 fO W1 dWl( ) + WQ(t) dWQ(t))

16 [} (Wi ()2 + Wa(1)?) dt

as T — oo, where (Wi (1), Wa(t))iepo1) is a 2-dimensional standard Wiener process.

If 9 €(0,00) then

~ A
T(ﬁT—ﬁ)L— as T — oo,

Nan

where Jy s given in Proposition 3.2.7, and 7 is a standard normally distributed random
variable independent of Jy.

If ve (—oo,—%) then for each d € [O T ),

IC))

POk D) ( — ) D A

Js(d)

where Jg(d) is given in Proposition 3.2.8, and 7 s a standard normally distributed random
variable independent of Jy(d).

as k — oo,



3.2.4 Proofs

For each ¢ € R and each deterministic continuous function (y(t))ser,, consider a continuous
stochastic process (Y (¢))er, given by

0 0 ¢
(3.2.4) YO (1) = y(t) Xo(0) + 19/ / y(t +u— ) Xo(s)dsdu + / y(t — s) dW (s)
—1Ju 0

for t e [1,00).
3.2.10 Lemma. Let (y(t))ier, be a deterministic continuous function. Put

0 0

Z(t) = / / y(t +u — ) Xo(s) dsdu, tell,00).
—1Ju

Then for each T € [1,00),
T 0 T
/ Z(t)2dt</ Xo(s)st/ y(v)? dv.
1 —1 0

Proof. For each t € [1,00), by Fubini’s theorem,

Z(t)/_OlXo(s) /_Sly(tJru—s)duds/_olXo(s) /t;_ly(v)dvds.

By the Cauchy-Schwarz inequality,

2

2()? </_01X0(s)2ds/_01 (/t;_ly(v) dv) ds.

/1TZ(t)2dt< /_leo(s)?ds/lT/_O1 </t;_1y(v)dv>2dsdt,
/1T/_01 </tjs_19(v)dv>2dsdt/_ol/lT </t;_1y(v)dv>2dtds.

Consequently,

where

Here
T t 2 T ,t T v4s+1
/ </ y(v) dv) dt é/ / y(v)? dvdt / y(v)2/ dt dv
1 t—s—1 1 t—s—1 —s v
T T
< / y(v)*dv < / y(v)? dv
—s 0
for all s € [—1,0], hence we obtain the statement. O
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3.2.11 Lemma. Let (y(t))er, be a deterministic continuous function with [ y(t)* dt < oo.
Then for each ¥ € R,

1 /T
T/ Y(ﬁ>(t)dti>0 as T — oo,
0

1 T 0
T/ Y @) dt i>/ y(t)? dt as T — oo.
0 0

Proof. Applying Lemma 4.3 of Gushchin and Kiichler [16] for the special case Xy(s) = 0,
s € [—=1,0], one can obtain

T
%/ /y(t—s)dW(s)dtgo as T — oo,
0 0

%/OT(/Oty(t—s)dW(s)>2dti>/omy(t)2dt as T - oo,

We have

%/OTY“”(t) dt = %/Oly<ﬁ>(t)dt+Xo(0)h(T)+%/1TZ(t)dt+%[T/Oty(t—s)dW(s)dt

for T'e Ry, where (Z(t))ier. is given in Lemma 3.2.10, and

1 T
L(T) = 7/1 y(t)ydt, T eR,.

By Lemma 3.2.10,

Tl T 1 [eS)
|11(T)|<\// ﬁdt/ y(t)th\/T/ g2t =0 as T — oo,
0 1 0

T 1 T 1 0 0 s
/ Z(t)dt] < —/ Z(t)?dt < —/ Xo(s)? ds/ y(v)2dv — 0 as T — oo,
1 T Jy T ) 0

hence we obtain the first statement. Moreover,

~| =

%/OT YO ()2 dt = %/Oly(m(t)? dt + L(T) + 215(T) + % /1T </Oty(t —3) dW(s)>2dt

for T € Ry, where

L(T) = /1T(?J(t)Xo(O) +0Z(1))* dt, TeRy,

1
T
I,(T) = % /1 (y()Xo(0) + IZ(1)) ( /O y(t — ) dW(s)> dt, TeR,.
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Again by Lemma 3.2.10,

T
0 < I,(T) < % / (12 X0 (0)2 + 022 (1)2) dt
1
2X0(0)% [ 20% [° > as
< ﬂ/ y(t)2dt+i/ X0(8)2d8/ y(v)*dv 250 as T — oo,
T 0 T -1 0
and
9 T T ¢ 2
<y [ ooz v ezeerac [ [oe-gave) a
1 1 0
(T T t 2
2\/2(T)/ </y(t—s)dW(s)> dt — 0 as T — oo,
1 0
hence we obtain the second statement. O

3.2.12 Lemma. Let we R, and y(t) :=e“*, t € R,. Then for each ¥ € R,

ety W) 25 g, as t— oo,

T
a.s. 1
awfowmmpﬁyw%% as T — oo,
0 w

U = Xo(0 +19// wlu=s) dsdu+/ e AW (s).
0

Proof. For each t € [1,00), we have

i
™Y D (1) = Xo(0 +19/ / wlu=s) dsdu+/ e~ dW (s),
0

with

hence we obtain the first convergence. The second convergence follows by L’Hospital’s rule. O

3.2.13 Lemma. Let weR,y, s €R, and yt) = pt)e, t € Ry, with ¢(t) = cos(kt),
te Ry, or o(t)=-sin(kt), t € Ry. Then for each 9 € R,

e~ Wty (9) (t) — VU@ (t) 2500, as t — 0o,
T [°S)
e 2T / YD (e))?dt — / eWUVINT — )2 dt — 0, as T — oo,
0 0
with
0 0 0
V() == Xo(0)p(t) + ﬁ/ / p(t+u—s)e"" ™ Xo(s) ds du + / p(t — s)e™ AW (s)
—-1Ju 0
for t eR.
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Proof. Note that for each ¢ € [1,00),
(3.2.5) e YW () — VIV () = —/ ot — s)e” " dW (s),
¢

which obviously tends almost surely to zero as t — oo, hence we obtain the first convergence.
In order to prove the second convergence, observe that for each T € R,
[°S) T [°S)
/ e 2N VINT — )2 dt = / e~ 2N VINT — )2 dt + / e 2N VINT — 1)) dt,
0 0 T

where

T T T
/ e—2wt(vu()19) (T _ t))2 dt = / e—2w(T—t)(Vu()19) (t))2 dt = e—2wT/ (ewtvu()ﬁ) (t))2 dt,
0 0 0

hence
e2eT / T(YW)(t))?dt — / h e 2 VIN(T — 1)) dt
— g~ 2uT /T (YD 1))? — (e VP ())?]dt — /Oo e 2t (VIO — )2 dt
= Io(T) + /(1) + 21,(T) — I3(T)

with

L(T) — / =20t () (T _ )2 1.
T
The processes (V! (¢))iecr, and (Vy(fg)(t)),ﬁ@@+ are continuous, hence

E(|Io(T)|) = e—M/Ol E[(YD(t) — eV (#)*]dt -0  as T — oo,

implying Io(T) ——= 0 as T — co. By (3.2.5),



hence

T [eS)
E(|Il —2wT/ / —2ws dS dt —2wT/ e2wt/ e—2ws dS dt
1 t

:—e_QWT—>O as T — oo,

2w

implying [1(T) L0 as T — oo Moreover, by the Cauchy—Schwarz inequality,

|5(Tﬂs;VGﬂTkrmﬂléTwwWﬁm@»th

with T T
1
e—2wT/ (ewtvu()ﬁ) (t))2 dt — / e—2wtvu()19) (T _ t)2 dt < — sup(Vugﬁ) (t))27
O O

W ter

where supteR(Vqﬁm (t))? < oo almost surely, since (VU@ (t))ter 1is a continuous and periodic
process. Consequently, I5(7) L0 as T — oo Finally,

—2wT
|15(T)] < sup(VAD(1))2 25 0 as T — oo,
W ter
hence we obtain the second convergence of the statement. O

Proof of Proposition 3.2.4. For each ¢ € [1,00), by (3.1.5), we have

0
/X t+u)duXo(O)/ x5t + 1) du+19/ / /xo,gtJrquv—s)Xo()dsdvdu

/‘/‘ To(t + 1 — s) AW (s) du.
Here we have

0 0 40 0 0 40
///$07ﬁ(t+u+U—S)XO(S)deUdU/ / /xoﬂs(tJrquv—s)Xo(s)dsdudv
—1J-1Jw —-1J-1Jw
0 0 0
/ / XO(S)/ Zop(t +u+v—s)dudsdo,
—1Jo -1

0 t+u

/ / 2ot +u—s) dW(s) du
—1Jo
t—1
/ / xop(t +u— s)dudW (s / / 2ou(t +u— s)dudW(s)
t—1 Js—t
// 209(t + v — s)dudW(s),
0o J-1
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since t € [l,00), se€[t—1,¢] and v e |-1,s—1t) imply t+u—s € [—1,0), and hence
x09(t +u— s) = 0. Consequently, the process (fi)l XDt + ) du)
(3.2.4) with

_— has a representation

0
y(t) = / 209t + u) du, teR,.

-1

Assumption € (—=,0) implies vy(¢) < 0, and hence [°q4(t)>dt < co holds. Thus

[ [ 0 2
/ y(t)2dt/ (/ xo,,g(t+u)du> dt
1 1 ~1
0 0 [ o0
/ / / x0,9(t + w)xos(t + v) dtdudvé/ wo.9(t)? dt,
~1J-1J1 0

/ 2.9 (t + 1204 (t + v) dt‘ < \// xo.9(t + u)? dt/ 2ot +v)2dt
1 1 1

= \// $07§(S+U)2d8/ ZC0719(S+U)2dS</ To.9(t)? dt.
1+ 1+wv 0

Consequently, [~ y(t)? fo )2dt + [ wos(t)*dt < oo, thus one can apply Lemma
3.2.11 to obtain

JM—/ (/ Xt + u) du) dt—>/ (/ xoﬁt+u)du>2dtjﬁ

as 1" — oo. Moreover, the process

since

//X (t 4+ u) dudW(t), T eRy,

is a continuous martingale with M (0) = 0 and with quadratic variation

(MY = /OT (/_01 XDt 4 w) du>2 dt,

hence, Theorem VIIL5.42 of Jacod and Shirvaev [25] vields the statement. O
Proof of Proposition 3.2.5. We have

1 T 0
Ao — T/ / XOU ) dudW (), TeR,,.
0 —1
As in the proof of Proposition 3.2.4, for each ¢ € [1,00), one can obtain
0 0 t 0
/ XO @+ w) du = Xo(0) / 2oo(t +u)du + / / oot +u— s) dudW(s).
-1 -1 0 J-1
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Here we have

i ’ L, for s€0,¢t—1],
/ Zoo(t +u)du =1, / Zoolt +u— s)du = rose| ]
-1 -1 t—s, for selft—1,t,

hence
0 t—1 t
/ XO 4 w)du = Xo(0) + / dW (s) + / (t —s)dW(s)
—1 0 t—1
t —_—
— X(0) + WD) + / (—s—1)dW(s) — W(t) + X(0),
t—1
where E(7-2 fo t)2dt) = 0 as T — co. Foreach T € Ry, consider the process
WT(s) — ——W(Ts), sel0.1]
=7 , 1]
Then we have
AOT/WT ) AW (t) / X)) dw (t

JO,T/ W2 dt + — / W (t dt+—/ X(t
0
l/TY(t)dW(t) N i/TY(tfdtim
T Jo ’ T2 Jy

(% /OTY(t) dW(t)>2

By the functional central limit theorem,

Here

as T — oo, since

= % /OTE(YW) dt — 0.

wT 2w as 1T — oo,

hence

%/OTW(t)Y(t) dt‘ < \/<% /OT W(t)2dt> (% /OTY(t)th>
- \/</01WT(t)2dt> (% /OTY(tht) 50 as T — oo,

and the claim follows from Corollary 4.12 in Gushchin and Kiichler [16].
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Proof of Proposition 3.2.6. We have

1 T 0 -
_ZTT//_)@ A+ u)ydudW (), T eRy,,

J—%Z,T T2 </ X - /2 (t+u) du) dt T = R++.

As in the proof of Proposition 3.2.4, for each ¢ € [1,00), we have

0
/ X<_”2/2>(t+u)duXO(O)/ z, 2 (t+u) du+/ / w2 (L u—s)dudW(s)
-1 ’

-1

——/ /XO /xo_wz(tJrquv—s)dudsdv.

We have v(—5) =0 and ro(—5) =7, hence Ag(—75) = -9 and By(-%) = =

2 2 72416 72416"
Consequently, by Lemma 3.2.1, there exists v € (—00,0) such that

16 cos(rt) + 4m sin(rt)

2 (t) = i
xoy_%() 216 + o(e™), as { — oo,
and hence
_ 16 cos(m(t +u—s)) +4Arsin(n(t + u—s)) —
XD 4wy du = / / X
/ +u)du = 2116 dudW(s) + X(t)
32sin(m(t — s)) — 8w cos(w(t — s)) —
= dW X(t
/o (72 + 16) (s) + X(2),
where T2 fo 22dt =0 as T — co. Introducing
i i
X (t) :/ cos(mws) dW(s), Xo(t) :/ sin(rws) dW (s), teRy,
0 0
we obtain

0
/ X (4 4+ w) du
-1

32X, (t) sin(mt) — 32X5(t) cos(nt) — 87 X1 (t) cos(nt) — 8x Xy (¢) sin(nt)

X(t).
(72 + 16) + X
For each T € R, ,, consider the following processes on [0, 1]:
1
WT(s) .= —=W(Ts),
(3= =W (T
1 8
XT(s) = —X,(Ts / cos(nT's) dWT(s),
1 () Vs 1(T's) i (wT's) AW (s)
1 8
XT(s) = —=X,(T's / sin(71s) dW7(s),
2 (5) Nis 2(T's) i (xT's) AW (s)
XT(s) — 32XT(s)sin(rT's) — 32XT(s) cos(nT's) — 87X (s) cos(nT's) — 87 Xo(s) sin(7T’s)
o (w2 + 16) '
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Then, for each T € R,,, we have

/OX< ”/2>(t+u)du—fXT(T)+X()

-1

and hence,
Ay f/ X7 () aw )+11(T)/0 XT(s) dWT(s) + L (T),

= —/ XT dt +20,(T) + I(T) = /1 XT(s)2ds + 20,(T) + 15(T),

with

= %/OTY(t) AW (t), L(T):= #/OTXT(%)Y(& dt, I(T) %/OTY(t)th.

Introducing the process
i
YT(t) = / XT(S) dWT(S), te R+, T - R++,
0

we have .
[ XTeras =TT, teRy TeRy,
0

where ([U,V](t))icr, denotes the quadratic covariation process of the processes (U(t))ser.
and (V(t))ier,. Moreover,

32f0 (XT(s)dXT(s) — XT(s)dX{(s)) 87rf0 (XT(s)dXT(s) + XT(s) dXT(s))

Y = (1 16)

for t € R;. By the functional central limit theorem,

1
(Xfan)A—(Wth) as T — oo,

V2
hence
YT 2y as T— oo
with
V(t) 16 [T (Wi(s) dWh(s) — Wa(s) AWi(s)) — 4T [o (Wi(s) AWi(s) + Wa(s) dWh(s))

(w2 + 16)

for t € R,. Further, by Corollary 4.12 in Gushchin and Kiichler [16],

YT, YT YT) = O, DY) as T — o
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Here we have

[116Wi(s) — 4nWha(s))2ds + [, (16Wa(s) + 4xWi(s))?ds

V)0 = w2(7w? 4 16)?

16

— m/ Wi(5)? + Wa(s)?) ds.

Recall that I3(T —> 0 as T — oo, which also implies [;(7T) 50 as T — oo Finally,

1 1 T
| (T |\\/T3/XT dt/ X(t)2dt = \/ﬁ/ XT(5)2ds/ X(t)2dti>0
0 0

as T'— oo, and the claim follows. O

Proof of Proposition 3.2.7. We have

T ;0 2
Jor = 6_2vo<ﬁ>T/ </ XDt + ) du> dt T eRy.
0 —1

The process ([°, X (t + u) du)te[L@ has a representation (3.2.4) with y(t) = [, xo(t +
u)du, t € Ry, see the proof of Proposition 3.2.4. The assumption ¥ € (0,00) implies
vo(¥) > 0 and v1(#) < 0, hence by Lemma 3.2.1, there exists v € (v1(1#),0) such that

() (19)

Tow(t) = T 200(0) 0 e (1), as 1 — oo.
Consequently,
° _ 1—e o) v (9)t vt
/_1$O’ﬁ(t+u)duvo(ﬁ)2+2v0(19)—19€ +o(e™), as t — oo.

Applying Lemma 3.2.12, one can obtain

Jyp by 1 Lt 2 (U2 =]y as T — oo
P 200(9) \wo(9)2 + 200(0) — 0 - '
Theorem VIIL.5.42 of Jacod and Shiryaev [25] vields the statement. 0

Proof of Proposition 3.2.8. We have again

T 0 2
Jor = 6_2vo<ﬁ>T/ </ X (t + u) du> dt T eRy,
0 —1

and the process ([°, X (¢ +u) du)te[1
7T2

u)du, t € Ry, see the proof of Propos1t1on 3.2.4. The assumption ¢ € ( ,—7) implies
vo(¥) > 0 and vg(#) ¢ Ay, hence by Lemma 3.2.1, there exists v € (0,vg(})) such that

has a representation (3.2.4) with y(t) = [, xos(t+

20.9(t) = @o(t)e® D 4 o(e), as t — oo.
Applying Lemma 3.2.13, one can obtain

Jor — Jo(T) — 0,  as T — oo.

The process (Jy(t))eer, s periodic with period D = .

o6



3.3 The general case

Consider now the SDDE (3.1.1)

dX(t) =0 f[_m] X(t+ u)a(du)dt +dW(t), teR,,
X(t) = Xo(t), tel-r0,

where now the delay measure « is an arbitrary finite signed measure on [—r,0]. We would like
to investigate the local asymptotic properties of this model. As was mentioned in the beginning
of the Section 3.2 in this general model it can not be possible to determine the exact values of
the parameter 1 where the appropriate local asymptotic property is valid. So the aim is to
give sufficient conditions for this.

In the uniform delay case and in each of the cited papers, which concern local asymptotic
properties of delayed models (Gushchin and Kiichler [16], [19]), LAN has been proved in case
of vy(#) < 0. Tt turns out that in case of SDDE (3.1.1), LAN holds whenever v} < 0, where
v} is defined in (3.3.1), see Theorem 3.3.3, but it can happen that wvo(¢) = 0, see the example
in Remark 3.3.6. Moreover, LAQ is shown if vj = 0, and, under some additional conditions,
LAMN or PLAMN is valid if v} > 0, see Theorems 3.3.4 and 3.3.5. Note that in Theorems
3.3.4 and 3.3.5 we have v} = vy(?), see Remark 3.3.6.

For each A € Ay, denote by my(A) the degree of the complex-valued polynomial

mg(A)—1
Pya(t) = Z conet’
=0

with

my(N)—1—2

TRWASS %/{_w] 1}9@(%) a(du) = % JZ; Aﬁ’%!l_ﬁ()\) /[—r,o] ule™ a(du),
where the degree of the zero polynomial is defined to be —oo. Put

(3.3.1) vy :=sup{Re(\) : A € Ay, myp(A) = 0},

(3.3.2) my =max{mg(A) : A € Ay, Re(N\) =v5},

where sup @ :— —oco and max{ :— —oo.

3.3.1 Radon—Nikodym derivatives

From this section, we consider the SDDE (3.1.1) with fixed continuous initial process
(Xo(t))te[-r0). Further, for all T € Ryy, let Pyr be the probability measure induced by
(XD ))erermy on (C([—r,T],R), B(C([-r,T},R))). In order to calculate Radon-Nikodym
derivatives jg:’i for certain 6,9 € R, we need the following statement, which can be derived

from formula (7.139) in Section 7.6.4 of Liptser and Shiryaev [33].
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3.3.1 Lemma. Let 0,9 € R. Then for all T € Ry, the measures Pyr and Pyr are
absolutely continuous with respect to each other, and

dPo.r () Lo (9) Lo ooy [ oy
(X 2ry) = (0 = 0) i YW(t)dX (t)—5(9 —U°) i YW(t)=dt

log
dIP

T /OTW> (1) dW (1) — %(e _ ) /OT Y (12 dt

with
YW (1) = XDt 4 w) a{du), teR,.
[—ﬁm

In order to investigate local asymptotic properties of the family

(3.3.3) (&r)rer,. = (CR4,R), B[R, R)), {Por: 0 €R})

of statistical experiments, we derive the following corollary.

3.3.2 Corollary. For each v e R, TeR,,, rgr € R and hr € R, we have

dPﬁer,ThT,T

1
T Py p

1
(X<ﬁ)|[—r,T]) = hr Ay — §h?pja9,T,

with . .
Aﬁﬂ" = Tﬁﬂ“/ Y<19) (t) dW(t), Jﬁ7T = T129,T/ Y<19) (t)2 dt.
0 0

3.3.2 Local asymptotics of the likelihood ratios

3.3.3 Theorem. If ¥ € R with v} <0, then the family (Er)rer, . of statistical experiments
given in (3.3.3) is LAN at 0 with scaling ror = T2, T € Ry, and with

Ty = /O N ( /[—7«,01 o9t + 1) a(du))zdt.

Particularly, of a([—r,0]) =0, then vj = —oo, m§ = —oco, and the family (Er)rer,. of
statistical experiments given in (3.3.3) is LAN at 0 with scaling ror — T2, T € R4,
and with

Jo = /Ta([—t,O])2dt.

3.3.4 Theorem. If ¥ € R with v} =0, then the family (Er)rer, . of statistical experiments
given in (3.3.3) is LAQ at ¥ with scaling ror =T~ and with

Ay = Z Cﬁ,,\,m;;/o Zlm( ), ( )dZIm ()

AEASN(IR)
g (A)=myp

Jy =

AEAﬁﬁlR
g (N)=m}

(s)]?ds,
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with

w, if ¢=0,
Zoo =14 75 Weore + Wom), if ¢ € Ry,
Z—%O? Zf p e R__,

where  (W(s))sepoa]s Weore(S))sep]  and  (Weoim(s))sepa], ¢ € Riy, are independent
standard Wiener processes, and

Zou(s) = /o (s —u) dZ,0(u), sel0,1], ¢eR, feN.

Particularly, if a([—r,0]) £ 0, then vj =0, m{ =0, and the family (Er)rer,. of statistical
experiments gwen in (3.3.3) is LAQ at 0 with scaling ror =T7', T € Ry, and with

Ay = a([-r, O])/O Wi(s) dW(s), Jo = a([-r, O])Q/0 W(s)?ds.

Note that Ay is real-valued, since

1

1
Cﬁ,,\,m;;/o Zlm(X),m;;(S) dZIm(X),o(S) = Cﬁ,/\,m;;/ Zlm(,\),m;(s) dZIm(A),O(S)a Ae Ay

0

3.3.5 Theorem. Let v €¢ R with vy > 0. If
Hy .= {Im(X) : A € Ay N (v + iRy ), mg(X) =my} # 0,

and the numbers in Hy have a common divisor Dy (namely, they are pairwise commensurable,
and the quotients of these numbers and Dy are integers), then the family (Er)rer,. of
statistical experiments given in (3.3.3) is PLAMN at @ with period %_7:9’ with scaling r91 =
T~mseT T e R,,, and with

2
Ap(d) = Z/ Js(d), Jo(d) / 6_2”3tRe< Z Conms, f\mei(d—t)lm(/\)) dt,
0

AEASN(vl+iR)
g (N)=m

for de|0, %—7;), where

0 [
U = Xo(0) + v} / / e X (s) ds aldu) + / AW (s), AeC,
[=n,0] Ju 0

and 7 s a standard normally distributed random variable independent of (Xo(t))ie—ro and
(W(t))ser. -

If Hy =0, then the family (Er)rer, . of statistical experiments given in (3.3.3) is LAMN
at 9 with scaling rgr =T "™se T T e R,,, and with

2

C,gv* m* 19) 9
Ng =7\ Jg,  Jg= 220yl
2vup »
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The Theorem 3.3.5 is not complete in the sense, that we have not covered the case when
the set Hy is not the empty set, but the elements in it have not a common divisor, namely
they are incommensurable.

3.3.6 Remark. According to the definition of wvo(v) and v}, one can obtain wvy(v) > vj.
The aim of the following discussion is to show that vo(¢) > v} if and only if {A € Ay :
Re(A) > 0} = {0} and Pyp =0 (and hence vo() =0 and v} <0). Indeed, if vy(9) > v}
then for all Ay € Ay with Re(X\y) > v} we have Py,, =0, implying

1 u
Co,xo,mg(Ao)—1 — mz‘lﬁ,—mﬁ(,\o)o\o)/ e a(du) = 0.

[_7'701

Here Ay _myone)(A) # 0, since it is the leading coefficient of the polynomial py», of degree
ma(Ao) — 1, hence cyrgmoro)—1 = 0 yields f[_r 0 eMUa(du) = 0. Taking into account of the
characteristic equation, one can get A = 0, hence {A € Ay : Re(\) > vj} = {0}. Clearly,
this vields also vy(¢) =0 and v} <0, and hence {A € Ay : Re()\) > 0} = {0}. Conversely,
if {AeAy:Re(A) >0} ={0} and Py, =0, then, by definition, vy(¥) =0 and v} < 0.

In particular, if {A € Ay : Re(A) > 0} = {0} and my(0) = 1, then () > v} is
equivalent to a([—r,0]) =0, since Pyy = cyo0 = f[_r 0 e q(du) = a([—r,0]).

An example for this situation is, when r = 27, a(du) = sin(u)du and ¥ € (0,1), see

Example 3.3.7.

3.3.7 Example. In this example we investigate the special case, when r = 27 and a(du) =
sin(u) du.

The following results can be derived by applying usual methods (e.g., argument principle in
complex analysis and the existence of local inverses of holomorphic functions), see, e.g., Reift
[38, Section 2.4].

In the trivial case of ¥ =0 the LAN property holds due to the fact that a([—27,0]) =0,
see Theorem 3.3.3. In the sequel, we suppose ¥ # 0. The characteristic function has the form

0

M2 ey gy
ho(A) = A — 19/ e sin(u) du = PYAN] y 1 #+ +i, .
—on A F O, if O\ = i

Thus 0 € Ay, and hence v(9) > 0 for all ¥ € R. Moreover, +i € Ay if and only if ¥ = L.
Any purely imaginary zero A =iy with y € R\ {1} of hy satisfies the system of equations

(cos(2my) — 1) = 0,

—y* +y + ¥sin(2ry) = 0.
The first equation and ¢ # 0 yield y — k, k € Z. The second equation implies k* —k = 0,
hence y # +1 vields k= 0. Thinking of the parameter 1 = ¥(\) to be dependent on the
zero A of hy and allowing for complex values of ¥, we have

PLEEDY

e—271'>\ -1

P =
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for A € C with Re(\) > 0 and Im()) ¢ Z. We have limy_o9()) = —5= and limy_4;9(\) =
1 hence the number of zeros of hy is constant as a function of ¥ on each of the open intervals

(=00, —5=), (—3,=) and (2,00), see, e.g., Reif [38, Lemma 3|. Further, we have

2 2m 0w
(BA2+ 1)(e7 A — 1) + 27 (A3 + N)e 2™
(e=2mA — 1)2

for A€ C with Re(A) > 0 and Im()\) ¢ Z. Applying e 2™ = 1 — 27y + 27%y* + O(y*) and
e72mi — e=2m(u=li — 1 27 (y—1)i—27%(y—1)*+O((y—1)*), one can obtain limy_o¥'(A) = —3
and limy_;¥(A) = 1+ % i. By the existence of local inverses of holomorphic functions, we
can define the inverse A(9) of ¥()) locally around 9(—5=) and (), and its derivative at

1 1
L1 1 e 1 1-2
) = —_9 Z) = = .
A( 27 ¥'(0) ’ A T V(i) |1+%|2

—5- and — are
Hence Re(X(—5)) <0 and Re(XN(1)) > 0. Consequently, locally at —5-, at least one zeros
1

of hy cross the imaginary axis from the right to the left, and locally at —, at least one zeros

P\ =

of hy cross the imaginary axis from the left to the right as v increases. Not more than one

real zero moves into the left half plane locally at —%,
1

the right half plane locally at -, see, e.g., Rei |38, 2.4|. Thus, we have the following cases:

and not more than two zeros move into

(i) If ¥ < —2=, then wv(¥) >0, vo(¥) € Ay and my(ve(¥)) = 1.

2

(i) If ¥ = —5=, then vo(—5) =0€ A_1 and m_1(0)) = 2.

)

) P 3

(i) If ¥ € (=5, 1), then v(¥) =0€ Ay and my(0) = 1.
)
)

(iv) If ¥ =2, then uy(2) =0, 0,£i€ Ax and m1(0) = ma(+i) = L.

A [

(v) If 0> 1, then w(0) >0, vo(¥) & Ay and my(ve(9)) = 1.

Finally, we have to calculate my(\) for some specific A € Ay to derive the sign of vj.
Namely, if 9 # —5=, then we have

0

Pyo(t) = copo = Aﬁ,—l(o)/ sin{u) du = 0,

—2m

hence my(0) = —oo. Furthermore, if ¥ = —5-, then we have

P_1o{t)=c_Loptergqt
b 27\—77 27\—77

A (0) /_ " in(w dut Ao _,(0) / i wsin(u)du + A_y _,(0)1 / " i) du

2 2w 2 —2m —2m

— _27TA—L,—2(O) # O)

hence m_ L (0) = 0. In the other cases the leading coefficient ¢y m,(n)—1 does not vanish,

kg

thus my(A) = my(A) — 1, consequently, we conclude the following final results:
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(i) If ¥ < —5-, then v} = vy(¥) >0, mj) =0 and Hy = 0, hence the LAMN property
holds with scaling e=*@WT T cR,,.

(i) If ¥ = —=~, then v* L = vo(—

27
with scaling 77!, T e Ry;-

27T) =0 and m_+ 2 = 0, hence the LAQ property holds

(iii) If ¥ € (=<, 1), then v} < 0, hence the LAN property holds with scaling T71/2,

20 W

T e R,,, although wy(d)=0.

(iv) If ¢ =1, then v} = v9(2) =0 and m% = 0, hence the LAQ property holds with
scaling T—!, T € I§++. ’
(v) If ¥ > 2, then vy >0, m}) =0 and Hy = {ro(v)}, where ro(¥) = |Im(Ao(V))| is

given by Re(A\(?)) = v}. Hence the PLAMN property holds with period 55(7:9) and
with scaling eW7T T cR,,.

3.3.3 Maximum likelihood estimates

For fixed T'€ R, maximizing log S d 2o (X O _.m) in ¥ €R gives the MLE of o based
on the observations (X (t))ie/—r1 havi mg the form

5 I Jizrog X+ w) aldu) dX (1)
Jy (f[ L XD+ w)a (du)>2dt

)

2
provided that fOT (f[_r 0l Xt 4 u) a(du)) dt > 0. Using the SDDE (3.1.1), one can check

that
fo f[ ro] Dt + u) a(du) dW (1)

O —0 = —
I (f[ o) XDt + u) (du)) de
hence A
royr(Ur — V) = Jﬁ’T-
9T

Using the results of Section 3.3.2 and the continuous mapping theorem, we obtain the following
result.

3.3.8 Proposition. If vj; <0 then
\/T(@T—ﬁ)g./\/'(o,]ﬁ_l) as T — oo,

where Jy 1s given in Proposition 3.3.5.

If vy =0 then

* fon A
Tt (9p — ) SN J—ﬁ as T — oo,
9
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where Ay and Jy is given in Proposition 3.5.4.

If v; >0 and Hy# 0 and the numbers in Hy have a common divisor Dy, then for
each d € [O,Dﬁ),

A

Dy + d)™sevskDatd) (5 Y NSUN
(kDy + d) (Vkpyra — V) T

as k — oo,

where Jy(d) is given in Proposition 3.3.5, and 7 s a standard normally distributed random
variable independent of Jy(d).

If v5>0 and Hy=10 then

TmevsT (5T — ) SN as T — oo,

g

where Jy s given in Proposition 3.3.5, and 7 is a standard normally distributed random
variable independent of Jy.

3.3.4 Proofs
For each ¢ € R and each ¢ € [r,00), by (3.1.5), we have

Y (1) = X,(0) / xo5(t + w) du + Wt +u—s)drgs(s) a(du)

[—7,0] [=7,0] J[0,t+u]
0
+ 19/ / / 209t +u+ v — s)Xo(s) dsa(dv) a(du).
[=r,0] J[-r,0] Jv
Here we have

0
/ / / ou(t +u+v — s)Xo(s)dsa(dv) a(du)
[=r,0] J[-r,0] Jv
0
= / / / xop(t +u+ v — s)Xo(s)dsa(du) a(dv)
[=7,0] J[-70] Jv

0
= / / Xo(s) / 2ow(t +u+ v —s)a(du) dsa(dv),
[—=r,0] Jv [—7,0]
and

/[_T,O] /+ To(t+u— 5) AWV (s) a(du)
— /Ot_r /[_%O] 2o9(t +u— s)a(du)dW (s) + /t; A_w] oo(t +u — 8) a(du) dW (s)

-/ t /[1 Tl + u— ) afdu) AV (s),
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since t € [r,o0), s € [t—rt] and w € [-r,s—1t) imply t+wu—s € [-r,0), and hence
zos(t +u—s) = 0. Consequently, the process (Y7 (1))
(3.3.4)

Y1) = yo (1) Xo(0) + 19/[_ , / yo(t +v — 8) Xo(s) ds a(dv) + /o yo(t — s) dW (s)

refr00) has a representation

for ¢t € [r,o0) with
yo(l) == / x0.0(t + u) a(du), teR,.
[=7,0]

Applying Lemma 3.1.1, one can obtain

yo(t) = Z /[_KO] ljff <ez<t+U)> a(du) + ot + u) aldu).

>\€A19 [_7'701
Re(N)=e

Here we have

oot +u)a(du) =o(e”)  as t— oo.
[_7'701

Indeed,
lim e~ Py (t + u) a(du) = lim [e= s (¢ + w)]e™ a(du) =

t—o0 [_7‘701 t—o0 [_7‘701

since a is a finite signed measure on [—r,0]. Moreover,

z U -1
Res <e o )> — eMttu) Z 7141”()\) (t +u)~ "

A\ N )]
—1—k
g —1—k—t
t+u A
Z ZopY (=1 —Fk—20)
kf—mlg £=0
mp (M) — 1 —1—¢ A
At+u) ﬁk —1—-k—2¢
Z O g) u
k——m,lg (N
ms(N-1 £ zu
t (z—N'e
A - T
3 R (555 )
=0
Consequently, one can obtain for each ¥ € R and each ¢ € R, the representation
(3.3.5) yo(t) = Y Poat)eM + Wyo(t)  as t— oo,
AEAy
Re(A)=c

where Uy, : Ry — R is a continuous function with W, .(t) = o(e?) as t — oco. Hence
we need to analyse the asymptotic behaviour of the right hand side of (3.3.4) as T — oo,
replacing ys(t) by Pya(t)eM

First we derive a good estimate for the second term of the right hand side of (3.3.4).
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3.3.9 Lemma. Let (y(l))wer, be a continuous deterministic function. Let a be a signed
measure on |—r,0]. Put

I(t) == /[ o]/ y(t +u — s)Xo(s)ds a(du), t € |r,00).

Then for each T € [r,oc0),

(33.6) (7)< |a|(|—r,0]) /XO ds/ yv)2dv<||a||/_0X0(5)2d5/0Ty(v)2dv,
[ 1(t)2dt</[_w]( ) a(du) / Xofs ds/ y(0)2 do
<wmn/ijwfdgATwadu

where |a| and |al|l := |a|([-7,0]) denotes the variation and the total variation of the signed

(3.3.7)

measure a, respectively.

Proof. For each t € [r,00), by Fubini’s theorem,

I(t)/ Xo(s)/[_ ]y(t+u—s)a(du)ds.

-7

By the Cauchy-Schwarz inequality,

/XO 2ds/ (/{_m] t+u—s)a(du)>2ds

g/ Xo(s)2ds// Yt + 1w — 5)2 |al(du) ds,
—r —r J[—7,8]

where, by Fubini’s theorem,

0
// Yl + 1 — 5)2 |al(du) ds / Yl + 1w — 5)2ds |a] (du)
—r J[—r,s] [=7,0] Ju

t t
| weraedn < [ jal) [ywra
[=7,0] Jt+u [—7,0] 0
hence we obtain (3.3.6). Moreover,

T 0 T 0
/ I(t)*dt / Xo(s)*ds / / / y(t +u — s)?|a|(du) ds dt,
r —r r —r J[—7,8]
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where, by Fubini’s theorem,

/j /_(: /[_m] y(t +u— s)*|a|(du) dsdt = /_(: /[_m] /jy(t +u — s)? dt |a|(du) ds
L s [oran [ [ aaoas
- [ L. / sl = [y [ el

hence we obtain (3.3.7). O

3.3.10 Lemma. Let (y(t))er, be a continuous deterministic function with [ y(t)? dt < oo.
Let 9 € R. Suppose that (Y (t))ier. s a continuous stochastic process such that

3.3.8 Y(i) = Xp(0) + 9 v — 8)Xo(s)dsaldv —s)dW(s
338 YO —y0X0) +9 [ [ ot v Xomasa@n - [ aw
for t €lr,o0). Then

(3.3.9) —/ £y dt = 0 as T — oo,

(3.3.10) %/ Y(t)?dt&/ yO2dE as T — oo
0 0

Proof. Applying Lemma 4.3 in Gushchin and Kiichler [16] for the special case Xy(s) = 0,
€ [—1,0], we obtain

T ot
%/ /y(t—s)dW(s)dtgo as T — oo,
0 0

%/OT</Oty(t—s)dW >dt—>/ as T — o,
We have
%/OTY(t)dt%/OTY(t)dtJrXo(O)Il(T)+%/TTZ(t)dt+%/rT/oty(t—S)dW(S)dt

for T e Ry with

1 T
L(T) = T/ y(t)dt, T eRy,

(3.3.11) Z(t) = /[_ o]/ y(t +u — s)Xo(s)dsa(du), t € |r,00).
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By the Cauchy—Schwarz inequality and by (3.3.7),

(T \// —dt/Ty(t)2dt< \/%/Oooy(t)th%O,
‘%[TZ(t)dt < \/%/TZ(thtg \/%/jXO(S)QdS/OOOy(v)degO

as T — oo, hence we obtain (3.3.9). Moreover,

1 1 T i 2
—/ Y ()2 dt = / 2t + Iy( T)+213(T)+—/ </ y(t—s)dW(s)) dt
T 0 T r 0

for T e Ry, with

L) = 1 [ wOXa(0) + 020 d

nmy- 1 | L) X0(0) 1 9Z(0) ( / i — 9 dw<s>) at.

Again by (3.3.7),

0 < I(T) < % / 202X (02 + 2 Z(0)2) dt

2X 2 [ 2 0 [ s
< O(O)/ y(t)2dt+—ﬁ2r||a||/ Xo(s)2ds/ y(0)2 dv 255 0
T 0 T —r 0

as 1" — oo, and

(T %\/ 0) 1 0Z(t)) dt /j </Oty(t ) dW(s))th

2

2 QT)[ </Oty(t—s)dW(s)> dt—50 as T — oo,

hence we obtain (3.3.10).

O

3.3.11 Lemma. Let y,(t) = t*Re(ce™), t € Ry, ¢ € {1,2}, with some oy € Z,,
co, \e € C with Re(A)) e Ryy, €€ {1,2}. Let v € R. Suppose that (Ye(t))ier., ¢ € {1,2},
are continuous stochastic processes admitting representation (3.3.8) on [r,00) with y = yu,

¢ e {1,2}, respectively. Then
(3.3.12) et RAY, (1) — Re (clUif)ei“m@\l)) 220, as t— o0,

and

T
=on—an =T Re(A1+22) / Yi(t)Ya(t) dt
0

(3.3.13) B
_/ e—tRe(AhL)\z Re(c U}\ e i(T—t) Im(A1) )Re(c U}\ i(T—t) Im(>\2)> dt g 0
9 )

0
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as T — oo. Particularly, if ci,co € R and A, s € Ry, then

e MY (1) 2 clU/@, as t — oo,

Uf\?U/(\f), as 1" — oo.

T
T—a1—aze—T(>\1+>\2)/ Y (DY, (4) dt a.s. C1Co
im0

Proof. Note that
et Ry (1) — Re(clU/(\?ei“m(’\l)) = —1(t) + L(t) — 15(t), t € |r,00),

with

0 o a1 )
L) =7 / {1 — (1 . - ”) }Re(cle‘tImW)_’\l(S_”))XO(S) ds a(dv),
—r,0] Jo

[
L(t) = t (A R Re(cleitlm<’\1>_’\1$) dW(s),
) ¢

I3(t) == / Re (cleit1m<’\1>_’\1$) dW (s).
i
By the dominated convergence theorem, I(t) = 0 as t — oo. Moreover,

ol t
L(t) = Z(—l)k<og>t_k/o s Re(cleitlm<’\1>_’\1$) dW(s) 220 as t— oo
k=1

by the strong law of martingales, see, e.g., Liptser and Shiryaev [33, Chapter 2, §6, Theorem
10]. Obviously, I3(t) =2 0 as t — co, hence we obtain (3.3.12).

In order to prove (3.3.13), put
Vo(t) := Re(ce U/(\?ei“m(’\@)), teR, ¢e{l,2}.
For each T € R,, we have
T T
/ e—tRe(AlJr)\g)‘/l(T _ t)‘/g(T _ t) dt = G_T Re(A1+X2) / etReO\lJr)\z)‘/l(t)‘/Q(t) dt,

0 0

hence
T o0
T_al_aze_TRe<>\1+>\2> / }q(t)}/Q(t) dt o / e—t Re(>\1+>\2)‘/1(T — t)‘/é(T — t) dt
0

0

= Ji(T) + Jo(T) + J5(t) — Ju(T) — J5(T)

68



with

T

J(T) = T2~ TRe(Ar ) / [Yi(t) — tMe ROV (4)][Va(t) — t22e RV (1)) de,
0
T

Jo(T) = T~ 2= TReOu o) / [Yi(t) — e OV ()]t ROV, (1) de,
0
T

J3(T) = T2~ TReOu o) / [Ya(t) — ¢! B (1) ]ere ROV (1) de,
0

T (ot
Jy(T) = e TReuT2) / (1 = Talm>etRe<A1+Az>v1(t)Vz(t) dt,
0

J5(T) := / e PRIV (T — ) Vo(T — 1) dt.
T

By (3.3.12) and L'Hospital’s rule, J;(T) =2 0 as T — co. By the Cauchy-Schwarz inequality,
| JA(T)| < \/Js(T)J2(T), T € Ry, where, by (3.3.12) and L'Hospital’s rule,

T
Jo(T) = T‘Qale—QTReW)/ Vi(t) — te! BRIV (02 dt 2250, as T — oo,
0

and

T
J7(T) — T—20¢2€—2TR€(>\2) / t20¢2€2t Re(Az)‘/Q(t)2 dt

0

T 2000
14 1
= (e ) eHRIR(T -2 dE < g sup V(1) < 00 as.
/o< T> ‘ (T =) TRe(y) jop V2l <00 as.

since (V5(t))ser is a continuous and periodic process. Consequently, Jo(T) == 0 as T — oo.
In a similar way, J5(T) =0 as 7 — oo, and

T a1+tag
Juo(T) < <sup |V1(t)V2(t)|> e_TReW“?)/ <1 ! > otReO4A2)
0 T ortaz

teR

T t a1t
= <SUP |‘/i(t)‘/é(t)|> / |:1 — <1 — _> :|e—tRe(>\1+>\2) dt a.s. 0
teR 0 T —

as T'— oo by the dominated convergence theorem. Finally,

=T Re(>\1 +>\2)

© a.s.
< Vi(OVa(t)] 255 0 T ,
| ReOy T ) Sttelﬂlgl 1{t)Va(t)] as T — oo

|J5(T)
hence we obtain (3.3.13). O

Proof of Theorem 3.3.3. The continuous process (Y V(1)) R, admits the representation
(3.3.4) on [r,00). The aim of the following discussion is to show that the function (ys(¢))ier,
is square integrable. Let ¢ € (v},0), and apply the representation (3.3.5). By the definition of
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vh, weobtain Py, =0 foreach A € Ay with Re()\) > v}, and hence for each A € Ay with
Re(A) = ¢. Thus the representation (3.3.5) gives yy(t) = o(e”) as t — oco. Since (yo(l))ier,
is continuous, the function (e™yy(t))ter. is bounded, implying [ ys(¢)2dt < co. Hence
one can apply Lemma 3.3.10 to obtain

1 T 1 T o0
JM_/ Yo (1) _/ it L / y<ﬁ>(t)2dti>/ yo(0? dt = Jy
’ T 0 T r 0

as 1" — oo, where Jy >0, since x99 #0 and a# 0 implies yy # 0.

In case of ¥ = 0, we have ho(A) = A, Ag = {0}, mp(0) = 1 and Fyp(t) =
Ao _1( f[ oy aldu) = a([-r0]), t €R, since 1/ho(z) = 27! yields Ap_;(0) = 1. The
assumption a([—r,0])

=0 1mphes Fyo =0, and hence vy = —oo and m{ = —oo. Moreover,
the assumption a([ ,0]) =

=0 vyields

- i ) afdag) — 0 iftG[T,OO)a
yo(t)/[_m] 00(t +u) a(du) {a([—t,o]) it te[0,r],

and one can obtain the formula for .J,.

Further, the process
T
MO(T) = / YOy dw (), TeR,,
0

is a continuous martingale with M (0) = 0 and with quadratic variation

hence Theorem VIIL.5.42 of Jacod and Shirvaev [25] vields the statement. O

Proof of Theorem 3.3.4. For each T € R,,, we have

1 T 1 T
- - () _ (9) 14\ 2
Ny = T /O YWy dW (), Jor = 7T2<mf9+1) /O YYW(t)* de.

The continuous process (Y (V) (t)) R, admits the representation (3.3.4) on [r,00). We choose
c <0 with ¢>sup{Re()) : A € Ay, Re(A\) < 0}, and apply the representation (3.3.5). The
assumption v} =0 yields that Py, =0 foreach A € Ay with Re(\) > 0, hence we obtain

(3.3.14) yolt) = > Poa(t)e™™N 4. (1),  teR,.

AEASN(IR)
The leading term of the polynomial Py is ¢y, Aym;;tﬁw@), thus, by the representation (3.3.4),
¢
(3315) YD) = D" gy e / (t —s)™oe BNV AW (s) 4 Y (1),  teRy,
AEASN(IR) 0

Mg (N)=mj
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where (Y(1))ter, is a continuous process satisfying

Y () = yo(t) Xo(0) + 0L(t) + Lu(t) + S(t), t e |r 00),

with
¢
/ / yo(t + v — ) Xo(s) dsa(dv), Ty (t) :/ Uy (t —s)dW (s),
[—7,0] 0
g (A)A(my—1) t
SN i k= [ e ),
AEASN(IR) 0
for t € |[r,o0) and ¢ € Z,;. The aim of the following discussion is to show that

T—2my D) fTT}N/(t)2 dt — 0 as T — oco. First we show that 7—2m5+D f yo(t)2dt — 0
as T — oco. Foreach A€ Ay with Re(A) =0, we have

T T
T—2(my+1) / | Py (t)eM|? dt = T2 T / |Pya(D)|Pdt — 0 as T — oo,

since the degree of the complex-valued polynomial Py, is mg(A), which is at most m)}.
Moreover,

T T [eS)
T2y / Wyt dt <172 / Wye(t)?dt < T2 / Wy o(t)*dt — 0

as T — oo, since [ Wy (t)]*dt < oo, because the function (e _Ct|\I/,90( ))ter, is bounded.
Thus, by the representation (3.3.14), one can obtain T~2ms+D f yo()?°dt — 0 as T — oo.

Next, by Lemma 3.3.9,
T 0 T
/ Lg(t)2 dt < r||a||/ Xo(s)2 ds/ y,g(v)2 dv,
r —r 0

hence we obtain T—207+1) fTT Iy)2dt — 0 as T — co. Further, we have

E (/T Iq,(t)th> _ /j (/Ot Wyt — 8)2d5> dt — /j (/Ot %,c(ufdu) dt
_ /j Wy o (11)? (/UT dt) du — /j(T )W) du < T/j Wy (1)’ du,

hence T2 fTT Iy(t)2dt — 0 as T — co. Finally, for each A € Ay with Re(\) =0 and
each ¢ € Z, with ¢<m}—1, we have T—2mytD fOT L(B2dt =50 as T — co. Indeed,

1 T d 1 T t o d d
T2(m1’;+1) E 0 ( ) l T2<m19+1) 0 o (t - S) S t

1 T t o 1
— = d dt = " — 0 as T — .
T2my+D /0 (/0 “ “) (20 1 1)(2f 1 2)T2m5=0 >

71

(3.3.16)




Hence we conclude T2 +1) (1Y (1)2 di 50 as T — oo
Introduce the complex-valued processes (Z,¢(t))ier,, w € R, £ € Zy, by
s

Zos(t) = /O (1 — 5)le=e ATV (s).

Note that Zyg = W. Foreach T'€ Ry, consider the complex-valued processes (7, ,(t))sep.1s

1

¢ €R, ¢ €Z;, and the real-valued process (X" (s))seo,1), defined by
ZZ;,E(S) = ﬁz%g(TS) = /O (S — u)ﬁe_iT@u dWT(’LL),

Z Cﬁ,x,mgeiTSImleTm(A), 19(5)

XT(s) =
AEASN(IR)
My (A)=mj
Then, for each T € R,,, we have
YO gy = rmots xT (%) FY (), teRy,
and hence,
Agp = L/TXT(E) dW(t) + I(T) = /1XT(5) AW (s) + 1,(T)
9T \/T A T 1 ; 1 )
1 g T l 2 ! T 2
JM—/ X (—)‘ dt+2[2(T)+13(T)/ IXT(s)[2ds + 21,(T) + L,(T),
T Jo T 0
with
1 T 1 T oINS
W) = ey /O VO, B(T) = /O Re(x <T>Y(t)> dt,
1 T <
: >/ 1Y ()|? dt.
0

Introducing the process
¢
YI(t) = / XT(sydw'(s), teR,, TeR,,,
0
(U(t))eer

we have .
[ Xteras =T yNe. er. TeRr.,
0
where ([U,V](t))ter, denotes the quadratic covariation process of the processes

and (V(t))ier,. Moreover,
i
Z Cﬁ,x,m;;/ elTSImO\)ZIj;n()\),m;;(S) dW™(s)

YT(t) =
AEASN(IR)
g (N)=m

t
Z Cﬁ,,\,m;;/ Zlifn(,\),m;(s)dZITm(,\),o(S)
0

AEASN(IR)
My ()\):m;;
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By the functional central limit theorem,
(ZE a0 A€ AN GR)) 2 (Zimooo s A€ ApN(R)),  as T — o,

since

Zgo(s) = / cos(Tpu) dW (u) — i/ sin(Tou) dW (u), ZF;F%O(S) = ZL4(s),
0 0
forall se€[0,1], p €R and T € R;,, and

/OS cos(Tpu) cos(Tpqu) du = /OS[COS(T(gol — pa)u) + cos(T (1 + p2)u)] du

s sin(2Tp1 5) s . B
st TEe it 01— g,
) sin(T(p1—p2)s) sin(T(p1+w2)s) .

2T(<p11—s022) + 2T(¢f+¢j) — 0, if 1 7 ¢,

/OS sin(Tpyu) sin(Tpou) du = /OS[COS(T(gol — po)u) — cos(T (@1 + @2)u)] du

s sin(2T 1 8) s
2 T;il — 2 if Y1 = ©2,
sin(T(p1—¢p2)s) _ sin(T(yp1typa)s) .

2T(<p11—s022) o 2T(¢f+¢;) — 0, if @1 # o,

w

[SIn(T (1 + @2)u) +sin(T (1 — pa)u)] du

I

/ sin(T'p1u) cos(Tpou) du =
0

Il
—— O —

—cos(2Tp1s
: 4%1@1 b - 0, it @1 = 2,
1—cos(T(p1+p2)s) 1—cos(T(p1—pa)s) .

2T (p1+¢2) + 2T(p1—p2) — 0, if 1 7 ¥,

as T — oo forall se€[0,1] and 1,9 € R,. Consequently,
(ZE 3000 Zhninimy = A € Ao N (R)) =25 (Zimn,00 Zimaymg : A € Ap N (R)),  as T — o,
and hence, by Ito’s formula and the continuous mapping theorem,

yT 2oy as T — oo

with
V() = Z Cﬁ,,\,m;;/ Zim(n)my (8) dZm(n,0(8)-
AEAHN(IR) 0
Mg (A)=mj

Further, by Corollary 4.12 in Gushchin and Kiichler [16],

YT, YY) = ), [P VI) as T oo
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We also have

t
y(t) - 1{06/\19 My (0)= *}CﬁOmﬁ/ Z()’m;;(s) dW(S)
0

¢
+—= |:/ (Cﬁ,k,mgzlm(k)m ( ) + C9, ms Zlm( A),m ( )) dWIm e( )
0

N/Q-AEA500R++)
My (A)= m19

i
+ / <_Cq9,>\,m1’;zlm(>\),mf9(5) + Cﬁ,x,m;;zlmm,m;(s)) dWIm(A),Im(S)}
0

t
= Lioeny, i (0)= *}Cﬁomﬁ/ ZO””E(S) dW(s)
0

Wz Y MRe(cMm*zmm())dwlm els)

AEASN(IR+ 1)
’Fflﬁ(}\)im:;

i
—/ Im(w,,\,mgzlm(,\),m;(S)) AWim(x),m(8) |
0

hence

1
Y I0) = Loers mo0miichon | Zom(s) ds
0

! 1
+2 Z {/0 Re<ca9>\m*zlm( A),m ( )) d8+/0 Im<ci9,>\,mf921m(>\),mf9(8)>2dS

AEA500R++)
g (A)=mj

AEASN(IR)
g (A)=msp

(A),ml’;(s)|2 ds.

Recall that I5(7T) 50 as T — oo, which also implies IL(T) 50 as T — co. Further,
L) <y [ (LY #)2d XT(s)|2d 2dt 5 0
B <\ 7ars | X7 () O| DR | 2 ds |<t>| t-5

as 1" — oo, hence we obtain
(A&T, J&T) i> (Aﬁ, Jﬁ) as T — oo.

Moreover, we have Jy > 0 almost surely. Indeed, Jy = 0 would imply fol | Zim(),my (8)]? ds = 0
for all A € {A € Ay N (iR) : my(A) = my}, which, in turn, would imply Zpux)ms(s) =0 for

74



all s € [0,1]. But this is in a contradiction with the fact that Zpy »),m; 1 a non-degenerate
Gaussian process. O

Proof of Theorem 3.3.5. We have
T
Jop = T™2moe 20T / Y2, T eR,.
0

The process (YD (t))sepr00) admits the representation (3.3.4). We choose ¢ < v} with
¢ >sup{Re(A) : A € Ay, Re(\) < vj}, and apply the representation (3.3.5). By the definition
of v}, onecan obtain Py, =0 foreach A€ Ay with Re()\) > v}, hence we obtain

Mg (v:;

(3.3.17) ()= > D conet' e+ Wy (t), teR,

AEAN(v}yHiR)  £=0

For each A € Ay and ¢€{0,...,ms(N)}, we have
conetie + Coxe et — ¢t (coree™ + m)
— 2t R€<Cﬁ>\g€ ) — ¢ [R <C19)\£€ ) +Re(cﬁ/\£e’\ )}
hence (3.3.17) can also be written in the form
)= > Z#Re coree™) + Wy (),  tER,.
AEAN(v}HiR) £=0

Consequently, by the representation (3.3.4), we have
(3.3.18) YO =Y()+Y(t), teRy,

with

AEAN(vfHR) £=0

where the continuous processes (Yyxo(t))ter,, A €A, €€ {0,...,my(vy)}, and (}N/(t)),geR+
admit representation (3.3.8) on [r,00) with y(¢) = t“ Re(cy e ) )\ e, £e{0,...,ms(u})},
and with y(t) = Wy.(t), t € Ry, respectively. The aim of the following d1scussmn is to show

that T—2mse=207T [TV (1)2dt 50 as T — oo. We have

V(1) = Wy (1) Xo(0) + 9Io(t) + Iu(t), € [r o00),

with

— /[—T,O] /UO Wyt +v— 8)Xo(s) dsa(dv), Iy (t) = /Ot Wy o(t —s)dW (s).
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The function (e™“Wy (1))icr, is bounded, hence [, (1)] < Ce® for all ¢ € Ry with
C = supyer, €| Wy (t)] < oo, hence
2

T T C
T‘Qmﬂe_Q%T/ Wy (t)?dt < e_QUﬁT/ C?e* dt = 2—6_2<%_C>T — 0 as T — oo.
r 0 c

Next, by Lemma 3.3.9,
T 0 T
/ Lg(t)thérHaH/ Xo(s)2ds/ Do(0)? d,
r —7r 0

hence one can obtain T2Mse=2vT fOT Iy(t)2dt -5 0 as T — oco. Finally, by (3.3.16),
T=2moe25T [T 14(1)2 dt 50 as T — oo, and we conclude T—2mhe=20T J Y (6)2dt =50
as T — oo.

Applying Lemma 3.3.11, one can obtain

T
T—ﬁl—ﬁze_Qv;T/ Yoo (Yo 00,0 (1) At
0

1

_/ o205t Re(CﬁAl’ElU)(\ﬁ)ei(T—t)Im()q))Re(CﬁAZ’EQU)(\f)ei(T—t)Im()q))dtgo
0

as T — oo for each A, A € A with Re(\) = Re(X\2) = v} and ¢ € {0,...,my(\1)},
ly €{0,...,my(r2)}. Consequently,

2
T 0
T—2m§e—2”$T/ Y (t)? dt—/ e‘%t( > Re(cﬁ,x,m;;Uiﬁ)ei(T_t)Im(k))) dt 2% 0
0 0

AEASN(v+HiR)

as T' — oo, hence we obtain Jyr — Jo(T') 2% 0 as T — oo. Since Hy # 0 and the
numbers in Hy have a common divisor Dy, the process (Jy(t))ser, is periodic with period

%—7;, and, by Theorem VIIL.5.42 of Jacod and Shirvaev [25], one can conclude

(Avkptd> JokDtd) N (Ay(d), Js(d)) as k — oo

for all d € [0,3T). Moreover, we have Jy(d) >0 almost surely for all d € [0, 2T). Indeed,
if Jy(d) =0 almost surely for all d € [0, [2)—7;), then

Re( Y7 oy UL e ImW) —0

)\EAﬁﬁ(UE%»iR)
Mg (A)=mj

forall d e [O, [2)—7;) and ¢ € Ry ;. But thisis in a contradiction with the fact that the left-hand
side is a Gaussian random variable with variance
2

/ Re Z 0197,\7m§ei<d_t)lm<’\>e_’\s ds #£ 0.
0

AEASN(v+HiR)
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Consequently we obtain that the family (&r)rer., is PLAMN at o).
If Hy=10, then Ayn (v) +iR) = {v}} and my(v})) = mj, thus

T
T—%Ee—%ﬂ/ Y(t)*dt 2 %" (Co .03 ms U§ﬁ>)2dt = Jy, as T — oo.
0 0

By Theorem VIIL5.42 of Jacod and Shirvaev [25], one can conclude
(A&T, Jﬁﬂ“) L (Aﬁ, Jﬁ) as T — o0,

and we obtain that the family (€r)rer, ., is LAMN at o.
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Appendix A

Summary

In this thesis a statistical model of linear stochastic differential equation with time delay is
considered. The aim of the investigation is to prove local asymptotic properties of the like-
lihood function. The thesis contains three chapters. Chapter 1 is an introduction. Section
1.1 includes some applications for deterministic and stochastic differential equations with time
delay. These are the delayed logistic or Hutchinson’s equation and the Wright’s equation. Fur-
ther references are mentioned on applications for deterministic equation in biology, chemistry,
physics, economics and epidemics. To illustrate an application for stochastic delay differential
equation, a financial application is presented by Appleby, Riedle és Swords [2], which was one
of the most motivational example for the birth of this thesis. In this, a model is constructed to
describe the dynamics of a risky security, in which the traders of the security determine their
investment strategy by historical information. The central element of the derived model is the
equation (1.1.5)
dY (t) = L(Y;) dt + o dW(t), t>0,

where L is a linear functional and W is a standard Wiener process. The main result of
this thesis is connected to similar equations. Section 1.2 contains an introduction for the local
asymptotic properties of the likelihood function. The basic concept of asymptotic statistics is
the local asymptotic normality. In this part we give a heuristically description on this with the
help of the book by van der Vaart [46]. Finally, in Section 1.3 a historical background of the
earlier results connected to investigation of the local asymptotic properties of statistical models
described by stochastic delay differential equations can be found.

Chapter 2 contains on the one hand the basic notions and results of asymptotic statistics,
which are needed to understand the main results of this thesis. These are the definitions of
statistical experiment, convergence of statistical experiments, LAN, LAMN, LAQ and PLAMN,
and the Le Cam’s lemmas, which can be found in Section 2.1. In Section 2.2 some useful
consequences of the local asymptotic properties are stated, namely the asymptotic behaviour
of the maximum likelihood estimator and the questions of the efficiency of estimators and
optimality of tests.

On the other hand, an important part of the thesis is Section 2.3, where a well-known
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financial model, the Heston model is considered, and investigated from asymptotic statistics
point of view. This is a new result, which has been published in Benke and Pap [12]. The
model is the following

{dYt(a—bYt)dtJrUl\/Ytth, >0

dX; = (a— 8Yy) dt+02\/}7t<Qth+ \/1—7Q2dBt>,

where a >0, b,a, €R, 01 >0, 09 >0, p€(—1,1) and (W, By)i>o is a 2-dimensional
standard Wiener process. Here one can interpret X; as the log-price of an asset, and Y}
as the stochastic volatility of the asset price at time ¢ > 0. One can distinguish three cases:
subcritical if b > 0, critical if b = 0 and supercritical if b < 0. We study local asymptotic
properties of the likelihood ratios of this model concerning the drift parameter (a,a,b, 5). We
prove LAN in the subcritical case and LAQ in the critical case. In a submodel of the critical
case we prove a stronger result, namely LAN property holds. The most interesting case is the
supercritical one, because in this case we prove, that LAQ does not hold, although the limit
distribution of the likelihood function exists and we can describe it. As in the critical case, in
a submodel of the supercritical case we have a stronger result, namely LAMN property holds.

In Chapter 3 the main results of this thesis are presented. We assume that we have a
stochastic process (X (t))ie|—r), Which satisfies the linear stochastic delay differential equation

dX(t) =0 X(t+ u)a(du) dt + dW (1), t >0,
[—7,0]

where « is a finite signed measure on [—7,0|, W is a standard Wiener process and 1
is the unknown, real parameter. In Section 3.1 we make preliminaries to present the earlier
results, which are needed. An important one is the so-called variation of constants formula
(3.1.5), which is helpful to view the diffusion term in the stochastic differential equation as an
inhomogeneous term in a deterministic differential equation. In addition, we can represent the
solution of the stochastic differential equation in a term of the so-called fundamental solution
of the corresponding deterministic differential equation. An other crucial fact is, that we can
describe the asymptotic behaviour of the fundamental solution (Lemma 3.1.1).

Section 3.2 contains a special case, when the delay is uniform, namely when the measure «
is the Lebesgue measure and r = 1. The results have been published in Benke and Pap [10].
In this special case we can determine the exact values of the parameter, where the appropriate
local asymptotic property is valid. We prove LAN, when ¢ € (—72/2,0), LAMN holds, if
¥ € (0,00) and we prove PLAMN, when ¢ € (—oo,—7?%/2). At the two critical values of the
parameter, —72/2 and 0 we show the LAQ property.

In Section 3.3 the main results of the general case are presented. The results have been
published in Benke and Pap [11]. In this general model it can not be possible to determine the
exact values of the parameter 1), where the appropriate local asymptotic property is valid.
The aim is to give sufficient conditions for this. In the uniform delay case and in each of the
earlier results, which concern local asymptotic properties of delayed models, LAN has been
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proved in case of vy(¢) <0, where wvg(}) is the real part of the rightmost characteristic root
of the corresponding deterministic differential equation. Accordingly one can imagine, that this
condition would be the sufficient for LAN. But it turns out, that is not the truth. We give
an example, where wv(¥) = 0, and LAN holds. A modification is needed to give the proper
condition (see, the definition of v}, Definition 3.3.1). We prove LAN, if v} < 0 and LAQ, if
vy = 0. Finally, if v} > 0, then under some additional conditions, LAMN or PLAMN is valid.
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Appendix B

Osszefoglalo

Az értekezésben linearis idSkésleltetett sztochasztikus differencialegyenletekkel leirt statisztikai
modellt tekintiink. A vizsgilodas célja a likelihood fiiggvény lokalis aszimptotikus tulajdonséi-
gainak bizonyitdsa. Az értekezés harom fejezetbdl all. Az elsé fejezet (Chapter 1) egy beve-
zets. Elso szakaszédban (Section 1.1) néhany példa, illetve alkalmazas szerepel iddkeésleltetést
tartalmazd determinisztikus és sztochasztikus differencidlegyvenletekre. Ezek kozott szerepel a
késleltetett logisztikus-, avagy Hutchinson-egyenlet (1.1.1) és a Wright-egvenlet (1.1.2). Hi-
vatkozésok szerepelnek még tovabbi determinisztikus példikra a biologia, kémia, fizika, koz-
gazdasigtan és epidemiologia teriiletén. Késleltetett sztochasztikus differencidlegyvenletre egy
pénziigyi alkalmazas szerepel Appleby, Riedle és Swords [2] cikke nyoman, ami az egyik legfon-
tosabb motivacioja az értekezésnek. Ebben a szerz6k egy olyan modellt frnak fel egy kockézatos
eszkoz arfolvamatara, melyben a dinamika részben abbol ered, hogy a keresked6k miltbeli in-
formaciok alapjan alakitjak kereskedési stratégiajukat. A kapott modell koézponti épitGeleme
az (1.1.5) egyenlet:
dY (t) = L(Y;) dt + o dW(t), t>0,

ahol I egy linearis funkcional, W pedig egy standard Wiener-folvamat. Az értekezés 6
eredményében ehhez hasonl6 egvenletet tekintiink. Ezt kdvetGen a bevezetd mésodik szaka-
széban (Section 1.2) a lokalis aszimptotikus tulajdonsiagokra adunk egy bevezet6t. Ebben az
aszimptotikus statisztika egy alapvets fogalmara a lokalis aszimptotikus normalitasra adunk egy
heurisztikus leirast van der Vaart [46] konyvének segitségével. Végiil a harmadik szakaszban
(Section 1.3) egy torténeti attekintést adunk azon korabbi eredményekrsl, amelyek késleltetett
sztochasztikus differencidlegyvenletekkel leirt statisztikai modellek lokalis aszimptotikus tulaj-
donsagait vizsgaljak.

A maésodik fejezetben (Chapter 2) egyrészt az aszimptotikus statisztika azon alapvetd fogal-
mai és eredményei szerepelnek, melyek az értekezés {6 eredményének megértéséhez sziikségesek.
Ide tartoznak a statisztikai kisérletek és ezek konvergencidjanak definicioja, a LAN, LAMN,
LAQ és PLAMN tulajdonsagok definicioi, illetve Le Cam lemmai. Ezeket tartalmazza az elsd
szakasz (Section 2.1). A mésodik szakaszban (Section 2.2) néhany fontos kovetkezmény talal-
hat6, ami a kiilonbo6z6 lokalis aszimptotikus tulajdonsigok teljesiilése esetén adoédnak. Ezek a
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maximum likelihood becslés aszimptotikus tulajdonsagai, illetve becslések hatasossaganak, és
tesztek aszimptotikus optimalitdsinak témakorei.

Masrészt a fejezet mésik fontos része a harmadik szakasz (Section 2.3), amelyben egy hi-
res pénziigyi modellt, a Heston-modellt tekintjiik, és vizsgaljuk meg aszimptotikus statisztikai
szemponthol. Ez Gj eredmény, ami Benke és Pap [12] cikkében keriilt publikalasra. A modell
az alabbi formaban irhato fel.

{dYt (a — DY) dt + o1/Y, AW, £>0

dX, = (o — BY,) dt + o2/Yi (0dW; + /1 — 02dB,),

ahol @ >0, b,a,f €R, 01 >0, g9 >0, o€ (—1,1) és (Wy, By)=o egy kétdimenzios standard
Wiener-folyamat. Ebben a pénziigyi modellben X, irja le egy kockézatos eszkdz ¢ id6pontbeli
arfolyaméanak logaritmusat, és Y; pedig a sztochasztikus volatilitasat. A b paraméter elGjelétsl
fiiggGen harom esetet lehet megkiilonboztetni, melyeket szubkritikus (b > 0), kritikus (b = 0)
és szuperkritikus (b < 0) esetnek nevezziik. A 0 = (a,a, b, 3) paramétert tekintve a kovetkezd
eredményeket bizonyitjuk. A szubkritikus esetben LAN tulajdonsagot latunk be. A kritikus
esetben az egész statisztikai modellre a LAQ tulajdonsag teljesiil, viszont egy részmodellben a
LAN tulajdonsagot bizonyitjuk. A legérdekesebb eset talan a szuperkritikus eset, hiszen ebben
az esetben bebizonyitjuk, hogy nem teljesiil a LAQ tulajdonsig, holott a likelihood fiiggvény
kérdéses elemeinek van hatareloszlasa. Ugy ahogy a kritikus esetben, itt is egy részmodellben
tobbet lehet allitani, LAMN tulajdonsagot latunk be.

A harmadik fejezetben (Chapter 3) az értekezés {6 eredményei szerepelnek. A vizsgélt
linearis késleltetett sztochasztikus differencidlegvenlet az alabbi alakd.

dX(t) =0 X(t+ u)a(du) dt + dW (1), t >0,
[-r0]

ahol a egy véges, elGjeles mérték a [—r, 0] intervallumon, W egy standard Wiener-folyamat,
és ¥ az ismeretlen, valos paraméter. Az els6 szakaszban (Section 3.1) el6késziileteket tesziink,
melyben ismertetjiik a sziikséges korabbi eredményeket. Fontos eszkoz az tn. konstansvari-
acios formula (3.1.5), melynek segitségével a sztochasztikus differencidlegyvenletekben szerepld
diffazios tagot Ggy képzelhetjiik el mint a determinisztikus egyenletek esetében egy inhomogén
tagot. Ezaltal a vizsgalt sztochasztikus egvenlet megoldasat felirhatjuk a kapcesolatos determi-
nisztikus egvenlet Gn. fundamentéalis megoldasdnak segitségével. Masik kodzponti jelentségd
tény, hogy ezen fundamentalis megoldas aszimptotikus viselkedését megfelelGen le tudjuk irni
(Lemma 3.1.1).

A maésodik szakaszban (Section 3.2) egy specidlis esetet vizsgélunk, amikor a késleltetés
egvenletes, azaz amikor az a mérték a Lebesgue-mérték, és r = 1. Ezen modellhez tartozo
eredmények Benke és Pap [10] cikkében keriiltek publikidlasra. Ennek a speciélis esetnek az
az elénye, hogy pontosan le lehet frni a ¥ paraméter azon értékeit, amelyek esetén a kii-
16nbo6z6 lokalis aszimptotikus tulajdonsigok teljesiilnek. A LAN tulajdonsigot bizonyitjuk,
amikor ¥ € (—7?/2,0), LAMN tulajdonsig teljesiil, ha ¢ € (0, c0), valamint PLAMN, ha

84



¥ € (—oo,—72/2). A két kritikus paraméterérték, —n?/2 és 0 esetén LAQ tulajdonsigot
bizonyitunk.

A harmadik szakaszban (Section 3.3) targvaljuk az altalanos esetet. Az eredmények Benke és
Pap [11] cikkében keriiltek publikdlasra. Itt mér természetesen nincs esély arra, hogy pontosan
meghatarozzuk a paraméter azon értékeit, amelyek esetén a kiilonboz6 lokalis aszimptotikus
tulajdonsigok teljesiilnek. Viszont adunk ré elégséges feltételeket. A korabbi eredményekben,
és az egvenletes késleltetés esetében is azt lathato, hogy a LAN tulajdonsag akkor teljesiil,
ha a w(¥) mennyiség - ami a kapcsolatos determinisztikus egyenlet maximélis valosrészi
karakterisztikus gyokének valos része — szigortian negativ. Ennek megfelelGen az sejthetd, hogy
ez a feltétele a LAN tulajdonsig teljesiilésének. Ezzel szemben mutatunk példat olyan esetre,
amikor vg(v) = 0, és a LAN tulajdonsag all fenn. A v(¥) mennyiség egy modositasaval (lasd
a v} mennyiség definiciojat, Definition 3.3.1) tudunk megfelels feltételeket felirni a lokalis
aszimptotikus tulajdonsigok teljesiiléséhez. Amennyiben vj < 0, a LAN tulajdonsag teljesiil,
ha vj = 0, akkor LAQ tulajdonsigot lehet bizonyitani. Végiil v} > 0 esetén egy tovabbi
feltételtdl figgGen LAMN, illetve PLAMN tulajdonséag 4ll fenn.
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