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1. Bevezetés

Disszertációm az inga fölső egyensúlyi helyzetének stabilizálhatóságáról, il-
letve alsó egyensúlyi helyzetének destabilizálhatóságáról szól, megadva az al-
kalmasan választott paramétertartományokban a stabil és instabil zónákat az
azokat elválasztó periodikus megoldásokból álló görbék leírása segítségével. A
disszertáció fő eredménye, hogy eleminek mondható vizsgálati eszköz haszná-
latával sikerült egy korábban megjelent eredményt élesíteni és általánosítani,
illetve elkészíteni az úgynevezett stabilitási térképet a Floquet-elvre épülő, bo-
nyolult számítások használata nélkül. Ez azt is jelenti, hogy a módszer alkalmas
mélyebb matematikai ismeretekre támaszkodó elmélet használatának áthidalá-
sára, segítve annak fokozatos megismerését, elsajátítását.

Rövid előszó és bevezetés után a hintázás problémáját vizsgáljuk. Bevezetjük
a jelenséget leíró periodikus lépcsősfüggvény együtthatós, másodrendű, lineáris
differenciálegyenlet origóhoz közeledő, és origótól távolodó megoldása fogalmát.
Szükséges és elegendő föltételeket adunk ezek létezésére, és segítségükkel meg-
fogalmazzuk a mozgásegyenlet periodikus megoldásainak létét garantáló tételt.

Ezt követően az inga fölső egyensúlyi helyzete körüli mozgásokra koncentrá-
lunk. Egy korábban megjelent publikáció ([28]) módszerét kiterjesztve az abban
található, az inga fölső egyensúlyi helyzetének stabilizálhatóságáról szóló ered-
ményt élesítjük és egyben alkalmazzuk az általános esetre.

Végül ugyancsak a fölső egyensúlyi helyzet stabilizálhatóságával foglalkozunk
olyan módon, hogy a 2T -periodikus, lépcsősfüggvény együtthatós egyenlet 2T -,
illetve 4T -periodikus megoldásait állítjuk elő. A fázissíkon ezen periodikus meg-
oldásoknak megfelelő görbék segítségével a korábbi, becsléssel kapott, stabilitási
zónákra vonatkozó eredményeinket pontosítjuk, s így az egzakt stabilitási tér-
képet tudjuk elkészíteni.

Az értekezés a szerző következő publikációin alapul:

• L. Csizmadia, L. Hatvani, An extension of the Levi-Weckesser method
to the stabilization of the inverted pendulum under gravity, Meccanica,
49(2014), 1091–1100.

• L. Csizmadia, L. Hatvani, On a linear model of swinging with a periodic
step function coefficient, Acta Sci. Math. (Szeged), 81(2015), 483–502.

• L. Csizmadia, L. Hatvani, On the existence of periodic motions of the
excited inverted pendulum by elementary methods (benyújtva).

A tézisfüzetben található jelölések és számozások (a formulák azonosítóitól
eltekintve) megegyeznek a disszertációban használtakkal.
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Előzmények

A matematikai inga egy merev, elhanyagolható tömegű, l = const. hosszúságú
rúdból és a hozzá rögzített m tömegű tömegpontból áll [1, 8]. Az egyik állapot-
határozó az inga rúdjának függőleges iránnyal bezárt szöge (ψ), mely pozitív
irányú, ha az óramutató járásával ellentétes, a másik ennek idő szerinti deri-
váltja. Ha az ingára a gravitáción kívül más erő nincs hatással, akkor mozgását
a

ψ̈ +
g

l
sinψ = 0 (−∞ < ψ <∞) (1)

differenciálegyenlet írja le.
Amint az (1) egyenletből látható, a rendszernek két egyensúlyi helyzete van:
ψ ≡ 0 (mod 2π), illetve ψ ≡ π (mod 2π), amit rendre alsó, illetve fölső egyen-
súlyi helyzetnek hívunk. Az A. M. Ljapunov által bevezetett stabilitási fogal-
makkal [32] élve azt mondhatjuk, hogy az alsó egyensúlyi helyzet stabil, míg a
felső instabil. A nemlineáris egyenletek első közelítésben történő stabilitásvizs-
gálata, melyet először Ljapunov írt le [31], azt jelenti, hogy az eredeti rendszert -
szokás perturbált rendszernek nevezni - egy alkalmas, lineáris - perturbálatlan -
rendszerrel közelítjük. Jelen esetben ez azt jelenti, hogy az egyensúlyi helyzetek
kis környezetében - jelölje ezeket rendre U0 és Uπ - az (1) egyenletet linearizáljuk.
Ha ψ ∈ U0, akkor sinψ ≈ ψ, ha pedig ψ ∈ Uπ, akkor sinψ ≈ −ψ+π = −(ψ−π).
Legyen θ := ψ − π, vagyis amikor ψ = π, akkor θ = 0. Fölírhatjuk most már
az alsó, illetve fölső egyensúlyi helyzet körüli „kis" mozgásokat leíró lineáris má-
sodrendű differenciálegyenleteinket:

ψ̈ +
g

l
ψ = 0, θ̈ − g

l
θ = 0. (2)

Az általunk vizsgált mozgásegyenleteket formailag az

ẍ± a2(t)x = 0, a(t) := ak, ha tk−1 ≤ t < tk (k ∈ N) (3)

alakúra tudjuk hozni, ahol {ak}∞k=1, {tk}∞k=0 pozitív számok olyan sorozatai,
melyekre tk < tk+1 minden k ∈ N esetén, limk→∞ tk =∞, és t0 := 0.
Amikor a fölső egyensúlyi helyzetet stabilizálni, az alsót pedig destabilizálni
akarjuk, akkor a (2) egyenletekben a lineáris tag együtthatója nem állandó,
hanem egy periodikus függvény. Mi azokat az eseteket vizsgáljuk, amikor ez az
együttható egy periodikus lépcsősfüggvény, és egy periódus két lépcsőből áll. A
[16]-ban bevezetett és a [17]-ben kifejtett módszerrel a (2) egyenletek átírhatóak
egy-egy megfelelő, úgynevezett impulzív dinamikus rendszerbe. Nevezetesen, az
alsó egyensúlyi helyzet körüli mozgásokat leíró egyenlet az ẋ = aky, ẏ = −akx (tk−1 ≤ t < tk),

x(tk) = x(tk − 0), y(tk) =
ak
ak+1

y(tk − 0) (k ∈ N)
(4)
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rendszerbe, míg a fölső egyensúlyi helyzet körüli mozgásokra vonatkozó egyenlet
az  ẋ = aky, ẏ = akx (tk−1 ≤ t < tk),

x(tk) = x(tk − 0), y(tk) =
ak
ak+1

y(tk − 0) (k ∈ N)
(5)

rendszerbe transzformálható, ahol f(t− 0) az f függvény bal oldali határértéke
a t helyen. Az impulzív jelző arra utal, hogy a fázissíkon a (4), illetve (5) dina-
mikák folytonos komponensei között egy függőleges irányú kontrakció/dilatáció
történik.

Nem nehéz megmutatni, hogy a (4) rendszer folytonos komponense origó
körüli „elliptikus (közönséges) forgatás", s így a trajektóriák origó körüli körívek,
míg a (5) rendszer folytonos komponense „hiperbolikus forgatás", lásd az 1 ábrát.
Tehát ebben az esetben a fázispont hiperbolákon mozog.

1. ábra. Hiperbolikus és elliptikus forgás

2. A hintázásról

A hinta egy olyan inga, melynek hossza az időben változik: a hintázó hol
guggoló, hol kinyújtott testhelyzetet vesz föl, azaz testének tömegközéppontját
hol följebb, hol lejjebb helyezve igyekszik a hinta alsó egyensúlyi helyzetét desta-
bilizálni. Arnold [1] művében leírtak szerint, tegyük föl, hogy a hintázó hatására
a hinta hossza periodikusan változik, azaz tekintsük az

ẍ+a2(t)x = 0,

a(t) :=


a1 :=

√
g

l − ε
, ha 2kT ≤ t < (2k + 1)T,

a2 :=

√
g

l + ε
, ha (2k + 1)T ≤ t < (2k + 2)T, (k = 0, 1, . . . )

(6)
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egyenletet, ahol x jelöli az inga rúdjának a függőlegessel bezárt szögét, továbbá
ε > 0 az a paraméter, melynek segítségével a hintázás intenzitását jellemezzük,
T > 0 az inga hosszváltozásának fél periódusa. A hintázás problémáját a követ-
kezőképpen lehet megfogalmazni: határozzuk meg a (T, ε) paramétersík instabil
tartományát, vagyis azon részét, ahonnan választott paraméterértékekkel a (6)
egyenlet x = 0 megoldása instabil.

Periodikus együtthatós differenciálegyenletek vizsgálatához nagy segítséget
nyújt a Floquet-elv, amelynek itt egy következményét fogalmazzuk meg. Le-
gyen Φ(t) a (6) egyenlet azon alapmátrixa, melyre teljesül, hogy Φ(0) = E,

ahol E a 2 × 2-es egységmátrix. Ha |Tr Φ(T )| < 2, akkor a (6) egyenlet x = 0

megoldása stabil. Továbbá, ha |Tr Φ(T )| > 2, akkor a (6) egyenlet x = 0 megol-
dása instabil. Ennek alkalmazása, ahogyan azt az [1] műben is láthatjuk, gyak-
ran sorfejtéseken alapuló becslések használatára vezet, sokszor nehézkessé vá-
lik. Mivel célunk a pontos instabilitási tartomány leírása, ezért más, ráadásul
könnyebben számolható utat mutatunk. Azt viszont nagyon lényeges megjegyez-
ni, amint az a Floquet-elvből következik, hogy az instabilitási tartomány határát
a |Tr Φ(T )| = 2 egyenlet írja le. Elemi módszerekkel megmutatjuk, hogy a (T, ε)
sík instabilitási zónájának határát azon T = f(ε), T = g(ε) görbék alkotják,
melyek pontjai megfelelnek a (6) egyenlet 2T - vagy 4T -periodikus megoldásai-
nak. Azt is megmutatjuk, hogy f(ε), g(ε) a ((k/2)(π

√
l/g), 0) (k ∈ N) pontok

valamelyikéhez konvergálnak, amint ε → 0. Ennek a ténynek van egy fontos
gyakorlati jelentése. Ha minél kisebb energiabefektetéssel akarunk destabilizál-
ni, illetve kis gyermeket akarunk megtanítani hintázni (ε > 0 kicsi), akkor a
T = (k/2)(π

√
l/g), (k ∈ N) kritikus félperiódusok valamelyikét kell választani.

A destabilizálási probléma megoldásának első lépéseként próbáljunk olyan
feltételeket megadni, melyek garantálják, hogy a (6) rendszer
t 7→ (x(t;x0, ẋ0), ẋ(t;x0, ẋ0)) trajektóriája elindulva a fázissík egy P (x0, ẋ0)

pontjából 2T idő alatt visszatérjen a sík azon L egyenesére, mely összeköti a
(0, 0) koordinátájú origót a P ponttal, vagyis (x(2T ;x0, ẋ0), ẋ(2T ;x0, ẋ0)) ∈ L.
Egy ilyen trajektória az origóhoz közeledik, illetve távolodik az origótól attól
függően, hogy (x(2T ;x0, ẋ0), ẋ(2T ;x0, ẋ0)) pont közelebb, illetve távolabb van
az origótól, mint az (x0, ẋ0) pont. Ha a két pont ugyanolyan távol van az ori-
gótól, akkor a megoldás vagy 2T -, vagy 4T -periodikus. Annak érdekében, hogy
tetszőleges 2T gerjesztési periódus esetén ugyanaz legyen az egyenlet periódusa
(2L), egy függetlenváltozó-transzformációt hajtunk végre (τ = (L/T )t). Ez azt
jelenti, hogy a fázispont mozgását L függvényében tekintjük. A (4) impulzív
rendszert az (x, y) sík egy diszkrét dinamikus rendszereként is interpretáljuk.
Vezessük be ugyanis az (r, ϕ) polárkoordinátákat a

x = r cosϕ, y = r sinϕ (r > 0,−∞ < ϕ <∞)
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formulákkal. Ekkor a (4) rendszerrel ekvivalens diszkrét dinamikus rendszer:(
xk+1

yk+1

)
= C

(
ak+1

ak+2

)
R(ak+1(tk+1 − tk))

(
xk

yk

)
(k = 0, 1, 2, . . . ),

(7)

ahol R(θ) a forgatás, míg C(κ) a kontrakció-dilatáció hatását leíró mátrix. A
fázispont kezdeti állapotát (r0, ϕ0) jelöli.

1. Definíció. A hintázás modelljéül szolgáló (7) egyenletrendszer egy megoldá-
sáról azt mondjuk, hogy 2π modulusú szögperiodikus, illetve 4π modulusú szög-
periodikus, ha

ϕ(2L) ≡ ϕ0 (mod 2π), illetve ϕ(2L) ≡ ϕ0 − π (mod 2π).

2. Definíció. A hintázás modelljéül szolgáló (7) egyenletrendszer egy 2π mo-
dulusú, vagy 4π modulusú szögperiodikus megoldását (origóhoz) közeledőnek,
illetve (az origótól) távolodónak mondunk, ha

r(2L) < r0, illetve r(2L) > r0.

Miután a szögperiodikus origóhoz közeledő, illetve attól távolodó megoldáso-
kat karakterizáltuk, segítségükkel megfogalmazzuk a mozgásegyenlet 2T -, illetve
4T -periodikus megoldásainak létezésére vonatkozó szükséges és elegendő fölté-
telt.

3. Tétel. Bármely ε > 0 esetén van olyan {Tk(ε)}∞k=1, illetve {T̃k(ε)}∞k=1 soro-
zat, hogy a (6) egyenletnek a T = Tk(ε) választással 2Tk(ε)-periodikus, illetve a
T = T̃k(ε) választással 4T̃k(ε)-periodikus megoldása van. Továbbá,

0 < T̃1 ≤ T̃2 < T1 ≤ T2 < T̃3 ≤ T̃4 < . . . ; lim
k→∞

Tk =∞, (8)

és

lim
ε→0+0

2T2p+1(ε) = lim
ε→0+0

2T2p+2(ε) = (2p+ 2)

(
1

2

(
2π

√
l

g

))
,

lim
ε→0+0

2T̃2p+1(ε) = lim
ε→0+0

2T̃2p+2(ε) = (2p+ 1)

(
1

2

(
2π

√
l

g

))
teljesül minden p ∈ N esetén.

Ennek birtokában bizonyítható az a tétel, mely leírja a keresett instabilitási
tartományt.

4. Tétel. A (6) egyenletre vonatkozó (T, ε) paramétersík instabil tartományá-
nak belseje

∪0<ε<l (∪∞p=0({(T, ε) : T2p+1(ε) < T < T2p+2(ε)}∪

{(T, ε) : T̃2p+1(ε) < T < T̃2p+2(ε)})),

ahol a Tk, T̃k kifejezéseket a (8)-ben értelmeztük.
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3. A fölső egyensúlyi helyzet stabilizálása

Azt, hogy az inga fölső egyensúlyi helyzetét lehetséges a fölfüggesztési pontja
alkalmasan választott frekvenciájú és amplitúdójú függőleges irányú rezegteté-
sével is stabilizálni, elsőként A. Stephenson írta le 1908-ban [34, 35]. A fölső
egyensúlyi helyzet körüli mozgásokat leíró egyenletet teljes részleteibe menően
1951-ben megjelent cikkeiben P. L. Kapica vizsgálta [23, 24], és azóta gyakran
Kapica-ingaként hivatkoznak erre a jelenségre. M. Levi és W. Weckesser a [28]
cikkükben egy egyszerű geometriai hátterű magyarázatot adnak arra, hogy mi-
ként is lehetséges a stabilizálás nagy frekvencia esetén. Dolgozatukban olyan
nagy frekvenciájú rezgést vizsgálnak, melynek során a gyorsulás lényegesen na-
gyobb a gravitációs gyorsulás értékénél, s emiatt ez utóbbit elhagyják. Rámu-
tatunk arra, hogy a gravitáció hatásának figyelembe vételekor az általuk adott
módszer nem működik, emiatt azt módosítani kell. Tovább általánosítva az el-
gondolást, megvizsgáljuk, hogy a föl-le rezgetés aszimmetriája milyen hatással
van a stabilizálhatóságra.

A [28] cikket követve, tegyük föl, hogy az inga fölfüggesztési pontjára olyan
erő hat, melynek hatására létrejövő gyorsulás

a(t) :=


A, ha kT ≤ t < (2k + 1)

T

2
,

−A, ha (2k + 1)
T

2
≤ t < (k + 1)T, (k = 0, 1, . . . ).

(9)

Tehát az a(t) függvény egy T -periodikus lépcsősfüggvény, melyet abban az érte-
lemben mondunk szimmetrikusnak, hogy a fél-periódusok egyenlő hosszúak, és a
fölvett függvényértékek egymás ellentettjei. A mozgásegyenletet ennek hatására
a következőképp módosul:

ψ̈ − 1

l
(g + a(t))ψ = 0. (10)

A továbbiakban a szerzők fölteszik, hogy A >> g, s emiatt a (10) egyenletben
a gravitációs gyorsulást nem veszik figyelembe - úgynevezett gravitációmentes
eset. Bevezetve az ω =

√
A/l mennyiséget a (10) a következő, (3)-hoz hasonló

formában írható:
ψ̈ ± ω2ψ = 0,

ahol az előjel az a(t) függvénynek megfelelően változik.

5. Tétel (M. Levi, W. Weckesser; [28]). Tekintsük a fordított inga (10) moz-
gásegyenletét a gravitációmentes (g = 0) esetben. Ekkor ha

ωT < π

(
ω :=

√
A

l

)
, (11)

akkor a (10) erősen stabil.
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Az erős stabilitás röviden szólva azt jelenti, hogy a rendszer annak minden kis
perturbáltjával együtt stabil. A pontos definíció a disszertációban olvasható.
A (9) formulában adott függvény két értékének megfelel két különböző fázis,
ahogyan azt a (3) után kifejtettük. A két különböző fázis geometriailag két
különböző jellegű forgatást jelent. A szerzők alapötlete, hogy ezen forgatásokat
megadó mátrixok hatására a sík vektorain létrejövő forgatás mértékét becsülték.
Megtartva ezt a becsléses módszert megvizsgáljuk, hogy a gravitáció hatását is
figyelembe véve mire jutunk. Föltesszük továbbá, hogy a fölfüggesztési pontot
egy aszimmetrikus hatás éri, s így annak gyorsulása:

a(t) :=


Ah, ha kT ≤ t < kT + Th,

−Ae, ha kT + Th ≤ t < (kT + Th) + Te,

(k = 0, 1, . . . ) ;

ahol Ah, Ae, Th, Te pozitív konstansok (Th + Te = T ), tehát a felfüggesztési
pont mozgása T -periodikus. A h és e indexek arra utalnak, hogy két különböző
fázisból áll össze a mozgás: egy elliptikus és egy hiperbolikus részből. A mozgás-
egyenlet formailag továbbra is (10) alakú. Meggondolásaink eredményeképpen
a következőt állíthatjuk.

6. Tétel. Jelölje Rem (ϕ;π) a ϕ ∈ R valós szám osztási maradékát moduló π
(0 ≤ Rem (ϕ;π) < π).

Ha

2 arctan
eωhTh − 1

eωhTh + 1
+ 4

∣∣∣∣arctan

√
ωh
ωe
− π

4

∣∣∣∣
< min{Rem (ωeTe;π); π − Rem (ωeTe;π)},

(12)

akkor a (10) egyenlet erősen stabil,

ahol

ωh :=

√
Ah + g

l
, ωe :=

√
Ae − g
l

.

A gravitációmentes esethez képest most merőben más helyzettel állunk szemben:
az eltérő ωh és ωe miatt a hiperbolikus és elliptikus fázis között az Előzmények-
ben említett impulzív effektus történik a fázistéren. Így ennek forgató hatását
is figyelembe kell venni a tétel fölírásakor. Alkalmazzuk a 6. tételt a gravitáció-
mentes és szimmetrikus esetre. Ekkor a következőt kapjuk.

7. Következmény. Tegyük föl, hogy a (10) egyenletben g = 0, valamint Ah =

Ae = A. Ha

4 arctan
eωT/2 − 1

eωT/2 + 1
<

< min{Rem (ωT ; 2π); 2π − Rem (ωT ; 2π)},
(13)

akkor (10) erősen stabil.
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A 7. következmény lényegesen javítja a 5. tételt: az első olyan intervallum, ami-
be stabil megoldásoknak megfelelő pontok vannak az ωT -tengelyen, kielégítve a
(13) feltételt, a (0, 3, 75 . . .) (lásd a 2. ábrát) a (0, π) helyett, amit a (11) alapján
eddig tudtunk. Másfelől pedig, a 7. következmény a 5. tételt abban az értelem-
ben is javítja, ha úgy tetszik kiterjeszti, hogy további stabil intervallumokat
találhatunk az ωT -tengelyen a 2π után is (lásd a vastagított intervallumot a 2.
ábrán). Azt mondhatjuk tehát, hogy tetszőlegesen nagy ωT = T

√
A/l esetén

lehetséges a stabilizálás. Erre a (11) feltételből nem lehet következtetni.

2. ábra. Stabil intervallumok

A szimmetrikus esetet (Ah = Ae = A, Th = Te = T/2) Arnold is vizsgálta
[1], bevezetve az

ε :=

√
D

l
, µ :=

√
g

A
,

paramétereket, ahol a D a fölfüggesztési pont legnagyobb kitérése (amplitúdója)
a rezgetés során. Arnold azzal a föltevéssel élt, hogy ezek a paraméterek kicsik
(ε << 1, µ << 1); és a Floquet-elvre vonatkozó közvetlen számolásokkal jutott
arra a közelítésre, hogy µ < ε/3 elegendő feltétele az erős stabilitásnak. Alkal-
mazva a 6. tételünket ebben a szimmetrikus, a gravitáció hatását is figyelembe
vevő esetben, az ε és µ paraméterek segítségével átírva a (12) föltételt, valamint
semmilyen nagyságrendi korlátot föl nem tételezve a paraméterek értékeire, az
ε− µ sík globális stabilitási térképét kapjuk.

Az általános (aszimmetrikus) esetet tekintve, használva az Arnold nyomán
bevezetett

εh :=

√
Dh

l
, µh :=

√
g

Ah
; εe :=

√
De

l
, µe :=

√
g

Ae
.

paramétereket, valamint a

d :=
εh
εe

=
µh
µe

=

√
Ae
Ah

=

√
Th
Te

=

√
Dh

De
,
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d

εe

µe

3. ábra. A stabilitási tartomány egy része az aszimmetrikus esetben

paramétert, amelyik méri a hiperbolikus és elliptikus fázis arányát a fölfüggesz-
tési pont rezgetése során, a 6. tétel a következő alakot ölti:

8. Következmény. Ha

2 arctan
exp

[
2
√

2dεe
√

1 + d2µ2
e

]
− 1

exp
[
2
√

2dεe
√

1 + d2µ2
e

]
+ 1

+ 4

∣∣∣∣∣∣∣∣∣∣
arctan

√
1 + d2µ2

e

1− µ2
e

d
− π

4

∣∣∣∣∣∣∣∣∣∣
<

< min{Rem (2
√

2εe
√

1− µ2
e; π); π − Rem (2

√
2εe
√

1− µ2
e; π)},

akkor a (10) egyenlet erősen stabil.

A 8. következmény által megadott stabilitási tartomány egy részét láthatjuk
a 3. ábrán.

Nem nehéz belátni, hogy az aszimmetrikusan rezegtetett eset kedvezőbb a
stabilitás szempontjából, hiszen a gyorsulást egy előre adott értéken lehet rög-
zíteni. Tehát bármely µ̄e (0 ≤ µ̄e <

√
2/2) esetén található olyan d̄ ≥ 1 és

ε̄
(k)
e (ε̄

(k)
e →∞, ha k →∞) úgy, hogy a (10) egyenlet az ε̄(k)e , µ̄e, d̄ paraméte-

rekkel erősen stabil.
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4. A fordított inga periodikus mozgásai

Az előző fejezetben az inga fölső egyensúlyi helyzetének stabilizálhatóságá-
val kapcsolatos vizsgálataink során, becsléseken alapuló számolások segítségével
eljutottunk a globális stabilitási térkép egy jó közelítéséhez. Ebben a fejezetben
célunk, hogy a fordított ingára vonatkozóan elkészítsük a pontos stabilitási tér-
képet úgy, hogy megkeressük a 2T -periodikus együtthatós egyenlet 2T -, illetve
4T -periodikus megoldásait, melyekről tudjuk, hogy az ezeknek megfelelő görbék
alkotják a paramétersík instabil zónájának határát.

Ebben a részben azt az esetet tárgyaljuk, amikor az inga fölfüggesztési pont-
jára egy függőleges irányú szimmetrikus erő gyakorol hatást, továbbá a gra-
vitáció hatását is figyelembe vesszük. Tekintsük tehát a (9) egyenlettel adott
lépcsősfüggvényt mint az inga fölfüggesztési pontjára kifejetett rezgetés hatásá-
ra létrejövő gyorsulást. A (9)-ben adotthoz képest annyi technikai változtatást
teszünk, hogy az említett gyorsulás 2T -periodikus. A (10) mozgásegyenletet a
hintázás problémájánál látottakhoz hasonlóan, a fázistérben ható diszkrét im-
pulzív rendszerbe transzformálással, és így a fázistér trajektóriái segítségével
vizsgáljuk.

Meggondolásaink nyomán kiderült, hogy 2T -, illetve 4T -periodikus megol-
dásnak megfelelő trajektóriát nem indíthatunk az (x, y) fázissík tetszőleges pont-
jából, hanem csakis az y = −x egyenes, tehát a stabil altér közeléből. Ezeket a
megfelelő trajektóriákat föltárva jutunk a fejezet fő eredményéhez: a keresett pe-
riodikus megoldások létezésére vonatkozó szükséges és elegendő föltételt megadó
tételekhez.

9. Tétel. A (10) egyenletnek akkor és csakis akkor van 2T -periodikus megoldá-
sa, ha vannak olyan A és T pozitív konstansok az (9) kifejezésben, és van olyan
nemnegatív egész k, hogy vagy

2 arctan

(
D
eωhT − 1

eωhT + 1

)
+ 2kπ = ωeT,

vagy

2 arctan

(
D
eωhT + 1

eωhT − 1

)
+ (2k + 1)π = ωeT.

10. Tétel. A (10) egyenletnek akkor és csakis akkor van 4T -periodikus, de nem
2T -periodikus megoldása, ha vannak olyan A és T pozitív konstansok az (9)
kifejezésben, és van olyan nemnegatív egész k, hogy vagy

2 arctan

(
D
eωhT − 1

eωhT + 1

)
+ (2k + 1)π = ωeT,

vagy

2 arctan

(
D
eωhT + 1

eωhT − 1

)
+ 2kπ = ωeT.
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Így már a pontos stabilitási térképet tudjuk elkészíteni, valamint arra is mód
van, hogy összehasonlítsuk a becsléssel kapott eredményünkkel a teljesen ponto-
sat. Ez utóbbit láthatjuk a 4. ábrán. A G0 jelű görbe környezetében található a
stabil zóna, szokás azt mondani, hogy ez a görbe alkotja az adott Arnold-nyelv
gerincét.

4. ábra. A korábban becsléssel kapott és a pontos stabil zóna
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