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1. Bevezetés

Disszertaciom az inga f6ls§ egyensulyi helyzetének stabilizalhatosagarol, il-
letve als6 egyensilyi helyzetének destabilizalhatosagardl szol, megadva az al-
kalmasan valasztott paramétertartomanyokban a stabil és instabil zéndkat az
azokat elvalaszto periodikus megoldasokbol allo gorbék leirdsa segitségével. A
disszertacio {6 eredménye, hogy eleminek mondhato vizsgalati eszkéz haszné-
lataval sikeriilt egy korabban megjelent eredményt élesiteni és altalanositani,
illetve elkésziteni az tgynevezett stabilitasi térképet a Floquet-elvre épiils, bo-
nyolult szamitasok hasznélata nélkiil. Ez azt is jelenti, hogy a modszer alkalmas
mélyebb matematikai ismeretekre tamaszkodd elmélet hasznalatdnak athidalé-
sara, segitve annak fokozatos megismerését, elsajatitasat.

Rovid el@szo és bevezetés utan a hintazas problémajat vizsgaljuk. Bevezetjiik
a jelenséget leir6 periodikus lépcs@sfiiggvény egyiitthatds, masodrendd, linearis
differencidlegyenlet origbhoz kozeledd, és origdtol tavoloddé megoldéasa fogalmat.
Sziikséges és elegendd foltételeket adunk ezek létezésére, és segitségiikkel meg-
fogalmazzuk a mozgasegyenlet periodikus megoldasainak létét garantalo tételt.

Ezt kovetSen az inga f6ls6 egyensiilyi helyzete koriili mozgasokra koncentra-
lunk. Egy korabban megjelent publikacio ([28]) modszerét kiterjesztve az abban
talalhato, az inga f0ls6 egyensiilyi helyzetének stabilizalhatosagarol szolo ered-
ményt élesitjiik és egyben alkalmazzuk az altalanos esetre.

Végiil ugyancsak a f6ls6 egyensulyi helyzet stabilizalhatosagaval foglalkozunk
olyan modon, hogy a 2T -periodikus, 1épcsésfiiggvény egyiitthatos egyenlet 27-,
illetve 4T-periodikus megoldasait allitjuk els. A fazissikon ezen periodikus meg-
oldasoknak megfelels gorbék segitségével a korabbi, becsléssel kapott, stabilitasi
zonakra vonatkozd eredményeinket pontositjuk, s igy az egzakt stabilitési tér-
képet tudjuk elkésziteni.

Az értekezés a szerz6 kovetkezs publikacidin alapul:

e L. Csizmadia, L. Hatvani, An extension of the Levi-Weckesser method
to the stabilization of the inverted pendulum under gravity, Meccanica,
49(2014), 1091-1100.

e L. Csizmadia, L. Hatvani, On a linear model of swinging with a periodic
step function coefficient, Acta Sci. Math. (Szeged), 81(2015), 483-502.

e L. Csizmadia, L. Hatvani, On the existence of periodic motions of the

excited inverted pendulum by elementary methods (benytjtva).

A tézisfiizetben talalhato jelolések és szamozéasok (a formulak azonositéitol

eltekintve) megegyeznek a disszertacioban hasznaltakkal.



El6zmények

A matematikai inga egy merev, elhanyagolhatd tomegii, [ = const. hosszisagn
ridbol és a hozza rogzitett m témegi tomegpontbol all [1, 8. Az egyik allapot-
hatarozo az inga rudjanak fliggsleges irannyal bezart szoge (1), mely pozitiv
irdnyd, ha az 6ramutatd jarasaval ellentétes, a mésik ennek id§ szerinti deri-
valtja. Ha az ingara a gravitacion kiviil mas erd nincs hatassal, akkor mozgasat
a

¢+%mm=0 (—00 < 1 < 0) (1)

differencidlegyenlet irja le.

Amint az (1) egyenletbdl lathato, a rendszernek két egyensulyi helyzete van:
¥ =0 (mod 27), illetve ¢ = 7 (mod 27), amit rendre also, illetve f6ls6 egyen-
sulyi helyzetnek hivunk. Az A. M. Ljapunov altal bevezetett stabilitasi fogal-
makkal [32] élve azt mondhatjuk, hogy az als6 egyensulyi helyzet stabil, mig a
fels6 instabil. A nemlinearis egyenletek elsé kozelitésben torténd stabilitasvizs-
galata, melyet elszor Ljapunov irt le [31], azt jelenti, hogy az eredeti rendszert -
szokéas perturbélt rendszernek nevezni - egy alkalmas, linearis - perturbélatlan -
rendszerrel kozelitjiik. Jelen esetben ez azt jelenti, hogy az egyensulyi helyzetek
kis kornyezetében - jelolje ezeket rendre Uy és U, - az (1) egyenletet linearizaljuk.
Ha ¢ € Uy, akkor sin ) = 1, ha pedig ¢ € U, akkor siny) ~ —p+7 = —(¢p—7).
Legyen 6 := ¢ — m, vagyis amikor ¢ = 7, akkor § = 0. Folirhatjuk most méar
az also, illetve f0ls6 egyensulyi helyzet koriili ,kis" mozgasokat leir6 linearis ma-
sodrendd differencidlegyenleteinket:

¢+%w:a é—%@:a 2)

Az altalunk vizsgalt mozgasegyenleteket formailag az
i+ a®(t)x =0, a(t) :=ag, haty_1 <t <ty (keN) (3)

alakira tudjuk hozni, ahol {axr}2,, {tx}>, pozitiv szamok olyan sorozatai,
melyekre ¢ < t+1 minden k € N esetén, limy_, o tx = 00, és tg := 0.

Amikor a f6ls§ egyensilyi helyzetet stabilizalni, az alsot pedig destabilizalni
akarjuk, akkor a (2) egyenletekben a lineéris tag egyiitthatoja nem &allando,
hanem egy periodikus fiiggvény. Mi azokat az eseteket vizsgaljuk, amikor ez az
egyiitthato egy periodikus lépcsGsfiiggvény, és egy periddus két 1épcs6bdl all. A
[16]-ban bevezetett és a [17]-ben kifejtett modszerrel a (2) egyenletek atirhatoak
egy-egy megfelels, tgynevezett impulziv dinamikus rendszerbe. Nevezetesen, az

also egyensulyi helyzet koriili mozgasokat leird egyenlet az

T=agy, Y=—apv (th—1 <t < ty),
B oy (4)
o(ty) = z(ty — 0), y(tx) = ——y(tx —0) (k € N)
Ak+1



rendszerbe, mig a f6ls6 egyensilyi helyzet koriili mozgasokra vonatkozo egyenlet

az
T =agy, Y= arT (tho1 <t < tp),

x(ty) = 2(tp — 0), y(tx) = %y(tk —0) (k € N) ©)

rendszerbe transzformélhato, ahol f(¢t —0) az f fliggvény bal oldali hatarértéke
a t helyen. Az impulziv jelz6 arra utal, hogy a fazissikon a (4), illetve (5) dina-
mikak folytonos komponensei kozott egy fiiggsleges iranyt kontrakeio/dilatacio
torténik.

Nem nehéz megmutatni, hogy a (4) rendszer folytonos komponense origd
koriili ,elliptikus (kozonséges) forgatas", s igy a trajektoriak origo koriili korivek,
mig a (5) rendszer folytonos komponense ,hiperbolikus forgatas", lasd az 1 abrat.

Tehat ebben az esetben a fazispont hiperbolakon mozog.

. Y,

1. abra. Hiperbolikus és elliptikus forgas

2. A hintazasrol

A hinta egy olyan inga, melynek hossza az id6ben valtozik: a hintazo hol
guggolo, hol kinyuajtott testhelyzetet vesz f6l, azaz testének tomegkozéppontjat
hol f6ljebb, hol lejjebb helyezve igyekszik a hinta als6 egyensiilyi helyzetét desta-
bilizalni. Arnold [1] miivében leirtak szerint, tegyiik 61, hogy a hint4zo hatasara

a hinta hossza periodikusan véltozik, azaz tekintsiik az

i+a’(t)x =0,
ay = lfg,ha UT <t < (2k + 1)T,
a(t) ==
ap == Hg_g,ha Qk+ )T <t< (2k+2)T, (k=0,1,...)

(6)



egyenletet, ahol z jeloli az inga radjanak a fligg6legessel bezart szogét, tovabba
€ > 0 az a paraméter, melynek segitségével a hintazas intenzitasat jellemezziik,
T > 0 az inga hosszvaltozasanak fél periddusa. A hintézas problémajat a kovet-
kezsképpen lehet megfogalmazni: hatarozzuk meg a (7T, ) paramétersik instabil
tartomanyat, vagyis azon részét, ahonnan valasztott paraméterértékekkel a (6)
egyenlet x = 0 megoldésa instabil.

Periodikus egyiitthatos differencialegyenletek vizsgalatahoz nagy segitséget
nyujt a Floquet-elv, amelynek itt egy kovetkezményét fogalmazzuk meg. Le-
gyen ®(t) a (6) egyenlet azon alapmatrixa, melyre teljesiil, hogy ®(0) = E,
ahol E a 2 x 2-es egységmatrix. Ha |Tr ®(T)| < 2, akkor a (6) egyenlet x = 0
megoldasa stabil. Tovabba, ha |Tr ®(T")| > 2, akkor a (6) egyenlet 2 = 0 megol-
désa instabil. Ennek alkalmazasa, ahogyan azt az [1] miiben is lathatjuk, gyak-
ran sorfejtéseken alapul6d becslések hasznalatéra vezet, sokszor nehézkessé vé-
lik. Mivel célunk a pontos instabilitdsi tartomany lefrasa, ezért mas, raadasul
kénnyebben szamolhat6 utat mutatunk. Azt viszont nagyon lényeges megjegyez-
ni, amint az a Floquet-elvbdl kovetkezik, hogy az instabilitasi tartomany hatarat
a |Tr ®(T)| = 2 egyenlet irja le. Elemi médszerekkel megmutatjuk, hogy a (7', ¢)
sik instabilitasi zonajanak hatarat azon T = f(e), T = g(e) gorbék alkotjak,
melyek pontjai megfelelnek a (6) egyenlet 2T- vagy 4T—peri0dikus megoldéasai-
nak. Azt is megmutatjuk, hogy f(¢), g(¢) a ((k/2)(7/1/9),0) (k € N) pontok
valamelyikéhez konvergalnak, amint ¢ — 0. Ennek a tenynek van egy fontos
gyakorlati jelentése. Ha minél kisebb energiabefektetéssel akarunk destabilizal-
ni, illetve kis gyermeket akarunk megtanitani hintazni (¢ > 0 kicsi), akkor a

(k/2) 77\/7 (k € N) kritikus félperiodusok valamelyikét kell valasztani.

A destabilizélasi probléma megoldasanak elsé 1épéseként probaljunk olyan
feltételeket megadni, melyek garantaljadk, hogy a (6) rendszer
t — (x(t;x0,20), 2(t; o, o)) trajektoridja elindulva a fazissik egy P(xo,2o)
pontjabol 2T id§ alatt visszatérjen a sik azon L egyenesére, mely Osszekoti a
(0,0) koordinataja origdt a P ponttal, vagyis (z(2T; xg, <o), £(2T; o, &o)) € L.
Egy ilyen trajektoria az origbhoz kozeledik, illetve tavolodik az origdtol attol
fiiggSen, hogy (x(2T;xo, xo), ©(2T'; xo, o)) pont kozelebb, illetve tavolabb van
az origotol, mint az (zg, o) pont. Ha a két pont ugyanolyan tavol van az ori-
g6tol, akkor a megoldas vagy 27-, vagy 4T -periodikus. Annak érdekében, hogy
tetszGleges 2T gerjesztési periddus esetén ugyanaz legyen az egyenlet periddusa
(2L), egy fiiggetlenvaltozo-transzforméciot hajtunk veégre (7 = (L/T)t). Ez azt
jelenti, hogy a fazispont mozgasat L fliggvényében tekintjik. A (4) impulziv
rendszert az (x,y) sik egy diszkrét dinamikus rendszereként is interpretaljuk.

Vezessiik be ugyanis az (r, p) polarkoordinatakat a

T =rcosyp, Yy=rsing (r>0,—00 < p<o0)



formulakkal. Ekkor a (4) rendszerrel ekvivalens diszkrét dinamikus rendszer:

( Tht1 ) =C <ak+1> R(ag11(trs1 — tr)) < o ) (k=0,1,2,...),
Ykt1 Af+2 Yk
(7)

ahol R(6) a forgatéas, mig C(k) a kontrakcio-dilatacio hatasat leir6 matrix. A

fazispont kezdeti allapotéat (rg, o) jeloli.

1. Definicié. A hintdzds modelljéil szolgdlo (7) egyenletrendszer egy megoldd-
sdrdl azt mondjuk, hogy 2w modulusi szdgperiodikus, illetve 4w modulusi szég-

periodikus, ha
©(2L) = o (mod 27), idlletve @(2L) =¢o —7 (mod 27).
2. Definici6é. A hintdzds modelljéil szolgdlo (7) egyenletrendszer egy 2m mo-

dulust, vagy 4m modulusi szogperiodikus megolddsdt (origohoz) kozeleddnek,

illetve (az origotol) tavolodonak mondunk, ha
r(2L) < 1o, illetve 1r(2L) > ro.

Miutén a szogperiodikus origdhoz kozeledd, illetve attol tavolodd megoldaso-
kat karakterizaltuk, segitségiikkel megfogalmazzuk a mozgasegyenlet 27-, illetve
4T-periodikus megoldasainak létezésére vonatkozo sziikséges és elegendd folté-
telt.

3. Tétel. Bdrmely ¢ > 0 esetén van olyan {Ty ()}, illetve {T} (e)}p2, soro-
zat, hogy a (6) egyenletnek a T = Ty (e) vdlasztdssal 2Ty (€)-periodikus, illetve a
T = Ti(e) vdlasztdssal ATy ()-periodikus megolddsa van. Tovdbbd,

0<TI<To<T1<Tp<T3<Ty<...; lim Ty=o0, (8)

k—o0

. . 1 l
11m02T2p+1(5) = E_l}mOQTQPJ,_Q(S) = (2p+ 2) (2 (27T >> N

e—=0+ 0+ g

. ~ . ~ 1 l
im 2Thpi0(e) = _lim 2Top1a(e) = (2p +1) (2 (27T g))

teljestiil minden p € N esetén.

Ennek birtokdban bizonyithatd az a tétel, mely leirja a keresett instabilitasi

tartomanyt.

4. Tétel. A (6) egyenletre vonatkozé (T,e) paramétersik instabil tartomdnyd-

nak belseje

Uoce<t (UpZo({(T€) : Tapsa(e) < T < Tapia(e) U
{(T,) : Topra(e) < T < Tapya(e)})),

ahol a Ty, Ty, kifejezéseket a (8)-ben értelmeztiik.



3. A fols6 egyensilyi helyzet stabilizalasa

Azt, hogy az inga f6ls6 egyensiilyi helyzetét lehetséges a folfiiggesztési pontja
sével is stabilizalni, elsgként A. Stephenson irta le 1908-ban [34, 35]. A fols6
egyensulyi helyzet koriili mozgésokat leiré egyenletet teljes részleteibe menéen
1951-ben megjelent cikkeiben P. L. Kapica vizsgalta |23, 24|, és azota gyakran
Kapica-ingaként hivatkoznak erre a jelenségre. M. Levi és W. Weckesser a [28]
cikkiikben egy egyszert geometriai hatterti magyarézatot adnak arra, hogy mi-
ként is lehetséges a stabilizalds nagy frekvencia esetén. Dolgozatukban olyan
nagy frekvenciaju rezgést vizsgalnak, melynek soran a gyorsulas lényegesen na-
gyobb a gravitacios gyorsulas értékénél, s emiatt ez utobbit elhagyjak. Ramu-
tatunk arra, hogy a gravitacié hatasanak figyelembe vételekor az altaluk adott
modszer nem mikodik, emiatt azt modositani kell. Tovabb altalanositva az el-
gondolést, megvizsgaljuk, hogy a fol-le rezgetés aszimmetridja milyen hatéssal
van a stabilizalhatosagra.

A [28] cikket kovetve, tegyiik fol, hogy az inga folfliggesztési pontjara olyan

er6 hat, melynek hatasara létrejové gyorsulas

A ha kT§t<(2k+1)z,
a(t) == T 2 (9)
—A, ha (2k+1)§§t<(l~:+1)T, (k=0,1,...).

Tehat az a(t) fiiggvény egy T-periodikus lépcsdsfiiggvény, melyet abban az érte-
lemben mondunk szimmetrikusnak, hogy a fél-periodusok egyenld hosszuak, és a
folvett fiiggvényértékek egymas ellentettjei. A mozgasegyenletet ennek hatasara

a kovetkez6képp modosul:

J -1+ aw =0, (10)

A tovabbiakban a szerzdk folteszik, hogy A >> g, s emiatt a (10) egyenletben
a gravitacios gyorsulast nem veszik figyelembe - tigynevezett gravitdciomentes
eset. Bevezetve az w = \/A/l mennyiséget a (10) a kévetkezd, (3)-hoz hasonlé
forméban frhato:

YEwip =0,

ahol az elgjel az a(t) fiiggvénynek megfelelGen valtozik.

5. Tétel (M. Levi, W. Weckesser; [28]). Tekintsik a forditott inga (10) moz-

gdsegyenletét a gravitdciomentes (g = 0) esetben. Ekkor ha

wl' <m (w = 1?) , (11)

akkor a (10) erdsen stabil.



Az erss stabilitas roviden szolva azt jelenti, hogy a rendszer annak minden kis
perturbaltjaval egyiitt stabil. A pontos definicié a disszertaciéban olvashato.
A (9) formuladban adott fiiggvény két értékének megfelel két kiilonbozs fazis,
ahogyan azt a (3) utan kifejtettiik. A két kiilonbozs fazis geometriailag két
kiilonbo6z6 jellegii forgatast jelent. A szerzok alapotlete, hogy ezen forgatasokat
megado méatrixok hatasara a sik vektorain létrejové forgatas meértékét becsiilték.
Megtartva ezt a becsléses modszert megvizsgaljuk, hogy a gravitacié hatasét is
figyelembe véve mire jutunk. Foltessziik tovabba, hogy a folfliggesztési pontot
egy aszimmetrikus hatés éri, s igy annak gyorsulasa:

Ap,ha KT <t < kT + T,
a(t) :== § —Ag, ha KT + Ty, <t < (KT +Ty) + T,
(k=0,1,...) ;

ahol Ay, A, Ty, Te pozitiv konstansok (T}, + T. = T), tehat a felfiggesztési
pont mozgasa T-periodikus. A h és e indexek arra utalnak, hogy két kiilonb6z6
fazisbol all Ossze a mozgas: egy elliptikus és egy hiperbolikus részbél. A mozgas-
egyenlet formailag tovabbra is (10) alakd. Meggondolasaink eredményeképpen
a kévetkez6t allithatjuk.

6. Tétel. Jelolje Rem (p; ) a ¢ € R wvalds szam osztdsi maradékdt moduls ©

(0 <Rem (p;m) < ).
" Wh, ™
arctan , [ — — —
we 4

Ha
ewnTh _ 1
< min{Rem (weTe;7); m — Rem (w.Te; )},

2 arctan m —+ 4

(12)

akkor a (10) egyenlet erdsen stabil,

_ JAn+yg  JAc—yg
Wh = I s We ‘= I .

A gravitacidmentes esethez képest most merében més helyzettel allunk szemben:

ahol

az eltér6 wy, és w. miatt a hiperbolikus és elliptikus fazis k6zo6tt az Elgzmények-
ben emlitett impulziv effektus torténik a fazistéren. Igy ennek forgato hatéasat
is figyelembe kell venni a tétel folirasakor. Alkalmazzuk a 6. tételt a gravitacio-

mentes és szimmetrikus esetre. Ekkor a kovetkez6t kapjuk.

7. K6vetkezmény. Tegyik fol, hogy a (10) egyenletben g = 0, valamint Ap =
A, =A. Ha

ewT/Z -1

— <

ewT/2 41 (13)
< min{Rem (wT’; 27); 27 — Rem (wT';27)},

4 arctan

akkor (10) erésen stabil.



A 7. kévetkezmény lényegesen javitja a 5. tételt: az els6 olyan intervallum, ami-
be stabil megoldasoknak megfelels pontok vannak az wT-tengelyen, kielégitve a
(13) feltételt, a (0,3,75...) (lasd a 2. abrat) a (0, 7) helyett, amit a (11) alapjan
eddig tudtunk. Masfelsl pedig, a 7. kovetkezmény a 5. tételt abban az értelem-
ben is javitja, ha tgy tetszik kiterjeszti, hogy tovabbi stabil intervallumokat
talalhatunk az wT-tengelyen a 27 utan is (lasd a vastagitott intervallumot a 2.
abran). Azt mondhatjuk tehat, hogy tetszdlegesen nagy wT = T\/m esetén
lehetséges a stabilizalas. Erre a (11) feltételbsl nem lehet kovetkeztetni.

y

T2 -1
el/2 41

y = 4arctan

wl

0 LN ¢ o 9,38 °" 9,46

2. abra. Stabil intervallumok

A szimmetrikus esetet (A, = A. = A, T, = T. = T/2) Arnold is vizsgalta

[1], bevezetve az
. /D ) g
* l ) ILI’ M 4 )

paramétereket, ahol a D a folfliggesztési pont legnagyobb kitérése (amplitudoja)
a rezgetés soran. Arnold azzal a foltevéssel élt, hogy ezek a paraméterek kicsik
(e << 1, p << 1); és a Floquet-elvre vonatkozo kozvetlen szamolasokkal jutott
arra a kozelitésre, hogy p < £/3 elegendd feltétele az erds stabilitasnak. Alkal-
mazva a 6. tételiinket ebben a szimmetrikus, a gravitacié hatésat is figyelembe
vevs esetben, az € és p paraméterek segitségével atirva a (12) foltételt, valamint
semmilyen nagysagrendi korlatot fol nem tételezve a paraméterek értékeire, az
€ — u sik globdlis stabilitasi térképét kapjuk.

Az altalanos (aszimmetrikus) esetet tekintve, hasznalva az Arnold nyoméan

bevezetett




0.3

3. dbra. A stabilitasi tartoméany egy része az aszimmetrikus esetben

paramétert, amelyik méri a hiperbolikus és elliptikus fazis ardnyat a folfiiggesz-

tési pont rezgetése soran, a 6. tétel a kovetkezd alakot olti:

1+ d%p?
1—p?

exp [2\/§dse\/1 + dQ,ug] -1 -
+ 4 |arctan —— — —| <
exp [2\/§d55\/1 + d{u%} +1 d 4

< min{Rem (2v2¢.\/1 — p2; 7); 7 — Rem (2v/2e./1 — pi2; 7)},

akkor a (10) egyenlet erésen stabil.

8. K6vetkezmény. Ha

2 arctan

A 8. kdvetkezmény &altal megadott stabilitasi tartomany egy részét lathatjuk
a 3. abran.

Nem nehéz belatni, hogy az aszimmetrikusan rezegtetett eset kedvezsbb a
stabilitds szempontjabol, hiszen a gyorsulédst egy elére adott értéken lehet rog-
ziteni. Tehat barmely g (0 < f, < \/5/ 2) esetén talalhato olyan d> 1 és
gk (égk) — 00, ha k — c0) agy, hogy a (10) egyenlet az Eék), fic, d paraméte-
rekkel erdsen stabil.



4. A forditott inga periodikus mozgasai

Az el6z6 fejezetben az inga fols6 egyensulyi helyzetének stabilizalhatosaga-
val kapcsolatos vizsgalataink sorén, becsléseken alapulé szamolasok segitségével
eljutottunk a globélis stabilitéasi térkép egy jo kozelitéséhez. Ebben a fejezetben
célunk, hogy a forditott ingara vonatkozbdan elkészitsiik a pontos stabilitasi tér-
képet tgy, hogy megkeressiik a 2T-periodikus egyiitthatos egyenlet 27-, illetve
4T-periodikus megoldasait, melyekrsl tudjuk, hogy az ezeknek megfelelg gorbék
alkotjak a paramétersik instabil zonajanak hatarat.

Ebben a részben azt az esetet targyaljuk, amikor az inga folfiiggesztési pont-
jara egy fligg6leges iranyu szimmetrikus eré gyakorol hatéast, tovabba a gra-
vitaci6 hatasat is figyelembe vessziik. Tekintsiik tehat a (9) egyenlettel adott
lépcsGsfiiggvényt mint az inga folfliggesztési pontjara kifejetett rezgetés hatésa-
ra létrejove gyorsulast. A (9)-ben adotthoz képest annyi technikai valtoztatast
tesziink, hogy az emlitett gyorsulas 27-periodikus. A (10) mozgasegyenletet a
hintazas problémajanal latottakhoz hasonloan, a fazistérben hatéd diszkrét im-
pulziv rendszerbe transzformaléssal, és igy a fazistér trajektoriai segitségével
vizsgaljuk.

Meggondolasaink nyomén kideriilt, hogy 27-, illetve 47 -periodikus megol-
dasnak megfelels trajektoriat nem indithatunk az (z, y) fazissik tetszdleges pont-
jabol, hanem csakis az y = —x egyenes, tehat a stabil altér koézelébsl. Ezeket a
megfelels trajektoriakat foltarva jutunk a fejezet f6 eredményéhez: a keresett pe-
riodikus megoldasok létezésére vonatkozd sziikséges és elegendd foltételt megado
tételekhez.

9. Tétel. A (10) egyenletnek akkor és csakis akkor van 2T -periodikus megoldd-
sa, ha vannak olyan A és T pozitiv konstansok az (9) kifejezésben, és van olyan

nemnegativ egész k, hogy vagy

ewnT 1
Qarctan.(l)eym71+>l> +‘2kﬂ ::Wezx
vagy
enT 1
2arctan (D eth—1> —+ (2k + ]_)7'[' = OJeT.

10. Tétel. A (10) egyenletnek akkor és csakis akkor van 4T -periodikus, de nem
2T -periodikus megolddsa, ha vannak olyan A és T pozitiv konstansok az (9)

kifejezésben, és van olyan nemnegativ egész k, hogy vagy

th _
2&1‘01}&11 (D Z""’LT—I—]_> + (2]€ + 1)71' = (.deT,
vagy
wpT 1
2 arctan (D eT—|—> + 2km = wT.
ewnt —1
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Igy mar a pontos stabilitasi térképet tudjuk elkésziteni, valamint arra is mod
van, hogy 6sszehasonlitsuk a becsléssel kapott eredménytinkkel a teljesen ponto-
sat. Ez utobbit lathatjuk a 4. 4bran. A Gy jeld gorbe kornyezetében taldlhato a

stabil zona, szokas azt mondani, hogy ez a gorbe alkotja az adott Arnold-nyelv

gerincét,.
1.04 M
00 05 1.0 15 2.0
4. 4bra. A korabban becsléssel kapott és a pontos stabil zéna
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