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1 Introduction

Automatic Speech Recognition (ASR) is the automatic transcription of speech into a sequence
of words or subword units (e.g. phones) by a machine. This seemingly simple task has many
uses in dictation software, dialogue systems, and personal assistants. The utility of these appli-
cations depends on many factors, among these are considerations such as speed, requirements for
computation power and memory capacity. The requirement our study is focusing on however is
accuracy, even in adverse environments like the presence of background noise, and mismatched
transfer channel characteristics. What makes meeting this requirement especially challenging,
and hence of special interest is that often it is not possible to foresee every possible problem.
Hence ASR systems have to be trained in such a way that they should be able to work in the
kind of environments they had not been specifically prepared for.

Here, this problem is examined in the HMM/ANN framework, the overview of which is
depicted in Figure 1. This model differs from the traditional HMM/GMM approach in that the
generative Gaussian Mixture Model (GMM) is replaced by a discriminative neural network model.
This, however, is not a new development, as the HMM/ANN hybrid approach has been around
for decades [33], but its use is nowadays quite widespread thanks to the introduction of DNNs.
Where we deviate from this practice is that — following Kleinschmidt [17] — we separate the
feature extraction phase into primary- and secondary feature extraction phases. The reason for
separating them into two is that in the primary feature extraction phase our study was confined
to using standard well-established methods, while here we focused on the secondary extraction
phase. Along with the acoustical model, this was the part we concentrated our efforts on, either
by proposing modifications to feature extraction, or by combining the phase of secondary feature
extraction with the training of the acoustic model.

Our efforts here were aimed at increasing the accuracy of speech recognition, especially in
noisy environments. One approach to attain the goal of robustness is by exploiting our knowledge
on Human Speech Recognition (HSR) in our ASR systems. The rationale behind this proposal
was that by studying the system that is working more effectively (namely HSR [41]), we should be
able to improve a system that is less effective (namely ASR). To a degree we have seen the success
of this approach in the application of transformations like the Mel-scale and the Bark-scale, and
also in spectro-temporal processing, on which the methods proposed here were based.

The methods proposed here will be evaluated using three tasks namely, phone classification,
phone recognition and word (continuous speech) recognition. For this, we will use the “Szeged”
Hungarian Broadcast news database [46], as well as the TIMIT [28] speech corpus of English
speech, and the Aurora-4 database of English speech [36].
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Figure 1: Overview of the speech recognition process.



Log Mel-scale Spectrum
T T

25 T u | 1 ]

Channel frequency index

1 |
n

Figure 2: Log mel-spectral representation of an excerpt from the Aurora-4 database. The black
boxes (left-to-right) shows the shape of the feature extraction patches used by a) the classic
MFCCs, b) the TRAP features, and c) localised spectro-temporal features.

2 Spectro-Temporal Feature Extraction

More and more is known about human speech processing, but traditional feature extraction
methods take into account only its most fundamental properties. Although it is not necessary that
methods which seek inspiration from HSR should outperform purely mathematical algorithms, it
seems reasonable to expect better behaviour from the methods that approximate the properties
of human hearing more closely. One such property that speech processing may benefit from
approximating is the joint spectro-temporal sensitivity of the receptive fields of cortical cells [6].

Although humans can barely recognise such short excerpts, MFCC processes the speech sig-
nal in 20-30 millisecond chunks. This context can be expanded by using A coefficients and
neighbouring frames, but it is still different from having features tuned to specific temporal mod-
ulations [4]. Moreover, with the increased number of neighbouring frames used, the number of
features also grow, and hence the application of dimension reduction methods may be necessary.

Another problem with using MFCC vectors is that the resulting features are still global along
the frequency axis, which means that even in the presence of band-limited noise, all features will
be contaminated [4]. Furthermore, there are experiments which indicate that “human speech
perception is based on relatively narrow frequency channels” [32]. This suggests that the windows
should be localised in frequency. The same considerations motivated the introduction of the
TRAP model [12], where each frequency band is processed separately. In Figure 2, we portray
this approach along with the conventional approach of MFCC. In contrast with these methods,
in this study we will focus on spectro-temporal processing, where the spectral representation is
processed in patches that are localised in both time and frequency (see Figure 2(c)).

Let us now formalise the general process of spectro-temporal processing. We can interpret it
as applying a filter F' on a patch P, to obtain an output o defined by the following formula:

M—-1N-1

o= > P(f,OF(f1), (1)

f=0 t=0

where M and N are the respective height and width of patch P and filter F'. One can readily
obtain a set of features by using several filters with different coefficients, and/or applying the
same filters at different positions in the time-frequency plane. A more difficult task is to design
a proper family of filters that are optimal for the given task.
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2.1 2D DCT

An obvious generalisation of the MFCC feature extraction process to localised spectro-temporal
windows is to replace the Discrete Cosine Transform (DCT) with its two-dimensional counterpart
(2D DCT). The resulting feature extraction process can be regarded as performing the filtering
defined by Eq. (1) with the following filter coefficients:

- 2f+1)-p 7w (2t+1)-q

F,y(f,t) = cos S cos SN , (2)

where M and N are the respective height and width of the filters for f and ¢, while p and ¢
specify the modulation frequencies of the filter along the frequency and time axes.

By definition, for a patch of size M x N, the 2D DCT returns the same number of coefficients.
There are several findings, however (both in speech recognition and image processing), which
indicate that these coefficients are not equally important for representing the underlying content,
and that it may be sufficient to retain just some low-order coefficients [4, 16]. It is an open
question, however, of how many of these coefficients should be retained. It also had to be
experimentally determined how big our patches should be, to what degree they should overlap,
and how many mel filters should be used in the mel-scale spectrum these patches operate on (if
indeed they operate on the mel-scale spectrum, and not on the spectrogram).

To find an answer to these questions, we conducted several phone classification experiments
on the TIMIT database. Based on the results of these experiments, we selected three candidate
set of parameter values to be examined more closely. Ultimately, we made a decision to use the
log mel-spectrum created with 26 filter channels as our input (and this decision was partially
inspired by a better comparability with MFCC results). Furthermore, we decided that the
patches applied on this input would have a height of 7 mel-channels, and a width of 9 frames,
and they would be extracted at 12 positions in the frequency domain. Lastly, it was decided that
from each of these patches 9 2D DCT coefficients were to be retained.

We evaluated the utility of the chosen settings on the TIMIT database using the clean core
test set as well as its noise-contaminated versions. Comparing the results obtained using the
above settings with those obtained using MFCCs (see Table 1), we found that using spectro-
temporal processing we get lower phone error rates in noisy conditions, regardless of the level of
noise, while in clean conditions our results are very similar to those we get using MFCCs.

We also presented a method for the combination of the two sets of features. Here, a neural
net is trained on each feature set separately, then the posteriors of these nets are concatenated
and used as features in a third neural net. We showed that by combining the two feature sets in
this manner, we can further improve the performance in the case of clean speech.

Feature Clean Pink noise Babble noise
set speech | 20dB 10 dB 0dB 20dB 10dB 0dB

MFCC | 29.11% | 56.78% 74.78% 85.57% | 48.04% 73.56% 86.29%
2D DCT | 29.52% | 46.62% 67.01% 79.07% | 41.03% 58.36% 74.81%

Table 1: Phone error rates (PER) got on the clean and noise-contaminated test sets of the TIMIT
corpus.
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Figure 3: Manual set of Gabor filters (first row) and 2D DCT (second row) filters, with the
corresponding filters vertically aligned to emphasise the similarities. The patch size is 9 x 9 [26].

2.2 Gabor filters

Another method for extracting spectro-temporal features is to apply the real part of Gabor filters
on our patches, defined as the product of a two-dimensional Gaussian, namely

(F—10)% | (t—tp)?
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and the real part of an oriented sinusoid,

m-f-2Q0 w-t-2w
f-2 t2). )

Saw(f,t) = cos < i + N

Here, f and t iterate over the frequency and time span of windows. Furthermore, f, and ¢,
define the centre of the Gaussian in the frequency and time domains respectively, while O'ch and
o? define their bandwidth in the respective domain. Lastly, M and N specify the transform size,
while €2 and w specify the slanting and the periodicity of the sinusoid.

Although it is clear how the parameter values of 2 and w shape the resulting Gabor filters,
it is not so obvious how these parameters should be selected. It is also not clear how many
filters should be used, and what size these filters should have for optimal speech recognition
performance. Much effort has been devoted to this question over the years [8, 18, 42], and for
this reason we also examined this question in detail. First, we described two automatic feature
selection methods for the task. Namely, the Feature Finding Neural Network (FFNN), used by
Kleinschmidt and Gelbart in creating their Gabor filter set [18], and the Sequential Forward
Floating Selection (SFFS), introduced by Pudil et al. [38]. We also created two filter sets using
these methods. Later, based on experimental results on the TIMIT corpus and the “Szeged”
Hungarian Broadcast news database, we compared the following Gabor filter sets:

e The Gabor filter sets introduced by Kleinschmidt and Gelbart [18] (G1, G2, G3)
e The Gabor filter set introduced by Schéadler et al [42] (SMK set)
e A Gabor filter set we created using the FFNN algorithm (FFNN set)

A Gabor filter set we created using the SFFS algorithm (SFF'S set)

A Gabor filter set we created manually using some simple heuristics, such as the similarity
between Gabor filters and 2D DCT coefficients (Manual set — see Figure 3)

10 Gabor filter sets created in a random manner.



On the TIMIT database we found that the Manual set outperformed all other Gabor filter
sets. This includes those filter sets that had been created using some sophisticated automatic
feature selection method. The same was true in the case of the clean and noise contaminated
speech. Furthermore, we found that in many cases filter sets created in a random fashion perform
similarly or even better than their carefully crafted counterparts. And similar to what we saw
in the case of 2D DCT, we found that using a proper set of spectro-temporal features we can
attain a better performance than that with the MFCCs, with clean speech as well as in a noise
contaminated environment.

Regarding the relative performance of various Gabor filters, the results obtained on the
“Szeged” Hungarian Broadcast news database were quite similar. For one, the Manual filter set
provided lower error rates than any other Gabor filter set examined. This point clearly shows that
the heuristics applied in the manual selection process are more general than the heuristics of the
database-driven feature selection methods. When comparing the results got using various filter
selection algorithms with each other, we found that the feature set created by SFFS significantly
outperformed its FFNN-created counterpart. As we observed a similar tendency with TIMIT,
SEFE'S here seems to be a better selection algorithm than FFNN. However, the resulting filter set
still performs significantly worse than MFCCs (and the Manual set). The same could be said
about the G1-3 filter sets created by Kleinschmidt and Gelbart, and the SMK filter set created
by Schadler et al. So unfortunately our hope that the filter optimisation would not have to be
repeated for each training database did not materialise. Also, we can see that the best randomly
selected filter set gave scores that are almost as good as those of the SFFS set, and are better
than the scores obtained with the G2, G3 or the SMK set. This again suggests that the filter
selection algorithms actually fail to achieve their goal.

Summary of Theses

[/1. We demonstrated that 2D DCT feature extraction can be performed on the conventional
critical-band log-energy representation in such a way that it leads to similar or better phone
classification and phone recognition accuracy scores than those obtained using the conven-
tional MFCCs. We also found that the advantage of the former is even more pronounced
in noise contaminated speech (published in [19, 20]).

[/2. We presented a simple yet effective strategy for the combination of the conventional (MFCC)
features, and the new — 2D DCT — feature set. We demonstrated on the core test set of
the TIMIT corpus that this combination produces a better performance than either of the
two feature sets (published in [20]).

I/3. We introduced and evaluated a new Gabor filter set. We demonstrated on the TIMIT
English database and the “Szeged” Hungarian Broadcast news database that it performs
better than Gabor filter sets introduced earlier, as well as filter sets created for this study,
using either the SFFS or the FFNN feature selection method. On the TIMIT corpus,
we also demonstrated that this new filter set performed better on both clean and noise

contaminated speech in English. And in the case of Hungarian speech, its performance
matched that of MFCCs the most closely (published in [26]).



3 Joint Training of Spectro-Temporal Features and Neu-
ral Nets

In the traditional approach, the extraction of a fix set of features, and the training of the
adaptable classifier are quite separate. In spectro-temporal speech processing this means that
the extraction of secondary features and the training of the acoustical model are traditionally
done in two separate steps. While this separation is technically convenient, it might result in
suboptimal features for the actual machine learning method.

It is easy to see the flaw in this approach of separate feature extraction and model training,
when the feature set is entirely hand-crafted: the accuracy of recognition largely depends on
the ability of our expert to design a useful feature set. Our earlier results with various Gabor
filter sets highlighted the complications associated with automatically generated feature sets:
the feature selection algorithms examined not only proved to be slow, but they also failed to
produce feature sets that would be suitable for other data sets as well. In fact, our handcrafted
filter (“Manual set”) set not only gave better results in the cross-database tests, but in most
cases it surpassed the feature sets created by automatic means on our original task as well.
Unfortunately, the selection heuristics applied in the design of the “Manual set” do not provide
a guarantee either that the resulting set is optimal.

For the above reasons, our suggestion was to combine the feature selection step and the sta-
tistical modelling step into one. This is a similar concept to a recent study where a Convolutional
Neural Net (CNN) was extended in order to optimise the feature extraction filter bank [40]. The
difference is that our method uses spectro-temporal filters instead of a conventional spectral filter
bank. Here, we treat the feature extraction filters as the lowest layer of a neural net, which also
makes it possible for the training algorithm to fine-tune the filter coefficients.

To understand how this was possible, let us examine the formula specifying the output o of

a perceptron:
L
OZQ(in-wi—i—b), (5)
i=1

where x is the input of the neuron, L is the length of the input, w is the weight vector, and b is
a bias corresponding to that neuron. For the activation function a we usually apply the sigmoid
function; but it is also possible to create a linear neuron by setting a to the identity function. If
we select the identity function as the activation function of our perceptron, and set the bias b to
zero, we can write (5) in the following form:

L
0= Z T - w;. (6)
i=1

If we represent P and F in (1) in vector form (as P and F, which is just a notational change),
we get the following formula:

M-N
i=1

Now it is easy to see that (6) is just a special case of (7) — and by extension that (5) is a special

case of (1) — by chosing the vectorised version of the patch P (P) as our input vector z, and the
vectorised version of filter F' (F) as our weight vector w. This means that the spectro-temporal
filters can indeed be integrated into an ANN classifier system as special neurons, with the filter

coefficients being the weights of the given neuron.



Initial filter weights

filter weights unaltered trained
Random 32.96% 30.27%
2D DCT 31.19% 30.21%
Gabor (Manual)  32.41% 30.29%

Table 2: Phone error rates (PER) got on the core test set of TIMIT (the average of 20 indepen-
dently trained neural nets).

First, as a proof on concept, we conducted experiments on clean speech using the TIMIT
speech corpus. Here, traditional sigmoid neural networks were applied where the length of the
input context did not exceed the length of spectro-temporal patches applied. The results of
these experiments (see Table 2) indicated that the joint optimisation scheme indeed resulted
in a better recognition performance. This held true irrespective of the scheme we used for the
initialision of filter coefficients. Next, we extended our investigation to bigger neural networs
(having more neurons in their hidden layer) that use a wider input context. Here, we repeated
our experiments using both the clean and noise contaminated test set of TIMIT, as well as using
the “Szeged” Hungarian Broadcast news database. The results of these experiments confirmed
our earlier findings on the benefits of joint training. We also demonstrated that the advantage
of joint training is also apparent with noise contaminated speech.

What is more, the advantage of our proposed method is also clearly discernible in the cross-
database and cross-language experiments. This last observation is supported in Table 3. Here,
using the “Szeged” Hungarian Broadcast news database, we compare the results obtained using
traditional MLPs (where the input of the MLP was the MFCC, or one of the Gabor filter sets
introduced by Kleinschmidt and Gelbart [18], or a similar filter set introduced by Schéadler et
al. [42], or one of the Gabor filter sets we created by means of automatic methods) with those
results obtained using the joint framework. From Table 3, we ascertain that the best results
were obtained when the joint framework was applied and its feature coefficients were initialised
based on either our handcrafted Gabor filter set (Gabor Manual), or a modified version of the
very same filter set that had been first fine-tuned using the training set of the TIMIT database
(Gabor Manual+TIMIT).

Joint (Initial) Filter weights
Training Filter weights Unaltered Trained
v Random 26.94% 25.06%
v Gabor (Manual) 26.36%  24.75%
v Gabor (Manual+TIMIT)  25.10%  24.64%

MFCC + As 25.03% -

SFFS set + As 26.06% -

FFNN set + As 26.49% -

Gl + As 25.91% -

G2 + As 27.16% -

G3 + As 36.32% -

SMK set 26.95% -

Table 3: Phone error rates (PER) got on the “Szeged” Hungarian speech database (the average
of 10 independently trained neural nets).



Initial Original DRN DCRN

Filter weights framework framework framework

Gabor 26.24% 23.37% 22.98%
2D DCT 26.54% 24.15% 23.22%
Random 26.53% 23.58% 23.25%

Table 4: Phone error rates (PER) got on the clean core test set of TIMIT (reported error rates
are the average of 10 independently trained neural nets).

After the initial success of the joint trainig framework, we extended our experiments to
include experiments on deep learning. Here, following Glorot and Bengio [10], we created our
Deep Neural Networks (DNNs) by replacing the sigmoid activation function in the hidden layer
with the rectifier activation function. This means that we used Deep Rectifier Neural Nets
(DRNs), where the output of neurons in the hidden layer can be calculated as follows:

L
0:max<0,2xi-wi+b>. (8)
i=1

The resulting framework was again evaluated using the TIMIT speech corpus. We found that
the results of these experiments corroborated our earlier findings on the utility of the proposed
method. What is more, these results supported our supposition on the benefit of using DRNs
instead of traditional neural nets (see Table 3).

Lastly, the neural nets applied in joint training were again modified by incorporating into it
convolution in the time domain. This was carried out by processing neighbouring patches (using
the same weights), in such a way that between two patches processed there were always patches
left out (i.e. we increased the step size). This means the conversion of our joint framework
into a Deep Convolutional Rectifier Neural Net (DCRN). Once again, the introduction of this
modification significantly decreased our error rates obtained on the TIMIT phone recognition
task in clean speech (see Table 4), and in most cases with noise contaminated speech.

Summary of Theses

IT1/1. Here, we introduced an algorithm for the joint training of spectro-temporal features and
neural networks. We tested the algorithm in a phone recognition tasks on the TIMIT speech
corpus and the “Szeged” Hungarian Broadcast news database. The results confirmed the
viability of joint optimisation, and showed that it leads to significantly improved recognition
scores as well as to an improved cross-database and cross-language performance (published
in [21, 26]).

I1/2. We incorporated several advances from the current research in neural networks into the
joint framework. Namely, rectifier linear units (ReLUs) and convolutional neural networks
(CNNs). This highlights the flexibility of the framework and its capacity to accomodate
new advances. The results obtained using the TIMIT speech database demonstrate that
with these modifications, the framework is capable of achieving a significantly improved
performance (published in [22]).



4 The Multi-Band Processing of Speech using Spectro-
Temporal Features

In the multi-stream speech processing scheme the information extracted from the speech signal
is divided into separate sources. Each of these sources may represent a different aspect or prop-
erty of the input, and it is processed independently up to a recombination stage. A special case
of multi-stream processing is multi-band processing (first described by Duchnowski [7]), where
different frequency regions are treated as separate sources. In this paradigm the input is decom-
posed into spectral bands, then after independent processing of the bands (which usually involves
carrying out a partial recognition step), information from the different bands is recombined to
produce an overall recognition result.

The use of this method was motivated by various considerations, such as signal processing,
the opportunity to exploit the potential of parallel computing systems, human speech perception,
and robustness (in the case of a noise that is limited to certain bands, recognisers working with
features originating from those bands that were unaffected by the noise would also be unaffected
— in contrast with recognisers that rely on full-band features). When outlining the motivation for
spectro-temporal speech processing, our expectation of robustness and the observations in hu-
man speech perception were major factors as well. The similarity between the spectro-temporal
and multi-band processing does not stop there, as their schematic representation indicates (see
Figure 4). In fact, the approach we were following in Chapter 2 (where features extracted from
different frequency bands of the full spectrum are concatenated into one feature vector), is some-
times referred to as a branch of multi-band processing, under the label “feature recombination”
method [35]. Figure 4, however, not only shows the similarity between the two methods — both
having been based on observations on human speech perception, and designed to increase the
robustness of speech recognisers — it also shows their compatibility. That they are compatible is
clear if we consider that we arrived at the multi-band approach by having the exact same local
features as we did earlier and feeding them into band classifiers, instead of concatenating them.
But while these methods have been in use for a long time now, few attempts have been made
to combine them. The couple of studies that attempted to combine spectro-temporal processing
with the multi-stream approach mostly concentrated on separating the streams based on the
properties of the filters, rather than based on the frequency domain these filters were applied on
for extracting the necessary features (i.e. multi-band approach) [31, 47].
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Figure 4: Schematic representation of a spectro-temporal processing schemes framework (see
Chapter 2) and a typical multi-band processing framework. Where the two methods diverge,
their process is represented by dashed/solid lines, respectively.



Multi-band processing is an umbrella term that describes a wide range of methods with quite
different properties. The number of sub-bands used, for example, can range from two to twenty
two. Another question is the overlap of the subbands. While in many cases the separation of
subbands is carried out using rectangular windows with no overlap (apart from that originating
from the filter-banks overlapping in the frequency domain), overlapping rectangular or smooth
windows can also be used. And once the subbands have been selected, there are several decisions
to be made on processing them and on combining the resulting information. Subbands may for
example be processed using GMMs, and HMM/ANN hybrids. But typically this is performed
via ANNs [3, 32]. Furthermore, after processing the bands, a decision has to be made about how
much of the resulting information to employ (e.g. whether to use just the label of the winning
hypothesis, the order of different hypotheses, or the probability predictions). Let us now assume
that the recombination will be carried out based on the posterior estimates of ANNs. Several
methods can still be chosen for recombination, ranging from simple fixed linear combinations
to sophisticated methods trying to dynamically assess the reliability of the bands, including
ANNs [32]. Here (as Figure 4 suggests), we experimented with a particular setup of this broad
term. In our experiments we divided the input stream into four to six overlapping sub-bands,
and processed each of these sub-bands using a neural network. In all our experiments this initial
stage was followed by a recombination net, using the output of the preceding neural networks
(this means either using neural net posterior probabilities or bottleneck features).

In the first phase we examined various neural net structures for the processing of spectro-
temporal features (introduced in Chapter 2) in separate bands, as well as for the recombination
of information produced by these neural networks. In one setup we applied traditional, fully
connected neural networks in both stages, where the size of various layers was selected so that
the overall parameter number matched that in the “feature recombination” method (MB small).
We used a variation of this same setup with a higher number of neurons on each layer. Finally,
we also created a setup where both for individual band processing and for recombination of
their outputs, we used DNNs (MB deep). Here, unlike in the earlier (and later) chapters, deep
learning was performed using the pre-training algorithm of Hinton et al. [13]. We utilised the
TIMIT database to compare the results of the multi-band approach with those obtained using
the “feature recombination” method (see Table 5). But we also compared the results of the
various architectures used in the the multi-band approach with one another. We found that the
multi-band approach (MB) produced better recognition rates than the “feature recombination”
method (FC), irrespective of the specific neural net architecture that was used. But the best
results were obtained when using the multi-band processing approach with deep learning. We
also found that on this task Gabor filters gave us a better performance in each testing condition
than 2D DCT coefficients did, when using the best performing deep learning setup (MB deep).

Settings 2D DCT Gabor  No. of ANN parameters
FC 26.85% 26.78% ~ 6
MB small 26.07% 25.45% ~ 6
MB big 24.70% 24.79% ~16
MB deep 23.47% 22.81% ~17

Table 5: Phone error rates (PER) got on the clean core test set of TIMIT (reported results
are the average of 10 independently trained neural nets), and the number of free parameters (in
millions) for the different settings. For 2D DCT and Gabor filters, the best scores are highlighted
in bold.
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Processing method Test set A Test set B Test set C Test set D Avg.

Feature recombination 3.9% 13.4% 12.0% 28.6% 19.3%
Bottleneck 3.7% 12.9% 11.6% 26.2% 17.8%
Ganapathy [9] 3.0% 12.9% 11.7% 27.7% 18.5%

Table 6: Word Error Rates (WERs) got on the test sets of the Aurora-4 corpus (reported scores
are the average of 3 independently trained neural nets).

In the second phase, we applied the joint training framework (introduced in Chapter 3) on
each frequency band. Here, once again, the recombination of the values from the separate bands
was performed using a recombination net. In this case, however, instead of using the posterior
probability estimates got from the band processing neural networks as input, the recombination
net used the output of bottleneck layers that had been positioned in each band processing
neural network in front of the output layer. We evaluated the resulting bottleneck multi-band
scheme using the Aurora-4 speech corpus and its clean training scenario. The results of these
experiments (see Table 6) are reported in four groups. Under test set A, word error rates are
reported for clean speech that had been recorded using a Sennheiser close talking microphone.
Error rates reported under test set B were obtained on speech that had been recorded using the
same Sennheiser microphone, but it had been contaminated with one of 6 different noise types
(car, babble, restaurant, street, airport, or train noise). The results achieved using clean speech
recorded with various secondary microphones is reported under test set C. Lastly, under test set
D, average error rates are reported that were got on noise contaminated speech, also recorded
with the various secondary microphones. For the sake of comparison, Table 6 also contains a
recent state-of-the-art result on the same task, taken from Ganapathy [9]. We found that the
multi-band approach is also beneficial when applied in the joint framework for feature extraction
and neural net training. The results of these experiments also revealed that the multi-band
approach in combination with the ARMA features [9] can provide word error rates that are
competitive with those of the state-of-the-art.

Summary of Theses

III/1. Utilising the inherent compatibility of multi-band speech processing and spectro-temporal
feature extraction, we proposed a method for the combination of the two. We did so by
applying the spectro-temporal features introduced in Chapter 2. Then using the TIMIT
speech corpus we showed that the multi-band approach was advantageous in clean speech
as well as speech contaminated with various types artificial and real-life noise (published
in [25]).

I11/2. We presented a method that combines multi-band processing with the joint training of
spectro-temporal features and neural networks. The proposed method was evaluated using
the clean training scenario of the Arma-4 speech corpus. It was demonstrated that this
method performs better than the earlier version of the joint training framework; and in fact
to the best of our knowledge its results are among the best reported for the task among
methods that do not employ speaker adaptation (published in [23]).
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Method PER

Baby et al. [2] 19.6%
Plahl et al. [37] 19.1%
T6th [44] 18.7%
Current work 18.5%
Graves et al. [11] 17.7%
T6th [45] 16.7%

Table 7: Phone error rates (PERs) presented in the literature, on the core test set of TIMIT.
The best score is highlighted in bold. The score got by us is highlighted in Italics.

5 Band dropout

In most of this study, the key question we asked following the introduction of a new method
or modification was whether we were able to achieve better recognition results with the newly
introduced method or modifications than we had been able to achieve beforechand. However,
as our research is not carried out in a vacuum, it is also important to see how these results got
using these modifications measure up to those got using similar methods in the speech recognition
community.

Here, core ideas of the previous chapters were amalgamated and further developed to demon-
strate that beyond providing relative improvements, these methods are also capable of yielding
competitive results. Before introducing a new method into the joint framework, however, we
first revisited the settings of the said framework, in order to examine whether it was capable of
providing competitive results just by itself. For this, we first fine-tuned such parameters of the
joint training approach that we had not examined earlier. Then, motivated by the successful use
of A and AA coefficients in Chapter 2, we included the use of A-like coefficients into the joint
training framework. We examined the effect of these two modifications using the TIMIT speech
corpus and the Aurora-4 database. The results showed that both modifications lead to signifi-
cant improvements in the recognition results using both speech database. We also compared the
performance of our modified framework with results reported in the recent speech recognition
literature. We did so using the TIMIT speech corpus (see Table 7), as well as using the Aurora-4
database (see Table 8). We see from the given tables that better results have been achieved
on both databases. We also notice, however, that due to the modifications described here, our
method can produce (taking into account all relevant factors) competitive results with those got
using similar methods.

Method WER

Chang and Morgan [5] 16.6%
Seltzer et al. [43] 12.4%
Martinez et al. [30] 12.3%
Baby et al. [1] 11.9%
Current work 11.6%
Narayanan and Wang [34] 11.1%
Rennie et al. [39] 10.3%

Table 8: Word error rates (WERs) presented in the literature on Aurora-4 using multi-condition
training. The best score is highlighted in bold, while our result is highlighted in Italics.
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Method WER

CNN with ARMA features, band dropout 16.0%
Multi-band CNN with ARMA features 17.8%
DNN with ARMA features plus DCT [9] 18.5%
DNN with DNN speech enhancement of FBANK [15]  17.5%
DNN with Spectral masking [29] 22.8%
CNN with PNS features plus Gabor Filter Kernels [5]  22.9%
DNN with Exemplar Based Enhancement [1] 26.8%

Table 9: Comparing the band dropout result on ARMA features with our baseline, our earlier
results, and with results cited in the recent literature, when using the clean training scenario.

Lastly, we supplemented our framework with band dropout, a method inspired by the input
dropout scheme [14]. Here, however, instead of discarding features independently, we proposed a
version of input dropout that discards whole frequency bands. We hypothesise that this strategy
forces the network to rely less on the whole spectrum, and makes it more robust to channel
mismatches. An evaluation was carried out on the Aurora-4 database with both the multi-
condition and the clean training scenario, using mel filterbank and ARMA features. Our most
competitive results were obtained with the ARMA features using the clean training scenario,
where the performance got using our method was on par with the state-of-the-art (see Table 8).

Summary of Theses

IV/1. We presented two modifications of our joint training framework. We then evaluated these
modifications using the TIMIT speech corpus and the Aurora-4 database. Using the re-
sults of these experiments, we demonstrated that both modifications actually improve the
performance of speech recognition, and that the joint framework is capable of producing
results that are competitive with the state-of-the-art (published in [24]).

IV/2. We presented a novel input dropout method, which is indeed beneficial in combination
with CNN based acoustic modelling. The effectiveness of this method was demonstrated
using the Aurora-4 database with different input representations, and for different training
scenarios (published in [27]).

[19] | [20]] [21] | [22] | [23] | [24] | [25] | [26] | [27]
I[/1. | o | @
I/2. °
/3.
I1/1. °
I1/2. °
I11/1. °
I11/2. °
IV/1. °
IvV/2. °

Table 10: The connection between the thesis points and the publications of the Author.
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