
KU LEUVEN
Arenberg Doctoral School

Leuven

UNIVERSITY OF SZEGED
Doctoral School of Computer Science
Szeged

Noise Robust Automatic
Speech Recognition Based on
Spectro-Temporal Techniques

György Kovács

Dissertation presented in partial
fulfillment of the requirements for

the degree of Doctor of Philosophy
of the University of Szeged and

the degree of Doctor in Engineering
of KU Leuven

2017

Supervisors:
Prof. dr. ir. D. Van Compernolle
Dr. L. Tóth

Noise Robust Automatic Speech Recognition Based
on Spectro-Temporal Techniques

György KOVÁCS

Supervisory committee:

Prof. dr. ir. D. Van Compernolle, supervisor
Dr. L. Tóth, co-supervisor
Prof. dr. ir. H. Van hamme, assessor
Prof. dr. J. Csirik, assessor

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
of the University of Szeged and
the degree of Doctor in Engineering
of KU Leuven

2017

© 2014 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, György Kovács, Celestijnenlaan 200A box 2402, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

“Should recognizers have ears?” – When embarking on my PhD, I was sure I
would be able to answer this question one day (I believe this is the sentiment
the ancient Greek call hubris). It was only much later that I realised I may
have been looking at the problem the wrong way.

In 2015, I was in the audience of a roundtable discussion on Artificial Intelligence
in Leuven. The question being discussed was whether creators of AI can benefit
from studying nature, and specifically natural intelligence. One member of the
audience brought up the topic of evolutionary algorithms as evidence that in
fact AI already takes inspiration from nature. To my surprise, this idea was
immediately rejected by a speaker who expressed his opinion that using biological
terms – such as reproduction, mutation, and recombination – when talking
about evolutionary algorithms is just a didactic tool to help us understand
the process, but evolutionary algorithms use evolution as an analogy, not as
an inspiration. While I still think that evolutionary/genetic algorithms would
not be the same as those today without the likes of Darwin and Mendel to
introduce the ideas of evolution and genetics to the World, this gave me a new
perspective.

Evolutionary algorithms are used because they work. This is independent of
what side we take on the issue of AI deriving inspiration from nature, or on
the issue of the evolutionary algorithm’s origins. The same should apply to
spectro-temporal processing: the important question is not necessarily whether
recognisers should have ears, or whether applying these methods is akin to
giving ears to a recogniser, but whether spectro-temporal processing works.
While physiology and psychoacoustics motivated the exploration of this topic,
this in and of itself would not be an adequate reason to put these methods to
use, if the results were not convincing. For this, here, spectro-temporal speech
processing will be examined from a practical perspective. Do these methods
lead to better recognition scores? Do word error rates decrease? Such questions
will be the focal point of this study.

i

ii PREFACE

During my work towards this thesis, I was so fortunate to have the unique
opportunity to work with some wonderful people and great researchers in
two different countries. I would especially like to thank my supervisors, Dr
László Tóth and Professor Dirk Van Compernolle for their help, guidance, and
especially for their patience over the years.

I owe a debt of gratitude to many of my fellow PhD students as well (most of
whom have since managed to add the letters d and r to their name). I would
like to thank Deepak Baby for tirelessly answering my questions about Aurora-4,
and even if my barrage of questions wore down his patience, he never showed it.
I would also like to thank Tamás Grósz and Gábor Gosztolya for their helpful
comments.

And while the work towards my goal was sometimes overwhelming, there was
more to this journey than experiments, papers, and conferences. Over these
years I shared many memorable moments, such as playing badminton with
Joris D., Thom, and Xueru, playing poker at Kseniya’s, having a dinner at
Jort’s, and driving his cat crazy with a laser pointer, participating in city games
with the speech group, watching probably the most relatable movie ever made
(The PhD movie), playing table tennis with Reza and Hasan, going to Emre’s
wedding, debating with Vincent over whether the Universe is infinite (a debate
that ironically seemed to go on forever), visiting the Christmas fair with Thom
and Xueru, sharing stimulating conversations with Alec, Bart, Joris P., Lyan,
Meng, and Wang. All these, and many more experience like these (coffee breaks
in the basement, lunches at the Alma) helped make my stay in Leuven more
welcoming than I could have hoped for.

There were, of course, many who helped and supported me in Hungary as well.
The SZESZT group, whose members I could always rely on for sharing their
experiences and explaining how to survive in the academic world, or for getting
me to try out new things. And I am also gratful for the support of my family,
always there to tell me to rest more, worry less, and to listen to my complaints
on deadlines, reviews, and papers.

Last but not least I would like to thank David P. Curley for examining this
thesis from a linguistic perspective.

Abstract

Speech technology today has a wide variety of existing and potential applications
in so many areas of our life. From dictating systems to voice translation, from
digital assistants like Siri, Google Now, and Cortana, to telephone dialogue
systems. Many of these applications have to rely on an Automatic Speech
Recognition (ASR) component. This component not only has to perform well,
but it also has to perform well in adverse environments. After all, a dictating
system which requires that we insulate our office, or a digital assistant that
cannot work in traffic, or in a room full of chatting people is not so helpful.
For this reason, noise robust ASR has been a topic of intensive research. Yet,
human-equivalent performance has not been achieved. This motivated many to
search for ways to improve the robustness of automatic speech recognition based
on human speech perception. One popular method inspired by the examination
of the receptive fields of auditory neurons is that of spectro-temporal processing.

In spectro-temporal processing, the aim is to capture the spectral and temporal
modulations of the signal simultaneously. One simple way to do so is to extract
the features to be used from spectro-temporal patches, and then use the resulting
features in the same manner one would use traditional features like MFCCs.
There is more than one way to bake a cake, however. And in this case this is
true twice over. For one, there are various ways to extract our features from
the patches. But there are other, more sophisticated ways to incorporate the
concept of spectro-temporal processing into a speech recognition system. In this
study we examine many such methods – some simpler, some more sophisticated,
but all stemming from the same basic idea. By the end of this study we
will demonstrate that these methods can indeed lead to more robust speech
recognition. So much so, that they can provide results that are competitive
with the state-of-the-art results.

iii

Abbreviations

ANN Artificial Neural Net
ARMA AutoRegressive Moving Average
ASR Automatic Speech Recognition

DCRN Deep Convolutional Rectifier Neural Net
DCT Discrete Cosine Transform
DNN Deep Neural Net
DRN Deep Rectifier Neural Net

FFNN Feature Finding Neural Net

HAS-RGAI Hungarian Academy of Sciences Research Group
on Artificial Intelligence

HMM Hidden Markov Model
HSR Human Speech Recognition

MFCC Mel-Frequency Cepstral Coefficient
MLP MultiLayer Perceptron

PER Phone Error Rate
PLP Perceptual Linear Prediction

RASTA RelAtive Spectral TrAnsform

SFFS Sequential Forward Floating Selection
SNR Signal to Noise Ratio

WER Word Error Rate
WFST Weighted Finite State Transducer

v

List of Symbols

S Spectral representation of a speech segment

SδW the frame size (in milliseconds) applied in getting the S spectral
representation

SνW the frame shift (in milliseconds) applied in creating the S spectral
representation

S#
F The number of filters used in the filterbank

P Spectro-Temporal Patch extracted from the spectral representation

P
δp
t The physical size of P patch in the time domain. It indicates how

many milliseconds are covered by the patch.

P
δp
f The physical size of P patch in the frequency domain.

P δtt The “technical” size of P patch in the time domain. It indicates how
many frames are covered by the patch.

P δtf The “technical” size of P patch in the frequency domain. It indicates
how many mel-channels are covered by the patch.

P#
f The number of patches used to cover the whole frequency domain.

P
νp
f The proportion of patches that overlap in the frequency domain.

P The originally 2-dimensional P patch written in vector form.

P
δt The length of P vector.

vii

Contents

Abstract iii

Contents ix

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Overview of the Speech Recognition Process 3

1.2 Digital audio . 4

1.2.1 TIMIT . 4

1.2.2 Aurora-4 . 7

1.2.3 “Szeged” Hungarian Broadcast news database 9

1.3 Feature Extraction . 10

1.3.1 Primary feature extraction 10

1.3.2 Secondary feature extraction 14

1.4 Acoustic Modelling . 17

1.4.1 Hidden Markov Model 18

1.4.2 Artificial Neural Networks 21

ix

x CONTENTS

1.4.3 The HMM/ANN Hybrid Model 24

1.5 Language Modelling . 25

1.5.1 N-gram models . 25

1.5.2 Language Model Scaling 26

1.6 Structure of the dissertation . 27

2 Spectro-Temporal Feature Extraction 29

2.1 Introduction . 30

2.2 2D DCT . 32

2.2.1 Phone classification experiments 34

2.2.2 Phone recognition experiments 40

2.3 Gabor filters . 44

2.3.1 Creating new filter sets 47

2.3.2 Filter sets in the literature 52

2.3.3 Experimental settings 53

2.3.4 Experiments and discussion 54

2.3.5 The problem with automatic feature selection 58

2.4 Conclusions . 62

3 The Joint Training of Spectro-Temporal Features and Neural Nets 63

3.1 Introduction . 64

3.2 Experiments using Sigmoid Networks 66

3.2.1 Limited context . 67

3.2.2 Expanded context . 69

3.3 Experiments using Deep Neural Networks 73

3.3.1 Experiments on clean speech using the TIMIT database 75

3.3.2 Experiments on noise contaminated speech using the
TIMIT database . 75

CONTENTS xi

3.4 Experiments using CNNs . 79

3.4.1 Adjusting the Structure of the Model 79

3.4.2 Experiments on clean speech using the TIMIT database 82

3.4.3 Experiments on noise contaminated speech using the
TIMIT database . 83

3.5 Conclusions . 85

4 The Multi-Band Processing of Speech using Spectro-Temporal
Features 87

4.1 Introduction . 88

4.1.1 Processing and Recombination of the Bands 89

4.2 Separate feature extraction and neural net training 90

4.2.1 Experimental settings 90

4.2.2 Phone recognition experiments on the TIMIT database 91

4.3 Joint training of spectro-temporal features and neural nets . . . 97

4.3.1 Neural net structure . 97

4.3.2 Recombination net . 99

4.3.3 Word recognition experiments on the Aurora-4 database 100

4.4 Conclusions . 102

5 Band dropout 103

5.1 Revisiting the joint training framework 104

5.1.1 Parameters and notations 104

5.1.2 Neural Networks . 108

5.1.3 Optimization of parameters 110

5.1.4 Delta and Acceleration coefficients 114

5.1.5 Experiments . 116

5.2 Band Dropout . 121

xii CONTENTS

5.2.1 Relation to Prior Work 122

5.2.2 Experiments . 124

5.3 Conclusions . 130

6 Summary 131

6.1 Spectro-Temporal Feature Extraction 131

6.2 The Joint Training of Spectro-Temporal Features and Neural Nets132

6.3 The Multi-Band Processing of Speech using Spectro-Temporal
Features . 133

6.4 Band dropout . 133

6.5 Conclusions and Future work 134

7 Summary in Hungarian 135

7.1 Spektro-temporális jellemzőkinyerés 135

7.2 A Spektro-temporális szűrők és neuronhálók együttes tanítása . 136

7.3 A beszéd többsávos feldolgozása spektro-temporális jellemzőkiny-
eréssel . 137

7.4 Sáv “dropout” . 137

7.5 Következtetések és jövőbeni munka 138

Bibliography 139

List of Publications 159

List of Figures

1.1 Overview of the speech recognition process. 3

1.2 Mel-Scale Filter Bank [236]. 11

1.3 Block schematic of ARMA feature extraction. 12

1.4 Comparison of spectral representations using the sentence “The
company previously traded over the counter” from the clean test
set of the Aurora-4 database. 14

1.5 Diagram of the perceptron model. 21

1.6 A simplified representation of a single neuron. 21

1.7 Linearly separable and linearly non-separable problems. 22

1.8 Artificial Neural Net with a hidden layer. 22

1.9 Representation of a hidden unit. 23

2.1 A short part of the log mel-spectral representation of the sentence,
“The company previously traded over the counter” from the clean
test set of the Aurora-4 database. The black boxes (left-to-
right) show the shape of the feature extraction patches used by
a) the classic MFCCs, b) the TRAP features, and c) localised
spectro-temporal features. 31

2.2 Basis functions of the 2D DCT for 7 by 7 matrices. 33

xiii

xiv LIST OF FIGURES

2.3 A short part of the log mel-spectral representation from the
sentence, “Cut a small corner off each edge” from the train set
of the TIMIT database. The boxes on the right show the degree
to which a given patch can be reconstructed from the proposed
coefficients using the inverse 2D DCT. 40

2.4 Examples of Gabor filters with a height and width of 9 units,
with the remaining parameters being Ω = [0.0, 0.9, 0.9] and ω =
[0.45, 0.45, 0.0], respectively (from top to bottom). 44

2.5 Part of the Manual set of Gabor filters (first row), and the filter
set corresponding to the 2D DCT coefficients used (second row),
with the corresponding filters vertically aligned to emphasise the
similarities. The patch size is 9× 9. 50

2.6 Part of the Manual set of Gabor filters (first row), and the filter
set corresponding to the 2D DCT coefficients used (second row),
with the corresponding filters vertically aligned to emphasise the
similarities. The patch size is 9× 9. 51

2.7 Examples from the SMK Gabor filter set (real part). 52

2.8 The phone recognition accuracy scores got on TIMIT core test
set after performing a random filter replacement on the SFFS
set. The quartiles shown correspond to the scatter of the scores
obtained when we repeated the neural net training ten times. . 60

3.1 Structure of the ANN for joint feature extraction and classification. 67

3.2 Structure of the ANN for joint feature extraction and classifi-
cation with weight sharing on neighbouring patches in the time
domain. 69

3.3 Plot of the sigmoid activation function (solid line), and the
rectifier activation function (dashed line). 73

3.4 Structure of the Deep Rectifier Neural Net (DRN) for joint feature
extraction and classification. 74

3.5 Structure of the Deep Convolutional Rectifier Neural Net (DCRN)
for joint feature extraction and classification. 80

LIST OF FIGURES xv

3.6 The frame-level error rates of the validation set as a function
of the step size (in the time domain) in neural networks using
different initialisation schemes – Gabor filters (solid line), 2D
DCT coefficients (dashed line) and Random initialisation (dotted
line). 81

4.1 Schematic representation of a spectro-temporal processing
schemes framework (see Chapter 2) and a typical multi-band
processing framework. Where the two methods diverge, their
process is represented by dashed/solid lines, respectively. 88

4.2 A representation of the lowest patch extracted in the presence of
mirroring (rectangle on the left hand side), and in the absence of
mirroring (rectangle on the right hand side). 95

4.3 Schematic representation of multi-band processing (A) and
traditional, full-band processing (B) for the joint training of
neural networks and spectro-temporal filter coefficients. 98

4.4 Frame-level classification error rates got using different multi-
band structures on 10% of the clean Aurora-4 training set as
a function of context size (reported scores are the average of 3
independently trained neural nets). 99

5.1 Illustration of the pooling described in Eq. 5.6. It shows the case
where P#i

t = 7, and Pνt
t = 2. 109

5.2 Structure of the Deep Convolutional Neural Net used, with the
maxout magnified for the sake of clarity. 120

5.3 Illustration of the CNN structure applied here, with (A) input
dropout, discarding randomly selected features (marked by blank
dots in the input of feature-extraction sub-layers), and (B) band
dropout, discarding the same amount of features, but with an
entirely different distribution. 121

List of Tables

1.1 The 61 phones originally used for transcribing the TIMIT
database [139]. 5

1.2 The 39-element list reduced from the 61-element list of phones
originally used for transcribing the TIMIT database [133]. . . . 6

2.1 Phone classification error rates using a spectrogram. 36

2.2 Phone classification error rates with the critical-band energy map. 37

2.3 Phone classification error rates with the critical-band energy map. 38

2.4 Phone classification error rates with the critical-band energy map. 39

2.5 Frame classification error rates got on the clean test set. 41

2.6 Phone error rates (PER) got on the clean test set. 42

2.7 Phone error rates (PER) got on the clean and noise contaminated
test sets. 42

2.8 Phone error rates (PER) of the 2-stage system. 43

2.9 Phone error rates (PER) got on the clean core test set of TIMIT
(the average of 10 independently trained neural nets). The best
score, and the scores not significantly different from it are shown
in bold. 54

2.10 Phone error rates (PER) got on the core test set of TIMIT,
contaminated with different types of noise. The best scores in
each column (and those scores not significantly different from it)
are shown in bold. 56

xvii

xviii LIST OF TABLES

3.1 Phone error rates (PER) got on the core test set of TIMIT (the
average of 20 independently trained neural nets). 68

3.2 Phone error rates (PER) got on the core test set of TIMIT (the
average of 20 independently trained neural nets, with a hidden
layer of 1000 neurons). 70

3.3 Phone error rates (PER) got on the core test set of TIMIT (the
average of 10 independently trained neural nets with a hidden
layer of 4000 neurons). 70

3.6 Phone error rates (PER) got on the core test set of TIMIT (the
average of 10 independently trained neural nets). 75

3.7 Phone error rates (PER) got on the core test set of TIMIT
contaminated with band-limited and pink noise using different
SNR values (reported error rates are the average of 10
independently trained neural nets). 76

3.8 Phone error rates (PER) got on the core test set of TIMIT
contaminated with Babble, Factory and Volvo noise, with
different SNR values (reported error rates are the average of
10 independently trained neural nets). 78

3.9 Phone error rates (PER) got on the clean core test set of TIMIT
(reported error rates are the average of 10 independently trained
neural nets). 82

3.10 Phone error rates (PER) got on the core test set of TIMIT
contaminated with Band-limited and Pink noise, with different
SNR values (reported error rates are the average of 10
independently trained neural nets). 83

3.11 Phone error rates (PER) got on the core test set of TIMIT
contaminated with Babble, Factory and Volvo noise, with
different SNR values (reported error rates are the average of
10 independently trained neural nets). 84

4.1 Phone error rates (PER) got on the clean core test set of TIMIT
(reported results are the average of 10 independently trained
neural nets), and the number of free parameters (in millions) for
the different settings. For both 2D DCT and Gabor filters, the
best score is highlighted in bold. 92

LIST OF TABLES xix

4.2 Phone error rates (PER) got with 2D DCT features and Gabor
filters on the core test set of TIMIT, artificially contaminated
with band-limited noise and pink noise (reported error rates are
the average of 10 independently trained neural nets). 93

4.3 Phone error rates (PER) got with 2D DCT and Gabor features
on the core test set of TIMIT, artificially contaminated with
Babble, Car and Factory noise samples (reported error rates are
the average of 10 independently trained neural nets). 94

4.4 Phone error rates (PER) got on the clean core test set of TIMIT
and its noise contaminated versions with different Signal to Noise
ratios (SNR) using Gabor filters (reported error rates are the
average of 10 independently trained neural nets). Where the
difference between the two columns was significant (p < 0.05)
the lower error rate is highlighted in bold. 96

4.5 Word Error Rates (WER) on the test sets of the Aurora-4 corpus
(reported scores are the average of 3 independently trained neural
nets). 101

5.1 Parameter settings used in the time domain. 112

5.2 Parameter settings used in the frequency domain. 112

5.3 Phone error rates (PER) on the validation set using monostate
and tristate phone models. Reported error rates are the average
of 10 independently trained neural nets. (The best error rate
and those not significantly different from it are highlighted in
the monostate case and the tristate case as well). 113

5.4 Phone error rates (PER) got on the core test set of TIMIT
(Reported error rates are the average of 10 independently trained
neural nets). Here, the best score (and those not significantly
different from it) is highlighted in bold. 116

5.5 Phone error rates (PER) presented in the literature, on the core
test set of TIMIT. The best score is highlighted in bold. The
score got by us is highlighted in Italics. 117

5.6 Average word error rates (WER) on the Aurora-4 speech corpus
(the results reported are the average of 5 independently trained
neural networks). Here, the best score (and those significantly
not different from it) is highlighted in bold. 118

xx LIST OF TABLES

5.7 Word error rates (WER) got on the Aurora-4 test set in the
multi-condition training scenario. The best score is highlighted
in bold, while our result is highlighted in Italics. 119

5.8 The effect of band dropout on the frame error rates for the train
and development sets, and on the word error rates for the test
set (using the mel-spectral features and the multi-conditional
training set). The baseline (no dropout) score is given in the
P = 0 column. 125

5.9 Word error rates (WER) obtained with various versions of input
dropout on the Aurora-4 task, using the mel-spectral features. . 126

5.10 Word error rates (WER) obtained with various versions of input
dropout on the Aurora-4 task, using the ARMA features. . . . 127

5.11 The performance of the CNN when operating on the mel-
spectrum and the ARMA features without dropout and with
band dropout, using only the clean training set. 128

5.12 Comparing the band dropout result on ARMA features with our
baseline, our earlier results, and with results cited in the recent
literature, when using the clean training scenario. 129

Chapter 1

Introduction

Automatic Speech Recognition (ASR) in general is a task where the computer
has to transcribe the sound detected by a microphone to a sequence of phones
or words. There are many variations of the general task that can make it
more or less difficult. With regard to the speaker for example, ASR may be
speaker-dependent [52], where the computer only has to recognise the speech
of a few or just one speaker, or it may be speaker-independent [93], where the
computer has to recognise speech, regardless of the speaker’s identity. The
difficulty of the ASR task can also vary based on the size of the dictionary, the
scope of which may extend from a few digits [135], to millions of words [61, 62].
There are many other variations in the ASR task, such as speech that is read
or spontaneous speech, speech from non-native speakers, dysarthric speech,
and speech from speakers with a heavy accent. For the purposes of this study
however, the most important parameter is the presence or absence of noise.

In today’s age when speech technology permeates our life, its noise robustness
becomes more important. The ASR applications of today have moved out
of our computers and into our cars, phones, and even watches. We can take
them with us anywhere, but if we actually want to use them in all the different
environments we inhabit (running cars, crowded bars, or busy streets), they
have to be able to cope with a large variety of noise. In other words, we require
speech recognition applications to be noise robust, similar to human speech
perception. In all of these environments, when the conditions are not extreme,
we can understand each other quite easily. Machines, however, despite the steady
progress made, are only recently getting close to human performance [154, 200],
and clearly fall behind when noise is introduced [140], regardless of whether it
is a task of phone classification [153] or word recognition [151].

1

2 INTRODUCTION

This gap in performance between Human Speech Recognition (HSR) and
Automatic Speech Recognition (ASR) motivated many researchers to urge
a closer collaboration between the two fields [21, 28, 78, 150, 202]. The rationale
behind this proposal is that by studying the system that is working more
effectively (i.e. human speech understanding), we should be able to improve
the system that is less effective (i.e. ASR). Not by copying the former note
for note, but by striving to understand which of its properties are relevant for
decoding the speech signal and improving the performance of the latter [80].
Different approaches have been proposed that take inspiration from human
speech understanding. For example, some try “to make computers learn
speech, like a baby does” [46]. This approach has the advantage of not relying
on preprogrammed linguistic knowledge (like phoneme sets, dictionaries and
acoustic models), as this knowledge may be acquired through interactions with
the user. It is also possible to base our efforts on knowledge about human
auditory processing [111]. We have seen the success of the latter approach on
several occasions. For instance, modelling human hearing’s decreased sensitivity
at higher frequencies (above 1000 Hz) with the mel-scale leads to improved
speech recognition performance [104]. Perceptual Linear Prediction (PLP) [79]
is another technique that works by approximating certain properties of hearing,
and was shown to be advantageous in ASR [9, 103]. There are several other
methods available that can improve ASR performance based on the analysis of
auditory processing, one of which is called spectro-temporal processing.

In the early ’80s Aertsen et al. examining the auditory system of grassfrogs
coined the phrase, Spectro-Temporal Receptive Field (STRF) [5, 6] to describe
the spectro-temporal sensitivity of auditory neurons. Later, experiments on
other animals reinforced the notion that these cells in the auditory cortex are
tuned to localised spectro-temporal modulations [36, 218]. It was also indicated
that processing works with spectro-temporal patterns, instead of consecutive
steps of spectral and temporal filtering [45]. These results lead to the idea of
spectro-temporal processing [116], which seeks to capture these spectro-temporal
modulations in speech using various methods. In this thesis we will focus on
some of these methods, and propose new techniques inspired by them.

As mentioned before, we do not intend to examine whether the observed
improvement in performance (when there is such) is due to the given methods’
roots in auditory processing, nor do we intend to investigate whether applying
these methods indeed makes ASR more similar to HSR. Although we will try
to go beyond raw data by outlining our motivation, and drawing conclusions
that reach further, our main focus will be on accuracy scores and error rates.
The main question we ask will be whether the proposed methods improve
the recognition performance. We will do so using three tasks; namely phone
classification, phone recognition and word (continuous speech) recognition.

OVERVIEW OF THE SPEECH RECOGNITION PROCESS 3

1.1 Overview of the Speech Recognition Process

Here, an overview of the experiments performed will be given. These experiments
were mainly carried out in an HMM/ANN hybrid architecture, the main modules
of which are depicted in Figure 1.1. As the task is to transcribe the speech
signal picked up by the microphone, the first step is to convert the speech
to a format suitable for digital processing. This step entails the analogue-
digital conversation of the signal, by sampling and quantisation [104]. Once
digitisation is performed, the next step is feature extraction. For the purposes
of this thesis, this step will be discussed as two separate steps. In the first
one, a spectral representation is extracted from the speech signal, and then
this representation is used in the second step to extract the features used as an
input in the HMM/ANN hybrid. Following Kleinschmidt [116], the two parts
will be referred to as primary and secondary feature extraction respectively.
The output of this step is a feature vector corresponding to given time-slices
(or frames) of the speech. In the case of a phone classification task, the features
corresponding to the same phone are aggregated and the resulting feature vector
is used in the neural net for classification. In the case of a phone recognition or
word recognition task, the individual frames are processed by the neural net,
which assigns a set of probability values to these frames, each signifying the
probability that the given frame comes from a certain phoneme model. These
probability values are used by the HMM to transcribe our input as a series of
phones in a phone recognition task; or in the case of a word recognition task,
to provide input for the decoder (which is typically implemented by a Weighted
Finite State Transducer - WFST), so that it can transcribe the input as a series
of words [183]. Figure 1.1 shows that both for the recognition of phones and
words in continuous speech, a language model is used. The technique used for
this in the experiments will also be shortly described in the following sections,
where I further elaborate on the different modules. I will do so, with emphasis
on describing techniques that can be applied in the given step to increase the
noise robustness, in order to put my work in context with earlier efforts in
achieving noise robust ASR.

Figure 1.1: Overview of the speech recognition process.

4 INTRODUCTION

1.2 Digital audio

The two steps of digitisation (the process of converting the analogue speech
signal to a digital one), are called sampling and quantization. Sampling is
performed by measuring the amplitude of the signal at a particular point in
time. An important parameter of this step is the frequency of sampling, i.e. the
number of measurements taken in a second. It has been known for a long time
that the frequency of sampling (or sampling rate) should be at least twice as
high as the highest frequency component of the signal [143]. This frequency is
of course different for each signal. For human speech, a 20 kHz sampling rate
would be needed for pefect quality, but for microphone speech (as we will later
see) 16 kHz is often used [104]. As even a 16 kHz sampling rate means sixteen
thousand measurements every second, the results of these measurements have to
be stored efficiently. Quantization is applied for this reason, where real-valued
numbers are represented as (16-bit) integers. As in the experiments carried out
for the thesis digitisation was not performed, and instead previously digitised
speech from various speech corpora was used, the bulk of this section will focus
on describing these speech databases.

1.2.1 TIMIT

Upon creating a single language database, many design considerations have to
be taken into account. Design considerations, such as the phonetic coverage
of the language (the occurrence of phonemes and phoneme tuples), different
speaking styles (isolated words, read speech, and spontaneous/conversational
speech), and distribution of speakers (taking into consideration age, sex, and
dialect). The same was true for the TIMIT speech corpus, which was created
as a joint effort by Texas Instruments (TI), the Massachusetts Institute of
Technology (MIT) and SRI International [129].

Regarding speaking style, TIMIT is a read-speech corpus, consisting of sentences
read out by different speakers. These sentences were selected from three sets.
The first set (made up of 2 sentences), namely the calibration sentences (provided
by SRI) was created in such a way as to provide significant dialectical differences.
The second set (450 sentences provided by MIT) was also manually created to
provide an adequate phonetic coverage. The last set (1890 sentences provided
by TI) was automatically created, as manual creation of sentences was not only
a complex and time-consuming task, but also resulted in sentences lacking in
stylistic variety [128]. In my experiments, the second and third sets of sentences
were used.

DIGITAL AUDIO 5

To ensure speaker variability, creators of the corpus accounted for such
variables as gender, age, height, race, education level, and dialect region of
the speakers [59]. The dialects were grouped into 8 categories; namely, New
England, Northern, North Midland, South Midland, Southern, New York City,
Western, and “Army Brat” (for the speakers who had changed their residence
many times). Sentences from the MIT set were each recorded from 7 speakers,
while each sentence in the automatically genereated TI set was read by only
one speaker. These recordings were digitised using a 16 kHz sampling rate.

Once the sentences were recorded, train/test partitioning had to be carried out.
Here, the training set consists of 3696 sentences (with a combined duration of
3.14 hours), from 462 speakers. The test set has two versions. The full test set
consists of 1344 sentences (with a combined duration of 0.81 hours) from 168
speakers, while the core test set has 192 sentences (with a combined duration
of 0.16 hours) got from 24 speakers (from each dialect region, the sentences
of 2 male and 1 female speaker were used) [139]. Despite its relatively small
size, TIMIT still has an important role in testing new ideas, as improvements
achieved on it can be observed to scale to larger speech corpora [199].

Another important question is the recognition task to undertake on a database.
The tasks carried out here on the TIMIT speech database were frame recognition,
and phone classification and recognition. Originally, transcription of the
database was done using 61 phonetic labels (see Table 1.1). In some experiments

Table 1.1: The 61 phones originally used for transcribing the TIMIT
database [139].

Phone Example Phone Example Phone Example Phone Example
iy beet ax about zh azure hh hay
ih bit ix debit f f in hv ahead
eh bet axr butter th thin el bottle
ey bait ax-h suspect v van bcl b closure
ae bat jh joke dh then dcl d closure
aa bob ch choke m mom gcl g closure
aw bout b bee n noon pcl p closure
ay bite d day ng sing tcl t closure
ah but g gay em bottom kcl k closure
ao bought p pea nx winner q glotal
oy boy t tea en button stop
ow boat k key eng Washington pau pause
uh book dx muddy l lay epi epenthetic
uw boot s sea r ray silence
ux toot sh she w way h# begin/end
er bird z zone y yacht marker

6 INTRODUCTION

Table 1.2: The 39-element list reduced from the 61-element list of phones
originally used for transcribing the TIMIT database [133].

Label Phone Example Folded Label Phone Example Foldedno. no.
1 iy beet 23 dx muddy
2 ih bit 24 s sea
3 eh bet 25 sh she
4 ey bait 26 z zone
5 ae bat 25 zh azure
6 aa bob 27 f f in
7 aw bout 28 th thin
8 ay bite 29 v van
9 ah but ax-h 30 dh then
6 ao bought 31 m mom em
10 oy boy 32 n noon nx
11 ow boat 33 ng sing eng
12 uh book 32 en button
13 uw boot ux 34 l lay
14 er bird axr 35 r ray
9 ax about 36 w way
2 ix debit 37 y yacht
15 jh joke 38 hh hay hv
16 ch choke 34 el bottle
17 b bee 39 cl (sil) unvoiced pcl,tcl
18 d day closure kcl,q
19 g gay 39 vcl (sil) voiced bcl,dcl
20 p pea closure gcl
21 t tea 39 epi (sil) epinthetic closure
22 k key 39 sil silence h#,pau

this phone set was used for training purposes, while in others 183 tri-state
monophone phone models or 858 triphone tri-state phone models were used.
But in all cases of evaluation (and some cases of training), a modified version
of this list was used, where the 61 phonetic labels were reduced into a 39-item
list, according to the suggestions of Lee and Hon [133], which has become the
standard for evaluation [139]. For this first they identified 15 allophones, and
folded them, creating a list of 48 possible labels. Then they identified 7 groups on
the shortlist ({sil, cl, vcl, epi},{el, l},{en, n},{sh, zh},{ao, aa},{ih,ix},{ah, ax}),
where within-group confusions were not counted. This process (see Table 1.2)
lead to 39 labels. When otherwise not specified, these 39 labels were used for
phone recognition, with a simple bi-gram language model.

DIGITAL AUDIO 7

The focus of this study is automatic speech recognition in adverse environments
(i.e. with noise contaminated speech). The TIMIT speech corpus, however, is
comprised of only clean speech data. Because of this, to examine the noise
robustness of methods studied here, different types of noises had to be added
to the original test sentences. These included both real-life and artificial noise
types, namely

• Babble noise: real-life noise, simulating the effect of people talking in the
background;

• Factory noise: real-life noise, simulating the effect of a nearby production
line working;

• Volvo noise: real-life noise, recorded in a running car with its engine
running

• Pink noise: artificial noise that has the highest energy at 0 Hz, and tails
off at higher frequencies; and

• Band-limited noise: artificial noise created in our research group by
filtering white noise with a bandpass filter active between 3000 Hz and
5000 Hz

These real-life noise types were taken from the freely available samples of the
Noisex-92 database [230], and both the real-life noise types and the band-limited
noise were added to the original sound file with various signal to noise ratios
(SNR) using the FaNT tool [86]. The test set contaminated with pink noise was
provided by Jake Bouvrie [24].

1.2.2 Aurora-4

Another English language database used during the experiments in this study
was the Aurora-4 corpus [175]. This is a standard large vocabulary continuous
speech database that, like the TIMIT speech corpus, was built upon read-
speech. Aurora-4 was created based on the DARPA (Defense Advanced Research
Projects Agency) Wall Street Journal corpus [177], which contains sentences
taken from newspaper articles that had been published in the Wall Street
Journal between 1987 and 1989. Similar to the TIMIT corpus, these recordings
were created with a sampling rate of 16 kHz, but in order to test the degradation
of speech recognition performance in different environments, it also contains
a version that is downsampled to a 8 kHz sampling rate. In the experiments
conducted here, however, only the former was utilised.

8 INTRODUCTION

Aurora-4 is also partitioned into training and test sets. The training set contains
recordings taken from 83 speakers, for a total of 15 hours, and it has two versions.
One contains only clean speech (7138 utterances) recorded with a Sennheiser
HMD-414 close-talking microphone. This allows one to test how well a speech
recognition system performs when the train and test conditions are mismatched.
In the other version of the training set (7137 utterances), several utterances are
replaced with their counterparts that are noise contaminated (with car, babble,
restaurant, street, airport, or train noise) and/or recorded with secondary
microphones (secondary microphones that included common microphone types
such as Crown PCC-160, Sony ECM-50PS, and a Nakamichi CM100) [175].
Training a system on this set allows one to test its performance when one knows
beforehand the type of noise and microphone mismatch that will occur during
testing.

The test set contains 14 subsets, each consisting of the same 330 sentences.
These sentences were spoken by 10 speakers (33 sentence per speaker). The first
seven subsets were recorded with the primary (Sennheiser) microphone, while
the second seven subsets were recorded with different, secondary microphones.
Out of the seven subsets for both groups, the first one consists of clean speech,
while the other six consists of speech subsequently contaminated with one of
the six different types of noises with an SNR between 5 dB and 15 dB. Results
of the test set are commonly reported in 4 groups:

• Test set A: results on clean speech recorded with the Sennheiser
microphone;

• Test set B: results on speech recorded with the Sennheiser microphone
and contaminated with different types of noise;

• Test set C: results on clean speech recorded with the secondary
microphones; and

• Test set D: results on speech recorded with the secondary microphones
and contaminated with different types of noise.

The task on the Aurora-4 database is large vocabulary continuous speech
recognition (LVCSR). An evaluation of the task was carried out on the above
mentioned test sets A, B, C and D. As the sentences for the test set were selected
in such a way that a 5000 word dictionary (distributed with the corpus) covers
them all, there are no out-of-vocabulary (OOV) errros in the evaluation. Thus
the richness of the language model does not affect the recognition accuracy,
which means that we should get a clearer comparison of acoustic models.

DIGITAL AUDIO 9

1.2.3 “Szeged” Hungarian Broadcast news database

The third speech database used during the experiments performed here was a
corpus of Hungarian Broadcast News, recorded and transcribed at the Research
Group on Artificial Intelligence (HAS-RGAI), belonging to the Hungarian
Academy of Sciences and the University of Szeged Informatics Department [226].
For the database, 70 news broadcasts were recorded from 8 different television
channels. These recordings were cut into few sentence long blocks, and the
resulting segments were placed into one of the following categories:

• Clean speech: speech in this category is well articulated, mostly planned,
and has a minimal level of background noise. Most recordings in this
category were originally filmed in a studio, and were spoken by professional
newscasters. This is the category from which recordings were used in our
experiments.

• Noisy speech: speech in this category is still mostly planned, but it has a
higher level of background noise. Recordings in this category are typically
taken from on-site reporters speaking in a noisy environment.

• Spontaneous speech: speech in this category is spontaneous, typically
coming from an interviewee, whose speech is not necessarily as well
articulated as that of an interviewer or professional newscaster.

Recordings of the 70 newscasts were partitioned into a train set, a development
set, and a test set: 44 newscasts (altogether approximately 5.5 hours) were
used for training, 9 newscasts (altogether approximately 1 hour) were used
for development and validation, while the remaining 17 newcasts (altogether
approximately 2 hours) were used for testing purposes. This partitioning of
newscasts was carried out in such a way that each set contained recordings from
all television stations. All the recordings were orthographically typed, and the
corresponding transcripts were created with a simple phonetic transcriber. The
phonetic labels of the database consist of 52 categories. Here, the task in the
experiments conducted on the “Szeged” Hungarian Broadcast news database
was to recognise these 52 phones in speech.

10 INTRODUCTION

1.3 Feature Extraction

1.3.1 Primary feature extraction

In primary feature extraction our task is to generate the spectral representation
S of the digital audio. This should tell us how the different frequencies making
up the signal change in time. Several such representations are used in the speech
recognition literature, the most successful of which incorporate attributes of
human hearing into the process [157]. Here, some of the most popular ones will
be outlined.

Mel-scale spectrum

Used as a preliminary step in extracting MFCC features, but also as a primary
feature extraction step for other methods, the production of the log mel-scale
spectrum is carried out in four steps:

1. Pre-emphasis: To compensate for the high-frequency parts of the signal
being suppressed during speech production [147], the speech signal is sent
to a pre-emphasis filter. The most commonly used filter for this purpose
is a Finite Impulse Response (FIR) filter that is characterised by the
following formula [46]

Hpre(z) = 1− aprez−1. (1.1)

2. Framing and windowing: As the first step, short segments of speech
have to be selected, where we can assume the signal to be stationary [104].
We do so by applying a sliding window on the signal (the part of speech
signal that is selected by the window is called a frame [46]). This windowing
process is defined by several important parameters. One is the width of
these windows (SδW) for which candidates are typically between 20 and 30
milliseconds [180]. Another important parameter is the timespan between
the beginning of two consecutive windows (or the offset of the windows
- SνW), determining the frame shift, which is usually between 10 and 20
milliseconds [180]. Another important parameter in this process is the
shape of these sliding windows. The role of the properly chosen shape here
is to emphasise the middle of the frame, and to prevent high-frequency
artifacts that might result from the windowing process [180]. Several
types of windows can be used (Dirichlet, Triangle, Hamming, Hanning,
etc.), but the use of Hamming windows is the most common [76].

FEATURE EXTRACTION 11

Figure 1.2: Mel-Scale Filter Bank [236].

3. Spectral analysis: To extract spectral information from our windowed
signal, we perform a spectral analysis on it. This allows us to learn how
much energy the signal contains at different frequency bands [104]. This is
often carried out via the Fast Fourier Transform (FFT). We can visualise
this information using a spectrogram that represents the energy of the
signal at every frequency, at every point in time [46].

4. Mel-filtering: It has been shown that the sense of pitch (the perception
related to frequency) in the human auditory system is proportional to
the logarithm of the tone’s frequency [179]. Various models exist of the
pitch perception scales, such as the mel-scale, the Bark scale and the
ERB scale [83]. Here, the mel-scale is used, defined by the following
formula [236]

mel(f) = 2595log10(1 + f

700) (1.2)

For the implementation of this filterbank in the HTK toolkit, the
magnitude coefficients from the FFT are binned by correlating them with
each triangular filter (see Figure 1.2). The triangular features normally
span from 0 Hz to the Nyquist frequency, but it is also possible to
implement lower- and upper-frequency cutoffs. After filtering, as a last
step, the log of each mel spectrum value is calculated. The reasoning
behind this is twofold. For one, the human response to signal level is
approximately logarithmic. Furthermore, calculating the logarithm makes
the results less sensitive to variations in the input [104].

12 INTRODUCTION

Figure 1.3: Block schematic of ARMA feature extraction.

Power Normalised Spectrogram (PNS)

A primary feature extraction method utilised to improve the robustness of the
resulting features against environmental differences is the extraction of the
Power Normalised Spectrogram (PNS) [112]. The first steps in the extraction
of PNS are very similar to what we saw in the case of the mel-scale spectrum.
Both start with a pre-emphasis, followed by framing and windowing, and then
by a spectral analysis. However in producing the PNS, instead of the triangular
filters used in creating the mel-scale spectrograms, the Gammatone auditory
filterbank is used [176]. This step is followed by a medium-time power bias
subtraction. After which, similar to the log mel-scale spectrum, a nonlinearity is
applied on the results. However in this case the logarithmic function is replaced
by a power-function nonlinearity, which results in the output being close to
zero when the input is very small, a property that matches the observations
about human auditory processing [112]. The resulting representation can be
exploited to create Power Normalised Cepstral Coefficients (PNCC) or used as
an input for secondary feature extraction methods like the application of Gabor
filters [31].

AutoRegressive Moving Average (ARMA) spectrogram

The last primary feature extraction method to be discussed here is also the
most recently introduced one. The AutoRegressive Moving Average (ARMA)
feature extraction method was published by Ganapathy in 2015 [57]. Similar to
many other techniques discussed in this study, this method was also developed
to achieve noise robust results, even in the presence of a mismatch between the
training and test environment. The block schematic of ARMA processing is
shown in Figure 1.3.

FEATURE EXTRACTION 13

The ARMA features are derived using AutoRegressive Moving Average
spectrogram modelling. This process is a generalisation of the traditional AR
modelling and it can estimate band-pass characteristics, while the AR modelling
typically estimates low-pass characteristics [57]. The ARMA modelling approach
is applied on the sub-band DCT components to estimate the temporal
envelopes. The ARMA filtered envelopes are converted to a short-term spectral
representation by energy integration. Afterwards, a linear prediction-based
spectral smoothing is applied on this spectrogram.

Let x[n] denote the input signal for n = 0, ... , N − 1 (N corresponds to 1000
ms here) and let X[k] denote DCT components of the signal x[n]. In the
proposed framework, the DCT components are used in an ARMA modelling
framework to estimate the sub-band envelope. Specifically, the set of coefficients
al, l = 1, ... , p and bm,m = 1, ... , q are estimated such that

X[k] =
p∑
l=1

alX[k − l] +
q∑

m=0
bmU [k −m], (1.3)

where p, q denote the model order of the AR and MA components and U [k]
denotes a zero-mean white noise signal. The AR model is a special case of the
ARMA model with bm = 0, for m > 0. The ARMA envelope is given by

Êx[n] = |
∑q
m=0 bme

−i2πmn|2

|
∑p
l=0 ale

−i2πln|2
(1.4)

The ARMA envelope is the AR envelope (denominator) multiplied by a finite
impulse response (FIR) filter provided by the MA modelling (numerator). The
MA filter acts as a modulation filter over long temporal regions of signal. Hence,
ARMA modelling combines AR estimation with a data-driven modulation filter.
Here, gain-normalised ARMA envelopes (a0 = 1 and b0 = 1) are used. The
estimation of ARMA model parameters is more cumbersome than that of AR
modelling and an iterative gradient descent approach is employed [142]. For the
ARMA spectrogram estimation, p = 40, q = 6 poles per second per sub-band
is used. Also a compression factor of 0.2 is used on the MA part for envelope
computation.

Lastly, the ARMA filtered temporal envelopes were processed with spectral
smoothing using linear prediction. This is achieved by integrating the sub-band
ARMA envelopes in windows of 25 ms duration with a shift of 10 ms. The
resulting spectrally smoothed ARMA spectrogram coefficients serve as primary
features. The ARMA spectrogram used in the experiments consisted of 39
spectral bands, which was supplemented by the same number of derivative-
like features got as the difference between neighboring bands (band(K + 1)−
band(K − 1)).

14 INTRODUCTION

Speech Spectrogram

0.5 1 1.5 2 2.5 3 3.5 4

Time

0

2000

4000

6000

8000
F

re
qu

en
cy

Log Mel-scale Spectrum

50 100 150 200 250 300 350 400

Frame index

5

10

15

20

25

C
ha

nn
el

 fr
eq

ue
nc

y
in

de
x

Power Normalized Spectrum

50 100 150 200 250 300 350 400

Frame index

10

20

30

40

C
ha

nn
el

 fr
eq

ue
nc

y
in

de
x

ARMA Spectrum

50 100 150 200 250 300 350 400

Frame index

10

20

30

C
ha

nn
el

 fr
eq

ue
nc

y
in

de
x

Figure 1.4: Comparison of spectral representations using the sentence “The
company previously traded over the counter” from the clean test set of the
Aurora-4 database.

Figure 1.4 shows the difference between the spectral representations described
here (and the simple spectrogram), on a sentence taken from the clean test set
of the Aurora-4 database. Here, for better visualisation, the ARMA spectrum
does not include the derivative-like features.

1.3.2 Secondary feature extraction

Obtaining a spectral representation such as the mel spectral features (or their
logarithmised version) is only the first step in the process of feature extraction.
For dimensionality reduction reasons, and also to reduce the interdependency
of the features [46], further processing steps are employed. Although Deep
Neural Nets (DNNs) are shown to be capable of successfully using primary
features (such as the log mel spectral features) as their input [68, 162, 188,
223], it has been shown that the use of robust secondary features can still be
beneficial [145, 146] especially when there is a mismatch between the training
and testing environment [30].

FEATURE EXTRACTION 15

Mel-Frequency Cepstral Coefficient (MFCC)

By applying the DCT on the log mel-spectral feature vectors derived from the
primary feature extraction, we transform our data into cepstral space. This
representation has the advantage of separating the glottal source (fundamental
frequency, details of the glottal pulse, etc.) and the filter (vocal tract), which
will be useful in distinguising different phones [104]. It also has the added benefit
of its coefficients being less interdependent than log mel-spectral features [46].

When extracting features for phone recognition, it is common practice to just
keep the first 12 cepstral values (representing information related to the vocal
tract), along with the energy from the frame [104]. Then the ∆ (velocity) and
∆∆ (acceleration) coefficients are calculated from the resulting 13 features in
the following way using a wide context:

∆T =
∑Θ
θ=1 θ(cT+θ − cT−θ)

2 ·
∑Θ
θ=1 θ

2
, (1.5)

where ∆T is the ∆ coefficient at T time calculated from the coefficients between
cT−θ and cT+θ [236]. This results in a 39 dimensional feature vector. As the
MFCC is a widely used feature set [58], in the experiments we often used the
results obtained using MFCC as a baseline of comparison to the results achieved
with features obtained using more sophisticated feature extraction methods.

Perceptual Linear Prediction (PLP)

Another widely used feature extraction method is the Perceptual Linear
Prediction (PLP) [87] method. Similar to spectro-temporal feature extraction
it was proposed in order to incorporate auditory-like features into speech
processing [157]. While originally it was designed to work on a Bark scale
spectrogram [79] (where the Bark pitch perception scale is used instead of
the mel-scale), “there seems to be no intuitive reason why the Bark filter-
bank should be optimal for PLP” [87] (indeed Hönig et al. found a decrease
in WER when the Bark scale was replaced with the mel-scale), hence some
tools (such as the HTK toolkit) compute the PLP features based on the
standard mel-scale spectrum [236]. Regardless of the perception scale used,
after the transform to the pitch perception scale, two more psychophysically
inspired transformations are used; these being equal-loudness preemphasis
(to approximate the sensitivity of human hearing at different frequencies, as
described by Robinson and Dadson [194]), and the application of the intensity-
loudness power-law (to approximate the power-law of hearing [213]). Following
these steps an Inverse Discrete Fourier Transform (IDFT) is applied, then the
PLP coefficients are provided by Autogregressive Modelling.

16 INTRODUCTION

Power Normalised Cepstral Coefficients (PNCC)

In its original implementation the Power Normalised Cepstral Coefficients
(PNCC) are derived from the PNS by applying a Discrete Cosine Transform on it,
followed by mean normalisation [112]. The resulting feature set has been shown
to lead to a better recognition accuracy than MFCC or RASTA-PLP processing
in the presence of common additive noise types, and reverberation [113]. It
was also heroded as the new feature set that is the most promising for robust
ASR [108, 109]. However the noise robustness of the PNCC has a downside
because it has a lower performance (compared to MFCC or PLP) under clean
speech conditions [168]. Furthermore, the effectiveness of PNCC features
strongly depends on the initialisation of the initial power parameter, especially
in the case of short speech segments [53].

Spectro-temporal feature extraction

There are various different approaches for capturing spectro-temporal modula-
tions that are intended to increase ASR robustness. For the purposes of speech
recognition, it is likely that auditory-based approaches would be useful [116].
As later Gabor filters and 2D DCT will be examined at length, these methods
will not be discussed here (for more details, see Chapter 2). A discussion of
spectro-temporal features here will be confined to a short description of two
additional methods:

• Sigma-pi cells: originally proposed to be used as features for isolated
word recognition, this method entails the multiplicative combination
of two spectro-temporal windows, using multiplier cells to perform a
logical AND function [67]. It was also shown that, applied in the
right combination, this method can be applied for signal-to-noise ratio
estimation [119]. A generalisation of the original method for multiple
windows and variable window sizes was successfully used in noise robust
isolated word recognition [115]. Sigma-pi cells have also been successfully
employed for the task of automatic stress detection in speech [77].

• Fuzzy logic units: an extension of the sigma-pi cell feature extraction
method, to account for its ambiguity, with other fuzzy logical operations
(OR, NOR, NAND) [115].

ACOUSTIC MODELLING 17

1.4 Acoustic Modelling

Before discussing the Acoustic Model in detail, we should first take a step
back and ask ourselves what our goal is. In Section 1.1, it was mentioned
that continuous speech recognition and phone recognition were the tasks to be
performed. But how can we formalise these tasks? The explanation of it here
will be presented following the thought process of Jurafsky and Martin [104]:

Let us think of the speech segment of duration t we hear (or in other words,
observe) as a series of observations O (where O = o1, o2, ..., ot). We expect
the computer to take this speech, and transcribe it as a W sequence (where
W = w1, w2, ..., wn) of words (or subword units – for example phones). That is
to say, we expect the computer to select the best sentence (which in our case is
the most probable sentence) from all the possible sentences, given observation
O. The following equation formalises this notion:

Ŵ = argmaxW∈LP (W |O), (1.6)

where L is the set of all possible sentences in the given language.

Applying the Bayes-rule

P (A|B) = P (B|A)P (A)
P (B) (1.7)

to this, we get the following:

Ŵ = argmaxW∈L
P (O|W)P (W)

P (O) (1.8)

Since P (O) is constant for observation O (as its value does not depend on the
present selection of sequenceW), for the purpose of obtaining the most probable
sentence, it should suffice to solve the following:

Ŵ = argmaxW∈LP (O|W)P (W) (1.9)

This means that the most probable sentence (Ŵ) can be determined from
the conditional probability of observation O given sentence W (P (O|W)) and
the probability of sentence W (P(W)) by calculating their product for each
sentence, and selecting the sentence for which this value is the highest. The
latter probability could be got from the language model (see Section 1.5), while
the former probability could be got from the acoustic model (which in our case
will be a HMM/ANN hybrid – see sections 1.4.1 to 1.4.3).

18 INTRODUCTION

1.4.1 Hidden Markov Model

Although in the HMM/ANN hybrid model [166] the application of ANNs
precedes the application of HMMs, we can better understand the model if here
this order is reversed. A HMM model is an automaton, defined by the following
tuple: M = (Q,A,B,Σ), where

• Q is the finite, N-element set of states (while the number of hidden states
can also be countably infinite [14], this simplication could be used in this
short discussion of the topic, for the sake of brevity), where qo and qF
∈ Q are special states, the starting and end state.

• A is a matrix of transitional probabilities of a size N times N. Here aij ∈ A
denotes the probability of the model undergoing a transition from the i-th
state to the j-th state (the main diagonal containing the probability of
transition to the same state; in other words, the probability of remaining
in the same state).

• B is the set of emission probabilities. It describes for observation ot ∈ Σ
and for each qi ∈ Q the probability of the observation emitted by qi state
(bi(ot))

• Σ is the set of emissional symbols. When this set is discrete, B can also
be treated as a matrix, in which rows correspond to states and columns
correspond to emissional symbols (or the other way around), and each
value in the matrix describes the probability of the given state emitting
the given symbol.

From this description it can be seen that a number of implicit assumptions have
been made about the use of HMMs as acoustic models. One assumption is that
we can transcribe speech as a discrete series of symbols taken from a finite (or
countably infinite) set and that these symbols can be mapped to the states of
the HMM. Another implicit assumption can be deduced from the use of the
matrix of transitional probabilities: the way A matrix is set up suggests that if
at a t time the HMM is in the state qt, the probability of the HMM being in
any given state at t+ 1 time only depends on the current state (qt), and not on
the state the model was in the t− 1 or t− 2 or any previous step. Formally,

P (qt+1|qt, qt−1, ..., q0) ≈ P (qt+1|qt) (1.10)

This is called the Markov assumption.

ACOUSTIC MODELLING 19

Decoding

When working with HMMmodels there are three important problems to consider.
One is the problem of evaluation, or computing the probability of a specific
observation sequence, given an HMM. That is, given the HMM model M =
(Q,A,B,Σ), and the sequence of observations O (O = o1, o2, ot), what is the
probability of M generating O (P(O|M))? This can be used for example in
isolated word recognition.

Another problem is the learning, or the parametrisation of the models, tuning
its parameters using a given training set or task. That is, given the sequence of
observations O (which will serve as our training set), how should the parameters
of the M model be set so as to maximise the P(O|M) conditional probability?

The problem, however, that we should focus on here is finding the sequence of
states our model goes through while emitting the sequence of observations O.
In a regular automaton this would be a straightforward task, as for each step we
are aware of the state the automaton is currently in. However in HMMs as the
word ”hidden“ in the name suggests, this information is not available. We can
only infer the current state of the automaton from its emissions. Thus the task
is to find the Q sequence of states from model M that have most likely created
the O observation seen. This formally means that our goal is to find the Q
sequence of states in M model for which the conditional probability P (O|Q,M)
is the highest. This task is also known as decoding.

There are various algorithms in the literature that are used to handle the
task of decoding. One such algorithm (also present in the popular speech
recognition toolkit, called HTK [236]) that is based on dynamic programming
is the Viterbi algorithm [233]. While running the algorithm a V matrix with
T columns (where T is the number of observations) and N rows (where N is
the number of states in the model M) is dynamically computed. A cell in this
matrix reflects the probability of the most likely path leading up to the state
and time corresponding to the cell. Formally,

viterbi[t, i] = max(q0, q1, q2, .., qt = i, oi, o2, ..., ot|M) (1.11)

As a simplification we will assume that if the optimal path for the full sequence
crosses qi state at time t, then the optimal path of length t ends in state qi.
Conversely, if at time t the most likely path leading to qi state is more likely
than the most likely path leading to any other state from the Q set, then the
most likely path at t+ 1 time will be calculated using v[t, i], in the following
way:

viterbi[t+ 1, j] = maxqi∈Q(viterbi[t, i] · aij · biot+1). (1.12)

20 INTRODUCTION

The algorithm described above gives a result for a series of observations and
an HMM. As we generally have more than one model (one for each word or
subword unit), we need a transitional probability between models, such as
N-gram models. However with this particular formulation, we would only be
able to use bigram models.

Another shortcoming is that with this formulation, what we get is the most
likely state sequence and not the most likely word sequence. Owing to this,
several augmentations have been suggested to the basic Viterbi algorithm. For
instance, Chow and Schwartz suggested an algorithm that provides the N-best
hypotheses [204], while Murveit et al. created an algorithm that provides
a lattice of words [169]. Another option for the task of decoding is the A*
algorithm [97], which eliminates the weaknesses of the Viterbi algorithm [104],
and which also spawned several modifications, such as the K-best Viterbi A*
and the K-best Viterbi Iterative A* algorithms [94].

Another method for decoding HMMs that is of more interest to us here (as it is
employed in the Kaldi toolkit [183] which was used for word recognition), is the
Weighted Finite State Transducer (WFST) framework developed by Mohri
et. al [165]. Weighted Finite State Transducers are Finite State Automata
in which each transition in addition to having an input label, has an output
label (potentially coming from a new alphabet), and a weight associated with
it [163]. While WFSTs are applied for many tasks ranging from text to image
processing, their principal application is in decoding HMMs [88]. Their success
in this area is due to the approach offering “an elegant unified framework for
representing the knowledge sources and producing a search network optimised
up to the HMM state level” [11]. For this to work effectively, three important
operators has to be implemented on WFSTs: composition, determinisation, and
minimisation. The composition operator (◦) permits us to combine transducers
at different levels in such a way that the output of the first transducer becomes
the input of the second [164]. This means that if we represent the context-
dependent acoustic models (C), the context-independent lexicon (L), and the
grammar model (G), creating the C ◦L◦G composition will result in a mapping
of context-dependent phones to word sequences [11]. The result can be further
optimised by determinisation (constructing an equivalent but deterministic
WFST, meaning that each state of the new WFST has no more than one
transition for any given input label, and there should be no empty input labels
in the transducer [164]) and minimisation (minimising the number of states and
transitions in the deterministic WFST) of the final network.

ACOUSTIC MODELLING 21

owi xi

x1

x2

xn

w1

w2

wn

Figure 1.5: Diagram of the perceptron model.

1.4.2 Artificial Neural Networks

There are many different models that can be used in the construction of Artificial
Neural Networks (ANNs) [221]. The simplest one is the perceptron model.
Here, our neuron (see Figure 1.5) takes the weighted (w1, ..., wn) sum of its
inputs (x1, ..., xn) and the output (o) is determined by whether the given sum
exceeds a predefined threshold value (θ) or not. This is similar to how neurons
in nature (illustrated in Figure 1.61.) work: the neuron receives its input via
the receptors spread over its dendrites [211], and whether the neuron is firing
or not then depends on whether the potential of the neuron (changed by the
summation of the stimuli on its dendrites) exceeds a given threshold [235]. In
other words, the output of the natural neuron is regulated by the summation of
its inputs.

Figure 1.6: A simplified representation of a single neuron.

1Originally Neuron.jpg (public domain). Source: taken from “Anatomy and Physiology”
by the U.S. National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER)
Program, redrawn by wikimedia commons user Dhp1080

22 INTRODUCTION

Figure 1.7: Linearly separable and linearly non-separable problems.

As in the perceptron model the information flows in one direction (from the
input, through the neuron, to the output), it follows the feed forward model [207].
Using this model with the proper weights, it is possible to classify our input into
two categories, given that these categories are linearly separable. Furthemore,
it has also been shown that there not only exist proper settings for the weights
that should define the hyperplane separating our classes, but there is a simple
rule guaranteeing that we can find these settings [195].

The expectation of linear separability, however, is a strong constraint that only
allows to solve a limited set of problems. For instance, while the logical function
of AND and OR are linearly separable, this cannot be said about another
basic function, XOR (see Figure 1.7). It has also been shown however, that by
introducing a large enough layer of hidden peceptron-like neurons (here hidden
means that these neurons are not directly connected to the environment, hence
they are hidden from it – see Figure 1.8) creating an internal representation
of the input, we can always find a mapping from the input to the expected
output [158].

Figure 1.8: Artificial Neural Net with a hidden layer.

ACOUSTIC MODELLING 23

Figure 1.9: Representation of a hidden unit.

This particular architecture was used in the early experiments performed here.
Here, the hidden unit (shown in Figure 1.9) is similar to the perceptron model
we saw above, the only differences being the introduction of a bias b, and more
importantly an activation function a. Now, the output o of the neuron is found
by using the formula:

o = a

(
L∑
i=1

xi · wi + b

)
, (1.13)

where L is the number of weights. Here, various functions can be plugged in
and used as the activation function a(x) [63] in the neurons of the hidden layer

a(x) =


sig(x) = 1

1+e−x

tanh(x) = e2x−1
e2x+1

rectifier(x) = max(0, x)
(1.14)

Each has their respective advantages and disadvantages, which will be discussed
later in Section 3.3. The output neurons however, use the softmax function,
ensuring that the output values all lie between zero and one, and sum to
one, providing us with the posterior-probability estimations we can use in the
hybrid model [191]. There is still one issue, yet to be discussed, namely the
training of our model. While the introduction of the hidden layer means an
increased modelling power of the net, it also means that there is no simple,
guaranteed learning rule we can use [196]. In our experiments for this purpose the
backpropagation algorithm was used based on cross entropy minimisation [65].

24 INTRODUCTION

1.4.3 The HMM/ANN Hybrid Model

So far we have discussed HMMs and ANNs, but not how the two fit together. For
this let us go back to Section 1.4.1, where we described the B set of emissional
probabilities as a collection of probabilities that for each ot ∈ Σ observation and
for each qi ∈ Q gives the probability of the observation being emitted by the qi
state (bi(ot)). In other words, the probability of emitting the ot observation,
given that we are in the qi state, is

bi(ot) = P (ot|qi) (1.15)

But we did not discuss where these probabilities come from. It has been shown
that ANNs can be used for posterior probability estimation [18], meaning that
for an x input and ci i-th class, the output of the right neuron in the output
layer will provide an estimate for the probability of x coming from the ci class

o(i) = P (ci|x) (1.16)

Thus if we train our neural net using qi states as class labels with ot observations
as input,

o(i) = P (qi|ot) (1.17)

It is quite apparent that there is a strong connection between equations 1.15
and 1.17. To exploit this, let us once again use the Bayes-rule, and reformulate
Equation 1.15

bi(ot) = P (ot|qi) = P (ot|qi)P (qi)
P (ot)

(1.18)

After reordering this equation, we get

P (ot|qi)
P (ot)

= P (qi|ot)
P (qi)

(1.19)

On the right hand side of this equation we see a scaled likelihood estimate [191],
which we can calculate by dividing each output of the neural net by the prior
probability of the corresponding state. Meaning, that even though we are not
able to get the required likelihood on account of not having an estimate for the
prior probability of the observation, we can use the neural net to calculate a
scaled likelihood. It should be added here that as in experiments carried out by
our group (HAS-RGAI), dividing by the prior probabilities had no demonstrable
advantage in phone recognition tasks, we only used the prior probabilities in
the word recognition experiments, while in the case of phone recognition, the
HMM had probability estimates that directly came from the neural net.

LANGUAGE MODELLING 25

1.5 Language Modelling

During the study, most efforts were focused on the feature extraction and the
acoustic modelling phases. In language modelling, similar to the preprocessing
of speech signal, preexisting resources were used on an as-is basis. However, it
would be remiss on our part not to devote a few paragraphs on these methods
as they were still instrumental in obtaining the results discussed in this study.

1.5.1 N-gram models

Although there are methods for language modelling that incorporate more
linguistic knowledge [40, 98, 105], and methods with more advanced statistical
modelling (like neural net-based language models [10, 156, 205]), due to their
simplicity and good modelling performance, N-gram language models are the
most widely used in state-of-the-art applications [10, 26].

Similar to what we saw in Section 1.4.1, the N-gram model is based on the
assumption that the probability of the next element in a sequence only depends
on a limited number of preceding elements. Formally,

P (wt+1|w1w2...wt) ≈ P (wt+1|wtwt−1...wt−N+1) (1.20)
Using this approximation, and the chain rule of probability, we should calculate
the probability of word sequence W (W = wi, w2, ..., wn) as
P (W) ≈ P (wn|wn−1wn−2...wn−N+1)P (wn−1|wn−2wn−3...wn−N)...P (w1)

(1.21)
Now the question is how to estimate these N-gram probabilities. One possible
way is via Maximum Likelihood Estimation (MLE) based on a training
corpus [104]. Here, for the sake of simplicity, let us assume that N = 2,
and that we are working with bigram models. In that case, estimating the
probability of a given P (wt+1|wt) bigram should be based on the relative
frequency of sequences. That is,

P (wt+1|wt) = count(wt+1wt)
count(wt)

(1.22)

This however would mean that for bigrams that do not occur in the corpus
the estimated probability would be zero. In other words, using this model we
would not be able to handle rare occurrences that were not part of our training
corpus.

The importance of this problem is demonstrated by the findings of Allison et
al. who, upon examining different training corpora, found that in a one-and-
a-half-billion word corpus, 30% of legal trigrams never occurred [8]. However,

26 INTRODUCTION

there are various methods available that can handle this issue. The simplest
one is adding one to the count of each N-gram model, also known as add-one or
Laplace smoothing [138]. In a similar alternative, the N-gram count is increased
by a fractional k between zero and one (add-k smoothing) [100]. Although
their simplicity makes these methods seem an attractive choice, generally, they
perform poorly in language modelling [56, 55]. Another possibility is to estimate
the probability of higher-order N-grams using their lower-order counterparts.
Methods built on this intuition include Katz smoothing [107], Church-Gale
smoothing [37], Jelinek-Mercer smoothing [99], Kneser-Ney smoothing [33, 120],
and more recently Stupid backoff [25]. Another approach we can use to decrease
the sparsity of our data is to decrease the number of N-grams by aggregating
words into classes [27]. This aggregation can be carried out automatically by
means of clustering [27, 144] or by using pre-existing linguistic information [172].

This latter approach can be especially useful in morphologically rich languages as
Hungarian [216]. However, as in our experiments with the Hungarian language
the task to be undertaken was phone recognition, we used a simple bigram
language model. We utilised a similar language model in our phone recognition
experiments on the TIMIT database. As for the experiments performed on
the Aurora-4 corpus, we applied the standard 5k trigram language model,
distributed with the corpus.

1.5.2 Language Model Scaling

If we recall the formula introduced earlier for the combination of the acoustic
model and the language model,

Ŵ = argmaxW∈LP (O|W)P (W), (1.9 revisited)

it might seem that the combination of the two seems trivial. However, as the
acoustic model underestimates the probabilities [48], the two components are
not on the same scale. Owing to this, a language model scaling factor (LMSF)
is used to scale down its likelihoods (in Kaldi, the acoustic model is scaled
for the same purpose), meaning that Equation 1.8 should have the following
form [104]:

Ŵ = argmaxW∈LP (O|W)P (W)LMSF . (1.23)

This scaling has the side-effect of the decoder having the preference for more,
shorter words [104], and to counterbalance this phenomenon, another factor,
called word insertion penalty needs to be introduced.

STRUCTURE OF THE DISSERTATION 27

1.6 Structure of the dissertation
Chapter 2 - Spectro-Temporal Feature Extraction: Here, we examine
two feature extraction methods (2D DCT and Gabor filters) more closely. First,
we experiment with 2D DCT feature extraction, proposed modifications to the
process, and compared the resulting features with MFCC, demonstrating that
the results of the former compare favourably with those of the latter, especially
in the case of noise contaminated speech. We also examined the combination
of the two feature sets, and demonstrated the benefits of combination. After
this we discussed Gabor filters, and look at different methods for selecting a
set of such features for the task of automatic speech recognition. We show that
despite some issues in feature selection, competitive results can be attained.
The chapter is based on the following publications:
• Kovács, G., and Tóth, L. Localised spectro-temporal features for noise-

robust speech recognition. In Proceedings of the IEEE International Joint
Conferences on Computational Cybernetics and Technical Informatics (ICCC-
CONTI) (2010), pp. 481–485.

• Kovács, G., and Tóth, L. Phone recognition experiments with 2D-
DCT spectro-temporal features. In Proceedings of the IEEE International
Symposium on Applied Computational Intelligence and Informatics (SACI)
(2011), pp. 143–146.

• Kovács, G., Tóth, L., and Van Compernolle, D. Selection and
enhancement of Gabor filters for automatic speech recognition. International
Journal of Speech Technology 18, 1 (2015), 1–16.

Chapter 3 - The Joint Training of Spectro-Temporal Features and
Neural Nets: Here, we introduce a framework that combines spectro-temporal
feature extraction and neural net training. First, we demonstrate the viability
of the concept, comparing its result to those obtained without combining these
methods. We also show that the results of the framework compares favourably
to those attained using filter sets created via automatic methods both in terms
of recognition scores and cross-database performance. After this, we introduce
various improvements to the framework, highlighting its flexibility and its
potential to include new advances in neural networks. The chapter is based on
the following publications:
• Kovács, G., and Tóth, L. The joint optimization of spectro-temporal

features and neural net classifiers. In Proceedings of the 16th International
Conference on Text, Speech, and Dialogue (TSD) (2013), Vol. 8082 of Lecture
Notes in Computer Science, Springer, pp. 552–559.

• Kovács, G., Tóth, L., and Van Compernolle, D. Selection and
enhancement of Gabor filters for automatic speech recognition. International
Journal of Speech Technology 18, 1 (2015), 1–16.

28 INTRODUCTION

• Kovács, G., and Tóth, L. Joint optimization of spectro-temporal features
and Deep Neural Nets for robust automatic speech recognition. Acta
Cybernetica 22, 1 (2015), 117–134.

Chapter 4 - The Multi-Band Processing of Speech using Spectro-
Temporal Features: Here, we examine another method for noise robust
speech recognition inspired by human speech processing, connected with spectro-
temporal feature extraction; namely, multi-band speech processing. Taking
advantage of the compatibility of the two methods we show how the multi-band
approach can further increase the performance when using spectro-temporal
features. We also integrate this approach into the joint training framework and
demonstrate that using the resulting method we can achieve state-of-the-art
word recognition error rates. The chapter is based on the following publications:

• Kovács, G., Tóth, L., and Grósz, T. Robust multi-band ASR
using Deep Neural Nets and spectro-temporal features. In Proceedings
of the International Conference on Speech and Computer (SPECOM) (2014),
Vol. 8773 of Lecture Notes in Artificial Intelligence, Springer, pp. 386–393.

• Kovács, G., and Tóth, L. Multi-band noise robust speech recognition
using Deep Neural Networks (in Hungarian). In Proceedings of MSZNY
(2016), pp. 287–294.

Chapter 5 - Band dropout: Here, inspired by multi-band processing and
dropout, we examine input-dropout in the joint training framework. For this,
however we first redefine the settings of the framework, demonstrating that it
is capable of providing competitive results as it is. We then examine our band
dropout method that is related to multi-band processing, input dropout and
data augmentation as well. The results tell us that applying this method leads
to an improvement on our earlier results, and when combined with the ARMA
technique, it can provide state-of-the art accuracy scores. The chapter is based
on the following publications:
• Kovács, G., and Tóth, L. Optimisation of a spectro-temporal feature

selection method integrated in Deep Neural Networks (in Hungarian). In
Proceedings of MSZNY (2017), pp. 158–169.

• Kovács, G., Tóth, L., Van Compernolle, D., and Ganapathy, S.
Increasing the robustness of CNN acoustic models using autoregressive
moving average spectrogram features and channel dropout. Pattern
Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.09.023

Chapter 2

Spectro-Temporal Feature
Extraction

In speech recognition, there has been a trend to incorporate more and more
knowledge about human hearing into the feature extraction step. One such
approach is the application of neurophysiologically inspired localised spectro-
temporal analysis in secondary feature extraction. In this chapter we examine
two such techniques, namely the two-dimensional Discrete Cosine Transform
(2D DCT), and the application of Gabor filters.

First, we will briefly discuss the 2D DCT method, and the results of our
experiments conducted on the TIMIT database using this method. We will
examine the phone classification and recognition performance of the 2D DCT
feature extraction method performed on the conventional critical-band log-energy
representation (log mel-spectrum). We will compare the results of this setup
with the results obtained using Mel-Frequency Cepstral Coefficients (MFCC) on
both clean, and noise corrupted speech. We will also attempt to combine the two
feature sets to further improve the phone recognition accuracy scores obtained.

In the second part we will discuss spectro-temporal feature extraction (by means
of processsing with Gabor filters). We will set up a simple filter set based on the
2D DCT method, investigate its performance on various speech databases, and
compare these results with those obtained using MFCC features and with filter
sets created by means of feature selection methods. Based on these results, we
will also discuss the potential pitfalls of automatic feature selection, and suggest
an alternative method in the following chapter.

29

30 SPECTRO-TEMPORAL FEATURE EXTRACTION

2.1 Introduction

We know more and more about human speech processing, but traditional feature
extraction methods used in speech recognition take into account only the most
fundamental properties of articulation and hearing. For example, the most
commonly applied acoustic representation, the so-called Mel-Frequency Cepstral
Coefficient (MFCC) [92], smooths out the fine details of the spectrum, as it is
known that phonetic information is carried mainly by the spectral envelope.
Also, it warps the linear frequency scale to the quasi-logarithmic mel-scale,
which is known to fit human hearing better. But in other respects it is just a
mathematical tool based on conventional signal processing algorithms. Although
it is not strictly necessary that processing methods which seek inspiration from
HSR should outperform the purely mathematical algorithms, in general it seems
reasonable to expect a better behaviour from the methods that approximate the
properties of human hearing more closely. One such property speech processing
may benefit from approximating is the joint spectro-temporal sensitivity of the
receptive fields of cortical cells [36]. Compared to what is known about the
time-frequency tuning of these cells, the resolution of the conventional MFCC
representation is much narrower in time and much wider in frequency.

As we saw in the last chapter, MFCC values are extracted from small, 20-30
millisecond pieces of the speech signal using conventional signal processing
algorithms like the Fourier transform and the cosine transform [92]. This
method of processing the speech signal in uniform 20-30 millisecond chunks has
its roots in the speech coding tradition, and is retained mostly for technical
convenience. Humans can barely recognise such short speech excerpts, which
suggests that they are not an optimal choice for the basic unit of classification.
Although the ∆ and ∆∆ coefficients (which are also part of the classic feature
set of speech recognition in addition to the basic MFCC features) capture pieces
of information from the neighbouring 4-4 frames (4 frames preceding and 4
frames following the current frame), both physiological and psychoacoustic
experimental results indicate that the human brain extracts information from
much longer time spans. Technically the simplest solution for this is to work
with larger windows along the time axis: in neural-net based recognisers it is
now standard practice to train the system on 9 or more neighbouring MFCC
vectors [22, 110, 181]. There are still problems with these techniques, however.
One is that although it is possible to capture more temporal information using
this method, it is still different from having features tuned to specific temporal
modulations [24]. Moreover, with the increasing number of neighbouring frames
used, the number of features is growing significantly, and hence the application
of dimension reduction methods such as Principal Component Analysis (PCA)
or Linear Discriminant Analysis (LDA) may be necessary.

INTRODUCTION 31

Figure 2.1: A short part of the log mel-spectral representation of the sentence,
“The company previously traded over the counter” from the clean test set of
the Aurora-4 database. The black boxes (left-to-right) show the shape of the
feature extraction patches used by a) the classic MFCCs, b) the TRAP features,
and c) localised spectro-temporal features.

Another problem with using multiple neighbouring MFCC vectors in training is
that the resulting features are still global along the frequency axis. However,
there is a purely practical argument against this: when the signal is corrupted
with band-limited noise, a spectrally global analysis technique such as the
MFCC will result in all the features being contaminated by the noise [24].
Beyond practical considerations, there are also physiological and psychoacoustic
experiments which suggest that “human speech perception is based on relatively
narrow frequency channels” [159]. This suggests that the windows should be
localised in frequency as well. These studies motivated the introduction of
the TRAP model by Hermansky et al. In this scheme each frequency band
is processed separately, and the corresponding results are combined only at a
later stage; the time-span of the processed trajectory patterns even goes up
to 1 second in certain experiments [81]. This setup can be interpreted as a
sort of “inverse” arrangement compared to the classic MFCC windows. We
illustrate this approach along with the approach of MFCC in Figure 2.1 above.
In the same figure there is also a visualisation of the approach followed in
the experiments. This approach processes the spectro-temporal representation
in patches that are localised in both time and frequency. The range of this
approach is larger in the time domain, and smaller in the frequency domain
than that of MFCC’s.

32 SPECTRO-TEMPORAL FEATURE EXTRACTION

Before proceeding with a discussion of specific methods for extracting localised
spectro-temporal features, let us formalise the general process. This approach
takes localised patches from the spectro-temporal representation of the speech
signal, and creates features for ASR purposes by processing them using standard
filtering methods. We can interpret this process as applying a spectro-temporal
filter F on a patch P , to obtain an output o defined by the following formula:

o =
M−1∑
f=0

N−1∑
t=0

P (f, t)F (f, t), (2.1)

where M and N are the respective height and width of filter F and patch P .
Here, patch P is extracted from a wider spectro-temporal representation in such
a way that its size is the same as that of filter F . And P (f, t) is referring to
positions in this extracted patch (meaning that offseting will not be neccessary).
One can get a set of features by using several filters with different coefficients,
and/or applying the same filters at different positions in the time-frequency
plane. A more difficult task than the calculation of spectro-temporal features is
arriving at the correct family of filters that are suitable for the given task. In
Section 1.3.2 we outlined two methods employed in spectro-temporal feature
extraction. Below, we will examine and describe two additional methods.

2.2 2D DCT

An obvious generalisation of the MFCC feature extraction to localised spectro-
temporal windows is to replace the DCT by its two-dimensional counterpart,
namely the 2D DCT. The 2D DCT is obtained by applying a transform on
a patch P that is represented by an M × N matrix defined by the following
formula

Bpq = αpαq

M−1∑
m=0

N−1∑
n=0

Pmncos
π(2m+ 1)p

2M cos
pi(2n+ 1)q

2N , (2.2)

where 0 ≤ p ≤M − 1 and 0 ≤ q ≤ N − 1, the values of αp and αq are given by
the following:

αp =
{

1/
√
M,p = 0√

2/M, 1 ≤ p ≤M − 1
(2.3)

αq =
{

1/
√
N, p = 0√

2/N, 1 ≤ p ≤ N − 1
(2.4)

2D DCT 33

The resulting Bpq values are the 2D DCT coefficients of patch P [219]. These
values correspond to the result of performing the filtering defined by Eq. (2.1)
with the following filter coefficients:

Fpq(f, t) = cos π · (2f + 1) · p
2M cos π · (2t+ 1) · q

2N , (2.5)

where M and N are the respective height and width of the filters for f and t,
while p and q specify the modulation frequencies of the filter along the frequency
and time axis. By definition, for a patch of size M ×N , a 2D DCT returns the
same number of coefficients (the filters corresponding to these coefficients are
shown in Figure 2.2 for the N = M = 7 case).

Several findings are available which indicate that these coefficients are not
equally important for representing the underlying acoustic content. As regards
the frequency axis, the good performance of MFCC clearly demonstrates that
it is sufficient to keep the low-order coefficents. Similar results regarding time-
domain modulations can be found in the speech recognition literature [106].
The image processing field has also for a long time been making use of the
notion that higher-order coefficients are less important than lower-order ones in
image compression based on 2D DCT [35].

Figure 2.2: Basis functions of the 2D DCT for 7 by 7 matrices.

34 SPECTRO-TEMPORAL FEATURE EXTRACTION

2.2.1 Phone classification experiments

While above we provided reasons about why we have chosen to keep the low-
order coefficients of the 2D DCT as features, it is not obvious how many of
these coefficients should be retained. The question concerning the size of the
patches used for extracting these features also has to be resolved. Although
we could rely on the studies of human perception in determining the patch
size, in machine learning experiments different values may result in optimal
recognition performance due to the various properties and peculiarities of the
signal processing and machine learning algorithms applied. Thus the best we
can do is to vary the sizes and look for the optimal parameters by empirical
means. We did so by performing phone classification experiments on the TIMIT
speech database [129], following the earlier study of Bouvrie et al. [24].

The phone classification experiments carried out during the evaluation consisted
of the following steps:

1. Obtaining a spectral representation of the speech data

2. Extracting the time-frequency patches

3. Producing feature vectors of equal length corresponding to each phone

4. Classifying the feature vectors using ANNs

Obtaining spectral representation

Besides using log mel-spectrums with different number of channels, in the
first set of experiments we also used conventional spectrograms. We did so,
because one of our goals here was to reproduce the earlier results of Bouvrie
et al. [24], who had been using conventional spectrograms as their spectral
representation in their experiments on spectro-temporal speech processing. The
spectrograms were obtained using the following parameters: in the framing and
windowing stage, we applied Hamming windows with an offset of 32 samples,
and each frame was Fourier-transformed using a 1024-point FFT. We tried two
configurations for the frame size, namely 300 samples for the narrow- and 150
for the wide-band cases. Then the log-magnitude of the resulting spectrum was
taken, and it was normalised so as to have unit variance and a zero mean for
each utterance.

2D DCT 35

Extraction of patches

The next step was the extraction of the time-frequency patches. This was carried
out by computing a sliding localised two-dimensional DCT over the spectrogram.
The window and step sizes were again chosen based on the suggestions in [24]
(with a slight modification – substituting even window sizes with odd ones – for
symmetry reasons). Namely, 51 by 21 bin windows were applied in the narrow
band case, and 41 by 51 bin windows were applied in the wide-band case (always
giving the height first). The step sizes were 25 bins for the frequency, and 2
bins for the time axis in both cases. Unlike the authors in [24], we tested the 51
by 21 bin window size not only with the narrow-band spectral representation,
but also with the wide-band spectral representation.

By default, the DCT returns the same number of coefficients as the size of
its input array. Similar to the 1D case (that is, the computation of MFCC),
one can throw away the coefficients which correspond to higher modulation
frequencies. With this step we smooth out the unnecessary fine details from
the spectrum and reduce feature dimensionality at the same time. Bouvrie et
al. proposed keeping just the 6 lowest-order 2D DCT coefficients corresponding
to the upper left 3× 3 triangle of the coefficient matrix [24]. Apart from this
configuration, in certain cases we also experimented with retaining more (9 or
15) coefficients here.

Producing feature vectors

Next, for the phone classification experiments we had to create a fixed-length
feature vector from the variable number of 2D DCT coefficients extracted from
the patches belonging to each phonetic segment. For this purpose we followed
the technique proposed by Halberstadt [73], which was also found to work well
by other authors [38, 122]. Each phonetic segment was divided into three parts
along the time axis, and the coefficients belonging to the same patch index and
DCT coefficient index were averaged over time within these segments. Two
more segments were composed from the 30 milliseconds of the signal before, and
from the 30 milliseconds of the signal after the segments, and were processed
in a similar way. This technique yields a pooled feature vector that consists of
the same number of components for each segment – five times the number of
patches along the frequency axis and the number of DCT coefficients retained –
independent of the segment duration. Afterwards, the segment duration values
were also appended to this segmental feature vector.

36 SPECTRO-TEMPORAL FEATURE EXTRACTION

Table 2.1: Phone classification error rates using a spectrogram.

Spectral 2D DCT Patch step Patch step No. DCT No. features Error
resolution patch size (vertical) (horizontal) coefficients features rate
Narrow-band 51× 21 25 2 6 511 20.53%
Wide-band 51× 21 25 2 6 511 20.14%
Wide-band 41× 51 25 2 6 511 20.66%
MFCC + ∆ + ∆∆ 196 20.30%

Artificial Neural Net

In all the experiments, a multi-layer perceptron neural net [17] was applied as a
classifier. It contained one hidden layer of 500 neurons, and the output layer
applied the softmax nonlinearity, while the hidden neurons used the sigmoid
function. The number of output neurons was set to the number of classes (39),
while the number of inputs naturally varied, as we will describe later. The neural
net was trained using standard backpropagation on 90% of the training data
in semi-batch mode, and validation on the remaining 10% (selected randomly)
was used in both the stopping criterion and in the learn-rate scheduler.

Experiments on clean speech

The results obtained by extracting 2D DCT coefficients from various patch sizes
applied on the conventional spectrogram are shown in Table 2.1. As a baseline
result, the score got with the conventional MFCC features is also listed. MFCC
features were extracted with the default parameter values given in Section 1.3:
13 mel-cepstral coefficients were calculated over 25 ms time frames every 10
ms, and the vectors were augmented with the ∆ and ∆∆ coefficients. On the
resulting 39-dimensional MFCC feature vectors the same averaging method was
applied to get a segmental feature vector of fixed size. Each phonetic segment
was represented by 196 features (including the duration).

As the results show, the proposed features are quite insensitive to the exact
parameter values (resolution and patch size). All three scores are similar to the
MFCC result, and the best one even slightly outperforms it. Because of the big
patch sizes and the larger number of features, however, the extraction of the 2D
DCT features takes much longer than that of the conventional MFCCs. It should
be mentioned here that the reported results are consistently better than those
presented in [24], both with the conventional and the localised spectro-temporal
features. We attribute this to the fact that though the processing of the patches
was similar, a different type of classifier was applied on the resulting feature
vectors.

2D DCT 37

Table 2.2: Phone classification error rates with the critical-band energy map.

Spectral No. 2D DCT Patch step Patch step No. DCT No. features Error
resolution channels patch size (vertical) (horizontal) coefficients features rate
Wide-band 105 17× 21 6 2 6 511 19.55%
Wide-band 104 15× 21 6 2 6 511 19.90%

The resolution of the spectrogram used by Bouvrie et al. is much higher
than that usually applied in speech recognition, both in time and frequency.
Lowering the resolution of our spectral representation not only yields a reduction
in computational cost, but also makes our primary features more like those
used in standard secondary features, which means that it is easier to make the
case that the difference in results is due to the difference in secondary feature
extraction. Moreover, nowadays it is widely accepted that the mel-warping of
the frequency scale is useful for recognition, and so feature extraction methods
that work on the linear frequency scale have mostly been abandoned. Motivated
by these points, we decided to repeat the experiments on the same critical-band
energy spectral representation that is used as the starting point of the MFCC
computation (see Section 1.3.1). Fortunately, the HCopy module of HTK [236]
can be parametrised so that it calculates just the critical-band spectrum and
skips the final step, namely the DCT computation. This way it could be ensured
that we worked on exactly the same spectral representation as the one from
which the baseline MFCCs were obtained.

In the first pilot studies here, the window and step size of the spectral
computation were adjusted so that they would agree with the wide-band
resolution used in the spectrogram-based experiments. That is, the resolution
of the spectrum was not decreased, but the mel-scale frequency axis warping
was activated. More precisely, 104-105 frequency bands were extracted from the
spectrogram (the number was varied slightly in order to support the full coverage
of the spectral bands by the patches). This results in a smaller spectral map
height than that of the spectrogram, so the patch size and the patch hop along
the frequency axis were proportionally decreased to 15-17 and 6, respectively.
The error rates got with two different patch sizes are shown in Table 2.2. As
can be seen, both scores are better than the earlier results, indicating that we
were justified in substituting the spectrogram with the mel-scale spectrum.

The next step was to reduce the spectral resolution so that it was equivalent to
that used for the MFCC computation. Applying the default MFCC settings,
100 critical-band energy vectors were extracted per second from 25 ms frames.
As the number of critical-band frequency channels was set to 26 during the
MFCC extraction, in the experiments the number of channels was also set to
26 or approximations of its multiples/divisors (the number of channels used

38 SPECTRO-TEMPORAL FEATURE EXTRACTION

Table 2.3: Phone classification error rates with the critical-band energy map.

No. 2D DCT Patch step Patch step No. DCT No. features Error
channels patch size (vertical) (horizontal) coefficients features rate
105 17× 5 6 1 6 511 20.71%
105 17× 7 6 1 6 511 20.65%
105 17× 9 6 1 6 511 20.31%
105 17× 11 6 1 6 511 21.01%
50 9× 9 3 1 6 481 20.60%
50 15× 9 3 1 6 451 21.01%
52 7× 7 3 1 6 511 20.53%
52 7× 9 3 1 6 511 20.77%
53 9× 7 3 1 6 511 20.22%
53 9× 9 3 1 6 511 20.32%
26 5× 9 2 1 6 361 20.43%
26 5× 15 2 1 6 361 22.45%
26 7× 9 2 1 6 361 20.27%
26 7× 15 2 1 6 361 22.39%
26 5× 9 2 1 9 541 20.04%
26 7× 9 2 1 9 541 19.88%
14 7× 9 2 1 9 271 20.66%
14 7× 9 2 1 15 451 19.73%
13 5× 9 2 1 6 181 21.87%
13 5× 9 2 1 9 271 20.37%
13 5× 9 2 1 15 451 19.79%

were 104, 52, 26 and 13 – again 1-2 channels were sometimes added to make
the patches fit the full range). As both the time and frequency resolution of
the spectral representation became much smaller than that of the spectrogram
used in our earlier experiments, the size of the time-frequency patches was also
shrunk proportionally: for example, to 5 by 9 bins for the default 26 frequency
channel case. The patch step size was 2 along the frequency axis and 1 along
the time axis here, but of course, the proper step size again depends on the
number of channels.

We experimented with various combinations of the number of channels, patch
size and patch step; and the results got with the various parameter settings are
presented in Table 2.3. As can be seen, the best scores were again slightly better
than the results got using a spectrogram. Apart from some 15-long patches that
performed significantly worse, the results are quite similar, independent of the
actual settings. Hence a key finding of these experiments was that the resolution
of the input spectrum and the size of the DCT patches can be reduced, hence
the computational costs can be reduced without losing any recognition accuracy.
Also, conventional tools such as the HCopy routine of HTK can be used for the
critical-band log-energy extraction step.

2D DCT 39

Table 2.4: Phone classification error rates with the critical-band energy map.

Feature Clean Pink noise Babble noise
set speech 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB

2D DCT on wide-band spectrogram 20.66% 31.15% 49.74% 72.70% 31.03% 52.59% 76.04%41× 51 patches, 6 coeffs
2D DCT on critical bands 20.22% 37.83% 60.35% 80.30% 30.93% 51.69% 76.84%53 chans, 9× 7 patches, 6 coeffs
2D DCT on critical bands 19.88% 35.65% 58.86% 78.69% 33.05% 52.59% 75.82%26 chans, 7× 9 patches, 9 coeffs
2D DCT on critical bands 19.79% 34.83% 57.75% 77.17% 35.06% 55.43% 77.25%13 chans, 7× 9 patches, 15 coeffs

MFCC + ∆ + ∆∆ 20.30% 36.76% 63.00% 80.13% 31.58% 55.23% 77.46%

Experiments on noise contaminated speech

To test the assumption that localised spectro-temporal features should be more
robust to noise, we artificially contaminated the test dataset with pink and
babble noise. The amplitude of the noise was tuned so as to get a signal-to-noise
ratio of 20, 10 and 0 decibels in three different experimental settings. It should
be mentioned here that again in all the noisy experiments, the training was
performed on the clean data and the noisy data was only used for testing
purposes.

For the noisy tests, three configurations used in the clean data experiments with
53, 26 and 13 critical bands were chosen. Naturally, the MFCC tests were also
repeated so as to have a comparative baseline. The results got are shown in
Table 2.4. As can be seen, in the case of speech contaminated with pink noise,
the 2D DCT features yielded lower error rates than those of the MFCCs in almost
every case, especially with higher levels of noise. It also turned out, however,
that the feature set extracted from the spectrogram behaved much better than
the critical bands-based set. The reason might simply be the unfortunate choice
of the noise type: pink noise affects the lower frequencies more, while these
frequencies are over-represented in the critical-band energy map compared
to the linear frequency-scale spectrogram due to the mel-warped frequency
scale of the former. To test this hypothesis we repeated the experiments with
babble noise. This type of noise affects virtually the whole spectrum, so one
might expect less gain from a localised representation. As the results show
(see Table 2.4), the best 2D DCT scores are indeed slightly better than those
got with MFCCs. One can also see, however, that in this case there was no
significant difference between the performance of the spectrogram representation
and the performance of two best configurations using the critical-band-based
representation (53 channels and 26 channels).

40 SPECTRO-TEMPORAL FEATURE EXTRACTION

Figure 2.3: A short part of the log mel-spectral representation from the sentence,
“Cut a small corner off each edge” from the train set of the TIMIT database. The
boxes on the right show the degree to which a given patch can be reconstructed
from the proposed coefficients using the inverse 2D DCT.

2.2.2 Phone recognition experiments

After examining the results of the phone classification experiments, in the other
experiments we simply chose the settings where the spectral representation was
created using 26 filterbanks (the same as in the MFCC), and where the window
size was 7× 9, and 9 2D DCT coefficients were retained as features (as shown
in Figure 2.3).

Using these settings we carried out phone recognition experiments on the TIMIT
database in the so-called HMM/ANN framework (see also Section 1.4.3). The
neural net used here for producing frame-level likelihoods was the same as
that used in the phone classification experiments, with the exception of the
input layer (the size of this layer is always adjusted to the length of feature
vectors), and the size of the hidden layer which was another parameter here.
The algorithms necessary for building the HMM were provided by the HTK
toolkit [236]. Once again, results will be reported on the full test set of TIMIT
and its noise contaminated version.

2D DCT 41

Table 2.5: Frame classification error rates got on the clean test set.

Feature set No. of features No. of hidden units Frame error rate
MFCC + ∆ + ∆∆ 39 500 34.77%

9×(MFCC + ∆ + ∆∆) 351 5000 27.87%
2D DCT 108 1000 31.57%

2D DCT + ∆ + ∆∆ 324 5000 27.91%
5 ×(2D DCT + ∆+∆∆) 1620 5000 31.22%

Experiments on clean speech

As the neural net was trained to minimise the classification error of the frames,
the frame-level error rate already gives a good indication of whether a feature
set is good or not. Hence, first let us look at these results in Table 2.5. Similar
to the previous experiments, the MFCC coefficients served as a baseline here
as well. One baseline result was obtained using the 39 MFCC + ∆ + ∆∆
coefficients and with 5000 hidden neurons (first row). The result for the basic
2D DCT feature set is shown in the third row. Note that the 2D DCT feature
vector is much bigger than the MFCC vector, and this is why we allowed more
hidden neurons for this configuration. In general, as the number of features
increased, we tried to increase the number of neurons in the same proportion,
but this has the usual drawbacks, namely the training and evaluation times
become longer, and the risk of overfitting increases.

With the MFCC feature set it is standard practice to use several neighbouring
frames instead of just one. The result shown in the second row, obtained using
9 frames, clearly justifies this. However, the number of features dramatically
increases, and the size of the net also had to be adjusted. As the MFCC set
includes the dynamic features, we tried to similarly extend the 2D DCT features
with the ∆ and ∆∆ coefficients. The resulting frame error rate indicates that
it was worth doing so, even at the price of a threefold increase in the feature
vector size. Note that the dimensionality of one vector of this feature set is
almost the same in total as the dimensionality of nine neighbouring vectors of
the MFCC set. Fortunately, however, the corresponding error rates are also
comparable, which tells us that the 2D DCT features are more efficient in
extracting long-term information. As a next step, similar to the practice with
MFCCs [22], we attempted to use several neighbouring frames of this features
set as well. However, because of the already high dimensionality of the input,
only 5 frames were included. And in an attempt to limit the parameter count,
the number of neurons was left as it was. This experiment did not bring about
any further improvements, so in all the following tests the system briefly referred
to as “MFCC-based” used the configuration shown in row 2, while the “2D
DCT” system utilised the parameter values of row 4.

42 SPECTRO-TEMPORAL FEATURE EXTRACTION

Table 2.6: Phone error rates (PER) got on the clean test set.

Feature type No language model Phone bigram language model
MFCC-based 29.11% 27.13%
2D DCT 29.52% 27.05%

The frame-level phone probabilities were converted into phone strings using
the HVite tool of HTK [236] with two settings. In the first case no language
model was used at all, so that we could assess how the pure acoustic models
built upon the two feature sets perform. In this configuration there was only
one adjustable parameter, namely the phone insertion penalty, which was set
to -3. In the second case the system was extended with a simple phone bigram
language model with a weight of 1.0. The error rates listed in Table 2.6 were
calculated from the accuracy scores of the recognition, which were got using the
standard HTK evaluation tools and methodology. We can see that the system
using the 2D DCT features performed slightly worse when only the acoustic
model was employed, but when the language model was present – which is the
normal situation in speech recognition – the results got with the new and the
classic feature set were practically identical.

Experiments on noise contaminated speech

In order to assess the noise robustness of our features, the phone recognition
experiments were again repeated on noise contaminated versions of TIMIT’s full
test set. Here, we did not use a language model, and this allowed us to examine
the performance of the acoustic features and models. The results are shown
in Table 2.7 below. As can be seen, while the usage of MFCC features leads
to a small improvement in phone recognition on the clean test set, on noise
contaminated speech the 2D DCT features yield markedly lower error rates than
those for the MFCCs. This is in accord with our earlier phone classification
results.

Table 2.7: Phone error rates (PER) got on the clean and noise contaminated
test sets.

Feature Clean Pink noise Babble noise
set speech 20 dB 10 dB 0 dB 20 dB 10 dB 0 dB

MFCC-based 29.11% 56.78% 74.78% 85.57% 48.04% 73.56% 86.29%
2D DCT 29.52% 46.62% 67.01% 79.07% 41.03% 58.36% 74.81%

2D DCT 43

Combining the feature sets

Apart from its superior performance in noisy condition, the new feature set
might help the recognition process under clean conditions as well. Although
tables 2.6 and 2.7 showed that under clean conditions 2D DCT features yielded
a performance no better than the MFCCs when used alone, here we have the
chance to combine the two feature streams. If the two feature sets perform poorly
in different cases, there is a possibility that their combination might reduce
the overall error rate. This is a popular research topic nowadays, and several
methods have been proposed for combining feature streams (see, e.g. [137]).
Here a simple technique is going to be used: the phone posteriors produced by
the two neural nets trained on the two feature sets will be concatenated, and a
third neural net will be trained on the resulting vector. If this second stage net
is trained on several neighbouring frames — similar to the MFCC-based net —
then it is able to correct some of the errors of the lower stage net(s) with the
help of the long-term context. Hence, using such a second stage network can
already be useful in itself, as was recently shown in [110] and [181]. Because of
this, the earlier results will be compared to results of two 2-stage configurations:
in one case the second stage network is trained only on the posteriors of the
MFCC-based network, while in the other case in the second stage network we
combine the MFCC-based and the 2D DCT based probabilities. This way, it
should be possible to assess how much of the error rate reduction is due to the
2-stage approach, and how much of it is due to the combination of features.
The neural net used in the second stage consisted of 1000 hidden neurons, and
was trained using 9 neighbouring frames.

The recognition results obtained with a phone bigram language model are shown
in Table 2.8. It can be seen here that the application of the 2-stage framework in
itself leads to a relative error rate reduction of over 7%. This error rate reduction
clearly shows the advantage of the 2-stage modelling technique. And when we
compare the second and third rows of the table we can see that the simple
combination strategy of the two feature sets can reduce the recognition error
rate still further, yielding an overall relative error reduction of 10% compared
to the original result.

Table 2.8: Phone error rates (PER) of the 2-stage system.

Feature set PER
1-stage, MFCC-based 27.13%
2-stage, MFCC-based 25.11%

2-stage, MFCC & DCT Combination 24.37%

44 SPECTRO-TEMPORAL FEATURE EXTRACTION

2.3 Gabor filters

It has been shown experimentally that Gabor filters, introduced in 1946 by
Hungarian physicist Dénes Gábor [54], can be used to model the response
profile of certain neurons [101, 187, 212]. This property made Gabor filters a
popular feature extraction method for various audio and visual classification
experiments [49, 74, 91, 115, 152, 201]. The popularity and success of the
method inspired us to examine the use of Gabor filters in noise robust speech
recognition. Gabor filters are commonly defined as the product of a complex
sinusoid carrier and an envelope function. The exact definition, however, may
vary slightly from author to author. Ezzat et al. [49] defines Gabor filters as
a product of a two-dimensional Gaussian (2.6) and an oriented sinusoid (2.7).
That is,

W (f, t) = 1
2πσfσt

e
− 1

2

(
(f−f0)2

σ2
f

+ (t−t0)2

σ2
t

)
(2.6)

SΩ,ω(f, t) = ei2π(Ω
M f+ ω

N t), (2.7)

where f and t iterate over the frequency and time span of the window, and
σ2
f , σ2

t specify their respective bandwiths. M and N specify the transform size,
while Ω and ω specify the slanting and the periodicity of the sinusoid. Figure 2.4
shows this effect by displaying the real part of three different Gabor filters of
the same size created with three different Ω and ω parameter pairs.

Figure 2.4: Examples of Gabor filters with a height and width of 9 units, with
the remaining parameters being Ω = [0.0, 0.9, 0.9] and ω = [0.45, 0.45, 0.0],
respectively (from top to bottom).

GABOR FILTERS 45

As we only use the real part of the Gabor filter, Eq. (2.7) can be rewritten in
the following form:

SΩ,ω(f, t) = cos

(
π · f · 2Ω

M
+ π · t · 2ω

N

)
(2.8)

At this point we should note the similarity between equations (2.8) and (2.5)
with the right assignment of their parameters. Later on this similarity will
be exploited in the construction of a filter set. It should also be noted that
while it is clear that with the proper adjustment of the Ω and ω parameters,
we can control the shape of the Gabor filters, it is not so obvious how these
parameters should be selected and how many filters should be used for optimal
speech recognition performance.

This is a problem that has to be addressed with every feature extraction method:
the selection of a reasonably small set of relevant features (i.e. filters) got from
the huge variety permitted by the parametrisation process itself. To better
understand the magnitude of the search space, let us consider that even if we fix
parameters M and N of Eq. (2.8), as the Ω and ω parameters are continuous,
they define an infinite space of possible filters. And while in the case of 2D
DCT there are some assumptions about which features should be kept [24],
with Gabor filters we have less a priori information. Thus the goal of selecting
a reasonably small number (i.e. at most a couple of hundred) from among these
filters in such a way that the selected filters provide useful features for speech
recognition purposes is far from trivial. Here, we will discuss methods that
seek to solve this problem by means of feature selection methods. That is, all
the filters of the search space are systematically evaluated, resulting in a huge
feature space of possible acoustic features. Then, the Gabor filters are selected
based on the speech recognition performance of their corresponding features.
The task then is to find a proper feature selection method, to which a major
part of research in Gabor filters is devoted. Here, several points need to be
considered. Namely,

1. Given the variety of spectral and temporal properties of human speech
recognition, it is expected that a huge search space needs to be examined.
One problem is that finding a global optimum in this vast search space
can only be guaranteed by evaluating all the feature subsets, which is
clearly impossible in this case. Also, as we intended to measure the quality
of the feature set candidates by evaluating their usefulness on a speech
processing task, the runtime of the feature selection algorithms was a key
concern. This means that a very good heuristic must be applied during
the search process.

46 SPECTRO-TEMPORAL FEATURE EXTRACTION

2. The aim of filter selection here should be to create a simple, parametrised
filter family that detects all relevant speech phenomena, and which is
hopefully independent of the actual training database. That is, even when
the filter set is optimised on a given speech corpus, it would be preferable
to get a filter set that gives a nice recognition performance on different
databases as well.

3. These filters do not constitute an orthogonal representation of the signal
and lead to highly correlated features. The correlation depends on the
similarity of the filter parameters, but it is hard to quantify. It can be
expected that the correlation of filters will make the search task even
more difficult than before.

Reviewing the literature of Gabor filters, we found that most authors apply
automatic feature selection methods to find a proper subset of filters. These
automatic methods are all built on machine learning principles [49, 117, 152, 215,
227]. Unfortunately, these feature selection algorithms are very slow and are
based on a greedy search that may yield suboptimal solutions. And while there
are tasks where the greedy strategy may give acceptable results, we will argue
that this is not actually the case here. For this we will briefly present and evaluate
one of the most popular algorithms for Gabor filter selection – the Feature
Finding Neural Net (FNNN) [66] – along with another, general-purpose feature
selection method called Sequential Forward Floating Selection (SFFS) [210].
Then we will introduce a filter set selected manually, where the selection was
guided by some simple heuristic. We will show that this manually selected filter
set almost always outperforms those found with automatic methods, not only
by comparing its performance to the filter sets we created, but also to filter
sets found in the literature. And to gain further insight into the performance of
feature selection methods, the peformance of the resulting filter sets will also
be compared to the performance of randomly selected filter sets as well as the
performance of the MFCC features.

Before discussing the details of selecting the proper filters for secondary feature
extraction, the primary feature extraction step should also be briefly discussed.
Here, as outlined in Section 2.2.2 the log mel-spectrum was used as the primary
feature set. And it was computed using 400 samples (25 ms) per frame at 160
sample (10 ms) hops, and based on the result the mel-filterbank was applied
with 26 channels. In the case of third party filter sets, where the original study
recommended a different number of mel-filters, both settings were used in the
first experiments; and based on their results in the remaining experiments we
used the better performing configuration.

GABOR FILTERS 47

2.3.1 Creating new filter sets

In equations (2.7) and (2.8) we presented the most important parameters
regarding our filter sets, some of which we sought to optimise using feature
selection methods. There are, however, other parameters that also strongly affect
the results. Some of these are parameters that are not present in the formulas
determining the filters, such as the number of filters applied on individual
patches, and the overlap of the patches used for filtering. We selected the value
of these parameters following the experiments with 2D DCT features: on each
patch 9 filters were applied, and the overlap between consecutive patches along
the frequency axis had to be between 50 and 60%.

There were other parameters, present in equations (2.6) and (2.7), that we fixed
based on earlier experiments, and findings in the literature. Such parameters
are the width and position of the Gaussian, and the size of the filters. First,
concerning the parameters of the Gaussian, we followed Ezzat et al. [49], limiting
the bandwidth of the Gaussian to one third of the patch size, and fixing its
peak to the patch centre. Also, for computational reasons, only the real part
of Gabor filters were retained. Secondly, the width of the patches was set to 9
columns found from earlier experiments on 2D DCT features, as well as studies
of human speech understanding [220]. The width combined with the aim of
creating square filters determined the height of the patches as well. Furthermore,
to incorporate temporal information from a wider context (than the 120 ms that
is covered by one patch), we also applied the standard ∆ and ∆∆ coefficients
using HTK.

For the purposes of automatic feature selection, after setting the number of
filters, filter size and filter overlap, the original formulation of the Gabor filters
was modified to make the definition of the search space simpler. Motivated
by the observation that although the sinusoid (2.7) of a Gabor filter is defined
by four parameters (Ω, ω,M,N) its ouput does not depend on the individual
values of these, but on their ratios (Ω

M , and ω
N). We reformulated the original

equation using two parameters

SΩ,ω(f, t) = ei2π(ωf ·f+ωt·t), (2.9)

where ωf = Ω
M , and ωt = ω

N . The next step required by the feature selection
algorithms was to define the interval and resolution of these new parameters.
And in order to keep the periodicity of the sinusoids within a resonable interval,
the minimum and maximum parameter values were set to -0.14 and 0.14
respectively. To exclude filters that are very similar, the resolution of the
parameters was set to 0.004 (for symmetry reasons, ωf was run from 0). But
even with the above-mentioned restrictions, ωf and ωt still define a pool of 2556
filters.

48 SPECTRO-TEMPORAL FEATURE EXTRACTION

Filter sets created using Filter Finding Neural Net

The Feature Finding Neural Net [66] algorithm was popularised for the purpose
of Gabor filter selection by Kleinschmidt and Gelbart [118]. During its operation
this algorithm maintains a set of candidate filters, consisting of D+1 filters. In
our case D = 9, the number of filters we would like to have in the final set, as
in earlier experiments 9 filters proved to be sufficient. To obtain the candidate
filter set, first we have to initialise the algorithm by creating an initial set. We
can do this simply by randomly selecting the necessary number of filters. After
the initilisation step, the algorithm repeats three further steps. Namely,

1. Evaluation step: Evaluate each D-element subset of the current candidate
set. We perform this step by training a two-layered neural net on 90%
of the training set of the TIMIT database, while using the remaining
10% as a stopping criterion, along with a validation set for evaluating the
performance of the individual subsets.

2. Elimination step: Take the subset that yielded the best performance in
the evaluation step (i.e. the subset that performed best on the validation
set), and eliminate the filter from the candidate set that was not part of
the best performing subset.

3. Replacement step: Choose a filter randomly, as a replacement for the
eliminated filter, to keep the number of items in the candidate set constant.
(To avoid selecting a filter that had already been evaluated alongside
the current best-performing D-element filter set – which would lead to
unnecessary computations – it may be useful to maintain a list of the
eliminated filters. This could also be helpful in terminating the algorithm.)

By repeating these steps, we expect to gradually improve our filter set. The
algorithm terminates when it attains a local minimum and cannot improve the
feature set any further.

As the resulting set depends on the initial set, and the algorithm only guarantees
finding a local optimum, we repeated the algorithm fifty times using fifty different
initial random sets. We trained thirty three-layered neural nets on each resulting
set, and then chose the best performing set by comparing the average accuracy
values on the validation set. The set of filters got by using this approach will
be referred to as the FFNN set.

GABOR FILTERS 49

Filter sets created using the Sequential Forward Floating Selection

To find a good set of Gabor filters, we also experimented with another, general-
purpose feature selection method called Sequential Forward Floating Selection
(SFFS), introduced by Pudil et al. [184]. This algorithm is a member of the
family of floating search methods, all of which have the added flexibility that
previously selected features can later be discarded (unlike in forward selection),
and already discarded features can later be reconsidered (unlike in backward
selection) [217]. SFFS is a state-of-the-art method [170] that stands out even
when compared with other floating search methods [242]. As a detailed analysis
of this algorithm by Somol et al. is available in multiple sources [209, 210],
and automatic feature selection algorithms are not the main topic of this thesis,
here we shall confine ourselves to a short description. Essentially, the SFFS
method consists of the following steps:

1. Initialisation: Start with an empty set of features

2. Inclusion step: Expand the current feature set by finding and adding the
feature that improves the classification accuracy the most. Here this is
done by adding one feature at a time, and using each new feature set to
retrain the classifier using a randomly selected 90% of the training set
of TIMIT. The feature set is expanded with the feature whose addition
provided the best result on the remaining 10%.

3. (Conditional) Exclusion step: Find and discard the feature whose absence
has the least detrimental effect on the classification performance (unless
this feature was the last one added to the set. If this was the case, proceed
immediately with the Inclusion step). If the resulting new set is better
than the previous best (achieved using the same number of features in
the feature set - noting that this requires that with a current set size of
k, the best result should be stored for all j < k feature set sizes), then
finalise the exclusion of the feature, and repeat this step with the smaller
feature set. If not, reinstate the excluded feature and go to the Inclusion
step. This step was performed by removing one feature at a time, and
retraining the classifier with the reduced set on the randomly selected
90% of the TIMIT train set. An evaluation of the models created using
each set was again performed on the remaining 10% of the training set.

We repeated the feature selection experiment using this algorithm, and the
resulting set of 9 Gabor filters will be referred to as the SFFS set.

50 SPECTRO-TEMPORAL FEATURE EXTRACTION

Figure 2.5: Part of the Manual set of Gabor filters (first row), and the filter
set corresponding to the 2D DCT coefficients used (second row), with the
corresponding filters vertically aligned to emphasise the similarities. The patch
size is 9× 9.

Manually selected filter set

Apart from the automatic feature selection algorithms presented above, we also
created a filter set by hand. For this manual selection process we used two sorts
of a priori information. First, as in earlier studies it was found that processing
the spectro-temporal patches via 2D DCT yields good results (see Section 2.2.),
we conjectured that the filters defined by the 2D DCT coefficients would serve
as a good starting point for our search. Second, a visual inspection of the shape
of the most frequent transition types in spectrograms also served as a heuristic
for which filters ought to be included in the final set. In the following, we will
elaborate on how the proposed set was developed.

In the earlier experiments (see Section 2.2), the local patches were processed
by applying the 2D DCT on them. Retaining nine coefficients proved to be
an efficient representation during these experiments, which led us to exploit
the similarity between 2D DCT and the sinusoid form in the Gabor filter, as
outlined in Section 2.3. As the new filter set relies heavily on an earlier 2D
DCT set, the cardinality of it was also chosen to be nine.

The selection of the first four filters was primarily motivated by the similarity
between the formulas defining Gabor filters and 2D DCT coefficients. The
first row of Figure 2.5 shows how the selected Gabor filters approximate the
corresponding 2D DCT filters. As can be seen, a rotationally symmetric filter
was included to detect the energy of the processed patch, while with the use of
the four other filters we sought to capture the change in frequency and time,
respectively. However, motivated by the similarity between the fourth filter in
the second row of Figure 2.5 and the ∆ vector, we modified the corresponding
Gabor filter in such a way that it approximates the computation of the ∆ vector.

GABOR FILTERS 51

Figure 2.6: Part of the Manual set of Gabor filters (first row), and the filter
set corresponding to the 2D DCT coefficients used (second row), with the
corresponding filters vertically aligned to emphasise the similarities. The patch
size is 9× 9.

Conventional MFCC features extended with the ∆ and ∆∆ coefficients capture
transitions in time and frequency independently. In contrast, with 2D DCT and
Gabor filters, we can extract slanted energy transitions in the time-frequency
domain in an explicit way. Presumably this property gives spectro-temporal
features an edge over conventional features because it encodes spectro-temporal
representations directly. This motivated the selection of the second group of
filters in the filter set. The four slanted Gabor filters (shown in the first row of
Figure 2.6) were selected by distributing the “slanting” of the filters uniformly.
With these filters (which are also like the filters corresponding to the 2D DCT
coefficients), we intend to detect spectro-temporal phenomena like formant
transitions. Below, we will refer to the resulting set of 9 Gabor filters shown in
the first rows of figures 2.5 and 2.6 as the Manual set.

Randomly created filter set

Besides the automatic and manual filter selection methods, we also created ten
additional filter sets by simply choosing filters randomly. These filter sets will
serve as a baseline during the evaluation of the various filter selection algorithms.
We will refer to the average performance of the ten random filter sets as Random
avg. We will also list the performance score of the best performing random filter
set that was chosen based on the results got on the validation set of TIMIT,
which will be referred to in the tables as Random best.

52 SPECTRO-TEMPORAL FEATURE EXTRACTION

Figure 2.7: Examples from the SMK Gabor filter set (real part).

2.3.2 Filter sets in the literature

Kleinschmidt et al. not only described the FFNN algorithm in their paper [118],
but also the three filter sets derived from their experiments were made publicly
available. These filter sets are referred to as G1, G2, G3, and are available for
download at the Berkeley website [60]. Each set consists of 60 filters, among
them were real, imaginary and magnitude responses of Gabor filters, as well as
purely spectral, purely temporal and spectro-temporal filters. The parameters of
G1 and G2 were trained on TIMIT, while the parameters of G3 were optimised
on the zifkom corpus of German digits.

Schädler, Meyer and Kollmeier in their study [201] applied a different approach
for selecting their Gabor filter set, and their method has some similarities with
the manual selection method presented earlier (some filters are also similar in
the two sets, as shown in Figure 2.7). They chose the parameters of spectral
modulation frequencies based on MFCC and temporal modulation frequencies
based on RASTA processing. Then they carried out a further optimisation of
the parameters by performing some ASR experiments on the AURORA 2 task,
creating a filter bank of 41 filters. Next, by subsampling the filter output for
each filter, they selected the representative filter channels, which was again
carried out on the AURORA 2 database. The result of this process was a
filter set containing 311 elements in the case of the 23 channel log mel-scale
spectrogram, and a filter set containing 356 elements in the case of the 26
channel log mel-scale spectrogram. The resulting filter sets and the code for
feature extraction are available at the website of Oldenburg University [234]
These filters will be referred to here as the SMK set, after the initials of the
authors of the original paper.

GABOR FILTERS 53

2.3.3 Experimental settings

The frame-level feature vectors were created from the local patches as follows.
First, each filter in the set was evaluated on each patch of the spectrogram. For
the filter sets we created using automatic methods or manually, the patches
had a length of 9 frames and a height of 9 channels, with a step size of 4 mels
(4 channels) in frequency. For the pre-calculated filter sets of Kleinschmidt et
al. [118], the sets were defined so that the filters covered the whole frequency
range, hence no frequency-domain step size was required. Also, the filter set of
Schädler et al. [201] did not have a unified step size either, because the filters
were selected uniquely by evaluating each filter on each of the frequency band,
without taking into account their overlap with the neighbouring filters. Having
evaluated the filters, the feature values obtained were associated with the centre
position of the patch, giving a set of feature values for each time position. This
set of features was used to classify the given frame, as will be described next.
As is usual with MFCC, in order to incorporate more temporal information the
∆ and ∆∆ (∆s) features were added to the feature sets, and 9 neighbouring
frames of feature vectors were used to train the neural net classifiers. The only
exception was the SMK set. Based on the results of some pilot experiments and
because of the much higher dimensionality of the frame-level feature vectors
produced by this set, only 4 neighbouring frames were used during neural net
training, and the ∆ and ∆∆ features were left out.

In each experiment, the classifier applied was a multilayer perceptron neural
network (MLP) with a hidden layer of 1000 neurons during filter set construction
and 4000 neurons during the classification experiments. (In the FFNN algorithm
only two layers were used as the number of nets to be trained would have
produced a huge computational cost.) While the hidden neurons worked with
the sigmoid activation function, in the output layer we applied the softmax
nonlinearity. The number of neurons in the output layer was set according
to the number of classes in the given task. Naturally, the number of inputs
also depended on the number of features extracted by the currently applied
filter set. This difference among filter sets should be compensated for by the
relatively large size of the hidden layer. The neural net was trained with random
initial weights using standard backpropagation on 90% of the training data in
semi-batch mode, and the remaining randomly selected 10% of the data set was
used as the validation data set. For each feature set ten independent neural
nets were trained, and the average of the results got from applying these neural
nets on the test set was reported here.

54 SPECTRO-TEMPORAL FEATURE EXTRACTION

Table 2.9: Phone error rates (PER) got on the clean core test set of TIMIT
(the average of 10 independently trained neural nets). The best score, and the
scores not significantly different from it are shown in bold.

Feature set No. of No. of PERmel channels features
MFCC + ∆s 26 39 27.05%
SFFS set + ∆s 26 162 26.82%
FFNN set + ∆s 26 162 26.85%
G1 + ∆s 26 180 27.43%
G2 + ∆s 26 180 27.80%
G3 + ∆s 23 180 35.27%
SMK set 23 311 28.49%
Manual set + ∆s 26 162 26.78%
Random avg + ∆s 26 162 27.66%
Random best + ∆s 26 162 26.86%

2.3.4 Experiments and discussion

Experiments on clean speech using the TIMIT database

Table 2.9. lists the phone recognition error rates got from applying the different
neural nets trained on the different feature sets on the original (clean) version
of the TIMIT core test set. As a baseline, the recognition results got with the
standard MFCC features are shown in the first line of the table. The following
two rows show the results obtained using the filter sets we created by means
of automatic feature selection methods. As can be seen, both of these filter
sets yielded a slightly better performance than the MFCC, giving us the first
indication that the automatic selection methods work as they were intended to.

The table also contains the results got with the preexisting G1, G2, and G3
sets. These sets all yielded significantly worse results than either MFCC or
the filter sets we created by using automatic feature selection methods. In
particular, the performance of set G3 is strikingly low, compared to the two
other sets. This result seems particularly odd, as in the original paper [118]
G3 was supposed to have been the best performing set. A possible explanation
for this phenomenon might be that while the parameters of G1 and G2 were
optimised on TIMIT, G3 was optimised on the ‘zifkom’ corpus of German digits.
This suggests that filter sets were overtrained on the particular database, either
overfitting on language specific information (German vs. English) or overfitting
on the acoustic properties of the database.

GABOR FILTERS 55

Lastly, Table 2.9. shows the results obtained with the manually and randomly
selected feature sets. As can be seen, the Manual set slightly outperforms every
other feature set, and the difference is significant in the case of all the predefined
Gabor filter sets as well as in the case of the baseline MFCCs. This strongly
suggests that the automatic filter selection methods fail to find the optimal
features, as the optimal set should be at least as good or better than a filter set
created using very simple heuristics.

We observe even more surprising results when examining the performance of the
randomly selected feature sets. At first it might seem counterintuitive, how close
the average result obtained with random sets is to the performance of feature
sets resulting from carefully designed selection methods. In fact, the average
performance of the randomly selected sets is significantly better than that of
two Gabor filter sets found in the literature (G3 and SMK), while only one such
set (G1) produces a significantly better result. Furthermore, the performance of
the best random set is not significantly different from that of the best optimised
feature set. We think this behaviour is rather unexpected and it indicates that
the simple greedy feature selection strategy fails. These issues will later be
discussed in more detail in Section 2.3.5.

Experiments on noise contaminated speech using the TIMIT database

The models trained on clean speech were also evaluated on the noise-
contaminated core test set of TIMIT. It should be added here that the filter
selection and classifier training steps were NOT repeated. That is, the features
and neural network parameters that were found to be optimal in the set of
experiments on clean data were also used in the experiments on noisy data.

The results got with various types of noise added can be seen in Table 2.10. We
see that with either babble or pink noise, the spectro-temporal filters proved
much better than MFCCs in almost every case, regardless of the feature selection
method applied. However under band-limited noise, only the best performing
spectro-temporal feature set (Manual) gave better scores than the MFCCs. A
thorough analysis revealed that this relative failure of Gabor filters for band-
limited noise can be attributed to the simple normalisation technique used: due
to the presence of a narrow but very loud noisy spectral channel, the remaining
clean channels are also suppressed during normalisation. In the future, a better
normalisation technique should be applied to alleviate this effect.

Comparing the two filter sets we created by automatic feature selection methods
(SFFS and FFNN set), we see that while under clean conditions there was no
significant difference between them regarding their performance, this is not so
in the case of noise. The SFFS set significantly outperforms the FFNN set in all

56 SPECTRO-TEMPORAL FEATURE EXTRACTION

Table 2.10: Phone error rates (PER) got on the core test set of TIMIT,
contaminated with different types of noise. The best scores in each column (and
those scores not significantly different from it) are shown in bold.

Feature set Babble Pink Band-limited
20db 10db 20db 10db 20db 10db

MFCC + ∆s 42.57% 64.68% 50.07% 69.95% 38.22% 49.52%
SFFS set + ∆s 36.90% 52.92% 44.23% 65.82% 39.41% 52.60%
FFNN set + ∆s 37.25% 53.98% 44.76% 66.82% 41.50% 53.03%
G1 + ∆s 40.23% 60.41% 43.80% 64.01% 45.68% 55.68%
G2 + ∆s 39.25% 59.48% 44.14% 64.08% 48.85% 58.09%
G3 + ∆s 48.03% 62.51% 48.95% 64.12% 60.03% 69.15%
SMK set 45.72% 70.03% 44.86% 66.23% 45.96% 55.27%
Manual set + ∆s 36.79% 52.97% 44.26% 65.76% 36.41% 49.13%
Random avg + ∆s 37.49% 54.01% 45.74% 66.58% 39.75% 52.36%
Random best + ∆s 37.13% 53.13% 44.95% 66.23% 39.94% 53.07%

but one case. As regards the manually selected filter set, we observe that not
only does it outperform the baseline MFCC in every case, it also significantly
outperforms the FFNN set in all cases here, and it is never significantly worse
than the SFFS set. Extending the comparison to the preexisting filter sets, we
see that in the case of pink noise the G1 and G2 sets perform slightly better
than the Manual set, but in every other case the performance score of the
Manual set is significantly better than the performance score of any preexisting
Gabor filter set. Overall, we can say that the Manual set performed better
in noisy environments than any other feature set examined. This suggests
that the simple heuristic rules applied in its construction work better in noisy
conditions than the heuristics applied by the SFFS and FFNN feature selection
methods. The fact that the performance of G3 is again noticably worse than
the performance of G1 and G2 reinforces our concerns about the cross-database
performance problems of the automatic selection methods.

Now, when we turn our attention to the random sets, we notice that the one
selected as “best” based on its performance on the clean validation set performs
better than the average in most cases (with the exception of band-limited noise
conditions). Compared to the predefined sets, the random filter sets outperform
the former sets under babble and band-limited noise conditions, while the
predefined sets work much better in the case of pink noise. What is really
strange is that the performance gap between the random sets and the best set
is always very small (just 1-2%). One would expect a strong feature selection
method to yield in a feature set that performs consistently and convincingly
better than a randomly selected one, but this was not apparent here.

GABOR FILTERS 57

Table 2.11: Phone error rates (PER) got on the clean test set of the “Szeged”
Hungarian broadcast news corpus.

Feature set PER
MFCC + ∆s 25.03%
SFFS set + ∆s 26.06%
FFNN set + ∆s 26.49%
G1 + ∆s 25.91%
G2 + ∆s 27.16%
G3 + ∆s 36.32%
SMK set 26.95%
Manual set + ∆s 25.33%
Random avg + ∆s 27.21%
Random best + ∆s 26.37%

Experiments on cross-database performance using the “Szeged” corpus

Because we were concerned about the cross-database performance of feature
selection methods, we decided to evaluate the filter sets on the Hungarian
“Szeged” broadcast news corpus. As was the case with the noisy experiments
on TIMIT, we did not repeat the selection of the filters, but used the filter
sets optimised on the clean training data of TIMIT. These cross-language
and cross-database tests were motivated by theoretical and practical aspects.
Theoretically, one would expect the cortical receptive fields – and thus the
Gabor filters that model them – to extract a set of invariant features that
does not depend on a training database1. And a practical reason is that the
automatic feature selection methods like FFNN and SFFS are extremely slow,
so it would be advantageous if the feature selection process did not have to be
repeated for each training corpus.

The phone recognition results got on the “Szeged” corpus are shown in Table 2.11.
Evidently, the MFCC features yielded the best results, and from among the
various Gabor filter sets only the Manual set managed to come close. All
the feature selection algorithms and the predefined filters sets produced much
higher error rates. This point clearly shows that the heuristics applied in the
manual selection process are more general than the heuristics of the database-
driven feature selection methods. By comparing the results got using various
filter selection algorithms with each other, we see that the feature set created
by SFFS significantly outperformed its FFNN created counterpart. As we
observed a similar tendency with TIMIT, SFFS here seems to be a better

1One might argue that these features may be different for different languages, however.
This issue should be examined to see if it is really the case.

58 SPECTRO-TEMPORAL FEATURE EXTRACTION

selection algorithm than FFNN. However, the resulting filter set still performs
significantly worse than MFCCs (and the Manual set). The same could be said
about the G1-3 filter sets created by Kleinschmidt and Gelbart, and the SMK
filter set created by Schädler et al. So unfortunately the hope that the filter
optimisation would not have to be repeated for each training database did not
materialise. Also, we can see that the best randomly selected filter set gave
scores that are almost as good as those of the SFFS set, and are better than
the scores obtained with the G2, G3 or the SMK set. This again suggests that
the filter selection algorithms actually fail to achieve their goal.

Examining the available Gabor filter sets, we notice similar patterns as in the
case of TIMIT: while the SMK set performed in the mid-range, G3 gave much
worse results than those got with the other feature sets.

2.3.5 The problem with automatic feature selection

During the experiments we repeatedly found that despite the time invested
in the elaborate feature selection algorithms, the filter sets they produce were
easily outperformed by a simple manually selected set, and even randomly
selected sets could yield a very similar performance. This is surely not what
one would expect. Hence below we try to provide an insight into the possible
reasons for this.

Feature selection is a very difficult task when the features are strongly correlated,
which is clearly the case with Gabor filters. It is hard to tell how the overlapping
information content of the features assist each other, and it is also impossible to
tell in advance how the correlations influence the performance of such a complex
classifier as a multilayer neural network. Hence, the only way of finding a truly
globally optimal feature subset would be to evaluate each possible subset. This
is clearly impossible, as the number of subsets grows exponentially with the
number of features. The need to reduce computational costs to a managable
level encouraged researchers to use greedy search techniques such as the FFNN
and the SFFS algorithms. Even when done this way, the given algorithms are
very slow (they required several days to finish on TIMIT, which is now regarded
as a very small corpus). Both of these algorithms rely on heuristics that assume
the evaluation of each subset can be reduced to a search that adds and removes
only one filter at a time. Even though the search strategy allows backtracking
(which makes it more flexible), convergence would require the replacement of
a feature to significantly change the actual performance of the hypothesis set.
In this case, however, replacing one filter in the set with another one in most
cases has only a negligible effect on the classification score, and this causes the
algorithm to oscillate.

GABOR FILTERS 59

Table 2.12: Phone error rates (PER) got on the core test set of the TIMIT
database using different versions of the SFFS set, modified in a random manner
(the average of 10 independently trained neural nets), and p-values originating
from the two-tailed student’s t-test [214] with unequal variance, comparing the
results of the original SFFS set with its derivatives.

Feature set PER p-value
SFFS original + ∆s 26.82%

SFFS modified

1 + ∆s 26.70% 0.1134
2 + ∆s 26.98% 0.1246
3 + ∆s 26.87% 0.7063
4 + ∆s 26.87% 0.5953
5 + ∆s 26.87% 0.5439
6 + ∆s 26.97% 0.1794
7 + ∆s 26.73% 0.3933
8 + ∆s 26.85% 0.7120
9 + ∆s 27.03% 0.0234
10 + ∆s 26.73% 0.4124

Average of SFFS modified 1-10 26.86%

A special experiment was designed so as to highlight the problem inherent in
this selection procedure. The best filter set found by the SFFS method was
taken, and in it the “first” filter (i.e. the filter that was chosen first by the SFFS
method) was replaced by ten arbitrary Gabor filters, resulting in ten additional
filter sets. As this filter was chosen first because it was the best “lone” filter for
separating the classes, it is reasonable to expect that its replacement should
have the biggest impact on the phone recognition scores. To evaluate these ten
filter sets, we trained ten independent neural nets on each of them. The results
got on the TIMIT core test set are shown in Table 2.12, with the score of the
original SFFS set being in the 1st row. We notice that there was no significant
difference between the 26.82% phone recognition recognition error rate of the
original SFFS set and the average phone recognition error rate of its derivatives
(i.e the average performance of the sets created from the original SFFS set by
replacing one filter with an arbitrary new filter), which is 26.86%. It is also true
that the average recognition error rates of all the individual SFFS derivatives
are very similar to the phone error rates of the original SFFS set. In fact, out
of the 10 derivative filter sets, only one produced significantly different results
(the p-value resulting from the t-test being smaller than 0.05) than the original.
Furthermore, the score obtained using the original SFFS set is not even the best
performing one, being slightly outperformed by 3 derivative sets (one achieving
an average of 26.70% and two achieving an average of 26.73% PER).

60 SPECTRO-TEMPORAL FEATURE EXTRACTION

Figure 2.8: The phone recognition accuracy scores got on TIMIT core test set
after performing a random filter replacement on the SFFS set. The quartiles
shown correspond to the scatter of the scores obtained when we repeated the
neural net training ten times.

As the neural network training starts from randomly initialised parameters,
there is a small scatter in the resulting scores. This scatter can be seen in the
box plot in Figure 2.8 represented by quartiles. Here, the results of the original
SFFS set are in the last column, while in the previous columns the results of
the derivative sets are contained, arranged in descending order of their median
value. We not only see that it is not the original set that yields the best median
score, but it is also clear that the scatter caused by the random factor of the
training process is larger than the scatter caused by the random replacement
of the first filter. Hence, the results of this experiment demonstrates that, in
the general case, randomly replacing one filter in the set by another one brings
about such a small improvement that it can be easily swamped by the “noise” of
the ANN used to evaluate the given set. If there are no filters that clearly stand
out from the rest, then the simple selection strategy used by our algorithms is
doomed to oscillate without convergence.

GABOR FILTERS 61

The results of the last experiment suggest that the feature selection algorithms
based on local decisions are not necesarily suitable for the given task. The fact
that randomly selected filter sets yield such good results seems to support this
conclusion. It suggests that there is a very small performance gap between a
randomly selected set and the optimal one, and there are not only no clearly
“much better” and “much worse” filters, but it is also difficult to differentiate
between a “much better” and “much worse” filter set anyway. This makes the
task of an algorithm that decides on each feature locally rather difficult. A
possible improvement would be to modify the selection algorithms so that they
restrict the addition of a filter to a minimum gain in classification accuracy, or
to a certain level of dissimilarity from the previously selected filters.

The reader may find the good performance of randomly selected features rather
surprising and counter-intuitive. However, multiple studies on various real-life
machine learning tasks have found that creating a representation using a large
set of overcomplete random basis functions is just as good as putting a lot of
effort into carefully designing a small, orthogonal set of basis functions. The
application of sparse, overcomplete bases was first proposed in image recognition,
based on observations with vision [101], but quite recently similar studies in
speech recognition have also been carried out. For example, Vinyals et al. [232]
found that representing the speech signals by means of a randomly selected
vector set gave phone recognition results that are just as good as those using
an optimised, orthogonal basis vector set.

Further evidence on the applicability of random representations is given by the
success of the Extreme Learning Machine (ELM) [89]. The extreme learning
machine is virtually a neural network with two hidden layers. During training
the lowest layer, as usual, is initialised in a random way, but then it is not
trained at all, and only the weights of the upper layer are optimised. This
strategy at first seems to make no sense, but in fact it can give very good results,
and for many real-life tasks it proves no worse than the more tedious training
of the full network. The extreme learning machine can be interpreted as if the
first layer represented the input by means of a large set of random basis vectors,
and then the second layer performed learning over this special representation.
The success of this algorithm in practice also reinforces the suspicion that there
is only a very small performance gap between a randomly chosen feature set
and the optimal one, and hence this optimisation is a very difficult task that
cannot be solved by such naive strategies as the ones used by SFFS and FFNN.

62 SPECTRO-TEMPORAL FEATURE EXTRACTION

2.4 Conclusions

In this chapter we examined two spectro-temporal feature extraction methods,
namely the 2D DCT, and processing using the family of Gabor filters. We
showed that a 2D DCT extraction like that described in the papers of Bouvrie et
al. can be performed on the conventional critical-band log-energy representation
as well, yielding similar recognition accuracies while requiring less computational
effort. In accordance with the finding of the said authors, we found that these
localised spectro-temporal features extracted by applying the 2D DCT can result
similar, or better phone classification and phone recognition accuracies than the
conventional MFCC coefficents. We also found that the advantage of the former
is even more pronounced in noise contaminated speech. We also presented a
simple yet effective strategy for combining the conventional and the new feature
sets, and demonstrated that it can produce a better performance compared to
that using just the standard features

In the second part of this chapter we showed that with a properly selected Gabor
filter set, we can also achieve similar or better phone recognition error rates
than that with the standard MFCC features. We also showed that in case of
noise contaminated speech, we can get markedly better results with a properly
designed Gabor filter set than those using MFCC features, especially in the case
of the real-life babble noise. It is however not evident what constitutes a properly
assembled filter set, and how they should be constructed. Most authors to date
propose the use of automatic feature selection methods such as the FFNN method
described earlier. The filter sets found by these algorithms give a reasonably
good performance, comparable to that of standard MFCCs. These good results
may have given the false impression that the feature selection methods are able
to find optimal, or at least near-optimal parameter values. However, here we
pointed out that the good performance may originate from the surprising fact
that even a randomly selected filter set can yield nice results. This phenomenon
is a relatively new observation in image processing, which is currently shifting
its research efforts from finding a small but intensively optimised set of basis
functions to using larger, overcomplete bases that are chosen almost randomly.
Using the results of several experiments we also highlighted the problems plaguing
the feature selection strategies used by the FFNN and SFFS algorithms during
the selection of Gabor filters, and introduced a filter set created based on a simple
heuristic that had better phone recognition performance and, more importantly,
better cross-database and cross-language performance than the filter sets created
by automatic means.

Chapter 3

The Joint Training of
Spectro-Temporal Features
and Neural Nets

In the traditional approach of recognition systems, the extraction of a fixed set
of features, and the training of the adaptable classifier, are quite separate. In
spectro-temporal speech processing this means that the extraction of features and
the training of the acoustical model are traditionally done in two separate steps.
While this separation is technically convenient, it might result in suboptimal
features for the machine learning method applied.

In this chapter we introduce a neural network-based framework that combines the
step of secondary feature extraction with the training of the acoustical model. This
method enables the further training of initial features based on the speech data,
meaning that we do not have to rely on a human expert to provide an optimal
feature set for the given task. We demonstrate on various speech recognition
tasks that in this framework the potential for adjusting the features leads to
a better performance. We also show that this added capability of the neural
net does not entirely eliminate the need for well-constructed feature sets, as
providing the framework with a proper initial feature set yields further improved
results in many cases. In the second part of this chapter, we demonstrate the
compatibility of this technique with recent advances in neural nets. We do so by
first replacing the hidden layer with multiple layers using the rectifier activation
function, then by introducing convolution into the framework. We will see that
both changes significantly reduce our error rates.

63

64 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

3.1 Introduction

Traditionally, in pattern recognition systems, the task of feature extraction and
model learning are delegated to separate modules. The first, fixed module is
usually built on prior knowledge, while the second, trainable module is optimised
by machine learning [130]. In this scenario the success of pattern recognition
relies heavily on the suitability of the predefined feature set, be it manually
or automatically constructed. Because of this, a major part of the research
in pattern recognition has been devoted to the task of selecting a suitable set
of features, and assessing the applicability of the resulting feature sets in the
subsequent machine learning step.

It is easy to see the flaw in this approach when the feature set is entirely
hand-crafted: the accuracy of recognition largely depends on the ability of
our expert to design a useful feature set. In the previous chapter we also saw
the complications associated with automatically assembled feature sets: the
feature selection algorithms examined (SFFS and FFNN) not only proved to
be slow, but they also failed to produce feature sets that would be suitable
for other data sets as well. In fact, the manually selected filter set not only
gave better results in the cross-database tests, but in most cases it surpassed
the feature sets created by automatic means on our original task as well. This
seems to suggest that the manually selected filter set is the one that should be
used in future experiments. Unfortunately, the selection heuristics applied in
the filter set design do not provide a guarantee either that the resulting set is
optimal (in fact in the cross-database experiment of Section 2.3.4 we found that
the standard MFCC features outperformed the suggested filter set by a small
margin). Furthermore, the manual selection process does not offer the means
to improve the filter set when more training data becomes available.

For the above reasons, our suggestion is to combine the feature selection
step and the statistical modelling step into one. This has been suggested in
the domain of image processing [130], and there are also studies that try to
incorporate the feature extraction parameters into the optimisation of the
acoustic models [16, 131, 134]. More recently, with the introduction of deep
neural nets, several authors have suggested that these new types of networks
are powerful enough to accept a less well prepared input than is usual with
standard HMMs. For example, it now seems widely accepted that deep neural
networks work more efficiently on a simple mel-spectral representation than
with MFCCs [162]. Some authors even tried to train deep neural networks on
raw acoustic data [95, 174]. Another appealing quality of the neural nets for
the task is that their “architecture allows the incorporation and exploitation of
existing knowledge about speech” [208].

INTRODUCTION 65

In a recent study, the training of a convolutional neural net was extended to the
optimisation of the feature extraction filter bank [197]. The solution proposed
here is based on a similar concept, but it uses spectro-temporal filters instead
of a conventional spectral filter bank. This method treats the feature extraction
filters as the lowest layer of a neural net, subsequently enabling the training
algorithm to fine-tune the filter coefficients as well.

To understand how it is possible to carry this out, let us recall from Section 2.1
the formula characterising the output of applying spectro-temporal filter F on
patch P :

o =
M−1∑
f=0

N−1∑
t=0

P (f, t)F (f, t), (2.1 revisited)

where M and N are the respective height and width of patch P and filter F . If
we represent P and F in vector form (as P and F which is just a notational
change), we get the following formula:

o =
M ·N∑
i=1

F i · P i. (3.1)

Let us also recall from Section 1.4.2 the formula specifying the output o of a
perceptron:

o = a

(
L∑
i=1

xi · wi + b

)
, (1.13 revisited)

where x is the input of the neuron, L is the length of the input, w is the weight
vector, and b is a bias corresponding to that neuron. For the activation function
a we usually apply the sigmoid function; but it is also possible to create a linear
neuron by setting a to the identity function. If we select the identity function
as the activation function of our perceptron, and set the bias b to be zero, we
can write (1.13) in the following form:

o =
L∑
i=1

xi · wi. (3.2)

Now it is easy to demonstrate that (1.13) is just a special case of (2.1), by chosing
the vectorised version of the patch P as our x input vector, and the vectorised
version of F filter as our w weight. This means that the spectro-temporal filters
can indeed be integrated into an ANN classifier system as special neurons, with
the filter coefficients being the weights of the given neuron.

66 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

3.2 Experiments using Sigmoid Networks

Although in later stages more advanced neural net techniques will be applied,
as a proof of concept, we first integrated this new filter extraction layer into a
traditional sigmoid neural net. To test the viability of the proposed method,
phone recognition experiments were carried out on the TIMIT speech database
(using both the clean version of the core test set and its noise contaminated
versions), as well as on the “Szeged” Hungarian broadcast news corpus. Here,
based on the results of these experiments, we attempt to find the answer
to three important questions regarding the strategy of the joint training of
spectro-temporal features and neural nets:

1. Does the fine-tuning of the filter coefficients lead to better recognition
results?

2. Does the strategy applied in the initialisation of the filter coefficients affect
the recognition results, and if so, in what way?

3. How does the cross-language performance of the resulting feature set
relate to that of the filter sets introduced in Section 2.3?

In these experiments the structure of the feature extraction layer was specified
based on the parameters used in the experiments described in Section 2.3, as
the parameters given there not only are results of extensive optimisation, but
by using the same parameters a comparison of the respective results on the
Hungarian database becomes more informative. In broad terms this means that
the patch size was 9× 9 (or in different terms, each layer had 81 inputs), the
step size of patches in the frequency domain was fixed at 4 (leading to the use
of six patches to cover the full frequency domain1), and on each patch 9 filters
were applied (or in different terms, each of the 6 sub-layers had nine neurons).
A detailed structure of the neural network, and the feature extraction layer
depended on whether or not the neural net was allowed to use a broader context
than one patch. The neural net structure was also dependent on the actual
task carried out: neural nets used on the TIMIT phone recognition task had an
output layer consisting of thirty-nine neurons, while the neural nets used on the
“Szeged” Hungarian broadcast news database had an output layer of fifty-two
neurons; in accordance with the corresponding number of monophone labels.

1Each such patch corresponds to a group of dedicated neurons in the feature extraction
layer that is responsible for the processing of the given patch. For convenience, such groups
of neurons will be referred to as “sub-layers”, or when it does not lead to confusion, simply as
layers.

EXPERIMENTS USING SIGMOID NETWORKS 67

Figure 3.1: Structure of the ANN for joint feature extraction and classification.

3.2.1 Limited context

Figure 3.1 shows the structure of the neural net in the case where classification
is based on only a context that is the same length as the patches used. When
compared with a conventional MLP, the main difference is the introduction of
the so-called feature extraction layer (for clarity, only two of the six sub-layers
are displayed in the figure). Here, linear neurons perform the filtering step
on their input, while their output is channeled into a sigmoid hidden layer.
From this point on, the system works just like a conventional MLP. Hence,
if the weights of the feature extraction layer were initialised with 2D DCT
or Gabor filter coefficients, and were not modified during training, the model
would be equivalent to a more traditional system; and incorporating the feature
extraction step into the system would be just question of implementation.

The structure in Figure 3.1 allows the algorithm to evaluate the spectro-temporal
features and the ANN in one step. However, the main purpose of this structure
was to extend the scope of the backpropagation algorithm to the feature
extraction layer, making it possible to train the weights associated with the
spectro-temporal filters, and hence fine-tune the initial coefficients. Naturally,
these coefficients could also be initalised randomly, but as backpropagation only
guarantees a locally optimal solution, initialising the model with weights that
already provide a good solution may be beneficial.

68 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

Table 3.1: Phone error rates (PER) got on the core test set of TIMIT (the
average of 20 independently trained neural nets).

Initial filter weights
filter weights unaltered trained
Random 32.96% 30.27%
2D DCT 31.19% 30.21%
Gabor 32.41% 30.29%

Experiments on clean speech using the TIMIT database

The phone recognition results obtained on the TIMIT corpus with neural nets
using a limited context, and a hidden layer of a thousand neurons, are listed in
Table 3.1. The rows of the table correspond to the various filter initialisation
schemes. The first column shows the results obtained when the filter coefficients
were not trained, while the second column shows the results got by neural nets
that modified the filter coefficients as well during backpropagation. The first
thing we notice is that the joint training method always gives better scores than
those obtained with fixed filter coefficients (with significance p < 10−11). This
indicates that the answer to our first question about joint training would be
positive.

We can also see that with the filter-coefficients fine-tuned, the initialisation
techniques gave practically the same results, so in this case, starting from the
2D DCT or Gabor filters did not help the optimisation process compared to the
case with random initialisation. This suggests that the answer to our second
question might be negative. However, we also see that in the first column, when
there is no fine-tuning of filters involved, the 2D DCT and Gabor filter sets yield
significantly lower error rates than the ones obtained using randomly initialised
filter coefficients (p < 10−5).

This sounds reasonable and, in fact, one might expect much worse results from
random filters. Interestingly, there are studies which indicate that in many
cases a large set of random base functions can give a representation that is
just as good as a carefully selected function set. Recently, a similar study was
published for the case of dictionary learning for speech feature extraction [232].
The Extreme Learning Machine of Huang et al. also exploits this suprising fact:
their learning model is virtually a two-layer network, where both layers are
initialised randomly, and the lowest layer is not trained at all [89].

EXPERIMENTS USING SIGMOID NETWORKS 69

Figure 3.2: Structure of the ANN for joint feature extraction and classification
with weight sharing on neighbouring patches in the time domain.

3.2.2 Expanded context

Figure 3.2 shows the structure of the ANN in the case where it uses multiple
patches as its input in the time domain as well. However, the two domains are
handled differently. For one, while the six patches in the frequency domain are
positioned using a step size of 4, in the time domain we use 9 patches with a step
size of 1 (for clarity, only three are displayed in the figure). Furthermore, while
patches extracted from different parts of the frequency domain are channelled
into different feature extraction sub-layers applying different weights, this is not
the case for patches extracted from different parts of the time domain: these
patches are processed in the same sub-layer, using the same weights. From
the outside however, they work as we had as many sub-layers, as the number
of patches used in the time domain, since the number of inputs required, and
the number of outputs provided by them is the same it would be had we used
multiple sub-layers. This duality is represented in Figure 3.2 by the addition
of two sets of transparent sub-layers. It is interesting to note here that with
this modification the resulting framework meets two criteria out of the three
required in the standard definition of convolution [231], namely the use of local
windows, and weight sharing. And while the third criterion (pooling) was not
met in the original study that introduced the framework [124], this approach
was also dubbed as convolution.

70 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

Table 3.2: Phone error rates (PER) got on the core test set of TIMIT (the
average of 20 independently trained neural nets, with a hidden layer of 1000
neurons).

Initial filter weights
filter weights unaltered trained
Random 27.98% 27.39%
2D DCT 28.83% 27.48%
Gabor 28.26% 27.17%

Experiments on clean speech using the TIMIT database

Table 3.2 shows the phone recognition scores got on the TIMIT speech corpus
using weight sharing on the current patch along with 4 preceeding and 4 following
patches in the time domain. We see that the difference between the performance
of the fine-tuned and the untrained filter sets is smaller than that for Table 3.1.
As regards the initialisation methods of the trained filters, Gabor filters resulted
in slightly lower phone recognition error rates in this case (p < 10−2). However,
this new network structure seems to work just as well with random filters as
with 2D DCT coefficients. This is an interesting observation that needs to be
examined further. But it is already quite clear that the new structure brings
about a clear improvement to the network.

This improvement is also apparent when we examine the results of a similar
ANN, with a hidden layer of 4000 neurons. Besides the increase in the number
of neurons, here we also tuned the phone insertion penalties on the random
10% of the training database retained for evaluation purposes. As we can see in
Table 3.3, while all the error rates were reduced due to the increased number of
neurons, it still holds true that training the initial weights results in lower PER
rates in both cases. Furthermore, regardless of whether the filter weights were
kept the same or altered during the training, here initialising them based on
the Gabor filters brings about a significant reduction in the error rates.

Table 3.3: Phone error rates (PER) got on the core test set of TIMIT (the
average of 10 independently trained neural nets with a hidden layer of 4000
neurons).

Initial filter weights
filter weights unaltered trained
Random 27.01% 26.23%
Gabor 26.51% 25.69%

EXPERIMENTS USING SIGMOID NETWORKS 71

Table 3.4: Phone error rates (PER) got on the noise contaminated core test set
of the TIMIT speech database (the average of 10 independently trained neural
nets).

Noise Initial 20 dB 10 dB
Filter weights unaltered trained unaltered trained

Babble Random 38.30% 37.66% 56.74% 56.23%
Gabor 37.42% 36.95% 54.36% 54.13%

Pink Random 52.25% 44.97% 70.71% 65.42%
Gabor 46.60% 43.13% 67.84% 64.03%

Band limited Random 45.02% 39.93% 55.54% 53.65%
Gabor 39.42% 39.87% 54.24% 52.53%

Experiments on noise contaminated speech using the TIMIT database

To examine their performance in noisy conditions, the neural nets containing a
hidden layer of 4000 neurons that were trained in the previous experiment were
also evaluated on the noise-contaminated version of the TIMIT core test dataset
(without retraining on the noisy data). In order to make the comparison of
phone error rates between pairs of the four versions of neural nets (applying no
refinement, applying the refined initialisation technique based on Gabor filters,
applying the refined training technique by training the feature coefficients as
well, and applying both refinements) easier, in Table 3.4 the error rates are
arranged in groups of four. Furthermore, in each group of four, the lowest
phone error rates (along with those not significantly different from them) were
highlighted in bold.

The error rates here display a pattern similar to that previously observed in
Table 3.3. As we can see, in almost every case both the training of filter weights
and the initialisation of those weights based on the Gabor filter set reduced the
phone error rates in noisy environments as well. However, in most cases the best
results were obtained by combining these techniques. In fact a combination of
the two methods brought about a significant improvement in performance in the
case of pink noise, with both signal-to-noise ratios, and with one signal-to-noise
ratio in the case of babble noise. There was also an improvement (albeit not a
significant one) in one of the cases of band limited noise, and in the other case
of babble noise.

72 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

Table 3.5: Phone error rates (PER) got on the “Szeged” Hungarian speech
database (the average of 10 independently trained neural nets).

Initial Filter weights
Filter weights Unaltered Trained
Random 26.94% 25.06%
Gabor 26.36% 24.75%
Gabor (TIMIT) 25.10% 24.64%

Experiments on cross-database performance using the “Szeged” corpus

We also performed phone recognition experiments using the joint-training
framework on the “Szeged” Hungarian broadcast news database. First, it
allowed us to examine the performance of the framework on a database twice
removed from TIMIT (as it is not simply a different database with the same
language, but a different database recorded in a different language). It also
made it possible to make a comparison between the method of joint-training
and the feature selection methods we described in Chapter 2. If we consider
the training phase of the neural net as a walk in the feature space, the weights
corresponding to the filtering sub-layers can be viewed as the filters this process
selects; and conversely, the output of these sub-layers can be viewed as the
features selected by the joint-training process. This allows to compare the
performance achieved using these features with the performance achieved using
features obtained by the feature extraction methods discussed in Chapter 2.

In the initialision of the filter coefficients for the experiments with the “Szeged”
corpus, three schemes were used: random initialisaton, initialisation based on
the Gabor filter set described in Section 2.3.1, and initialisation based on the
same filter set, after it had been trained on the TIMIT database. We can see the
results of these experiments in the respective rows of Table 3.5. As is clear here,
regardless of whether filter coefficients were further trained on the Hungarian
database (column Trained) or not (column Unaltered), the lowest error rates
were achieved when using the filter set that had already been enhanced by the
joint optimisation method applied on the TIMIT database. This means that
unlike in the case of filter selection methods, where the filter sets selected based
on TIMIT all have performance degradation when migrated to the Hungarian
corpus, the fine-tuning of the filter set on the TIMIT database did not degrade
the performance on the Hungarian database, but even increased it. We can also
see in this table that (similar to that in most earlier experiments) initialisation
based on the original Gabor filters in itself leads to an improved recognition
accuracy, and that training the filter coefficients brings about an improvement
in each case.

EXPERIMENTS USING DEEP NEURAL NETWORKS 73

3.3 Experiments using Deep Neural Networks

As described in Section 1.4.2, in standard ANN implementations there are
ordinarily three layers, namely an input layer, an output layer (applying the
softmax nonlinearity), and in between a hidden layer that uses a sigmoid
activation function. Recently, it has been shown that a significantly better
performance can be achieved by increasing the number of hidden layers [84].
Unfortunately, training these ‘Deep’ Neural Nets (DNNs) with three or more
hidden layers has certain difficulties [63]. A solution to these problems was given
by Hinton et al., leading to a renaissance of ANN-based technologies in speech
processing [84]. An even simpler solution was later given with the introduction
of rectifier neural networks [63, 223].

Rectifier neural nets differ from their conventional counterparts only in the
activation function used by the neurons in the hidden layer(s). While standard
methods use the sigmoid activation function, rectifier nets apply the rectifier
function. The difference between these functions can be seen in Figure 3.3.
The rectifier function (rectifier(x) = max(0, x)) has two interesting properties.
The first is its linearity for positive input. Because of this, neurons using this
activation function do not saturate as their activity increases. This means that
even with multiple hidden layers, the problem of vanishing gradients can be
reduced or avoided altogether [223]. Another interesting property is that for
all negative values the function returns a constant value of zero. This means
that the resulting neural net is usually more sparse, which has computational
advantages. Also, sparsity is biologically more plausible [64].

Figure 3.3: Plot of the sigmoid activation function (solid line), and the rectifier
activation function (dashed line).

74 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

Figure 3.4: Structure of the Deep Rectifier Neural Net (DRN) for joint feature
extraction and classification.

Due to the replacement of the sigmoid activation function with the rectifier
activation function in the neurons, it was possible for us to use more hidden
layers in the joint-traning framework without having to apply a pre-training
algorithm [64, 223]. In the experiments presented here, the previously used
hidden layer with 4000 sigmoid neurons was replaced with three hidden layers,
each one consisting of one thousand rectifying neurons. There were two main
reasons for setting the parameters of the new framework to these values. One
was that with this choice, it allowed us to keep the number of trainable
parameters in the new framework (∼2.5 million) close to the number of trainable
parameters in the original one (∼2.1 million). The other reason was that while
in our preliminary experiments the progression from two rectifier layers with
1000 neurons to three rectifier layers with the same size provided a significant
improvement in the frame-level phone classification error rates on the validation
set of TIMIT, the progression from three such layers to four sometimes even
harmed the error rates, and when it led to an improvement, the difference was
not always significant. The resulting structure is shown in Figure 3.4.

EXPERIMENTS USING DEEP NEURAL NETWORKS 75

Table 3.6: Phone error rates (PER) got on the core test set of TIMIT (the
average of 10 independently trained neural nets).

Initial Original framework DRN framework
Filter weights unaltered trained unaltered trained

Gabor 26.51% 25.69% 24.42% 23.37%
2D DCT 27.31% 26.12% 25.00% 24.15%
Random 27.01% 26.28% 25.35% 23.58%

3.3.1 Experiments on clean speech using the TIMIT database

The results of the phone recognition experiments on the core test set of the
TIMIT speech corpus are summarised in Table 3.6. For both the original
framework (using one sigmoid layer), and the DRN framework, the lowest error
rates are highlighted. The first thing to note here is that between these two
highlighted results of the two settings, there is a 9% relative error rate reduction
for the DRN. Not always to such an extent, but the advantage of deep learning
is discernible in each case, with the relative error reduction ranging from 6.5%
to 10%. The average was 7.5% for the unaltered settings, and almost 9% for
the trained version.

Another observation we can make concerning the case where filter coefficients are
modified during neural net training, and where filter coefficients are unaltered
is the following: regardless of whether the experiments were carried out with
the original framework or with the DRN framework, error rates are lower in
each case where the error backpropagation was extended to the filtering layer.
This further reinforces the importance of incorporating the feature extraction
and training processes into one step. Lastly, we should note that for both the
original and the DRN framework, the result highlighted above was attained
when the filter coefficients were initialised based on the Gabor filter set. This
again shows the value of initialising the filtering layer with the appropriate
weights.

3.3.2 Experiments on noise contaminated speech using the
TIMIT database

The experiments conducted on clean speech were repeated for noise contaminated
speech. Here (as usual), the neural nets that had been trained using clean
speech were evaluated in noisy conditions. The results in this case will be
reported and examined (based on the same questions results with clean speech
were examined) separately for artifical and real-life noise types.

76 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

Table 3.7: Phone error rates (PER) got on the core test set of TIMIT
contaminated with band-limited and pink noise using different SNR values
(reported error rates are the average of 10 independently trained neural nets).

Noise SNR Initial Original framework DRN framework
type Filter weights unaltered trained unaltered trained

10 dB
Gabor 54.24% > 52.53% 53.64% > 52.79%

2D DCT 52.26% 52.43% 51.48% < 53.48%
Band- Random 55.54% 53.65% 54.01% 53.86%
limited

20 dB
Gabor 39.42%* 39.87% 41.97% 41.89%

2D DCT 39.99% > 39.29%* 41.08% < 42.11%
Random 45.11% > 40.68% 41.42% 42.20%

Pink

10 dB
Gabor 67.84% > 64.03% 62.66% > 61.61%*

2D DCT 67.77% > 64.76% 64.27% > 62.81%*
Random 70.71% > 65.40% 64.30% > 62.96%*

20 dB
Gabor 46.60% > 43.13% 40.68% > 39.95%*

2D DCT 48.16% > 44.30% 42.01% > 40.72%*
Random 52.25% > 45.02% 43.27% > 40.34%*

Experiments on Speech Contaminated with Artificial Noise

In the first set of experiments two artificial noise types were used, namely
band-limited noise and pink noise. The numerical results of these experiments
are listed in Table 3.7. As there is much more data here, a detailed analysis
becomes more complex as well. Hence, let us examine the questions raised in
the last section separately.

The first question was concerning the way the recognition performance changed
when replacing the original framework (using the sigmoid activation function in
its hidden layer) with the new DRN framework (using the rectifier activation
function). In this case, to make the comparison easier and visually clearer, in
each row of Table 3.7 where there is a significant difference between the best
result got with the original framework, and the best result got with a DRN
framework, the lowest error rate in each row was marked by an asterisk. Here,
we can see a marked difference between the two artificial noise types. In the case
of pink noise, the recognition scores got by the DRN framework are significantly
better than those got by the original framework for each signal-to-noise ratio
(SNR) and each weight initialisation scheme; but this is not so in the case of
band-limited noise. In the case of speech contaminated with the latter noise
type, for the most part there is no significant difference between the error rates
produced by the two settings. Furthermore, in both cases where the difference
between the pairs of results obtained by the different frameworks is significant,
the original framework tends to produce better results.

EXPERIMENTS USING DEEP NEURAL NETWORKS 77

The second question was about how the recognition performance varies in the
case where the filter coefficients are kept constant compared with the case
where the filter coefficients were also trained. To make the comparison visually
clear, in each unaltered/trained pair of Table 3.7, when there was a significant
difference, it was marked by an inequality symbol being placed between the two
columns. As can be seen in the table, the two types of artificial noise behave
quite differently in this case as well. With pink noise we see the same trend that
we saw in the case of clean speech, namely that the trained version invariably
yields significantly better recognition rates than the unaltered version. With
band-limited noise, however, in most cases there is no significant difference
between the trained and unaltered version. And when there is, usually the
trained version is better for just the original framework.

Based on the results (see Table 3.7) concerning the first two questions to be
examined, we can say that with pink noise the results are in accordance with
our preliminary expectations based on the clean speech experiments: the DRN
framework not only outperforms the original one, but it also consistently gives
significantly lower error rates with trained filter coefficients. This is not the
case with band-limited noise, however, where the DNN framework does not
provide significantly better results than those got with the original one, and
it also tends to produce better scores with fixed filter coefficients than with
trained ones.

Lastly, to examine the third question, namely the impact of filter weight
initialisation on phone recognition error rates, both in the case of the original
and the DRN framework from each group of six error rates (corresponding to
the same noise type and SNR), the lowest was highlighted in bold. Here, again
there is a difference between the two noise types, but there is also a distinct
similarity as well. The best performing initialisation scheme differs between the
case of pink, and band-limited noise: for the first artificial noise type, the best
phone recognition results were achieved when the filter weights were initialised
based on the 2D DCT feature set, while for the second noise type, the lowest
error rates were obtained when Gabor filters were applied for the same task.
This, however, also means that in both cases the best performance is achieved
when the filter coefficients are initialised based on a specific filter set, and
not randomly. This indicates that regardless of the artificial noise type used,
proper initialisation of the filter coefficients is essential in obtaining low phone
recognition error rates.

78 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

Table 3.8: Phone error rates (PER) got on the core test set of TIMIT
contaminated with Babble, Factory and Volvo noise, with different SNR values
(reported error rates are the average of 10 independently trained neural nets).

Noise SNR Initial Original framework DRN framework
type Filter weights unaltered trained unaltered trained

Babble

10 dB
Gabor 54.36% 54.16% 50.61%* 50.73%

2D DCT 55.90% > 55.04% 51.33%* < 52.75%
Random 56.74% 56.25% 50.44%* < 53.38%

20 dB
Gabor 37.42% > 36.95% 33.41% > 33.09%*

2D DCT 38.88% > 37.61% 34.59% > 34.17%*
Random 38.30% > 37.64% 34.55% > 33.42%*

Factory

10 dB
Gabor 62.37% > 58.06% 56.07% > 54.73%*

2D DCT 61.73% > 58.68% 56.66% > 55.58%*
Random 58.85% 58.95% 56.30% > 54.60%*

20 dB
Gabor 41.89% > 38.86% 35.93% > 35.34%*

2D DCT 42.16% > 39.47% 37.17% > 36.32%*
Random 40.11% 39.94% 37.43% > 35.52%*

Volvo

10 dB
Gabor 33.05% > 32.61% 28.89% > 28.26%*

2D DCT 32.97% 32.79% 29.53% > 29.19%*
Random 32.31% < 33.86% 29.37% > 28.59%*

20 dB
Gabor 29.59% > 28.48% 26.32% > 25.53%*

2D DCT 29.71% > 28.70% 26.67% > 26.00%*
Random 29.07% 29.22% 26.85% > 25.54%*

Experiments on Speech Contaminated with Real-life Noise

The results of experiments with noise types got from real-life environments
are summarised in Table 3.8. First, comparing the error rates provided by the
original and the DRN framework we see that the latter provided much lower
error rates regardless of the noise type. The pattern is also apparent when it
comes to the difference of error rates attained using unaltered and trained filter
coefficients: for each noise and framework, training the coefficients led to better
recognition scores in the majority of the cases. A comparison of initialisation
schemes, however, is more complex. For here, in some cases the best result was
achieved by randomly initialised weights. But in most cases the initialisation
based on Gabor filters still performed better, meaning that, overall, Gabor
filters proved to be the most useful for initialisation.

To summarise the findings presented in tables 3.6, 3.7 and 3.8, we can say
that with the exception of one noise type, the DRN framework provides better
results than the original. Furthermore, in most cases this framework also yields
better recognition scores when the filter coefficients are trained. We also see
that usually the best performance was achieved when employing Gabor filter
initialisation.

EXPERIMENTS USING CNNS 79

3.4 Experiments using CNNs

Despite the modifications that we made, two important attributes remained
the same. First, in both the original, and the DRN framework, the patches
used were direct neighbours. Second, the filtering sub-layers processing the
neighbouring patches were combined immediately, in the following layer. This,
however, is not necessarily the optimal solution. Hence, below we will describe
experiments where instead of simply using neighbouring patches, we sought to
apply convolution in the time domain2.

3.4.1 Adjusting the Structure of the Model

So far, the combination of results got from the feature extraction layer was
carried out in the first hidden rectifier layer. It may be beneficial though to
perform this combination later. This, however, would lead to a massive increase
in the parameters of the model, since the number of outputs in the hidden
layer would then be the same as the number of neurons in that layer times the
number of neighbouring patches used, which in our case is 9000 (1000 times 9).
This would increase the number of parameters by ∼ 7.5 million. To avoid this,
three further modifications are proposed:

• First, instead of having all four neighbours on both sides, only two will
be used. This modification will reduce the number of extra parameters to
∼ 3.5 million.

• Furthermore, to ensure that the time-span available for the neural network
in its input is at least as long as before, the two neighbouring patches
both from before and after the current patch are extracted in such a way
that every second patch is skipped (or in different terms, we increase the
step size/stride from one to two). This modification also means that the
framework now also applies pooling on the spectro-temporal features Thus
now the framework meets every criteria of convolution [203, 231], and will
be referred to as a Deep Convolutional Rectifying Neural Net (DCRN).

• Lastly, the size of the convolutional rectifier layer is reduced from 1000
neurons to 200, meaning that the parameter count of the resulting DCRN
framework is quite similar to the parameter count of the original framework
(∼ 2.1 million).

2One could argue that the structure applied here is a time-delay neural network [2]
extended with sub-sampling [229]. Despite this, and the fact that convolution in image
processing is conventionally carried out in 2D [203], here, following [3], [132], and [224] we
will refer to this structure as a Convolutional Network.

80 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

Figure 3.5: Structure of the Deep Convolutional Rectifier Neural Net (DCRN)
for joint feature extraction and classification.

The structure of the new neural net framework with the proposed modifications
can be seen in Figure 3.5. Again, transparent rectangles signify the virtual
layers that occur due to the use of convolution. It should also be noted here
that having a step size of two (thus skipping one patch between two patches
used), despite performing better, is not necessarily an optimal solution either.
Leaving out patches from being processed makes it possible for us to use a
wider context in the input of the neural net, without the number of features
(and thus the number of parameters to be trained) growing with the growing
context. This raises the question of how the step size should be selected for
optimal performance. And as our preliminary experiments with the step size
being increased to two (skipping one patch between each two patches used)
produced quite promising results, we decided to examine this question. We did
so by first training 10 independent neural nets for each patch omission number
from 1 to 10, initialising filter coefficients randomly, as well as based on Gabor
filters and 2D DCT coefficients (meaning that altogether 300 neural nets were
trained). The training of these nets was carried out on a randomly selected
90% of the training set of the TIMIT speech corpus. The resulting neural nets
were evaluated based on the frame-level phone classification error rates they
produced on the remaining 10% of the training set.

EXPERIMENTS USING CNNS 81

Figure 3.6: The frame-level error rates of the validation set as a function of the
step size (in the time domain) in neural networks using different initialisation
schemes – Gabor filters (solid line), 2D DCT coefficients (dashed line) and
Random initialisation (dotted line).

The average frame-level error rates of these experiments are shown in Figure 3.6.
As can be seen, with each initialisation scheme, after an initial decrease, the
error rates steadily grow as step size increases. The best results with feature
coefficients initialised with 2D DCT and Random filters were achieved (with a
18.78% and a 18.87% frame-level phone classification error rate, respectively)
with a step size of four (skipping three patches between two patches used).
Thus in later experiments, when working with 2D DCT or randomly initialised
filter coefficients, we used a step size of four. With Gabor filters, however, some
additional improvement could be achieved by increasing the step size to five (in
this case the error rate dropped from 18.71% to 18.63%). As this difference was
not significant, and since using a different meta-parameter with Gabor filters
would have adversely affected comparability, a step size of four was applied
when using Gabor filters as well.

82 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

Table 3.9: Phone error rates (PER) got on the clean core test set of TIMIT
(reported error rates are the average of 10 independently trained neural nets).

Initial Original DRN DCRN
Filter weights framework framework framework

Gabor 26.24% 23.37% 22.98%
2D DCT 26.54% 24.15% 23.22%
Random 26.53% 23.58% 23.25%

To evaluate the effect of the proposed changes on the phone recognition error
rates of the framework, the experiments on the TIMIT speech database were
repeated. As in sections 3.2.2 and 3.3, first the phone recognition results
got on clean speech will be described, then we will discuss the results got on
speech contaminated with different noise types (first, results with artificial noise
will be presented, after which we will present the results got on speech signal
contaminated with noise types arising in real-life applications). Because in
the previous experiments the configuration where the filter coefficients were
also trained by the backpropagation algorithm yielded a significantly better
performance in most cases, here we only perform experiments using this setting.
We will compare the results obtained in the DCRN framework with the best
results got with the DRN and the original framework (regardless of whether
the result was got using unaltered filter coefficients or trained ones).

3.4.2 Experiments on clean speech using the TIMIT database

The results obtained from applying the modified model on the uncontaminated
version of the TIMIT core test set are summarised in Table 3.9. As can be
seen, regardless of the initialisation scheme applied on the filter coefficients, the
proposed modifications in the framework produced phone recognition error rates
that are not just lower than those got using the original framework, but also
lower than those got using the DRN framework. It should also be noted that the
improvement in the recognition scores is significant in each case. Furthermore,
we can see that in the DCRN framework, the lowest error rates were attained
when we initialised the weights in the feature extraction layer based on the
feature sets we experimented on in Chapter 2, the best performance being
achieved when we used Gabor filters.

EXPERIMENTS USING CNNS 83

Table 3.10: Phone error rates (PER) got on the core test set of TIMIT
contaminated with Band-limited and Pink noise, with different SNR values
(reported error rates are the average of 10 independently trained neural nets).

Noise SNR Initial Original DRN DCRN
type Filter weights framework framework framework

10 dB
Gabor 52.53% 52.79% 49.75%*

2D DCT 52.26% 51.48% 49.46%*
Band- Random 53.65% 53.86% 50.32%*
limited

20 dB
Gabor 39.42% 41.89% 38.10%*

2D DCT 39.29% 41.08% 37.48%*
Random 40.68% 41.42% 37.70%*

Pink

10 dB
Gabor 64.03% 61.61%* 61.45%*

2D DCT 64.76% 62.81% 61.33%*
Random 65.4% 62.96% 61.87%*

20 dB
Gabor 43.13% 39.95%* 39.89%*

2D DCT 44.30% 40.72% 40.09%*
Random 45.02% 40.34%* 40.59%*

3.4.3 Experiments on noise contaminated speech using the
TIMIT database

Experiments on Speech Contaminated with Artificial Noise

Here, the test set was contaminated with artificial noise types. Then models
trained on clean speech were evaluated on the resulting sets. The results of
these experiments are summarised in Table 3.10. For better visualisation, in
each row the lowest error rate (and those not significantly different from it) is
highlighted with an asterisk. In the case of the DCRN framework, the best
performing initialisation scheme for each noise type and SNR is in bold.

First, let us examine the question of how the phone recognition error rates
change with the introduction of the DCRN framework. We can see that with
band-limited noise the framework with the three new modifications significantly
outperforms every other framework tested. The case of pink noise is not much
different from this, as here in each case where there was one framework that
performed significantly better than all the others, that framework was the
DCRN. Looking at the difference between the results obtained via the various
initialisation schemes, we can see that in each case the best result was obtained
by the DCRN framework when using the 2D DCT coefficients or the Gabor
filter set for this purpose.

84 THE JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS

Table 3.11: Phone error rates (PER) got on the core test set of TIMIT
contaminated with Babble, Factory and Volvo noise, with different SNR values
(reported error rates are the average of 10 independently trained neural nets).

Noise SNR Initial Original DRN DCRN
type Filter weights framework framework framework

Babble

10 dB
Gabor 54.13% 50.61% 49.70%*

2D DCT 55.04% 51.33% 50.60%*
Random 56.25% 50.44%* 51.46%

20 dB
Gabor 36.95% 33.09% 31.80%*

2D DCT 37.61% 34.17% 32.17%*
Random 37.64% 33.42% 32.62%*

Factory

10 dB
Gabor 58.06% 54.73%* 54.91%*

2D DCT 58.68% 55.58% 54.89%*
Random 58.85% 54.60%* 55.13%

20 dB
Gabor 38.86% 35.34% 34.82%*

2D DCT 39.47% 36.32% 35.32%*
Random 39.94% 35.52%* 35.58%*

Volvo

10 dB
Gabor 32.61% 28.26% 27.52%*

2D DCT 32.79% 29.19% 27.86%*
Random 32.31% 28.59% 27.64%*

20 dB
Gabor 28.48% 25.53% 24.75%*

2D DCT 28.70% 26.00% 24.92%*
Random 29.07% 25.54% 24.89%*

Experiments on Speech Contaminated with Real-Life Noise

Lastly, our experiments were repeated on speech contaminated with noise types
arising from real-life applications. The results given in Table 3.11 tell us that
with Volvo noise the results got with the DCRN framework surpass even the
best results got with the original framework or the DRN framework regardless
of the SNR or the initialisation scheme used. The picture is not so clear with
babble and factory noise, but in most cases with these settings as well, the best
results were got by applying the DCRN framework.

We can also see that the DCRN framework provides the lowest error rates
when the weights in the filtering layer are initialised based on either 2D DCT
coefficients or Gabor filters.

CONCLUSIONS 85

3.5 Conclusions

In this chapter, we proposed an algorithm for the joint training of spectro-
temporal features and neural networks. First, the algorithm was tested in phone
recognition tasks on the TIMIT speech database, and the “Szeged” Hungarian
broadcast news corpus. The results confirmed that joint optimisation does indeed
result in a better recognition performance than that got by separate feature
extraction and acoustic modelling. The results also indicate that this method
leads to significantly better recognition results as well as to better cross-database
and cross-language performance than those got via the automatic feature selection
algorithms.

After the preliminary experiments, two further modifications were proposed in
the joint training of spectro-temporal features and neural networks. One was
the addition of further hidden layers with neurons using the rectifier activation
function in the network, turning it into a Deep Rectifier Neural Net. The other
was the introduction of convolution into this DRN structure. The effect of these
further modifications was also tested in phone recognition tasks carried out on
the clean and noise contaminated version of the TIMIT speech database. The
results of these experiments show that while the first modification brought about
an improvement in the error rates compared with the original framework, the
best performance was achieved when both refinements were applied. As we saw,
the error rates provided by the framework that applied both modifications were
significantly better than those got using our original framework, regardless of the
filter set applied or the noise used to contaminate the speech signal, and in the
majority of cases (both in clean and noise contaminated speech) it also yielded
significantly better results than those got using the framework that applied Deep
Rectifier Neural Networks without convolution.

The latter set of experiments in sections 3.3 and 3.4 lead to two additional
deductions. First, the experiments with the DRN framework confirmed that by
extending the scope of the backpropagation algorithm to the feature extraction
layer, and thus training the feature coefficients along with the other weights of
the neural network, it is possible to attain better recognition rates. Second, the
experiments on both the DRN and the DCRN framework confirmed that the
proper initialisation of with the filter coefficients better recognition results can
be achieved. That is, even in the case of the DRN framework it rarely occurred
that the best results were got using randomly initialised coefficients, while in the
case of the (better performing) DCRN framework this did not occur even once.
It should also be remarked that out of the two feature sets used, Gabor filters
overall achieved a slightly better performance than 2D DCT coefficients did.

Chapter 4

The Multi-Band Processing
of Speech using
Spectro-Temporal Features

Originally, spectro-temporal feature extraction and multi-band processing were
both based on observations on human speech perception, and were both designed
to increase the robustness of speech recognisers. And while these methods have
been in use for a long time now, few attempts have been made to combine them,
despite their evident compatibility. This is why in this chapter we will focus on
integrating spectro-temporal processing into multi-band speech recognition.

First, we examine a simple method where spectro-temporal features derived from
different regions of the frequency domain are processed separately by dedicated
neural nets, then the output of these neural nets is combined in the input of
an additional neural net. Here, the feature sets introduced in Chapter 2 will be
used for spectro-temporal processing, while for classification, both conventional
MLPs, and DNNs will be used. The assessment of the method will be carried
out on a phone recognition experiment of the TIMIT corpus, using both clean
and noise contaminated speech.

In the second part, we will introduce a similar method that combines multi-band
processing with the joint optimisation of spectro-temporal features and neural
net classifiers. We will assess the performance of this method on the word
recognition task of the Aurora-4 speech corpus, using ARMA features as the
spectral representation.

87

88 THE MULTI-BAND PROCESSING OF SPEECH USING SPECTRO-TEMPORAL FEATURES

4.1 Introduction

In multi-stream speech processing, information from several separate sources is
combined [161]. A special case of this is multi-band processing (first described
by Duchnowski [47]), where different frequency regions are treated as separate
sources. In this paradigm the input is decomposed into spectral bands, then
after independent processing of the bands (which usually entails a partial
recognition being performed [29, 70, 82, 96]), information from the different
bands is recombined to produce an overall recognition result. The use of this
method was motivated by various considerations, such as signal processing [190],
the opportunity to exploit the potential of parallel computing systems [160], and
human speech perception [7, 51, 127, 193]. Robustness is another motivation [19,
82, 173], because in the case of a noise that is limited to certain bands, recognisers
working with features originating from those bands that were unaffected by
the noise would also be unaffected (in contrast with recognisers that rely on
full-band features). The latter two might sound familiar, which is hardly
surprising, as spectro-temporal speech processing was also inspired by human
speech perception (see Section 2.1), and the reasoning supporting the expected
noise robustness here is the same as that in the same section where we argued
for the expected noise robustness of spectro-temporal features.

Moreover, as is indicated by their schematic representation in Figure 4.1, the
similarity between the spectro-temporal and multi-band processing does not
stop there. In fact, the approach we were following in Chapter 2 (where
features extracted from different frequency bands of the full spectrum are later
recombined in one feature vector), is sometimes referred to as a branch of
multi-band processing, under the label “feature recombination” [34, 75, 173].

Figure 4.1: Schematic representation of a spectro-temporal processing schemes
framework (see Chapter 2) and a typical multi-band processing framework.
Where the two methods diverge, their process is represented by dashed/solid
lines, respectively.

INTRODUCTION 89

One would reasonably expect that methods especially designed for processing
spectral bands (such as spectro-temporal processing) should produce a more
optimal feature set. In most cases, however, when it comes to feature extraction,
studies on multi-band processing rely on standard techniques as PLP [70, 82, 96],
RASTA-PLP [71, 159] or MFCC [29, 173]. While rare papers attempt to combine
spectro-temporal processing with the multi-stream approach, these mostly
concentrate on separating the streams based on the properties of the filters,
rather than one based on the frequency domain these filters were applied on for
extracting the necessary features (i.e. multi-band approach) [148, 149, 238].

4.1.1 Processing and Recombination of the Bands

The reader might find the description of multi-band processing at the beginning
of Section 4.1 too vague. That is because it is a blanket term describing a
wide range of methods with quite different properties. The number of sub-
bands used, for example, can range from 2 to 22 [43]. Another question is
the overlap of the subbands. While in many cases the separation of subbands
is carried out using rectangular windows with no overlap (apart from that
originating from the filter-banks overlapping) [19, 29, 47, 82], overlapping
rectangular or smooth windows can also be used [228]. And once the subbands
have been selected, there are several decisions to be made on processing them
and on combining the results. Subbands may for example be processed using
GMMs [69], HMMs [29, 173], and HMM/ANN hybrids [82]. But typically this
is performed via ANNs [20, 71, 159, 160] (here we also followed this practice
of using ANNs). And after we have processed the subbands, we must make a
decision about how much of the resulting information we should use. Do we use
only the label of the winning hypothesis, the order of different hypotheses, or
the probability predictions [29]? Let us now assume that the recombination is
carried out based on the posterior estimates of ANNs (or the estimates of any
other method we chose to process subbands with). Several methods still can be
chosen for recombination, ranging from simple fixed linear combinations [29, 82]
to sophisticated methods that try to dynamically assess the reliability of the
bands [19, 69, 148, 167, 173], including ANNs [159, 160]. In the experiments
we used neural nets for recombination as well, as our investigation of multi-
band processing was partially inspired by the recent renaissance in ANN-based
recognition (especially with DNNs [84]). In our opinion one of the main reasons
to use ANNs in the recombination is that the recombination mechanism should
be nonlinear to exploit in the best possible way the inherent complex correlations
between the bands as argued in [19]. This is also confirmed by the experiments of
Hermansky et al. in which ANN-based merging consistently outperformed linear
combination counterparts in different experimental configurations [82, 148].

90 THE MULTI-BAND PROCESSING OF SPEECH USING SPECTRO-TEMPORAL FEATURES

4.2 Separate feature extraction and neural net
training

Let us first examine the effect of multi-band processing in the case where spectro-
temporal feature extraction and neural net training is executed in two separate
steps. In this approach, we first apply the 2D DCT/Gabor filters (see Chapter 2)
on the spectral representation. Then we separate the resulting features into
groups based on the frequency domain of their origin and independently train
neural nets for each group. After training the first neural nets, their outputs
are concatenated and fed into a recobminational neural net. Note the similarity
between this method and the combination of MFCC and 2D DCT features
earlier (see Section 2.2.2). The difference is in the features to be combined:
while during the experiments described in Section 2.2.2 the combination merged
different features originating from the same frequency domain (i.e. multi-stream
processing), here, the same type of features originating from different frequency
domains are combined (i.e. multi-band processing).

4.2.1 Experimental settings

As primary and secondary feature extraction was carried out according to
that described in Chapter 2, the settings we will discuss here only involve the
neural nets used. In the experiments described below, four different neural net
architectures were applied. The only common features are the hidden layers
using sigmoid neurons, and the output layer consisting of 39 units.

• FC: the neural nets employed for the “feature recombination” experiments.
Their hidden layer consisted of 4000 neurons using sigmoid activation,
while their output layer consisted of 39 neurons using softmax nonlinearity.
These networks used 9 neighbouring frames for their input.

• MB small: neural nets utilised in the first version of multi-band
experiments. In the case of multi-band processing, two types of neural
nets were used; one for the processing of individual bands, and one
for the recombination of the outputs obtained from the previous nets.
Here, to ensure comparability with the feature recombination method
(i.e. to ensure that the number of trainable parameters in the different
nets combined is not significantly different from the number of trainable
parameters in the FC net), the following settings were used: the neural
nets trained on the individual frequency bands had one hidden layer of
1000 neurons, while the recombination net had one hidden layer of 4000
neurons, and both used 5 neighbouring frames in their input.

SEPARATE FEATURE EXTRACTION AND NEURAL NET TRAINING 91

• MB big: in the next model both the nets processing the individual bands,
and the recombination nets were replaced by larger neural nets that used
9 neighbouring frames and had hidden layers consisting of 4000 neurons
(similar to the neural nets used in the “feature recombination” approach).

• MB deep: here both the neural nets processing the individual bands, and
the neural nets responsible for recombination were replaced by deep neural
nets. The first task (of processing individual bands) was carried out using
DNNs that consist of three hidden layers of 1000 neurons. As for the
recombination unit, a net with two hidden layers of 1000 neurons was
applied. Again, both nets used 9 neighbouring frames. Note that unlike
in Chapter 3, where rectifier neural networks were used for deep learning,
networks here were trained using the pre-training algorithm of Hinton et
al. [84]. However, as Glorot [64] and Tóth [223] have shown, the main
difference between the two is their running time, while their results are
similar.

4.2.2 Phone recognition experiments on the TIMIT database

Experiments reported here were carried out on the TIMIT phone recognition
task, using both clean speech, speech contaminated with artificial noise types,
and noise types resulting from real-life applications. Due to the various neural
network architectures employed in these experiments, we should be able to
examine different important questions using the resulting phone recognition
error rates. Three key questions are:

1. How does the transition from the traditional spectro-temporal (or “feature
recombination”) approach to the multi-band approach presented here
affect the error rates we get?

2. How does the transition from smaller neural nets (where the seven neural
nets altogether contain approximately 6 million trainable parameters)
to larger neural nets (where the seven neural nets altogether contain
approximately 16 million trainable parameters) in the multi-band approach
influence the error rates we get?

3. How does the introduction of DNNs in the multi-band approach affect
the error rates we get?

92 THE MULTI-BAND PROCESSING OF SPEECH USING SPECTRO-TEMPORAL FEATURES

Table 4.1: Phone error rates (PER) got on the clean core test set of TIMIT
(reported results are the average of 10 independently trained neural nets), and
the number of free parameters (in millions) for the different settings. For both
2D DCT and Gabor filters, the best score is highlighted in bold.

Settings 2D DCT Gabor No. of ANN parameters
FC 26.85% 26.78% ∼ 6
MB small 26.07% 25.45% ∼ 6
MB big 24.70% 24.79% ∼16
MB deep 23.47% 22.81% ∼17

Experiments on clean speech

Although the biggest gains were expected in noisy conditions, we still found
it useful to present results on clean speech as well. The reason for this was
the contradictory nature of earlier results: Morris et al. [167] found that multi-
band processing had a detrimental effect on speech recognition performance for
clean speech (Besacier and Bonastre had similar results for the task of speaker
recognition [15]), Bourlard and Dupont [20] concluded that the multi-band
approach provides at least a comparable performance in clean speech, and
Mirghafori and Morgan [160] found that the multi-band approach can be used
to improve the speech recognition accuracy in clean speech as well.

Table 4.1 lists the phone error rates attained on the clean test set. It should
be noted that for both the 2D DCT features and the Gabor filter set, the first
multi-band setting (MB small) already significantly outperforms the feature
recombination (FC) approach. This means that in our experiments the multi-
band approach not only not harmed the speech recognition performance in
clean speech, it even improved it significantly. Then each new setting gave a
better recognition accuracy than the one before. And as anticipated, for both
feature sets, the DNN approach provided the best recognition accuracy scores
(giving an overall 12.62% and 14.83% relative error rate reduction in the case of
2D DCT and Gabor filters, respectively). It is also of interest here that with the
FC setting the recognition accuracy scores for the 2D DCT and Gabor features
do not differ much; but this was not the case with most multi-band settings,
where the scores obtained with the Gabor filters were significantly better than
those obtained with the 2D DCT features.

SEPARATE FEATURE EXTRACTION AND NEURAL NET TRAINING 93

Table 4.2: Phone error rates (PER) got with 2D DCT features and Gabor filters
on the core test set of TIMIT, artificially contaminated with band-limited noise
and pink noise (reported error rates are the average of 10 independently trained
neural nets).

Feature Settings Band-limited Pink
set 20 dB 10 dB 20 dB 10 dB

2D DCT

FC 36.04% 47.98% 44.27% 65.16%
MB small 34.45% 41.21% 41.97% 62.50%
MB big 32.87% 39.66% 40.11% 61.61%
MB deep 30.68% 37.21% 40.22% 63.55%

Gabor

FC 36.41% 49.13% 44.26% 65.76%
MB small 33.11% 40.47% 39.87% 60.10%
MB big 31.75% 38.98% 39.31% 59.54%
MB deep 29.57% 35.93% 38.00% 61.46%

Experiments on speech contaminated with artificial noise

The models trained were also evaluated on the core test set contaminated
with artificial noise types, such as pink noise and band-limited noise. The
numerical results of these experiments are listed in Table 4.2. As can be seen,
the simplest multi-band model (MB small) already outperforms the feature
concatenation (FC) approach for each type of noise. Furthermore, in accordance
with the suggested advantage of the multi-band approach in narrow-band
noise [19, 160], multi-band processing indeed had the biggest gain in the case
of band-limited noise, when the signal-to-noise ratio was small (10 dB). Here,
average relative error rate reductions of 14.09% and 17.62% were reported with
2D DCT features, and Gabor filters, respectively. It is also true that the relative
error rate reduction is bigger for each case here than it was for clean speech,
corroborating the noise robustness of the multi-band approach. It can also be
seen that in most cases the DNN approach yielded the best scores.

Moreover, just like in the case of clean speech, with the “feature recombination”
approach we get comparable phone recognition scores for the 2D DCT and the
Gabor features (with 2D DCT features being better in most cases); and for
the multi-band settings the Gabor features consistently yielded lower phone
recognition error rates.

94 THE MULTI-BAND PROCESSING OF SPEECH USING SPECTRO-TEMPORAL FEATURES

Table 4.3: Phone error rates (PER) got with 2D DCT and Gabor features on
the core test set of TIMIT, artificially contaminated with Babble, Car and
Factory noise samples (reported error rates are the average of 10 independently
trained neural nets).

Feature Settings Babble Volvo Factory
set 20 dB 10 dB 20 dB 10 dB 20 dB 10 dB

2D DCT

FC 37.11% 53.46% 29.14% 32.21% 40.27% 58.82%
MB small 35.63% 50.74% 28.26% 31.58% 38.55% 56.84%
MB big 34.01% 49.13% 26.57% 29.83% 37.24% 54.98%
MB deep 31.88% 48.38% 24.60% 26.83% 35.32% 54.50%

Gabor

FC 36.79% 52.97% 29.53% 32.87% 40.38% 59.78%
MB small 34.77% 49.69% 27.54% 30.70% 37.19% 55.71%
MB big 33.82% 48.66% 26.40% 29.49% 36.13% 54.59%
MB deep 31.07% 46.66% 23.94% 25.80% 33.82% 53.17%

Experiments on speech contaminated with real-life noise

Models trained on clean speech were also evaluated on noise types coming from
real-life applications, such as babble noise, Volvo noise and factory noise. The
last two were added to the experiments, as Hagen et al. found that on such,
more realistic noise types, multi-band processing is only capable of a small
improvement [71]. The error rates got from these experiments are summarised
in Table 4.3.

As can be seen in Table 4.3, similar to the previous cases, even the worst
performing multi-band setting (MB small) significantly outperforms the feature
recombination (FC) approach, with an average relative error rate reduction of
more than 5%. Furthermore, similar to what we saw in clean speech, the error
rates further decreased with each modification introduced. As a result, for real
environmental noise, the DNNs provide the lowest error rates in each case. And
again, while in the feature recombination (FC) approach Gabor filter-based
recognition results in some cases are slightly poorer than the 2D DCT-based
results, they take the lead in the multi-band case, where they consistently
provide a better recognition performance than that obtained with the use of
the 2D DCT features.

Overall we can say that for one, deep networks in most cases gave an improvement
in phone recognition accuracy. What is more, contrary to some expectations [71,
96], in each case multi-band processing provided better phone recognition
accuracy scores than those obtained with the traditional spectro-temporal
feature extraction (i.e. “feature recombination”) method.

SEPARATE FEATURE EXTRACTION AND NEURAL NET TRAINING 95

Experiments on the representation of low frequency bins

Because of its highly technical nature, one matter of detail has not yet been
discussed, concerning the feature extraction of spectro-temporal processing
experiments described earlier. In each of these experiments up to this point, after
the primary feature extraction phase but before secondary feature extraction,
the filter banks corresponding to the lowest frequency bins were copied and
mirrored, in order to avoid the artificial down-weighting of the low frequency
bins. During this intermediary phase the number of filter banks to be mirrored
depended on the height of the patches used for feature extraction: mirroring was
executed in a fashion that allowed the positioning of the central row of the first
patch on the lowest mel filter-bank (meaning that for a patch height of seven,
three filter banks were mirrored, while for a patch height of nine this value was
four – the latter case being shown in Figure 4.2). This technique was employed
in our early experiments following the work of Bouvrie et. al [24], and was
maintained in later experiments for compatibility and comparability reasons. It
stands to reason, however, that the presumption on the necessity and usefulness
of this technique should also be tested. Fortunately, the combination of the
mirroring technique applied and the overlap of patches extracted meant that
the mirroring only affected the patch extracted from the lowest frequency range,
and all other patches were extracted just as if there had been no mirroring.
This, combined with the fact that features extracted from different frequency
bands were processed independently meant that the multi-band approach used
in our experiments led us to examine whether mirroring was indeed effective and
necessary before the secondary feature extraction phase, as out of the six filter
bands only one was affected by mirroring, while the other five were unaltered.

Figure 4.2: A representation of the lowest patch extracted in the presence of
mirroring (rectangle on the left hand side), and in the absence of mirroring
(rectangle on the right hand side).

96 THE MULTI-BAND PROCESSING OF SPEECH USING SPECTRO-TEMPORAL FEATURES

Table 4.4: Phone error rates (PER) got on the clean core test set of TIMIT and
its noise contaminated versions with different Signal to Noise ratios (SNR) using
Gabor filters (reported error rates are the average of 10 independently trained
neural nets). Where the difference between the two columns was significant (p
< 0.05) the lower error rate is highlighted in bold.

Speech type Noise type SNR Mirroring No Mirroring
Clean – – 22.81% 23.01%

Babble 10 dB 46.66% 47.19%
20 dB 31.07% 31.07%

Noise Volvo 10 dB 25.80% 25.91%
contaminated 20 dB 23.94% 24.15%

Factory 10 dB 53.17% 52.34%
20 dB 33.82% 33.55%

Average 33.90% 33.89%

For the sake of a comparison of results obtained from the mirrored spectrogram
and its counterpart without mirroring, we repeated the training of the deep
recombination nets from the MB deep settings with the only modification that
here, the recombinatonal net only used the output of five filter bands (those
that were not affected by the mirroring). The neural networks trained in this
fashion on the TIMIT database were evaluated on the clean core test set of
TIMIT, as well as the versions of the core test set contaminated by real-life
noise types.

Because in the previous experiments features extracted by Gabor filters provided
convincingly lower error rates than 2D DCT features, here only the former
feature set was applied. The results of these experiments, along with the results
obtained with the deep recombination net using the information from all six
frequency bands are shown in Table 4.4.

We can see in the last line in Table 4.4 that as regards recognition accuracy
there is virtually no difference between the two approaches. However in terms
of the parameter number, the situation is different: the combined number of
trainable parameters when using all six frequency bands in recognition is close
to 17 million (∼16.9), while in the case where only five frequency bands are
used this number is closer to 14 million (∼14.2), meaning that in the latter
case we can attain practically the same recognition results by using about two
and a half million fewer parameters. This suggests that mirroring the lowest
frequency bins might not be necessary, hence in later experiments this method
was not applied.

JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS 97

4.3 Joint training of spectro-temporal features and
neural nets

The results of the experiments described in the previous section demonstrate
that the multi-band approach already leads to a better recognition accuracy in
spectro-temporal speech processing when the feature extraction and neural net
training steps are carried out separately. However, in Chapter 3 we saw that
it was possible to achieve better results when these two steps were combined.
Thus it is also necessary to examine the effect of the multi-band approach
within the framework of joint training. We did so by applying the neural net
structure described in Section 3.4 to get the scores of individual frequency bands.
Afterwards, the scores provided by these neural nets were concatenated and
used as the input of a simple recombination net.

However, to highlight the generality of these techniques, the experiments to
determine the performance of the multi-band approach in the joint training
framework were not conducted on the TIMIT speech corpus, but on the larger
Aurora-4 corpus. And as the lowest error rates on the Aurora-4 word recognition
task (in the case of mismatched conditions in training and testing) were reported
with the use of the ARMA primary features [57], we used the ARMA features
as the spectral representation in the experiments.

4.3.1 Neural net structure

The shift from full-band processing to multi-band processing as well as the
change in task and input representation naturally required modifications in the
neural net structure described in Section 3.4. Before discussing the results, let
us first examine these changes item by item.

The first difference is the difference in input. Here, following Ganapathy [57],
not only the 39 frequency channels of the ARMA spectrogram were used, but
a derivative of this spectrum (described in Section 1.3.1) of the same size was
also applied. To accomodate the higher dimensionality of the input, instead
of the six feature extraction sub-layers, 16 such sub-layers were used (8-8 on
the ARMA spectrogram and its derivative, respectively). These 16 sub-layers
provided the features for 4 independent frequency bands.

Another important difference was the number of targets used during training.
Here, to ensure the competitiveness of our results, 1997 context-dependent
tristate phone targets were used. This means that even if the number of
independent bands were limited to four, the dimensionality of the recombination
nets input would be a multiple of 7988 (depending on the number of neighbouring

98 THE MULTI-BAND PROCESSING OF SPEECH USING SPECTRO-TEMPORAL FEATURES

Figure 4.3: Schematic representation of multi-band processing (A) and
traditional, full-band processing (B) for the joint training of neural networks
and spectro-temporal filter coefficients.

frames used). To reduce this dimensionality, two techniques were examined: in
one case the neural networks operating on the individual bands were trained
on 42 context-independent monostate phone models, while in the other case a
small “bottleneck” layer was placed in front of the output layer, and the output
of this layer was used as the input of the recombinatonal net.

These structures are shown on the left hand side of Figure 4.3 (for the sake
of clarity, the derivative spectrum is not displayed). Here, the structure of
the “monostate” and the “bottleneck” method are shown on different frequency
bands of the input. First, let us examine the details of the “monostate” case,
which is shown on the lowest frequency band, with neural net layers shown
in different shades of red (here, lighter shades denote the same effect that in
Chapter 3 was denoted by transparency, i.e. virtual layers that share their
weights with their darker coloured – or in Chapter 3 opaque – counterparts). As
can be seen, after the small feature extraction sub-layers there is a bigger layer
(with 200 rectifier neurons) that also applies convolution in the time domain,
after which two rectifying layers of 1000 neurons are used (without convolution),
and the structure ends with an output layer of 42 neurons (corresponding to
the 42 monostate phone models). The “bottleneck” structure (shown in green)
only differs in its output layer, which is much bigger (containing 1997 neurons),
and in a small hidden layer (containing 50 neurons) right in front of it.

JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS 99

Figure 4.4: Frame-level classification error rates got using different multi-band
structures on 10% of the clean Aurora-4 training set as a function of context
size (reported scores are the average of 3 independently trained neural nets).

As a baseline, another structure was examined (shown on the right side of
Figure 4.3), which only differs from the one described in Section 3.4 in the
number of feature extraction sub-layers used, the size of the output layer
(1997 neurons), and the addition of a smaller hidden layer (400 neurons, for
comparability with the “bottleneck” multi-band structure) in front of the output
layer. Otherwise this structure is the same as before. Outputs of the feature
extraction sub-layers, regardless of their position in the frequency domain,
are processed by the same layer in the next step, using convolution in the
time domain. After this convolutional layer the information is processed by
conventional, fully connected rectifier layers (containing 2000 neurons) up to
the softmax output layer.

4.3.2 Recombination net

The output of all the structures displayed in Figure 4.3 was used as the input
of a DRN with two hidden layers, each consisting of a thousand neurons, and a
softmax output layer consisting of 1997 neurons. In the multi-band approach
this net took on the role of the recombination classifier, while in the baseline,
full-band case, this net had the same role as the second ANN in the 2-stage
system described in Section 2.2.2. As we saw in Section 2.2.2 and Section 4.2,
it is beneficial if this recombination net also has the opportunity to use a bigger
context. It is not clear, however, how big this context should be. In order to
examine this, 3 recombination nets were trained for each context size (between
0 and 10 neighbouring frames on both sides of the current frame) using the

100 THE MULTI-BAND PROCESSING OF SPEECH USING SPECTRO-TEMPORAL FEATURES

outputs of the two multi-band structures on the randomly selected 90% of the
clean training set of Aurora-4. The different settings were evaluated based on
the frame-level classification error rates on the remaining 10%. The results of
these experiments are shown in Figure 4.4.

As can be seen, the “bottleneck” structure consistently outperforms the
“monostate” structure, the former resulting in error rates that are 3 to 8
percentage points lower than those obtained by the latter. Although the frame-
level results improve even with the biggest context we tested, after considering
the flattening of the curve, and the observation that the expansion of the
context can have a positive effect on the frame-level results even when its effect
is detrimental on word level recognition [178], a context of 8 neighbournig frames
(i.e. a context of 4 frames before and after the current frame) was selected
for the later experiments (and preliminary experiments using the monostate
structure justified the assumption that a bigger context is not beneficial in word
recognition performance).

4.3.3 Word recognition experiments on the Aurora-4 database

The word error rates obtained using the various joint training structures on
the different test sets of Aurora-4 are summarised in Table 4.5. For a better
understanding of these results, and to put them in context, in the last column
the table also contains the results Sriram Ganapathy got on the word recognition
task of the Aurora-4 corpus, using the same input features [57]. To the best
of our knowledge, the results of Ganapathy are among the lowest word error
rates reported on the Aurora-4 corpus without the use of noise corrupted data
in training.

Comparing the “bottleneck” and “monostate” columns, we see that the difference
observed on the validation set manifests itself on the test set as well. The error
rates got using the “bottleneck” structure are not only lower on average than
those got using the “monostate” structure, but the former also significantly
outperforms the latter on all but three test sets.

We can make additional interesting observations by comparing the feature
recombination column with the “bottleneck” and “monostate” columns. There
is a duality feature here. Namely, the relative performance of these approaches
is quite different in the case of the test sets recorded with the Sennheiser
microphone, and in the case of the test sets recorded with the various secondary
microphones. On the test sets recorded with the Sennheiser close talking
microphone, the “bottleneck” structure outperforms the baseline feature-
recombination method by only a small margin, while the “monostate” structure
performs even worse than that baseline. On the test sets recorded with the

JOINT TRAINING OF SPECTRO-TEMPORAL FEATURES AND NEURAL NETS 101

Table 4.5: Word Error Rates (WER) on the test sets of the Aurora-4 corpus
(reported scores are the average of 3 independently trained neural nets).

Microphone Noise FC Monostate Bottleneck Ganapathy[57]
Clean 3,9% 3,8% 3,7% 3,0%
Car 6,4% 6,1% 5,8% 5,0%

Babble 13,6% 13,9% 12,6% 13,0%
Primary Restaurant 17,7% 18,8% 17,2% 17,3%

microphone Street 14,0% 15,5% 13,7% 13,6%
Airport 14,0% 14,5% 13,5% 13,7%
Train 14,6% 17,1% 14,5% 14,5%

Average 12,0% 12,8% 11,6% 11,4%
Clean 14,3% 11,9% 11,6% 11,7%
Car 21,7% 18,6% 17,7% 18,4%

Babble 30,1% 29,8% 27,5% 29,6%
Secondary Restaurant 30,6% 31,9% 29,6% 31,1%
microphone Street 29,8% 30,9% 27,8% 28,3%

Airport 29,4% 29,4% 27,3% 29,5%
Train 30,3% 31,0% 27,3% 29,1%

Average 26,6% 26,2% 24,1% 25,4%
Average 19,3% 19,5% 17,8% 18,5%

secondary microphones, however, both multi-band methods outperform the
baseline, and the advantage of using the “bottleneck” approach is significant in
each case, and the average error rate reduction provided by it increases from
3.7% to 9.3%. This suggests that while the performance of speech recognition
increases in the presence of additive noise, we can benefit from it even more
when the microphones used for training and test data are different.

We may arrive to the same conclusions after comparing the results of the
“bottleneck” framework with those of Ganapathy. While the results obtained by
our multi-band processing method are not substantially better than those of
Ganapthy on the test sets recorded with the Sennheiser microphone (in some
cases they are even worse), this is not the case for noise contaminated test sets
recorded with the secondary microphones, where the use of the multi-band
approach results in convincingly lower error rates. It should be added here that
despite the less convincing performance on the first set of tests, the application
of the “bottleneck” structure overall leads to a relative error rate reduction of
close to 4% compared to that of Ganapathy.

102 THE MULTI-BAND PROCESSING OF SPEECH USING SPECTRO-TEMPORAL FEATURES

4.4 Conclusions

In this chapter, we examined the multi-band approach for spectro-temporal speech
processing. First, we demonstrated that the results attainable with the use of 2D
DCT coefficients and Gabor filters can be improved when speech processing is
conducted in a multi-band framework. Despite expectations to the contrary, the
multi-band approach proved to be advantageous in clean speech as well as speech
contaminated with various artificial and real-life noise types. Furthermore, as
expected, these results improved even further when deep learning was included
in the process. As an extension to these experiments, we examined the utility of
the practice of copying and mirroring the lowest frequency bands in the spectral
representation. During these experiments we found that this practice had no
obvious beneficial effect on the recognition rates. Because of this finding, we
abandoned this method in later experiments of the study.

In the second part of this chapter we discussed the possibility of applying the
multi-band approach for the joint training of spectro-temporal features and the
DRN acoustic model. The performance of the resulting method combining various
techniques for noise robust speech recognition was evaluated on the Aurora-4
continuous speech recognition task. The resulting word error rates indicated
that if suitably included in the joint framework, the multi-band approach can
measurably increase the robustness of speech processing, especially in a channel
mismatched situation. Furthermore, it was also demonstrated that this method
not only provides a relative improvement compared to the earlier version of
the joint framework that applied the feature-recombination approach, but it
also yields results comparable to the state-of-the art, on the Aurora-4 clean
training task. In fact, to the best of our knowledge, at the time of their original
publication these results were among the best reported word error rates on this
task without speaker adaptation.

It has also become clear that the proper adaptation of these methods is crucial.
And an additional lesson from these experiments was the realisation of how
hard it can be to find a proper recombination for the values origination from the
different frequency bands. For this, our goal for the next phase of this study was
to find an approach that would allow an independent processing of frequency
bands and would also bypass this problem.

Chapter 5

Band dropout

In this concluding part of the study, core ideas of the previous chapters are
amalgamated and further developed to demonstrate that beyond providing relative
improvements, these methods are also capable of yielding competitive results. To
achieve this goal, the basic idea of spectro-temporal processing (see Chapter 2)
was combined with the idea of handling sub-bands in some way independently
(see Chapter 4) in a joint framework for which the basics were laid down in
Chapter 3.

Before introducing the band dropout method in the joint framework however, it
might be beneficial to revisit the basic parameters of this framework, in order to
examine whether it is capable of providing competitive results in itself. This will
be described first in this chapter, where we reexamine the performance of the
joint framework using the TIMIT and Aurora-4 speech databases. We compare
the recognition scores the new framework can now attain with those got earlier,
as well as with scores found in the speech recognition literature.

In the second part this fine-tuned framework will be supplemented by a method
partially inspired via multi-band processing. In the band-specific dropout (in
short, band dropout) method during the training phase, the input from certain
frequency bands in the neural net are the subject of input dropout. In Section 5.2
we will examine the effects of this method on the Aurora-4 task. We will compare
the results obtained using this method with those obtained with no dropout as
well as standard input dropout. We shall also compare our results to those found
in the speech recognition literature, and demonstrate that the proposed method
is capable of providing state-of-the-art speech recognition results.

103

104 BAND DROPOUT

5.1 Revisiting the joint training framework

During the experiments which sought to optimise the filter sizes used for
spectro-temporal feature extraction described in Section 2, only one aspect of
the filter size was taken into consideration, namely the “technical” size of the
filter; this is how many filter banks and frames are covered by its height and
width, respectively. There is another aspect of filter sizes, however, namely the
frequency range and time interval they cover (i.e. the physical size of filters).
In earlier experiments it was taken for granted that a filter with a certain
technical size would have a certain physical size. This assumption hinged on
the supposition that the spectral representation in each case would be produced
using the same parameter settings. But this is not necessarily the case. Upon
revisiting the parameters of the joint training framework, we experimented with
varying the physical size of filters just with the modification of parameters used in
creating the spectral representation, and without modifying their technical size.
To understand these experiments, however, certain parameters and notational
conventions have to be introduced or reintroduced.

5.1.1 Parameters and notations

Important parameters to be discussed include the parameters applied in
constructing the spectral representation, and the parameters used in extracting
the patches for processing. Lastly, as patches are not utilised independently but
in bigger groups in a neural net framework, some parameters corresponding to
the neural nets should also be examined.

Spectral representation

Creating a mel-scale spectral representation, or Spectrogram (S) from the digital
speech signal requires (among others) the following important parameters:

• SδW: the frame size (in milliseconds) applied in getting the S spectral
representation.

• SνW: the frame shift (in milliseconds) applied in creating the S spectral
representation.

• S#
F : the number of filters used in the filterbank.

REVISITING THE JOINT TRAINING FRAMEWORK 105

Neural net and convolution

In earlier versions of the joint framework (see Chapter 3) two key modifications
were included. First, as is common nowadays [64, 222], ReLUs were incorporated
into the framework (see Section 3.3). This means that neurons in the
hidden layers apply the rectifier activation function on their input, instead
of the traditional sigmoid or hyperbolic tangent activation function. Another
modification was that following Veselý et al. [231], the neural nets employed
applied convolution (in the time domain) in some of their layers (see Section 3.4).
In brief, convolutional layers can be most easily understood if we imagine them
as separate layers that share their weights. This means that when a layer applies
convolution, the number of weights does not change, but the number of inputs
and outputs multiplies just as if we had several separate layers. Hence the
most important parameters and notations describing a given layer L are the
following:

• LI: The Input of layer L.

• LO: The Outpuf of layer L.

• L#n : The number of neurons in layer L (this parameter will also be
referred to as the size of layer L).

• LWi : The weight vector corresponding to the ith neuron of layer L
(0 < i ≤ L#n)

• L#p : The number of free parameters in layer L (commonly determined
using the size of the LI parameter and the value of the L#n parameter).

• LCn : If layer L applies convolution in the time domain (or in other words
the L layer is a convolutional layer), and gets its input from X distinct
locations in time, layer L – as it was mentioned earlier – can be thought
of as X number of separate layers. In this scenario, LCn denotes the
n-th such layer (where 1 ≤ n ≤ X), while LI

Cn
and LO

Cn
denote the

input and output of this layer, respectively. As the weights are shared
over these virtual layers, the weights of each of these X number of layers
will still be denoted by LW (since LW

C1
= LW

C2
= ... = LW

CX
). And as a

consequence of the weights being shared, the number of neurons are also
shared over these layers (meaning that the size of these layers is the same
– L#n

C1
= L#n

C2
= ... = L#n

CX
), and the number of neurons in each of these X

layers will be denoted by L#n .

106 BAND DROPOUT

Patches and filters

The basic parameters related to the various patches (P) used in the filtering
phase are as follows:

• Pδp
t : The physical size of patch P in the time domain. It stands for the

time span covered by the patch. This parameter will be measured in
milliseconds.

• Pδp
f : The physical size of patch P in the frequency domain. It stands

for the range of frequencies covered by the patch. It would be intuitive
to measure this in Hertz, but different mel filter channels cover different
ranges on the Hz scale, meaning that a patch of a certain size in the low
frequency range would cover a broader frequency range (in Hz) than the
same patch in the high frequency range. Because of this the physical size
of patches in the frequency domain will be measured on the mel scale,
and information about this will be given in mel units.

• Pδt
t : The “technical” size of patch P in the time domain. It denotes how

many frames are covered by the patch. (Note that Pδt
t can be determined

from the SνW, SδW, and Pδp
t parameters. Conversely, Pδp

t can be found
using the SνW, SδW, and Pδt

t parameters.)

• Pδt
f : The “technical” size of patch P in the frequency domain. It tells

us how many mel-channels are covered by the patch. (Note that Pδt
f can

be determined from the S#
F and Pδp

f parameters. Conversely, Pδp
f can be

determined using the Pδt
f and S#

F parameters.)

• P: A simple notation for patch P (which is a two-dimensional matrix)
when it is given in vector form.

• Pδt : The length of vector P. It can be calculated by applying the following
formula: Pδt

t ·P
δt
f

Since patches are limited in frequency, multiple patches are used in order to
cover the whole frequency domain. This also means that other parameters need
to be defined to explain this:

• P#
f : The number of patches used to cover the whole frequency domain.

• Pνp
f : the proportion of overlap between neighbouring patches in the

frequency domain (note that assuming the overlap to be constant Pνp
f is

determined by the S#
F , Pδt

f , and P#
f parameters, and conversely P#

f is
determined by the S#

F , Pδt
f , and the Pνp

f parameters).

REVISITING THE JOINT TRAINING FRAMEWORK 107

As convolution is applied in the time domain, at any given time multiple patches
will be used by the neural net input not only in the frequency domain (as we
saw above), but in the time domain as well. This means that another set of
parameters will be necessary to describe this aspect. These parameters are as
follows:

• δT: The time span (in milliseconds) collectively covered by the multiple
patches used in the input of the neural net during the examination of any
given frame.

• P#i
t : The number of patches with a physical size of Pδp

t needed to cover the
δT time span, assuming that the consecutive patches used are immediate
neighbours.

• Pνp
t : The proportion of overlap between consecutive patches used in the

time domain.

• P#
t : The number of patches with a physical size of Pδp

t needed to cover
δT time span, assuming the consecutive patches used are not immediate
neighbours, and the overlap in the time domain between consecutive
patches is Pνp

t . (Note that P#
t can be calculated using Pδp

t , δT, and Pνp
t

parameters; and conversely any of these four parameters can be calculated
using the other three.)

• Pνt
t : The step size used in order to maintain a Pνp

t overlap between
consecutive patches used in the time domain (as the notation suggests,
this is the ”technical“ side of the overlap, which is expressed in frames,
while the ”physical side“ - the percentage of overlap Pνp

t - can be expressed
in milliseconds as well).

• Pij: If we imagine all the patches the system uses at any given time as
a matrix, where the patches coming from the same time-frame make up
a column of the matrix, and patches coming from the same frequency-
domain make up a row of the matrix, Pij is the patch that is in the i-th
row (0 < i ≤ P#

f) and j-th column (0 < j ≤ P#i
t) of this matrix. Strictly

following this notation would mean that the Pδt parameter introduced
earlier should be denoted as Pδt

ij , but as in our experiments patches coming
from different time-frames and frequency domains have the same size, the
notation introduced earlier will be used.

108 BAND DROPOUT

5.1.2 Neural Networks

Earlier we discussed the structure of the joint framework in a way that was
sufficient for our purposes in Chapter 3. To understand these investigative
experiments better, however, a more technical discussion is necessary, which is
facilitated by the formalism introduced above. For a digestible representation,
here the description of the joint framework will be broken down into the
description of neural net layers with different functionalities.

Filtering layers

Each sub-layer responsible for filtering (Fi) gets its input patches from a given
frequency domain (or band, using a different nomenclature). This means that
the number of filtering sub-layers will also be determined by the P#

f parameter
which describes the number of patches applied in the frequency domain (and
consequently the number of bands the process divides the full frequency domain
into). Let us first recall how the output of a neuron in the filtering layer
was described in Section 3.1. If we reformulate this formula with vectors in
mind, using the formalism introduced above, the formula for the output on a
non-specified neuron in one of the filtering sub-layers is:

o =
Pδt∑
x=1

P[x] · FWk [x] + b. (5.1)

This formula is a bit more complicated if we examine a specific FiCj filtering
layer (0 < i ≤ P#

f and 0 < j ≤ P#i
t), and its neurons. For the kth neuron

in the layer (0 < k ≤ F#n
i

1) the output can be calculated using the following
formula:

okj =
Pδt∑
x=1

Pij[x] · FWk
i [x] + bk, (5.2)

meaning that the input and output of the sub-layer is:

FO
iCj

= [o1j , ..., oF#n
i j], (5.3)

FI
iCj

= Pij. (5.4)

1As in our experiments each filtering sub-layer contained the same number of neurons (i.e.
F #n

1 = F #n
2 = F #n

3 ...), this value later will be denoted by the symbol F #n

REVISITING THE JOINT TRAINING FRAMEWORK 109

Figure 5.1: Illustration of the pooling described in Eq. 5.6. It shows the case
where P#i

t = 7, and Pνt
t = 2.

Convolutional layers

After applying the sub-layers responsible for filtering, additional convolutional
layers are applied, the last of these layers being the Bottleneck (B) layer. What
is important here is the input of the first such layer, which is given by the
following formula:

ConvI
Cj

= [FO
1Cj

, ...,FO
P#

f Cj
], where 0 < j ≤ P#i

t (5.5)

Fully connected rectifier layers

Following the Bottleneck layer, one or more simple rectifier layers are used (the
middle layers, which are referred to as M1, M2, etc). What is important here is
the input of the first such layer, which is responsible for pooling. In particular,
without this layer we would not be able to call the network convolutional.
Pooling here is accomplished by the way this layer utilises the output of the
previous layer in its input:

MI
1 = [BO

C1
,BO

C1+Pνt
t +1

, ...,BO
Cj

], where j = P#i
t . (5.6)

As it can be seen from this formula (and also glancing at Figure 5.1), this layer
not only takes care of pooling, but by controlling the number of potential inputs
omitted, it also ensures that the required overlap between patches used in the
output prevails.

From this point – including additional rectifier layers, and the output layer O –
the neural net behaves just like traditional neural networks, hence we do not
need to discuss it further.

110 BAND DROPOUT

5.1.3 Optimization of parameters

The purpose of these experiments was to examine the effect of modifying the
physical size of patches and thus the filters applied on these patches (without
changing their technical size) on the recognition results, and to determine the
optimal physical size to be used in later experiments. At first sight this may
not seem like a complicted task. However, we noted earlier in Section 5.1.1 that
the physical size of patches may depend on various parameters, and that the
different parameters are highly dependent on each other, so changing one may
affect others as well.

Changing the physical size of patches for one means changing their size in the
frequency domain (i.e. Pδp

f). We saw earlier that this parameter is determined
by the technical size of patches (Pδt

f), and the interval one mel-filter channel
covers. The premise of these experiments (i.e. changing the physical size
without modifying the technical size) means that here this latter component
will be modified. This can be performed by changing the number of filter
channels applied to cover the same interval (i.e. changing S#

F). There is a
deeper motivation, however, behind experimentally setting the S#

F parameter
than the fact that the technical size of patches have already been examined
experimentally. For this, let us recall the experiments described in Table 2.3
of Chapter 2. Here, similar results were attained using different numbers of
mel filter channels. The selection of 26 channels was largely motivated by the
fact that the use of 26 mel filter channels is the most common when creating
MFCCs [39, 50, 114, 189, 240] (so much so that it is the default setting in
the HTK toolkit [236, 239]), hence this selection ensured the comparability
of results obtained with 2D DCT coefficients with the results obtained with
MFCCs. In later experiments the number of mel channels used were retained
for backwards compatibility, but as we saw earlier in Section 4.2.2 reexamining
certain techniques applied might be beneficial. Furthermore, in recent years,
when neural nets directly employed the filter bank representation in their input,
better results were obtained with 40 channels [68, 162, 223, 237].

A change in physical size of patches may also occur in the time domain, by
changing parameter Pδp

t . This parameter is determined by the SνW, SδW, and
Pδt

t parameters. While SνW is traditionally between 10 ms and 20 ms [180],
interesting experiments have been conducted with values lying outside this
interval both above [72, 185] and below [241] it. This is why we opted for this
in our experiments, and we modified the physical size of patches in the time
domain by modifying the frame shift (the SνW parameter).

REVISITING THE JOINT TRAINING FRAMEWORK 111

Parameter settings examined

We have already mentioned that certain parameters such as the technical size of
patches and the width of windows used in creating the spectral representation
(Pδt

f , Pδt
t , SδW - fixed at 9, 9 and 25 ms respectively) should remain the same

during these experiments. Naturally, one would not expect the frequency domain
covered by the collection of patches to be drastically changed either, regardless
of the number of filters used in the filter bank. Similar to the frequency domain,
it is also reasonable to expect that the time span covered (i.e. the parameter
δT, the value of which was approximately 265 ms in earlier experiments) should
remain the same, in order to ensure that the potentially emerging difference
in recognition scores cannot be attributed to the difference in the size of the
context applied. Another parameter that we decided to fix throughout these
experiments was the overlap of patches in both the time and frequency domain,
which was 55% in both directions. This, paired with the technical size of patches
(9× 9) meant that the step size of patches was to be 4 in both the time and the
frequency domain.

As a number of parameters had fixed values throughout these experiments, some
parameters of course changed as a result of the modification of the physical size
of patches. In the frequency domain, for example, using a higher number of
filter channels means that in order to keep the technical size of the patches and
their overlap (proportional to their size) constant, the number of patches used
(P#

f) had to be increased. Based on a similar rational, we see that with a new,
different frame rate, the number of patches used in the time domain (P#

t) also
had to be changed.

Another aspect to consider was the way parameters that are either explicitly
fixed or implicitly restricted influence the values the parameters can realistically
take. In the time domain, for example, it is required in the joint framework
that the central patch should be centered on the currently examined frame,
which means that the number of patches to be used have to be odd. This,
combined with what we have discussed so far here means that when we increase
or decreasing the frame rate, not every value is possible, just those values can
be considered which make it possible to cover a context of approximately δT
ms length using an odd number of patches with an overlap of Pνt

t . And a
similar line of reasoning can be used concerning the physical size of patches in
the frequency domain. Thus in reality while the change in the physical size of
patches can be better explained by a change in frame rate and the cardinality
of the mel filter bank, what was actually driving the change in the parameters
was the number of patches used in both the time domain and the frequency
domain (P#

t and P#
f).

112 BAND DROPOUT

Table 5.1: Parameter settings used in the time domain.

parameters T1 T2 T3
P#

t 5 7 11
SνW 10 ms 8 ms 6 ms
Pδp

t ~105 ms ~89 ms ~73 ms

With all this in mind, let us discuss the parameter settings used in our
experiments. Three settings were devised to examine the effect of changing
the physical size of patches in the time domain. These settings can be seen in
Table 5.1. To examine the effect of changing the physical size of patches in the
frequency domain, another 5 settings were created. As these parameter settings
for the frequency domain were independent from those for the time domain
(hence any setting from the former group could be paired with one setting from
the latter group), 15 settings were examined altogether. The parameter values
for the frequency domain can be seen in Table 5.2.

At this point we should mention the parameters of the neural nets used in
these experiments. Some neural net parameter values were dependent on the
parameter values shown in tables 5.1 and 5.2, while other parameter values
depended on the task. The following were however true for all experiments:
each filtering sub-layer had 9 neurons (L#n = 9), whose output was connected
to a convolutional bottleneck layer, consisting of 200 neurons (B#n = 200)

Table 5.2: Parameter settings used in the frequency domain.

parameters F1 F2 F3 F4 F5
P#

f 3 5 7 9 11
S#

F 18 26 34 42 50
Pδp

f
2 ~1420 mel ~980 mel ~750 mel ~610 mel ~510 mel

2Calculations here are predicated on the lower cutoff of the first filter in the filter-bank
being at 0Hz, and the higher cutoff of the last filter being at the Nyquist frequency (which in
the case of TIMIT, a database recorded with a sampling rate of 16kHz, is 8000Hz), and also
on the assumption that the conversion between the Hertz scale and Mel scale is computed
by the following formula: 2595 · log10

(
1 + f

700

)
, where f is the Hz value we wish to convert.

Given these assumptions, we can see that if 18 mel-channels cover a range of 8000 Hz (or
2840 mel), 1 mel-channel covers a range of approximately 160 mel, and 9 mel-channels (the
technical size of the patch) covers a range of approximately 1420 mel. In every other case
Pδp

f is calculated the same as described here.

REVISITING THE JOINT TRAINING FRAMEWORK 113

Table 5.3: Phone error rates (PER) on the validation set using monostate and
tristate phone models. Reported error rates are the average of 10 independently
trained neural nets. (The best error rate and those not significantly different
from it are highlighted in the monostate case and the tristate case as well).

61 monostate models 61 tristate models
T1 T2 T3 T1 T2 T3

F1 21.36% 20.78% 20.68% 21.29% 20.39% 20.04%
F2 20.65% 20.20% 20.12% 20.26% 19.64% 19.28%
F3 20.18% 19.81% 20.00% 20.05% 19.32% 19.03%
F4 19.89% 19.65% 19.79% 19.61% 19.15% 18.88%
F5 19.85% 19.52% 19.84% 19.64% 19.08% 18.86%

Results

We examined the phone recognition results attained by using these parameters
on the randomly selected 10% of the training set of TIMIT as a validation set.
Experiments were carried out with 61 (monostate) and 183 (tristate) phone
models.

Results of these experiments are summarized in Table 5.3. In earlier experiments
we utilised the settings corresponding to the F2/T1 parameter pair (results
obtained with these settings are shown in Italics in the table). As can be seen
in Table 5.3, the best results in the monostate and tristate cases are got with
different settings. The minimal error rate that can be got in the two cases is also
quite different. The lowest error rates in the experiments were obtained using
tristate models with the F4/T3 and F5/T3 settings. This means that the best
results were attained when the frame shift of the primary feature extraction
phase was decreased from 10 ms to 6 millisecond, while the number of mel
channels used was increased from 26 to 42 or 50. However, while the increase in
mel-channels from 34 to 42 resulted in significantly lower error rates, the same
was not true for the increase from 42 mel-channels to 50. Hence, we decided
not to further increase the number of mel-channels used, and fixed the number
of mel-channels to be used during processing to 42. This means that when
examining whether the suggested parameter changes were indeed beneficial,
we will compare those attained using the original F2/T1 parameters with the
results attained using the new F4/T3 parameters.

114 BAND DROPOUT

5.1.4 Delta and Acceleration coefficients

In our earlier publications on the topic of joint optimisation of spectro-temporal
features and acoustic models, the idea of incorporating delta (∆) and acceleration
(∆∆) coefficients was raised multiple times [125, 126]. This idea was based on
the results of earlier experiments where the addition of ∆ and ∆∆ coefficients to
spectro-temporal features increased the accuracy of the recognition process [123].
Here, we examined two techniques for implementing this modification. Delta
and acceleration coefficients could be added by incorporating dedicated neurons
to the framework between the feature extraction layer and the following layer,
which emulate the computation of these coefficients with the proper setting
of their weights and the size of the context used in their input. There is
however no obvious solution for this, as it would necessitate finding a way for
the backpropagation to bypass these neurons. Because of this we opted for a
simpler solution to incorporate Delta-like coefficients to the joint framework. In
the HTK toolkit ∆ coefficients are calculated by the following formula:

dT =
∑Θ
θ=1 θ(cT+θ − cT−θ)

2 ·
∑Θ
θ=1 θ

2
, (5.7)

where dT is the ∆ coefficient in time T , calculated using the coefficients between
cT−θ and cT+θ [236]. If we apply this formula to the features obtained by
applying filter F on patch P ,

cT =
N∑
t=1

M∑
f=1

PT (f, t) · F (f, t), (5.8)

where patch P is extracted from the spectral representation S like so:

PT (f, t) = S(f, T + t), (5.9)

then (5.7) can be reformulated in the following manner:

dT =

∑Θ
θ=1 θ

(∑N
t=1
∑M
f=1 F (f, t) ·

(
S(f, T + θ + t)− S(f, T − θ + t)

))
2 ·
∑Θ
θ=1 θ

2
,

(5.10)
As the value of the denominator depends only on the Θ parameter, for a given
Θ the denominator has a constant value. This means that we can replace the
denominator by a constant and make the process of deduction easier to follow.
This constant will be called ϑ, and its value will be given by the formula

ϑ = 2 ·
Θ∑
θ=1

θ2. (5.11)

REVISITING THE JOINT TRAINING FRAMEWORK 115

If we now reorder (5.10) and use the constant introduced in (5.11), we get the
following formula for the calculation of the ∆ coefficient from a feature obtained
as the output of a filter applied on spectral representation S:

dT =
N∑
t=1

M∑
f=1

F (f, t) ·

∑Θ
θ=1 θ

(
S(f, T + θ + t)− S(f, T − θ + t)

)
ϑ

, (5.12)

However, if we first apply (5.7) on the spectral representation S, we get a
∆ version of the spectral representation, where the element corresponding to
frequency f and time t is given by the following formula:

S∆(f, t) =

∑Θ
θ=1 θ

(
S(f, t+ θ)− S(f, t− θ)

)
ϑ

. (5.13)

In this case applying Filter F on Patch P extracted from the spectral
representation S at time T would mean computing the following formula:

cT =
N∑
f=1

M∑
t=1

F (f, t) · S∆(f, T + t). (5.14)

After resolving the second member of the product in (5.14) based on (5.13)
we see that (5.12) is equal to (5.14), meaning that cT = dT . Hence, if our
goal is to calculate the ∆ coefficient of a feature extracted from the spectral
representation, we can also achieve this by first calculating the ∆ version of the
spectral representation (S∆), and then applying the process of feature extraction
on S∆. Similar reasoning can be applied to the calculation of ∆∆ coefficients.

The above results tell us that it is possible to use the ∆ and ∆∆ coefficients
of the features extracted in the joint framework. For this to work, however, it
must be ensured that the same Filter F is applied on S, S∆ and S∆∆. With the
proper initialisation of weights, this could be resolved in the current framework
before the training of the network containing the layer implementing feature
extraction. However, currently there is no mechanism that would guarantee that
the weights in the filtering sub-layers working on the spectral representation
as input, and the filtering sub-layers working on the derivatives of the spectral
representation will be the same at the end of the training process. This is
why the term “Delta-like coefficients” was used instead of Delta coefficients.
It should be noted here that this is not necessarily a disadvantage, as the
increased degree of freedom in the extraction of features from the derivatives
of the spectral representation can also be beneficial. The examination of this
possibility, however, is beyond the scope of this study. Here, we will only
examine the effect of the addition of these so-called “Delta-like” coefficients on
the speech recognition performance of the joint framework.

116 BAND DROPOUT

Table 5.4: Phone error rates (PER) got on the core test set of TIMIT (Reported
error rates are the average of 10 independently trained neural nets). Here, the
best score (and those not significantly different from it) is highlighted in bold.

Initialisation Parameters ∆ PERFrequency Time ∆∆
Random F2 T1 24.4%
Gábor F2 T1 24.2%
Random F4 T3 18.8%
Random F4 T3 X 18.5%

5.1.5 Experiments

Unlike that in the experiments conducted to determine the optimal parameter
settings, not only was the relative performance attainable in different parameter
settings important, but also the absolute performance. For this, in the following
experiments we used bigger neural nets. Preceeding the bottleneck layer three
further hidden layers (each consisting of 1000 rectifier units) were inserted, and
the resulting network was trained in two steps (similar to the 2-step training
applied in [222]). In the first step the network was trained without convolution
in such a way that the output layer was placed directly after the bottleneck
layer. In the second step this output layer was removed, and two additional
hidden layers (each consisting of 1000 rectifier units) were added alongside with
a new output layer before the neural net was further trained, this time with
the use of convolution. Another difference was that when the framework was
trained based on the F2/T1 parameter settings, the bottleneck layer previously
consisting of 200 neurons had 220 neurons, while the number of neurons in
the hidden layers previously containing 1000 neurons was increased to 1100
neurons. The reason for these changes was to ensure that the frameworks based
on different parameter settings had a similar number of trainable parameters.

Experiments on clean speech using the TIMIT corpus

To facilitate a comparison of our results with those of other researchers working
on the TIMIT corpus, following the procedure described in [222], training was
carried out using 858 context-dependent states. As outlined in Section 5.1.3,
before the evaluation phase these 858 labels were reduced to 39.

The results of these experiments are summarized in Table 5.4. First, let us
examine the top two rows of the table. Here, we can see the results obtained
when the weights in the filtering layer were initialised randomly and based on

REVISITING THE JOINT TRAINING FRAMEWORK 117

Table 5.5: Phone error rates (PER) presented in the literature, on the core test
set of TIMIT. The best score is highlighted in bold. The score got by us is
highlighted in Italics.

Method PER
Baby et al. [13] 19.6%
Plahl et al. [182] 19.1%

Tóth [222] 18.7%
Current work 18.5%

Graves et al. [68] 17.7%
Tóth [224] 16.7%

the Gabor filter set introduced in Chapter 2. Although initialisation based on
Gabor filters leads to a significant improvement (p < 0.05), the relative error
rate reduction is below 1%. Because of the low rate of improvement, in later
experiments conducted in this study„ only random initialisation was used, for
the sake of simplicity.

Looking at the lower lines of Table 5.4 we can examine the effect the proposed
modifications had on the results when the filtering layer was initialised randomly.
We can see that both proposed modifications (the fine tuning of parameters,
and the addition of Delta-like coefficients) resulted in a significant decrease in
PER scores. The combined effect of these modifications lead to a relative error
rate reduction of about 24% overall.

By comparing the results presented here with various results found in the speech
recognition literature (see Table 5.5), we see that with the proposed modifications
the joint framework attains competitive recognition scores. Although the
recognition scores are worse than those reported by Graves et al. [68], the
authors in the given study used recurrent networks, which means that a direct
comparison of results may not neccessarily be apt. The phone recognition
error rates presented here are also significantly higher than those reported by
Tóth [224], but a direct comparison of the two framework is not necessarily
justifiable, as in the case of Tóth’s neural network convolution was applied both
in the time and frequency domains, and the dropout method was also applied.
A more apt comparison would be the network applied in an earlier study by the
same author [222], the results achieved by which are slightly worse than those
presented here, even though the size of our network was only a quarter of the
size of the network used in the other study.

118 BAND DROPOUT

Table 5.6: Average word error rates (WER) on the Aurora-4 speech corpus (the
results reported are the average of 5 independently trained neural networks).
Here, the best score (and those significantly not different from it) is highlighted
in bold.

Initialisation Parameters ∆ WERFrequency Time ∆∆
Random F2 T1 12.4%
Random F4 T3 11.9%
Random F4 T3 X 11.6%

Experiments on noise contaminated speech using the Aurora-4 database

To test the performance of the neural net framework in the presence of various
additive noise types, as well as under mismatched transfer characteristics, the
experiments were repeated on the Aurora-4 continuous speech recognition task.
In this case the multi-conditional set was used for the training of the models,
then the resulting models were evaluated on the standard test sets for the
task (the same test sets that were described in Section 4.3.3). Similar to what
we saw in Section 4.3.3, for the sake of simplicity and to save time, we only
experimented with random initialisation of filter weights. The same will be
true for the rest of the experiments in this chapter. The reasoning behind
this is twofold. First, a comparison of results attainable using random filter
initialisation and using Gabor filter sets was already described in Chapter 2.
Furthermore, it could be argued that with the modified time- and frequency
parameters in creating the spectral representation, a new set of initial Gabor
filters should be selected for optimal performance. While this would be an
interesting task, the focus here is the utility of the joint framework, and if it
can be demonstrated even with the random initialisation of filters, the task of
further improving these results by finding a more suitable set of initial filters
may as well be left for future study.

The results of the experiments on the modified framework using the Aurora-4
database are summarized in Table 5.6. We notice that with each subsequent
modification introduced, the error rates achieved by the framework are lower
and lower. First, the change in the parameters used for creating the spectral
representation leads to a relative error rate reduction of about 5%, then the
inclusion of Delta-like features leads to a further relative error rate reduction
of 2%. Altogether the two modifications lead to a combined relative error rate
reduction of about 7%. What is more is that with both proposed modifications,
the improvement in recognition scores is significant (at p < 0.00005).

REVISITING THE JOINT TRAINING FRAMEWORK 119

Table 5.7: Word error rates (WER) got on the Aurora-4 test set in the multi-
condition training scenario. The best score is highlighted in bold, while our
result is highlighted in Italics.

Method WER
Chang and Morgan [32] 16.6%

Seltzer et al. [206] 12.4%
Martinez et al. [145] 12.3%

Baby et al. [12] 11.9%
Current work 11.6%

Narayanan and Wang [171] 11.1%
Rennie et al. [192] 10.3%

Let us again compare these results with those published in recent speech
recognition literature. Even without the modifications introduced so far by
us, the word error rates attained by the proposed framework are much lower
than those reported by Chang and Morgan [32] in their 2014 study with
CNNs, although they used a noise robust representation (Power Normalized
Spectrogram) as well as Gábor filters. Due to a change in parameters for time
and frequency in the spectral representation, the proposed framework achieves
lower error rates than those reported by Seltzer et al., who also applied Noise
Aware Training and Dropout [206]; as well as those reported by Martinez et
al., who applied their DNNs on AMFB (Amplitude Modulation Filter-Bank)
features [145]. In the latter comparison, it is also noteworthy that while Martinez
et al. reported a training time of 4 days for their DNNs on an NVIDIA Tesla
K20C GPU, our neural net training times were below 12 hours on a GPU of
equal performance (GeForce GTX 770) [1]. Lastly, the inclusion of Delta-like
coefficients meant that the proposed framework could also attain lower WERs
than those reported by Baby et al. using a sophisticated speech enhancement
technique [12].

The results reported here however were somewhat worse than those reported by
Narayanan and Wang, who applied a noise adaptive training method, and also
combined multiple systems by averaging their posterior (noting that their best
performing single system got a very similar WER score than that reported here,
namely 11.5%) [171]. The error rate reported here is also higher than those
reported by Rennie et al. [192]. However, they use several advanced techniques
in their network that so far have not been introduced in ours. These are maxout
DNNs and dropout (specifically, annealed dropout).

120 BAND DROPOUT

Experiments with maxout

These latest experiments on the Aurora-4 database were repeated using maxout
deep convolutional neural nets. Similar to the rectifier function, maxout is a
novel activation function applied in hidden neurons, illustrated in Figure 5.2.
The same figure also shows the structure of the neural network. Owing to the
maxout decreasing the number of connection between layers, and the omission
of one hidden layer below the bottleneck, we were able to increase the number
of neurons in the various layers and still decrease the number of trainable
parameters in the network. At the same time, the performance of the neural net
on the Aurora-4 corpus using the multi-conditional training scenario remained
practically the same (11.6%) despite the slightly smaller size.

Figure 5.2: Structure of the Deep Convolutional Neural Net used, with the
maxout magnified for the sake of clarity.

BAND DROPOUT 121

5.2 Band Dropout

The dropout method was shown to make deep neural networks generalise better
by randomly omitting neurons during training [85], and now it is widely applied
in automatic speech recognition [42, 155, 222]. The original study by Hinton
et al. reported additional improvements when applying dropout to the input
features as well [85]. However, in the framework of ASR, Deng et al. found
that “applying dropout to input filterbank features has not been effective” [44].
Meanwhile, Miao and Metze reported that “an input dropout factor greater
than 0 definitely degrades the recognition results” [155]. Hence the usefulness
of input dropout in ASR is questionable, and requires further investigation.

Here, apart from examining input dropout, we also propose a modified version.
To understand the motivation behind our modification, let us first look at the
original approach. In the original input dropout scheme each feature is discarded
or retained independently, meaning that random “pixels” are being dropped
from the time-frequency map (see Figure 5.3 (A)). Behind this there is the
implicit assumption that the order of the features does not carry any information.
But the input, which here is a spectrogram-like time-frequency representation,
has a well-defined structure, and the dropout scheme could exploit this fact.
Furthermore, it is known that humans can recognise bandpass-filtered speech
surprisingly well [7]. Therefore, here we propose a version of input dropout
that discards whole frequency bands (see Figure 5.3 (B)). We hypothesise that
this band dropout strategy will force the network to rely less on the whole
spectrum, making it more robust to channel mismatches. Furthermore, as
real-life background noise is more likely to affect the spectrogram in patches,
rather than spreading all over the time-frequency plane in a uniform manner,
we also expect this method to be more robust to background noise.

Figure 5.3: Illustration of the CNN structure applied here, with
(A) input dropout, discarding randomly selected features (marked by blank dots
in the input of feature-extraction sub-layers), and
(B) band dropout, discarding the same amount of features, but with an entirely
different distribution.

122 BAND DROPOUT

The frequency bands being dropped here consist of several neighbouring mel-
filter channels arranged in such a way that these channels coincide with those
used in the input of filtering sub-layers in the convolutional neural network
structure. This means that dropping one frequency band can be implemeneted
by setting the input of the corresponding convolutional filters to zero, while
leaving the operation of the other filtering sub-layers untouched. Consequently,
the layer that merges the output of the filtering sub-layers is forced to learn
that it should not rely on all of the channels. Figures 5.3 (A) and 5.3 (B) show
the difference between standard input dropout and band dropout (for the case
of 4 processing bands). Clearly, with the proper selection of the dropout rate
parameters, the two methods discard the same amount of data points, but with
a quite different distribution. Another difference between the two approaches
is that while the original method generates a new dropout mask for each data
instance, here we use the same dropout mask within a given mini-batch. The
advantage of this method is that it allows a faster form of matrix multiplication
(Graham et al., 2015). Moreover, it can be easily and efficiently combined with
a CNN, because we can implement the dropout of a convolutional channel for
the whole mini-batch by simply skipping the evaluation of the given filters and
replacing their output by zeros. Although Graham et al. thoroughly evaluated
their batch-wise dropout method and concluded that it gives basically equivalent
results with the standard frame-wise solution, we will also examine the batch-
wise version of the original input dropout method (where for each mini-batch
the same “pixels” will be dropped), and compare its results to those got with
the input dropout where the dropped “pixels” vary within the mini-batch.

A comparison of batch-wise input dropout with input dropout’s original
implementation, as well as a comparison of traditional input dropout (both with
and without batch-wise dropout) with band dropout will be performed using
the continuous speech recognition task on the Aurora-4 corpus. As outlined in
Section 1.2.2, this corpus was specially designed to evaluate the noise-robustness
of speech recognisers. Although we expect dropout to be more beneficial in
mismatched train and testing scenarios (i.e. when we have no samples of the
noise present in the test set during training), both the clean and the multi-
conditional training scenarios were used. Before discussing the experiments and
their results, however, we should outline the roots of the band dropout method
in earlier speech recognition research.

5.2.1 Relation to Prior Work

Although speech recognition using Convolutional Neural Networks and the band
dropout method are relatively new ideas, our proposal of dropping spectral
bands during training is clearly related to some well-established technologies.

BAND DROPOUT 123

For one, this method is similar to the so-called multi-band scheme introduced
over two decades ago [47]. Multi-band processing (described earlier in Chapter 4)
was also based on the concept of training acoustic models on partial spectral
information [19]. The training of deep structures, however, was an open question,
so separate classifiers were trained on the spectral bands (or subsets of bands).
Then the band-based estimates produced by these classifiers were combined
using a sophisticated decision logic which, in the simplest case, consisted of a
‘merger’ neural network [19]. In a way, band dropout can be viewed as a modern
version of band-based training adjusted to deep convolutional networks.

As band-based training is a special case of the multi-stream approach, the band
dropout method is connected to the latter as well. Our solution proposed here
is clearly related to multi-stream combination method introduced by Mallidi
et al. [141], which drops streams during the training of the merger network.
Despite the similarities, however, there are notable differences between the
two methods, both in the motivation and the implementational details. As is
usual with the multi-stream scheme, Mallidi et al. train a large set of DNNs
instead of just one deep structure, and apply a performance monitor at test
time to decide which streams should be kept. The unselected streams are
replaced by zeros, and their motivation for training the merger network with
dropped streams is to prepare the merger net for the possibility of channels
being zeroed out by the stream selection process. Here, we train just one deep
convolutional network without any explicit channel selection process, and our
motivation for dropout is the same as that for standard input dropout [85].
Hence, while the old multi-band systems were based only on a crude perceptual
motivation, our approach is also supported by the machine learning theory of
dropout. Furthermore, while the solution of Mallidi et al. is more complicated
to implement, and also slower at run time (as the performance monitor needs
to be invoked), the results we present here are significantly better than those
cited in their study [141].

Another related technology is that of data-augmentation, which is an approach
for increasing the robustness of our models by artificially generating additional
training vectors from the existing ones [41, 121]. Recently, in a study by
Bouthillier et al. it was pointed out that dropout can indeed be interpreted as a
kind of data augmentation [23]. Hence, one may also regard band dropout as a
special case of data augmentation where, by randomly deleting spectral bands,
we artificially extend our set of training data with additional distorted versions
of the training vectors on the fly. According to this interpretation, while Ko et
al. modified the speech signals in the time domain [121], band dropout belongs
to the family of data augmentation techniques that manipulate the data in the
spectral domain [41].

124 BAND DROPOUT

5.2.2 Experiments

Convolutional neural networks seek to exploit the local spectro-temporal corre-
lations of the input, and thus require a spectrogram-like input representation.
Hence, these types of networks are usually trained on the log-energy outputs
of a mel-scaled filterbank [4, 198, 225]. Because of this, in our first set of
experiments we evaluated band dropout using the standard mel filterbank
features. We worked with a mel-filterbank of 42 channels, and the energy values
were extended with the corresponding ∆ and ∆∆ features.

However, this simple representation still has plenty of room for feature
engineering (some examples of this feature engineering are given in Section 1.3.1).
For example, Chang and Morgan experimented with power-normalised spectrum
(PNS) features in combination with CNNs [32]. Recently, Ganapathy proposed
an ARMA spectrogram modelling technique that outperformed the PNS features
when evaluated with a DNN acoustic model on the Aurora-4 task [57]. This
ARMA spectrogram representation preserves the local topology of the spectro-
temporal feature space, and hence it is also a suitable input for CNNs. Because
of this, in our second set of experiments, we evaluated the ARMA spectrogram
features in combination with CNN acoustic models and band dropout. Here, the
39 ARMA features were extended by adding 39 derivative-like features obtained
as the difference between neighbouring bands as folllows:

band∆(K) = band(K + 1)− band(K − 1). (5.15)

The proposed band dropout method was parametrised by using two variables.
With parameter P we can tune the probability of the band dropout being
applied to the current batch of data. The other parameter N sets the maximum
number of bands that can be discarded via band dropout (as here the spectral
representation was processed in 9 – overlapping – frequency bands, the parameter
values available for parameter N lay between 1 and 9 inclusive). If the current
batch were to be selected for dropout (based on parameter P), then a random
number q is generated in the [1, N] range. Then the input data was discarded in
q randomly chosen convolutional bands. Even though dropout slows down the
convergence of the training process, so one can perform more sweeps through
the training data when using dropout [42], here we did not modify either the
training epochs or the stopping criterion. This way, our dropout results might
be slightly suboptimal, but the training times stayed roughly the same as those
without dropout.

BAND DROPOUT 125

Table 5.8: The effect of band dropout on the frame error rates for the train
and development sets, and on the word error rates for the test set (using the
mel-spectral features and the multi-conditional training set). The baseline (no
dropout) score is given in the P = 0 column.

Frame error rate (%) – Train Frame error rate (%) – Dev Word error rate (%) – Test
HHH

HHN
P 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

5
30.2

32.9 34.0 34.9 37.4
36.8

36.9 36.7 36.8 37.7
11.7

11.3 11.2 10.9 11.3
6 33.1 35.2 36.3 39.1 36.8 36.9 36.9 37.9 11.2 11.1 10.8 11.2
7 34.2 37.1 38.3 41.0 37.0 37.3 37.1 37.9 11.2 11.2 10.9 11.1

Results with mel-spectral features

We first evaluated the usefulness of band dropout using mel-spectral features
in the multi-conditional training scenario. As our training process optimised
the frame-level cross-entropy, let us first examine the frame-level error rates
achieved with different parameter settings (see Table 5.8). As one would expect,
band dropout makes the learning process more difficult, so when we increase
either P or N , the frame-level error rate quickly increases on the train set. This
is not the case, however, on the development set. As narrowing the gap between
the training and development error rates decreases the chance of overfitting
the training data, a reasonable heuristic for meta-parameter tuning is to chose
the largest P and N values for which the error on the development set is not
significantly larger than that for the baseline model. Applying this strategy
here suggests that we should chose values of 0.6 and 6 for P and N, respectively.

Let us now examine the WER scores on the test set (the rightmost part
of Table 5.8). These are quite consistent with the frame-level errors of the
development set, and are actually lower than that for the baseline with all
parameter values. And while the WER is the lowest (10.8%) for the parameter
values suggested by our heuristic (P = 0.6, N = 6), slightly different P and N
values result in similarly low scores. The relative error rate reduction compared
to not using band dropout is 7.3%, which was found to be statistically significant
in a paired t-test (p = 0.00008). The score of 10.8% also compares favourably
with results reported by other authors. For instance, the Kaldi recipe gives
13.6% with a DNN, while Huang et al. got 13.4% using FBANK features and
a CNN [90]. While Rennie et al. attained a lower error rate (10.3%) with a
similar setup when using annealed dropout [192], with a fixed dropout rate their
WER score was no lower than the 10.8% reported here. Other authors have
also reported better results (e.g. Qian et al. [186]), but these methods rely on
explicit noise and/or speaker adaptation, which is not required in our approach.
Compared to these methods, the implementation of band dropout requires only
minor modifications, and has a negligible computational cost.

126 BAND DROPOUT

Table 5.9: Word error rates (WER) obtained with various versions of input
dropout on the Aurora-4 task, using the mel-spectral features.

Method Implementation Parameter Training scenario
values Multi-conditional Clean

band dropout batch-wise P = 0.6, N = 6 10.8% 26.8%
standard input dropout frame-wise P = 0.1 11.3% 31.4%
standard input dropout frame-wise P = 0.2 11.0% 31.4%
standard input dropout frame-wise P = 0.3 11.4% 33.3%
standard input dropout batch-wise P = 0.2 10.8% 30.5%

no dropout – – 11.6% 33.7%

The second column of Table 5.9 compares the performance of channel dropout
with two versions of standard input dropout. First, we looked for the optimal
dropout probability value for standard (frame-wise) input dropout. The
parameter valuesN = 6 and P = 0.6 mean that on average 3.5 channels (out of 9)
are dropped with a probability of 0.6, which corresponds to a (3.5/9) ·0.6 = 0.23
equivalent input dropout percentage. For the sake of comparison, we evaluated
conventional input dropout with dropout rates P = 0.1, 0.2, 0.3. The best result
was obtained with P = 0.2, when the word error rate was 11.0%. Next, we
repeated the evaluation with P = 0.2 using the batch-wise version of dropout.
In this case, we got a slightly better score of 10.8%. While the scores obtained
using dropout (10.8%, 11.0% and 10.8%) proved to be significantly better than
the baseline score obtained with no dropout (p < 0.0007), these scores were not
significantly different from each other. Hence, in this experiment the channel
dropout method turned out to be useful, but no better than standard dropout.

Next, we examined how band dropout behaves in the clean training scneario.
To test the robustness of our parameter selection strategy, we did not repeat
the process of tuning, but worked with those parameters values found optimal
previously (P = 0.6, N = 6). The last column of Table 5.9 shows the baseline
word error rate obtained without dropout, and the score got with the proposed
band dropout method (26.8%). For the sake of comparison, we evaluated
conventional input dropout with dropout rates of P = 0.1, 0.2, 0.3 (see the rows
in Table 5.9’s rightmost column). The optimal performance was achieved at 0.2,
with a word error rate of 31.4%. This shows that while input dropout reduced
the error rate by 6.8%, band dropout decreased it by a much larger amount,
namely 20.4%. In this case, band dropout was significantly better compared
both to the baseline and to the standard input dropout (p < 0.00001). This
accords with our expectations that band dropout is the most beneficial when we
have no noisy training samples, so the network cannot adapt to the noise using
just the training data. Lastly, we repeated the evaluation of standard dropout
with P = 0.2 in a batch-wise manner. The 30.5% we obtained is lower than the
31.4% of frame-wise dropout, but much higher than the 26.8% of band dropout.

BAND DROPOUT 127

Table 5.10: Word error rates (WER) obtained with various versions of input
dropout on the Aurora-4 task, using the ARMA features.

Method Implementation Parameter Training scenario
values Multi-conditional Clean

band dropout batch-wise P = 0.6, N = 6 10.8% 16.0%
band dropout batch-wise P = 0.4, N = 5 10.5% 16.5%

standard input dropout frame-wise P = 0.1 11.1% 19.2%
standard input dropout frame-wise P = 0.2 11.4% 19.9%
standard input dropout batch-wise P = 0.1 11.1% 19.0%

no dropout – – 10.7% 19.1%

We first evaluated the ARMA features under the multi-conditional training
scenario. As can be seen in Table 5.10, compared to the mel-spectral baseline
score of 11.6%, the introduction of the ARMA features reduced the error by
7.8%, even without using band dropout. However, turning on band dropout
with the parameters of P = 0.6 and N = 6 did not reduce the error rates any
further. Then, we looked for the parameter values that would give the best
result on the test set. The 10.5% we got with P = 0.4 and N = 5 is just slightly,
but not significantly better than the baseline 10.7%. We also evaluated the
standard input dropout with P = 0.1 and 0.2, as well as the batch-wise input
dropout with P = 0.1, and we got worse results than the baseline. Overall,
in contrast with the mel-spectral feature set, in the multi-conditional training
scenario neither dropout method helped. We assume that the ARMA technique
can already efficiently handle the noise when we have training samples from all
the noisy conditions, but testing this would require a deeper analysis.

In the final set of experiments we used the ARMA features and only clean
training data. As can be seen in Table 5.10, the change of features by itself led
to an impressive error rate reduction of 43.3% (from 33.7% to 19.1%). Similar
improvements were reported in Ganapthy’s original study of ARMA features [57].
By using the band dropout with P = 0.6 and N = 6, we got an additional error
rate reduction of 16.2% (with the WER being 16.0%). This means that while
band dropout did not help the ARMA features under the multi-conditional
training scenario, here it significantly improved the recognition (p < 0.0001).
Again, we attempted to vary P (between 0.4− 0.8) and N (between 4− 6), but
even the worst result obtained was 16.5%, proving that band dropout is quite
stable across a wide range of parameter values. Lastly, we evaluated standard
input dropout, and similar to the multi-conditional case, we got worse results
than the baseline. In summary, while band dropout performed no better than
standard input dropout in the multi-conditional training scenario, it significantly
outperformed the standard method when only clean training data was used.
This justifies our expectations that band dropout increases the generalisation
capability of the model under mismatched training and test conditions.

128 BAND DROPOUT

Table 5.11: The performance of the CNN when operating on the mel-spectrum
and the ARMA features without dropout and with band dropout, using only
the clean training set.

Data set FBANK ARMA
no dropout band dropout improvement no dropout band dropout improvement

Set A Clean 3.8% 3.1% 17.8% 3.7% 3.8% -4.2%

Set B

Car 13.0% 7.2% 44.2% 6.1% 5.5% 9.5%
Babble 20.1% 15.7% 21.7% 13.9% 11.0% 20.4%
Restaurant 29.3% 24.2% 17.2% 18.1% 16.9% 6.6%
Street 30.7% 21.0% 31.4% 13.9% 12.1% 13.3%
Airport 20.7% 15.2% 26.5% 13.3% 12.6% 5.2%
Train 28.2% 20.2% 28.4% 15.1% 12.4% 17.7%
Average 23.7% 17.3% 27.0% 13.4% 11.8% 12.2%

Set C Clean 35.7% 29.5% 17.3% 13.6% 9.4% 30.9%

Set D

Car 43.1% 35.7% 17.2% 21.1% 15.3% 27.5%
Babble 46.3% 39.0% 15.7% 29.9% 24.1% 19.4%
Restaurant 48.9% 40.2% 17.7% 31.0% 27.6% 11.2%
Street 55.0% 44.5% 19.1% 28.8% 24.6% 14.6%
Airport 45.6% 38.3% 16.0% 29.0% 24.3% 16.1%
Train 51.3% 41.3% 19.5% 29.6% 24.2% 18.2%
Average 48.4% 39.8% 17.6% 28.2% 23.3% 17.3%

Average 33.7% 26.8% 20.4% 19.1% 16.0% 16.2%

The word error rates of 26.8% and 16.0% reported in tables 5.9 and 5.10
respectively, are average scores over the four test sets. To get a deeper insight
into the precise conditions where band dropout is the most beneficial, we
performed a detailed analysis of how the error rate improvement varies under
different testing conditions. Table 5.11 lists the word error rates obtained for
each test set, and for each noise type (within sets B and D). The first thing we
notice is that under ideal conditions when there is neither channel distortion nor
additive noise present (i.e., set A), band dropout only improves the recognition
accuracy in the case of mel-spectral features, while with ARMA features, it
actually slightly degrades the performance. However, for test set B, when
additive noise is present, band dropout yields a significant gain of 12.2% relative
error rate reduction on ARMA features, and a 27.0% relative error rate reduction
on mel-spectral features, which represents the biggest gain for the feature set in
question. The biggest improvement on the ARMA features (30.9%) however is
attained on set C, when the microphone transfer characteristics are different,
but no noise is involved. The improvement got on the same set with mel-spectral
features is 17.3%, which is almost identical to the improvements obtained on
set D with either feature set. These scores accord with our hypothesis that
band dropout will be beneficial under mismatched training and test conditions,
especially for mismatched transfer channel characteristics, and in the presence
of additive noise. The effect of band dropout in the latter case, however, is less
beneficial when applied on ARMA features. Once again, this might be due to
the noise robustness of ARMA features.

BAND DROPOUT 129

Table 5.12: Comparing the band dropout result on ARMA features with our
baseline, our earlier results, and with results cited in the recent literature, when
using the clean training scenario.

Method WER
CNN with ARMA features 16.0%
CNN with ARMA features, no dropout 19.1%
Multi-band CNN with ARMA features 17.8%
DNN with ARMA features plus DCT [57] 18.5%
DNN with DNN speech enhancement of FBANK [102] 17.5%
DNN with Spectral masking [136] 22.8%
CNN with PNS features plus Gabor Filter Kernels [32] 22.9%
DNN with Exemplar Based Enhancement [12] 26.8%
CNN with FBANK features [90] 28.9%

Finally, in Table 5.12, we compare our best score with some recent results found
in the literature. Our first base of comparison is our earlier paper where the
ARMA features were evaluated using a fully connected DNN [57]. The results
got with this model were slightly better than our baseline here, which was
perhaps due to the DCT postprocessing of the feature trajectories before feeding
them into the DNN. However, our CNN with channel dropout significantly
outperformed this result (p < 0.0006). It is also interesting to compare our best
WER scores attained here with those obtained using multi-band processing,
especially given that the former method was partially inspired by the latter. We
observe that while using the multi-band approach we were able to achieve better
WER scores than that of our baseline and that reported by Ganapathy [57],
the multi-band approach was significantly outperformed by the band dropout
method (p < 0.00005).

The remaining rows of the table list other recent results, all obtained with a
DNN or a CNN (as there is a common agreement now that these methods
outperform conventional HMM/GMMs). While Huang et al. applied a simple
CNN on the FBANK features, others applied either a sophisticated feature
extraction method [12, 136] or a refined CNN architecture [32]. We see that
the ARMA feature set outperforms both these approaches by a large margin.
And when combined with channel dropout, it even outperforms the results of
Jun et al. although in their study the front-end utilises samples got from the
multi-condition training set. The reason for this is that the training phase of
their speech enhancement DNN required pairwise clean-noisy data, which they
obtained from the multi-condition training set [102].

130 BAND DROPOUT

5.3 Conclusions

This chapter can be divided into two distinct parts. In the first part we revisited
the joint framework for the training of neural nets and the optimisation of
spectro-temporal features coefficients. We proposed two modifications in this
framework, and investigated their effects on the TIMIT phone recognition and
Aurora-4 large vocabulary speech recognition tasks. Using the results of these
experiments we demonstrated that both modifications lead to improvements in
the speech recognition performance. What is more, we demonstrated that with
these improvements the joint framework is capable of producing results that are
competitive with the state-of-the-art on both corpora.

In the second part we introduced band dropout as a novel input dropout method
that besides being straightforward to implement and having only a negligible
additional computational cost, is also beneficial in combination with CNN-based
acoustic modelling. The effectiveness of this method was demonstrated using
the Aurora-4 database with different input representations.

Utilising the multi-condition training set and filterbank features, channel dropout
yielded a relative error rate reduction of 7.3% vs. no dropout. More dramatic
improvements were obtained in the case of train-test mismatch conditions. When
only using the clean training data, for the filterbank features the channel dropout
method yielded a relative error rate reduction of 20.4% over no dropout, and
12.3% over batch-wise input dropout, while for ARMA features it yielded a
relative error rate reduction of approximately 16% compared to the no dropout
and standard input dropout cases. Overall, we can say that channel dropout beats
standard input dropout by a large margin. Furthermore, with ARMA features
our system produced an absolute error rate of 16.0%, which is among the best
results published so far for this task.

Chapter 6

Summary

In this study, we examined the task of noise robust speech recognition from
the perspective of spectro-temporal processing. For this, in Chapter 1 we first
introduced core concepts of speech recognition for the HMM/ANN framework,
such as the preprocessing of the speech signal, spectral representation, feature
extraction, the HMM/ANN model itself, along with language models and their
connection with the acoustic model. Here, we also discussed key methods and
tools (such as speech corpora) that were also neccessary for our experiments.
In the subsequent chapters we examined various spectro-temporal processing
techniques. Here, each chapter paved the way for the next chapter, and hence
the techniques described in each chapter were built on concepts introduced in
the preceding chapters.

6.1 Spectro-Temporal Feature Extraction

Here, we examined a fundamental application of spectro-temporal processing.
In this approach, from the different stages of the HMM/ANN hybrid model
(outlined in the Introduction), only the secondary feature extraction stage
is modified. In this stage the features are extracted from patches that are
localised both in time and frequency. These features, however, after being
concatenated are used in later stages just like any other features would be.
There are various methods for extracting spectro-temporal features, two of
which are briefly discussed in Chapter 1. Here two additional methods were
elaborated on, namely the 2D DCT approach and the procedure using Gabor
filters.

131

132 SUMMARY

In our experiments with 2D DCT coefficients we first attempted to find
optimal parameter values for spectro-temporal feature extraction. After these
initial experiments we compared our 2D DCT features with MFCCs based on
experiments conducted on the TIMIT speech corpus. We demonstrated that
using 2D DCT features we can get similar or even better results than those
got using MFCCs. In the case of noise contaminated speech for example, 2D
DCT features performed better in each case than their MFCC counterparts.
Furthermore with a simple but elegant method for the combination of the two
feature sets, we achieved lower phone recognition error rates on clean speech as
well.

When working with Gabor filters, we first examined several methods for the
selection of a suitable filter set. Then, using the results of our experiments got
on an English database and a Hungarian speech database, we compared the
performance of the filter sets we created as well as the performance of filter sets
found in the speech recognition literature. Here, we found that the filter set we
created based on simple heuristics gave the best performance score. Not only
did it outperform other filter sets, it also outperformed the MFCCs on both
the clean and the noise contaminated version of TIMIT, and gave a similar
performance on our Hungarian speech database. Using these results we also
discussed potential problems of the automatic selection of Gabor filters.

6.2 The Joint Training of Spectro-Temporal Fea-
tures and Neural Nets

Here, motivated by the obstacles that arose in automatic feature selection, we
introduced a new method for filter selection. The joint training framework
examined in this chapter works by integrating the feature extraction step into the
lowest layer of a neural net, which means that by training the parameters in this
layer via backpropagation, we also train the filters these layers are implementing.
Using this method, we effectively combined the stages of secondary feature
extraction and neural net training. This combination consistently led to lower
phone error rates in our experiments compared to the error rates attained
when the two stages were carried out separately. Futhermore, we added various
modifications to this joint network training model, based on the current advances
in neural network research. By introducing these modifications we managed to
further lower the resulting error rates, demonstrating the framework’s capability
for improvement. These experiments also demonstrated that training the
initial filter coefficients is indeed beneficial, and in most cases leads to a better
recognition performance. In spite of the benefit in training our filters, it was
also shown to be beneficial to begin this process with a good initial filter set.

THE MULTI-BAND PROCESSING OF SPEECH USING SPECTRO-TEMPORAL FEATURES 133

6.3 The Multi-Band Processing of Speech using
Spectro-Temporal Features

Here, motivated by the compatibility of spectro-temporal processing with the
multi-band approach, we combined the two in a set of experiments. First, we
demonstrated on the TIMIT database that using 2D DCT coefficients and our
handcrafted Gabor filter set in conjuction with the multi-band approach leads to
lower error rates than using the same features without the multi-band approach.
And what is more, contrary to some earlier findings, this was true for both
clean speech and for speech contaminated with a wide variety of noise-types.
Furthermore, with the introduction of Deep Neural Networks and the technique
of convolution, these error rates decreased farther. In these experiments we also
reexamined a technical detail – the mirroring of low frequency bins – in our
process, and decided to omit it from later experiments.

In this chapter, we also successfully incorporated the multi-band approach
into our joint training framework (introduced in the previous chapter). When
evaluating the resulting method on the clean training scenario of the Aurora-
4 speech recognition task, we found that besides significantly improving the
results we got with the joint-framework, the addition of the multi-band approach
also enabled us to attain error rates that – at the time of their publication –
were among the best results published for the given task. The experiments
conducted on the combination of the joint training framework with the multi-
band approach, however, provided other lessons as well. They revealed the
difficulties associated with finding a proper recombination method. Because of
this, our goal in the next chapter was to find a better way of integrating joint
training with multi-band processing.

6.4 Band dropout

Here, we first reexamined the parameters of the joint training framework. We did
so in order to demonstrate that with the proper settings of its parameter values,
the framework can not only achieve significant relative error rate reductions,
but it can also provide competitive results to those published in the speech
recognition literature. For this, we introduced two enhancements into our
framework, and examined their effect in experiments carried out on the TIMIT
speech corpus and the Aurora-4 database. The results of these experiments
demonstrated that these modifications lead to both relative and absolute
improvements.

134 SUMMARY

Lastly, our joint training technique was supplemented with a method that was
inspired by input dropout and multi-band processing. Here, the input dropout
was applied in such a way that in complete batches whole frequency bands
were ignored. With this method we strive to improve the robustness of the
trained model in the same way we did in the multi-band case, by forcing the
network to rely less on the whole spectrum. We evaluated this method on the
Aurora-4 database, using both the clean and the noisy training scenarios, with
mel-spectral features as well as ARMA features. The results indicate that in
the multi-condition training scenario the band dropout method either does not
decrease the error rates (when used with ARMA features), or it does decrease
error rates, but its results are not significantly better than those obtained
with the standard input dropout (mel-spectral features). In the clean training
scenario, however, band dropout significantly improves our results in both cases
compared to those got using no dropout or standard input dropout. And what is
more, when used in conjuction with ARMA features, the band dropout method
achieves significantly better results than those presented in the previous chapter,
leading to a performance score that is among the best reported for the given
task.

6.5 Conclusions and Future work

In this study, we examined various spectro-temporal techniques used for noise
robust speech recognition. With each phase, experiments were carried out with
more complex (but also more successful) methods. On the TIMIT corpus for
example, our initial error rate of 29% fell by more than 10%, to a final error rate
of 18.5%, constituting a relative error rate reduction of approximately 36%. And
what is more, in the last phase the results we attained on the Aurora-4 corpus
were competitive with similar results given in the literature. There is still room,
however, for improvement. For one, instead of dropping whole frequency bands,
some heuristics could be applied to select the least noise-robust parts of the
spectrogram, and drop only those. Furthermore, in our later experiments filter
coefficients were initialised randomly, as it is likely that because of the parameter
values having been changes, our earlier filter sets would not have performed
as well. However, it may be possible in the future to find a better initial filter
set, as we saw earlier that a proper initialisation can make a difference to the
performance.

Chapter 7

Summary in Hungarian

Ebben a tanulmányban a zajtűrő beszédfelismerést vizsgáltuk a spektro-
temporális feldolgozáson keresztül. Ennek érdekében az első fejezetben először
ismertettük a HMM/ANN rendszerben történő beszédfelismerés fontosabb
fogalmait, úgymint a beszédjel előfeldolgozása, a spektrális reprezentáció, a
jellemzőkinyerés, és maga a HMM/ANN modell. Bemutattuk továbbá a nyelvi
modellt, és annak kapcsolatát az akusztikus modellhez. Valamint tárgyaltunk
több kulcsfontosságú módszert és eszközt (úgymint beszédadatbázisok), amelyek
szintén szükségesek voltak a kísérleteinkhez. Az ezt követő fejezetekben több
spektro-temporális feldolgozási módszert vizsgáltunk. Ezen fejezetek közül mind
megelőlegezi a rákövetkezőket, hasonlóan, minden új fejezet épít az azt megelőző
fejezetekben megismert elgondolásokra.

7.1 Spektro-temporális jellemzőkinyerés

A fejezetben a spektro-temporális feldolgozás alapvető felhasználását vizsgáltuk.
Ebben a megközelítésben a bevezető fejezetben felvázolt szokványos feldolgozási
lépések közül egyedül a másodlagos jellemzőkinyerésen változtattunk. A
jellemzőket ezen szakaszban olyan ablakokból nyertük ki, melyek mind az
idő-, mind a frekvenciatartományban korlátozottak. Miután azonban kinyertük
ezeket a jellemzőket, a későbbi szakaszokban ugyan úgy használtuk fel őket,
mint tettük azt korábban, spektro-temporális feldolgozás nélkül. A jellemzők
kinyerésére több módszer adott, melyek közül kettőt röviden tárgyaltunk is a
bevezető fejezetben. Jelen fejezetben két további módszert vizsgáltunk: a 2D
DCT megközelítést, és a Gábor szűrők alkalmazását.

135

136 SUMMARY IN HUNGARIAN

A 2D DCT együthatókkal végzet kísérleteinkben először megpróbáltuk
megtalálni az optimális paraméter értékeket a spektro-temporális jellemzőkiny-
eréshez. Ezen kezdeti kísérletek után összehasonlítottuk a 2D DCT jellemzőink-
kel elért felismerési eredményeinket a TIMIT adatbázison azokkal, melyeket a
hagyományos MFCC jellemzőkkel értünk el. Megmutattuk, hogy a 2D DCT
jellemzők használatával hasonló vagy jobb eredményeket tudunk elérni, mint
az MFCC jellemzőkkel. Továbbá a két jellemzőkészlet egyszerű de elegáns
kombinációjával a tiszta beszéd esetén is sikerült javítani a felismerési
eredményeket.

A Gábor szűrőkkel végzett munka során először különböző jellemzőkiválasztási
módszereket vizsgáltunk a megfelelő szűrőkészlet előállításához. Ezután egy
angol és egy magyar nyelvű beszédadatbázison végzett kísérletek eredményeinek
felhasználásával összehasonlítottuk különböző szűrőkészletek teljesítményét.
Azt találtuk, hogy az általunk egyszerű heurisztikákat követve megalkotott
szűrőkészlet érte el a legjobb eredményeket. Nem csak a többi szűrőkészletnél
teljesített jobban a TIMIT adatbázison tiszta és zajjal szennyezett beszéd
esetén is, de jobban teljesített az MFCC jellemzőkészletnél is. Hasonló
eredményeket kaptunk a “Szeged” magyar híradós beszédadatbázison is.
Ezen eredményeket felhasználtuk az automatikus jellemzőkiválasztás esetleges
problémáinak tárgyalása során.

7.2 A Spektro-temporális szűrők és neuronhálók
együttes tanítása

Az automatikus jellemzőkiválasztás nehézségei motiváltak abban, hogy egy új
jellemzőkiválasztási módszert vezessünk be. A jelen fejezetben vizsgált együttes
tanítási keretrendszer oly módon működik, hogy a jellemzőkinyerési lépést a
neuronháló alsó rétegébe integrálja, így az adott réteg súlyainak tanításával
egyúttal a megfelelő szűrőket is tanítjuk. E módszer használatával hatékonyan
kombináltuk a másodlagos jellemzőkinyerési és a neuronháló tanítási fázist. Így
kísérleteinkben konzisztensen alacsonyabb fonémafelismerési hibaszázalékokat
tudtunk elérni mint amikor a két fázis külön került végrehajtásra. Továbbá, a
neuronhálókkal kapcsolatos új eredmények felhasználásával számos módosítást
vezettünk be az együttes tanítási rendszerbe. Ezen módosítások segítségével
sikerült tovább csökkentenünk az elért hibaszázalékokat, demonstrálva a
keretrendszer flexibilitását. Kísérleteink megmutatták, hogy a kezdeti szűrők
tanítása valóban előnyös, és a legtöbb esetben jobb felismerési eredményhez
vezet. Ám azt is megmutatták, hogy a kezdeti szűrők tanításának hatékonysága
ellenére hasznos, ha a szűrőket megfelelően inicializáljuk a folyamat elején.

A BESZÉD TÖBBSÁVOS FELDOLGOZÁSA SPEKTRO-TEMPORÁLIS JELLEMZŐKINYERÉSSEL 137

7.3 A beszéd többsávos feldolgozása spektro-tem-
porális jellemzőkinyeréssel

Jelen fejezetben a többsávos és a spektro-temporális feldolgozás nyilvánvaló
kompatibilitása által indíttatva kombináltuk a két megközelítést. Először a
TIMIT adatbázison egy fonémafelismerési feladat segítségével demonstráltuk,
hogy mind a 2D DCT jellemzőkészlettel, mind a második fejezetben bemutatott
Gábor szűrőkészlettel jobb eredményeket érhetünk el a többsávos megközelítés
felhasználásával, mint nélküle. Szemben több, az irodalomban található
megállapítással, azt találtuk, hogy a többsávos feldolgozás előnye fennáll tiszta
beszédjel esetén, valamint zajok széles skálájával szennyezett beszédjel esetén
is. Azt is demonstráltuk, hogy mély hálók használatával és a konvolúció
bevezetésével az elért hibaszázalékok tovább csökkenthetők. Ezen kísérletekben
egy technikai részletet – az alacsony frekvenciatartomány tükrözése – is
megvizsgáltunk amit a felismerési folyamatban korábban alkalmaztunk, és
mivel azt találtuk, hogy alkalmazása előnnyel nem jár, a további kísérletekből
elhagytuk ezt a részletet.

A többsávos feldolgozás megközelítését ötvöztük a harmadik fejezetben
bemutatott együttes tanítási módszerrel is. Az így kapott módszer teljesítményét
az Aurora-4 adatbázison vizsgáltuk meg, tiszta tanítási adatok esetére. Azt
találtuk, hogy a többsávos feldolgozás nem csak jelentősen javítja az együttes
tanítás eredményeit, de olyan alacsony hibaszázalékok elérését teszik lehetővé,
melyek – publikálásuk idején – a legjobb eredmények között voltak az adott
feladatra. A kísérletek során arra is fény derült, milyen nehézségekkel jár a
megfelelő rekombináció, ezért a következő fejezetben egyik célunk jobb módszert
találni a többsávos feldolgozás és az együttes tanítás integrációjára.

7.4 Sáv “dropout”

A fejezet első részében az együttes tanítási módszer paraméter értékeit vizsgáltuk
felül. Ezt azzal a céllal tettük, hogy demonstráljuk, a módszer megfelelő
paraméterezéssel nem csak a korábbi eredményeken tudunk javítani, de olyan
eredményeket is el tudunk értni, melyek versenyképesek a szakirodalomban
publikált más módszerek eredményeivel. Ennek érdekében bevezettünk két mó-
dosítást a keretrendszerbe, majd a TIMIT valamint Aurora-4 beszédadatbázisok
használatával megvizsgáltuk ezen módosítások hatását felismerési eredményekre.
A kapott eredmények demonstrálták, hogy a módosítások jó eredményre vezettek
mind a korábbi eredményeinkkel, mind az irodalomban található eredményekkel
összevetve.

138 SUMMARY IN HUNGARIAN

Végül az együttes tanítási keretrendszert egy olyan módszerrel egészítettük
ki, melyet részben az úgynevezett input dropout módszer, részben pedig a
többsávos feldolgozás inspirált. Az input dropout módszert úgy módosítottuk,
hogy az teljes frekvenciatartományokat hagyott figyelmen kívül tanítás közben.
Ezzel a módszerrel azt próbáltuk elérni, hogy – a többsávos feldolgozáshoz
hasonlóan – javítsuk a betanított rendszer hibatűrését arra kényszerítve azt,
hogy ne támaszkodjon a teljes frekvenciatartományra. Módszerünket az Aurora-
4 beszédadatbázison értékeltük ki tiszta valamint zajos tanítási adatok esetére,
mind mel spektrális jellemzők, mind pedig ARMA jellemzők használatával.
Az eredmények azt mutatják, hogy zajos tanítási adatok elérhetősége esetén
a javasolt módszer nem csökkenti, vagy a hagyományos input módszernél
nem jobban csökkenti az elért hibaszázalékokat. Ám amikor csak tiszta
tanítási adatok állnak rendelkezésre, a javasolt módszer jelentősen csökkenti
a kapott hibaszázalékokat mindkét vizsgált spektrális reprezentáció esetében.
Végeredményben az általunk leírt módszer az ARMA jellemzőkkel használva
olyan hibaszázalékokat produkál, melyek legjobb tudásunk szerint a legjobb
eredmények között tarthatók számon.

7.5 Következtetések és jövőbeni munka

Ebben a tanulmányban számos spektro-temporális technikát vizsgáltunk meg a
zajtűrő beszédfelismerés érdekében. Az egymást követő kísérletekben használt
módszerek egyre összetettebbek, ám egyre eredményesebbek is. A TIMIT
adatbázison például a kezdeti huszonkilenc százalékos hibaarány végül több mint
tíz százalékpontot csökkent (tizennyolc és fél százalékra), ami közel harminchat
százalékos relatív hibaarány-csökkenésnek felel meg. Ami még fontosabb, az
utolsó szakaszban elért eredmények az Aurora-4 adatbázison versenyképesek az
irodalomban talált hasonló módszerek eredményeivel. Számos területen lehetne
azonban még előre lépni. Például ahelyett, hogy a frekvenciatartományok
egészére alkalmaznánk az input dropout módszerét, heurisztikák segítségével
megkísérelhetnénk megtartani azokat a részeket, melyekről feltételezhetjük, hogy
a zajnak a leginkább ellenállnak. Továbbá, mivel láthattuk a jótékony hatását
annak, amikor az együttes tanítási keretrendszerben a szűrőket megfelelően
inicializáltuk, érdemes lehet a keretrendszer megváltozott paramétereihez
illeszkedő kezdeti szűrőkészletet keresni, az eredmények további javítása
érdekében.

Bibliography

[1] NVIDIA Tesla K20c. https://www.techpowerup.com/gpudb/564/
tesla-k20c. Accessed: 2017-07-07.

[2] A. Waibel, T. Hanazawa, G. H. K. S. K. L. Phoneme recognition
using time-delay neural networks. IEEE Trans. ASSP 37, 3 (1989), 328–
339.

[3] Abdel-Hamid, O., Deng, L., and Yu, D. Exploring Convolutional
Neural Network structures and optimization techniques for speech
recognition. In Proc. Interspeech (2013), pp. 3366–3370.

[4] Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn,
G., and Yu, D. Convolutional Neural Networks for speech recognition.
IEEE/ACM Trans. ASLP 22, 10 (2014), 1533–1545.

[5] Aertsen, A. M., and Johannesma, P. I. M. Spectro-temporal
receptive fields of auditory neurons in the grassfrog. Biol. Cybern. 38, 4
(November 1980), 223–234.

[6] Aertsen, A. M., Johannesma, P. I. M., and Hermes, D. J. Spectro-
temporal receptive fields of auditory neurons in the grassfrog. Biol. Cybern.
38, 4 (November 1980), 235–248.

[7] Allen, J. B. How do humans process and recognize speech? IEEE
Transactions on Speech and Audio Processing 2, 4 (October 1994), 567–577.

[8] Allison, B., Guthrie, D., and Guthrie, L. Another look at the data
sparsity problem. In Proc. TSD (2006), pp. 327–334.

[9] Applebaum, T., Hanson, B., and Wakita, H. Weighted cepstral
distance measures in vector quantization based speech recognizers. In
Proc. ICASSP (1987), vol. 12, pp. 1155–1158.

139

https://www.techpowerup.com/gpudb/564/tesla-k20c
https://www.techpowerup.com/gpudb/564/tesla-k20c

140 BIBLIOGRAPHY

[10] Arisoy, E., Sainath, T. N., Kingsbury, B., and Ramabhadran,
B. Deep Neural Network language models. In Proc. NAACL-HLT 2012
Workshop: Will We Ever Really Replace the N-gram Model? On the
Future of Language Modeling for HLT (Stroudsburg, PA, USA, 2012),
WLM ’12, Association for Computational Linguistics, pp. 20–28.

[11] Aubert, X. L. An overview of decoding techniques for large vocabulary
continuous speech recognition. Computer Speech & Language 16, 1 (2002),
89–114.

[12] Baby, D., Gemmeke, J. F., Virtanen, T., and Van hamme, H.
Exemplar-based speech enhancement for Deep Neural Network based
automatic speech recognition. In Proc. ICASSP (2015), pp. 4485–4489.

[13] Baby, D., and Van hamme, H. Investigating modulation spectrogram
features for Deep Neural Network-based automatic speech recognition. In
Proc. Interspeech (2015), pp. 2479–2483.

[14] Beal, M., Ghahramani, Z., and Rasmussen, C. The infinite Hidden
Markov Model. In Proc. NIPS (2002), pp. 577–584.

[15] Besacier, L., and Bonastre, J. Subband architecture for automatic
speaker recognition. Signal Processing 80, 7 (2000), 1245–1259.

[16] Biem, A., Mcdermott, E., and Katagiri, S. A discriminative filter
bank model for speech recognition. In Proc. ICASSP (1996), pp. 545–548.

[17] Bishop, C. M. Neural Networks for Pattern Recognition. Oxford
University Press, Inc., New York, NY, USA, 1995.

[18] Bourland, H., and Wellekens, C. J. Links between markov models
and multilayer perceptrons. IEEE Trans. Pattern Anal. Mach. Intell. 12,
12 (December 1990), 1167–1178.

[19] Bourlard, H., and Dupont, S. A new ASR approach based on
independent processing and recombination of partial frequency bands. In
Proc. ICSLP (1996), pp. 426–429.

[20] Bourlard, H., and Dupont, S. Subband-based speech recognition. In
Proc. ICASSP (1997), pp. 1251–1254.

[21] Bourlard, H., Heřmanský, H., and Morgan, N. Towards increasing
speech recogognition error rates. Speech Communication 18, 3 (1996),
205–231.

[22] Bourlard, H. A., and Morgan, N. Connectionist Speech Recognition:
A Hybrid Approach. Kluwer Academic Publishers, Norwell, MA, USA,
1993.

BIBLIOGRAPHY 141

[23] Bouthillier, X., Konda, K., Vincent, P., and Memisevic, R.
Dropout as data augmentation. ArXiv e-prints (2015).

[24] Bouvrie, J., Ezzat, T., and Poggio, T. Localized spectro-temporal
cepstral analysis of speech. In Proc. ICASSP (2008), pp. 4733–4736.

[25] Brants, T., Popat, A. C., Xu, P., Och, F. J., and Dean, J. Large
language models in machine translation. In Proc. EMNLP-CoNLL (2007),
pp. 858–867.

[26] Brill, E., Florian, R., Henderson, J. C., and Mangu, L. Beyond
n-grams: Can linguistic sophistication improve language modeling? In
Proc. ACL (1998), pp. 186–190.

[27] Brown, P. F., deSouza, P. V., Mercer, R. L., Pietra, V.
J. D., and Lai, J. C. Class-based n-gram models of natural language.
Computational Linguistics 18, 4 (1992), 467–480.

[28] Carpenter, B. Human versus machine: Psycholinguistics meets ASR.
In Proc. ASRU (1999), pp. 225–228.

[29] Cerisara, C., and Fohr, D. Multi-band automatic speech recognition.
Computer Speech and Language 15, 2 (2001), 151–174.

[30] Chang, S., and Wegmann, S. On the importance of modeling and
robustness for Deep Neural Network feature. In Proc. ICASSP (2015),
pp. 4530–4534.

[31] Chang, S.-Y., Meyer, B. T., and Morgan, N. Spectro-temporal
features for noise-robust speech recognition using power-law nonlinearity
and power-bias subtraction. In Proc. ICASSP (2013), pp. 7063–7067.

[32] Chang, S.-Y., and Morgan, N. Robust CNN-based speech recognition
with Gabor filter kernels. In Proc. Interspeech (2014), pp. 905–909.

[33] Chen, S. F., and Goodman, J. An empirical study of smoothing
techniques for language modeling. In Proc. ACL (1996), pp. 310–318.

[34] Chen, W., Hsieh, C., and Lai, E. Multiband approach to robust
text-independent speaker identification. IJCLCLP 9, 2 (2004), 63–76.

[35] Chen, W., and Pratt, W. Scene adaptive coder. IEEE Transactions
on Communications 32, 3 (March 1984), 225–232.

[36] Chi, T., Ru, P., and Shamma, S. A. Multiresolution spectrotemporal
analysis of complex sounds. J. Acoust. Soc. Am. 118, 2 (2005), 887–906.

142 BIBLIOGRAPHY

[37] Church, K. W., and Gale, W. A. A comparison of the enhanced
good-turing and deleted estimation methods for estimating probabilities
of english bigrams. Computer Speech and Language 5 (1991), 19–54.

[38] Clarkson, P., and Moreno, P. J. On the use of support vector
machines for phonetic classification. In Proc. ICASSP (1999), pp. 585–
588.

[39] Cox, S. Speaker normalization in the MFCC domain. In Proc. Interspeech
(2000), pp. 853–856.

[40] Cui, J. Integrating linguistic and statistical knowledge in language
modeling. PhD thesis, Johns Hopkins University, 2008.

[41] Cui, X., Goel, V., and Kingsbury, B. Data augmentation for Deep
Neural Network acoustic modeling. In Proc. ICASSP (2014), pp. 5619–
5623.

[42] Dahl, G. E., Sainath, T. N., and Hinton, G. E. Improving Deep
Neural Networks for LVCSR using Rectified Linear Units and dropout.
In Proc. ICASSP (2013), pp. 8609–8613.

[43] Damper, R., and Higgins, J. E. Improving speaker identification in
noise by subband processing and decision fusion. Pattern Recogn. Lett.
24, 13 (2003), 2167–2173.

[44] Deng, L., Abdel-Hamid, O., and Yu, D. A Deep Convolutional Neural
Network using heterogeneous pooling for trading acoustic invariance with
phonetic confusion. In Proc. ICASSP (2013), pp. 6669 – 6673.

[45] Depireux, D., Simon, J., Klein, D., and Shamma, S. Spectro-
temporal response field characterization with dynamic ripples in ferret
primary auditory cortex. J. Neurophysiol. 85 (2001), 1220–1234.

[46] Driesen, J. Discovering Words in Speech using Matrix Factorization. PhD
thesis, Arenberg Doctoral School of Science, Engineering & Technology;
Faculty of Engineering; Departement Electrotechniek — ESAT, 2012.

[47] Duchnowski, P. A New Structure for Automatic Speech Recognition.
PhD thesis, MIT, 1993.

[48] Evermann, G., and Woodland, P. C. Large vocabulary decoding
and confidence estimation using word posterior probabilities. In Proc.
ICASSP (2000), pp. 1655–1658.

[49] Ezzat, T., Bouvrie, J. V., and Poggio, T. A. Spectro-temporal
analysis of speech using 2D Gabor filters. In Proc. Interspeech (2007),
pp. 506–509.

BIBLIOGRAPHY 143

[50] Falk, T. H., and Chan, W. Spectro-temporal features for robust
far-field speaker identification. In Proc. Interspeech (2008), pp. 634–637.

[51] Fletcher, H. Speech and hearing in communication. Bell Telephone
Laboratories series. Van Nostrand, 1953.

[52] Fontaine, V., and Bourlard, H. Speaker-dependent speech
recognition based on phone-like units models — application to voice
dialing. Idiap-RR Idiap-RR-09-1996, IDIAP, 1996.

[53] Fux, T., and Jouvet, D. Evaluation of PNCC and extended spectral
subtraction methods for robust speech recognition. In Proc. EUSIPCO
(2015), pp. 1416–1420.

[54] Gabor, D. Theory of communication. Journal IEE 93, 26 (November
1946), 429–457.

[55] Gale, W. A., and Church, K. W. Estimation procedures for language
context: poor estimates are worse than none. In Proc. COMP-STAT
(1990), pp. 69–74.

[56] Gale, W. A., and Church, K. W. What’s wrong with adding one?
In Corpus-Based Research into Language, N. Oostdijk and P. de Haan,
Eds. Rodolpi, 1994.

[57] Ganapathy, S. Robust speech processing using ARMA spectrogram
models. In Proc. ICASSP (2015), pp. 5029–5033.

[58] Ganchev, T., Fakotakis, N., and Kokkinakis, G. Comparative
evaluation of various mfcc implementations on the speaker verification
task. In Proc. SPECOM (2005), pp. 191–194.

[59] Garofolo, J., Lamel, L. F., Fisher, W., Fiscus, J., Pallett,
D., Dahlgren, N., and Zue, V. TIMIT acoustic-phonetic continuous
speech corpus, 1993.

[60] Gelbart, D., Kleinschmidt, M., and Meyer, B. T. Gabor
feature extraction for automatic speech recognition. http://www1.icsi.
berkeley.edu/Speech/papers/gabor/. Accessed: 2013-10-22.

[61] Geoffrey Zweig, M. P. Advances in large vocabulary speech
recognition. Advances in Computers, Elsevier Science (January 2004).

[62] Gerosa, M., and Federico, M. Coping with out-of-vocabulary words:
Open versus huge vocabulary ASR. In Proc. ICASSP (2009), pp. 4313–
4316.

http://www1.icsi.berkeley.edu/Speech/papers/gabor/
http://www1.icsi.berkeley.edu/Speech/papers/gabor/

144 BIBLIOGRAPHY

[63] Glorot, X., and Bengio, Y. Understanding the difficulty of training
Deep Feedforward Neural Networks. In Proc. AISTATS (2010), pp. 249–
256.

[64] Glorot, X., Bordes, A., and Bengio, Y. Deep Sparse Rectifier
Neural Networks. In Proc. AISTATS (2011), G. J. Gordon and D. B.
Dunson, Eds., vol. 15, Journal of Machine Learning Research - Workshop
and Conference Proceedings, pp. 315–323.

[65] Golik, P., Doetsch, P., and Ney, H. Cross-entropy vs. squared error
training: a theoretical and experimental comparison. In Proc. Interspeech
(2013), pp. 1756–1760.

[66] Gramss, T. Fast algorithms to find invariant features for a word
recognizing Neural Net. In Proc. ICANN (1991), pp. 180–184.

[67] Gramss, T., and Strube, H. W. Recognition of isolated words based
on psychoacoustics and neurobiology. Speech Communication 9, 1 (1990),
35–40.

[68] Graves, A., Mohamed, A., and Hinton, G. E. Speech recognition
with Deep Recurrent Neural Networks. In Proc. ICASSP (2013), pp. 6645–
6649.

[69] Hagen, A., Bourlard, H., and Morris, A. Adaptive ML-weighting
in multi-band recombination of Gaussian mixture ASR. In Proc. ICASSP
(2001), pp. 257–260.

[70] Hagen, A., Morris, A., and Bourlard, H. Subband-based speech
recognition in noisy conditions the full combination approach. Tech. Rep.
Idiap-RR-15-1998, IDIAP, 1998.

[71] Hagen, A., Morris, A., and Bourlard, H. From multi-band full
combination to multi-stream full combination processing in robust ASR.
In Proc. ISCA Tutorial and Research Workshop ASR (2000).

[72] Halavati, R., and Shouraki, S. B. Reducing speech recognition
costs: By compressing the input data. In Proc. IEEE Conf. of Intelligent
Systems (2012), pp. 102–107.

[73] Halberstadt, A. K., and Glass, J. R. Heterogeneous Measurements
and Multiple Classifiers for Speech Recognition. In Proc. ICSLP (1998).

[74] Hamamoto, Y., Uchimura, S., Watanabe, M., Yasuda, T., Mitani,
Y., and Tomita, S. A Gabor filter-based method for recognizing
handwritten numerals. Pattern Recognition 31, 4 (1998), 395–400.

BIBLIOGRAPHY 145

[75] Hariharan, R., Kiss, I., and Viikki, I. Noise robust speech
parameterization using multiresolution feature extraction. IEEE Trans.
Speech and Audio Processing 9, 8 (2001), 856–865.

[76] Harris, F. J. On the use of windows for harmonic analysis with the
discrete fourier transform. Proceedings of the IEEE 66, 1 (January 1978),
51–83.

[77] He, L., Lech, M., Maddage, N. C., and Allen, N. Stress detection
using speech spectrograms and sigma-pi neuron units. In Proc. ICNC
(2009), pp. 260–264.

[78] Heřmanský, H. Human speech perception: Some lessons from automatic
speech recognition. In Proc. TSD (2001), pp. 187–196.

[79] Heřmanský, H. Perceptual linear predictive (PLP) analysis of speech.
J. Acoust. Soc. Am. 57, 4 (1990), 1738–52.

[80] Heřmanský, H. Should recognizers have ears? Speech Communication
25, 1-3 (1998), 3–27.

[81] Heřmanský, H., and Sharma, S. TRAPS-classifiers of temporal
patterns. In Proc. ICSLP (1998), pp. 1003–1006.

[82] Heřmanský, H., Timbrewala, S., and Pavel, M. Towards ASR on
partially corrupted speech. In Proc. ICSLP (1996), pp. 464–465.

[83] Hewlett, N., and Beck, J. An Introduction to the Science of Phonetics.
An Introduction to the Science of Phonetics. Taylor & Francis, 2006.

[84] Hinton, G., Deng, L., Yu, D., Abdel-rahman, M., Jaitly, N.,
Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., Dahl, G.,
and Kingsbury, B. Deep Neural Networks for acoustic modeling in
speech recognition. IEEE Signal Processing Magazine 29, 6 (2012), 82–97.

[85] Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. Improving Neural Networks by preventing co-
adaptation of feature detectors. CoRR abs/1207.0580 (2012).

[86] Hirsch, H.-G. Fant: Filtering and noise-adding tool. http://dnt.kr.hs-
niederrhein.de/download.html.

[87] Hönig, F., Stemmer, G., Hacker, C., and Brugnara, F. Revising
perceptual linear prediction (plp). In Proc. Interspeech (2005), pp. 2997–
3000.

146 BIBLIOGRAPHY

[88] Hoffmeister, B., Heigold, G., Rybach, D., Schlüter, R., and
Ney, H. WFST enabled solutions to ASR problems: Beyond HMM
decoding. IEEE Transactions on Audio, Speech, and Language Processing
20, 2 (February 2012), 551–564.

[89] Huang, G., Zhu, Q., and Siew, C. Extreme learning machine: A new
learning scheme of feedforward Neural Networks. In Proc. INT. JOINT
CONF. NEURAL NETW (2006), pp. 985–990.

[90] Huang, J.-T., Li, J., and Gong, Y. An analysis of Convolutional
Neural Networks for speech recognition. In Proc. ICASSP (2015), pp. 4989–
4993.

[91] Huang, L.-L., Shimizu, A., and Kobatake, H. Robust face detection
using Gabor filter features. Pattern Recogn. Lett. 26, 11 (August 2005),
1641–1649.

[92] Huang, X., Acero, A., and Hon, H.-W. Spoken Language Processing:
A Guide to Theory, Algorithm, and System Development, 1st ed. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2001.

[93] Huang, X., and Lee, K. F. On speaker-independent, speaker-dependent,
and speaker-adaptive speech recognition. IEEE Transactions on Speech
and Audio Processing 1, 2 (1993), 150–157.

[94] Huang, Z., Chang, Y., Long, B., Crespo, J.-F., Dong, A.,
Keerthi, S., and Wu, S.-L. Iterative viterbi a* algorithm for k-best
sequential decoding. In Proc. ACL (2012), pp. 611–619.

[95] Jaitly, N., and Hinton, G. E. Learning a better representation of
speech soundwaves using restricted boltzmann machines. In Proc. ICASSP
(2011), IEEE, pp. 5884–5887.

[96] Janin, A., Ellis, D., and Morgan, N. Multi-stream speech recognition:
ready for prime time? In Proc. Eurospeech (1999), pp. 591–594.

[97] Jelinek, F., Bahl, L. R., and Mercer, R. L. Design of a linguistic
statistical decoder for the recognition of continuous speech. IEEE Trans.
Information Theory 21, 3 (1975), 250–256.

[98] Jelinek, F., Lafferty, J. D., and Mercer, R. L. Basic methods
of probabilistic context-free grammars. In Speech Recognition and
Understanding. Recent Advances, Trends, and Applications, P. Laface
and R. DeMori, Eds., vol. 75. Springer-Verlag, 1992, pp. 345–360.

BIBLIOGRAPHY 147

[99] Jelinek, F., and Mercer, R. L. Interpolated estimation of markov
source parameters from sparse data. In Proc. Pattern Recognition in
Practice (1980), pp. 381–397.

[100] Johnson, W. Probability: deductive and inductive problems. Mind 41
(1932), 421–423.

[101] Jones, J. P., and Palmer, L. A. An evaluation of the two-dimensional
Gabor filter model of simple receptive fields in cat striate cortex. Journal
of Neurophysiology 58, 6 (1987), 1233–1258.

[102] Jun, D., Qing, W., Tian, G., Yong, X., Li-Rong, D., and Chin-
Hui, L. Robust speech recognition with speech enhanced Deep Neural
Networks. In Proc. Interspeech (2014), pp. 616–620.

[103] Junqua, J.-C. Evaluation of ASR front ends in speaker-dependent and
speaker-independent recognition. J. Acoust. Soc. Am. 81, S1 (1987),
S93–S93.

[104] Jurafsky, D., and Martin, J. H. An introduction to natural language
processing, computational linguistics, and speech recognition. Prentice
Hall, 2007.

[105] Jurafsky, D., Wooters, C., Segal, J., Stolcke, A., Fosler,
E., Tajchman, G., and Morgan, N. Using a stochastic context-free
grammar as a language model for speech recognition. In Proc. ICASSP
(1995), pp. 189–192.

[106] Kanedera, N., Arai, T., Heřmanský, H., and Pavel, M. On the
relative importance of various components of the modulation spectrum
for automatic speech recognition. Speech Communication 28, 1 (1999),
43–55.

[107] Katz, S. M. Estimation of probabilities from sparse data for the language
model component of a speech recognizer. IEEE Transactions on Acoustics,
Speech and Signal Processing 35, 3 (1987), 400–401.

[108] Kelly, F., and Harte, N. Auditory features revisited for robust speech
recognition. In Proc. ICPR (2010), pp. 4456–4459.

[109] Kelly, F., and Harte, N. A comparison of auditory features for robust
speech recognition. In Proc. EUSIPCO (2010), pp. 1968–1972.

[110] Ketabdar, H., and Bourlard, H. Enhanced phone posteriors for
improving speech recognition systems. IEEE Transactions on Audio,
Speech, and Language Processing 18, 6 (2010), 1094–1106.

148 BIBLIOGRAPHY

[111] Kim, C. Signal processing for robust speech recognition motivated by
auditory processing. PhD thesis, Carnegie Mellon University, 2010.

[112] Kim, C., and Stern, R. M. Feature extraction for robust speech
recognition using a power-law nonlinearity and power-bias subtraction.
In Proc. Interspeech (2009), pp. 28–31.

[113] Kim, C., and Stern, R. M. Power-normalized cepstral coefficients
(PNCC) for robust speech recognition. IEEE/ACM Transactions on
Audio, Speech, and Language Processing 24, 7 (July 2016), 1315–1329.

[114] Kipyatkova, I., and Karpov, A. Lexicon size and language model order
optimization for russian LVCSR. In Proc. SPECOM (2013), pp. 219–226.

[115] Kleinschmidt, M. Methods for capturing spectro-temporal modulations
in automatic speech recognition. Acustica united with acta acustica 88
(2002), 416–422.

[116] Kleinschmidt, M. Robust Speech Recognition Based on Spectro-Temporal
Processing. PhD thesis, Carl-von-Ossietzky Universität Oldenburg, 2002.

[117] Kleinschmidt, M. Spectro-temporal Gabor features as a front end
for automatic speech recognition. In Proc. 3rd European Congress on
Acoustics - Forum Acusticum 2002 (2002), pp. CD–ROM, 6 pages.

[118] Kleinschmidt, M., and Gelbart, D. Improving word accuracy with
Gabor feature extraction. In Proc. ICSLP (2002).

[119] Kleinschmidt, M., and Hohmann, V. Sub-band SNR estimation using
auditory feature processing. Speech Communication 39, 1-2 (2003), 47–63.

[120] Kneser, R., and Ney, H. Improved backing-off for M-gram language
modeling. In Proc. ICASSP (1995), pp. 181–184.

[121] Ko, T., Peddinti, V., Povey, D., and Khudanpur, S. Audio
augmentation for speech recognition. In Proc. Interspeech (2015), pp. 3586–
3589.

[122] Kocsor, A., and Tóth, L. Application of kernel-based feature space
transformations and learning methods to phoneme classification. Appl.
Intell. 21, 2 (2004), 129–142.

[123] Kovács, G., and Tóth, L. Phone recognition experiments with 2D-DCT
spectro-temporal features. In Proceedings of the International Symposium
on Applied Computational Intelligence and Informatics (2011), pp. 143–
146.

BIBLIOGRAPHY 149

[124] Kovács, G., and Tóth, L. The joint optimization of spectro-temporal
features and Neural Net classifiers. In Proc. TSD (2013), vol. 8082 of
Lecture Notes in Computer Science, Springer, pp. 552–559.

[125] Kovács, G., and Tóth, L. Joint optimization of spectro-temporal
features and Deep Neural Nets for robust automatic speech recognition.
Acta Cybernetica 22, 1 (2015), 117–134.

[126] Kovács, G., Tóth, L., and Van Compernolle, D. Selection and
enhancement of Gabor filters for automatic speech recognition. IJST 18,
1 (2015), 1–16.

[127] Kryter, K. D. Speech bandwith compression through spectrum selection.
J. Acoust. Soc. Am. 32 (1960), 547.

[128] Lamel, L. F. Some perspectives on speech database development. In
Proc. of the ESCA Workshop on Speech Input/Output Assessment and
Speech Databases (1989).

[129] Lamel, L. F., Kassel, R., and Seneff, S. Speech database
development: design and analysis of the acoustic-phonetic corpus. In Proc.
DARPA Speech Recognition Workshop, Report no. SAIC-86/1546 (1986).

[130] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceedings of the IEEE
86, 11 (1998), 2278–2324.

[131] Lee, C., Hyun, D., Choi, E., Go, J., and Lee, C. Optimizing feature
extraction for speech recognition. IEEE Transactions on Speech and Audio
Processing 11, 1 (2003), 80–87.

[132] Lee, H., Pham, P., Largman, Y., and Ng, A. Y. Unsupervised
feature learning for audio classification using Convolutional Deep Belief
Networks. In Proc. Adv. Neural Inf. Process. Syst. (2009), p. 1096–1104.

[133] Lee, K.-F., and Hon, H.-W. Speaker-independent phone recognition
using hidden markov models. IEEE Transactions on accoustics, speech
and signal processing 37, 11 (1989), 1641–1648.

[134] Lee, S., Fang, S., Hung, J., and Lee, L. Improved MFCC feature
extraction by PCA-optimized filter-bank for speech recognition. In Proc.
ASRU (2001), pp. 49–52.

[135] Levinson, S., Rabiner, L., and Sondhi, M. Speaker independent
isolated digit recognition using Hidden Markov Models. In Proc. ICASSP
(1983), pp. 1049–1052.

150 BIBLIOGRAPHY

[136] Li, B., and Sim, K. C. Improving robustness of Deep Neural Networks
via spectral masking for automatic speech recognition. In Proc. ASRU
(2013), pp. 279–284.

[137] Li, S., Sun, L., and Lee, L. Improved phoneme recognition by
integrating evidence from spectro-temporal and cepstral features. In
Proc. Interspeech (2010), pp. 1177–1180.

[138] Lidstone, G. J. Note on the general case of the Bayes–Laplace formula
for inductive or a posteriori probabilities. Transactions of the Faculty of
Actuaries 8 (1920), 182–192.

[139] Lopes, C., and Perdigao, F. Phoneme recognition on the timit
database. In Speech Technologies, P. I. Ipsic, Ed. InTech, 2011.

[140] Maganti, H. K., and Matassoni, M. Auditory processing-based
features for improving speech recognition in adverse acoustic conditions.
EURASIP Journal on Audio, Speech, and Music Processing 2014, 1 (2014),
21.

[141] Mallidi, S. H., and Heřmanský, H. Novel Neural Network based
fusion for multistream ASR. In Proc. ICASSP (2016), pp. 5680–5684.

[142] Manolakis, D. G., Ingle, V. K., and Kogon, S. M. Statistical and
adaptive signal processing: spectral estimation, signal modeling, adaptive
filtering, and array processing. Norwood: Artech House, 2005.

[143] Marks, R. Introduction to Shannon Sampling and Interpolation Theory.
Springer-Verlag, 1991.

[144] Martin, S., Liermann, J., and Ney, H. Algorithms for bigram and
trigram word clustering. Speech Communication 24, 1 (1998), 19–37.

[145] Martínez, A. M. C., Moritz, N., and Meyer, B. T. Should Deep
Neural Nets have ears? The role of auditory features in deep learning
approaches. In Proc. Interspeech (2014), pp. 2435–2439.

[146] Martínez, A. M. C., and Schädler, M. Why do ASR systems despite
Neural Nets still depend on robust features. In Proc. Interspeech (2016),
pp. 1883–1887.

[147] Meseguer, N. A. Speech analysis for automatic speech recognition.
Master’s thesis, Department of Electronics and Telecommunications,
Norwegian University of Science and Technology, 2009.

[148] Mesgarani, N., Thomas, S., and Heřmansky, H. A multistream
multiresolution framework for phoneme recognition. In Proc. Interspeech
(2010), pp. 318–321.

BIBLIOGRAPHY 151

[149] Mesgarani, N., Thomas, S., and Heřmanský, H. Adaptive stream
fusion in multistream recognition of speech. In Proc. Interspeech (2011),
pp. 2329–2332.

[150] Meyer, B. T. Human and automatic speech recognition in the presence
of speech-intrinsic variations. PhD thesis, Carl-von-Ossietzky Universität,
2009.

[151] Meyer, B. T. What’s the difference? Comparing humans and machines
on the Aurora2 speech database. In Proc. Interspeech (2013), pp. 2634–
2638.

[152] Meyer, B. T., and Kollmeier, B. Optimization and evaluation of
Gabor feature sets for ASR. In Proc. Interspeech (2008), pp. 906–909.

[153] Meyer, B. T., Wächter, M., Brand, T., and Kollmeier, B.
Phoneme confusions in human and automatic speech recognition. In Proc.
Interspeech (2007).

[154] Meyer, B. T., Wesker, T., Brand, T., Mertins, A., and
Kollmeier, B. A human-machine comparison in speech recognition
based on a logatome corpus. In Proc. SRIV (2006).

[155] Miao, Y., and Metze, F. Improving low-resource CD-DNN-HMM
using dropout and multilingual DNN training. In Proc. Interspeech (2013),
pp. 2237–2241.

[156] Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and
Khudanpur, S. Recurrent Neural Network based language model. In
Proc. Interspeech (2010), pp. 1045–1048.

[157] Milner, B. A comparison of front-end configurations for robust speech
recognition. In Proc. ICASSP (2002), pp. 797–800.

[158] Minsky, M., and Papert, S. Perceptrons: An Introduction to
Computational Geometry. MIT Press, Cambridge, MA, USA, 1969.

[159] Mirghafori, N. A Multi-Band Approach to Automatic Speech
Recognition. PhD thesis, International Computer Science Institute, 1999.

[160] Mirghafori, N., and Morgan, N. Combining connectionist multi-
band and full-band probability streams for speech recognition of natural
numbers. In Proc. ICSLP (1998), pp. 743–746.

[161] Misra, H. Multi-stream Processing for Noise Robust Speech Recognition.
PhD thesis, Swiss Federal Institute of Technology, 2006.

152 BIBLIOGRAPHY

[162] Mohamed, A., Dahl, G. E., and Hinton, G. Acoustic modeling
using deep belief networks. Trans. Audio, Speech and Lang. Proc. 20, 1
(January 2012), 14–22.

[163] Mohri, M. Weighted Finite-State Transducer algorithms. An overview.
In Formal Languages and Applications, C. Martín-Vide, V. Mitrana,
and G. Păun, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004,
pp. 551–563.

[164] Mohri, M., Pereira, F., and Riley, M. Weighted finite-state
transducers in speech recognition. Computer Speech and Language 16, 1
(2002), 69 – 88.

[165] Mohri, M., Riley, M., Hindle, D., Ljolje, A., and Pereira, F.
Full expansion of context-dependent networks in large vocabulary speech
recognition. In Proc. ICASSP (1998), pp. 665–668.

[166] Morgan, N., and Bourlard, H. Continuous speech recognition using
multilayer perceptrons with Hidden Markov Models, 1990.

[167] Morris, A., Hagen, A., Glotin, H., and Bourlard, H. Multi-
stream adaptive evidence combination for noise robust ASR. Speech
Communication 34, 1-2 (2001), 25–40.

[168] Müller, F. Invariant features and enhanced speaker normalization for
automatic speech recognition. PhD thesis, University of Lübeck, 2013.

[169] Murveit, H., Butzberger, J. W., Digalakis, V. V., and
Weintraub, M. Large-vocabulary dictation using SRI’s decipher speech
recognition system: Progressive-search techniques. In Proc. ICASSP
(1993), pp. 319–322.

[170] Nakariyakul, S., and Casasent, D. P. Improved forward floating
selection algorithm for feature subset selection. In 2008 International
Conference on Wavelet Analysis and Pattern Recognition (2008), vol. 2,
pp. 793–798.

[171] Narayanan, A., and Wang, D. Joint noise adaptive training for
robust automatic speech recognition. In Proc. ICASSP (May 2014),
pp. 2504–2508.

[172] Niesler, T. R., Whittaker, E. W. D., and Woodland, P. C.
Comparison of part-of-speech and automatically derived categor-ybased
language models for speech recognition. In Proc. ICASSP (1998), pp. 177–
180.

BIBLIOGRAPHY 153

[173] Okawa, S., Bocchieri, E., and Potamianos, A. Multi-band speech
recognition in noisy environments. In Proc. ICASSP (1998), pp. 641–644.

[174] Palaz, D., Collobert, R., and Magimai-Doss, M. End-to-end
phoneme sequence recognition using Convolutional Neural Networks.
CoRR abs/1312.2137 (2013).

[175] Parihar, N., and Picone, J. DSR front end LVCSR evaluation.
Aurora Working Group AU/384/02, Institue for Signal and Information
Processing, December 2002.

[176] Patterson, R. D., Robinson, K., Holdsworth, J., Mckeown, D.,
Zhang, C., and Allerhand, M. Complex sounds and auditory images.
In in Proc. 9th Int. Symp. Hearing Audit., Physiol. Perception (1992),
pp. 429–446.

[177] Paul, D., and Baker, J. The design of wall street journal-based CSR
corpus. In Proc. ICSLP (1992), pp. 899–902.

[178] Peddinti, V., Chen, G., Povey, D., and Khudanpur, S.
Reverberation robust acoustic modeling using i-vectors with Time Delay
Neural Networks. In Proc. Interspeech (2015), pp. 3214–3218.

[179] Pickles, J. An introduction to the Physiology of Hearing. Academic
Press, New York, USA, 1988.

[180] Picone, J. W. Signal modeling techniques in speech recognition.
Proceedings of the IEEE 81, 9 (1993), 1215–1247.

[181] Pinto, J., Garimella, S., Magimai-Doss, M., Heřmanský, H., and
Bourlard, H. Analysis of MLP-based hierarchical phoneme posterior
probability estimator. IEEE Transactions on Audio, Speech, and Language
Processing 19, 2 (February 2011), 225–241.

[182] Plahl, C., Sainath, T. N., Ramabhadran, B., and Nahamoo,
D. Improved pre-training of deep belief networks using sparse encoding
symmetric machines. In Proc. ICASSP (2012), pp. 4165–4168.

[183] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek,
O., Goel, N., Hannemann, M., Motlicek, P., Qian, Y., Schwarz,
P., Silovsky, J., Stemmer, G., and Vesely, K. The Kaldi speech
recognition toolkit. In Proc. ASRU (2011).

[184] Pudil, P., Novovičová, J., and Kittler, J. Floating search methods
in feature selection. Pattern Recogn. Lett. 15, 11 (November 1994), 1119–
1125.

154 BIBLIOGRAPHY

[185] Pundak, G., and Sainath, T. Lower frame rate Neural Network
acoustic models. In Proc. Interspeech (2016), pp. 22–26.

[186] Qian, Y., Yin, M., You, Y., and Yu, K. Multi-task joint learning
of Deep Neural Networks for robust speech recognition. In Proc. ASRU
(2015), pp. 310–316.

[187] Qiu, A., Schreiner, C. E., and Escabí, M. A. Gabor analysis
of auditory midbrain receptive fields: Spectro-temporal and binaural
composition. Journal of Neurophysiology 90, 1 (2003), 456–476.

[188] rahman Mohamed, A., Hinton, G. E., and Penn, G. Understanding
how deep belief networks perform acoustic modelling. In Proc. ICASSP
(2012), IEEE, pp. 4273–4276.

[189] Rao, K. S., and Sarkar, S. Stochastic Feature Compensation for
Robust Speaker Verification. Springer International Publishing, Cham,
2014, pp. 49–76.

[190] Rao, S., and Pearlman, W. A. Analysis of linear prediction,
coding, and spectral estimation from subbands. IEEE Transactions
on Information Theory 42, 4 (July 1996), 1160–1178.

[191] Renals, S., Morgan, N., Bourlard, H., Cohen, M., and Franco,
H. Connectionist probability estimators in HMM speech recognition.
IEEE Trans. Speech and Audio Processing 2, 1 (1994), 161–174.

[192] Rennie, S. J., Dognin, P. L., Cui, X., and Goel, V. Annealed
dropout trained maxout networks for improved LVCSR. In Proc. ICASSP
(2015), pp. 5181–5185.

[193] Riener, K. R., Warren, R. M., and Bashford, Jr., J. A. Novel
findings concerning intelligibility of bandpass speech. J. Acoust. Soc. Am.
91, 4 (1992), 2339.

[194] Robinson, D. W., and Dadson, R. S. A re-determination of the
equal-loudness relations for pure tones. British Journal of Applied Physics
7 (May 1956), 166–181.

[195] Rosenblatt, F. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review 65, 6 (1958),
386–408.

[196] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning
internal representations by error propagation. In Neurocomputing:
Foundations of Research, J. A. Anderson and E. Rosenfeld, Eds. MIT
Press, Cambridge, MA, USA, 1988, pp. 673–695.

BIBLIOGRAPHY 155

[197] Sainath, T. N., Kingsbury, B., rahman Mohamed, A., and
Ramabhadran, B. Learning filter banks within a Deep Neural Network
framework. In Proc. ASRU (2013), pp. 297–302.

[198] Sainath, T. N., Kingsbury, B., Saon, G., Soltau, H., Mohamed,
A., Dahl, G., and Ramabhadran, B. Deep Convolutional Neural
Networks for large-scale speech tasks. Neural Networks 64 (2015), 39–48.

[199] Sainath, T. N., Ramabhadran, B., and Picheny, M. An exploration
of large vocabulary tools for small vocabulary phonetic recognition. In
Proc. ASRU (2009), pp. 359–364.

[200] Saon, G., Kurata, G., Sercu, T., Audhkhasi, K., Thomas, S.,
Dimitriadis, D., Cui, X., Ramabhadran, B., Picheny, M., Lim,
L., Roomi, B., and Hall, P. English conversational telephone speech
recognition by humans and machines. CoRR abs/1703.02136 (2017).

[201] Schädler, M. R., Meyer, B. T., and Kollmeier, B. Spectro-
temporal modulation subspace-spanning filter bank features for robust
automatic speech recognition. J. Acoust. Soc. Am. 131 (2012), 4134–4151.

[202] Scharenborg, O. Reaching over the gap: A review of efforts to link
human and automatic speech recognition research. Speech Communication
49, 5 (2007), 336–347.

[203] Scherer, D., Müller, A., and Behnke, S. Evaluation of pooling
operations in convolutional architectures for object recognition. In Proc.
ICANN (2010), pp. 92–101.

[204] Schwartz, R., and Chow, Y.-L. The N-best algorithm: An efficient
and exact procedure for finding the N most likely sentence hypotheses. In
Proc. ICASSP (1990), pp. 81–84.

[205] Schwenk, H., and Gauvain, J. L. Neural Network language models for
conversational speech recognition. In Proc. ICSLP (2004), pp. 1215–1218.

[206] Seltzer, M. L., Yu, D., and Wang, Y. An investigation of Deep
Neural Networks for noise robust speech recognition. In Proc. ICASSP
(May 2013), pp. 7398–7402.

[207] Shiffman, D., and Marsh, Z. Neural Networks. In The nature of code,
F. Shannon, Ed. D. Shiffman, 2012.

[208] Siniscalchi, S. M., Yu, D., Deng, L., and Lee, C. Exploiting Deep
Neural Networks for detection-based speech recognition. Neurocomputing
106 (2013), 148–157.

156 BIBLIOGRAPHY

[209] Somol, P., Novovičová, J., and Pudil, P. Efficient feature subset
selection and subset size optimization. In Pattern Recognition Recent
Advances, A. Herout, Ed. InTech, 2010, ch. 4.

[210] Somol, P., Pudil, P., Novovičová, J., and Paclík, P. Adaptive
floating search methods in feature selection. Pattern Recogn. Lett. 20,
11–13 (1999), 1157 – 1163.

[211] Stahl, S. Stahl’s Essential Psychopharmacology: Neuroscientific Basis
and Practical Applications. Cambridge medicine. Cambridge University
Press, 2008.

[212] Stern, R. M. Applying physiologically-motivated models of auditory
processing to automatic speech recognition. In Proc. ISAAR (2011),
pp. 283–293.

[213] Stevens, S. S. On the Psychophysical Law. Psychological Review 64, 3
(1957), 153–181.

[214] Student. The probable error of a mean. Biometrika 6, 1 (1908), 1–25.

[215] Sun, Z., Bebis, G., and Miller, R. Evolutionary Gabor filter
optimization with application to vehicle detection. In Third IEEE
International Conference on Data Mining (2003), pp. 307–314.

[216] Tarján, B., and Mihajlik, P. On morph-based LVCSR improvements.
In 2nd Workshop on Spoken Language Technologies for Under-Resourced
Languages, SLTU (2010), pp. 10–16.

[217] Theodoridis, S., and Koutroumbas, K., Eds. Pattern Recognition,
2nd ed. Elsevier Academic Press, 2003.

[218] Theunissen, F. E., Sen, K., and Doupe, A. J. Spectral-temporal
receptive fields of nonlinear auditory neurons obtained using natural
sounds. J. Neurosci. 20 (March 2000), 2315–2331.

[219] Thompson, C., and Shure, L. Image Processing Toolbox: For Use with
MATLAB;[user’s Guide]. MathWorks, 1995.

[220] Tiitinen, H., Miettinen, I., Alku, P., and May, P. J. C. Transient
and sustained cortical activity elicited by connected speech of varying
intelligibility. BMC Neuroscience 13, 1 (2012), 157.

[221] Tino, P., Benuskova, L., and Sperduti, A. Artificial Neural Network
models. In Springer Handbook of Computational Intelligence, J. Kacprzyk
and W. Pedrycz, Eds. Springer Berlin Heidelberg, Berlin, Heidelberg,
2015, pp. 455–471.

BIBLIOGRAPHY 157

[222] Tóth, L. Convolutional Deep Rectifier Neural Nets for phone recognition.
In Proc. Interspeech (2013), pp. 1722–1726.

[223] Tóth, L. Phone recognition with Deep Sparse Rectifier Neural Networks.
In Proc. ICASSP (2013), pp. 6985–6989.

[224] Tóth, L. Combining time- and frequency-domain convolution in
Convolutional Neural Network-based phone recognition. In Proc. ICASSP
(2014), pp. 190–194.

[225] Tóth, L. Phone recognition with hierarchical convolutional deep maxout
networks. EURASIP Journal on Audio, Speech and Music Processing 25
(2015).

[226] Tóth, L., and Grósz, T. A comparison of Deep Neural Network
training methods for large vocabulary speech recognition. In Proc. TSD
(2013), pp. 36–43.

[227] Tsai, D. Optimal Gabor filter design for texture segmentation using
stochastic optimization. Image and Vision Computing 19 (2001), 299–316.

[228] Tufekci, Z., and Gowdy, J. N. Subband feature extraction using
lapped orthogonal transform for speech recognition. In Proc. ICASSP
(2001), pp. 149–152.

[229] V. Peddinti, D. Povey, S. K. A time delay neural network architecture
for efficient modeling of long temporal contexts. In Proc. Interspeech
(2015), pp. 3214–3218.

[230] Varga, A., and Steeneken, H. J. M. Assessment for automatic speech
recognition ii: Noisex-92: A database and an experiment to study the
effect of additive noise on speech recognition systems. Speech Commun.
12, 3 (July 1993), 247–251.

[231] Veselý, K., Karafiát, M., and Grézl, F. Convolutive bottleneck
network features for LVCSR. In Proc. ASRU (2011), IEEE Signal
Processing Society, pp. 42–47.

[232] Vinyals, O., and Deng, L. Are sparse representations rich enough for
acoustic modeling? In Proc. Interspeech (2012), pp. 2570–2573.

[233] Viterbi, A. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Trans. Inf. Theor. 13, 2 (September
2006), 260–269.

[234] von Ossietzky, C. Gabor filter bank features. http://medi.
uni-oldenburg.de/GBFB. Accessed: 2013-09-15.

http://medi.uni-oldenburg.de/GBFB
http://medi.uni-oldenburg.de/GBFB

158 BIBLIOGRAPHY

[235] Wickens, A. Foundations of Biopsychology, 2 ed. Pearson Education,
Essex, UK, 2005.

[236] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D.,
Liu, X. A., Moore, G., Odell, J., Ollason, D., Povey, D.,
Valtchev, V., and Woodland, P. The HTK Book (for HTK Version
3.4). Cambridge University Engineering Department, 2006.

[237] Zeiler, M. D., Ranzato, M., Monga, R., Mao, M., Yang, K., Le,
Q. V., Nguyen, P., Senior, A., Vanhoucke, V., Dean, J., and
Hinton, G. E. On rectified linear units for speech processing. In Proc.
ICASSP (2013), pp. 3517–3521.

[238] Zhao, S. Y., Ravuri, S. V., and Morgan, N. Multi-stream to many-
stream: using spectro-temporal features for ASR. In Proc. Interspeech
(2009), pp. 2951–2954.

[239] Zhao, X., and Wang, D. Analyzing noise robustness of MFCC and
GFCC features in speaker identification. In Proc. ICASSP (2013), pp. 7204–
7208.

[240] Zheng, N., Wang, N., Lee, T., and Ching, P. C. Speaker verification
using complementary information from vocal source and vocal tract. In
Proc. ISCSLP (2006), pp. 518–528.

[241] Zhu, Q., and Alwan, A. On the use of variable frame rate analysis in
speech recognition. In Proc. ICASSP (2000), pp. 1783–1786.

[242] Zongker, D., and Jain, A. Algorithms for feature selection: An
evaluation. In Proc. ICPR (1996), vol. 2, pp. 18–22.

List of Publications

Articles in Journals

1. Kovács, G., Tóth, L., Van Compernolle, D., and Ganapathy, S.
Increasing the robustness of CNN acoustic models using autoregressive
moving average spectrogram features and channel dropout. Pattern Recog-
nition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.09.023

2. Kovács, G., Tóth, L., and Van Compernolle, D. Selection
and enhancement of Gabor filters for automatic speech recognition.
International Journal of Speech Technology 18, 1 (2015), 1–16.

3. Kovács, G., and Tóth, L. Joint optimization of spectro-temporal
features and Deep Neural Nets for robust automatic speech recognition.
Acta Cybernetica 22, 1 (2015), 117–134.

Articles in International Conferences

1. Kovács, G., Tóth, L., and Grósz, T. Robust multi-band ASR using
Deep Neural Nets and spectro-temporal features. In Proceedings of the
International Conference on Speech and Computer (SPECOM) (2014),
Vol. 8773 of Lecture Notes in Artificial Intelligence, Springer, pp. 386–393.

2. Kovács, G., and Tóth, L. The joint optimization of spectro-temporal
features and neural net classifiers. In Proceedings of the 16th International
Conference on Text, Speech, and Dialogue (TSD) (2013), Vol. 8082 of
Lecture Notes in Computer Science, Springer, pp. 552–559.

3. Kovács, G., and Tóth, L. Phone recognition experiments with 2D-
DCT spectro-temporal features. In Proceedings of the IEEE International
Symposium on Applied Computational Intelligence and Informatics (SACI)
(2011), pp. 143–146.

159

160 LIST OF PUBLICATIONS

4. Kovács, G., and Tóth, L. Localised spectro-temporal features for noise-
robust speech recognition. In Proceedings of the IEEE International Joint
Conferences on Computational Cybernetics and Technical Informatics
(ICCC-CONTI) (2010), pp. 481–485.

Articles in Other Conferences

1. Kovács, G., and Tóth, L. Optimisation of spectro-temporal feature
selection method integrated in Deep Neural Networks (in Hungarian). In
Proceedings of MSZNY (2017), pp. 158–169.

2. Kovács, G., and Tóth, L. Multi-band noise robust speech recognition
using Deep Neural Networks (in Hungarian). In Proceedings of MSZNY
(2016), pp. 287–294.

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Overview of the Speech Recognition Process
	Digital audio
	TIMIT
	Aurora-4
	``Szeged'' Hungarian Broadcast news database

	Feature Extraction
	Primary feature extraction
	Secondary feature extraction

	Acoustic Modelling
	Hidden Markov Model
	Artificial Neural Networks
	The HMM/ANN Hybrid Model

	Language Modelling
	N-gram models
	Language Model Scaling

	Structure of the dissertation

	Spectro-Temporal Feature Extraction
	Introduction
	2D DCT
	Phone classification experiments
	Phone recognition experiments

	Gabor filters
	Creating new filter sets
	Filter sets in the literature
	Experimental settings
	Experiments and discussion
	The problem with automatic feature selection

	Conclusions

	The Joint Training of Spectro-Temporal Features and Neural Nets
	Introduction
	Experiments using Sigmoid Networks
	Limited context
	Expanded context

	Experiments using Deep Neural Networks
	Experiments on clean speech using the TIMIT database
	Experiments on noise contaminated speech using the TIMIT database

	Experiments using CNNs
	Adjusting the Structure of the Model
	Experiments on clean speech using the TIMIT database
	Experiments on noise contaminated speech using the TIMIT database

	Conclusions

	The Multi-Band Processing of Speech using Spectro-Temporal Features
	Introduction
	Processing and Recombination of the Bands

	Separate feature extraction and neural net training
	Experimental settings
	Phone recognition experiments on the TIMIT database

	Joint training of spectro-temporal features and neural nets
	Neural net structure
	Recombination net
	Word recognition experiments on the Aurora-4 database

	Conclusions

	Band dropout
	Revisiting the joint training framework
	Parameters and notations
	Neural Networks
	Optimization of parameters
	Delta and Acceleration coefficients
	Experiments

	Band Dropout
	Relation to Prior Work
	Experiments

	Conclusions

	Summary
	Spectro-Temporal Feature Extraction
	The Joint Training of Spectro-Temporal Features and Neural Nets
	The Multi-Band Processing of Speech using Spectro-Temporal Features
	Band dropout
	Conclusions and Future work

	Summary in Hungarian
	Spektro-temporális jellemzokinyerés
	A Spektro-temporális szurok és neuronhálók együttes tanítása
	A beszéd többsávos feldolgozása spektro-temporális jellemzokinyeréssel
	Sáv ``dropout''
	Következtetések és jövobeni munka

	Bibliography
	List of Publications

