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Introduction
Software rules the world.

As true as this statement already was decades ago, it rings even truer now. When the pro-
portion of the U.S. population using any kind of embedded system – including phones, cameras,
watches, entertainment devices, etc. – went from its 2011 estimate of 65% to 95% by 2017 purely
through phone ownership. When we are at a point where we can even talk about “smart cities”,
let alone build them. When – according to Cisco – connected devices have been outnumbering
the population of Earth by a ratio of at least 1.5 since 2015.

This is just exacerbated by the host of embedded systems most people never even consider. An
everyday routine contains household appliances like microwave ovens and refrigerators, heating
or cooling our spaces, starting or stopping our vehicles; the list goes on. A modern life in this era
involves countless hidden, invisible processors, along with the visible ones we have all got so used
to. And we have not even mentioned critical applications like flight guidance, keeping patients
alive and well in hospitals, or operating nuclear power plants.

All of those need software to run. And all that software needs to be written by someone. There
is no question about either the growth of the software industry or the significant acceleration of
said growth. The only question is whether or not we can actually keep up.

Having established the importance of software development, we can focus on arguably the
two most important factors for its success: maintainability and performance. Software systems
spend the majority of their lifetime in the maintenance phase, which, on average, can account for
60% of the total costs. Of course, maintaining a codebase does not only mean finding and fixing
program faults, as enhancements and constantly changing requirements are far more common.
This means that for an efficient maintenance life cycle, a software product has to be quickly
analysable, modifiable and testable – among other characteristics.

Just as critical is the issue of software performance and energy efficiency. A software product
that fails to meet its performance objectives can be costly by causing schedule delays, cost
overruns, lost productivity, damaged customer relations, missed market windows, lost revenues,
and a host of other difficulties. Not to mention that the great amounts of energy consumed by
large-scale computing and network systems, such as data centers and supercomputers, have been
a major source of concern in a society increasingly reliant on information technology.

There are, however, many obstacles in the way of clean, maintainable and high-performance
software. Time constraints of the ever-expanding market often make it appear infeasible to con-
sider design best practices when these considerations would push back release times. Similarly,
haste and an unwillingness to put in extra effort in advance is what seems to lead to antipatterns
and code duplications, harming quality in the long run. Also, inadequate accessibility, tools, and
developer support could significantly hinder the full utilization of today’s performance optimiza-
tion opportunities, such as specialized hardware platforms (e.g., GPGPU, DSP, or FPGA) and
their corresponding compilers.

Our work aims to assist in both of these areas. Our goals are to:

I. Draw attention to the importance of the maintenance phase, and illustrate its
assets and risks by highlighting the objective, tangible effect design patterns
and antipatterns can have on software maintainability; and

II. Help developers more easily utilize modern accelerator hardware and increase
performance by creating an easily usable and extendable methodology for build-
ing static platform selection models.
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I Empirical validation of the impact of source code pat-
terns on software maintainability

The contributions of this thesis point are related to software maintainability and its connection
to static source code patterns.

The Connection between Design Patterns and Maintainability
To study the impact design patterns have on software maintainability, we analyzed over 700
revisions of JHotDraw 7 [9]. We chose it especially for its intentionally high pattern density
and the fact that its pattern instances were all so thoroughly documented that we could use a
javadoc-based text parser for pattern recognition. This led to a virtual guarantee of precision
regarding the matched design pattern instances, which we paired with the utilization of an
objective maintainability model [1]. An inspection of the revisions where the number of pattern
instances increased revealed a clear trend of similarly increasing maintainability characteristics.
Furthermore, comparing pattern density to maintainability as a whole – depicted in Figure 1 –
resulted in a 0.89 Pearson correlation coefficient, which suggested that design patterns do indeed
have a positive effect on maintainability.

Figure 1: The tendencies of pattern line density and maintainability

The Connection between Antipatterns and Maintainability
As for the impact of antipatterns, we selected 228 open-source Java systems, along with 45
revisions of the Firefox browser application written in C++ as our subjects for two distinct ex-
periments. In both cases, we matched 9 different, widespread antipattern types through metric
thresholds and structural relationships – with additional antipattern densities for C++ [7]. Main-
tainability calculation remained the same for the Java systems, while the evaluation of Firefox
required a C++ specific custom quality model, and we also implemented versions of the “tradi-
tional” MI metric [8]. The results of both studies confirm the detrimental effect of antipatterns.
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The trend line of the maintainability value for the Java systems – sorted in the descending order
of the antipatterns they contain – shows clear improvement, as illustrated in Figure 2. The
overall Spearman correlation coefficient between antipatterns and maintainability for Java was
-0.62.

Figure 2: The trend of maintainability in the case of decreasing antipatterns (Java)

On the other hand, the C++ analysis provided values for both absolute antipattern instances
and antipattern densities. We highlight the correlations between the overall antipatten sum and
density and our final Maintainability measure as these represent most closely the total effects of
antipatterns on maintainability. The corresponding values are -0.658 and -0.692 for Pearson, and
-0.704 and -0.678 for Spearman correlation, respectively. The full set of Spearman correlations
between the various antipattern/maintainability measure pairs is shown in Table 1.

Another interesting result is that using antipattern instances as predictors for maintainability
estimation produced models with precisions ranging from 0.76 to 0.93.

The Connection between Antipatterns and Program Faults
In addition, our Java experiment seeks to connect the presence of antipatterns to program faults
(or bugs) through the PROMISE open bug database [12]. The study of the 34 systems (from
among the 228 Java systems mentioned above) that had corresponding bug information revealed
a statistically significant Spearman correlation of 0.55 between antipattern instances and bugs.
Moreover, antipatterns yielded a precision of 67% when predicting bugs, being notably above
the 50% baseline, and only slightly below the 71.2% of more than five times as many raw static
source code metrics, – shown in Table 2 – thereby demonstrating their applicability.

The Author’s Contributions
For the research linked to design patterns, the author’s main contributions were the implementa-
tion of the pattern mining tool, calculating the relevant source code metrics, manually validating
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Method TP Rate FP Rate Precision Recall F-Measure
Antipatterns 0.658 0.342 0.670 0.658 0.653
Metrics 0.711 0.289 0.712 0.711 0.711
Both 0.712 0.288 0.712 0.712 0.712

Table 2: The results of the bug prediction experiments

the revisions that introduced patterns changes, and reviewing the related literature. On the other
hand, the entire antipattern-related research was the author’s own work including the prepara-
tion and analysis of the subject systems, implementing and extracting the relevant static source
code metrics, calculating the corresponding maintainability values, – along with overseeing the
creation of the C++ specific quality model – implementing the antipattern mining tool and ex-
tracting antipattern matches, considering program fault information, as well as conducting and
evaluating the empirical experiments. The publications related to this thesis point are:

♦ Péter Hegedűs, Dénes Bán, Rudolf Ferenc, and Tibor Gyimóthy. Myth or Reality?
Analyzing the Effect of Design Patterns on Software Maintainability. In Advanced Software
Engineering & Its Applications (ASEA 2012), Jeju Island, Korea, November 28 – December
2, pages 138–145, CCIS, Volume 340. Springer Berlin Heidelberg, 2012.

♦ Dénes Bán and Rudolf Ferenc. Recognizing Antipatterns and Analyzing their Effects on
Software Maintainability. In 14th International Conference on Computational Science and
Its Applications (ICCSA 2014), Guimarães, Portugal, June 30 – July 3, pages 337–352,
LNCS, Volume 8583. Springer International Publishing, 2014.

♦ Dénes Bán. The Connection of Antipatterns and Maintainability in Firefox. In 10th

Jubilee Conference of PhD Students in Computer Science (CSCS 2016), Szeged, Hungary,
June 27 – 29, 2016.

♦ Dénes Bán. The Connection of Antipatterns and Maintainability in Firefox. Accepted for
publication in the 2016 Special Issue of Acta Cybernetica (extended version of the CSCS
2016 paper above). 20 pages.
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II A hardware platform selection framework for perfor-
mance optimization based on static source code metrics

The contributions of this thesis point are related to software performance and an automatic
hardware platform selection methodology.

Qualitative Prediction Models
The goal of our qualitative research was to develop a highly generalizable methodology for build-
ing prediction models that are capable of automatically determining the optimal hardware plat-
form (regarding execution time, power consumption, and energy efficiency) of a given program,
using static information alone. To achieve this, we collected a number of benchmark programs
that contained algorithms implemented for each targeted platform. These benchmarks are nec-
essary for the training of the models, because executing and measuring the different versions
of their algorithms on their respective platforms is what highlights their differences in perfor-
mance. Then, we extracted several low-level source code metrics from these algorithms that
would capture their characteristics and would become the predictors of our models. We also
developed a universal solution capable of performing accurate cross-platform time, power, and
energy consumption measurements for this purpose [11]. Lastly, we applied various machine
learning techniques to build the proposed prediction models. A brief empirical validation showed
the theoretical usefulness of such models, – demonstrating perfect accuracy at times – but the
real result of this study is the methodology – shown in Figure 3 – that led to them, and could
also enable larger scale experiments. The steps of applying a model to a new subject system
(unknown to the trained model) are depicted in Figure 4.

Figure 3: The main steps of the model creation process

Quantitative Prediction Models
Building on the above-mentioned previous work, we extended our methodology to create models
that are quantitative, i.e., able to estimate expected improvement ratios instead of just the

Figure 4: Usage of a previously built model on a new subject system

6



best platform. Additional refinements included a significantly augmented set of source code
metrics, more precise metric extraction, – separating the cores of the benchmark algorithms, a.k.a.
“kernels” – adding new benchmarks, and introducing the FPGA platform as a possible target.
The improvement prediction accuracy values we achieved for the full systems and the separated
kernel regions are shown in tables 3 and 4, respectively. The three header layers represent how we
aggregated dynamic measurements, which platform we targeted, and the measured aspect (Time,
Power, Energy). As improvement ratios are continuous, they were predicted using regression
algorithms (the top six rows), as well as the previously used classification algorithms paired with
a discretization filter – using 5 bins in the middle five rows, and 3 bins in the bottom five. While
the regression models rarely proved encouraging, 94% of the classification models outperformed
either random choice or the established ZeroR baseline by at least 5% (up to 49%, at times).

Maintainability Changes of Parallelized Implementations
The benchmark source code already available to us also made it possible to look for maintainabil-
ity changes between the CPU-based original (sequential) and the accelerator hardware specific
(parallel) algorithm versions. The only other requirement was for us to compute the same source
code metrics for the parallel variants as well, as a suitable maintainability model would be reused
from a previous study [13]. The results of comparing the overall maintainability values of the two
source code variants clearly indicated that parallelized implementations had significantly lower
maintainability compared to their sequential counterparts, as shown in Table 5. This, however,
did not appear nearly as strongly in the core algorithms (kernels) themselves, – as shown in Ta-
ble 6 – which suggests that deterioration is mainly due to the added infrastructure (boilerplate
code) introduced by the accelerator specific frameworks they employ.

The Author’s Contributions
The author led the effort of collecting and preparing the benchmarks for both static analysis
and dynamic measurements. He implemented, extracted, and aggregated both the original and
the extended set of source code metrics, and he compiled the final machine learning tables. He
formalized and performed the actual experiments, and analyzed their results. The maintainability
comparison of benchmark versions and its evaluation is also the author’s work. The publications
related to this thesis point are:

♦ Dénes Bán, Rudolf Ferenc, István Siket, and Ákos Kiss. Prediction Models for Perfor-
mance, Power, and Energy Efficiency of Software Executed on Heterogeneous Hardware.
In 13th IEEE International Symposium on Parallel and Distributed Processing with Appli-
cations (IEEE ISPA-15), Helsinki, Finland, August 20 – 22, pages 178–183, IEEE Trust-
com/BigDataSE/ISPA, Volume 3. IEEE Computer Society Press, 2015.

♦ Dénes Bán, Rudolf Ferenc, István Siket, Ákos Kiss, and Tibor Gyimóthy. Prediction
Models for Performance, Power, and Energy Efficiency of Software Executed on Hetero-
geneous Hardware. Submitted to the Journal of Supercomputing, Springer Publishing
(extended version of the IEEE ISPA-15 paper above). 24 pages.
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Benchmark An
aly

sab
ility

Modi
fiab

ility

Modu
lari

ty

Reu
sab

ility

Tes
tab

ility

Main
tain

abi
lity

mri-q −0.388 −0.405 −0.448 −0.432 −0.360 −0.407
spmv −0.667 −0.685 −0.653 −0.676 −0.658 −0.668
stencil −0.225 −0.237 −0.428 −0.325 −0.199 −0.283
atax −0.338 −0.354 −0.472 −0.406 −0.298 −0.375
bicg −0.342 −0.358 −0.471 −0.412 −0.308 −0.379
conv2d −0.332 −0.346 −0.469 −0.405 −0.296 −0.370
doitgen −0.372 −0.388 −0.582 −0.476 −0.324 −0.429
gemm −0.269 −0.283 −0.435 −0.352 −0.237 −0.315
gemver −0.325 −0.343 −0.494 −0.417 −0.294 −0.375
gesummv −0.290 −0.304 −0.384 −0.343 −0.262 −0.317
jacobi2d −0.420 −0.433 −0.560 −0.491 −0.373 −0.456
mvt −0.339 −0.353 −0.444 −0.396 −0.304 −0.368
bfs −0.352 −0.367 −0.497 −0.431 −0.319 −0.393
hotspot −0.226 −0.235 −0.371 −0.308 −0.167 −0.261
lavaMD −0.271 −0.276 −0.352 −0.315 −0.244 −0.292
nn −0.429 −0.434 −0.560 −0.485 −0.364 −0.456

Table 5: Maintainability changes at the system level

Benchmark An
aly

sab
ility

Modi
fiab

ility

Modu
lari

ty

Reu
sab

ility

Tes
tab

ility

Main
tain

abi
lity

mri-q −0.234 −0.240 −0.395 −0.321 −0.225 −0.282
spmv 0.139 0.135 −0.308 −0.069 0.188 0.019
stencil 0.145 0.144 −0.617 −0.205 0.220 −0.059
atax −0.109 −0.136 −0.435 −0.283 −0.087 −0.208
bicg −0.200 −0.222 −0.449 −0.329 −0.162 −0.272
conv2d −0.065 −0.075 −0.431 −0.228 −0.002 −0.161
doitgen 0.147 0.131 −0.653 −0.228 0.226 −0.072
gemm 0.120 0.110 −0.391 −0.123 0.175 −0.019
gemver −0.161 −0.187 −0.708 −0.429 −0.119 −0.319
gesummv −0.041 −0.055 −0.341 −0.199 −0.033 −0.131
jacobi2d −0.035 −0.057 −0.691 −0.347 0.019 −0.220
mvt −0.148 −0.174 −0.443 −0.302 −0.115 −0.236
bfs 0.067 0.063 −0.408 −0.150 0.095 −0.064
hotspot −0.035 −0.041 −0.774 −0.390 0.043 −0.235
lavaMD −0.158 −0.165 −0.434 −0.303 −0.150 −0.239
nn 0.015 0.017 0.007 0.006 0.013 0.012

Table 6: Maintainability changes at the kernel level
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Summary
Our contributions can be grouped into two major thesis points.

The main results of the first thesis point are the empirical studies mentioned in Section I,
which support the intuitive expectations about the relations between well-known source code
patterns and software maintainability with objective, definite data. To our knowledge, these
findings are among the first that were performed on subject systems of such volume, size, and
variance, while also avoiding all subjective factors like developer surveys, time tracking, and
interviews.

The main results of the second thesis point are (a) the empirical proof that static source
code metrics are suitable for improvement estimation, and (b) a universal process for creating
qualitative and quantitative hardware platform prediction models, as described in Section II. A
key difference between our approach and other available solutions is that, once they are built,
our models operate based on static information alone. Also, their accuracy depends primarily on
the number of training benchmarks. These properties make the methodology easy to enhance,
and its output models easy to apply.

Table 7 summarizes the main publications and how they relate to our thesis points.

№ [10] [4] [2] [3] [5] [6]
I. ♦ ♦ ♦ ♦

II. ♦ ♦

Table 7: Thesis contributions and supporting publications

Acknowledgements
I would like to thank my supervisor, Dr. Rudolf Ferenc for his guidance and insight. He showed
me multiple times during our shared research that a bad result or a failed experiment is not
the end of a project, only a point where we should change our strategy and carry on. I would
also like to thank Dr. Péter Hegedűs for “showing me the ropes”, and Dr. István Siket for
his ideas about the application of empirical distribution functions and for just always being
available when I needed assistance with anything. My sincere thanks to Dr. Tibor Gyimóthy, the
head of the Software Engineering Department, for providing me with many interesting research
opportunities. Special thanks go to Gergely Ladányi for his invaluable advice and help regarding
quality models and data analysis, to Róbert Sipka and Péter Molnár for their tireless work on
the dynamic measurements, and to David Curley for his grammatical and stylistic comments.
Also, many thanks to my other co-authors, namely Dr. Ákos Kiss, and Gábor Gyimesi, for their
contributions.

Dénes Bán, 2017

10



References
[1] Tibor Bakota, Péter Hegedűs, Péter Körtvélyesi, Rudolf Ferenc, and Tibor Gyimóthy. A

Probabilistic Software Quality Model. In Proceedings of the 27th IEEE International Confer-
ence on Software Maintenance, ICSM 2011, pages 368–377, Williamsburg, VA, USA, 2011.
IEEE Computer Society.

[2] Dénes Bán. The connection of antipatterns and maintainability in firefox. In 10th Jubilee
Conference of PhD Students in Computer Science (CSCS 2016), Szeged, Hungary, June 27
– 29, 2016.

[3] Dénes Bán. The connection of antipatterns and maintainability in firefox. Accepted for
publication in the 2016 Special Issue of Acta Cybernetica (extended version of [2]). 20
pages.

[4] Dénes Bán and Rudolf Ferenc. Recognizing antipatterns and analyzing their effects on
software maintainability. In 14th International Conference on Computational Science and
Its Applications (ICCSA 2014), Guimarães, Portugal, June 30 – July 3, pages 337–352.
Springer International Publishing, 2014.

[5] Dénes Bán, Rudolf Ferenc, István Siket, and Ákos Kiss. Prediction models for performance,
power, and energy efficiency of software executed on heterogeneous hardware. In 13th IEEE
International Symposium on Parallel and Distributed Processing with Applications (IEEE
ISPA-15), Helsinki, Finland, August 20 – 22, volume 3, pages 178–183, 2015.

[6] Dénes Bán, Rudolf Ferenc, István Siket, Ákos Kiss, and Tibor Gyimóthy. Prediction mod-
els for performance, power, and energy efficiency of software executed on heterogeneous
hardware. Submitted to the Journal of Supercomputing (extended version of [5]). 24 pages.

[7] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and Thomas J. Mowbray.
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis. John Wiley &
Sons, Inc., New York, NY, USA, 1998.

[8] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate software system
maintainability. Computer, 27(8):44–49, Aug 1994.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns : Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Pub Co, 1995.

[10] Péter Hegedűs, Dénes Bán, Rudolf Ferenc, and Tibor Gyimóthy. Myth or reality? analyzing
the effect of design patterns on software maintainability. In Advanced Software Engineering
& Its Applications (ASEA 2012), Jeju Island, Korea, November 28 – December 2, pages
138–145. Springer Berlin Heidelberg, 2012.

[11] Ákos Kiss, Péter Molnár, and Róbert Sipka. Rmeasure performance and energy monitoring
library. https://github.com/sed-szeged/RMeasure, 2017.

[12] Tim Menzies, Bora Caglayan, Zhimin He, Ekrem Kocaguneli, Joe Krall, Fayola Peters, and
Burak Turhan. The promise repository of empirical software engineering data, June 2012.

[13] Rudolf Ferenc et al. REPARA deliverable D7.4: Maintainability models of heterogeneous
programming models. 2015.

11

https://github.com/sed-szeged/RMeasure

	Introduction
	I Empirical validation of the impact of source code patterns on software maintainability
	II A hardware platform selection framework for performance optimization based on static source code metrics
	Summary
	Acknowledgements
	References

