
Static Source Code Analysis in
Pattern Recognition,

Performance Optimization and
Software Maintainability

Dénes Bán
Department of Software Engineering

University of Szeged

Szeged, 2017

Supervisor:

Dr. Rudolf Ferenc

A THESIS SUBMITTED FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

OF THE UNIVERSITY OF SZEGED

University of Szeged
Ph.D. School in Computer Science

“Failure is not falling down but refusing to get up.”
— Chinese Proverb

Preface

When I was in kindergarten, I wanted to be an astronaut. I was so single-minded about
it that I recited the planets in order to anyone who would listen and even confronted
my teachers about my sign, which I claimed was most decidedly not a crescent roll,
but a crescent moon. In my last year there, they actually indulged me and changed
my sign. Ironically, this was around the time when I realized that it was most unlikely
that I would ever become an astronaut.

No problem, Plan B: I am going to be a “computer programmer”. I came to this
conclusion at the ripe old age of six and believed in it despite anyone calling it just
another phase. Fast forward 22 years and here I am, writing my doctoral thesis on the
subject. I think I can safely say now that a Plan C will not be necessary.

None of this, of course, would be possible without the help of a lot of people, so
acknowledgements are in order. First and foremost, I would like to thank my supervisor,
Dr. Rudolf Ferenc for his guidance and insight. He showed me multiple times during
our shared research that a bad result or a failed experiment is not the end of a project,
only a point where we should change our strategy and carry on. I aim to apply this
philosophy to other areas of my life as well. I would also like to thank Dr. Péter Hegedűs
for “showing me the ropes”, and Dr. István Siket for his ideas about the application
of empirical distribution functions and for just always being available when I needed
assistance with anything. My sincere thanks to Dr. Tibor Gyimóthy, the head of the
Software Engineering Department, for providing me with many interesting research
opportunities. Special thanks go to Gergely Ladányi for his invaluable advice and help
regarding quality models and data analysis, to Róbert Sipka and Péter Molnár for their
tireless work on the dynamic measurements, and to David Curley for his grammatical
and stylistic comments. Also, many thanks to my other co-authors, namely Dr. Ákos
Kiss, and Gábor Gyimesi, for their contributions.

Last, but certainly not least, I wish to express my gratitude to my amazing wife,
Edina, for her constant support and encouragement.

Dénes Bán, 2017

iii

Contents

Preface iii

1 Introduction 1

2 Background 3
2.1 Static Source Code Analysis . 3
2.2 Empirical Cumulative Distribution Functions 4
2.3 Quality Models . 5
2.4 Statistical Analysis and Machine Learning 7

2.4.1 Correlations . 7
2.4.2 Regression Techniques . 7
2.4.3 Classification Techniques . 8
2.4.4 Validation of the Models . 8

I Source Code Patterns 9

3 The Connection between Design Patterns and Maintainability 11
3.1 Overview . 11
3.2 Related Work . 12
3.3 Methodology . 13
3.4 Results . 14
3.5 Threats to Validity . 15
3.6 Summary . 16

4 The Connection between Antipatterns and Maintainability in Java 19
4.1 Overview . 19
4.2 Related Work . 20
4.3 Methodology . 22

4.3.1 Metric Definitions . 22
4.3.2 Mining Antipatterns . 24
4.3.3 Maintainability Model . 25
4.3.4 PROMISE . 26
4.3.5 Machine Learning . 26

4.4 Results . 26
4.5 Threats to Validity . 29
4.6 Summary . 31

v

5 The Connection between Antipatterns and Maintainability in C++ 33
5.1 Overview . 33
5.2 Methodology . 34

5.2.1 Static Analysis . 34
5.2.2 Metric Definitions . 35
5.2.3 Metric Normalization . 37
5.2.4 Antipatterns . 37
5.2.5 Maintainability Models . 37

5.3 Results . 38
5.3.1 Correlation Results . 39
5.3.2 Machine Learning Results . 39
5.3.3 Lessons Learned . 39

5.4 Threats to Validity . 42
5.5 Summary . 43

II Performance Optimization 45

6 Qualitative Prediction Models 47
6.1 Overview . 47
6.2 Related Work . 48
6.3 Methodology . 48
6.4 Benchmarks . 50
6.5 Measurements . 50

6.5.1 Measurement Methods . 50
6.5.2 The RMeasure Library . 51
6.5.3 Measurement Precision . 52

6.6 Metric Extraction . 52
6.6.1 Static Analysis . 53
6.6.2 Metric Definitions . 53
6.6.3 Metric Aggregation . 54
6.6.4 Configuration Selection . 55

6.7 Results . 56
6.7.1 Machine Learning . 56
6.7.2 Validation of the Models . 56

6.8 Summary . 58

7 Quantitative Prediction Models 59
7.1 Overview . 59
7.2 Methodology . 60
7.3 Benchmarks . 60
7.4 Metric Extraction . 61

7.4.1 Static Analysis . 61
7.4.2 Metric Definitions . 61
7.4.3 Metric Aggregation . 63

7.5 Results . 63
7.5.1 Training Instances . 64
7.5.2 Machine Learning . 64
7.5.3 Validation of the Models . 65

vi

7.6 Summary . 70

8 Maintainability Changes of Parallelized Implementations 71
8.1 Overview . 71
8.2 Related Work . 71
8.3 Methodology . 72

8.3.1 Tagging . 72
8.3.2 Maintainability Evaluation . 72

8.4 Results . 74
8.5 Summary . 75

9 Conclusions 77

Appendices 79

A Summary in English 81

B Magyar nyelvű összefoglaló 87

Bibliography 93

vii

List of Tables

3.1 Basic properties of the JHotDraw 7 system 14
3.2 Quality attribute tendencies in the case of design pattern changes . . . 15

4.1 Default antipattern thresholds . 25
4.2 The system level metrics of the 34 Java systems 27
4.3 Part of the compiled class level dataset 30
4.4 The results of the machine learning experiments 31

5.1 The results of the subcharacteristic votes 38
5.2 The results of the Maintainability votes 38
5.3 Pearson correlations between antipatterns and maintainability 40
5.4 Spearman correlations between antipatterns and maintainability 41
5.5 Correlation coefficients of the machine learning models 42

6.1 Training instances from the Parboil suite 55
6.2 Training instances from the Rodinia suite 55
6.3 Clear separation of the Parboil benchmark suite by the NOI metric . . 57
6.4 Clear separation of the Rodinia benchmark suite by the NII metric . . 57
6.5 The Bayes/SMO confusion matrix for Parboil 58
6.6 The SMO confusion matrix for Rodinia 58

7.1 Training instances with Kernel-Single-GPU-Time improvement ratios . 65
7.2 Full prediction accuracies . 67
7.3 Kernel prediction accuracies . 67
7.4 Initialization/cleanup prediction accuracies 68
7.5 Data transfer prediction accuracies . 68

8.1 The results of the original subcharacterictic votes 73
8.2 The results of the original Maintainability votes 73
8.3 Maintainability changes at the system level 74
8.4 Maintainability changes at the kernel level 75

A.1 Thesis contributions and supporting publications 85

B.1. A tézispontokhoz kapcsolódó publikációk 91

ix

List of Figures

2.1 General static source code analysis workflow 4
2.2 Empirical cumulative distribution function 5
2.3 ISO/IEC 25010 software quality characteristics 6

3.1 The tendencies of pattern line density and maintainability 16

4.1 The quality model used to calculate maintainability 26
4.2 The trend of maintainability in the case of decreasing antipatterns . . . 28

5.1 The methodology step sequence . 34

6.1 The main steps of the model creation process 49
6.2 Usage of a previously built model on a new subject system 49
6.3 RMeasure library overview . 53
6.4 The final J48 decision trees for Parboil (left) and Rodinia (right) 57

Listings

3.1 Design pattern javadoc comment . 14

5.1 The filter file for the analysis . 35

6.1 Machine learning Weka script . 56

xi

To my wife,
who “put me through school”...

“Research is what I’m doing when I don’t know
what I’m doing.”

— Wernher von Braun

1
Introduction

Software rules the world.

As true as this statement already was decades ago, it rings even truer now. When
the proportion of the U.S. population using any kind of embedded system – including
phones, cameras, watches, entertainment devices, etc. – went from its 2011 estimate
of 65% to 95% by 2017 purely through phone ownership [43, 70]. When we are at a
point where we can even talk about “smart cities”, let alone build them [5]. When –
according to Cisco [15] – connected devices have been outnumbering the population of
Earth by a ratio of at least 1.5 since 2015.

This is just exacerbated by the host of embedded systems most people never even
consider. An everyday routine contains household appliances like microwave ovens and
refrigerators, heating or cooling our spaces, starting or stopping our vehicles; the list
goes on. A modern life in this era involves countless hidden, invisible processors, along
with the visible ones we have all got so used to. And we have not even mentioned
critical applications like flight guidance, keeping patients alive and well in hospitals, or
operating nuclear power plants.

All of those need software to run. And all that software needs to be written by
someone. There is no question about either the growth of the software industry or the
significant acceleration of said growth. The only question is whether or not we can
actually keep up [31].

Having established the importance of software development, we can focus on ar-
guably the two most important factors for its success: maintainability and performance.
Software systems spend the majority of their lifetime in the maintenance phase, which,
on average, can account for 60% of the total costs. Of course, maintaining a codebase
does not only mean finding and fixing program faults, as enhancements and constantly
changing requirements are far more common [32]. This means that for an efficient
maintenance life cycle, a software product has to be quickly analysable, modifiable and
testable – among other characteristics.

Just as critical is the issue of software performance and energy efficiency. A software
product that fails to meet its performance objectives can be costly by causing schedule

1

Chapter 1. Introduction

delays, cost overruns, lost productivity, damaged customer relations, missed market
windows, lost revenues, and a host of other difficulties [83]. Not to mention that the
great amounts of energy consumed by large-scale computing and network systems, such
as data centers and supercomputers, have been a major source of concern in a society
increasingly reliant on information technology [67].

There are, however, many obstacles in the way of clean, maintainable and high-
performance software. Time constraints of the ever-expanding market often make it
appear infeasible to consider design best practices when these considerations would
push back release times. Similarly, haste and an unwillingness to put in extra effort
in advance is what seems to lead to antipatterns and code duplications, harming qual-
ity in the long run. Also, inadequate accessibility, tools, and developer support could
significantly hinder the full utilization of today’s performance optimization opportuni-
ties, such as specialized hardware platforms (e.g., GPGPU, DSP, or FPGA) and their
corresponding compilers.

Our work aims to assist in both of these areas. Our goals are to:

• draw attention to the importance of the maintenance phase, and illustrate its
assets and risks by highlighting the objective, tangible effect design patterns and
antipatterns can have on software maintainability; and

• help developers more easily utilize modern accelerator hardware and increase per-
formance by creating an easily usable and extendable methodology for building
static platform selection models.

The structure of the thesis follows the same separation and – after a concise overview
of the necessary background information in Chapter 2 – dedicates a part for each of
these goals.

Part One deals with software maintainability. In Chapter 3, we discuss the con-
nections between design patterns and maintainability. Next, in chapters 4 and 5 we
explore the relationships between antipatterns and maintainability from the perspec-
tives of Java and C++. Moreover, in Chapter 4 we also consider the association between
antipatterns and program faults.

Part Two deals with software performance. In Chapter 6, we introduce our method-
ology for building prediction models that can select the best suited hardware platform
for a given algorithm. In Chapter 7, we build on this methodology by also estimating
how much improvement we can expect once we switch to this platform. Furthermore,
in Chapter 8 we examine the maintainability changes caused by source code paral-
lelization.

In Chapter 9, we conclude our discussion and outline possible directions for future
work in this area. In addition, we present brief summaries of the thesis in English and
Hungarian, which contain the concrete thesis points as well as the author’s contribu-
tions and supporting publications in appendices A and B, respectively.

2

“Success depends upon previous preparation,
and without such preparation there is sure to
be failure.”

— Confucius

2
Background

Before diving into the main results of the thesis, there are a few foundational topics
worth reviewing as these form the basis of all future discussion. Static source code
analysis is the technique providing us with source code metrics and other structural
relationship information which, in turn, lead to design pattern and antipattern candi-
dates. Assessing the impact these source code patterns have on maintainability also
requires that we be able to objectively measure said maintainability. Such a measure-
ment is similarly important when trying to compare the maintainability of two different
versions of the same algorithm. This is where software quality models can help – some
of which also warrant an abstract understanding of empirical cumulative distribution
functions. Lastly, finding connections between datasets is the domain of statistics and
machine learning.

2.1 Static Source Code Analysis
Static analysis is the (automated) examination of a program performed without execu-
tion. It can be based on already compiled binaries or, as in our case, the “raw” source
code of the subject system. Its goal is generally calculating metrics, highlighting rule
violations, generating intermediate representations, facilitating automatic refactorings,
etc. The following paragraphs outline the specific steps we used to calculate source
code metrics.

First, we converted the source code – through a language specific format and a link-
ing stage – to the LIM model (Language Independent Model), a part of the SourceMe-
ter framework [26]. It represents the information obtained from the static analysis in
a more abstract, graph-like format. It has different types of nodes that correspond to,
e.g., classes, methods, and attributes, while different edges represent the connections
among these.

From this data, our metric calculator tool can compute various kinds of source
code metrics – e.g., logical lines of code or number of statements in the size category,
comment lines of code or API documentation in the documentation category, and also
different complexity, cohesion, and inheritance metrics. Note that the actual metrics

3

Chapter 2. Background

we extracted can change from use case to use case, and from language to language,
so the exact list of metrics and their – possibly context dependent – definitions will
always appear in their corresponding chapters.

As these values are not a part of the LIM model, the output is pinned to an
even more abstract graph – fittingly named “graph”. This format literally only has
“Nodes” and “Edges”, but nodes can have dynamically attached and dynamically typed
attributes. Since the LIM model is strict – i.e., it can only have statically typed
attributes defined in advance – the “graph” format is more suitable as a target for the
results of metrics, pattern matches, etc.

Figure 2.1. General static source code analysis workflow

2.2 Empirical Cumulative Distribution Functions
The metrics we calculate using static source code analysis may be viewed as complete
from the perspective of the subject systems, but they cannot be related. They are, in
a sense, absolute metric values and we have no way to tell, for instance, what a metric
A with a value of x and another metric B with a value of y mean compared to each
other. For this reason, it is desirable to normalize each metric value to the [0, 1] interval
using a benchmark of similar metrics and empirical cumulative distribution functions
(or ECDFs) [89]. This method produces relative numeric values which indicate the
ratio of how many of the available data points are smaller than a certain metric. These
values are relative because they depend on the context they were evaluated in.

Let (v1, v2, . . . , vn) be independent and identically distributed random variables
with a common distribution function. The empirical distribution function is F̂ (x) =
1
n

∑n
i=1 I(vi ≤ x), where I is the indicator function; namely, I(vi ≤ x) = 1 if vi ≤ x and

0 otherwise. For example, the empirical distribution function of variables 1, 1, 1, 1, 2,
2, 4, 4, 5, 5, 6, 6, 8, 9, 13, and 15 can be seen in Figure 2.2.

ECDFs have many advantages in this domain:

• For each given metric, an F̂ (x) ECDF can be calculated objectively.

4

Chapter 2. Background

Figure 2.2. Empirical cumulative distribution function

• ECDFs transform metric values into the [0, 1] interval.

• ECDFs can transform “unseen” values as well (i.e., values that are not in the
sample).

Note that following the original definition, the normalized metrics will be greater
for greater absolute inputs and smaller for smaller ones. If, however, an examined
metric is “the smaller the better”, we can invert this relation to facilitate a simpler
mental model.

2.3 Quality Models
Trying to quantify complex software systems with a single maintainability index is not
a new idea. Peercy [69] attempted to characterize subject systems using questionnaires
as early as 1981. This, however, was a manual and mostly subjective effort.

Automatic source code analysis and metric extraction later led to metric-based
maintainability models. One of the earlier – and more well-known – ones is the Main-
tainability Index metric (MI) published by Coleman et al. [21], which is a predefined
formula that uses specific source code metrics to provide its result.

With the publication of the ISO/IEC 9126 framework [40], the expected structure
and aspects of quality (and maintainability) models were more formally defined. It
prescribes how to perform a weighted aggregation of objective, low-level source code
characteristics so it can obtain increasingly abstract values, thereby providing a high-
level overview of the whole system. This aggregation is simply visualized by a graph
whose leaf nodes are the source code metrics and the most abstract characteristic (in
our case, the maintainability) is the root node.

An example of this approach in practice is given by Antonellis et al. [4]. They use
expert opinion-based graph weighting, achieved by using a technique called Analytical
Hierarchical Processing. They conclude that this method helps domain experts to find
connections between individual metrics and global maintainability as well as identify
problematic areas.

5

Chapter 2. Background

Another example of the ISO/IEC 9126 framework in action is the probabilistic
quality model published by Bakota et al. [9]. It also aggregates low-level metrics to
arrive at the more abstract maintainability, but instead of concrete “goodness values”,
it makes use of “goodness functions”, and the leaf nodes of the dependency graph
are treated as random variables. These goodness functions are built by analyzing a
benchmark containing over 100 subject systems.

ISO/IEC 25010 [41] – a successor to ISO/IEC 9126 – contains the definition of the
main software characteristics and defines which subcharacteristics influence the given
main quality characteristics, as shown in Figure 2.3.

Figure 2.3. ISO/IEC 25010 software quality characteristics

As this thesis is concerned with maintainability, we present only its definition and
the definitions of its subcharacteristics as they are given in the standard:

• Maintainability: This characteristic represents the degree of effectiveness and
efficiency with which a product or system can be modified to improve it, correct
it or adapt it to changes in environment, and in requirements.

• Analysability: Degree of effectiveness and efficiency with which it is possible to
assess the impact on a product or system of an intended change to one or more
of its parts, or to diagnose a product for deficiencies or causes of failures, or to
identify parts to be modified.

• Modifiability: Degree to which a product or system can be effectively and effi-
ciently modified without introducing defects or degrading existing product qual-
ity.

• Modularity: Degree to which a system or computer program is composed of
discrete components such that a change to one component has minimal impact
on other components.

• Reusability: Degree to which an asset can be used in more than one system, or
in building other assets.

6

Chapter 2. Background

• Testability: Degree of effectiveness and efficiency with which test criteria can be
established for a system, product or component and tests can be performed to
determine whether those criteria have been met.

Additionally, we would like to mention Stability and Changeability. They were
subcharacteristics in the ISO/IEC 9126 document which is still the basis of our earlier
experiments in Chapter 3. They also appear as manually added intermediate nodes in
a later quality model – already based on ISO/IEC 25010 – in Chapter 4.

Most of the software quality models used in this thesis build on the quality charac-
teristics defined by these standards. The computation of the high-level quality charac-
teristics is based on a directed acyclic graph whose nodes correspond to quality prop-
erties that can either be internal (low-level) or external (high-level). Internal quality
properties characterize the software product from an internal (developer) view and are
usually estimated by using source code metrics. External quality properties character-
ize the software product from an external (end user) view and are usually aggregated
somehow by using internal and other external quality properties. The edges of the
graph represent dependencies between an internal and an external, or two external
properties. The aim is to evaluate all the external quality properties by performing an
aggregation along the edges of the graph, called Attribute Dependency Graph (ADG).

The structure of the graph or the aggregation weights of the edges can all be cus-
tomized for different scenarios. Even the base metrics can be changed, or transformed
before the aggregation – e.g., by ECDFs, or the above-mentioned probabilistic “good-
ness functions”.

2.4 Statistical Analysis and Machine Learning
2.4.1 Correlations
A commonly used test to find a (linear) connection between two sets of data is Pearson’s
correlation coefficient. It shows a measure of how well the two sets are related, where
1 means linear correspondence, -1 is an exact inverse relationship, and 0 expresses no
linear connection whatsoever.

If we do not expect the relationship between the inspected values to be linear, –
only monotone – we may use the Spearman correlation coefficient instead. Spearman
correlation is, in fact, a “traditional” Pearson correlation, only it is carried out on the
ordered ranks of the values, not the values themselves. This shows how much the two
datasets “move together.” The extent of this matching movement is somewhat masked
by the ranking, – which can be viewed as a kind of data loss – but it is applicable, e.g.,
when we are more interested in the existence of a relationship than its type.

For pairwise correlations on multiple variables, we used IBM SPSS [22].

2.4.2 Regression Techniques
Regression analysis is a statistical process for estimating the relationships among vari-
ables. It seeks to predict how the typical value of the dependent variable changes when
any one of the independent variables change. It achieves this by providing an esti-
mate for the dependent variable from a continuous interval. The typical performance
measures of these estimations are:

7

Chapter 2. Background

• Pearson’s correlation coefficient – how well the predicted values follow the ten-
dency of the real value of the dependent variable.

• Mean absolute error – a quantity used to measure how close predictions are to
the eventual outcomes.

The following regression types are used in various parts of this thesis: Linear regres-
sion [44], Multilayer perceptron [14], Reduced error pruning tree [24], M5P tree [93],
and Sequential minimal optimization regression [82].

2.4.3 Classification Techniques
Classification is the process of identifying to which of a set of categories a new obser-
vation belongs. This identification is done based on a training set of data containing
observations whose category membership is already known. The result is the category
of the instances (instead of a continuous number, as with regression). Note that a
good regression model (with a high correlation and a low mean absolute error) is much
harder to build than a “simple” classification with a predetermined number of class
labels.

The typical performance measures of these categorizations are:

• Correctly classified instances – the ratio of the correctly categorized instances.

• Confusion matrix – a matrix where each column represents the instances in a
predicted class, while each row represents the instances in an actual class. The
name stems from the fact that it makes it easy to see if the system is confusing
two classes.

The following classification algorithms are used in various parts of this thesis: J48
decision tree [77], Naive Bayes classifier [42], Logistic regression [52], and Sequential
minimal optimization function [73].

2.4.4 Validation of the Models
The models mentioned in future chapters – unless otherwise stated – were validated
with a 10-fold cross-validation [6]. In a 10-fold cross-validation process, the original
dataset is randomly partitioned into 10 subsamples, possibly equal in size. Out of the
10 subsamples, 1 subsample is retained as the validation data for testing the model,
and the other 9 subsamples are used as training data. The cross-validation process
is then repeated 10 times (the number of folds), with each of the 10 subsamples used
exactly once as the validation data. The results from the folds are then averaged to
produce a single estimate.

The machine learning experiments were all performed with Weka [34].

8

Part I

Source Code Patterns

“Beauty is the ultimate defence against complexity.”
— David Gelernter

3
The Connection between Design Patterns

and Maintainability

3.1 Overview
Since their introduction by Gamma et al. [30], there has been a growing interest in the
use of design patterns. Object-Oriented (OO) design patterns represent well-known
solutions to common design problems in a given context. The common belief is that
applying design patterns results in a better OO design, therefore they improve software
quality as well [30, 90].

However, there is little empirical evidence that design patterns really improve code
quality. Moreover, some studies suggest that the use of design patterns does not nec-
essarily result in good design [62, 95]. The problem with empirical validation is that it
is very hard to assess the effect of design patterns on high-level quality characteristics,
e.g., maintainability, reusability, understandability, etc. There are some approaches
that manually evaluate the impact of certain design patterns on different quality at-
tributes [46].

We also try to reveal the connection between design patterns and software quality
but we focus on the maintainability of the source code. As many concrete maintain-
ability models exist, (e.g., [9, 35, 13]) we could choose a more direct approach for the
empirical evaluation. To get an absolute measure for the maintainability of a system,
we used our probabilistic quality model [9]. Our subject system was JHotDraw 7, a
Java GUI framework for technical and structured graphics1. Its design relies heavily
on some well-known design patterns. Instead of using different design pattern mining
tools, we parsed the javadoc entries of the system directly to get all the applied design
patterns. We analyzed more than 300 revisions of JHotDraw, calculated the maintain-
ability values and mined the design pattern instances. We gathered this empirical data
with the following research questions in mind:

1http://www.jhotdraw.org/

11

http://www.jhotdraw.org/

Chapter 3. The Connection between Design Patterns and Maintainability

Research Question 1: Is there a traceable impact of the application of design
patterns on software maintainability?

Research Question 2: What kind of relation exists between the density of design
patterns and the maintainability of the software?

We achieved some promising results showing that applying design patterns improves
the different quality attributes according to our maintainability model. In addition,
the ratio of the source code lines taking part in some design patterns in the system
has a very high correlation with the overall maintainability in the case of JHotDraw.
However, these results are only a small step towards the empirical analysis of design
patterns and software quality.

The rest of this chapter is structured as follows. In Section 3.2, we highlight the
related work, then in Section 3.3 we present our approach for analyzing the relationship
between design patterns and maintainability. Section 3.4 summarizes the empirical
results we achieved. Next, Section 3.5 lists the possible threats to the validity of our
work. Lastly, we draw our conclusions in Section 3.6.

3.2 Related Work
Although the concept of utilizing design patterns in order to create better quality
software is fairly widespread, there is relatively little research that would objectively
demonstrate that their usage is indeed beneficial.

Since design patterns and software metrics are both geared towards the same goal,
– improving quality – Huston [38] attempted to prove their correlation by representing
the system’s classes in connection matrices and defining algorithms for applying pat-
terns and evaluating metrics. This approach shows promising results but it is purely
theoretical.

In an empirical study, – replicated twice, in 2004 [92] and in 2011 [50] – Prechelt
et al. [75] gave groups identical maintenance tasks to perform on two different versions
– with and without design patterns – of four programs. Here, the impact on main-
tainability was measured by completion time and correctness, while we use objective
quality metrics and analyze a more complex software system.

In another case study, Vokáč [91] measured the defect frequency of pattern classes
versus other classes in an industrial C++ source code for three years and concluded
that some patterns – Singleton, Observer – tend to indicate more complex parts than
others, e.g., Factory. However, the pattern mining method could have introduced false
positives or true negatives, and the defects were also based on subjective reports. In
contrast, we rely on the official pattern documentation of the source code and the
quality model published in [9].

Khomh and Guéhéneuc [46] used questionnaires to collect the opinions of 20 ex-
perts on how each design pattern helps or hinders them during maintenance. They
found evidence that design patterns should be used with caution during development
because they may actually impede maintenance and evolution. Another experiment,
conducted by Ng et al. [65], decomposed maintenance tasks to subtasks and examined
the frequency of their use according to the deployed design patterns and whether these
patterns were utilized during the change. They statistically concluded that performing
whichever task while taking existing patterns into consideration yields less faulty code.

Trying to evaluate the effectiveness of patterns in software evolution, Hsueh et

12

Chapter 3. The Connection between Design Patterns and Maintainability

al. [37] defined both their context and their anticipated changes and then later checked
whether they met the expectations. Their conclusion was that although design pat-
terns can be misused, they are effective to some degree in either short or long term
maintenance. Aversano et al. [8] also investigated pattern evolution by tracking their
modifications and how many other, possibly unrelated modifications they caused. In
this study, we do not use questionnaires or evaluate design patterns manually, but
rather measure their impact on maintainability directly. Moreover, we focus on their
impact on the maintainability of the system as a whole, not only on the evolution of
the code implementing design patterns.

In more loosely related research, Prechelt et al. [76] showed that explicit pattern
documentation in itself can further help maintenance, and Brito e Abreu and Melo [17]
demonstrated the positive effects of object oriented design in general.

3.3 Methodology
To analyze the relationship between design patterns and maintainability, we calculated
the following measures for every revision in JHotDraw:

• Mr – an absolute measure of maintainability for the revision r of the system
(computed by our probabilistic quality model [9]).

• TLLOC – the total number of logical lines of code in the system (computed by
the SourceMeter tool [26]).

• TNCL – the total number of classes in the system.

• PInr – the number of pattern instances in revision r of the system.

• PClr – the number of classes that play a role in any pattern instances within
revision r of the system.

• PLnr – the total number of logical lines of the classes that play a role in any
pattern instances within revision r of the system.

• PDensr – the pattern line density of the system, defined as the ratio P Lnr

T LLOC
.

For assessing the maintainability of JHotDraw, we used the node aggregation
method mentioned in Section 2.3 with the particular ADG presented in [9].

As for the design pattern related information, instead of applying one of the more
general purpose miner tools, (e.g., [23, 94]) we used a more direct approach for extract-
ing pattern instances from different JHotDraw versions. Since every design pattern
instance is documented in JHotDraw 7, we could easily build a text parser application
to collect all the patterns. This method guarantees that no false positive instances are
included and no true negative instances are left out from the empirical analysis. A
sample of the design pattern javadoc documentation can be seen in Listing 3.1.

The text parser processed the two types of pattern comments that appeared in
the source code – the listing below displaying one of them. Then, – using regular
expressions – it obtained the names of the patterns and a list of the participants. This
list contained the names of both the roles and the classes that fit them. Next, all
fully qualified name references were trimmed, – e.g., foo.Bar became Bar – the lists

13

Chapter 3. The Connection between Design Patterns and Maintainability

Listing 3.1. Design pattern javadoc comment
/**
...

* Design Patterns

*
* <p>Strategy

* The different behavior states of the selection tool are implemented by

* trackers. Context: {@link SelectionTool}; State: {@link DragTracker},

* {@link HandleTracker}, {@link SelectAreaTracker}.
...

**/

were alphabetically ordered, converted to a unique string and added to a set in order
to avoid pattern instance duplication even if a pattern was documented in more than
one of its participants’ codes. Lastly, we ran the parser on all relevant revisions of
JHotDraw 7 to track the changes.

3.4 Results
We analyzed all 779 revisions of the JHotDraw 7 subversion branch2 and calculated
the measures introduced in Section 3.3. The documentation of design patterns is
introduced in revision 522, therefore the empirical evaluation has been performed on
258 revisions (between revisions 522 and 779). Some basic properties of the starting
and ending revisions of the JHotDraw system can be seen in Table 3.1.

Revision Lines of
code

№ of
packages

№ of
classes

№ of
methods P Inr

P Clr

T NCL

522 72,472 54 630 6117 45 11.58%
779 81,686 70 685 6573 54 13.28%

Table 3.1. Basic properties of the JHotDraw 7 system

To be able to answer our first research question, we analyzed those particular
revisions where the number of design pattern instances had changed. After filtering
out the changes that did not introduce or remove real pattern instances, (e.g., com-
ments were added to an already existing pattern instance) five revisions remained. We
also confirmed that these change sets did not contain a lot of miscellaneous source
code unrelated to patterns, as it is an important prerequisite for being able to clearly
distinguish the effect of design pattern changes on maintainability. In all five cases,
more than 90% of the code changes were related to the pattern implementations. The
tendency of different quality attributes in these revisions can be seen in Table 3.2.

In four out of five cases, there was growth in the pattern instance numbers. In
all of those four cases, every ISO/IEC 9126 quality characteristic (including the main-
tainability) increased compared to the previous revision. This is true even for revision
716, where the pattern line ratio decreased despite the addition of a design pattern.
In the case of revision 609, a Framework pattern had been removed but the quality

2https://jhotdraw.svn.sourceforge.net/svnroot/jhotdraw/trunk/jhotdraw7/

14

Chapter 3. The Connection between Design Patterns and Maintainability

Rev
isio

n (r)

Pat
tern

Ch
ang

es

Pat
tern

Lin
e D

ens
ity

(PD
en
sr)

Main
tain

abi
lity

(Mr)

Tes
tab

ility

An
aly

sab
ility

Sta
bili

ty

Ch
ang

eab
ility

531 +3 ↗ ↗ ↗ ↗ ↗ ↗
574 +1 ↗ ↗ ↗ ↗ ↗ ↗
609 −1 ↘ — — — — —
716 +1 ↘ ↗ ↗ ↗ ↗ ↗
758 +1 ↗ ↗ ↗ ↗ ↗ ↗

Table 3.2. Quality attribute tendencies in the case of design pattern changes

characteristics remained unchanged. This is not so surprising since this pattern (which
is not part of the GoF patterns [30]) consists of a simple interface alone. Therefore, its
removal did not have any effect on the low-level source code metrics our maintainability
model is based on.

As a previous work from Bakota et al. [10] shows, a system’s maintainability does
not improve during development without applying explicit refactorings. Therefore, the
application of design patterns can be seen as applying refactorings to the source code.
These results support the hypothesis that design patterns do have a traceable impact
on maintainability. In addition, our empirical analysis on JHotDraw indicates that this
impact is positive.

To shed light on the relationship between design pattern density and maintainability
for our second research question, we performed a correlation analysis on pattern
line density (PDensr) and maintainability (Mr). We chose pattern line density instead
of pattern instance or pattern class density because it is the finest grained measure
showing the amount of source code related to any pattern instances. Figure 3.1 depicts
the tendencies of pattern line density and maintainability.

It is clearly visible that the two curves have a similar shape, meaning that they
move closely together. The Pearson correlation analysis of the entire dataset (from
revision 522 to 779) shows the same result, the pattern line density and maintainability
have a correlation coefficient of 0.89. This result may indicate that there is a strong
relation between the rate of design patterns in the source code and the maintainability.
However, this is still an assumption and we cannot generalize these results without
performing a large number of additional empirical evaluations.

3.5 Threats to Validity
Like most works, our approach also has some threats to its validity. First of all, when
dealing with design patterns, the accuracy of mining is always in question. As there
are no provably perfect pattern miner tools, we chose our subject system to be a special
one, having all design pattern instances thoroughly documented by its authors. This
way we can be sure that all (intentionally placed) design patterns are recognized and no
false positive instances are introduced. Of course, it is still possible that some pattern

15

Chapter 3. The Connection between Design Patterns and Maintainability

Figure 3.1. The tendencies of pattern line density and maintainability

comments are missing or our text parser introduces false instances. We reduced this
effect by manually inspecting the results of our text parser as well as the source code
of JHotDraw.

Another threat to validity is using our chosen, previously published quality model
for calculating maintainability values. Although it has gone through some empirical
validation in a previous work, we cannot state that the maintainability model we used
is fully validated. Moreover, as the ISO/IEC 9126 standard does not define the low-
level metrics, the results may vary depending on the quality model’s settings (e.g., the
chosen metrics and weights given by professionals). These factors are all possible risks,
but our first results and continuous empirical validation of the maintainability model
demonstrate its applicability and usefulness.

Lastly, the small number of design pattern changes and the fact that less than
300 revisions of a single system have been evaluated threatens the generalizability of
our results. It might also be possible that the explored relationship between design
patterns and maintainability is just a byproduct of other factors. Our analysis is only
a first step towards the empirical validation of this relation. Nonetheless, these first
results are already valuable and support the common belief that design patterns do
have a positive impact on maintainability.

3.6 Summary
In this chapter, we presented an empirical study of the connection between design
patterns and software maintainability. We analyzed nearly 300 revisions of JHotDraw
7, calculated the maintainability values with a probabilistic quality model, and mined
the design pattern instances by parsing the comments in its source code. Examining
the maintainability values where changes occurred in the number of pattern instances,
and by correlation analysis of the design pattern density and maintainability values,
we were able to draw some conclusions.

16

Chapter 3. The Connection between Design Patterns and Maintainability

Every ISO/IEC 9126 quality characteristic (including maintainability) increased
along with the number of pattern instances. The amount of other, unrelated source
code elements involved in these changes were negligible, which indicates that the qual-
ity attributes increased due to the introduced patterns. Hence, we could observe a
traceable positive impact of design patterns on the maintainability of the subject sys-
tem.

Another interesting result is that the pattern line density and maintainability values
have a very similar tendency. The Pearson correlation analysis of the datasets showed
that there is a strong relation between the rate of design patterns in the source code and
its maintainability. These observations reinforce the common assumption that using
design patterns improves the maintainability of the source code. However, these results
should be handled with caution. We analyzed only one system and a relatively few
number of pattern instance changes. We are far from drawing general conclusions based
on these findings; our work should be considered as a first step towards the empirical
validation of the relationship between design patterns and software maintainability.

17

“Should array indices start at 0 or 1? My com-
promise of 0.5 was rejected without, I thought,
proper consideration.”

— Stan Kelly-Bootle

4
The Connection between Antipatterns and

Maintainability in Java

4.1 Overview
Antipatterns can be most simply thought of as the opposites of the more well-known
design patterns [30]. While design patterns represent “best practice” solutions to com-
mon design problems in a given context, antipatterns describe a commonly occurring
solution to a problem that generates decidedly negative consequences [19]. Also an im-
portant distinction is that antipatterns have a refactoring solution to the represented
problem, which preserves the behavior of the code, but improves some of its internal
qualities [28]. The widespread belief is that the more antipatterns a software contains,
the worse its quality is.

Some research even suggests that antipatterns are symptoms of more abstract de-
sign flaws [88, 54]. However, there is little empirical evidence that antipatterns really
decrease code quality.

We seek to reveal the effect of antipatterns by investigating their impact on main-
tainability and their connection to bugs. For the purpose of quality assessment, we
again chose a probabilistic quality model [9], which ultimately produces one number
per system describing how “good” that system is. The antipattern-related information
came from our own, structural analysis based extractor tool using source code metrics
computed by the SourceMeter reverse engineering framework [26]. We compiled the
data described above for a total of 228 open-source Java systems, 34 of which had
corresponding class level bug numbers from the open-access PROMISE [63] database.
With all this information, we try to answer the following questions:

Research Question 1: What kind of relation exists between antipatterns and the
number of known bugs?

Research Question 2: What kind of relation exists between antipatterns and the
maintainability of the software?

Research Question 3: Can antipatterns be used to predict future software faults?

19

Chapter 4. The Connection between Antipatterns and Maintainability in Java

We obtained some promising results showing that antipatterns indeed negatively
correlate with maintainability, according to our quality model. Moreover, antipatterns
correlate positively with the number of known bugs, and also seem to be good attributes
for bug prediction. However, these results are only a small step towards the empirical
validation of this subject.

The rest of the chapter is structured as follows. In Section 4.2, we highlight the
related work. Then, in Section 4.3 we present our approach for extracting antipatterns
and analyzing their relationship with bugs and maintainability. Next, Section 4.4
summarizes the results we achieved, while Section 4.5 lists the possible threats to the
validity of our work. Lastly, we conclude the chapter in Section 4.6.

4.2 Related Work
Antipattern Detection The most closely related research to our current work was
done by Marinescu. In his publication in 2001 [60], he emphasized that the search
for given types of flaws should be systematic, repeatable, scalable, and language-
independent. First, he defined a unified format for describing antipatterns, and then a
methodology for evaluating those. He showed this method in action using the GodClass
and DataClass antipatterns and argued that it could be similarly done for any other
pattern. To automate this process, he used his own TableGen software to analyze C++

source code, – analogous to the SourceMeter tool in our case – save its output to a
database, and extract information using standard queries.

In one of his works from 2004 [61], he was more concerned with automation and
made declaring new antipatterns easier with “detection strategies.” In these, one can
define different filters for source metrics – limit or interval, absolute or relative – even
with statistical methods that set the appropriate value by analyzing all values first and
computing their average, mean, etc., to find outliers. Finally, these intermediate result
sets can be joined by standard set operations like union, intersection, or difference.
When manually checking the results, he defined a “loose precision” value besides the
usual “strict” one that did not label a match as a false positive if it was indeed faulty,
but not because of the searched pattern. The outcome is a tool with a 70% empirical
accuracy, that can be considered successful.

These “detection strategies” were extended with historical information by Rapu et
al. [78]. Their approach included running the above described analysis on not only the
current version of their subject software system, – the Jun 3D graphical framework –
but on every fifth revision of it from the start. This way they could extract two more
metrics: persistence, that expresses for how much of its “lifetime” was a given code
element faulty, and stability, that means how many times the code element changed
during its life. The logic behind this was that, e.g., a GodClass antipattern is dangerous
only if it is not persistent, – i.e., the error is due to changes, not part of the original
design – or not stable – i.e., it really disturbs the evolution of the system. With this
method, they managed to halve the candidates in need of manual checking in the case
of the above example.

Trifu and Marinescu went further by assuming that these antipatterns are just
symptoms of larger, more abstract faults [88]. They proposed grouping several antipat-
terns – that may even occur together often – and supplementing them with contextual
information to form “design flaws.” Their main goal was to make antipattern recog-
nition – and pattern recognition in general – more of a well-defined engineering task

20

Chapter 4. The Connection between Antipatterns and Maintainability in Java

rather than a form of art.
Our work is similar to the ones mentioned above in that we also detect antipatterns

by employing source code metrics and static analysis. But, in addition, we inspect
the correlations between these patterns and the maintainability values of the subject
systems, and also consider bug-related information to more objectively demonstrate
the common belief that they are indeed connected.

Other Approaches Lozano et al. [54] overviewed a broader sweep of related works
and urged researchers to standardize their efforts. Apart from the individual harms
antipatterns may cause, they aimed to find out that from exactly when in the life cycle
of a software can an antipattern be considered “bad” and – not unlike [88] – whether
these antipatterns should be raised to a higher abstraction level. In contrast to the
historical information, we focus on objective metric results to shed light on the effect
of antipatterns.

Another approach by Mäntylä et al. [58] is to use questionnaires to reveal the
subjective side of software maintenance. The different opinions of the participating
developers could mostly be explained by demographic analysis and their roles in the
company, but there was a surprising difference compared to the metric based results.
We, on the other hand, make these objective, metric based results our priority.

Although we used literature suggestion and expert opinion based metric thresholds
for this empirical analysis, our work could be repeated – and possibly improved –
by using the data-driven, robust, and pragmatic metric threshold derivation method
described by Alves et al. [3]. They analyze, weight, and aggregate the different metrics
of a large number of benchmark systems in order to statistically evaluate them and
extract metric thresholds that represent the best or worst X% of all the source code.
This can help in pinpointing the most problematic – but still manageably few – parts
of a system.

If preexisting benchmarks with known antipattern occurrences are available, ma-
chine learning becomes a viable option. Khomh et al. [45] built on the methodology of
Moha et al. [64] by making the decisions among parts of a complex ruleset more fuzzy
with Bayesian networks. Another example was published by Maiga et al. [57], where
they used Support Vector Machines to train models based on source code metrics to rec-
ognize antipattern instances. Here, however, we build machine learning models just to
analyze the connection between the precomputed antipatterns and the maintainability
of a given system.

In yet another approach, Stoianov and Şora [84] reduced pattern recognition to the
resolution of logical predicates using Prolog. While this may seem radically different,
there are similarities with our technique if we treat our metric thresholds and structural
checks as the predicates and the programmatic source code traversal as Prolog’s internal
resolution process.

The Connections between Antipatterns and Maintainability To our knowl-
edge, little research has been done so far on finding an explicit connection between an-
tipatterns and maintainability. One is an investigation by Fontana and Maggioni [27]
where they assume the connection and use antipatterns as well as source code met-
rics to evaluate software quality. Another is an empirical study by Yamashita and
Moonen [96] where, after the refactoring of four Java systems, they conclude that an-
tipatterns could provide experts and developers with more insights into maintainability

21

Chapter 4. The Connection between Antipatterns and Maintainability in Java

than source code metrics or subjective judgment alone; however, a combined approach
is suggested.

If we broaden our search from maintainability to include other concepts, antipat-
terns have been linked (among others) to:

• comprehension by Abbes et al. [1], who concluded that, although single instances
can be managed, multiple antipattern occurrences could have a significant impact
and should be avoided,

• class change- and fault-proneness by Khomh et al. [47], who concluded that classes
participating in antipatterns are more change- and fault-prone, and

• unit testing effort by Sabane et al. [80], who concluded that antipattern classes
require substantially more test cases and should be tested with additional care.

On the other hand, if we just focus on maintainability, it has been positively linked
to design patterns by Hegedűs et al. [103], refactorings by Szőke et al. [86], and version
history metrics by Faragó et al. [25].

4.3 Methodology
For analyzing the relationships among antipatterns, bugs, and maintainability, we cal-
culated the following measures for the subject systems:

• an absolute measure of maintainability per system,

• the total number of antipatterns per system, and

• the total number of bugs per system.

For the third research question, we could compile an even finer grained set of data –
since the system-based quality attribute is not needed here:

• the total number of antipatterns related to each class in every subject system,

• the total number of bugs related to each class in every subject system, and

• every class level metric for each class in every subject system.

The metric values were extracted by the SourceMeter tool [26], the bug number
information came from the PROMISE open bug database [63], and the pattern related
metrics were calculated by our own tool described in Section 4.3.2.

4.3.1 Metric Definitions
We used the following source code metrics for antipattern recognition – chosen because
of the interpretation of antipatterns described in Section 4.3.2:

• AD (API Documentation): the ratio of the number of documented public mem-
bers of a class or package over the number of all of its public members.

• CBO (Coupling Between Objects): the CBO metric for a class means the num-
ber of different classes that are directly used by the class.

22

Chapter 4. The Connection between Antipatterns and Maintainability in Java

• CC (Clone Coverage): the ratio of code covered by code duplications in the
source code element over the size of the source code element, expressed in terms
of the number of syntactic entities (e.g., statements, expressions, etc.).

• CD (Comment Density): the ratio of the comment lines of the source code
element (CLOC) over the sum of its comment (CLOC) and logical lines of code
(LLOC).

• CLOC (Comment Lines Of Code): the number of comment and documentation
code lines of the source code element; however, its nested, anonymous, or local
classes are not included.

• LLOC (Logical Lines Of Code): the number of code lines of the source code
element, without the empty and comment lines; its nested, anonymous, or local
classes are not included.

• McCC (McCabe’s Cyclomatic Complexity): the complexity of the method ex-
pressed as the number of independent control flow paths in it.

• NA (Number of Attributes): the number of attributes in the source code ele-
ment, including the inherited ones; however, the attributes of its nested, anony-
mous, or local classes (or subpackages) are not included.

• NII (Number of Incoming Invocations): the number of other methods and at-
tribute initializations which directly call the method (or methods of a class).

• NLE (Nesting Level Else-If): the complexity expressed as the depth of the
maximum “embeddedness” of the conditional and iteration block scopes in a
method (or, the maximum of these for the container class), where in the if-else-if
construct only the first if instruction is considered.

• NOA (Number Of Ancestors): the number of classes, interfaces, enums, and
annotations from which the class directly or indirectly inherits.

• NOS (Number Of Statements): the number of statements in the source code
element; however, the statements of its nested, anonymous, or local classes are
not included.

• RFC (Response set For Class): the number of local (i.e., not inherited) methods
in the class (NLM) plus the number of directly invoked other methods by its
methods or attribute initializations (NOI).

• TLOC (Total Lines Of Code): the number of code lines of the source code
element, including empty and comment lines, as well as its nested, anonymous,
or local classes.

• TNLM (Total Number of Local Methods): the number of local (i.e., not inher-
ited) methods in the class, including the local methods of its nested, anonymous,
or local classes.

• Warning P1, P2 or P3: the number of different coding rule violations reported
by the PMD analyzer tool1, categorized into three priority levels.

1http://pmd.sourceforge.net

23

Chapter 4. The Connection between Antipatterns and Maintainability in Java

• WMC (Weighted Methods per Class): the WMC metric for a class is the total
of the McCC metrics of its local methods.

4.3.2 Mining Antipatterns
The process of analyzing the subject source files – up until the point of metric extraction
– is discussed in Section 2.1 (and shown in Figure 2.1). Additionally, each antipattern
implementation could define one or more externally configurable parameters, mostly
used for easily adjustable metric thresholds. These came from an XML-style rule file
– called RUL – that can handle multiple configurations and even inheritance. It can
also contain language-aware descriptions and warning messages that will be attached
to the affected graph nodes.

After all these preparations, our tool could be run on the output LIM and graph of
the previous analysis. It is basically a single new class built around the Visitor design
pattern [30], which is appropriate as it is a new operation defined for an existing
data structure and this data structure does not need to be changed to accommodate
the modification. It “visits” the LIM model and uses its structural information and
the computed metrics from its corresponding graph nodes to identify antipatterns. It
currently recognizes the 9 types of antipatterns listed below. We chose to implement
these 9 antipatterns because they appeared to be the most widespread in the literature
and, as such, the most universally regarded as a real negative factor. They are described
in greater detail by Fowler and Beck [28], and here we will just provide a short informal
definition and explain how we interpreted them in the context of our LIM model. The
parameters of the recognition are denoted by a starting $ sign and can be configured
in the RUL file mentioned above. Their default values are listed in Table 4.1.

• Feature Envy (FE): A class is said to be envious of another class if it is more
concerned with the attributes of that other class than those of its own. It is
interpreted as a method that accesses at least $MinAccess attributes, and at
least $MinForeign% of those belong to another class.

• Lazy Class (LC): A lazy class is one that does not “do much”, just delegates
its requests to other connected classes – i.e., a non-complex class with numerous
connections. It is interpreted as a class whose CBO metric is at least $MinCBO,
but its WMC metric is no more than $MaxWMC.

• Large Class Code (LCC): Simply put, a class that is “too big” – i.e., it probably
encapsulates not just one concept or it does too much. It is interpreted as a class
whose LLOC metric is at least $MinLLOC.

• Large Class Data (LCD): A class that encapsulates too many attributes, some
of which might be extracted – along with the methods that more closely corre-
spond to them – into smaller classes and might be a part of the original class
through aggregation or association. It is interpreted as a class whose NA metric
is at least $MinNA.

• Long Function (LF): Similarly to LCC, if a method is too long, it probably
has parts that could (or should) be separated into their own logical entities,
thereby making the whole system more comprehensible. It is interpreted as a
method where the LLOC, NOS or McCC metric exceeds $MinLLOC, $MinNOS
or $MinMcCC, respectively.

24

Chapter 4. The Connection between Antipatterns and Maintainability in Java

Antipattern Parameter Value
FE MinAccess 5
FE MinForeign% 80%
LC MinCBO 5
LC MaxWMC 10
LCC MinLLOC 500
LCD MinNA 30
LF MinLLOC 80
LF MinNOS 80
LF MinMcCC 10
LPL MinParams 7
SHS MinNII 10
TF RefMax% 10%

Table 4.1. Default antipattern thresholds

• Long Parameter List (LPL): The long parameter list is one of the most rec-
ognized and accepted “bad code smells” in code. It is interpreted as a function
(or method) whose number of parameters is at least $MinParams.

• Refused Bequest (RB): If a class refuses to use its inherited members – es-
pecially if they are marked “protected,” through which the parent states that
descendants should most likely use it – then it is a sign that inheritance might
not be the appropriate method of implementation reuse. It is interpreted as a
class that inherits at least one protected member that is not accessed by any
locally defined method or attribute.

• Shotgun Surgery (SHS): Following the “Locality of Change” principle, if a
method needs to be modified then it should not cause a demand for many other
– especially remote – modifications, otherwise one of those can easily be missed,
leading to bugs. It is interpreted as a method whose NII (i.e., the number of the
different methods or attribute initializations where this method is called) metric
is at least $MinNII.

• Temporary Field (TF): If an attribute only “makes sense” to a small percent-
age of the container class then it – and its closely related methods – should be
decoupled. It is interpreted as an attribute that is only referenced by at most
$RefMax% of the members of its container class.

4.3.3 Maintainability Model
We used the ADG presented in Figure 4.1 – which is a further developed version of
the ADG published by Bakota et al. [9] – for assessing the maintainability of the
selected subject systems. The informal definition of the referenced low-level metrics
are described in Section 4.3.1.

25

Chapter 4. The Connection between Antipatterns and Maintainability in Java

Figure 4.1. The quality model used to calculate maintainability

4.3.4 PROMISE
PROMISE [63] is an open-access bug database whose purpose is to help software quality
related research and make the referenced experiments repeatable. It contains the source
code of numerous open-source applications or frameworks and their corresponding bug-
related data at the class level – i.e., not just system aggregates. We extracted this class
level bug information for 34 systems from it that will be used for answering our third
research question in Section 4.4.

4.3.5 Machine Learning
Using the class level table of data, we wanted to find out if the numbers of different
antipatterns have any underlying structure that could help in identifying which system
classes have bugs. As empirically they perform best in similar cases, we chose decision
trees as the method of analysis, specifically J48, an open-source implementation of
C4.5 [77].

4.4 Results
We analyzed the 228 subject systems and calculated the measures introduced in Sec-
tion 4.3. These systems are all Java based and open-source – so we could access their
source codes and analyze them – but their purposes are very diverse – ranging from
web servers and database interfaces to IDEs, issue trackers, other static analyzers,
build tools and many more. Note that the 34 systems that also have bug information
from the PROMISE database are a subset of the original 228.

For the first two research questions concerned with finding correlation, we compiled
a system level database of the maintainability values, the numbers of antipatterns, and
the numbers of bugs. As the bug-related data was available at the class level in the
corresponding 34 systems, we aggregated those values to fit in on a per system basis.
The resulting dataset can be seen in Table 4.2, sorted in ascending order by the number
of bugs.

Next, we performed correlation analysis on the collected data. When we only con-
sidered the systems that had related bug information, we found that the total number

26

Chapter 4. The Connection between Antipatterns and Maintainability in Java

Name № of Antipatterns Maintainability № of Bugs
jedit-4.3 2,351 0.47240 12
camel-1.0 685 0.62129 14
forrest-0.7 53 0.73364 15
ivy-1.4 709 0.49465 18
pbeans-2 105 0.48909 19
synapse-1.0 398 0.58202 21
ant-1.3 933 0.51566 33
ant-1.5 2,069 0.41340 35
poi-2.0 2,025 0.36309 39
ant-1.4 1,218 0.45270 47
ivy-2.0 1,260 0.44374 56
log4j-1.0 224 0.59301 61
log4j-1.1 341 0.56738 86
Lucene 3,090 0.47288 97
synapse-1.1 717 0.56659 99
jedit-4.2 1,899 0.46826 106
tomcat-1 5,765 0.30972 114
xerces-1.2 2,520 0.13329 115
synapse-1.2 934 0.55554 145
xalan-2.4 3,718 0.15994 156
ant-1.6 2,821 0.38825 184
velocity-1.6 614 0.43804 190
xerces-1.3 2,670 0.13600 193
jedit-4.1 1,440 0.47400 217
jedit-4.0 1,207 0.47388 226
lucene-2.0 1,580 0.47880 268
camel-1.4 2,136 0.62682 335
ant-1.7 3,549 0.38340 338
Mylyn 5,378 0.65841 340
PDE_UI 7,523 0.53104 341
jedit-3.2 1,017 0.47523 382
camel-1.6 2,804 0.62796 500
camel-1.2 1,280 0.63005 522
xalan-2.6 11,115 0.22621 625

Table 4.2. The system level metrics of the 34 Java systems

27

Chapter 4. The Connection between Antipatterns and Maintainability in Java

of bugs and the total number of antipatterns per system had a Spearman correlation
of 0.55 with a p-value below 0.001. This can be regarded as a significant relation that
answers our first research question by suggesting that the more antipatterns there
are in the source code of a software system, the more bugs it will likely contain. Intu-
itively this is to be expected, but with this empirical experiment we are a step closer to
being able to treat this assumption validated. The discovered relation is, of course, not
a one-to-one correspondence, but it illustrates the detrimental effect of antipatterns on
source code well.

If we disregard the bug information but expand our search to all the 228 systems
we analyzed, we can inspect the connection between the number of antipatterns and
the maintainability values we computed. Here we found that there is an even stronger,
-0.62 inverse Spearman correlation, with a p-value – again – less than 0.001. Based
on this observation, we can also answer our second research question: the more an-
tipatterns a system contains, the less maintainable it will be, meaning that it will most
likely cost more time and resources to execute any changes. This result corresponds
to the definitions of antipatterns and maintainability quite well, as they suggest that
antipatterns – the common solutions to design problems that seem beneficial but cause
more harm than good in the long run – really do lower the expected maintainability
– a value representing how easily a piece of software can be understood and modified,
i.e., the “long run” harm.

This relation is visualized in Figure 4.2. The analyzed systems are sorted in the
descending order of the antipatterns they contain, and the trend line of the maintain-
ability value clearly shows improvement.

Figure 4.2. The trend of maintainability in the case of decreasing antipatterns

To answer our third and final research question, we could compile an even
finer grained set of data. Here we retained the original, class level form of bug-related
data and extracted class level source code metrics. We also needed to transform the
antipattern information to correspond to classes, so instead of aggregating them to

28

Chapter 4. The Connection between Antipatterns and Maintainability in Java

the system level, we kept class antipatterns unmodified, while collecting method and
attribute based antipatterns to their closest parent classes. Part of this dataset is
shown in Table 4.3.

The resulting class level data was largely biased because – as it is to be expected
– more than 80% of the classes did not contain any bugs. We handled this problem
by subsampling the bugless classes in order to create a normally distributed starting
point. Subsampling means that in order to make the results of the machine learning
experiment more representative, we used only part of the data related to those classes
that did not contain bugs. We created a subset by randomly sampling – hence the
name – from the “bugless” classes so that their number becomes equal to the “buggy”
classes. This way, the learning algorithm could not achieve a precision higher than
50% just by choosing one class over the other. We then applied the J48 decision tree
in three different configurations:

• using only the different antipattern numbers as predictors,

• using only the object-oriented metrics extracted by the SourceMeter tool as pre-
dictors, and

• using the attributes of both categories.

We tried to calibrate the decision trees we built to have around 50 leaf nodes and
around 100 nodes in total. This is an approximately good compromise between under-
and overlearning the training data. The results are summarized in Table 4.4.

These results clearly show that although antipatterns are – for now – inferior to
OO metrics in this field, even a few patterns (concerned with single entities only) can
approximate their bug predicting powers quite well. We note that it is expected that
the “Both” category does not improve upon the “Metrics” category because in most
cases – as of yet – the implemented antipatterns can be viewed as predefined thresholds
on certain metrics. We conclude that antipatterns can already be considered valuable
bug predictors, and with more implemented patterns – spanning multiple code entities
– and a heavier use of the contextual structural information, they might even overtake
them.

4.5 Threats to Validity
Our approach – naturally – has some threats to its validity. First of all, we reiterate
from the previous chapter that when dealing with recognizing antipatterns, – or any
patterns – the accuracy of mining is always in question. To make sure that we really
extract the patterns we want, we created small, targeted source code tests that checked
the structural requirements and metric thresholds of each pattern. To be also sure
that we want to match the patterns we should, – i.e., those that are most likely to
really have a detrimental effect on the quality of the software – we only implemented
antipatterns that are well-known and well-documented in the literature. This way, the
only remaining threat factor is the interpretation of those patterns to the LIM model.

Then there is the concern of choosing the correct thresholds for the low-level met-
rics. Although they are easily configurable, – even before every new inspection – in
order to have results we could correlate and analyze, we had to use some specific thresh-
olds. These were approximated by literature suggestions and expert opinions, taking

29

Chapter 4. The Connection between Antipatterns and Maintainability in Java

S
ystem

N
am

e
№

of
B

u
gs

L
L

O
C

T
N

O
S

...
A

L
L

F
E

L
C

L
C

C
L

C
D

L
F

L
P

L
R

B
S

H
S

T
F

ant-1.3
org.apache.tools.ant.A

ntC
lassLoader

2
230

124
...

4
0

0
0

0
1

0
0

0
3

ant-1.3
org.apache.tools.ant.B

uildE
vent

0
51

21
...

0
0

0
0

0
0

0
0

0
0

ant-1.3
org.apache.tools.ant.B

uildE
xception

0
63

27
...

6
0

0
0

0
0

0
0

6
0

ant-1.3
org.apache.tools.ant.D

efaultLogger
2

74
30

...
7

0
0

0
0

0
0

6
0

1
ant-1.3

org.apache.tools.ant.D
esirableF

ilter
0

20
11

...
0

0
0

0
0

0
0

0
0

0
ant-1.3

org.apache.tools.ant.D
irectoryScanner

0
472

353
...

25
0

0
0

0
3

0
19

1
2

ant-1.3
org.apache.tools.ant.IntrospectionH

elper
2

229
142

...
2

0
0

0
0

1
0

0
0

1
ant-1.3

org.apache.tools.ant.Location
0

29
13

...
1

0
0

0
0

0
0

0
0

1
ant-1.3

org.apache.tools.ant.M
ain

1
364

254
...

3
0

0
0

0
2

0
0

0
1

ant-1.3
org.apache.tools.ant.N

oB
annerLogger

0
21

8
...

0
0

0
0

0
0

0
0

0
0

ant-1.3
org.apache.tools.ant.P

athTokenizer
0

37
16

...
0

0
0

0
0

0
0

0
0

0
ant-1.3

org.apache.tools.ant.P
roject

1
710

406
...

37
0

0
1

0
2

0
0

9
25

ant-1.3
org.apache.tools.ant.P

rojectH
elper

3
151

267
...

2
0

0
0

0
1

0
0

0
1

ant-1.3
org.apache.tools.ant.R

untim
eC

onfigurable
2

45
18

...
0

0
0

0
0

0
0

0
0

0
ant-1.3

org.apache.tools.ant.Target
1

103
42

...
1

0
0

0
0

0
0

0
1

0
ant-1.3

org.apache.tools.ant.Task
0

64
19

...
15

0
0

0
0

0
0

8
6

1
ant-1.3

org.apache.tools.ant.TaskA
dapter

0
25

13
...

0
0

0
0

0
0

0
0

0
0

ant-1.3
org.apache.tools.ant.taskdefs.A

nt
0

133
87

...
0

0
0

0
0

0
0

0
0

0
ant-1.3

org.apache.tools.ant.taskdefs.A
ntStructure

0
179

134
...

1
0

0
0

0
1

0
0

0
0

ant-1.3
org.apache.tools.ant.taskdefs.Available

0
101

46
...

0
0

0
0

0
0

0
0

0
0

Table
4.3.

Part
ofthe

com
piled

class
leveldataset

30

Chapter 4. The Connection between Antipatterns and Maintainability in Java

Method TP Rate FP Rate Precision Recall F-Measure
Antipatterns 0.658 0.342 0.670 0.658 0.653
Metrics 0.711 0.289 0.712 0.711 0.711
Both 0.712 0.288 0.712 0.712 0.712

Table 4.4. The results of the machine learning experiments

into consideration the minimum, maximum, and average values of the corresponding
metrics.

Another threat to validity is using our chosen quality model for calculating main-
tainability values. Despite many empirical validations in previous works, we still cannot
state that the maintainability model we used is perfect. Moreover, the ISO/IEC 25010
standard is similarly configurable in its low-level metrics as its predecessor, so the re-
sults may vary depending on the quality model’s settings. It is also very important to
have a source code metric repository with a large enough number of systems to get an
objective absolute measure for maintainability.

Our results also depend on the assumption that the bug-related values we extracted
from the PROMISE database are correct. If they are inaccurate, that means that our
correlation results with the number of bugs are inaccurate too. But as many other
works make use of these data, we consider the possibility of this negligible.

Lastly, we have to face the threat that our data is biased or that the results are
coincidental. We tried to combat these factors by using different kinds of subject
systems, balancing our training data to a normal class distribution before the machine
learning procedure, and considering only statistically significant correlations.

4.6 Summary
In this chapter, we presented an empirical analysis of exploring the connections among
antipatterns, the number of known bugs, and software maintainability. First, we briefly
explained how we implemented a tool that can match antipatterns on a language inde-
pendent model of a system. We then analyzed more than 200 open-source Java systems,
extracted their object-oriented metrics and antipatterns, calculated their correspond-
ing maintainability values using a probabilistic quality model, and even collected class
level bug information for 34 of them. By correlation analysis and machine learning
methods, we were able to draw interesting conclusions.

At a system level scale, we found that in the case of the 34 systems that also had
bug-related information, there is a significant positive correlation between the number
of bugs and the number of antipatterns. Also, when we disregarded the bug data but
expanded our search to all 228 analyzed systems to concentrate on maintainability, the
result was an even stronger negative correlation between the number of antipatterns
and maintainability. This further supports what one would intuitively think considering
the definitions of antipatterns, bugs, and software quality.

Another interesting result is that the mentioned 9 antipatterns in themselves can
quite closely match the bug predicting power of more than 50 class level object-oriented
metrics. Although they – as of yet – are inferior, with further patterns that would span
over source code elements and rely more heavily on the available structural information,
this method has the potential to outperform simple metrics in fault prediction.

31

Chapter 4. The Connection between Antipatterns and Maintainability in Java

As with all similar works, ours also has some threats to its validity, but we feel that
it is a valuable step towards empirically validating that antipatterns really do hurt
software maintainability and can highlight points in the source code that require closer
attention.

32

“It’s the repetition of affirmations that leads to belief.”
— Claude M. Bristol

5
The Connection between Antipatterns and

Maintainability in C++

5.1 Overview
In this chapter, in order to improve our understanding of the connection between
antipatterns and source code maintainability, we intend to (partially) replicate the re-
sults of Chapter 4, only in the domain of C++. As our subject systems, we selected 45
evenly distributed sample revisions taken from the master and electrolysis branches
of Firefox between 2009 and 2010 – approximately one revision every two weeks. These
revisions provided the basis for both antipattern detection and maintainability assess-
ment. We extracted the occurrences of the same 9 antipattern types we previously
discussed and summed the number of matches by type. We also divided these sums by
the total number of logical lines of the subject system for each revision to create new,
system-level antipattern density predictor metrics.

Next, we computed corresponding maintainability values; still following the prin-
ciples of the ISO/IEC 25010 standard [41] but this time using a C++ specific quality
model. Additionally, we adapted versions of the independent Maintainability Index
metric [21] to get a secondary quality indicator.

With these data available, we attempted to answer the following two research ques-
tions:

Research Question 1: How does the number of antipatterns in a given system
correlate with its maintainability?

Research Question 2: Can the antipattern instances of a system be used to predict
its maintainability?

The chapter is structured as follows: Since the related work we listed in Chapter 4
is still applicable, we start directly with the details and differences of our current
methodology in Section 5.2. Next, Section 5.3 discusses the results we obtained, then
in Section 5.4 we overview some factors that might threaten the validity of these results.
Lastly, in Section 5.5 we draw some pertinent conclusions.

33

Chapter 5. The Connection between Antipatterns and Maintainability in C++

5.2 Methodology
The sequence of steps we took in order to answer our research questions is depicted in
Figure 5.1, combining a general static source code analysis with pattern recognition,
model evaluation, and machine learning.

Figure 5.1. The methodology step sequence

The gray circles represent the different artifacts that exist between the steps of the
process, while the white rectangles are the steps themselves. The steps that introduce
new information, or where relevant changes occurred compared to the methodology in
Chapter 4, are explored in their own subsections below.

5.2.1 Static Analysis
The analysis was conducted using a shell script that enumerated the 45 Firefox revi-
sions, checked out the corresponding repositories, (if not yet available) and updated
them to the correct commit before initiating a build sequence. The core of the analysis
was still performed using the SourceMeter tool [26].

34

Chapter 5. The Connection between Antipatterns and Maintainability in C++

Listing 5.1. The filter file for the analysis
−/
+/path/to/repos/
−/config/
−/testing/
−/build/
−/media/
−/security/
−/db/
−/jpeg/
−/modules/
+/path/to/repos/.*/modules/plugin/
+/path/to/repos/.*/modules/staticmod/

Note that apart from the simple build script of make -f client.mk, our custom
analysis configuration contained filters to skip the results of every command that
matched the word “conftest” (a so-called hard filter) and to later skip any source
code elements whose source code path information matched the filters described in
Listing 5.1 (a so-called soft filter). These filters were obtained via manual analysis of
the Firefox repositories, pinpointing irrelevant or 3rd party code.

The lines in Listing 5.1 are applied in the order shown, allowing or disallowing a
path based on the starting + or - character. So, for example, the first two lines mean
that everything is filtered except for any content coming from the “repos” directory.

It should be added that the 45 Firefox revisions we selected are a subset of the
Green Mining Dataset collected by Abram Hindle [36], as it is also our intention to
relate antipatterns and software quality to energy and power consumption in the future.

5.2.2 Metric Definitions
After performing our analysis, we extracted the metrics of the global namespace, which
represent an aggregated, top-level view of the subject system. These metrics are the
following:

• HVOL (Halstead VOLume): if we let η1 denote the number of distinct opera-
tors, η2 the distinct operands, N1 the total number of operators and N2 the total
number of operands, then HV OL = N1 + N2 · log2(η1 + η2). From a C++ per-
spective, we will treat unary and binary operators (both arithmetic, increment,
comparison, boolean, assignment, bitwise, shift and compound), keywords (e.g.,
return, sizeof, if, else, etc.), brackets, braces, parentheses, semicolons and pointer
asterisks as operators, while the corresponding types, names, members, constants
and literals will be treated as operands. Although this metric is usually used for
single methods, it can be easily generalized to the system level.

• TCBO (Total Coupling Between Objects): the CBO metric for a class means
the number of different classes that are directly used by the class. Usage, among
others, includes method calls, parameters, instantiations and attribute accesses
as well as returnable and throwable types. TCBO is an aggregation of class-level
CBOs to the system level, while AvgCBO (Average CBO) is defined as the ratio
TCBO/TNCL.

35

Chapter 5. The Connection between Antipatterns and Maintainability in C++

• TLCOM5 (Total Lack of COhesion in Methods 5): for a class, LCOM5 mea-
sures the lack of cohesion, and it is interpreted as how many coherent classes
the class could be split into. It is calculated by taking a non-directed graph,
where the nodes are the implemented local methods of the class and there is an
edge between two nodes if and only if a common attribute or abstract method
is used or a method invokes another. The value of the metric is the number of
connected components in the graph not counting those which contain only con-
structors, destructors, getters or setters. TLCOM5 is the sum of LCOM5s, while
AvgLCOM5 (Average LCOM5) is defined as the ratio TLCOM5/TNCL.

• TRFC (Total Response set For Class): for a class, RFC is the number of local
(i.e., not inherited) methods in the class plus the number of directly invoked
other methods by its methods or attribute initializations. For the system, TRFC
is the aggregated sum of RFCs, while AvgRFC (Average RFC) is defined as the
ratio TRFC/TNCL.

• TWMC (Total Weighted Methods per Class): the WMC metric for a class is
the total of the McCC (McCabe’s Cyclomatic Complexity) metrics of its local
methods. For the system, TWMC is the sum of all WMCs, while AvgWMC
(Average WMC) is defined as the ratio TWMC/TNCL.

• TAD (TotalAPIDocumentation): the ratio of the number of documented public
members of the system over the number of all of its public members.

• TCD (Total Comment Density): the ratio of the comment lines of the sys-
tem (TCLOC) over the sum of its comment (TCLOC) and logical lines of code
(TLLOC).

• TCLOC (Total Comment Lines Of Code): the number of comment and doc-
umentation code lines in the system, where comment lines are lines that have
either a block or a line comment, while a documentation comment line is a line
that has (at least part of) a comment that is syntactically directly in front of a
member. Note that a single line can be both a logical line and a comment line if
it has both code and at least one comment.

• TLLOC (Total Logical Lines Of Code): the number of code lines of the system,
without the empty and purely comment lines.

• TNA (Total Number of Attributes): the number of attributes in the system.

• TNCL (Total Number of Classes): the number of classes in the system.

• TNEN (Total Number of Enums): the number of enums in the system.

• TNIN (Total Number of Interfaces): the number of interfaces in the system.
Note that although C++ lacks language support for the concept, we will treat
classes with only pure virtual methods as interfaces.

• TNM (Total Number of Methods): the number of methods in the system.

• TNPKG (Total Number of PacKaGes): the number of namespaces in the
system. Note that the word “package” here refers to a generalized object-oriented
container concept which, in C++, directly maps to namespaces.

36

Chapter 5. The Connection between Antipatterns and Maintainability in C++

• TNOS (TotalNumberOf Statements): the number of statements in the system.

Note that the SourceMeter tool [26] did not have native support for some of the
system-level metrics, including the Total and Average versions of CBO, WMC, LCOM5
and RFC, along with the aggregated Halstead Volume. The implementation of these
computations was performed specifically for this study.

5.2.3 Metric Normalization
Metric normalizations were performed following the principles outlined in Section 2.2.
The only deviations worth mentioning are the exceptions to the “simpler mental model”
inversion – or, the “the bigger the better” metrics. These were are all documentation-
related, namely TAD, TCD, and TCLOC.

5.2.4 Antipatterns
It should be mentioned that in addition to the single antipatterns from Chapter 4, this
time we also collected a SUM value, which is – not surprisingly – defined as the sum
of all types of antipatterns in the given subject system. Furthermore, we calculated
densities for each absolute antipattern, meaning that for every AP antipattern there is
now an APDENS metric available, computed as the ratio AP/TLLOC.

5.2.5 Maintainability Models
In order to assess the maintainability of the systems we analyzed, we created an expert
opinion-based maintainability model according to the ISO/IEC 25010 standard [41].
The weights of how the subcharacteristics listed in Section 2.3 are to be aggregated –
and how they themselves are computed from source code metrics – were derived from
the results of a poll.

First, the 10 chosen experts – each of whom is an academic or industrial professional
with at least 5 years of experience in software engineering – had to distribute 100 points
among the source code metrics (listed in Section 5.2.2) for each subcharacteristic, to
express how much they think that metric affects the given subcharacteristic. The
results of this step are summarized in Table 5.1.
Next, they had to distribute another 100 points among the subcharacteristics them-
selves, expressing how much each of them affects the overall Maintainability. The
results of this step are summarized in Table 5.2.
Given these weights – and later dividing by 100 – we were able to obtain system-level
Maintainability values for each of the given subject revisions in the [0, 1] interval.

In addition, we computed the two “traditional” Maintainability Index metrics [21],
interpreting them using our static source code metrics as:

MI = 171− 5.2 · ln(HV OL)− 0.23 · TWMC − 16.2 · ln(TLLOC)
and

MI2 = 171− 5.2 · log2(HV OL)− 0.23 · TWMC

− 16.2 · log2(TLLOC) + 50 · sin(
√

2.4 · TCD).

37

Chapter 5. The Connection between Antipatterns and Maintainability in C++

Metric An
aly

sab
ility

Modi
fiab

ility

Modu
lari

ty

Reu
sab

ility

Tes
tab

ility

HVOL 25 26.6 11 13 25.7
AvgCBO 22 29.6 43 33 24.5
AvgLCOM5 6.5 4.7 8.5 7.5 7.4
AvgRFC 1.5 3 15 7.5 3.3
AvgWMC 10 10 5.5 9 10.8
TAD 7.3 7 3.3 7.9 2.5
TCBO 1 1.3 0 1 3.6
TCD 4.1 1.5 0 2 1.5
TCLOC 0.3 0.5 0 4.5 0
TRFC 0 0.5 0.5 0.5 1
TWMC 1 1 0 0 0
TLLOC 14.5 9.2 0 2.4 8.5
TNA 0 0 0 0 0.2
TNCL 5 3 0 0 5
TNM 1.4 1.3 0 0 3.1
TNOS 0 0 0 0 1
TNPA 0 0 0 1.4 0
TNPCL 0 0 4.6 2.4 0
TNPEN 0 0 0.4 1.3 0
TNPIN 0 0 5.7 3.5 0
TNPKG 0.4 0.8 0 0.2 0
TNPM 0 0 2.5 2.9 1.9

Table 5.1. The results of the subcharacteristic votes

Subcharacteristic Maintainability
Analysability 28.5
Modifiability 26.5
Modularity 17.1
Reusability 13.7
Testability 14.2

Table 5.2. The results of the Maintainability votes

We also calculated their modified counterparts (MI* andMI2*), where we changed
the Total WMC values to their corresponding averages. We did so to scale each part
of the sum to the same magnitude because complexity (WMC) is the only component
not inside a logarithm or sine, and the TWMC values dominated every other term of
the formulas.

5.3 Results
After all these preliminaries, we are now ready to address our two research questions.

38

Chapter 5. The Connection between Antipatterns and Maintainability in C++

5.3.1 Correlation Results
To address our first research question, we decided to calculate the Pearson and
Spearman correlations between each antipattern and maintainability measure pair,
summarized in tables 5.3 and 5.4, respectively. Note that a single star suffix (*) means
that the correlation is statistically significant at the .05 level, while a double star (**)
means a significance at the .01 level. Also, to help in quickly parsing these tables, any
cell where the correlation coefficient is either positive or non-significant was marked in
a light gray background, and a darker gray when it is significantly positive (the worst
case from our perspective).

As these tables clearly show, most antipattern-maintainability pairs have a strong,
significant inverse connection. There are a few marked correlations, mainly for Mod-
ularity and Reusability, but even in these cases the non-significant values are still
negative, while the positive values are non-significant and weak. We highlight the cor-
relations between the SUM and SUMDENS antipatterns and our final Maintainability
measure as these represent most closely the overall effects of antipatterns on maintain-
ability. The corresponding values are -0.658 and -0.692 for Pearson, and -0.704 and
-0.678 for Spearman correlation, respectively. Thus, in response to the first research
question we conclude – based on these empirical findings – that there is a strong,
inverse relationship between the number of antipatterns in a system and its maintain-
ability. This supports our initial assumption that the more antipatterns the source
code contains, the harder it is to maintain.

5.3.2 Machine Learning Results
To answer our second research question, we compiled ten tables applicable for
machine learning experiments – one for each maintainability measure. These contained
every antipattern type as predictors and the values for their chosen maintainability
measures as targets for prediction. We then ran these tables through all five regression
techniques mentioned in Section 2.4.2 to see how well they worked in practice. The
corresponding correlation coefficients of the resulting models are shown in Table 5.5.

The high values of these coefficients suggest an affirmative answer to our second re-
search question: antipatterns can be valuable predictors for maintainability assessment.
The models we built weight the antipattern predictors with mostly negative values, but
there are numerous positive instances as well. Further analysis of the structure of the
models in the case of the Maintainability target revealed that some antipatterns con-
sistently appear with negative weights more often than others. Moreover, this ordering
of importance largely coincides with the above correlation magnitudes.

5.3.3 Lessons Learned
The most obvious lesson learned, based on these results, is the measurable detrimental
effect of antipatterns on maintainability. Moreover, the conclusion we drew from the
correspondence between correlation values and negative model weights is that there
could also be an order of importance among the antipatterns studied here.

The most important ones to avoid appear to be Long Functions, Large Class Codes
and Shotgun Surgeries. The frequently suggested refactorings for the first two antipat-
terns are “Extract Method” and “Extract Class”, respectively. As for Shotgun Surgery,

39

Chapter 5. The Connection between Antipatterns and Maintainability in C++

A
ntipattern

M
I

M
I

2
M

I*
M

I
2 *

A
nalysabilityM

odifiabilityM
odularityR

eusabilityTestabilityM
aintainability

FE
−
.985**

−
.985**

−
.857**

−
.796**

−
.830**

−
.738**

−
.141

−
.311*

−
.785**

−
.657**

FE
D
E
N
S

−
.659**

−
.659**

−
.303*

−
.219

−
.548**

−
.637**

−
.538**

−
.570**

−
.679**

−
.661**

LC
−
.825**

−
.825**

−
.933**

−
.968**

−
.732**

−
.502**

.274
.023

−
.519**

−
.371*

LC
D
E
N
S

−
.749**

−
.749**

−
.886**

−
.943**

−
.666**

−
.425**

.327*
.075

−
.435**

−
.297*

LC
C

−
.987**

−
.987**

−
.864**

−
.822**

−
.862**

−
.758**

−
.133

−
.326*

−
.791**

−
.674**

LC
C
D
E
N
S

−
.670**

−
.670**

−
.296*

−
.249

−
.624**

−
.700**

−
.563**

−
.638**

−
.711**

−
.722**

LC
D

−
.768**

−
.768**

−
.555**

−
.438**

−
.531**

−
.554**

−
.290

−
.314*

−
.611**

−
.526**

LC
D

D
E
N
S

−
.662**

−
.662**

−
.424**

−
.298*

−
.422**

−
.483**

−
.344*

−
.325*

−
.541**

−
.477**

LF
−
.988**

−
.988**

−
.883**

−
.830**

−
.885**

−
.782**

−
.174

−
.372*

−
.830**

−
.710**

LF
D
E
N
S

−
.820**

−
.820**

−
.530**

−
.455**

−
.783**

−
.818**

−
.566**

−
.688**

−
.866**

−
.835**

LPL
−
.961**

−
.961**

−
.931**

−
.872**

−
.781**

−
.643**

.014
−
.160

−
.704**

−
.544**

LPL
D
E
N
S

−
.864**

−
.864**

−
.741**

−
.649**

−
.652**

−
.594**

−
.157

−
.253

−
.673**

−
.542**

R
B

−
.985**

−
.985**

−
.852**

−
.788**

−
.820**

−
.736**

−
.165

−
.328*

−
.783**

−
.662**

R
B
D
E
N
S

−
.930**

−
.930**

−
.714**

−
.634**

−
.757**

−
.734**

−
.317*

−
.435**

−
.786**

−
.695**

SH
S

−
.988**

−
.988**

−
.850**

−
.778**

−
.837**

−
.767**

−
.212

−
.375*

−
.811**

−
.698**

SH
S
D
E
N
S

−
.889**

−
.889**

−
.634**

−
.538**

−
.745**

−
.771**

−
.450**

−
.548**

−
.815**

−
.754**

SU
M

−
.982**

−
.982**

−
.869**

−
.791**

−
.814**

−
.735**

−
.164

−
.319*

−
.785**

−
.658**

SU
M

D
E
N
S

−
.910**

−
.910**

−
.712**

−
.606**

−
.731**

−
.729**

−
.342*

−
.438**

−
.783**

−
.692**

T
F

−
.955**

−
.955**

−
.835**

−
.740**

−
.777**

−
.723**

−
.199

−
.330*

−
.771**

−
.651**

T
F
D
E
N
S

−
.882**

−
.882**

−
.711**

−
.592**

−
.691**

−
.695**

−
.317*

−
.397**

−
.747**

−
.653**

Table
5.3.

Pearson
correlations

between
antipatterns

and
m
aintainability

40

Chapter 5. The Connection between Antipatterns and Maintainability in C++

A
nt
ip
at
te
rn

M
I

M
I

2
M

I
*

M
I

2*
A
na
ly
sa
bi
lit
y M
od
ifi
ab
ili
ty M
od
ul
ar
ity

R
eu
sa
bi
lit
y Te

st
ab
ili
ty

M
ai
nt
ai
na
bi
lit
y

FE
−
.9

85
**
−
.9

85
**
−
.8

53
**
−
.8

09
**
−
.8

52
**
−
.7

49
**
−
.1

61
−
.3

70
*
−
.8

06
**
−
.6

52
**

FE
D
E
N
S

−
.5

35
**
−
.5

35
**
−
.2

57
−
.2

58
−
.4

40
**
−
.5

32
**
−
.5

50
**
−
.5

95
**
−
.5

61
**
−
.6

09
**

LC
−
.7

57
**
−
.7

57
**
−
.9

36
**
−
.9

20
**
−
.7

55
**
−
.5

38
**

.2
24

−
.0

44
−
.5

72
**
−
.3

81
**

LC
D
E
N
S

−
.5

42
**
−
.5

42
**
−
.7

77
**
−
.8

54
**
−
.5

17
**
−
.2

76
.3

72
*

.1
23

−
.3

07
*
−
.1

33
LC

C
−
.9

85
**
−
.9

85
**
−
.8

73
**
−
.8

39
**
−
.8

71
**
−
.7

54
**
−
.1

31
−
.3

54
*
−
.8

11
**
−
.6

51
**

LC
C
D
E
N
S

−
.4

82
**
−
.4

82
**
−
.2

13
−
.2

58
−
.4

39
**
−
.5

43
**
−
.5

90
**
−
.6

55
**
−
.5

50
**
−
.6

36
**

LC
D

−
.7

31
**
−
.7

31
**
−
.4

84
**
−
.4

45
**
−
.5

09
**
−
.5

51
**
−
.3

03
*
−
.3

65
*
−
.5

90
**
−
.5

28
**

LC
D

D
E
N
S

−
.6

26
**
−
.6

26
**
−
.3

55
*
−
.3

44
*
−
.3

73
*
−
.4

31
**
−
.2

99
*
−
.3

18
*
−
.4

74
**
−
.4

28
**

LF
−
.9

91
**
−
.9

91
**
−
.8

49
**
−
.8

00
**
−
.9

02
**
−
.8

21
**
−
.2

42
−
.4

53
**
−
.8

66
**
−
.7

28
**

LF
D
E
N
S

−
.8

74
**
−
.8

74
**
−
.6

22
**
−
.6

08
**
−
.8

24
**
−
.8

37
**
−
.5

00
**
−
.6

71
**
−
.8

76
**
−
.8

21
**

LP
L

−
.9

52
**
−
.9

52
**
−
.9

26
**
−
.8

56
**
−
.8

51
**
−
.6

96
**

.0
19

−
.2

19
−
.7

50
**
−
.5

60
**

LP
L D

E
N
S

−
.9

04
**
−
.9

04
**
−
.7

07
**
−
.6

70
**
−
.7

15
**
−
.6

54
**
−
.1

84
−
.3

38
*
−
.7

08
**
−
.5

80
**

R
B

−
.9

76
**
−
.9

76
**
−
.8

19
**
−
.7

93
**
−
.8

29
**
−
.7

34
**
−
.1

67
−
.3

75
*
−
.7

94
**
−
.6

46
**

R
B D

E
N
S

−
.9

11
**
−
.9

11
**
−
.7

06
**
−
.7

28
**
−
.7

35
**
−
.6

74
**
−
.2

19
−
.3

96
**
−
.7

30
**
−
.6

14
**

SH
S

−
.9

85
**
−
.9

85
**
−
.8

20
**
−
.7

68
**
−
.8

84
**
−
.8

27
**
−
.2

91
−
.4

87
**
−
.8

71
**
−
.7

47
**

SH
S D

E
N
S

−
.9

07
**
−
.9

07
**
−
.6

94
**
−
.6

98
**
−
.7

87
**
−
.7

73
**
−
.3

70
*
−
.5

38
**
−
.8

12
**
−
.7

26
**

SU
M

−
.9

78
**
−
.9

78
**
−
.8

06
**
−
.7

54
**
−
.8

47
**
−
.7

86
**
−
.2

50
−
.4

44
**
−
.8

34
**
−
.7

04
**

SU
M

D
E
N
S

−
.8

95
**
−
.8

95
**
−
.6

74
**
−
.6

41
**
−
.7

32
**
−
.7

26
**
−
.3

32
*
−
.4

76
**
−
.7

68
**
−
.6

78
**

T
F

−
.9

45
**
−
.9

45
**
−
.7

46
**
−
.7

04
**
−
.7

85
**
−
.7

46
**
−
.2

77
−
.4

45
**
−
.7

96
**
−
.6

81
**

T
F D

E
N
S

−
.8

43
**
−
.8

43
**
−
.5

95
**
−
.5

43
**
−
.6

75
**
−
.7

04
**
−
.3

78
*
−
.4

84
**
−
.7

39
**
−
.6

65
**

Ta
bl
e
5.
4.

Sp
ea
rm

an
co
rr
el
at
io
ns

be
tw

ee
n
an

tip
at
te
rn
s
an

d
m
ai
nt
ai
na

bi
lit
y

41

Chapter 5. The Connection between Antipatterns and Maintainability in C++

Lin
ear

Reg
.

MLP RE
PT

ree

M5P SM
O Reg

.

MI .9991 .9969 .9079 .9983 .9993
MI* .9825 .9968 .8695 .9727 .9971
MI2 .9991 .9969 .9635 .9983 .9993
MI2* .9864 .9689 .9033 .9799 .9858
Analysability .8210 .9085 .7632 .9097 .9151
Modifiability .8082 .9223 .7286 .8138 .8348
Modularity .9082 .8915 .7461 .7589 .8757
Reusability .8247 .8927 .6777 .6222 .8455
Testability .8637 .9547 .8564 .8874 .8903
Maintainability .8513 .9318 .7619 .8179 .8556

Table 5.5. Correlation coefficients of the machine learning models

the main goal is to reduce coupling by moving or extracting methods or fields, or even
identifying a common superclass.

Refused Bequests and Temporary Fields seem less dangerous. The former can be
fixed with “Replace Inheritance with Delegation” or by extracting an even more ab-
stract superclass to house just the common members, while the latter is often corrected
with “Extract Class” – which can coincide with extracting a method object.

And finally, Long Parameter Lists, Feature Envies, Lazy Classes and Large Class
Data instances can be more easily tolerated. However, these can also be eliminated us-
ing techniques given in [28]. Long Parameter Lists have “Preserve Whole Object”
or “Introduce Parameter Object”; Feature Envy has “Move Method” or “Extract
Method”; Lazy Classes may vanish if their functionality is inlined or their connec-
tions are introduced to each other without the middle man; and lastly, Large Class
Data can be solved – again – with “Extract Class”.

The key point of these observations is that developers should concern themselves
more forcefully with the organization of source code, and not just its behavior, since
the work they put in in advance seems to lead to an easier maintenance phase, while
the performance overhead introduced by the extra classes and methods is negligible.

5.4 Threats to Validity
There are a few aspects that might possibly threaten the validity of our results. One
is that the antipattern matches might not be correct. While finding antipattern in-
stances is far from being a solved problem, we tried to acquire reliable statistics by
implementing widely recognized antipatterns with usual/recommended threshold val-
ues and previously published tooling support.

Imprecise maintainability scores could also skew our results. To combat this, we
decided to utilize static, independent source code metrics and expert opinion-based
weight determination, all the while adhering to the guidelines of an international stan-
dard.

To ensure that the connections we uncover were not just coincidental, we only
included statistically significant correlations in this study. The connections could also

42

Chapter 5. The Connection between Antipatterns and Maintainability in C++

be attributed to the fact that both the maintainability scores and the antipattern
instances are – at least partially – based on the same static source code metrics. Despite
the overlap, there are important differences, because the two concepts do not rely on
the same aggregation level of metrics (method/class or system level) and antipatterns
incorporate other structural cues as well. We would also argue that the results could
be meaningful even if the base set of metrics were identical, given that the mapping of
concepts to metrics is plausible.

Lastly, the generalizability of these findings could be largely affected by the number
of subject systems analyzed. Although a benchmark made from 45 versions of such
a huge and complex software system can hardly be regarded as small, we intend to
include more revisions and different applications as well.

5.5 Summary
In this chapter, we analyzed 45 revisions of Firefox and calculated static source code
metrics for each of them. Using these metrics, specific threshold parameters, and struc-
tural information, we matched the previous 9 types of antipatterns and their respective
densities in each revision. Also utilizing these metrics, we calculated maintainability
values based on the ISO/IEC 25010 software quality framework. After correlating
these two sets of data, we found statistically significant inverse relationships, which we
consider another step towards objectively demonstrating that antipatterns have an ad-
verse effect on software maintainability. Moreover, our machine learning experiments
indicated that regression techniques can attain high precision in predicting maintain-
ability from antipattern information alone, suggesting that antipatterns can be valuable
besides – or even instead of – static source code metrics in software maintainability
assessment.

43

Part II

Performance Optimization

“Performance is the best way to shut people up.”
— Marcus Lemonis

6
Qualitative Prediction Models

6.1 Overview
As technological advancements make GPUs – or other alternative computation units
– more widespread, it is increasingly important to question whether the CPU is still
the most efficient option for running specific applications. In this chapter, we describe
a method for deriving prediction models that can select the hardware platform best
suited for a given algorithm with regards to one of three different aspects: time, power,
or energy consumption. These models are built by applying various machine learning
methods where the predictors are calculated from the source code (using static analysis
techniques), and the output of the models is the optimal execution platform.

To build the desired prediction models, first we take a number of algorithms –
referred to as benchmarks – that have functionally equivalent sequential and parallel
(OpenCL and OpenMP-based) implementations. Then, we extract multiple size, cou-
pling and complexity metrics from the main functional parts of every benchmark using
static analysis. Next, we collect measurements on the time and power required to run
these algorithms on different platforms and assign labels to them based on which plat-
form performed the best. Finally, we apply multiple machine learning methods that
use the metrics we calculated to predict the optimal execution platform for a system.

These steps yield models – one for every machine learning approach – that are
capable of classifying new systems as well. There are no prerequisites for using these
models other than extracting the same static metrics from the source code of the new
subject system that were used in the model building phase. With those metrics, one of
the previously built models can be utilized to predict the optimal hardware platform
for running the subject system.

The chapter is organized as follows: In the next section, we list some works related
to ours. Then, in Section 6.3 we describe our methodology in detail. In Section 6.4, we
introduce the benchmarks we used, while in Section 6.5 we elaborate on dynamic mea-
surements. Afterwards, in Section 6.6 we discuss the static metric extraction method.
In Section 6.7, we show the preliminary results we have achieved. Lastly, in Section 6.8
we draw our conclusions.

47

Chapter 6. Qualitative Prediction Models

6.2 Related Work
As heterogeneous execution environments became more and more prevalent in recent
years, it also became increasingly important to study their individual and relative
performances. There is a multitude of related work in the area, with fundamentally
different approaches.

Some researchers tried to characterize a particular platform alone. For example,
Ma et al. [56] focused only on GPUs and built statistical models to predict power
consumption. Brandolese et al. [16] concentrated on CPUs by statically analyzing C
source code and estimating their execution times. For the OpenMP environment, Li
et al. [53] derived a performance model, while Shen et al. [81] compared OpenMP to
OpenCL using some of the same benchmark systems we used. Note that although we
share some source benchmarks with Shen et al., we focus on predicting performance
instead of analyzing the actual, dynamic performance of concrete implementations. For
FPGAs, Osmulski et al. [68] introduced a tool to evaluate the power consumption of a
given circuit without the need to actually test it. It is also evident from these studies
that most of this type of research targets a single aspect (time or power). We, on the
other hand, consider multiple platforms and multiple aspects as our goal is to predict
the optimal environment from static information alone.

Others are more closely related to our current work as they focus on cross-platform
optimization. Yang et al. [97] generalized the expected behavior of a program on an-
other platform by extrapolating from partial execution measurements, while Takizawa
et al. [87] aimed at energy efficiency by dynamically selecting the execution environ-
ment at run time. Unlike these works, we use dynamic information only for building
the prediction models, which then can be used with static data alone.

A subset of these cross-platform works concentrate on compiled or intermediate
program representations. Kuperberg et al. [51] analyzed components and platforms
separately to avoid a combinatorial explosion. They built parametric models for per-
formance prediction, but these require “microbenchmarks” for each platform and work
with Java bytecode only. Marin and Mellor-Crummey [59] also processed application
binaries and built architecture-neutral models, which were then used to estimate cache
misses and execution time on an unknown platform. One key difference between these
studies and our approach is that we use the source code of the training benchmarks
and not their compiled forms.

6.3 Methodology
This section contains the detailed description of our concept of a prediction model and
how it is built. Using source code metrics produced by static analysis, our model is able
to predict the computing unit that allows the fastest or most energy efficient execution
of a given program in advance. The model is qualitative, so it does not predict the
possible gain of selecting one execution platform over another, only the best platform
itself. The model is built following these steps:

• Extract multiple size, coupling, and complexity metrics from the main functional
parts of the systems we analyze,

• collect measurements of the time, power, and energy required to run them on
different platforms, and

48

Chapter 6. Qualitative Prediction Models

• use various machine learning algorithms to build models that are able to predict
the optimal platform for a program with a specific set of metric values.

Figure 6.1. The main steps of the model creation process

The steps and intermediate states of our methodology are outlined in Figure 6.1.
Each of these steps will be detailed in its own section:

• The selected benchmarks in Section 6.4,

• the dynamic measurements in Section 6.5,

• the static analysis in Section 6.6.1,

• the chosen metrics relevant for representing the encapsulated algorithms in Sec-
tion 6.6.2,

• the metric aggregation process and its result in Section 6.6.3, where a single set
of metrics is collected for every benchmark,

• the platform labeling and the combination of labels and metrics into instances in
Section 6.6.4, and finally,

• the model training and its results in Section 6.7.

Once a prediction model is in place, new systems can be analyzed to predict their
optimal execution platform. Figure 6.2 depicts the steps of applying a model to a new
subject system (unknown to the trained model). To determine the optimal execution
platform of a new system, all we have to do is calculate the same source code metrics
(via static analysis) that we used for training the model, and let the model decide.

Figure 6.2. Usage of a previously built model on a new subject system

49

Chapter 6. Qualitative Prediction Models

6.4 Benchmarks
For subject systems to train our models on, we used the algorithms found in two self-
contained benchmark suites: Parboil and Rodinia. The Parboil suite [85] provides a
combination of sequential, OpenCL, and OpenMP implementations for 11 programs.
Rodinia [20] contains 18 benchmark programs with OpenCL and OpenMP implemen-
tations, but without the sequential equivalents. In this work, not all of these programs
were measured, either because they had only OpenCL or only OpenMP implementa-
tions, but not both, or because their input sets were too complex. Note that during
metric calculation (see Section 6.6), further systems needed to be skipped either be-
cause of a faulty build (inherent include errors) or because a single main file contained
the whole logic of the program and therefore it could not be separated from the OpenCL
specific overhead, causing large deviations in the computed metrics. The final number
of systems that have both metric data and measurements are 7 and 8 for Parboil and
Rodinia, respectively.

6.5 Measurements
In order to train our platform prediction models, we needed to obtain dynamic mea-
surements for execution time, power consumption, and energy usage. We compiled
the benchmarks with g++ 4.8.2 using standard -fopenmp or -lOpenCL flags, and ran
them on a platform built from 2 Intel Xeon E5-2695 v2 CPUs (30M Cache, 2.40 GHz),
8 × 8GB of DDR3 1600 MHz memory, a Supermicro X9DRG-QF mainboard, an AMD
Radeon R9 290X VGA card, and an Alpha Data ADM-PCIE-7V3 FPGA card. Ex-
ecution time could have been easily checked using software-based timers only. Power
and energy, on the other hand, required a more sophisticated approach. So we addi-
tionally applied a universal hardware-extension solution and used our own open-source
RMeasure library [48] that provides a unified API, hiding the implementation details.

Section 6.5.1 briefly overviews some of the already available performance and energy
consumption measurement methods, while Section 6.5.2 introduces RMeasure and how
it incorporates these methods. Next, Section 6.5.3 discusses measurement precision.

6.5.1 Measurement Methods
For the purpose of this overview, we classify methods either as internal – if the compo-
nent under measurement can introspect its own behavior and expose that information,
typically via performance counter registers – or as external – if some external hardware
is needed for the measurement.

The most well-known internal measurement method is Intel’s Running Average
Power Limit (RAPL) [39] solution introduced in their Sandy Bridge microarchitecture,
which gives access to both cycle count and energy consumption data for different phys-
ical domains – like sockets, core and uncore elements, and DRAM – through model-
specific registers (MSRs). The two major GPU manufacturers, AMD and NVIDIA,
both provide libraries and APIs to access similar hardware performance counters in
their graphics processors. However, the publicly accessible AMD GPU Performance
API [2] provides no access to power or energy consumption counters, while the NVIDIA
Management Library (NVML) [66] is able to report the current power draw only for
the high-end boards, like the Tesla K10/20/40 cards. Internal methods are not limited

50

Chapter 6. Qualitative Prediction Models

to the x86 world only, as recent ARM cores have built-in performance monitoring units
as well. However, up until the latest ARMv8 processors, these were performance-only,
with no unified access to power data.

When internal methods are not available, – as it is evident from the above para-
graph, this happens mostly for power usage monitoring – external solutions have to be
applied. The physics behind most of such external metering methods is similar: a shunt
resistor is inserted into the power line of a component, the voltage drop is measured
on this resistor, and an instrumentation amplifier is used to make this voltage readable
by conventional ADCs (such as the ones used by embedded devices, microcontrollers,
or even external test equipments, e.g., oscilloscopes). Knowing the value of the resistor
and the voltage of the power rail, the momentary power of the measured component
is easily computed with the P = Urail · (Udrop/Rshunt) formula at any given sampling
point, while integrating these results over time calculates the energy consumption.
Some ARM devices have measurement points, to which an ARM Energy Probe [7] can
be attached that works based on this concept and emits measurement result on a USB
interface. Some accelerator cards are also instrumented for power measurements using
this technique. E.g., the Xilinx Virtex VC709 FPGA development board has shunt
resistors inserted into all internal power rails, and the resulting analog values are fed
to a DC/DC converter controller chip, which reports power usage information digitally
via the external Power Management Bus serial interface.

Since not all computation devices in our platform support a built-in power and
energy measurement method, we designed and implemented a universal solution based
on the above principles. We designed a printed circuit board (PCB) which can be
conveniently placed inside the platform and holds the shunt resistor and amplifier
needed for measuring a single computation device or power line. For each computation
device, we used one of these circuits. To make the insertion of the circuits into the
power lines the least intrusive and also reversible, we did not cut the wires of the power
supplies, but we obtained different extension cords and modified them to be used with
the measurement PCBs. For both CPU sockets, their 8-pin EPS12V power connectors
are intercepted. For the GPU card, as it draws power both from the PCI-Express slot
and from an additional PCI-Express power connector, both its rails are routed to a PCB
(the former with the help of a PCI riser). Finally, we used a computer-controlled multi-
channel measurement device, a PicoScope 4824 oscilloscope, to capture the output of
the PCBs over time.

6.5.2 The RMeasure Library
The main goal of our RMeasure performance and energy monitoring library [48] is to
provide a unified interface for retrieving performance and energy consumption data
about the system, independent of the applied and/or available measurement methods.
Thus, the interface handles built-in (e.g., performance counter-based) and external
(e.g., shunt & oscilloscope-based) measurements alike, while hiding all implementation
details.

The core interface of the library consists of just a few base classes, which represent
the concept of a measurement method (e.g., RAPL counter-based or PicoScope-based)
and stand for an actual measurement and its results. All supported measurement meth-
ods expose what components of the system they can measure and what kind of infor-
mation they are able to provide. The components of the system are identified by their

51

Chapter 6. Qualitative Prediction Models

HPP-DL component IDs [55]. The HPP-DL path notation provides a manufacturer-
and architecture-independent abstraction layer to specify hardware components. The
measured information can be an arbitrary combination of the following:

• energy consumption (in Joules),

• minimum, maximum, and average power (in Watts),

• elapsed time (also known as wall-clock time, in seconds), and

• time spent in kernel or in user mode (in seconds).

The API of RMeasure is intentionally simple; however, it can have several compo-
nents working together under the hood in a full configuration. The main component
of RMeasure exposes the public API, but there are certain tasks that needed to be
separated from that main part. Specifically, if the external oscilloscope-based mea-
surement method is enabled, the control service of the scope – whose responsibility is
to control the oscilloscope via the PicoScope API [72], configure the sample rate and
the channels, run in a gap-less continuous streaming mode, and retrieve the raw data
– needs to be run on a separate unit, because processing the data requires significant
CPU power that could distort the measurements if ran on the measured computer.
The RAPL-based internal measurement method also has specific needs, since access to
the machine specific registers requires root privileges. Therefore, it was useful for us to
organize these into a separate service. The setup of a full measurement configuration
is shown in Figure 6.3.

6.5.3 Measurement Precision
Since a service is constantly running in the background on the same computer as
the measured code (at least for RAPL counters), it causes additional CPU load and
therefore additional power consumption, which can have an effect on the precision
of the measurements. To understand the introduced overhead, we took two sets of
measurements, one using the service, and another with a slightly modified library
setup where no services were running on the measured system. In the latter case, the
application directly accessed the RAPL energy counters, thus requiring root permission.
According to the results, the overhead on energy consumption, average power and
running time were all below 5% on average.

6.6 Metric Extraction
In this section, we briefly describe the process of static analysis for static source code
metric calculation. As outlined in Section 6.3, this static source code information is
then used to predict the target execution platforms of future subject systems. We list
all the selected metrics used in the machine learning algorithms as predictors, and also
present how we aggregated the function level metrics to system level.

52

Chapter 6. Qualitative Prediction Models

Figure 6.3. RMeasure library overview

6.6.1 Static Analysis
Metric calculation was performed – again – following the guidelines from Section 2.1
for both benchmark suites. Considering the procedural structure of the benchmark
systems, we used function level metrics as the basis for further processing.

Note that the precision of the source code metrics could be improved by using block-
level extraction, but that would require the manual annotation of every benchmark
system (see Chapter 7). Moreover, the current approach does not use any dynamic in-
formation from the source code yet, metrics are static, and do not contemplate run time
problems such as caching or memory allocation. That is because dynamic information
is much more difficult to collect, but it should be definitely considered for further im-
provement of the prediction models. As a first step, we believe static information offers
a good trade-off between efficient data collection and prediction accuracy.

6.6.2 Metric Definitions
The following metrics were computed and used as predictors for the classifications:

• McCabe’s cyclomatic complexity (McCC) is defined as the number of de-
cisions within the specified function plus 1, where each if, for, while, do. . . while
and ?: (conditional operator) counts once, each N-way switch counts N+1 times
and each try block with N catch blocks counts N+1 times. (E.g., else does not
increment the number of decisions.)

53

Chapter 6. Qualitative Prediction Models

• Nesting level (NL) for a function is the maximum of the control structure
depth. Only if, switch, for, while and do. . . while instructions are taken into
account.

• Nesting level else-if (NLE) for a function is the maximum of the control
structure depth. Only if, switch, for, while and do. . . while instructions are taken
into account but if. . . else if does not increase the value.

• Number of incoming invocations (NII) for a function is the cardinality of
the set of all functions that invoke this function.

• Number of outgoing invocations (NOI) for a function is the cardinality of
the set of all function invocations in the function.

• Logical lines of code (LLOC) is the count of all non-empty, non-comment
lines in a function.

• Number of statements (NOS) is the number of statements inside a given
function.

Note that all of these metrics can be statically computed. Nevertheless, they can
be used to predict dynamic behavior fairly well, as we will demonstrate in Section 6.7.

6.6.3 Metric Aggregation
The output of the static analysis is a set of metrics for every function in every im-
plementation variant of every benchmark system. To aggregate these metrics into a
system-level set for each benchmark system, first we combined the metrics of multiple
functions per benchmark implementation. The method we used for aggregation in the
current experiment setup is addition, but we already note that different, potentially
more complex functions, perhaps even different ones per metric type might be appli-
cable. However, although addition might not always be the best aggregation method
for specific metrics (e.g., inheritance depth, or comment density), it is a natural and
expressive choice for the metrics we use in this given scenario.

Next, we inspected the differences in the results per implementation variant for a
given benchmark system. We noticed that while the sequential and OpenMP variant
nearly always yielded the same – or negligibly different – metrics, the OpenCL variant
was significantly larger. This turned out to be because:

• the main files (main.cpp, main.cc, main.c) of the OpenCL variants in every
benchmark system increased the size and complexity because of the integration
characteristics of OpenCL itself (the represented algorithms were not part of the
main files), and

• the source code of the OpenCL variant frequently contained OpenCL specific
headers and files which implemented functionality that the other variants as-
sumed to be implicitly available.

By filtering out these “unnecessary files”, the computed metrics “converged” to
a single set and this supports that they really only represent the enclosed algorithm.

54

Chapter 6. Qualitative Prediction Models

Benchmark McCC NL NLE NII NOI LLOC NOS TimeLabel PowerLabel EnergyLabel

Mri-Q 20 6 6 6 17 129 50 OCL-GPU OCL-GPU SEQ-CPU
Mri-Gridding 24 11 11 6 6 135 56 SEQ-CPU SEQ-CPU SEQ-CPU
Spmv 5 2 2 2 15 48 15 SEQ-CPU SEQ-CPU SEQ-CPU
Lbm 59 35 35 19 25 519 135 OCL-GPU OCL-GPU SEQ-CPU
Stencil 8 4 4 2 19 60 18 OCL-GPU OCL-GPU SEQ-CPU
Histo 13 5 5 3 10 97 33 SEQ-CPU SEQ-CPU SEQ-CPU
Cutcp 53 18 18 9 29 340 157 OCL-GPU OCL-GPU SEQ-CPU

Table 6.1. Training instances from the Parboil suite

Benchmark McCC NL NLE NII NOI LLOC NOS TimeLabel PowerLabel EnergyLabel

Streamcluster 249 66 66 49 160 1263 735 OCL-GPU OCL-GPU OMP-CPU
Leukocyte 672 134 134 99 260 2426 1627 OCL-GPU OCL-GPU OMP-CPU
Kmeans 100 22 22 9 53 487 240 OCL-GPU OCL-GPU OMP-CPU
Nw 21 3 3 3 14 104 58 OMP-CPU OMP-CPU OMP-CPU
Bfs 17 5 5 2 13 107 56 OMP-CPU OMP-CPU OMP-CPU
Pathfinder 20 6 6 3 10 87 52 OMP-CPU OMP-CPU OMP-CPU
Cfd 156 62 54 70 142 1424 776 OCL-GPU OCL-GPU OMP-CPU
Lavamd 85 6 6 7 17 370 128 OCL-GPU OCL-GPU OMP-CPU

Table 6.2. Training instances from the Rodinia suite

The remaining marginal differences were handled by taking the maximum of the values
across the variants.

This way we got one single set of metrics for every benchmark system, capturing
its characteristics.

6.6.4 Configuration Selection
After we have obtained measurements for each aspect (time, power, and energy) in each
implementation variant (sequential, OpenMP on CPU and OpenCL on GPU) for each
benchmark system, the question is not how fast (or energy efficient) a given algorithm
will be, but on which execution platform will it be the fastest (or most energy efficient).
To this end, we assigned three labels to each benchmark system – one for each aspect –
denoting the best execution platform for each aspect. The possible platform labels are
SEQ-CPU, OMP-CPU and OCL-GPU for the CPU-based sequential, CPU-based OpenMP
and GPU-based OpenCL configurations, respectively.

The resulting .csv files for the systems in the two benchmark suites can be seen in
Table 6.1 and Table 6.2. Note, that while Rodinia (Table 6.2) only has the two possible
labels present in its table, Parboil (Table 6.1) could have all three labels, but OMP-CPU
is not present there because it was never optimal.

These results were then written into .arff files with the last three label columns
interpreted as nominal values. The .arff format (Attribute-Relation File Format) is
the internal data representation format of Weka [34]. It is an ASCII text file that
describes a list of instances sharing a set of attributes. These attributes can be strings,
dates, numerical values and nominal values, the last of which can be used to represent
class labels.

Tables 6.1 and 6.2 reveal that the optimal platform for the energy aspect was
constant for both benchmark suites, and the optimal platform for the power and time
aspects were so strongly correlated that they were always identical in our sample.
Because of this, we chose not to consider energy labels, and to merge power and time
labels into a single one for further experiments.

55

Chapter 6. Qualitative Prediction Models

6.7 Results
In this section we describe the types of prediction models we built as well as how we
built them. We also present the validation results of the models created by different ma-
chine learning algorithms. The results were validated with 4-fold cross-validations [6].

6.7.1 Machine Learning
Using the data shown in tables 6.1 and 6.2, we were able to run various machine learning
algorithms to build models that can predict the platform labels based on the source
code metrics. We performed the machine learning with the wrapper script shown in
Listing 6.1.

Listing 6.1. Machine learning Weka script
for BENCH in parboil rodinia
do
java −cp weka.jar weka.core.converters.CSVLoader −N 8 ../java/${BENCH}.csv > ${BENCH}.←↩

arff
touch ${BENCH}.txt
for CLASSIFIER in trees.J48 bayes.NaiveBayes functions.Logistic functions.SMO
do

for CLASS in 8 # possibly more
do

java −cp weka.jar weka.classifiers.${CLASSIFIER} −t ${BENCH}.arff −c ${CLASS} −i −x←↩
4 >> ${BENCH}.txt

done
done

done

6.7.2 Validation of the Models
Our first experiment – conducted using the J48 decision tree – produced 100% precision
in both cases, which is not surprising as there is a clear division between the two
possible labels using only a single metric. This means that we can select a metric and
a corresponding threshold so that all the systems having a higher metric value than
that will fall into one class, while systems with a lower metric value will fall into another
class. The learning algorithms can find these values and achieve 100% precision. For
Parboil, it was the NOI metric (over value 15 the label is OCL-GPU, otherwise it is
SEQ-CPU), and for Rodinia, it was the NII metric (over value 3 the label is OCL-GPU,
otherwise it is OMP-CPU). These simple separations are illustrated in Table 6.3 and
Table 6.4. Note that for Rodinia, every other metric could have provided the same
linear separation that NII did.

The final decision trees produced by the J48 algorithm for Parboil (left) and Rodinia
(right) can be seen in Figure 6.4.

The Logistic regression model [52] – similarly to the decision tree – is perfectly
accurate because of the above-mentioned clear separation based on numeric predictors.

Next, we tried the Naive Bayes classifier that yielded 71.4% precision for Parboil
and 100% precision for Rodinia. The confusion matrix for the first case can be seen
in Table 6.5. The upper left value shows how many instances were correctly identified
as OCL-GPU and the upper right value shows the number of SEQ-CPU instances that
were wrongly classified as OCL-GPU. Similarly, the lower right value is the number of

56

Chapter 6. Qualitative Prediction Models

McCC NL NLE NII NOI LLOC NOS Label

53 18 18 9 29 340 157 OCL-GPU
59 35 35 19 25 519 135 OCL-GPU
8 4 4 2 19 60 18 OCL-GPU

20 6 6 6 17 129 50 OCL-GPU

5 2 2 2 15 48 15 SEQ-CPU
13 5 5 3 10 97 33 SEQ-CPU
24 11 11 6 6 135 56 SEQ-CPU

Table 6.3. Clear separation of the Parboil benchmark suite by the NOI metric

McCC NL NLE NII NOI LLOC NOS Label

672 134 134 99 260 2426 1627 OCL-GPU
156 62 54 70 142 1424 776 OCL-GPU
249 66 66 49 160 1263 735 OCL-GPU
100 22 22 9 53 487 240 OCL-GPU
85 6 6 7 17 370 128 OCL-GPU

21 3 3 3 14 104 58 OMP-CPU
20 6 6 3 10 87 52 OMP-CPU
17 5 5 2 13 107 56 OMP-CPU

Table 6.4. Clear separation of the Rodinia benchmark suite by the NII metric

correctly classified SEQ-CPUs, while the lower left is the number of OCL-GPUs that were
– falsely – classified as SEQ-CPU.

Ultimately, we used a sequential minimal optimization function (SMO). It produced
a 71.4% and a 75% precision for Parboil and Rodinia, respectively. The corresponding
confusion matrices can be seen in Table 6.5 (Parboil, identical to the Bayes case) and
Table 6.6 (Rodinia).

Although these findings can hardly be considered widely generalizable due to the
small number of instances, the main result of this study is the streamlined process
by which they were produced. With the described infrastructure in place, making the
models more precise is largely just a matter of integrating more benchmark source code
into the analysis.

Figure 6.4. The final J48 decision trees for Parboil (left) and Rodinia (right)

57

Chapter 6. Qualitative Prediction Models

Predicted

OCL-GPU SEQ-CPU

Measured OCL-GPU 2 2
SEQ-CPU 0 3

Table 6.5. The Bayes/SMO confusion matrix for Parboil

Predicted

OCL-GPU OMP-CPU

Measured OCL-GPU 3 2
OMP-CPU 0 3

Table 6.6. The SMO confusion matrix for Rodinia

6.8 Summary
The goal of this chapter was to present our work addressing the creation of prediction
models that are able to automatically determine the optimal execution platform of a
program (i.e., sequential on CPU, OpenCL on GPU, or OpenMP on CPU). To this
end, we developed a highly generalizable and reusable methodology for producing such
models. Moreover, these models do not depend on dynamic behavior information so
they can be easily applied for classifying new subject systems.

Building these models required a set of algorithms that are each implemented on
every relevant target platform. After thorough research, we found two independent
benchmark suites containing multiple systems that fulfill this criterion. To be able
to build the necessary models, we also needed measurements of the time, power, and
energy consumption of the algorithms on these platforms. For this, we used a universal
solution to measure the power and energy consumption of the hardware components.
We then successfully applied our methodology on these systems to create prediction
models based on different machine learning approaches, using source code metrics as
predictors.

The resulting models are qualitative, which means that they can predict the optimal
execution platform, but not how much better it is compared to the other alternatives.
Nevertheless, since all the necessary performance information is available, the method-
ology will be later expanded to produce quantitative models that will make it possible
to estimate even the differences.

Overall, we consider the results of this chapter encouraging. Despite the small
number of subject systems, we were able to demonstrate that statically computed
metrics are appropriate and useful for platform selection. For example, some of the
preliminary models we built reached a 100% accuracy in inferring the optimal execution
target. The models are promising by themselves, but we feel that our main result
here is the methodology behind their creation. We now have a flexible, expandable
and configurable infrastructure in place, and the generalizability of its output models
depend only on the number of initial benchmark systems we use for training.

58

“Every line is the perfect length if you don’t
measure it.”

— Marty Rubin

7
Quantitative Prediction Models

7.1 Overview

The previous chapter deals with dynamic platform selection to a certain degree, but our
ultimate goal in this domain was creating quantitative models – i.e., not only predicting
the optimal platform, but also estimating the expected change in performance. Other
obvious opportunities for improvement were extending the small number of bench-
marks, capturing even more static qualities of the core algorithms (or “kernels”) they
contain, and even pinpointing those kernels more precisely.

To this end, we enhanced our former approach to aim for gain ratios. Additionally,
we implemented numerous new source code metrics, – relying heavily on the Milepost
GCC compiler [29] – refined kernel identification with manual benchmark modifica-
tions and block-level metric extraction, and even included FPGAs as a new platform
option. Although we also tried to increase the number of benchmarks, this increase was
mostly counteracted by the exclusions the introduction of the FPGA platform brought.
However, the benchmarks, paired with the extended study dimensions detailed in Sec-
tion 7.5.1, still lead to significantly bigger learning tables.

The research question we aim to answer is the following:
Research Question: Can the performance gain of porting an algorithm to another

computation element be predicted using only static information?

In order to encourage further research in this area, we provide the source code of
our modified benchmarks [12] along with their static metrics and dynamic measure-
ments [11].

The rest of the chapter is organized in the following manner: As the related work
still applies from Chapter 6, the next section immediately focuses on the relevant
changes in methodology. Then, Section 7.3 introduces the modified benchmarks, while
in Section 7.4 we describe our extensions to the static metric extraction in detail. In
Section 7.5 we show the results that we have achieved. Lastly, in Section 7.6 we draw
our conclusions.

59

Chapter 7. Quantitative Prediction Models

7.2 Methodology
This section contains the detailed description of the differences and additions to our
methodology from Chapter 6 that enable us to build quantitative prediction models.
Using these changes, our models will be able to predict – quite adequately – not only
the computing unit that allows the fastest or most energy efficient execution of a given
program, but also the amount of improvement in terms of performance, power, and en-
ergy consumption that can be expected. For even finer grained measurements, we only
considered the core of the algorithms, the computing kernels represented in each bench-
mark program and none of their preparation steps, e.g., OpenCL platform or device
initializations, etc. We achieved this by “tagging” the appropriate parts of the bench-
marks with a special STATIC_BEGIN – STATIC_END C/C++ macro pair, which required
extensive manual source code comprehension and modification. We also used this tag-
ging approach to separate the dynamic measurements into initialization/cleanup, data
transfer, and kernel execution stages with differently parametrized DYNAMIC_BEGIN –
DYNAMIC_END macros.

From that point forward, however, the models are built following the same overall
concept we outlined in Section 6.3. The only difference from an abstract perspective
is that the computed source code metrics are now combined with gain ratios instead
of “best platform” class labels. Each of the notable deviations will be detailed in its
dedicated section:

• The benchmark set extension in Section 7.3,

• the updated static analysis in Section 7.4.1,

• the significantly augmented set of metrics in Section 7.4.2,

• the refined metric aggregation process and its result in Section 7.4.3,

• the combination of different dynamic measurements into gain ratios in Sec-
tion 7.5.1, and finally,

• the model training and its results in sections 7.5.2 and 7.5.3.

7.3 Benchmarks
For this study, the already familiar Parboil and Rodinia benchmark suites were joined
by PolyBench/ACC [33], which is an extended version of PolyBench [74], and contains
29 programs in multiple implementations. We measured a subset of these three bench-
mark suites, as some programs were excluded either because of dynamic problems –
they were not implemented in all necessary languages or could not be executed on
all necessary platforms – or static issues like a faulty build or inherent include errors.
The final number of systems that have both metric data and measurements (for both
CPU, GPU, and FPGA) are 3 for Parboil (mri-q, spmv, and stencil), 4 for Rodinia
(bfs, hotspot, lavaMD, and nn) and 9 for PolyBench/ACC (atax, bicg, convolution-2d,
doitgen, gemm, gemver, gesummv, jacobi-2d-imper, and mvt).

60

Chapter 7. Quantitative Prediction Models

7.4 Metric Extraction

7.4.1 Static Analysis
For metric calculation, we – predictably – ran our static code analysis toolchain [26]
on all three benchmark suites. However, instead of using method or function level
granularity for metrics as “atoms”, this time we implemented block level metrics to
isolate the characteristics of the kernels and exclude every “wrapper” and “initializer”
functionality. We calculated these block level metrics by analyzing only the appropriate
source code parts between STATIC_BEGIN and STATIC_END macros. For static analysis,
these macros were resolved to [[rpr::kernel]]{ and } respectively, thereby enclosing
the relevant source code in a block that has a REPARA [49] C++ attribute attached
to it. The ability to use arbitrary attributes is a new feature in C++11 that makes this
“tagging” possible.

Note that the current approach still does not use any dynamic information from
the source code yet, metrics are static, and do not contemplate runtime problems such
as memory aliasing, caching and memory allocation.

7.4.2 Metric Definitions
The metrics we computed and used as predictors for the classifications and regressions
are listed below. It should be noted that the word “block” may refer to either basic
blocks (which is a control flow concept) or the above-mentioned tagged source code
blocks. To help differentiate between the meanings, we always add a “(tagged)” prefix
in the ambiguous cases. Also note that metrics starting with “ft” are adopted directly
from the feature list of the Milepost GCC compiler [29].

• Lines of code (LOC) is the count of every line in a block.

• Logical lines of code (LLOC) is the count of all non-empty, non-comment
lines in a block.

• Nesting level (NL) for a block is the maximum of the control structure depth.
Only if, switch, for, while and do. . . while instructions are taken into account.

• Nesting level else-if (NLE) for a block is the maximum of the control structure
depth. Only if, switch, for, while and do. . . while instructions are taken into
account but if. . . else if does not increase the value.

• McCabe’s cyclomatic complexity (McCC) is defined as the number of de-
cisions within the specified block plus 1, where each if, for, while, do. . . while and
?: (conditional operator) counts once, each N-way switch counts N+1 times and
each try with N catches counts N+1 times. (E.g., else does not increment the
number of decisions.)

• Number of statements (NOS) is the number of statements inside a block.

• Number of outgoing invocations (NOI) for a block is the number of all
function invocations inside it.

61

Chapter 7. Quantitative Prediction Models

• Loop nesting level (LNL) is the maximum loop depth inside the block. (The
same as NL, but without the if s, switches, trys and ternary operators). We also
computed LNL1, LNL2, and LNL3 that contain the number of loops that were
at depths 1, 2, and 3, respectively.

• Number of expressions (EXP) is the number of expressions in the block.

• Number of array accesses (ARR) is the number of array subscript expressions
in the block. Also, ARR% is defined as the ratio ARR/EXP .

• Number of multiplications (MUL) is the number of multiplications (* or
*=) in the block. Also, MUL% is defined as the ratio MUL/EXP .

• Number of additions (ADD) is the number of additions (+ or +=) in the
block. Also, ADD% is defined as the ratio ADD/EXP .

• ft1 is the number of basic blocks in the (tagged) block.

• ft2 is the number of basic blocks with a single successor.

• ft3 is the number of basic blocks with two successors.

• ft4 is the number of basic blocks with more than two successors.

• ft5 is the number of basic blocks with a single predecessor.

• ft6 is the number of basic blocks with two predecessors.

• ft7 is the number of basic blocks with more than two predecessors.

• ft8 is the number of basic blocks with a single predecessor and a single successor.

• ft9 is the number of basic blocks with a single predecessor and two successors.

• ft10 is the number of basic blocks with a two predecessors and one successor.

• ft11 is the number of basic blocks with two successors and two predecessors.

• ft12 is the number of basic blocks with more than two successors and more than
two predecessors.

• ft13 is the number of basic blocks with number of instructions less than 15.

• ft14 is the number of basic blocks with number of instructions in the interval
[15, 500].

• ft15 is the number of basic blocks with number of instructions greater than 500.

• ft21 is the number of assignment instructions in the (tagged) block.

• ft22 is the number of binary integer operations in the (tagged) block.

• ft23 is the number of binary floating point operations in the (tagged) block.

• ft25 is the average number of instructions in basic blocks.

62

Chapter 7. Quantitative Prediction Models

• ft33 is the number of switch instructions in the (tagged) block.

• ft34 is the number of unary operations in the (tagged) block.

• ft40 is the number of assignment instructions with the right operand as an integer
constant in the (tagged) block.

• ft41 is the number of binary operations with one of the operands as an integer
constant in the (tagged) block.

• ft42 is the number of calls with the number of arguments greater than 4.

• ft45 is the number of calls that return an integer.

• ft46 is the number of occurrences of integer constant zero.

• ft48 is the number of occurrences of integer constant one.

Another, slightly different metric is the Input size, i.e., the relative size of the input
the encapsulated algorithm will process. We categorized input sizes into five possible
bins: mini, small, medium, large and extra large. Note that these were already given
with our subject benchmarks and as “small” is relative to the algorithm in question,
we cannot give exact thresholds.

7.4.3 Metric Aggregation
The output of the static analysis is a set of metrics for every block in the sequential
platform version for every benchmark system – except for the input size, which is
already system-level. These represent the captured algorithms and are the correct
basis for further study because the dynamic measurements also express how much
improvement can be expected compared to the sequential platform.

To aggregate these metrics to a system-level set for each benchmark, we combined
the metrics of multiple blocks. The method of combination is now customizable per
metric and we chose the most naturally expressive option for each:

• addition minus one for McCC (the minus one accounts for the default execution
path the separate block gets on its own, and is now not needed),

• maximization for NL, NLE and LNL,

• recalculation for averages (i.e., their numerators and denominators are aggregated
separately and the average is computed again at the end), and lastly

• addition for the others, as they are all counts of different occurrences.

This way, we got one single set of metric values for every benchmark, capturing
many of its characteristics.

7.5 Results
In this section, we describe the prediction models we built using the static and dynamic
data outlined above. We also present the validation results of the models created by
different machine learning algorithms.

63

Chapter 7. Quantitative Prediction Models

7.5.1 Training Instances
After we have obtained measurements for each aspect (time, average power, energy), on
each platform (sequential, OpenCL on CPU, OpenCL on GPU and OpenCL on FPGA),
for each code region (initialization/cleanup, data transfer or kernel execution), and for
each input size (mini, small, medium, large or extra large) of each benchmark system,
the question is how fast (or energy efficient) a given algorithm will be.

But improvement is a characteristic that is hard to describe in absolute terms
because static metrics alone are not expected to fully describe the dynamic behavior
of a program. For example, it might happen that two separate programs yield the
same source code metric values, but they have significantly different runtimes. If our
models learned from one of them that migrating to OpenCL on GPU can produce a
shorter runtime, that would not mean anything unless we also knew how much of an
improvement that decrease is compared to its original runtime. This is why instead of
absolute measures (like seconds or Joules) we used relative values (ratios).

So, after aggregating the source code metrics (detailed in Section 7.4.3) we converted
the dynamic measurements to the above-mentioned ratios that could be classes in a
machine learning experiment. We did so by dividing the values measured on a parallel
computation unit (e.g., the runtime of a kernel on a GPU) by their original, sequential
counterparts. Values below one expressed improvement, while values greater than
one indicated deterioration. We calculated these ratios for every input size of every
benchmark and then combined them with the static metrics to finalize our training
databases, each containing over 50 instances.

We also experimented with different measurement aggregation methods that affect
what exactly do we consider the power/energy consumption of a given program exe-
cution. One way is to take only the values of the chosen hardware itself into account
(denoted by “Single” in later tables). Another is to always add the CPU’s measure-
ments to the total, since there needs to be a CPU in the system to send tasks to
the selected accelerator (denoted by “With CPU”). Lastly, we can view the system
as a whole and sum the total power/energy consumption that the different hardware
components produced (denoted by “All”).

The updated tagging provides yet another possible dimension to the study: do
we predict the improvement for the kernel only (“Kernel”) or for the whole (“Full”)
program (including initializations and data transfers)? We could also create training
datasets for the separated initialization/cleanup (“Init”) and data transfer (“Transfer”)
phases.

This results in a training set for each Phase-Platform-Measurement aggregation
method-Aspect tuple. As an example, part1 of the Kernel-Single-GPU-Time training
instances can be seen in Table 7.1.

7.5.2 Machine Learning
Using the datasets like the one shown in Table 7.1, we were able to run various machine
learning algorithms to build models that can predict the gain ratios based on the source
code metrics.

We have experimented with both classification and regression algorithms. While
the regression models were trained for the continuous improvement ratios, the classifi-

1The full tables are part of an online appendix [11].

64

Chapter 7. Quantitative Prediction Models

Benchmark LOC LLOC NL NLE McCC . . . Input Size Ratio

poly_atax 16 14 4 2 2 . . . 1 1250.8500
poly_atax 16 14 4 2 2 . . . 2 22.9647
poly_atax 16 14 4 2 2 . . . 3 1.0945
poly_atax 16 14 4 2 2 . . . 4 1.0689
poly_bicg 17 15 3 2 2 . . . 1 5287.3750
poly_bicg 17 15 3 2 2 . . . 2 40.5465
poly_bicg 17 15 3 2 2 . . . 3 1.5096
poly_bicg 17 15 3 2 2 . . . 4 1.4827
poly_conv2d 16 12 2 2 2 . . . 1 1844.5000
poly_conv2d 16 12 2 2 2 . . . 2 2.2655
poly_conv2d 16 12 2 2 2 . . . 3 0.2522
poly_conv2d 16 12 2 2 2 . . . 4 0.7393
poly_conv2d 16 12 2 2 2 . . . 5 0.6821
. .

Table 7.1. Training instances with Kernel-Single-GPU-Time improvement ratios

cation algorithms required classes. Thus, we have applied a discretizing preprocessing
filter to our training data to divide the ratios into 5 (and 3) bins, or “improvement
categories.” These bins ranged from “large deterioration” to “large improvement” with
automatically computed thresholds. This discretization and bin selection represents a
middle ground between our previous approach of only choosing the best platform and
the regression algorithms that aim to exactly estimate improvement.

7.5.3 Validation of the Models
In the following, we show the results of the experiments where we applied our full set
of source code metrics along with the input sizes as predictors. The accuracy values
we achieved for the Full, Kernel, Init and Transfer phases are shown in tables 7.2,
7.3, 7.4 and 7.5, respectively. Each of these tables has three layers of headers for the
measurement aggregation method (Single, With CPU, All), the target platform (CPU,
GPU or FPGA), and the measured dynamic aspect (Time, Power or Energy), while
the rows show how each tested algorithm performed on the corresponding problem.
The rows are separated into three groups for regression algorithms, 5 bin and 3 bin
classifications. All three row groups start with Weka’s ZeroR algorithm that can be
considered a baseline for the given problem, i.e., algorithms that outperform this ac-
curacy are said to have predictive power in this context. For easier visual parsing, the
cells of the tables are colored with five different shades to signal higher precision.

Note that regression cells represent the absolute values of the correlation coefficients
from the cross-validations, while the classification values are percentages of the correctly
classified instances. (We use absolute values because in this case we are interested in
the strength of the correlations, not their direction.) Also note that random choice
on a 5 or 3 bin classification would yield 20% or 33.33% accuracy, respectively (which
the vast majority of classifiers still outperform), but the baseline can be (and is) worse
than random choice as there the model always picks the most represented class in the
training data, which guarantees nothing in the test data. For example, if a dataset with
7 blacks and 3 whites as its classes were separated into training and test datasets where
each training data is black and each test data is white, ZeroR would always predict
black based on the training data and it would be 0% accurate on the test set. And

65

Chapter 7. Quantitative Prediction Models

although cross-validation repeats this training/test separation n times, the average of
the results could still be lower than random choice depending on the separations and
the starting distribution of the classes.

Globally, 886 of our 1404 models produced meaningful (i.e., at least 5%) improve-
ment over the baseline performance, and 867 of these used at least two predictor
metrics. (This second check was implemented to root out a few models encountered
during random manual validation that were simple constants or relied only on Input-
Size.) Additionally, we collected statistics for the most frequently used metrics in the
models. The top ten start with the all important InputSize, – used in 98% of the mod-
els – followed by ARR%, LOC, ft25 (average number of instructions in basic blocks),
ft48 (number of occurrences of integer constant one), ft7 (number of basic blocks with
more than two predecessors), EXP, ARR, LNL1 and MUL, respectively.

To gain further insight into the effect the different dimensions (i.e., phase, aspect,
etc.) have on prediction accuracy, we also computed model success distributions for
each dimension separately. Note that in order to make this discussion more concise,
x/y/z will mean that “out of all possible z models, y managed to outperform the
baseline by at least 5%, x of which used at least two predictors from the available set”.
These could be thought of as “better/good/count”.

• Source code phase
– Initialization/Cleanup: 212/220/351
– Kernel execution: 224/224/351
– Data transfer: 206/206/351
– Full: 225/236/351

• Measurement aggregation method
– Single: 295/301/468
– With CPU: 286/292/468
– All: 286/293/468

• Execution platform
– CPU: 269/269/468
– GPU: 325/336/468
– FPGA: 273/281/468

• Measurement aspect
– Time: 282/291/468
– Power: 302/304/468
– Energy: 283/291/468

• Machine learning technique
– Regression: 58/77/540
– 3bin classification: 405/405/432
– 5bin classification: 404/404/432

66

Chapter 7. Quantitative Prediction Models

S
in

g
le

W
it

h
C

P
U

A
ll

C
P

U
G

P
U

F
P

G
A

C
P

U
G

P
U

F
P

G
A

C
P

U
G

P
U

F
P

G
A

A
lg

o
ri

th
m

T
P

E
T

P
E

T
P

E
T

P
E

T
P

E
T

P
E

T
P

E
T

P
E

T
P

E

Z
er

oR
0.

65
0.

45
0.

65
0.

39
0.

45
0.

42
0.

65
0.

39
0.

65
0.

65
0.

45
0.

65
0.

39
0.

37
0.

40
0.

65
0.

35
0.

65
0.

65
0.

44
0.

65
0.

39
0.

37
0.

40
0.

65
0.

38
0.

65
L

in
R

eg
0.

65
0.

45
0.

65
0.

39
0.

19
0.

42
0.

65
0.

39
0.

65
0.

65
0.

45
0.

65
0.

39
0.

37
0.

40
0.

65
0.

35
0.

65
0.

65
0.

44
0.

65
0.

39
0.

30
0.

40
0.

65
0.

38
0.

65
M

ul
t.

P
er

c.
0.

01
0.

37
0.

01
0.

12
0.

66
0.

44
0.

09
0.

07
0.

10
0.

01
0.

37
0.

01
0.

12
0.

42
0.

15
0.

09
0.

34
0.

12
0.

01
0.

45
0.

03
0.

12
0.

62
0.

15
0.

09
0.

15
0.

10
R

E
P

T
re

e
0.

10
0.

45
0.

12
0.

63
0.

26
0.

83
0.

23
0.

36
0.

25
0.

10
0.

45
0.

12
0.

63
0.

39
0.

70
0.

23
0.

05
0.

02
0.

10
0.

39
0.

12
0.

63
0.

26
0.

70
0.

23
0.

08
0.

25
M

5P
0.

30
0.

13
0.

32
0.

65
0.

50
0.

79
0.

47
0.

10
0.

48
0.

30
0.

13
0.

32
0.

65
0.

17
0.

72
0.

47
0.

13
0.

48
0.

30
0.

12
0.

32
0.

65
0.

28
0.

71
0.

47
0.

01
0.

48
SM

O
re

g
0.

06
0.

25
0.

08
0.

15
0.

70
0.

10
0.

04
0.

37
0.

04
0.

06
0.

25
0.

08
0.

15
0.

65
0.

15
0.

04
0.

20
0.

04
0.

06
0.

30
0.

08
0.

15
0.

64
0.

16
0.

04
0.

20
0.

04

Z
er

oR
16

.2
8

16
.2

8
16

.2
8

11
.1

1
11

.1
1

11
.1

1
0.

00
0.

00
0.

00
16

.2
8

16
.2

8
16

.2
8

11
.1

1
11

.1
1

11
.1

1
0.

00
0.

00
0.

00
16

.2
8

16
.2

8
16

.2
8

11
.1

1
11

.1
1

11
.1

1
0.

00
0.

00
0.

00
J4

8
37

.2
1

27
.9

1
58

.1
4

53
.3

3
60

.0
0

53
.3

3
34

.4
8

27
.5

9
37

.9
3

37
.2

1
27

.9
1

58
.1

4
53

.3
3

51
.1

1
60

.0
0

34
.4

8
41

.3
8

48
.2

8
37

.2
1

25
.5

8
58

.1
4

53
.3

3
28

.8
9

60
.0

0
34

.4
8

34
.4

8
41

.3
8

N
ai

ve
B

ay
es

25
.5

8
30

.2
3

20
.9

3
22

.2
2

28
.8

9
22

.2
2

17
.2

4
37

.9
3

24
.1

4
25

.5
8

30
.2

3
20

.9
3

22
.2

2
17

.7
8

17
.7

8
17

.2
4

31
.0

3
20

.6
9

25
.5

8
30

.2
3

20
.9

3
22

.2
2

20
.0

0
17

.7
8

17
.2

4
24

.1
4

13
.7

9
L

og
is

ti
c

27
.9

1
23

.2
6

30
.2

3
51

.1
1

31
.1

1
40

.0
0

27
.5

9
37

.9
3

31
.0

3
27

.9
1

23
.2

6
30

.2
3

51
.1

1
33

.3
3

46
.6

7
27

.5
9

31
.0

3
24

.1
4

27
.9

1
27

.9
1

30
.2

3
51

.1
1

33
.3

3
46

.6
7

27
.5

9
24

.1
4

24
.1

4
SM

O
39

.5
3

27
.9

1
27

.9
1

40
.0

0
28

.8
9

42
.2

2
27

.5
9

41
.3

8
17

.2
4

39
.5

3
27

.9
1

27
.9

1
40

.0
0

26
.6

7
44

.4
4

27
.5

9
17

.2
4

3.
45

39
.5

3
23

.2
6

27
.9

1
40

.0
0

17
.7

8
44

.4
4

27
.5

9
13

.7
9

10
.3

4

Z
er

oR
23

.2
6

23
.2

6
23

.2
6

22
.2

2
22

.2
2

22
.2

2
34

.4
8

34
.4

8
34

.4
8

23
.2

6
23

.2
6

23
.2

6
22

.2
2

22
.2

2
22

.2
2

34
.4

8
34

.4
8

34
.4

8
23

.2
6

23
.2

6
23

.2
6

22
.2

2
22

.2
2

22
.2

2
34

.4
8

34
.4

8
34

.4
8

J4
8

65
.1

2
41

.8
6

65
.1

2
71

.1
1

57
.7

8
60

.0
0

55
.1

7
37

.9
3

55
.1

7
65

.1
2

41
.8

6
65

.1
2

71
.1

1
57

.7
8

71
.1

1
55

.1
7

44
.8

3
55

.1
7

65
.1

2
46

.5
1

65
.1

2
71

.1
1

44
.4

4
71

.1
1

55
.1

7
34

.4
8

55
.1

7
N

ai
ve

B
ay

es
32

.5
6

37
.2

1
32

.5
6

33
.3

3
40

.0
0

40
.0

0
58

.6
2

41
.3

8
58

.6
2

32
.5

6
37

.2
1

32
.5

6
33

.3
3

44
.4

4
33

.3
3

58
.6

2
41

.3
8

58
.6

2
32

.5
6

37
.2

1
32

.5
6

33
.3

3
46

.6
7

33
.3

3
58

.6
2

37
.9

3
58

.6
2

L
og

is
ti

c
34

.8
8

51
.1

6
34

.8
8

66
.6

7
46

.6
7

60
.0

0
62

.0
7

48
.2

8
62

.0
7

34
.8

8
51

.1
6

34
.8

8
66

.6
7

60
.0

0
66

.6
7

62
.0

7
41

.3
8

62
.0

7
34

.8
8

53
.4

9
34

.8
8

66
.6

7
57

.7
8

66
.6

7
62

.0
7

41
.3

8
62

.0
7

SM
O

39
.5

3
46

.5
1

39
.5

3
53

.3
3

60
.0

0
42

.2
2

55
.1

7
55

.1
7

55
.1

7
39

.5
3

46
.5

1
39

.5
3

53
.3

3
46

.6
7

53
.3

3
55

.1
7

55
.1

7
55

.1
7

39
.5

3
44

.1
9

39
.5

3
53

.3
3

53
.3

3
53

.3
3

55
.1

7
41

.3
8

55
.1

7

Ta
bl
e
7.
2.

Fu
ll
pr
ed
ic
tio

n
ac
cu
ra
ci
es

S
in

g
le

W
it

h
C

P
U

A
ll

C
P

U
G

P
U

F
P

G
A

C
P

U
G

P
U

F
P

G
A

C
P

U
G

P
U

F
P

G
A

A
lg

o
ri

th
m

T
P

E
T

P
E

T
P

E
T

P
E

T
P

E
T

P
E

T
P

E
T

P
E

T
P

E

Z
er

oR
0.

48
0.

46
0.

48
0.

36
0.

46
0.

37
0.

65
0.

41
0.

65
0.

48
0.

46
0.

48
0.

36
0.

42
0.

36
0.

65
0.

41
0.

65
0.

48
0.

47
0.

48
0.

36
0.

44
0.

35
0.

65
0.

41
0.

65
L

in
R

eg
0.

48
0.

46
0.

48
0.

36
0.

32
0.

37
0.

65
0.

41
0.

65
0.

48
0.

46
0.

48
0.

36
0.

42
0.

36
0.

65
0.

41
0.

65
0.

48
0.

47
0.

48
0.

36
0.

23
0.

35
0.

65
0.

41
0.

65
M

ul
t.

P
er

c.
0.

01
0.

13
0.

02
0.

63
0.

63
0.

56
0.

07
0.

16
0.

16
0.

01
0.

13
0.

02
0.

63
0.

46
0.

67
0.

07
0.

39
0.

13
0.

01
0.

14
0.

02
0.

63
0.

50
0.

61
0.

07
0.

48
0.

06
R

E
P

T
re

e
0.

08
0.

10
0.

08
0.

74
0.

27
0.

70
0.

19
0.

18
0.

21
0.

08
0.

10
0.

08
0.

74
0.

00
0.

77
0.

19
0.

07
0.

13
0.

08
0.

47
0.

08
0.

74
0.

21
0.

74
0.

19
0.

19
0.

21
M

5P
0.

01
0.

04
0.

01
0.

67
0.

05
0.

67
0.

43
0.

16
0.

44
0.

01
0.

04
0.

01
0.

67
0.

02
0.

64
0.

43
0.

16
0.

44
0.

01
0.

04
0.

01
0.

67
0.

11
0.

67
0.

43
0.

16
0.

44
SM

O
re

g
0.

04
0.

07
0.

05
0.

00
0.

53
0.

00
0.

07
0.

12
0.

07
0.

04
0.

07
0.

05
0.

00
0.

62
0.

01
0.

07
0.

04
0.

06
0.

04
0.

12
0.

05
0.

00
0.

63
0.

01
0.

07
0.

08
0.

06

Z
er

oR
16

.2
8

16
.2

8
16

.2
8

11
.1

1
11

.1
1

11
.1

1
0.

00
0.

00
0.

00
16

.2
8

16
.2

8
16

.2
8

11
.1

1
11

.1
1

11
.1

1
0.

00
0.

00
0.

00
16

.2
8

16
.2

8
16

.2
8

11
.1

1
11

.1
1

11
.1

1
0.

00
0.

00
0.

00
J4

8
32

.5
6

18
.6

0
44

.1
9

48
.8

9
35

.5
6

46
.6

7
68

.9
7

20
.6

9
68

.9
7

32
.5

6
18

.6
0

44
.1

9
48

.8
9

22
.2

2
48

.8
9

68
.9

7
17

.2
4

68
.9

7
32

.5
6

34
.8

8
37

.2
1

48
.8

9
48

.8
9

48
.8

9
68

.9
7

48
.2

8
68

.9
7

N
ai

ve
B

ay
es

18
.6

0
20

.9
3

13
.9

5
26

.6
7

31
.1

1
22

.2
2

34
.4

8
24

.1
4

34
.4

8
18

.6
0

20
.9

3
13

.9
5

26
.6

7
20

.0
0

33
.3

3
34

.4
8

17
.2

4
34

.4
8

18
.6

0
13

.9
5

6.
98

26
.6

7
28

.8
9

33
.3

3
34

.4
8

27
.5

9
34

.4
8

L
og

is
ti

c
41

.8
6

25
.5

8
44

.1
9

33
.3

3
37

.7
8

40
.0

0
41

.3
8

27
.5

9
41

.3
8

41
.8

6
25

.5
8

44
.1

9
33

.3
3

33
.3

3
35

.5
6

41
.3

8
24

.1
4

41
.3

8
41

.8
6

25
.5

8
25

.5
8

33
.3

3
31

.1
1

35
.5

6
41

.3
8

27
.5

9
41

.3
8

SM
O

32
.5

6
20

.9
3

20
.9

3
33

.3
3

28
.8

9
40

.0
0

34
.4

8
20

.6
9

34
.4

8
32

.5
6

20
.9

3
20

.9
3

33
.3

3
20

.0
0

42
.2

2
34

.4
8

17
.2

4
34

.4
8

32
.5

6
23

.2
6

20
.9

3
33

.3
3

28
.8

9
42

.2
2

34
.4

8
10

.3
4

34
.4

8

Z
er

oR
30

.2
3

23
.2

6
30

.2
3

22
.2

2
22

.2
2

22
.2

2
34

.4
8

34
.4

8
34

.4
8

30
.2

3
23

.2
6

30
.2

3
22

.2
2

22
.2

2
22

.2
2

34
.4

8
34

.4
8

34
.4

8
30

.2
3

23
.2

6
30

.2
3

22
.2

2
22

.2
2

22
.2

2
34

.4
8

34
.4

8
34

.4
8

J4
8

55
.8

1
32

.5
6

55
.8

1
53

.3
3

62
.2

2
53

.3
3

55
.1

7
48

.2
8

55
.1

7
55

.8
1

32
.5

6
55

.8
1

53
.3

3
46

.6
7

48
.8

9
55

.1
7

41
.3

8
55

.1
7

55
.8

1
32

.5
6

55
.8

1
53

.3
3

35
.5

6
48

.8
9

55
.1

7
37

.9
3

55
.1

7
N

ai
ve

B
ay

es
37

.2
1

39
.5

3
37

.2
1

44
.4

4
44

.4
4

57
.7

8
34

.4
8

31
.0

3
34

.4
8

37
.2

1
39

.5
3

37
.2

1
44

.4
4

40
.0

0
48

.8
9

34
.4

8
17

.2
4

34
.4

8
37

.2
1

39
.5

3
37

.2
1

44
.4

4
42

.2
2

48
.8

9
34

.4
8

17
.2

4
34

.4
8

L
og

is
ti

c
65

.1
2

37
.2

1
65

.1
2

48
.8

9
55

.5
6

53
.3

3
68

.9
7

37
.9

3
68

.9
7

65
.1

2
37

.2
1

65
.1

2
48

.8
9

57
.7

8
53

.3
3

68
.9

7
27

.5
9

68
.9

7
65

.1
2

37
.2

1
65

.1
2

48
.8

9
53

.3
3

53
.3

3
68

.9
7

34
.4

8
68

.9
7

SM
O

53
.4

9
46

.5
1

53
.4

9
48

.8
9

55
.5

6
51

.1
1

44
.8

3
41

.3
8

44
.8

3
53

.4
9

46
.5

1
53

.4
9

48
.8

9
40

.0
0

55
.5

6
44

.8
3

17
.2

4
44

.8
3

53
.4

9
46

.5
1

53
.4

9
48

.8
9

44
.4

4
55

.5
6

44
.8

3
27

.5
9

44
.8

3

Ta
bl
e
7.
3.

K
er
ne
lp

re
di
ct
io
n
ac
cu
ra
ci
es

67

Chapter 7. Quantitative Prediction Models

S
in

g
le

W
ith

C
P

U
A

ll

C
P

U
G

P
U

F
P

G
A

C
P

U
G

P
U

F
P

G
A

C
P

U
G

P
U

F
P

G
A

A
lg

o
rith

m
T

P
E

T
P

E
T

P
E

T
P

E
T

P
E

T
P

E
T

P
E

T
P

E
T

P
E

Z
eroR

0
.43

0
.41

0
.43

0
.37

0
.46

0
.37

0
.56

0
.42

0
.56

0
.43

0
.41

0
.43

0
.37

0
.35

0
.37

0
.56

0
.51

0
.56

0
.43

0
.41

0
.43

0
.37

0
.34

0
.37

0
.56

0
.53

0
.56

L
inR

eg
0

.43
0

.41
0

.43
0

.14
0

.32
0

.07
0

.56
0

.38
0

.56
0

.43
0

.41
0

.43
0

.14
0

.26
0

.13
0

.56
0

.22
0

.56
0

.43
0

.41
0

.43
0

.14
0

.18
0

.13
0

.56
0

.53
0

.56
M

ult.P
erc.

0
.07

0
.11

0
.06

0
.03

0
.11

0
.02

0
.06

0
.76

0
.07

0
.07

0
.11

0
.06

0
.03

0
.07

0
.03

0
.06

0
.62

0
.06

0
.07

0
.16

0
.07

0
.03

0
.05

0
.02

0
.06

0
.74

0
.06

R
E

P
T

ree
0

.42
0

.00
0

.42
0

.07
0

.08
0

.07
0

.56
0

.57
0

.56
0

.42
0

.00
0

.42
0

.07
0

.17
0

.07
0

.56
0

.49
0

.56
0

.42
0

.18
0

.42
0

.07
0

.17
0

.07
0

.56
0

.81
0

.56
M

5P
0

.35
0

.16
0

.35
0

.03
0

.21
0

.01
0

.70
0

.61
0

.70
0

.35
0

.16
0

.35
0

.03
0

.11
0

.04
0

.70
0

.74
0

.70
0

.35
0

.10
0

.35
0

.03
0

.12
0

.04
0

.70
0

.69
0

.69
SM

O
reg

0
.01

0
.30

0
.01

0
.04

0
.32

0
.10

0
.08

0
.77

0
.08

0
.01

0
.30

0
.01

0
.04

0
.06

0
.09

0
.08

0
.70

0
.08

0
.01

0
.32

0
.01

0
.04

0
.06

0
.09

0
.08

0
.77

0
.08

Z
eroR

19
.23

19
.23

19
.23

18
.52

18
.52

18
.52

6
.25

0
.00

6
.25

19
.23

19
.23

19
.23

18
.52

18
.52

18
.52

6
.25

9
.38

3
.13

19
.23

19
.23

19
.23

18
.52

18
.52

18
.52

6
.25

9
.38

3
.13

J48
32

.69
28

.85
34

.62
38

.89
44

.44
38

.89
37

.50
28

.13
37

.50
32

.69
28

.85
34

.62
38

.89
20

.37
44

.44
37

.50
9

.38
40

.63
32

.69
34

.62
32

.69
38

.89
22

.22
44

.44
37

.50
25

.00
40

.63
N

aiveB
ayes

28
.85

23
.08

25
.00

25
.93

18
.52

16
.67

34
.38

25
.00

34
.38

28
.85

23
.08

25
.00

25
.93

18
.52

20
.37

34
.38

9
.38

28
.13

28
.85

11
.54

23
.08

25
.93

16
.67

24
.07

34
.38

9
.38

28
.13

L
ogistic

42
.31

21
.15

46
.15

35
.19

42
.59

37
.04

50
.00

31
.25

50
.00

42
.31

21
.15

46
.15

35
.19

24
.07

25
.93

50
.00

25
.00

46
.88

42
.31

26
.92

36
.54

35
.19

27
.78

31
.48

50
.00

25
.00

46
.88

SM
O

42
.31

13
.46

50
.00

22
.22

29
.63

20
.37

31
.25

9
.38

31
.25

42
.31

13
.46

50
.00

22
.22

20
.37

22
.22

31
.25

6
.25

50
.00

42
.31

21
.15

57
.69

22
.22

14
.81

20
.37

31
.25

12
.50

50
.00

Z
eroR

34
.62

28
.85

28
.85

25
.93

25
.93

25
.93

31
.25

31
.25

31
.25

34
.62

28
.85

28
.85

25
.93

25
.93

25
.93

31
.25

31
.25

31
.25

34
.62

28
.85

28
.85

25
.93

25
.93

25
.93

31
.25

31
.25

31
.25

J48
53

.85
50

.00
59

.62
53

.70
44

.44
62

.96
81

.25
62

.50
81

.25
53

.85
50

.00
59

.62
53

.70
37

.04
53

.70
81

.25
37

.50
81

.25
53

.85
38

.46
59

.62
53

.70
44

.44
57

.41
81

.25
43

.75
81

.25
N

aiveB
ayes

46
.15

40
.38

44
.23

27
.78

27
.78

25
.93

59
.38

50
.00

59
.38

46
.15

40
.38

44
.23

27
.78

42
.59

42
.59

59
.38

50
.00

59
.38

46
.15

38
.46

44
.23

27
.78

53
.70

37
.04

59
.38

50
.00

59
.38

L
ogistic

50
.00

53
.85

53
.85

51
.85

61
.11

61
.11

65
.63

65
.63

65
.63

50
.00

53
.85

53
.85

51
.85

53
.70

53
.70

65
.63

50
.00

65
.63

50
.00

48
.08

53
.85

51
.85

57
.41

55
.56

65
.63

46
.88

65
.63

SM
O

63
.46

46
.15

65
.38

44
.44

57
.41

53
.70

65
.63

56
.25

65
.63

63
.46

46
.15

65
.38

44
.44

46
.30

46
.30

65
.63

43
.75

65
.63

63
.46

40
.38

65
.38

44
.44

48
.15

46
.30

65
.63

43
.75

65
.63

Table
7.4.

Initialization/cleanup
prediction

accuracies

S
in

g
le

W
ith

C
P

U
A

ll

C
P

U
G

P
U

F
P

G
A

C
P

U
G

P
U

F
P

G
A

C
P

U
G

P
U

F
P

G
A

A
lg

o
rith

m
T

P
E

T
P

E
T

P
E

T
P

E
T

P
E

T
P

E
T

P
E

T
P

E
T

P
E

Z
eroR

0
.44

0
.62

0
.44

0
.41

0
.36

0
.38

0
.53

0
.50

0
.53

0
.44

0
.62

0
.44

0
.41

0
.38

0
.40

0
.53

0
.53

0
.54

0
.44

0
.60

0
.44

0
.41

0
.38

0
.40

0
.53

0
.52

0
.53

L
inR

eg
0

.02
0

.16
0

.04
0

.05
0

.57
0

.24
0

.53
0

.50
0

.53
0

.02
0

.16
0

.04
0

.05
0

.78
0

.12
0

.53
0

.53
0

.54
0

.02
0

.46
0

.00
0

.05
0

.81
0

.11
0

.53
0

.52
0

.53
M

ult.P
erc.

0
.05

0
.19

0
.10

0
.02

0
.66

0
.38

0
.22

0
.09

0
.16

0
.05

0
.19

0
.10

0
.02

0
.75

0
.12

0
.22

0
.12

0
.44

0
.05

0
.15

0
.07

0
.02

0
.77

0
.11

0
.22

0
.11

0
.17

R
E

P
T

ree
0

.15
0

.61
0

.16
0

.08
0

.56
0

.32
0

.53
0

.46
0

.53
0

.15
0

.61
0

.16
0

.08
0

.20
0

.15
0

.53
0

.53
0

.27
0

.15
0

.63
0

.16
0

.08
0

.15
0

.14
0

.53
0

.52
0

.18
M

5P
0

.19
0

.43
0

.18
0

.14
0

.47
0

.36
0

.04
0

.02
0

.05
0

.19
0

.43
0

.18
0

.14
0

.80
0

.19
0

.04
0

.05
0

.03
0

.19
0

.51
0

.19
0

.14
0

.82
0

.19
0

.04
0

.04
0

.01
SM

O
reg

0
.31

0
.23

0
.33

0
.17

0
.46

0
.41

0
.02

0
.19

0
.02

0
.31

0
.23

0
.33

0
.17

0
.77

0
.23

0
.02

0
.08

0
.03

0
.31

0
.34

0
.33

0
.17

0
.78

0
.22

0
.02

0
.10

0
.03

Z
eroR

19
.23

19
.23

19
.23

18
.52

18
.52

18
.52

6
.25

0
.00

6
.25

19
.23

19
.23

19
.23

18
.52

18
.52

18
.52

6
.25

12
.50

6
.25

19
.23

19
.23

19
.23

18
.52

18
.52

18
.52

6
.25

0
.00

6
.25

J48
48

.08
44

.23
48

.08
38

.89
61

.11
50

.00
37

.50
40

.63
37

.50
48

.08
44

.23
48

.08
38

.89
44

.44
44

.44
37

.50
12

.50
40

.63
48

.08
40

.38
48

.08
38

.89
42

.59
44

.44
37

.50
12

.50
40

.63
N

aiveB
ayes

13
.46

26
.92

13
.46

7
.41

25
.93

22
.22

28
.13

46
.88

28
.13

13
.46

26
.92

13
.46

7
.41

27
.78

16
.67

28
.13

15
.63

25
.00

13
.46

28
.85

13
.46

7
.41

35
.19

16
.67

28
.13

12
.50

25
.00

L
ogistic

28
.85

30
.77

28
.85

40
.74

38
.89

37
.04

31
.25

37
.50

31
.25

28
.85

30
.77

28
.85

40
.74

44
.44

37
.04

31
.25

18
.75

31
.25

28
.85

32
.69

28
.85

40
.74

40
.74

37
.04

31
.25

25
.00

31
.25

SM
O

28
.85

28
.85

28
.85

42
.59

40
.74

38
.89

18
.75

46
.88

18
.75

28
.85

28
.85

28
.85

42
.59

48
.15

44
.44

18
.75

18
.75

25
.00

28
.85

28
.85

28
.85

42
.59

50
.00

44
.44

18
.75

18
.75

25
.00

Z
eroR

28
.85

28
.85

28
.85

25
.93

25
.93

25
.93

31
.25

31
.25

31
.25

28
.85

28
.85

28
.85

25
.93

25
.93

25
.93

31
.25

31
.25

31
.25

28
.85

28
.85

28
.85

25
.93

25
.93

25
.93

31
.25

31
.25

31
.25

J48
51

.92
42

.31
51

.92
61

.11
72

.22
55

.56
50

.00
34

.38
50

.00
51

.92
42

.31
51

.92
61

.11
50

.00
55

.56
50

.00
34

.38
43

.75
51

.92
44

.23
51

.92
61

.11
50

.00
61

.11
50

.00
34

.38
43

.75
N

aiveB
ayes

26
.92

38
.46

26
.92

37
.04

44
.44

42
.59

31
.25

43
.75

31
.25

26
.92

38
.46

26
.92

37
.04

40
.74

42
.59

31
.25

31
.25

34
.38

26
.92

38
.46

26
.92

37
.04

40
.74

37
.04

31
.25

31
.25

34
.38

L
ogistic

53
.85

36
.54

53
.85

48
.15

59
.26

42
.59

43
.75

40
.63

43
.75

53
.85

36
.54

53
.85

48
.15

51
.85

42
.59

43
.75

46
.88

53
.13

53
.85

30
.77

53
.85

48
.15

51
.85

48
.15

43
.75

46
.88

53
.13

SM
O

55
.77

30
.77

55
.77

61
.11

62
.96

66
.67

46
.88

40
.63

46
.88

55
.77

30
.77

55
.77

61
.11

61
.11

66
.67

46
.88

40
.63

50
.00

55
.77

34
.62

55
.77

61
.11

61
.11

61
.11

46
.88

40
.63

50
.00

Table
7.5.

D
ata

transfer
prediction

accuracies

68

Chapter 7. Quantitative Prediction Models

These figures show that every dimension has at least a limited effect on the models.
Considering source code phase, kernel execution and the full program are a little easier
to estimate than either initialization/cleanup or data transfer. This is to be expected,
though, since “kernel” and “full” are the two phases containing the kernels the predictor
metrics are based on. Regarding measurement aggregation, concentrating on a single
execution platform is proven simpler than accounting for other parts of the hardware
system as well. A similar slight edge can be observed for the power aspect, compared to
both time and energy, while the GPU platform has an even more pronounced advantage
over both CPUs and FPGAs. The most important difference, however, is evident
along the machine learning technique dimension. Specifically that barely 10% of the
regression models managed to outperform the baseline, while this ratio is over 90% for
both classification types. This suggests, not surprisingly, that an exact improvement
ratio is much harder to estimate than an interval it will fall in.

Regression models frequently resorted to using only a constant value or a function
of a single input metric, which is a clear sign of undertraining, but after disregarding
these, we still had a few promising cases. However, these belonged almost exclusively
to GPUs. E.g., the highest precision among the “full” regressions – which is also the
highest value increase compared to its ZeroR counterpart – is the REPTree model
for Single-GPU-Energy estimation. It reaches an absolute .83 correlation coefficient,
representing a .41 improvement. The most precise “kernel” regression is also a REP-
Tree – this time for WithCPU-GPU-Energy – with a value of .76, representing another
.41 improvement. The pattern of these two tables suggests that REPTree and M5P
are more appropriate for time and energy prediction, while Multilayer Perceptron and
SMOreg are more successful for average power. This is no longer true for the “initial-
ization/cleanup” phase, where only FPGAs have notable models. M5P seems the most
capable for all three aspects, but the best models are the All-FPGA-Power REPTree
with a .81 precision, and the Single-FPGA-Power SMOreg with a .35 increase. As for
the “data transfer” models, only the GPU-Power columns stand out. The best case
scenario here is the All-GPU-Power M5P model with an accuracy of .82, which is a .44
improvement.

Regarding classification models, we no longer see the superiority of GPU prediction.
The most easily discernible global observation is that the overwhelming majority is
a significant upgrade compared to either the ZeroR reference or a random choice.
We can also notice that while regressions were more prone to “column patterns”, –
i.e., the measurement aggregation method, the platform, or the aspect mattered more
in the columns than the algorithms in the rows, leading to higher concentrations of
precise models above or below each other – classifications lean towards “row patterns”
– i.e., once the source code phase is chosen, higher accuracy correlates more with the
algorithm. For the sake of brevity in further model discussion, (vs. x%/y%) will mean
“compared to a ZeroR of x% and a random choice of y%”.

“Full” classifications are lead by J48 models, which display up to 60% accuracy on
5 bins (vs. 11.11%/20%), once for power and twice for energy. For 3 bins, this value is
up to 71.11% (vs. 22.22%/33.33%), but here we note that Logistic regression is a close
second. The best “kernel” models come from these two algorithms again; J48 on 5 bins
is at times 68.97% (vs. 0%/20%) for FPGA time and energy, while Logistic regression
reaches the same 68.97% on 3 bins (vs. 34.48%/33.33%), at the same places. For
the “initialization/cleanup” phase, the best choices are SMO on 5 bins for All-CPU-
Energy with 57.69% (vs. 19.23%/20%), and J48 on 3 bins for FPGA time and energy

69

Chapter 7. Quantitative Prediction Models

modeling with 81.25% (vs. 31.25%/33.33%). Finally, the most accurate “data transfer”
classifications are J48 trees, both times for Single-GPU-Power prediction: 61.11% on
5 bins (vs. 18.52%/20%) and 72.22% on 3 bins (vs. 25.93%/33.33%).

In conclusion, by predicting the improvement category significantly more accurately
than either a baseline performance or a random choice, our classification algorithms
clearly demonstrated that static metrics have predictive power and skill in this domain.
Therefore we can answer our research question in the affirmative.

We would also like to emphasize the fact that every benchmark [12], calculated met-
ric, measurement, machine learning result [11] and even the measurement library [48]
is opened to the public so we invite replication or further expansion.

7.6 Summary
The goal of this chapter was to continue the research laid down in Chapter 6 and present
our work addressing the creation of prediction models that are able to automatically
determine not only the optimal execution platform of a program, (i.e., sequential or
OpenCL; CPU, GPU or FPGA) but how much improvement we can expect that way.

We achieved this by changing optimal platform class labels into improvement ratios
and trying to predict those directly, using additional – and more precisely calculated
– metrics, an extended benchmark set, and even an extra platform. We also studied
the available data along more dimensions, aiming to shed light on which has the most
impact on prediction accuracy.

Overall, we consider the results of this experiment encouraging. Despite the (still)
small number of subject systems, we were able to demonstrate that statically computed
source code metrics are appropriate for improvement estimation, not just platform
selection. The models represent value above random choice in themselves, but we
would like to emphasize again, that it is the approach of their creation that we consider
our most generalizable result. It can enable larger scale studies and hopefully lead to
more evidence about the connections between static source code metrics and dynamic
platform selection.

70

“There’s no such thing as a free lunch.”
— Milton Friedman

8
Maintainability Changes of Parallelized

Implementations

8.1 Overview
Automatic kernel transformators and other parallelized source code generators aim
to make available performance gains more accessible to a wider audience, and in a
wider range of scenarios. Additionally, as we saw in the previous chapters, they would
also greatly help our current research in extending the available benchmark sets. Is it
worth developing such algorithms, however, or should we simply manually maintain a
dedicated parallel implementation. To try and explore this question from a source code
perspective, we compared the calculated abstract characteristics of the (CPU based)
sequential and (accelerator specific) parallel versions of our benchmarks.

After extracting maintainability information from both the “before” and the “af-
ter” versions of a hypothetical parallel transformation, we try to answer the following
research questions:

Research Question 1: How does parallelization affect the maintainability of a
subject system as a whole?

Research Question 2: How does parallelization affect the maintainability of the
encapsulated algorithms?

The rest of the chapter is structured as follows: Section 8.2 places the study among
the related work, while Section 8.3 discusses the extra details we had to consider
in addition to the methodology explained in Section 7.2. Next, Section 8.4 briefly
overviews the results. Lastly, we summarize the chapter in Section 8.5.

8.2 Related Work
The most closely related work, of course, is the REPARA report D7.4: Maintainabil-
ity models of heterogeneous programming models [79]. In fact, this experiment could

71

Chapter 8. Maintainability Changes of Parallelized Implementations

be viewed as a replication of its maintainability change inspection, only using an ex-
tended, and more polished benchmark set. Apart from that, however, we are aware
of very limited other research explicitly touching on the maintainability of parallelized
implementations.

Pflüger and Pfander [71] performed a fine-tuning case study on their SG++ library
while trying to preserve source code maintainability. They also concluded – among
other lessons learned – that maintainability deterioration is a natural side effect of
performance optimization, and that automatic code generation and domain specific
languages could help substantially. Another study in this area was done by Brown
et al. [18], who examined that starting with a higher abstraction level language and
then transforming to heterogeneous platforms could yield comparable or even better
performance without degrading developer productivity. While these works considered
a more subjective measure of maintainability, we aim to quantify its loss between
sequential and parallel versions.

8.3 Methodology
8.3.1 Tagging
As our subject systems, we used the benchmarks listed in Section 7.3. The static source
code analysis had to be performed on both the sequential and parallel (OpenCL) vari-
ants of every benchmark because even though the prediction models required metrics
only from the “before” state, we also needed metrics from the “after” state to be able
to compare them. This meant that the OpenCL benchmarks had to undergo some
artificial modifications before analysis. These modifications included:

• importing the kernel source code from the *.cl files into their corresponding hosts
(as additional, dead code blocks, not executed during dynamic measurements),

• defining missing built-in function references,

• handling __kernel, __global, and other similar tokens that do not have any
meaning in plain C++, and

• tagging the relevant source code parts with the help of STATIC_BEGIN and
STATIC_END macros (see Section 7.2).

These changes lead to successful builds, enabling metric calculations.

8.3.2 Maintainability Evaluation
The metrics we calculated for the “after” versions of the benchmarks naturally coincide
with the ones extracted for the “before” states, described in Section 7.4. This was
followed by a metric normalization stage using ECDFs (see Section 2.2) with all of the
benchmark source code metrics providing context.

Then, using these normalized metrics as a base, we performed a weighted aggre-
gation to produce the more abstract scores outlined in Section 2.3, similarly to Sec-
tion 5.2.5. The maintainability model itself is discussed in detail in the previously
referenced REPARA D7.4 report [79]. As we already mentioned, this experiment could

72

Chapter 8. Maintainability Changes of Parallelized Implementations

Metric An
aly

sab
ility

Modi
fiab

ility

Modu
lari

ty

Reu
sab

ility

Tes
tab

ility

LOC 2.43 3.71 1.29 1.43 1.43
LLOC 11.29 12.00 1.71 7.86 9.71
NL 8.57 9.71 2.00 5.14 13.86
NLE 8.71 9.29 2.00 8.14 11.14
McCC 26.71 28.00 2.29 19.29 29.14
NOS 8.86 7.71 2.00 2.43 4.00
NOI 17.86 18.86 85.71 51.29 16.43
LNL 4.43 4.14 1.71 2.43 6.00
LNL1 1.29 0.86 0.00 0.29 1.14
LNL2 1.57 1.00 0.00 0.71 1.29
LNL3 2.57 1.86 0.00 1.00 1.43
EXP 2.86 1.43 1.29 0.00 1.86
ARR 0.71 0.71 0.00 0.00 0.71
ARR% 2.14 0.71 0.00 0.00 1.86
MUL 0.00 0.00 0.00 0.00 0.00
MUL% 0.00 0.00 0.00 0.00 0.00
ADD 0.00 0.00 0.00 0.00 0.00
ADD% 0.00 0.00 0.00 0.00 0.00

Table 8.1. The results of the original subcharacterictic votes

be considered a replication of those results, only on an extended and more fine-tuned
benchmark set.

Table 8.1 shows the aggregated scores based on the experts’ models from the report.
The same process was applied to calculate maintainability from its subcharacteristics,
presented in Table 8.2. This means that, according to this specific model,

Maintainability = 23.57 · Analysability + 10.57 ·Modifiability

+ 18.14 ·Modularity + 30.29 ·Reusability + 17.43 · Testability.

Subcharacteristic Maintainability
Analysability 23.57
Modifiability 10.57
Modularity 18.14
Reusability 30.29
Testability 17.43

Table 8.2. The results of the original Maintainability votes

73

Chapter 8. Maintainability Changes of Parallelized Implementations

Benchmark An
aly

sab
ility

Modi
fiab

ility

Modu
lari

ty

Reu
sab

ility

Tes
tab

ility

Main
tain

abi
lity

mri-q −0.388 −0.405 −0.448 −0.432 −0.360 −0.407
spmv −0.667 −0.685 −0.653 −0.676 −0.658 −0.668
stencil −0.225 −0.237 −0.428 −0.325 −0.199 −0.283
atax −0.338 −0.354 −0.472 −0.406 −0.298 −0.375
bicg −0.342 −0.358 −0.471 −0.412 −0.308 −0.379
conv2d −0.332 −0.346 −0.469 −0.405 −0.296 −0.370
doitgen −0.372 −0.388 −0.582 −0.476 −0.324 −0.429
gemm −0.269 −0.283 −0.435 −0.352 −0.237 −0.315
gemver −0.325 −0.343 −0.494 −0.417 −0.294 −0.375
gesummv −0.290 −0.304 −0.384 −0.343 −0.262 −0.317
jacobi2d −0.420 −0.433 −0.560 −0.491 −0.373 −0.456
mvt −0.339 −0.353 −0.444 −0.396 −0.304 −0.368
bfs −0.352 −0.367 −0.497 −0.431 −0.319 −0.393
hotspot −0.226 −0.235 −0.371 −0.308 −0.167 −0.261
lavaMD −0.271 −0.276 −0.352 −0.315 −0.244 −0.292
nn −0.429 −0.434 −0.560 −0.485 −0.364 −0.456

Table 8.3. Maintainability changes at the system level

8.4 Results

Using the quality characteristics we calculated, we could investigate our two research
questions. The changes in intermediate values (Analysability, Modifiability, Modular-
ity, Reusability, and Testability) and in the final Maintainability score are shown in
Table 8.3 for the whole system, and in Table 8.4 for the separated kernel regions.

According to the data in Table 8.3, we can answer our first research question:
Maintainability experiences a distinct negative change as a result of parallelization.
The scores in the table are all negative without exception, and even their absolute
values are decidedly large, expressing a significant change. This reinforces our informal
“no free lunch” assumption, i.e., the price of a higher performance system seems to be
– possibly among other factors – a less maintainable codebase.

When we look at Table 8.4, however, we see a much less pronounced negative effect,
which, at times, even turns positive. Although the ratio of the change directions might
lean more towards the negative, their absolute values are overall smaller than in the
previous table – except maybe Modularity, which is on a similar scale. In answering
our second research question, it is hard to say anything definitive about the kernels
separately. Similarly to the conclusions of the original study [79], we speculate that this
is because, even though such a transformation can deteriorate the maintainability of
the kernels themselves, its most powerful effect is the boilerplate and added necessary
infrastructure it brings to the system as a whole. This can be considered another point
in favor of automatic parallel transformations, as that way developers could work on a
more maintainable version of the source code, while still being able to reap the benefits
of modern accelerators and parallel platforms.

74

Chapter 8. Maintainability Changes of Parallelized Implementations

Benchmark An
aly

sab
ility

Modi
fiab

ility

Modu
lari

ty

Reu
sab

ility

Tes
tab

ility

Main
tain

abi
lity

mri-q −0.234 −0.240 −0.395 −0.321 −0.225 −0.282
spmv 0.139 0.135 −0.308 −0.069 0.188 0.019
stencil 0.145 0.144 −0.617 −0.205 0.220 −0.059
atax −0.109 −0.136 −0.435 −0.283 −0.087 −0.208
bicg −0.200 −0.222 −0.449 −0.329 −0.162 −0.272
conv2d −0.065 −0.075 −0.431 −0.228 −0.002 −0.161
doitgen 0.147 0.131 −0.653 −0.228 0.226 −0.072
gemm 0.120 0.110 −0.391 −0.123 0.175 −0.019
gemver −0.161 −0.187 −0.708 −0.429 −0.119 −0.319
gesummv −0.041 −0.055 −0.341 −0.199 −0.033 −0.131
jacobi2d −0.035 −0.057 −0.691 −0.347 0.019 −0.220
mvt −0.148 −0.174 −0.443 −0.302 −0.115 −0.236
bfs 0.067 0.063 −0.408 −0.150 0.095 −0.064
hotspot −0.035 −0.041 −0.774 −0.390 0.043 −0.235
lavaMD −0.158 −0.165 −0.434 −0.303 −0.150 −0.239
nn 0.015 0.017 0.007 0.006 0.013 0.012

Table 8.4. Maintainability changes at the kernel level

8.5 Summary
In this chapter, we conducted a replication of the maintainability study by Ferenc
et al. [79] on the sequential and parallel versions of the benchmarks from Chapter 7
and observed that the maintainability of parallelized implementations – along with
every other quality subcharacteristic – is significantly lower. However, this did not
necessarily show – or at least not as strictly – in the kernels themselves, suggesting
that the introduced boilerplate is to blame. This maintainability assessment can be
considered a step towards justifying and motivating the development of automatic
parallel transformations.

75

“Everything should be made as simple as possible,
but no simpler.”

— Albert Einstein

9
Conclusions

In this thesis, we discussed two main topics, these being the effects of source code
patterns on software maintainability, and the utilization of static source code metrics
in performance optimization.

In the field of source code patterns, we focused on the connections among design pat-
terns, antipatterns, software faults, and software maintainability. To briefly summarize
our results, we found a compelling proportional relationship between design patterns
and maintainability, an inverse connection between antipatterns and maintainability,
and a positive correlation between antipatterns and program faults. These findings all
coincide with intuitive expectations, only now they are also supported with empirical
studies and objective, definite data.

In the field of performance optimization, we demonstrated our methodology of cre-
ating both qualitative and quantitative platform prediction models, that rely on static
information alone. Our main result here is this methodology itself, along with its de-
tailed evaluation and a complementary study demonstrating the detrimental effect of
source code parallelization on maintainability.

Future Work
Despite the results we achieved, there are still numerous opportunities for future work.

In the area of source code patterns and software maintainability, we plan to repeat
the presented analyses on a larger number of subject systems for increased generaliz-
ability. Furthermore, we aim to involve some of the well-known design pattern and
antipattern miner tools into matching source code patterns, which would enable us to
compare their accuracies. We also intend to calculate maintainability values at lower
source code element levels, thereby possibly gaining a more fine-grained view of how
pattern and non-pattern elements relate to maintainability. Another goal is to imple-
ment further improvements to our antipattern matching tool, such as more extensive
structural checks, statistics-based dynamic thresholds, or lexical cues. Besides, our
selected Firefox revisions have runtime, power consumption and energy efficiency mea-
surements as part of the Green Mining Dataset [36], and this provides us with the

77

Chapter 9. Conclusions

chance to relate antipatterns or maintainability to those concepts, too.
There are other avenues for improving our performance related research, as well.

One of these, of course, is increasing the number of benchmarks on which the models
are based. Another factor can be adding even more predictor metrics. Considering the
relative importance of our non-standard, low-level source code metrics, we will try to
derive even more potentially representative characteristics by manually inspecting the
typical properties of the benchmarks. Moreover, we intend to take platform specific
configurations and compiler settings into account.

Epilogue
I have always had a particular interest in the quality of the work I do, which my
years of research only strengthened. I also advocate putting in work up front, which is
evident even in the imbalanced schedule of my publications and credit acquisitions. To
me, this aligns well with the philosophy behind design patterns and their future-proof
effect, hence my affection for the subject. On the other hand, “what he gains at the
toll, he loses at the customs” is a pertinent Hungarian proverb that, I think, sums
up antipatterns quite nicely. These lessons – learned and reinforced during my PhD
studies – are, in my opinion, much more universally applicable to everyday life than
the previous 80 pages of thick technical jargon might suggest.

Another area where my research – particularly, sharing my research – lead to sig-
nificant personal growth is interpersonal skills. Having to be the smartest man in the
room, even if only in a really narrow and specific topic, takes an unexpected amount
of courage.

It is my hope that this thesis, as the culmination of my years of effort, will be
valuable for someone, somehow. At the very least, citing it might serve as a formal
“get out of jail free card” the next time I am caught spending half a workday obsessing
over an already functional piece of code only to make it more elegant.

78

Appendices

79

A
Summary in English

Software rules the world. As true as this statement already was decades ago, it rings
even truer now, when connected devices outnumber the population of Earth by a ratio
of at least 1.5. A modern life in this era involves countless hidden, invisible processors,
along with the visible ones we have all got so used to. And we have not even mentioned
critical applications like flight guidance, keeping patients alive, or operating nuclear
power plants. All of these systems need software to run, and we are running out of
people to write it. Consequently, sustainable software development has never been
more important.

The research behind this thesis aims to facilitate this sustainability by drawing
attention to the importance of the maintenance phase, and illustrating its assets and
risks by finding objective connections between certain source code patterns and software
maintainability. It also seeks to help developers more easily utilize modern accelerator
hardware in order to increase performance by creating a readily usable and extendable
static platform selection framework. The results we obtained have been grouped into
two major thesis points, along the same separation. The relation between these thesis
points and their supporting publications is shown in Table A.1.

I. Empirical validation of the impact of source code patterns on software
maintainability
The contributions of this thesis point – related to software maintainability – are
discussed in chapters 3, 4, and 5.
The Connection between Design Patterns and Maintainability To study the im-
pact design patterns have on software maintainability, we analyzed over 700 revi-
sions of JHotDraw 7 [30]. We chose it especially for its intentionally high pattern
density and the fact that its pattern instances were all so thoroughly documented
that we could use a javadoc-based text parser for pattern recognition. This led to
a virtual guarantee of precision regarding the matched design pattern instances,
which we paired with the utilization of an objective maintainability model [9].
An inspection of the revisions where the number of pattern instances increased
revealed a clear trend of similarly increasing maintainability characteristics. Fur-

81

Appendix A. Summary in English

thermore, comparing pattern density to maintainability as a whole resulted in
a 0.89 Pearson correlation coefficient, which suggested that design patterns do
indeed have a positive effect on maintainability.

The Connection between Antipatterns and Maintainability As for the impact of
antipatterns, we selected 228 open-source Java systems, along with 45 revisions
of the Firefox browser application written in C++ as our subjects for two distinct
experiments. In both cases, we matched 9 different, widespread antipattern types
through metric thresholds and structural relationships – with additional antipat-
tern densities for C++ [19]. Maintainability calculation remained the same for
the Java systems, while the evaluation of Firefox required a C++ specific custom
quality model, – based on ECDFs [89] – and we also implemented versions of the
“traditional” MI metric [21]. The results of both studies confirm the detrimental
effect of antipatterns. The overall Spearman correlation coefficient between an-
tipatterns and maintainability for Java was -0.62, while the C++ analysis provided
values for both absolute antipattern instances and antipattern densities, which
were -0.66 and -0.69 for Pearson, and -0.7 and -0.68 for Spearman correlation,
respectively. Another interesting result is that using antipattern instances as pre-
dictors for maintainability estimation produced models with precisions ranging
from 0.76 to 0.93.

The Connection between Antipatterns and Program Faults In addition, Chapter 4
contains an experiment that seeks to connect the presence of antipatterns to pro-
gram faults (or bugs) through the PROMISE open bug database [63]. The study
of the 34 systems (from among the 228 Java systems mentioned above) that had
corresponding bug information revealed a statistically significant Spearman cor-
relation of 0.55 between antipattern instances and bugs. Moreover, antipatterns
yielded a precision of 67% when predicting bugs, being notably above the 50%
baseline, and only slightly below the 71.2% of more than five times as many raw
static source code metrics, thereby demonstrating their applicability.

The main results of this thesis point are the above-mentioned empirical studies
themselves, which support the intuitive expectations about the relations between
well-known source code patterns and software maintainability with objective, def-
inite data. To our knowledge, these findings are among the first that were per-
formed on subject systems of such volume, size, and variance, while also avoiding
all subjective factors like developer surveys, time tracking, and interviews.

The Author’s Contributions

For the research linked to design patterns, the author’s main contributions were
the implementation of the pattern mining tool, calculating the relevant source
code metrics, manually validating the revisions that introduced patterns changes,
and reviewing the related literature. On the other hand, the entire antipattern-
related research was the author’s own work including the preparation and analysis
of the subject systems, implementing and extracting the relevant static source
code metrics, calculating the corresponding maintainability values, – along with
overseeing the creation of the C++ specific quality model – implementing the
antipattern mining tool and extracting antipattern matches, considering program
fault information, as well as conducting and evaluating the empirical experiments.
The publications related to this thesis point are:

82

Appendix A. Summary in English

♦ Péter Hegedűs, Dénes Bán, Rudolf Ferenc, and Tibor Gyimóthy. Myth or
Reality? Analyzing the Effect of Design Patterns on Software Maintainabil-
ity. In Advanced Software Engineering & Its Applications (ASEA 2012),
Jeju Island, Korea, November 28 – December 2, pages 138–145, CCIS, Vol-
ume 340. Springer Berlin Heidelberg, 2012.

♦ Dénes Bán and Rudolf Ferenc. Recognizing Antipatterns and Analyzing
their Effects on Software Maintainability. In 14th International Conference
on Computational Science and Its Applications (ICCSA 2014), Guimarães,
Portugal, June 30 – July 3, pages 337–352, LNCS, Volume 8583. Springer
International Publishing, 2014.

♦ Dénes Bán. The Connection of Antipatterns and Maintainability in Fire-
fox. In 10th Jubilee Conference of PhD Students in Computer Science (CSCS
2016), Szeged, Hungary, June 27 – 29, 2016.

♦ Dénes Bán. The Connection of Antipatterns and Maintainability in Fire-
fox. Accepted for publication in the 2016 Special Issue of Acta Cybernetica
(extended version of the CSCS 2016 paper above). 20 pages.

II. A hardware platform selection framework for performance optimiza-
tion based on static source code metrics
The contributions of this thesis point – related to software performance – are
discussed in chapters 6, 7, and 8.
Qualitative Prediction Models The goal of our qualitative research was to de-
velop a highly generalizable methodology for building prediction models that are
capable of automatically determining the optimal hardware platform (regarding
execution time, power consumption, and energy efficiency) of a given program,
using static information alone. To achieve this, we collected a number of bench-
mark programs that contained algorithms implemented for each targeted plat-
form. These benchmarks are necessary for the training of the models, because
executing and measuring the different versions of their algorithms on their re-
spective platforms is what highlights their differences in performance. Then, we
extracted several low-level source code metrics from these algorithms that would
capture their characteristics and would become the predictors of our models. We
also developed a universal solution capable of performing accurate cross-platform
time, power, and energy consumption measurements for this purpose [48]. Lastly,
we applied various machine learning techniques to build the proposed prediction
models. A brief empirical validation showed the theoretical usefulness of such
models, – demonstrating perfect accuracy at times – but the real result of this
study is the methodology that led to them, and could also enable larger scale
experiments.
Quantitative Prediction Models Building on the above-mentioned previous work,
we extended our methodology to create models that are quantitative, i.e., able
to estimate expected improvement ratios instead of just the best platform. Addi-
tional refinements included a significantly augmented set of source code metrics,
more precise metric extraction, adding new benchmarks, and introducing the
FPGA platform as a possible target. As improvement ratios are continuous, they
were predicted using regression algorithms, as well as the previously used classifi-
cation algorithms paired with a discretization filter. While the regression models

83

Appendix A. Summary in English

rarely proved encouraging, 94% of the classification models outperformed either
random choice or the established baseline by at least 5% (up to 49%, at times).
Maintainability Changes of Parallelized Implementations The benchmark source
code already available to us also made it possible to look for maintainability
changes between the CPU-based original (sequential) and the accelerator hard-
ware specific (parallel) algorithm versions. The only other requirement was for
us to compute the same source code metrics for the parallel variants as well, as a
suitable maintainability model would be reused from a previous study [79]. The
results of comparing the overall maintainability values of the two source code vari-
ants clearly indicated that parallelized implementations had significantly lower
maintainability compared to their sequential counterparts. This, however, did
not appear nearly as strongly in the core algorithms themselves, which suggests
that deterioration is mainly due to the added infrastructure (boilerplate code)
introduced by the accelerator specific frameworks they employ.
The main results of this thesis point are (a) the empirical proof that static source
code metrics are suitable for improvement estimation, and (b) a universal process
for creating qualitative and quantitative hardware platform prediction models.
A key difference between our approach and other available solutions is that,
once they are built, our models operate based on static information alone. Also,
their accuracy depends primarily on the number of training benchmarks. These
properties make the methodology easy to enhance, and its output models easy
to apply.
The Author’s Contributions
The author led the effort of collecting and preparing the benchmarks for both
static analysis and dynamic measurements. He implemented, extracted, and ag-
gregated both the original and the extended set of source code metrics, and he
compiled the final machine learning tables. He formalized and performed the ac-
tual experiments, and analyzed their results. The maintainability comparison of
benchmark versions and its evaluation is also the author’s work. The publications
related to this thesis point are:

♦ Dénes Bán, Rudolf Ferenc, István Siket, and Ákos Kiss. Prediction Mod-
els for Performance, Power, and Energy Efficiency of Software Executed on
Heterogeneous Hardware. In 13th IEEE International Symposium on Paral-
lel and Distributed Processing with Applications (IEEE ISPA-15), Helsinki,
Finland, August 20 – 22, pages 178–183, IEEE Trustcom/BigDataSE/ISPA,
Volume 3. IEEE Computer Society Press, 2015.

♦ Dénes Bán, Rudolf Ferenc, István Siket, Ákos Kiss, and Tibor Gyimóthy.
Prediction Models for Performance, Power, and Energy Efficiency of Soft-
ware Executed on Heterogeneous Hardware. Submitted to the Journal of Su-
percomputing, Springer Publishing (extended version of the IEEE ISPA-15
paper above). 24 pages.

Table A.1 summarizes the main publications and how they relate to our thesis points.

84

Appendix A. Summary in English

№ [103] [100] [98] [99] [101] [102]
I. ♦ ♦ ♦ ♦

II. ♦ ♦

Table A.1. Thesis contributions and supporting publications

85

B
Magyar nyelvű összefoglaló

Szoftverek uralják a világot. Ez az állítás lehet, hogy már évtizedekkel ezelőtt is fed-
te volna a valóságot, de napjainkban mindenképp, tekintve hogy a hálózati eszközök
legalább másfélszer annyian vannak, mint az emberek. Egy modern élet – a megszo-
kott és jól látható példákon kívül is – tele van láthatatlan, rejtett processzorokkal.
Nem is említve azt a sok kritikus rendszert, amikhez nélkülözhetetlenek, mint például
a repülés-irányítás, kórházi készülékek, vagy épp egy nukleáris reaktor üzemeltetése.
Ezeknek mind szoftverekre van szükségük a működésükhöz. Következésképpen, a fenn-
tartható szoftverfejlesztés fontosabb mint valaha.

A jelen disszertációt megalapozó kutatás ezt a fenntarthatóságot hivatott elősegíte-
ni. Első sorban a szoftverek karbantartási fázisát, illetve az azt segítő vagy hátráltató
tényezők fontosságát szeretnénk kihangsúlyozni azzal, hogy objektív összefüggéseket
mutatunk be bizonyos forráskód minták és a karbantarthatóság között. Emellett abban
is segíteni szeretnénk a fejlesztőket, hogy könnyebben kihasználhassák a performancia
növelésére szolgáló modern gyorsító hardverek nyújtotta lehetőségeket azáltal, hogy
bemutatunk egy egyszerűen használható és bővíthető statikus platform választó keret-
rendszert. Az eredményeinket – hasonló csoportosítással – két tézispontba foglaltuk. A
tézispontokhoz tartozó publikációkat a B.1. táblázat foglalja össze.

I. A forráskód minták szoftver karbantarthatóságra kifejtett hatásának
empirikus validációja
A tézispont témája a szoftver karbantarthatóság, az ide tartozó kutatási eredmé-
nyeket pedig a 3., 4. és 5. fejezetek tárgyalják.
A tervezési minták és a karbantarthatóság kapcsolata A tervezési minták kar-
bantarthatóságra kifejtett hatásának vizsgálata érdekében a JHotDraw grafikus
szoftver több mint 700 revízióját elemeztük. Ezt a rendszert kifejezetten azért
választottuk, mert készítői a benne szereplő tervezési mintákat a forráskódban
alaposan és következetesen dokumentálták, így az általános felismerő eszközök
helyett egy javadoc alapú szöveges feldolgozó script-et használhattunk. Ez gya-
korlatilag garantálta a kibányászott mintapéldányok precizitását, amit mi egy
objektív karbantarthatósági modell használatával egészítettünk ki [9]. Ezután ta-

87

B. függelék. Magyar nyelvű összefoglaló

nulmányoztuk azokat a revíziókat, ahol növekedés történt a rendszerben található
tervezési minták számában, és egyértelmű javulást tapasztaltunk a karbantart-
hatósági értékekben is. Továbbá, a mintasűrűség és a karbantarthatóság átfogó
összehasonlítása egy 0,89-es Pearson korrelációs együtthatót eredményezett, ami
arra utal, hogy a tervezési minták valóban jótékony hatással vannak a karban-
tarthatóságra.
Az antiminták és a karbantarthatóság kapcsolata Az antiminták vizsgálatára 228
nyílt forráskódú Java rendszert, valamint a Firefox C++ alapú böngésző 45 revízió-
ját választottuk, 2 különálló kísérletre. Mindkét esetben 9, széles körben elterjedt
antiminta típust nyertünk ki metrika határszámok és strukturális kapcsolatok
alapján – valamint a C++ esetében antiminta sűrűségeket is. Java rendszerekre
továbbra is az előző karbantarthatósági modellünket, míg a Firefox kiértékelésé-
hez egyedi, ECDF-alapú [89] C++ minőségi modellt és az MI metrika [21] több
verzióját használtuk. Mindkét tanulmány az antiminták negatív hatását támaszt-
ja alá. Java-ban az antiminták és a karbantarthatóság közötti átfogó Spearman
korreláció -0,62 volt, C++-ban pedig az abszolút és sűrűségi antiminta értékek
kapcsolata a karbantarthatósággal rendre -0,66 és -0,69 volt Pearson, illetve -0,7
és -0,68 Spearman korreláció esetén. Egy másik érdekes eredmény, hogy a C++-
beli antiminta találatokat karbantarthatósági prediktorokként használva 0,76 és
0,93 közötti pontosságú gépi tanulási modelleket tudtunk építeni.
Az antiminták és a programhibák kapcsolata Kiegészítésként a 4. fejezetben az
antiminták és a programhibák (vagy „bugok”) között is kapcsolatot kerestünk a
PROMISE nyílt hiba adatbázis segítségével [63]. A fent említett 228-ból azt a 34
Java rendszert vizsgálva, amikhez hiba információk is tartoztak, statisztikailag
szignifikáns 0,55-ös erősségű Spearman korrelációt találtunk az antiminták és a
hibák száma között. Ezen felül kimutattuk, hogy az antiminták 67%-os pontos-
sággal tudják előrejelezni a programhibák számát, ami jelentősen jobb az 50%-
os alapértéknél, és nem sokkal marad el ötször több statikus forráskód metrika
71,2%-os teljesítményétől sem.
A tézispont fő eredményei maguk a fent említett empirikus tanulmányok, amik a
forráskód minták és a karbantarthatóság kapcsolatára vonatkozó intuitív elvárá-
sainkat objektív, kézzel fogható adatokkal támasztják alá. Tudomásunk szerint
ezeket az eredményeket elsők között sikerült ilyen nagy mennyiségű, nagy méretű
és változatos rendszereken, illetve minden szubjektív tényező – például kérdőívek,
időkövetés vagy interjúk – nélkül elérnünk.
A szerző hozzájárulása
A tervezési mintákkal kapcsolatos kutatásban a szerző főként a mintafelismerő
eszköz implementációjához, a forráskód metrikák kiszámításához, a mintapél-
dányok számának változásával járó revíziók kézi ellenőrzéséhez és a kapcsoló-
dó irodalom feldolgozásához járult hozzá. Ezzel szemben mindkét antimintákkal
kapcsolatos tanulmány teljes egészében a szerző munkája, beleértve a rendsze-
rek előkészítését és elemzését, a statikus forráskód metrikák implementációját és
kinyerését, a karbantarthatósági értékek kiszámítását, – a C++ specifikus minő-
ségi modell készítésével együtt – az antiminták értelmezését, implementálását és
beazonosítását, a programhiba információk feldolgozását, valamint az empirikus
kísérletek megtervezését és lebonyolítását is. A tézispont a következő publikáci-
ókra épül:

88

B. függelék. Magyar nyelvű összefoglaló

♦ Péter Hegedűs, Dénes Bán, Rudolf Ferenc, and Tibor Gyimóthy. Myth or
Reality? Analyzing the Effect of Design Patterns on Software Maintainabi-
lity. In Advanced Software Engineering & Its Applications (ASEA 2012),
Jeju Island, Korea, November 28 – December 2, pages 138–145, CCIS, Vo-
lume 340. Springer Berlin Heidelberg, 2012.

♦ Dénes Bán and Rudolf Ferenc. Recognizing Antipatterns and Analyzing
their Effects on Software Maintainability. In 14th International Conference
on Computational Science and Its Applications (ICCSA 2014), Guimarães,
Portugal, June 30 – July 3, pages 337–352, LNCS, Volume 8583. Springer
International Publishing, 2014.

♦ Dénes Bán. The Connection of Antipatterns and Maintainability in Fire-
fox. In 10th Jubilee Conference of PhD Students in Computer Science (CSCS
2016), Szeged, Hungary, June 27 – 29, 2016.

♦ Dénes Bán. The Connection of Antipatterns and Maintainability in Fi-
refox. Közlésre elfogadva az Acta Cybernetica 2016-os különkiadásában (a
fenti CSCS 2016 publikáció kibővített változata). 20 oldal.

II. Performancia optimalizációt elősegítő, statikus forráskód metrikákon
alapuló hardver platform választó keretrendszer
A tézispont témája a szoftver performancia, az ide tartozó kutatási eredményeket
pedig a 6., 7. és 8. fejezetek tárgyalják.
Kvalitatív modellek A itt bemutatott kutatásunk fő célja egy általánosítható
módszertan kidolgozása volt olyan modellek építéséhez, amik képesek tisztán
statikus információk alapján megbecsülni, hogy egy adott programot várható-
an melyik hardver platformon lehet optimálisan végrehajtani – mind a futásidő,
mind pedig az energia fogyasztás szemszögéből. Ennek alapjául számos „bench-
mark” programot gyűjtöttük, bennük olyan algoritmusokkal, amik minden lehet-
séges célplatformhoz rendelkeztek implementációval. A modelljeink betanításához
szükség volt ilyen algoritmusokra, hiszen a performanciabeli eltérésekre úgy vi-
lágíthatunk rá, ha a különböző verzióikat a kapcsolódó platformjaikon futtatjuk.
Ezután számos (alacsony szintű) forráskód metrikát nyertünk ki ezekből az al-
goritmusokból, amik jól megragadják a jellemzőiket és modelljeink prediktorai
lehetnek. Emellett egy olyan általános megoldást is kifejlesztettünk, ami képes
pontos, platformfüggetlen idő és energiamérésekre [48]. Végül különböző gépi ta-
nulási módszereket használva megépíthettük a célként kitűzött modelleket. Egy
rövid empirikus validáció igazolta a modellek elméleti hasznosságát, – amelyek
néhol 100%-os pontosságot is elértek – de a tanulmány igazi eredménye a módszer-
tan, amivel megépítettük őket, és ami nagyobb szabású kísérletekre is lehetőséget
adhat.
Kvantitatív modellek Az előző eredményeinkre építve úgy bővítettük a módsze-
rünket, hogy már kvantitatív modellek készítésére is képes legyen, amik nem csak
a legjobb platformot becsülik meg, hanem az ott várható teljesítmény növekedés
arányát is. Emellett jelentősen megnöveltük a kinyert forráskód metrikáink szá-
mát, pontosabb metrika kinyerési stratégiát dolgoztunk ki, új benchmark-okkal
bővítettük az elemzett rendszereinket, és lehetséges platformként bevezettük az
FPGA-kat is. Mivel a javulási arányok folytonosak, így közelítésükhöz regressziós

89

B. függelék. Magyar nyelvű összefoglaló

algoritmusokat, valamint diszkretizáló előfeldolgozás után osztályozó algoritmu-
sokat is használhattunk. Habár a regressziók ritkán vezettek biztató eredmények-
hez, az osztályozások 94%-a legalább 5%-kal (és időnként akár 49%-kal) ponto-
sabb tudott lenni a véletlenszerű választásnál és az alapkonfigurációnál is.
A forráskód párhuzamosítás és a karbantarthatóság kapcsolata A rendelkezésre ál-
ló benchmark forráskódok lehetővé tették azt is, hogy megvizsgáljuk a CPU alapú
eredeti (szekvenciális) és a gyorsító hardver specifikus (párhuzamos) algoritmus
verziók közti karbantarthatóság különbségeket. Az egyetlen további előfeltétel az
volt, hogy a párhuzamos verziók forráskódjából is kinyerjük a korábbi metriká-
kat, hiszen a minőségi modellt felhasználhattuk egy korábbi tanulmányból [79].
Az összehasonlítás eredményei azt mutatták, hogy a párhuzamosított implemen-
tációk karbantarthatósága jelentősen alacsonyabb, mint a szekvenciális párjaiké.
Ez azonban nem volt olyan egyértelműen kimutatható az algoritmusok lényegi
részében, ami arra utal, hogy a minőségromlást főként a felhasznált, gyorsító
hardver specifikus keretrendszerek által bevezetett extra infrastruktúra (boiler-
plate) okozza.
A tézispont fő eredményei (a) az empirikus bizonyíték, hogy a statikus forráskód
metrikák hasznosak a teljesítmény-javulás előrejelzésében, és (b) egy általános
módszertan kvalitatív és kvantitatív hardver platform választó modellek építésé-
hez. Egy fontos különbség az általunk alkalmazott stratégia és más elérhető meg-
oldások között, hogy a mi modelljeink – megépítésük után – csak statikus infor-
mációkra hagyatkoznak. Továbbá a pontosságuk leginkább a tanításhoz használt
benchmark-ok számának függvénye. Ezek a tulajdonságok teszik a módszerünket
egyszerűen továbbfejleszthetővé, a modelljeit pedig egyszerűen alkalmazhatóvá.
A szerző hozzájárulása
A benchmark-ok gyűjtése és előkészítése – mind statikus, mind dinamikus elem-
zésre – a szerző vezetésével történt. Ő implementálta, nyerte ki, és aggregálta az
eredeti és a kibővített forráskód metrikákat, és ő állította össze a gépi tanuláshoz
használatos táblázatokat. Ő formalizálta és végezte el az empirikus kísérlete-
ket, és elemezte az eredményeiket. Az algoritmus verziók karbantarthatóságának
összehasonlítása és kiértékelése szintén a szerző munkája. A tézispont a következő
publikációkra épül:

♦ Dénes Bán, Rudolf Ferenc, István Siket, and Ákos Kiss. Prediction Mo-
dels for Performance, Power, and Energy Efficiency of Software Executed on
Heterogeneous Hardware. In 13th IEEE International Symposium on Paral-
lel and Distributed Processing with Applications (IEEE ISPA-15), Helsinki,
Finland, August 20 – 22, pages 178–183, IEEE Trustcom/BigDataSE/ISPA,
Volume 3. IEEE Computer Society Press, 2015.

♦ Dénes Bán, Rudolf Ferenc, István Siket, Ákos Kiss, and Tibor Gyimóthy.
Prediction Models for Performance, Power, and Energy Efficiency of Soft-
ware Executed on Heterogeneous Hardware. Elbírálás alatt a Journal of
Supercomputing-nál, Springer Publishing (a fenti IEEE ISPA-15 publikáció
kibővített változata). 24 oldal.

A tézispontokat és a kapcsolódó publikációkat a B.1. táblázat összegzi.

90

B. függelék. Magyar nyelvű összefoglaló

№ [103] [100] [98] [99] [101] [102]
I. ♦ ♦ ♦ ♦

II. ♦ ♦

B.1. táblázat. A tézispontokhoz kapcsolódó publikációk

91

Bibliography

[1] Marwen Abbes, Foutse Khomh, Yann-Gael Gueheneuc, and Giuliano Antoniol.
An empirical study of the impact of two antipatterns, blob and spaghetti code,
on program comprehension. In Proceedings of the 2011 15th European Confer-
ence on Software Maintenance and Reengineering, CSMR ’11, pages 181–190,
Washington, DC, USA, 2011. IEEE Computer Society.

[2] Advanced Micro Devices, Inc. AMD GPU Performance API – User Guide, Jan-
uary 2015. v2.15.

[3] Tiago L Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds
from benchmark data. In Software Maintenance (ICSM), 2010 IEEE Interna-
tional Conference on, pages 1–10. IEEE, 2010.

[4] P Antonellis, D Antoniou, Y Kanellopoulos, C Makris, E Theodoridis, C Tjortjis,
and N Tsirakis. A data mining methodology for evaluating maintainability ac-
cording to iso/iec-9126 software engineering–product quality standard. Special
Session on System Quality and Maintainability-SQM2007, 2007.

[5] H. Arasteh, V. Hosseinnezhad, V. Loia, A. Tommasetti, O. Troisi, M. Shafie-
khah, and P. Siano. Iot-based smart cities: A survey. In 2016 IEEE 16th Inter-
national Conference on Environment and Electrical Engineering (EEEIC), pages
1–6, June 2016.

[6] Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model
selection. In Statistics Surveys, volume 4, pages 40–79, 2010.

[7] ARM. ARM DS-5 Version 5.21 – Streamline User Guide, March 2015. ARM
DUI0482S.

[8] Lerina Aversano, Gerardo Canfora, Luigi Cerulo, Concettina Del Grosso, and
Massimiliano Di Penta. An Empirical Study on the Evolution of Design Patterns.
In Proceedings of the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on the foundations of software
engineering, ESEC-FSE ’07, pages 385–394, New York, NY, USA, 2007. ACM.

[9] Tibor Bakota, Péter Hegedűs, Péter Körtvélyesi, Rudolf Ferenc, and Tibor Gy-
imóthy. A Probabilistic Software Quality Model. In Proceedings of the 27th IEEE
International Conference on Software Maintenance, ICSM 2011, pages 368–377,
Williamsburg, VA, USA, 2011. IEEE Computer Society.

[10] Tibor Bakota, Péter Hegedűs, Gergely Ladányi, Péter Körtvélyesi, Rudolf Ferenc,
and Tibor Gyimóthy. A Cost Model Based on Software Maintainability. In

93

Bibliography

Proceedings of the 28th IEEE International Conference on Software Maintenance,
ICSM 2012, Williamsburg, VA, USA, 2012. IEEE Computer Society.

[11] Dénes Bán, Rudolf Ferenc, István Siket, Ákos Kiss, and Tibor Gyimóthy. Perfor-
mance, power, and energy prediction models. http://www.inf.u-szeged.hu/
~ferenc/papers/PerformancePowerEnergyModels/, 2017.

[12] Dénes Bán, Róbert Sipka, and Imre Dobi. Tagged parallel benchmarks. https:
//github.com/sed-szeged/TaggedParallelBenchmarks, 2017.

[13] J. Bansiya and C.G. Davis. A Hierarchical Model for Object-Oriented Design
Quality Assessment. IEEE Transactions on Software Engineering, 28:4–17, 2002.

[14] Christopher M Bishop. Neural networks for pattern recognition, 1995.

[15] Cisco Canada Blog. Cisco ioe innovation centre toronto: The future is now, 2015.

[16] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto. Source-level execution
time estimation of c programs. In Hardware/Software Codesign, 2001. CODES
2001. Proceedings of the Ninth International Symposium on, pages 98–103, 2001.

[17] F. Brito e Abreu and W. Melo. Evaluating the impact of object-oriented design
on software quality. In Software Metrics Symposium, 1996., Proceedings of the
3rd International, pages 90 –99, mar 1996.

[18] Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan
Chafi, Martin Odersky, and Kunle Olukotun. A heterogeneous parallel frame-
work for domain-specific languages. In Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation Techniques, PACT ’11,
pages 89–100, Washington, DC, USA, 2011. IEEE Computer Society.

[19] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and Thomas J.
Mowbray. AntiPatterns: Refactoring Software, Architectures, and Projects in
Crisis. John Wiley & Sons, Inc., New York, NY, USA, 1998.

[20] Shuai Che, M. Boyer, Jiayuan Meng, D. Tarjan, J.W. Sheaffer, Sang-Ha Lee,
and K. Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing. In
Workload Characterization, 2009. IISWC 2009. IEEE International Symposium
on, pages 44–54, Oct 2009.

[21] D. Coleman, D. Ash, B. Lowther, and P. Oman. Using metrics to evaluate
software system maintainability. Computer, 27(8):44–49, Aug 1994.

[22] IBM Corp. Ibm spss statistics for windows.

[23] Jing Dong, Dushyant S. Lad, and Yajing Zhao. DP-Miner: Design Pattern Dis-
covery Using Matrix. In Proceedings of the 14th Annual IEEE International Con-
ference and Workshops on the Engineering of Computer-Based Systems, ECBS
’07, pages 371–380, Washington, DC, USA, 2007. IEEE Computer Society.

[24] Tapio Elomaa and Matti Kääriäinen. An analysis of reduced error pruning.
CoRR, abs/1106.0668, 2011.

94

http://www.inf.u-szeged.hu/~ferenc/papers/PerformancePowerEnergyModels/
http://www.inf.u-szeged.hu/~ferenc/papers/PerformancePowerEnergyModels/
https://github.com/sed-szeged/TaggedParallelBenchmarks
https://github.com/sed-szeged/TaggedParallelBenchmarks

Bibliography

[25] C. Faragó, P. Hegedus, G. Ladányi, and R. Ferenc. Impact of version history
metrics on maintainability. In 2015 8th International Conference on Advanced
Software Engineering Its Applications (ASEA), pages 30–35, Nov 2015.

[26] Rudolf Ferenc, László Langó, István Siket, Tibor Gyimóthy, and Tibor Bakota.
Source meter sonar qube plug-in. In Proceedings of the 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis and Manipulation, SCAM
’14, pages 77–82, Washington, DC, USA, 2014. IEEE Computer Society.

[27] F. A. Fontana and S. Maggioni. Metrics and antipatterns for software quality
evaluation. In Software Engineering Workshop (SEW), 2011 34th IEEE, pages
48–56, June 2011.

[28] M. Fowler and K. Beck. Refactoring: Improving the Design of Existing Code.
Addison-Wesley object technology series. Addison-Wesley, 1999.

[29] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski,
Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks,
Eric Courtois, Francois Bodin, Phil Barnard, Elton Ashton, Edwin Bonilla, John
Thomson, Christopher K. I. Williams, and Michael O’Boyle. Milepost gcc: Ma-
chine learning enabled self-tuning compiler. International Journal of Parallel
Programming, 39(3):296–327, Jun 2011.

[30] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns : Elements of Reusable Object-Oriented Software. Addison-Wesley Pub Co,
1995.

[31] Inc. Gartner. Gartner says demand for enterprise mobile apps will outstrip avail-
able development capacity five to one, 2015.

[32] R. L. Glass. Frequently forgotten fundamental facts about software engineering.
IEEE Software, 18(3):112–111, May 2001.

[33] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John
Cavazos. Auto-tuning a high-level language targeted to gpu codes. In Innovative
Parallel Computing (InPar), 2012, pages 1–10. IEEE, 2012.

[34] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and Ian H. Witten. The weka data mining software: An update. SIGKDD
Explor. Newsl., 11(1), November 2009.

[35] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A Practical Model for Measuring
Maintainability. Proceedings of the 6th International Conference on Quality of
Information and Communications Technology, pages 30–39, 2007.

[36] Abram Hindle. Green mining: A methodology of relating software change to
power consumption. In Mining Software Repositories (MSR), 2012 9th IEEE
Working Conference on, pages 78–87. IEEE, 2012.

[37] Nien-Lin Hsueh, Lin-Chieh Wen, Der-Hong Ting, W. Chu, Chih-Hung Chang,
and Chorng-Shiuh Koong. An Approach for Evaluating the Effectiveness of De-
sign Patterns in Software Evolution. In IEEE 35th Annual Computer Software

95

Bibliography

and Applications Conference Workshops (COMPSACW), pages 315 –320, July
2011.

[38] Brian Huston. The Effects of Design Pattern Application on Metric Scores.
Journal of Systems and Software, pages 261–269, 2001.

[39] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual:
Vol. 3B, January 2015. Order Number 253669.

[40] ISO/IEC. ISO/IEC 9126. Software engineering – Product quality. ISO/IEC,
2001.

[41] ISO/IEC. ISO/IEC 25010 - Systems and software engineering - Systems and
software Quality Requirements and Evaluation (SQuaRE) - System and software
quality models. Technical report, 2010.

[42] George H. John and Pat Langley. Estimating continuous distributions in bayesian
classifiers. In Eleventh Conference on Uncertainty in Artificial Intelligence, pages
338–345, San Mateo, 1995. Morgan Kaufmann.

[43] Capers Jones and Olivier Bonsignour. The Economics of Software Quality.
Addison-Wesley Professional, 1st edition, 2011.

[44] John Francis. Kenney and E. S. Keeping. Mathematics of statistics / by
J.F.Kenney. Van Nostrand N.Y, 2nd ed. edition, 1947.

[45] F. Khomh, S. Vaucher, Y. G. Guéhéneuc, and H. Sahraoui. A bayesian ap-
proach for the detection of code and design smells. In 2009 Ninth International
Conference on Quality Software, pages 305–314, Aug 2009.

[46] Foutse Khomh and Yann-Gaël Guéhéneuc. Do Design Patterns Impact Software
Quality Positively? In Proceedings of the 12th European Conference on Software
Maintenance and Reengineering, CSMR ’08, pages 274–278, Washington, DC,
USA, 2008. IEEE Computer Society.

[47] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. An exploratory study of the impact of antipatterns on class change-
and fault-proneness. Empirical Software Engineering, 17(3):243–275, 2012.

[48] Ákos Kiss, Péter Molnár, and Róbert Sipka. Rmeasure performance and energy
monitoring library. https://github.com/sed-szeged/RMeasure, 2017.

[49] Ákos Kiss et al. REPARA deliverable D7.3: System-level quantitative models.
2016.

[50] J.L. Krein, L.J. Pratt, A.B. Swenson, A.C. MacLean, C.D. Knutson, and D.L.
Eggett. Design Patterns in Software Maintenance: An Experiment Replication
at Brigham Young University. In Second International Workshop on Replication
in Empirical Software Engineering Research (RESER 2011), pages 25 –34, Sept.
2011.

96

https://github.com/sed-szeged/RMeasure

Bibliography

[51] Michael Kuperberg, Klaus Krogmann, and Ralf Reussner. Performance predic-
tion for black-box components using reengineered parametric behaviour models.
In Proceedings of the 11th International Symposium on Component-Based Soft-
ware Engineering, CBSE ’08, pages 48–63, Berlin, Heidelberg, 2008. Springer-
Verlag.

[52] S. le Cessie and J.C. van Houwelingen. Ridge estimators in logistic regression.
Applied Statistics, 41(1):191–201, 1992.

[53] Dong Li, B.R. de Supinski, M. Schulz, K. Cameron, and D.S. Nikolopoulos.
Hybrid mpi/openmp power-aware computing. In Parallel Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pages 1–12, April 2010.

[54] Angela Lozano, Michel Wermelinger, and Bashar Nuseibeh. Assessing the impact
of bad smells using historical information. In Ninth International Workshop on
Principles of Software Evolution: In Conjunction with the 6th ESEC/FSE Joint
Meeting, IWPSE ’07, pages 31–34. ACM, 2007.

[55] Luis M. Sánchez et al. Target Platform Description Specification. REPARA
– Reengineering and Enabling Performance and poweR of Applications, 2014.
ICT-609666-D3.1.

[56] Xiaohan Ma, Mian Dong, Lin Zhong, and Zhigang Deng. Statistical power con-
sumption analysis and modeling for gpu-based computing, 2009.

[57] A. Maiga, N. Ali, N. Bhattacharya, A. Sabané, Y. G. Guéhéneuc, and E. Aimeur.
Smurf: A svm-based incremental anti-pattern detection approach. In 2012 19th
Working Conference on Reverse Engineering, pages 466–475, Oct 2012.

[58] M.V. Mäntylä, J. Vanhanen, and C. Lassenius. Bad smells - humans as code
critics. In Software Maintenance, 2004. Proceedings. 20th IEEE International
Conference on, pages 399–408, 2004.

[59] Gabriel Marin and John Mellor-Crummey. Cross-architecture performance pre-
dictions for scientific applications using parameterized models. In Proceedings of
the Joint International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS ’04/Performance ’04, pages 2–13, New York, NY, USA,
2004. ACM.

[60] Radu Marinescu. Detecting design flaws via metrics in object-oriented systems.
In In Proceedings of TOOLS, pages 173–182. IEEE Computer Society, 2001.

[61] Radu Marinescu. Detection strategies: Metrics-based rules for detecting design
flaws. In In Proc. IEEE International Conference on Software Maintenance,
2004.

[62] William B. McNatt and James M. Bieman. Coupling of Design Patterns: Com-
mon Practices and Their Benefits. In Proceedings of the 25th International
Computer Software and Applications Conference on Invigorating Software De-
velopment, COMPSAC ’01, pages 574–579, Washington, DC, USA, 2001. IEEE
Computer Society.

97

Bibliography

[63] Tim Menzies, Bora Caglayan, Zhimin He, Ekrem Kocaguneli, Joe Krall, Fay-
ola Peters, and Burak Turhan. The promise repository of empirical software
engineering data, June 2012.

[64] N. Moha, Y. G. Guéhéneuc, L. Duchien, and A. F. Le Meur. Decor: A method
for the specification and detection of code and design smells. IEEE Transactions
on Software Engineering, 36(1):20–36, Jan 2010.

[65] T. H. Ng, S. C. Cheung, W. K. Chan, and Y. T. Yu. Do Maintainers Utilize
Deployed Design Patterns Effectively? In Proceedings of the 29th international
conference on Software Engineering, ICSE ’07, pages 168–177, Washington, DC,
USA, 2007. IEEE Computer Society.

[66] NVIDIA Corporation. NVIDIA Management Library (NVML) – Reference Man-
ual, March 2014. TRM-06719-001 _vR331.

[67] Anne-Cecile Orgerie, Marcos Dias de Assuncao, and Laurent Lefevre. A survey on
techniques for improving the energy efficiency of large-scale distributed systems.
ACM Comput. Surv., 46(4):47:1–47:31, March 2014.

[68] Timothy Osmulski, Jeffrey T. Muehring, Brian Veale, Jack M. West, Hongping
Li, Sirirut Vanichayobon, Seok-Hyun Ko, John K. Antonio, and Sudarshan K.
Dhall. A probabilistic power prediction tool for the xilinx 4000-series fpga. In
Proceedings of the 15 IPDPS 2000 Workshops on Parallel and Distributed Pro-
cessing, IPDPS ’00, pages 776–783, London, UK, UK, 2000. Springer-Verlag.

[69] D. E. Peercy. A software maintainability evaluation methodology. IEEE Trans-
actions on Software Engineering, SE-7(4):343–351, July 1981.

[70] D.C. Pew Research Center, Washington. Mobile fact sheet, 2017.

[71] D. Pflüger and D. Pfander. Computational efficiency vs. maintainability and
portability. experiences with the sparse grid code sg++. In 2016 Fourth Inter-
national Workshop on Software Engineering for High Performance Computing in
Computational Science and Engineering (SE-HPCCSE), pages 17–25, Nov 2016.

[72] Pico Technology Ltd. PicoScope 4000 Series (A API) – Programmers Guide,
2014. ps4000apg.en r1.

[73] J. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schoelkopf, C. Burges, and A. Smola, editors, Advances in
Kernel Methods - Support Vector Learning. MIT Press, 1998.

[74] Louis-Noel Pouchet. Polybench: The polyhedral benchmark suite. URL
http://www-roc.inria.fr/ pouchet/software/polybench, 2011.

[75] L. Prechelt, B. Unger, W.F. Tichy, P. Brössler, and L.G. Votta. A Controlled
Experiment in Maintenance Comparing Design Patterns to Simpler Solutions.
IEEE Transactions on Software Engineering, 27:1134–1144, 2001.

[76] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W.F. Tichy. Two controlled
experiments assessing the usefulness of design pattern documentation in program
maintenance. Software Engineering, IEEE Transactions on, 28(6):595 –606, jun
2002.

98

Bibliography

[77] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[78] D. Rapu, S. Ducasse, T. Girba, and R. Marinescu. Using history information
to improve design flaws detection. In Software Maintenance and Reengineering,
2004. CSMR 2004. Proceedings. Eighth European Conference on, pages 223–232,
2004.

[79] Rudolf Ferenc et al. REPARA deliverable D7.4: Maintainability models of het-
erogeneous programming models. 2015.

[80] A. Sabane, M. Penta, G. Antoniol, and Y. G. Guéhéneuc. A study on the re-
lation between antipatterns and the cost of class unit testing. In Proceedings of
the Euromicro Conference on Software Maintenance and Reengineering, CSMR,
March 2013.

[81] Jie Shen, Jianbin Fang, H. Sips, and A.L. Varbanescu. Performance gaps be-
tween openmp and opencl for multi-core cpus. In Parallel Processing Workshops
(ICPPW), 2012 41st International Conference on, pages 116–125, Sept 2012.

[82] S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, and K.R.K. Murthy. Improve-
ments to the smo algorithm for svm regression. In IEEE Transactions on Neural
Networks, 1999.

[83] Connie U. Smith and Lloyd G. Williams. Software Performance Engineering,
pages 343–365. Springer US, Boston, MA, 2003.

[84] A. Stoianov and I. Şora. Detecting patterns and antipatterns in software using
prolog rules. In Computational Cybernetics and Technical Informatics (ICCC-
CONTI), 2010 International Joint Conference on, pages 253–258, May 2010.

[85] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen
Chang, Nasser Anssari, Geng Daniel Liu, and Wen mei W. Hwu. Parboil: A
Revised Benchmark Suite for Scientific and Commercial Throughput Comput-
ing. Technical report, University of Illinois, at Urbana-Champaign, March 2012.

[86] G. Szőke, C. Nagy, P. Hegedűs, R. Ferenc, and T. Gyimóthy. Do automatic refac-
torings improve maintainability? an industrial case study. In Software Mainte-
nance and Evolution (ICSME), 2015 IEEE International Conference on, pages
429–438, Sept 2015.

[87] H. Takizawa, K. Sato, and H. Kobayashi. Sprat: Runtime processor selection
for energy-aware computing. In Cluster Computing, 2008 IEEE International
Conference on, pages 386–393, Sept 2008.

[88] Adrian Trifu and Radu Marinescu. Diagnosing design problems in object oriented
systems. In Proceedings of the 12th Working Conference on Reverse Engineering,
WCRE ’05, pages 155–164. IEEE Computer Society, 2005.

[89] A.W. Van Der Vaart. Asymptotic Statistics. Cambridge Series in Statistical and
Probabilistic Mathematics, 3. Cambridge University Press, 1998.

99

Bibliography

[90] B. Venners. How to Use Design Patterns - A Conversation With Erich Gamma,
Part I. 2005.

[91] M. Vokáč. Defect Frequency and Design Patterns: an Empirical Study of Indus-
trial Code. IEEE Transactions on Software Engineering, 30(12):904 – 917, Dec.
2004.

[92] Marek Vokáč, Walter Tichy, Dag I. K. Sjøberg, Erik Arisholm, and Magne Aldrin.
A Controlled Experiment Comparing the Maintainability of Programs Designed
with and without Design Patterns - A Replication in a Real Programming Envi-
ronment. Empirical Software Engineering, 9(3):149–195, September 2004.

[93] Y. Wang and I. H. Witten. Induction of model trees for predicting continuous
classes. In Poster papers of the 9th European Conference on Machine Learning.
Springer, 1997.

[94] L. Wendehals. Improving Design Pattern Instance Recognition by Dynamic Anal-
ysis. In Proceedings of the ICSE 2003 Workshop on Dynamic Analysis (WODA),
Portland, USA, 2003.

[95] Peter Wendorff. Assessment of Design Patterns during Software Reengineering:
Lessons Learned from a Large Commercial Project. In Proceedings of the Fifth
European Conference on Software Maintenance and Reengineering, CSMR ’01,
pages 77–, Washington, DC, USA, 2001. IEEE Computer Society.

[96] Aiko Yamashita and Leon Moonen. Do code smells reflect important maintain-
ability aspects? pages 306–315. IEEE, September 2012.

[97] L.T. Yang, Xiaosong Ma, and F. Mueller. Cross-platform performance predic-
tion of parallel applications using partial execution. In Supercomputing, 2005.
Proceedings of the ACM/IEEE SC 2005 Conference, pages 40–40, Nov 2005.

100

Bibliography

Corresponding Publications of the Author

[98] Dénes Bán. The connection of antipatterns and maintainability in firefox. In 10th

Jubilee Conference of PhD Students in Computer Science (CSCS 2016), Szeged,
Hungary, June 27 – 29, 2016.

[99] Dénes Bán. The connection of antipatterns and maintainability in firefox. Ac-
cepted for publication in the 2016 Special Issue of Acta Cybernetica (extended
version of [98]). 20 pages.

[100] Dénes Bán and Rudolf Ferenc. Recognizing antipatterns and analyzing their
effects on software maintainability. In 14th International Conference on Compu-
tational Science and Its Applications (ICCSA 2014), Guimarães, Portugal, June
30 – July 3, pages 337–352. Springer International Publishing, 2014.

[101] Dénes Bán, Rudolf Ferenc, István Siket, and Ákos Kiss. Prediction models for
performance, power, and energy efficiency of software executed on heterogeneous
hardware. In 13th IEEE International Symposium on Parallel and Distributed
Processing with Applications (IEEE ISPA-15), Helsinki, Finland, August 20 –
22, volume 3, pages 178–183, 2015.

[102] Dénes Bán, Rudolf Ferenc, István Siket, Ákos Kiss, and Tibor Gyimóthy. Predic-
tion models for performance, power, and energy efficiency of software executed on
heterogeneous hardware. Submitted to the Journal of Supercomputing (extended
version of [101]). 24 pages.

[103] Péter Hegedűs, Dénes Bán, Rudolf Ferenc, and Tibor Gyimóthy. Myth or re-
ality? analyzing the effect of design patterns on software maintainability. In
Advanced Software Engineering & Its Applications (ASEA 2012), Jeju Island,
Korea, November 28 – December 2, pages 138–145. Springer Berlin Heidelberg,
2012.

101

	Preface
	Introduction
	Background
	Static Source Code Analysis
	Empirical Cumulative Distribution Functions
	Quality Models
	Statistical Analysis and Machine Learning
	Correlations
	Regression Techniques
	Classification Techniques
	Validation of the Models

	I Source Code Patterns
	The Connection between Design Patterns and Maintainability
	Overview
	Related Work
	Methodology
	Results
	Threats to Validity
	Summary

	The Connection between Antipatterns and Maintainability in Java
	Overview
	Related Work
	Methodology
	Metric Definitions
	Mining Antipatterns
	Maintainability Model
	PROMISE
	Machine Learning

	Results
	Threats to Validity
	Summary

	The Connection between Antipatterns and Maintainability in C++
	Overview
	Methodology
	Static Analysis
	Metric Definitions
	Metric Normalization
	Antipatterns
	Maintainability Models

	Results
	Correlation Results
	Machine Learning Results
	Lessons Learned

	Threats to Validity
	Summary

	II Performance Optimization
	Qualitative Prediction Models
	Overview
	Related Work
	Methodology
	Benchmarks
	Measurements
	Measurement Methods
	The RMeasure Library
	Measurement Precision

	Metric Extraction
	Static Analysis
	Metric Definitions
	Metric Aggregation
	Configuration Selection

	Results
	Machine Learning
	Validation of the Models

	Summary

	Quantitative Prediction Models
	Overview
	Methodology
	Benchmarks
	Metric Extraction
	Static Analysis
	Metric Definitions
	Metric Aggregation

	Results
	Training Instances
	Machine Learning
	Validation of the Models

	Summary

	Maintainability Changes of Parallelized Implementations
	Overview
	Related Work
	Methodology
	Tagging
	Maintainability Evaluation

	Results
	Summary

	Conclusions
	Appendices
	Summary in English
	Magyar nyelvű összefoglaló

	Bibliography

