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Chapter 1

Introduction

1.1 Historical background

Change detection is a naturally occurring question in statistics, and time series analysis in

particular. One of the most widely used assumptions in time series analysis is that the

dynamics of the process do not change over time, which allows us to collect a large enough

samples for analysis. Obtaining a test for that assumption is therefore a natural desire.

The most widely cited early papers are Page (1954, 1955), and much of the early work

was done in the field of control theory. The focus was at first (and to some extent, still is)

on detecting a change in the mean of a series of independent variables. The distributions

of the variables were often assumed to come from some parametric family, enabling the

statistician to use likelihood methods to test for a change. Two main generalizations of that

first model have suggested themselves from the outset: nonparametric cases, in which the null

hypothesis only states that our sample consists of i.i.d. variables, and classical time series

such as autoregressive moving average (ARMA) or generalized autoregressive conditional

heteroskedasticity (GARCH) models, and more recently, even functional observations (Berkes

et al., 2009).

As we have mentioned, likelihood-based methods have been successful for a wide range

of processes. Most of these results are skilfully collected and presented in the canonical

monograph of Csörgő and Horváth (1997). However, with our processes, the exact likelihood

is usually unavailable because we do not make any distribution assumptions. That being

said, our approach is motivated by the quasi-likelihood method of Gombay (2008).

The original cumulative sums (CUSUM) method of Page also continued to receive at-

tention and was used in contexts where the likelihood function was either incalculable or

impractical – see, e.g., Ploberger and Krämer (1992) and Lee et al. (2003). Also known as

the Hinkley method, it was used for ARMA models by Baikovicius and Gerencsér (1992) and

for hidden Markov models by Gerencsér and Prosdocimi (2010).
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Chapter 1. Introduction

U -statistics have also been applied to the problem, especially if there were no distribution

assumptions on the observations. For example, Gombay (2001) considered results under the

alternative hypothesis as well.

Also, a significant portion of the literature is concerned with sequential or online methods,

i.e., the observations are assumed to arrive one after another, and the objective is to detect

a change as soon as possible. Berkes et al. (2004) used quasi-likelihood scores, closely related

to our process, for this task. In contrast, our method will be offline, that is, we will receive

all of our observations before starting the analysis.

The main objective of this thesis is to prove asymptotic properties of the testing procedure

under the alternative hypothesis as well as the null hypothesis. We believe this to be impor-

tant because, if investigated only under the null hypothesis, a change-detection procedure is

essentially a model-fitting test, and results under the alternative are necessary to verify its

use for the more special task of change detection.

The difficulty in applying the standard results to branching processes lies in the additional

randomness introduced by the branching mechanism. This makes it impossible to follow

likelihood-based methods except under very special circumstances. We are left, then, with

few tools. Our method of choice is the martingale approach, since its foundations are well-

explored and have several canonical monographs – Karatzas and Shreve (1991) and Jacod

and Shiryaev (2003) will be the ones we use most. Also, martingale methods can be relatively

easily extended to continuous time, as demonstrated below.

Nevertheless, we will not try to conceal the fact that our research was mainly motivated

by Csörgő and Horváth (1997) and Gombay (2008), even if their methods of proof were not

applicable to our processes. That motivation is largely explained by the fact that our first

focus was the INAR(p) process, which resembles an AR(p) process in its covariance structure

so it was hoped that the results for AR(p) processes can be extended to it. Indeed that hope

has come true, and the following pages hopefully demonstrate how much further that idea

can be taken if one is willing to perform more extensive calculations.

1.2 Notations

Let N, Z+, R, R+ and R++ denote the sets of positive integers, non-negative integers, real

numbers, non-negative real numbers and positive real numbers, respectively. For x, y ∈ R,

we will use x ∧ y := min(x, y). By ‖x‖, ‖A‖ and ρ(A), we denote the Euclidean norm of

a vector x ∈ Rd, the induced matrix norm of a matrix A ∈ Rd×d, and the spectral radius

of A, respectively. By Ed ∈ Rd×d, we denote the d × d identity matrix (the more common

notation I will be reserved for our information matrices), and by 1i, the i-th unit vector. The

Borel σ-algebra on R will be denoted by B(R). Continous martingales will make a frequent

appearance; as usual, their quadratic variation will be denoted by 〈·〉.
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1.3. Key results: change detection

Unless otherwise noted, asymptotic statements are all to be understood as T → ∞, or

n→∞, as appropriate for continuous and discrete time, respectively. Modes of convergence

will be stated as
P−→,

D−→ and
a.s.−→ for convergence in probability, in distribution and almost

surely, respectively. For rates of convergence, we will use the Landau asymptotic notation:

for a stochastic process Xt, the notation Xt = OP(g(t)) means that the collection of measures(
L
(
Xt
g(t)

))
t>t0

is tight for some t0 > 0 (L stands for distribution, and note that t can be either

discrete or continuous here). Also, Xt = oP(g(t)) means simply that Xt
g(t)

P−→ 0.

As for the probabilistic setup, in continuous time,
(
Ω,F , (Ft)t∈R+ ,P

)
will always be a

filtered probability space satisfying the usual conditions, i.e., (Ω,F ,P) is complete, the fil-

tration (Ft)t∈R+ is right-continuous and F0 contains all the P-null sets in F . Also, in case of

the Heston model, (Ft)t∈R+ will correspond to (Wt, Bt)t∈R+ , a standard Wiener process, and

a given initial value (η0, ζ0), independent of (Wt, Bt)t∈R+ , such that P(η0 ∈ R+) = 1. Details

of this construction can be found in Karatzas and Shreve (1991, Section 5.2).

1.3 Key results: change detection

Chapters 2 and 4 describe change detection tests for a discrete and a continuous time process,

respectively. These tests have a lot of common steps, which are summarized below:

1. We will take a vector-valued process Xt, indexed either by the natural numbers or the

nonnegative real numbers and take a sample of it on the interval 0 6 t 6 T.

2. We will choose a parameter θt governing the dynamics of the process. The main

question will be whether this parameter is constant in t, or, formally, we would like to

test

H0 : ∃θ : θt = θ, t ∈ [0, T ]

against the alternative hypothesis

HA : ∃ρ ∈ (0, 1) : θt = θ′, t ∈ [0, ρT ) and θt = θ′′, t ∈ [ρT , T ]

for some θ′ 6= θ′′. An important additional condition will be for stability: θ, θ′, θ′′

have to be such that X have a unique stationary distribution under H0, and both parts

of the process (before and after the change) have a unique stationary distribution under

HA.

3. We will find an appropriate vector-valued function f such that

M t := Xt −X0 −
∫ t

0
f(θs;Xs−) ds

will be a martingale. Here Xs−, a slightly informal notation, means Xs for continuous

s and Xs−1 for discrete s. Similarly, the integral is simply a sum for discrete s.
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Chapter 1. Introduction

4. Assuming θt = θ for all t, we will estimate θ with θ̂T based on the conditional least

squares (CLS) method of Klimko and Nelson (1978).

5. We will replace θt with θ̂T in the definition of M t to obtain M̂
(T )

t .

6. We will prove that if θt is constant in t, then

M̂
(T )

u := Î
−1/2
T M̂

(T )

uT , u ∈ [0, 1]

converges in distribution to a Brownian bridge on [0, 1], for some random normalizing

matrix ÎT , which is calculable from the sample.

7. Consequently, we will construct tests for the change in θ, using the supremum or

infimum of M̂
(T )

u as a test statistic (based on the direction of change).

8. We will prove that if there is a single change in θt on [0, T ], then the test statistic will

tend to infinity stochastically as T →∞.

9. We will prove that the arg max, or arg min, of M̂
(T )

u is a good estimator of the change

point in θt.

Now we introduce the two special cases in our focus.

1.3.1 The INAR(p) process

The integer-valued autoregressive process of order p (denoted by INAR(p)) is defined by the

following equation:

(1.3.1) Xk = α1 ◦Xk−1 + · · ·+ αp ◦Xk−p + εk, k ∈ N,

where the εk are i.i.d nonnegative integer-valued random variables with mean µ, and for a

random nonnegative integer-valued random variable Y and α ∈ (0, 1), α ◦Y denotes the sum

of Y i.i.d Bernoulli random variables with mean α, also independent of Y . This process was

first proposed by Alzaid and Al-Osh (1987) for p = 1 and Du and Li (1991) for higher p

values. In this case the parameter vector will be

θ :=


α1

...

αp

µ

 .

Change detection methods for INAR(p) processes in general (i.e., with no prespecified innova-

tion distribution) have only been proposed in a few papers – we refer to Kang and Lee (2009)
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1.3. Key results: change detection

especially, where the authors give a test statistics similar to ours for a more general model.

However, no result are available in these papers under the alternative hypothesis and the

asymptotics of the change-point estimator are not given – we will give some answers to both

of these questions which strengthen the theoretical foundations of the method considerably.

Also, Hudecová et al. (2015) used the probability generating function to detect changes in

the process. They prove the consistency of their test, but do not give the asymptotics of the

change-point estimator.

We will define our martingale (or rather, its martingale differences) in (2.2.4), and the CLS

estimates in (2.4.1). Our test process will be given in (2.5.2), and its asymptotic distribution

under H0 in Theorem 2.5.1. Under the alternative hypothesis the weak consistency of the

test is proved in Theorem 2.7.1, and the asymptotic properties of the change-point estimator

in Theorem 2.8.1. Finally, we will give a numerical illustration based on a widely analyzed

polio dataset in 2.10. These results have been published in Pap and Szabó (2013). Appendix

A contains some additional results, which our not necessary for our tests but are worthy

of interest from a theoretical standpoint – in particular Theorem A.3.5 about the strong

approximation of our test process under H0.

1.3.2 The Cox–Ingersoll–Ross process

The Cox–Ingersoll–Ross (CIR) process:

(1.3.2) dYt = (a− bYt) dt+ σ
√
Yt dWt, t ∈ R+,

where a ∈ R++, b ∈ R++, σ ∈ R++ and (Wt)t∈R+ is a standard Wiener process. The

constraints on the parameter values ensure the ergodic behavior of our process – for details

see Theorem 3.2.1 below. These constraints also ensure that any solution of (1.3.2) starting

from a nonnegative value stays nonnegative almost surely – see Proposition 3.1.1.

This process was first investigated by Feller (1951), proposed as a short-term interest-rate

model by Cox et al. (1985), and became one of the most widespread “short rate” models in

financial mathematics.

Because of the central role that the process plays in financial mathematics, it has received

considerable interest from statisticians, but mostly in the space of parameter estimation.

Overbeck (1998) provided estimators based on continuous time observations, while the low-

frequency discrete time CLS estimators were proposed by Overbeck and Rydén (1997). Li

and Ma (2015) extended the investigation to so-called stable CIR processes driven by an

α-stable process instead of a Brownian motion.

In change point detection, more regular processes (such as Ornstein–Uhlenbeck) and

sequential analysis received most of the attention. The CIR process, which can be constructed

as a limit of branching processes, presents a more challenging problem since many standard

5
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results are not directly applicable to it, chiefly because the diffusion coefficient is not Lipschitz

continuous. Consequently, there are a handful of change detection tests for the CIR process in

the literature: Schmid and Tzotchev (2004) used control charts and a sequential method i.e.,

an online procedure. In contrast, our approach is offline, where we assume the full sample

to be known before starting investigations. They also supposed noisy observations, which

will not be our interest. Guo and Härdle (2017) used the local parameter approach based

on approximate maximum likelihood estimates. In essence, they wanted to find the largest

interval for which the sample fits the model. Their method is based on a discrete sample,

whereas we will use a continuous one.

It turns out that the approach outlined in Chapter 2 can be extended to the CIR process

with relatively straightforward modifications, at least concerning the statement. Adapting

the proofs, however, required some results that are noteworthy on their own. In particular, in

Lemma 4.7.2, which will be essential in continuous time, we prove a Hájek-Rényi type result

estimating the tail probabilities of the supremum of a continuous time stochastic process.

This is an extension to continuous time of Lemma 2.9.1, and we believe it to be a new result

that may find other applications beside this particular one.

Our parameter vector in this case will be

θ :=

[
a

b

]

Change detection in σ is not necessary, since we can establish almost surely whether σ is

constant across our sample. Indeed, the volatility parameter σ can be calculated almost

surely from an arbitrarily small part of a continuous sample, see, e.g., Barczy and Pap (2016,

Remark 2.6) or Overbeck and Rydén (1997, remark after Theorem 3.6).

We will give our estimators in (4.1.1), the martingale in (4.2.1), and the test process

in (4.2.4). The asymptotic distribution of the test process under the null hypothesis will

be given by Theorem 4.2.1. Weak consistence under the alternative hypothesis is proved

in Theorem 4.5.1 and the asymptotic properties of the change-point estimator are given in

Theorem 4.6.1. These results have been published in Pap and Szabó (2016).

1.4 Key results: parameter estimation

In the final chapter we will continue to extend our investigations by proposing conditional

least squares estimators for the Heston model. The Heston model is a solution of a two-

dimensional stochastic differential equation:dYt = (a− bYt) dt+ σ1
√
Yt dWt,

dXt = (α− βYt) dt+ σ2
√
Yt
(
%dWt +

√
1− %2 dBt

)
,

t > 0,(1.4.1)
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1.4. Key results: parameter estimation

where a ∈ R++, b, α, β ∈ R, σ1 ∈ R++, σ2 ∈ R++, % ∈ (−1, 1), and (Wt, Bt)t>0 is a 2-

dimensional standard Wiener process, see Heston (1993). It is immediately apparent that

Y is just the Cox–Ingersoll–Ross process introduced in (1.3.2). Various interpretations of Y

and X in financial mathematics are mentioned in, e.g., Hurn et al. (2013, Section 4).

Historically, most efforts have concentrated on parameter estimation for the CIR model

only, and not the higher dimension Heston model. Specifically, Theorems 3.1 and 3.3 in

Overbeck and Rydén (1997) correspond to our Theorem 5.4.2, but they estimate the volatility

coefficient σ1 as well, which we will assume to be known. For a more complete overview of

parameter estimation for the Heston model see, e.g., the introduction in Barczy and Pap

(2016).

We will focus on the subcritical case exclusively, i.e., when b > 0 (see Definition 3.1.3). In

this case, just as in the previous section, the process Y has a unique stationary distribution.

We would like to introduce conditional least squares estimators (CLSE’s) for (a, b, α, β) based

on discrete time observations. It will turn out, however, that, if not impossible, this is highly

impractical, as the resulting partial derivatives depend on the parameters in a complicated

manner. Therefore we transform the parameter space, and derive CLSE’s for the transformed

parameter vector, which will result in linear partial derivatives. Applying the inverse trans-

formation to the CLSE’s will lead to estimators for the original parameters, which could be

considered CLSE’s by a slight abuse of the term. However, we will refrain from referring to

them as such.

We do not estimate the parameters σ1, σ2 and %, since these parameters could – in prin-

ciple, at least – be determined (rather than estimated) using an arbitrarily short continuous

time observation (Xt)t∈[0,T ] of X, where T > 0, see, e.g., Barczy and Pap (2016, Remark 2.6).

In Overbeck and Rydén (1997, Theorems 3.2 and 3.3) one can find a strongly consistent and

asymptotically normal estimator of σ1 based on discrete time observations for the process Y .

In any case, it will turn out that for the calculation of the estimator of (a, b, α, β), one does

not need to know the values of the parameters σ1, σ2 and %.

An alternative approach to using CLSE’s would have been to calculate the discretized

version of the maximum likelihood estimators derived in Barczy and Pap (2016) using the

same procedure as Ben Alaya and Kebaier (2013, Section 4) apply for discrete time obser-

vations of high frequency. The relatively simple structure of the estimators we will arive at,

however, makes them more appealing to us.

By this point it will hopefully become apparent how much easier the simple structure

of CLSE’s makes the task of change detection, an avenue which has been opened for the

Heston model by these results, but not brought to its conclusion so far – this remains one of

the most natural direction in which to extend our efforts. On the other hand, the lengthy

calculations in the auxiliary lemmas in section 5.3 hint at the increasing complexity one has

to face in advancing further towards constructing change detection procedures – even if that

complexity promises to be merely computational and not conceptual.

7
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Instead of the original parameters a, b, α, β, we will first estimate some transformed param-

eters, defined in (5.1.3). For these transformed parameters our estimates can be established

by the standard CLS method in (5.1.4). The strong consistency and asymptotic normality of

these estimators is proven in Theorem 5.2.1. After applying the inverse transformation, it is

relatively easy to construct the estimates for the original values and obtain their asymptotic

properties. The inverse transformation is given in (5.4.3), and the strong consistency and

asymptotic normality of the resulting estimates are proven in Theorem 5.4.2. These results

have been published in Barczy et al. (2016)
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Chapter 2

The discrete case

2.1 Introductory definitions

A time-inhomogeneous INAR(p) process is a sequence (Xk)k>−p+1 given by

Xk =

Xk−1∑
j=1

ξ1,k,j + · · ·+
Xk−p∑
j=1

ξp,k,j + εk, k ∈ N,(2.1.1)

where {εk : k ∈ N} is a sequence of independent non-negative integer-valued random

variables, for each k ∈ N and i ∈ {1, . . . , p} the sequence {ξi,k,j : j ∈ N} is a sequence

of i.i.d. Bernoulli random variables with mean αi,k such that these sequences are mutually

independent and independent of the sequence {εk : k ∈ N}, and X0, . . . , X−p+1 are

non-negative integer-valued random variables independent of the sequences {ξi,k,j : j ∈ N},
k ∈ N, i ∈ {1, . . . , p}, and {εk : k ∈ N}. The numbers αi,k are called coefficients, and we

will refer to ε1, ε2, . . . as the innovations. Time-homogeneous INAR(p) processes have a

number of applications, which are summarized, e.g., in Barczy et al. (2011).

The reason that we initially define our process as time-inhomogeneous is that we would

like to test for a change in the parameters, therefore we have to allow them to vary over

time. In the proofs, however, a majority of the results will be based upon the properties of

time-homogeneous INAR(p) processes.

Now we proceed with the formulation of the statistical problem. We assume µk :=

E(εk) <∞ and 0 < σ2k := Var(εk) <∞. Write the parameter vectors as
α1,k

...

αp,k

µk

 =: θk,

9



Chapter 2. The discrete case

and let us choose a subset PV of {1, 2, . . . , p+ 1} such that

(2.1.2) PV = {i1, i2, . . . , i`} for some ` > 0, i1 < i2 < . . . < i`.

Also, we can write

NV := PV { = {j1, j2, . . . , jp+1−`}, j1 < j2 < . . . < jp+1−`,

where H{ denotes the complement of a set. Let us now define

ϕk := (θ
(i1)
k , θ

(i2)
k , . . . , θ

(i`)
k )>, ηk := (θ

(j1)
k , θ

(j2)
k , . . . , θ

(jp+1−`)
k )>.

The vector ϕk is the parameter vector of interest and ηk is the ’nuisance’ parameter

vector. For a fixed number of observations n we want to test the null hypothesis

H0 : ε1, . . . , εn are identically distributed and θ1 = θ2 = · · · = θn

against the alternative

HA : there is an integer τ ∈ {1, . . . , n− 1} such that

ϕ1 = · · · = ϕτ 6= ϕτ+1 = · · · = ϕn but η1 = · · · = ηn,

ε1, . . . , ετ are identically distributed,

and ετ+1, . . . , εn are identically distributed.

Under the null hypothesis H0, then, we have
α1,1

...

αp,1

µ1

 = · · · =


α1,n

...

αp,n

µn

 =:


α1

...

αp

µ

 =:

[
α

µ

]
=: θ, σ21 = . . . = σ2n =: σ2.

2.2 Regression equations

The INAR(p) process is formally analogous to the AR(p) process. To exploit this analogy we

need to state several regression equations for the process.
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2.2. Regression equations

First we create a Markov chain from our process the usual way, by extending the state space:

(2.2.1) Xk :=


Xk

Xk−1
...

Xk−p

 .

The equivalent of (2.1.1) for the vector-valued process (Xk)k∈N defined in (2.2.1) is

(2.2.2) Xk =

p∑
i=1

Xk−i∑
j=1

ξi,k,j + εk,

where

ξ1,k,j =



ξ1,k,j

1

0
...

0


, ξ2,k,j =



ξ2,k,j

0

1
...

0


, . . . , ξp−1,k,j =



ξp−1,k,j

0

0
...

1


, ξp,k,j =



ξp,k,j

0

0
...

0


, εk =



εk

0

0
...

0


.

This form makes it even more apparent that the INAR(p) process is a special multi-

type branching process with immigration. According to standard literature (see, e.g., Quine,

1970), if the matrix

(2.2.3) A :=
[
E(ξ1,1,1) · · · E(ξp,1,1)

]
=



α1 α2 · · · αp−1 αp

1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

0 0 · · · 1 0


is primitive (i.e., some power of it is elementwise positive), the ergodicity of the process

depends only on the spectral radius ρ(A), and the process is ergodic if ρ(A) < 1. In Barczy

et al. (2011, (2.7)), it is shown that this is equivalent to the condition that α1 + . . .+αp < 1.

For the primitivity, it is sufficient to have αp > 0 and that the greatest common denominator

of the numbers i such that αi > 0 is 1. Equivalently, the process (2.1.1) is referred to as stable,

unstable or explosive whenever α1 + · · ·+ αp < 1, α1 + · · ·+ αp = 1 or α1 + · · ·+ αp > 1,

respectively. Basic differences between the three types are summarized in Barczy et al. (2011).

In this terminology, we will study only the stable case α1 + · · · + αp < 1 with αp > 0. To

condense these conditions into one, we introduce the following definition.
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Chapter 2. The discrete case

2.2.1 Definition. A time-homogeneous INAR(p) process (Xk)k>−p+1 is said to satisfy con-

dition C0, if E(X6
0 ) < ∞, . . . , E(X6

−p+1) < ∞, E(ε61) < ∞, α1 + · · ·+ αp < 1, µ > 0 all

hold for it, and if, furthermore, αp > 0 and the greatest common denominator of the numbers

i such that αi > 0 is 1.

To further emphasize the similarities with AR(p) processes, we can define

(2.2.4) Mk = Xk − E(Xk|Fk−1) = Xk −α>Xk−1 − µ, k ∈ N,

where (Fn)n∈N is the natural filtration, and write

(2.2.5) Xk = AXk−1 + (µ+Mk)11,

where 11 is the first unit vector. It is clear from the definition that Mk, k ∈ N is a series of

martingale differences. Based on (2.2.5) we obtain

X⊗2k = (AXk−1)
⊗2 + ((µ+Mk)11)

⊗2 + (AXk−1)⊗ ((µ+Mk)11)

+ ((µ+Mk)11)⊗ (AXk−1)

= A⊗2X⊗2k−1 + (µ+Mk)
21⊗21 + (µ+Mk)(AXk−1)⊗ 11

+ (µ+Mk)11 ⊗ (AXk−1),

(2.2.6)

where ⊗ denotes Kronecker product of matrices.

2.2.2 Remark. We have chosen the INAR(p) process on account of its ubiquity in modelling

integer valued time series. However, in the following considerations, nothing about the matrix

A will be exploited other than its spectral radius. Therefore, our results should be equally

applicable to general p-type branching processes as well.

2.3 Asymptotic properties of the process under C0

Under C0 let us denote by X̃ a random vector with the unique stationary distribution of

(Xk)k>−p+1. Because our process is ergodic, we can apply the ergodic theorem. In its

well-known form it states that if E(|g(X̃)|) <∞ for some function g, then

(2.3.1)
1

n

n∑
k=1

g(Xk)
a.s.−→ E(g(X̃)).

This is, for example, Theorem 2 in I.15. in Chung (1960). However, instead of the convergence

of averages, we will frequently require the convergence of expectations, i.e.,

(2.3.2) E(X⊗βk )→ E(X̃
⊗β

), β ∈ N,

12



2.3. Asymptotic properties of the process under C0

whenever the right hand side is finite. This is Theorem 14.0.1 in Meyn and Tweedie (2009).

The result in (2.3.2) also implies convergence of any component of the matrices. Under the

alternative hypothesis we will additionally apply

(2.3.3)
∑
x∈Zp+

|P(Xn = x)− P(X̃ = x)| → 0.

This result can be found in Meyn and Tweedie (2009, Theorem 13.1.2). We conclude our

introductory remarks with a definition. The following vector contains the variances of the

Bernoulli variables used in the evolution of the process:

(2.3.4) α∗ := [α1(1− α1), . . . , αp(1− αp)]>.

The convergence rate in (2.3.2) can be estimated by the following lemma.

2.3.1 Lemma. Under C0 there is a constant π ∈ (0, 1) such that

‖E(Xk)− E(X̃)‖ = O(πk), ‖E(X⊗2k )− E(X̃
⊗2

)‖ = O(πk).

Proof.

We use (2.2.5) to conclude that

E(Xk) = AE(Xk−1) + µ11.

Taking the limits as k →∞ we have

E(X̃) = AE(X̃) + µ11,

hence

(2.3.5) E(Xk)− E(X̃) = A(E(Xk−1)− E(X̃)).

Similarly, from (2.2.6) and E(M2
k |Fk−1) = α>∗Xk−1 + σ2 we have

E(X⊗2k )− E(X̃
⊗2

) = A⊗2(E(X⊗2k−1)− E(X̃
⊗2

)) +
(
α>∗ (E(Xk−1)− E(X̃))

)
1⊗21

+ µ(A(E(Xk−1)− E(X̃)))⊗ 11 + µ11 ⊗ (A(E(Xk−1)− E(X̃)))

= A⊗2(E(X⊗2k−1)− E(X̃
⊗2

)) + 1⊗21 α
>
∗ (E(Xk−1)− E(X̃))

+ µ(A⊗ 11)(E(Xk−1)− E(X̃)) + µ(11 ⊗A)(E(Xk−1)− E(X̃)).

(2.3.6)

Here we used the fact that for any c ∈ R and real vector v we have cv = vc, where the second

13



Chapter 2. The discrete case

multiplication is a proper matrix product. Furthermore, we used the following property of

the Kronecker product: for any matrices A,B,C,D, if the operations on both sides are

permitted, we have (AB)⊗ (CD) = (A⊗C)(B ⊗D); specifically, if C is a column vector,

(AB)⊗C = (AB)⊗ (C · 1) = (A⊗C)(B ⊗ 1) = (A⊗C)B (this identity can also be used

when the first factor consists of a single factor instead of the second). Hence, E(Xk)−E(X̃)

E(X⊗2k )−E(X̃
⊗2

)

=

[
A 0

1⊗21 α
>
∗ +µ(A⊗ 11)+µ(11 ⊗A) A⊗2

] E(Xk−1)−E(X̃)

E(X⊗2k−1)−E(X̃
⊗2

)

.
Let us denote the multiplicating matrix on the right hand side by D. We note that D is

block lower triangular and that due to the properties of the Kronecker product, ρ(A⊗2) =

(ρ(A))2 < ρ(A) . From these it is clear that ρ(D) = ρ(A) < 1. It is well-known that then

there exists an induced matrix norm ‖·‖∗ for which ρ(A) < ‖A‖∗ < 1. This, and the

equivalence of vector norms suffice for the proof. 2

2.3.2 Remark. The finiteness of the respective moments of the stationary distribution can

be derived using the same approach as in the proof of formulas (2.2.3), (2.2.4) and (2.2.10)

in Barczy et al. (2011). We note that the stationary distribution has exactly as many finite

moments as the innovation distribution and the initial distributions have in common, because

the Bernoulli distribution is bounded and therefore all of its moments are finite.

The following lemma will be used for our results repeatedly. It shows that while the values

of the process are not independent, their dependence is weak and the autocovariance of the

process decays rapidly, so that the sum of all autocovariances up to n is linear in n.

2.3.3 Lemma. Under C0 we have

(i) Var(X1 +X2 + . . .+Xn) =
∑n

i,j=1 Cov(Xi, Xj) = O(n),

(ii) Var(X1X1−q + X2X2−q + . . . + XnXn−q) =
∑n

i,j=1 Cov(XiXi−q, XjXj−q) = O(n) for

all 0 6 q 6 p− 1.

Proof. Although the lemma is stated for the process (Xn)n∈N, calculations will require that

we investigate the process (Xn)n∈N. Therefore, we will prove the following statements:

(2.3.7) ‖Var(X1 +X2 + . . .+Xn)‖ = O(n)

in the place of (i) and

(2.3.8)
∥∥Var(X⊗21 +X⊗22 + . . .+X⊗2n )

∥∥ = O(n)

in the place of (ii).

14



2.3. Asymptotic properties of the process under C0

First we will prove (2.3.7). Since (2.3.2) implies that (‖Var(Xi)‖)i∈N is a (convergent and

hence) bounded series, we will only need to deal with

n∑
i,j=1

Cov(Xi,Xj)−
n∑
i=1

Cov(Xi,Xi),

since the latter sum is clearly O(n). It is immediate from (2.2.5) that

Xk − E(Xk) = A(Xk−1 − E(Xk−1)) +Mk11.

Let us now fix 1 6 i < j and write

Cov(Xi,Xj) = E
[
(Xi − E(Xi))(Xj − E(Xj))

>
]

= E
[
(Xi − E(Xi))E(Xj − E(Xj)|Fj−1)>

]
= E

[
(Xi − E(Xi))(A(Xj−1 − E(Xj−1)))

>
]

= Cov(Xi,Xj−1)A
>.

(2.3.9)

If we perform the calculations for the case 1 6 j < i as well, we can see that, after |j − i|
iterations,

(2.3.10) Cov(Xi,Xj) = A(i−j)+ Var(Xmin(i,j))(A
>)(j−i)+ .

Because ρ(A) < 1, there exists a matrix norm ‖·‖∗ for which ρ(A) < ‖A‖∗ =: π < 1.

With this norm, (2.3.10), and the boundedness of (Var(Xi))i∈N we can establish

‖Cov(Xi,Xj)‖∗ = O(π|i−j|),

which yields (2.3.7) immediately.

For (2.3.8) our reasoning will be very similar, although with more tedious calculations.

First we note that (2.3.2) implies boundedness for
∥∥Var(X⊗2i )

∥∥ also. From (2.2.6) we have

E(X⊗2k − E(X⊗2k )|Fk−1) = A⊗2(X⊗2k−1 − E(X⊗2k−1)) +α>∗ (Xk−1 − E(Xk−1))1
⊗2
1

+ µ[A(Xk−1−E(Xk−1))]⊗ 11 + µ11 ⊗ [A(Xk−1−E(Xk−1))]

= A⊗2(X⊗2k−1 − E(X⊗2k−1)) + 1⊗21 α
>
∗ (Xk−1 − E(Xk−1))

+ µ[A⊗ 11](Xk−1−E(Xk−1)) + µ(11 ⊗A)(Xk−1−E(Xk−1)),

analogously to (2.3.6). Now, similarly to (2.3.9) we get, for 1 6 i < j,

Cov(X⊗2i ,X⊗2j ) = Cov(X⊗2i ,X⊗2j−1)(A
⊗2)> + Cov(X⊗2i ,Xj−1)α∗(1

⊗2
1 )>

+ µCov(X⊗2i ,Xj−1) (A⊗ 11)
> + µCov(X⊗2i ,Xj−1) (11 ⊗A)> .
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Chapter 2. The discrete case

Here

Cov(X⊗2i ,Xj−1) := E[(X⊗2i − E(X⊗2i ))(Xj−1 − E(Xj−1))
>],

a p2 × p matrix. Also similarly to (2.3.9) we have

Cov(X⊗2i ,Xj) = Cov(X⊗2i ,Xj−1)A
>.

Summarizing, we get the following regression:

(2.3.11)[
Cov(X⊗2i ,Xj)

>

Cov(X⊗2i ,X⊗2j )>

]
=

[
A 0

1⊗21 α
>
∗ + µ(A⊗ 11) + µ(11 ⊗A) A⊗2

][
Cov(X⊗2i ,Xj−1)

>

Cov(X⊗2i ,X⊗2j−1)
>

]
.

Note that the multiplicating matrix on the right hand side is just D from the proof of Lemma

2.3.1. Now, similarly to (2.3.10), we have

(2.3.12)

[
Cov(X⊗2i ,Xj)

>

Cov(X⊗2i ,X⊗2j )>

]
= D(j−i)+

Cov(X⊗2min(i,j),Xmin(i,j))
>

Cov(X⊗2min(i,j),X
⊗2
min(i,j))

>

(D>)(i−j)+ .
Now we only need to note that (Cov(X⊗2i ,Xi))i∈N is a bounded sequence due to (2.3.2),

and we can finish the proof of (2.3.8) in the same way as (2.3.7). 2

2.4 Conditional least squares estimates

Recalling (2.2.4), the conditional least squares estimators of the parameters, first introduced

by Klimko and Nelson (1978), can be calculated by minimizing the sum of squares

Rn(α1, . . . , αp, µ) :=
1

2

n∑
k=1

M2
k =

1

2

n∑
k=1

(Xk −α>Xk−1 − µ)2

with respect to α1, . . . , αp, µ. With a reasoning completely analogous to that of Lemma 3.1

and Proposition 3.1 in Barczy et al. (2014b) we can show that whenever Qn is invertible, Rn

has a unique minimum given by

θ̂n :=

[
α̂n

µ̂n

]
:= Q−1n

n∑
k=1

Xk

[
Xk−1

1

]
, Qn :=

n∑
k=1

[
Xk−1

1

][
Xk−1

1

]>
.(2.4.1)

Also, with the help of (2.3.1),

(2.4.2)
Qn

n

a.s.−→ Q := E

[X̃
1

][
X̃

1

]> .
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2.4. Conditional least squares estimates

Now, we will show in A.1 that Qn is, in fact, invertible with an asymptotic probability of

1, therefore the parameter estimates exist and are unique with an asymptotic probability of

1. As all our results our asymptotic, this will be sufficient for the purposes of the paper.

Replacing the parameters by their estimates in Mk we obtain M̂
(n)
k , i.e.,

M̂
(n)
k := Xk − θ̂

>
n

[
Xk−1

1

]
.(2.4.3)

Although not a parameter in which we are looking for change, the estimate of the variance

of the innovation σ2 will also appear in our test process, therefore we have to provide an

estimator for it. To do this, we introduce

Nk = M2
k − E(M2

k |Fk−1) = M2
k − α1(1− α1)Xk−1 − · · · − αp(1− αp)Xk−p − σ2, k > 0.

Minimizing
∑n

k=1N
2
k with respect to σ2 we obtain the conditional least squares estimate

(2.4.4) σ2n = − 1

n

n∑
k=1

(M2
k − α1(1− α1)Xk−1 − · · · − αp(1− αp)Xk−p).

However, in this estimate the true parameters are still present. The estimate that we will

use is given by replacing the α coefficients and µ both in the formula and in M2
k by their

estimates:

(2.4.5) σ̂2n = − 1

n

n∑
k=1

((
M̂

(n)
k

)2
− α̂(n)

1

(
1− α̂(n)

1

)
Xk−1 − · · · − α̂(n)

p

(
1− α̂(n)

p

)
Xk−p

)
.

The strong consistency of the estimates is established below. This is a well known result

by Du and Li (1991), we only include it to demonstrate a relatively simple proof with our

notations.

2.4.1 Theorem. (Du and Li, 1991) If the process satisfies C0 then

(2.4.6) θ̂
(n) a.s.−→ θ and σ̂2n

a.s.−→ σ2.

Proof. First of all, it is a matter of simple calculations (see A.2) and a straightforward

application of (2.3.1) that, provided that the second moment of ε1 exists,

(2.4.7)
1

n

n∑
k=1

M2
k → α>∗ E(X̃) + σ2,
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Chapter 2. The discrete case

with α∗ given in (2.3.4). Hence, taking the limits of the expectations in (2.2.5) and (2.2.6)

we have

E(X̃) = AE(X̃) + µ

E(X̃
⊗2

) = A⊗2 E(X̃
⊗2

) + (µ2 +α>∗ E(X̃) + σ2) + µ(e1 ⊗AE(X̃) +AE(X̃)⊗ e1).

Now we note that

Uk :=

[
Xk

Xk−1

]
, k ∈ N

satisfies a similar recursion to (2.2.2). The equivalent of the matrix A can then be shown to

have a spectral radius smaller than 1, hence (Uk)k∈N is ergodic, and we can apply (2.3.1).

Moreover, it is clear that if Ũ denotes a vector with the unique stationary distribution of

(Uk)k∈N then 
Ũ (2)

Ũ (3)

...

Ũ (p+1)

 L= X̃

and for the components of Ũ we also have

Ũ (1) L=

Ũ(2)∑
j=1

ξ1,j + · · ·+
Ũ(p+1)∑
j=1

ξp,j + ε,

where ξi,j
L
= ξi,1,1, i = 1, . . . , p, j ∈ N and ε

L
= ε1 such that all these variables are totally

independent and also independent of (Ũ (2), . . . , Ũ (p+1))>. Hence (2.3.1) implies.

1

n

n∑
k=1

Xk

[
Xk−1

1

]
P−→ E

 X̃0∑
j=1

ξ1,j + · · ·+
X̃−p+1∑
j=1

ξp,j + ε

[X̃
1

]
= E

((
α1X̃0 + · · ·+ αpX̃−p+1 + µ

)[X̃
1

])
= Qθ

(2.4.8)

as n→∞ (here ε
L
= ε1).

From this we immediately conclude

θ̂
(n)

=

(
Qn

n

)−1 1

n

n∑
k=1

Xk

[
Xk−1

1

]
a.s.−→ Q−1Qθ = θ.

A similar result can be derived for the estimate of σ2. By recalling (2.4.7) and computing

the strong limit of the other summands in (2.4.4), we obtain the strong consistency of σ2n
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immediately. The same reasoning shows that if the second moment of the stationary distri-

bution is finite (in this case we already know that θ̂
(n)

is a consistent estimator), then the

limits of the estimators σ2n and σ̂2n are the same almost surely; hence, the strong consistency

of σ̂2n is established. 2

2.4.2 Remark. The CLS estimates are strongly consistent under the null hypothesis only,

and the estimation procedure itself supposes that the null hypothesis is valid; however, the

calculations can be carried out under the alternative hypothesis as well. Under the alternative

hypothesis the weak limit of θ̂n is given in Lemma 2.6.3.

2.5 Construction of the test

We will use a formal analogy between the INAR(p) process and the well-known AR(p) process

(Venkataraman, 1982) to obtain analogues of score vector and information quantities as in

Gombay (2008). We briefly recall the motivation of the test process as given in T. Szabó

(2011b). Due to the martingale central limit theorem, 1√
n

bntc∑
k=1

Mk


t∈[0,1]

D−→
(√
cWt

)
t∈[0,1] ,

where c is a constant depending on θ and σ2, and (Wt)06t61 is a standard Brownian motion.

Therefore, by a rough approximation

(M1, . . . ,Mn) ∼ N(0, cEn),

where En is the n× n identity matrix. The approximate likelihood function is

1

(2πc)n/2
exp

{
− 1

2c2

n∑
k=1

M2
k

}
.

We will take the derivative of the log-likelihood function and work with that quantity. The

first term will be regarded as constant. This is a simplification because c actually depends

on the parameters but taking this into account leads to calculations that are difficult to

handle. Also, we will not take into account the constant factor before the sum of the Mk

but will rather work with the analogue of the information matrix. Therefore, we consider the

following analogue of the loglikelihood function:

Rn(α1, . . . , αp, µ) = −2−1
n∑
k=1

M2
k .
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Chapter 2. The discrete case

Note that this is the sum that we had to minimize for CLS estimations. The role of the score

vector will be played by

−∇Rk(θ̂n) =
k∑
j=1

M̂
(n)
j

[
Xj−1

1

]
.

The information matrix In is defined by

In :=

n∑
k=1

E
[
{∇Rk(θ)−∇Rk−1(θ)}{∇Rk(θ)−∇Rk−1(θ)}> | Fk−1

]

=

n∑
k=1

((α∗)
>Xk−1 + σ2)

[
Xk−1

1

][
Xk−1

1

]>
,

(2.5.1)

where α∗ comes from (2.3.4). Now we define În by replacing in In the variance σ2 and all

the parameters in θ by their CLS estimates. This leads to the p+ 1-dimensional test process

(M̂n(t))06t61 given by

M̂n(t) := Î
−1/2
n

bntc∑
k=1

M̂
(n)
k

[
Xk−1

1

]
.(2.5.2)

Note that the process (M̂n(t))06t61 can also be written in the CUSUM form

M̂n(t) = Î
−1/2
n

bntc∑
k=1

Xk

[
Xk−1

1

]
−QbntcQ−1n

n∑
k=1

Xk

[
Xk−1

1

]
= Î

−1/2
n Qbntc

([
α̂bntc

µ̂bntc

]
−

[
α̂n

µ̂n

])
= Î

−1/2
n Qbntc

(
θ̂bntc − θ̂n

)
.

Under the null hypothesis we have the following result, which allows the construction of

various test statistics.

2.5.1 Theorem. If (Xk)k>−p+1 satisfies H0 and condition C0, then

M̂n
D−→ B as n→∞,

where (B(t))06t61 is a (p + 1)-dimensional standard Brownian bridge, and
D−→ denotes

convergence in distribution on the Skorokhod space D([0, 1]).

2.5.2 Remark. This theorem will be sufficient for our tests, and its proof is relatively simple.

It is of theoretical interest, however, whether this convergence can be strengthened. It turns

out that we can, in fact, prove that there is a series of Brownian bridges that our test process

approximates in the strong sense. This will be presented as Theorem A.3.5 later on.
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2.5. Construction of the test

First we show the following application of the martingale central limit theorem.

2.5.3 Theorem. Let

Zn(t) :=
1√
n

bntc∑
k=1

Zk, t ∈ [0, 1], Zk := Mk

[
Xk−1

1

]
, k = 1, 2, . . .

Under the assumptions of Theorem 2.5.1

Zn
D−→ I1/2W , n→∞,

where (W(t))06t61 is a (p+ 1)-dimensional standard Wiener process.

Proof. By (2.3.1) we have

(2.5.3)
In
n

a.s.−→ I := E

(α>2 X̃ + σ2)

[
X̃

1

][
X̃

1

]> ,

and since σ̂2n and θ̂n are strongly consistent estimators, therefore we have

(2.5.4) n−1În
a.s.−→ I

as well. We will use the martingale central limit theorem for the martingale differences
1√
n
Zk, n ∈ N, k = 1, 2, . . . , n. To compute the variance function, we write

1

n

bntc∑
k=1

E(ZkZ
>
k |Fk−1) =

bntc
n

1

bntc

bntc∑
k=1

E(M2
k |Fk−1)

[
Xk−1

1

][
Xk−1

1

]>

=
bntc
n

1

bntc

bntc∑
k=1

(α>∗Xk−1 + σ2)

[
Xk−1

1

][
Xk−1

1

]>

a.s.−→ tE

(α>∗ X̃ + σ2)

[
X̃

1

][
X̃

1

]> = tI.
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Chapter 2. The discrete case

It remains to check the so-called conditional Lindeberg condition:

bntc∑
k=1

E

(∥∥∥∥ 1√
n
Zk

∥∥∥∥2 χ{‖n−1/2Zk‖>δ}

∣∣∣∣∣Fk−1
)

6
1

δ2

bntc∑
k=1

E

(∥∥∥∥ 1√
n
Zk

∥∥∥∥4
∣∣∣∣∣Fk−1

)

=
1

δ2n2

bntc∑
k=1

E
(
M4
k |Fk−1

)(
X2
k−1+. . .+X2

k−p+1
)2

=
1

δ2n2

bntc∑
k=1

P (Xk−1),

where P is a polynomial of degree six, because E(M4
k |Fk−1) is a second-degree polynomial

of Xk−1 (this is is detailed in section A.2). The sixth moment of the stationary distribution

is finite due to the assumptions in C0, hence (2.3.1) implies

1

bntc

bntc∑
k=1

P (Xk−1)
a.s.−→ E(P (X̃)) <∞.

This means

1

δ2n2

bntc∑
k=1

P (Xk−1)
a.s.−→ 0,

implying Lindeberg’s condition. All the conditions of the martingale central limit theorem

have been checked; the proof is therefore complete. 2

Based on this Theorem, we can use the structure of the estimates to complete the proof of

our main result under the null hypothesis.

Proof of Theorem 2.5.1. Let us introduce the notation

Ẑ
(n)

k := M̂
(n)
k

[
Xk−1

1

]
, k = 1, 2, . . .

First we note that

(2.5.5)

bntc∑
k=1

Ẑ
(n)

k =

bntc∑
k=1

Zk +

bntc∑
k=1

(Ẑ
(n)

k −Zk) =

bntc∑
k=1

Zk +

bntc∑
k=1

(M̂
(n)
k −Mk)

[
Xk−1

1

]
.

Recalling the definitions of Mk and M̂
(n)
k ,

M̂
(n)
k −Mk =

(
Xk − θ̂

>
n

[
Xk−1

1

])
−

(
Xk − θ>

[
Xk−1

1

])
=
(
θ − θ̂n

)> [Xk−1

1

]
.
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2.5. Construction of the test

Substituting θ̂n from (2.4.1),

θ̂n − θ = Q−1n

(
n∑
k=1

Xk

[
Xk−1

1

])
− θ

= Q−1n

 n∑
k=1

Xk

[
Xk−1

1

]
−

n∑
k=1

[
Xk−1

1

][
Xk−1

1

]>
θ>


= Q−1n

(
n∑
k=1

Mk

[
Xk−1

1

])
,

(2.5.6)

hence by (2.5.5),

(2.5.7) Î
−1/2
n

bntc∑
k=1

Ẑ
(n)

k =
√
n Î
−1/2
n

bntc∑
k=1

1√
n
Zk −QbntcQ−1n

n∑
k=1

1√
n
Zk

 .

In the next step we notice that according to (2.3.1),

QbntcQ
−1
n =

bntc
n

(
1

bntc
Qbntc

)(
1

n
Qn

)−1
a.s.−→ tQ̃H0

Q̃
−1
H0

= tEp+1 ∀t ∈ [0, 1],

where Ep+1 is the p+ 1-dimensional identity matrix and

Q̃H0
:= E

[X̃
1

][
X̃

1

]> .

Now we apply (2.5.7), Theorem 2.5.3, and (2.5.4) to conclude thatÎ−1/2n

bntc∑
k=1

Ẑ
(n)

k


t∈[0,1]

D−→ (W(t)− tW(1))t∈[0,1].

This completes our proof. 2

2.5.1 Testing procedures

By the continuous mapping theorem we obtain the following corollary of Theorem 2.5.1.
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Chapter 2. The discrete case

2.5.4 Corollary. Under the assumptions of Theorem 2.5.1 we have

sup
06t61

M̂(i)
n (t)

D−→ sup
06t61

B(t),(2.5.8)

inf
06t61

M̂(i)
n (t)

D−→ inf
06t61

B(t),(2.5.9)

sup
06t61

|M̂(i)
n (t)| D−→ sup

06t61
|B(t)|(2.5.10)

as n→∞, where (M̂(i)
n (t))06t61, i = 1, . . . , p+ 1, denotes the components of (M̂n(t))06t61,

and (B(t))06t61 is a standard Brownian bridge.

Since (B(t))06t61 in Theorem 2.5.1 has independent components, we need to define the

tests component-wise only. For simultaneous test-for-change in d parameters, to have an

overall level of significance α, we use α∗ := 1 − (1 − α)1/d for each component. We can

test for change in a single component, θ(i), i ∈ PV (with θ(i) = αi for i = 1, 2, . . . , p and

θ(p+1) = µ, according to the definition of θ) in the following way:

Two different tests can be constructed:

Test 1 (one-sided): If

sup
06t61

M̂(i)
n (t) > C1(α

∗) or inf
06t61

M̂(i)
n (t) 6 −C1(α

∗),

then we conclude that there was a downward or upward change in parameter θ(i) (respec-

tively) along the sequence X0, X1, . . . , Xn.

Test 2 (two-sided): If

sup
06t61

|M̂(i)
n (t)| > C2(α

∗),

then we conclude that there was a change in parameter θ(i) along the sequence X0, X1, . . . ,

Xn.

Critical values are obtained from the limit distributions in Corollary 2.5.4, namely, from

the identities

P
(

sup
06t61

B(t) > x

)
= e−2x

2
, x > 0,

P
(

sup
06t61

|B(t)| > x

)
= 2

∞∑
k=1

(−1)k+1e−2k
2x2 , x > 0,

respectively, where (B(t))06t61 is a Brownian bridge.
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2.6. The process under the alternative hypothesis

2.6 The process under the alternative hypothesis

While in Theorem 2.5.1 we were able to consider longer and longer samples taken from the

same process, this approach has to be modified for the alternative hypothesis. More precisely,

we have to consider a series of time-inhomogeneous INAR(p) processes, where the n-th one

has a point of change at bnρc (we will suppress this in the notation for simplicity). Now,

the parts of these processes before the change (i.e., (Xi)
bnρc
i=1 ) can be handled as a sample

taken from an infinite INAR(p) process (at least in distribution), but this is not true for the

second part (i.e., (Xi)i>bnρc+1), because the initial distribution of this process depends on n.

Therefore, for a rigorous analysis we need to refine the results of 2.3. We will impose some

additional conditions on the parameters of the process, which are summarized below.

2.6.1 Definition. We will say that an INAR(p) process (Xk)k>−p+1 satisfies CA if τ =

bnρc for some ρ ∈ (0, 1), both (Xk)−p+16k6τ and (Xk)k>τ+1 satisfy condition C0, and the

parameter vectors for the processes (Xk)−p+16k6τ and (Xk)k>τ+1 are

θ′ :=

[
α′

µ′

]
, and θ′′ :=

[
α′′

µ′′

]
,

respectively. In this case, X̃
′

and X̃
′′

will denote variables with the unique stationary distri-

butions of the two halves of the process, respectively. We will use the following notations:

Q′ := E

[X̃ ′
1

][
X̃
′

1

]> , Q′′ := E

[X̃ ′′
1

][
X̃
′′

1

]> , Q̃ := ρQ′ + (1− ρ)Q′′.

2.6.1 Ergodicity

The equivalent of (2.3.1) is the following.

2.6.2 Lemma. Under CA we have

(2.6.1)
1

n− bnρc

n∑
k=bnρc+1

g(Xk)
P−→ E(g(X̃

′′
)),

whenever g : Zp+ → R with E(|g(X̃
′′
)|) <∞.
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Chapter 2. The discrete case

Proof. For an arbitrary ε > 0

P

∣∣∣∣∣∣ 1

n− bnρc

n∑
k=bnρc+1

g(Xk)− E(g(X̃
′′
))

∣∣∣∣∣∣ > ε



=
∑
x∈Zp+

P

∣∣∣∣∣∣ 1

n− bnρc

n∑
k=bnρc+1

g(Xk)− E(g(X̃
′′
))

∣∣∣∣∣∣ > ε

∣∣∣∣∣Xbnρc = x

P(Xbnρc = x),

and

P

∣∣∣∣∣∣ 1

n− bnρc

n∑
k=bnρc+1

g(Xk)− E(g(X̃
′′
))

∣∣∣∣∣∣ > ε

∣∣∣∣∣Xbnρc = x

→ 0

by the ergodic theorem for each x ∈ Zp+, additionally

P(Xbnρc = x) 6 |P(Xbnρc = x)− P(X̃ = x)|+ P(X̃ = x),

and one can use (2.3.3). 2

We will also apply that for all ε > 0 there exists ν such that

(2.6.2) ‖E(Xbnρc+k)− E(X̃
′′
)‖ < ε for all n > ν and all k > ν.

For this, first observe that as a consequence of (2.3.5), there exists π′′ ∈ (0, 1) such that

‖E(Xbnρc+k)− E(X̃
′′
)‖ 6 (π′′)k‖E(Xbnρc)− E(X̃

′′
)‖ k ∈ N.

Next, for all η > 0, choose ν1 and ν2 such that (π′′)k < η for all k > ν1 and

‖E(Xbnρc)− E(X̃
′
)‖ < η for all n > ν2. Hence

‖E(Xbnρc+k)− E(X̃
′′
)‖ 6 η

(
‖E(Xbnρc)− E(X̃

′
)‖+ ‖E(X̃

′
)− E(X̃

′′
)‖
)

6 η2 + η‖E(X̃
′
)− E(X̃

′′
)‖.

For the behavior of the CLS estimates under CA, we have the following result.

2.6.3 Lemma. Under CA we have

θ̂n
P−→ θ̃ := Q̃

−1 (
ρQ′θ′ + (1− ρ)Q′′θ′′

)
and

În
n

P−→ Ĩ := E

ρ(α′>∗ X̃ + σ2)

[
X̃
′

1

][
X̃
′

1

]>
+ (1− ρ)(α′′>∗ X̃ + σ2)

[
X̃
′′

1

][
X̃
′′

1

]> .
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2.7. Consistency of the test

Proof. By (2.3.1) and (2.6.1) we obtain

1

n
Qn =

1

n
Qbnρc +

1

n

n∑
k=bnρc+1

[
Xk−1

1

][
Xk−1

1

]>
P−→ ρQ′ + (1− ρ)Q′′ = Q̃,

as n→∞. Moreover, exactly as in (2.4.8),

1

n

bnρc∑
k=1

Xk

[
Xk−1

1

]
P−→ ρQ′

[
α

µ′

]
(2.6.3)

as n→∞. In a similar way, using (2.6.1)

1

n

n∑
k=bnρc+1

Xk

[
Xk−1

1

]
P−→ (1− ρ)Q′′

[
α

µ′′

]
.

The second statement of the lemma can be proved in the same way by an analogy with

(2.5.3). 2

2.7 Consistency of the test

The following theorem, the analogue of Theorem 3.1 in Hušková et al. (2007), describes

the behavior of the maximum of the test process if a change occurs in the mean of the

innovation. An immediate consequence of the theorem is that the test statistic tends to

infinity stochastically as n → ∞, which suffices for the weak consistency of the proposed

test. For further discussion of this result, see Remark 4.5.4, which applies here equally.

2.7.1 Theorem. Suppose that CA holds. For i = 1, 2, . . . , p+ 1, let us define

ψi := 1>i Ĩ
−1/2

((ρQ′)−1 + ((1− ρ)Q′′)−1)−1(θ′ − θ′′).

If ψi > 0 then for the i-th component of the test process,

sup
06t61

M̂n(t)(i) = n1/2ψi + oP(n1/2),

and conversely, if ψi < 0 then

inf
06t61

M̂n(t)(i) = n1/2ψi + oP(n1/2).

Proof. We will only prove for i = 1 and ψ1 > 0, the other cases are completely analogous.
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Chapter 2. The discrete case

We will use the following notations:

M ′k := Xk −

[
Xk−1

1

]>
θ, Z ′k := M ′k

[
Xk−1

1

]
= Xk

[
Xk−1

1

]
−

[
Xk−1

1

][
Xk−1

1

]>
θ′,

and similarly for M ′′k and Z ′′k. The proof will be given for the process before bnρc in

detail. The analysis of the process after bnρc can be handled analogously. In the proof we

will rely repeatedly on ideas from Hušková et al. (2007). The task is essentially to determine

the weak limit of the supremum of

n−1/2M̂
(i)

n (t) = n−111Ĩ
−1/2

bntc∑
k=1

[
Xk−1

1

]
M̂

(n)
k

+ n−111

( În
n

)−1/2
− Ĩ

−1/2

bntc∑
k=1

[
Xk−1

1

]
M̂

(n)
k .

(2.7.1)

For the first term of (2.7.1) we apply the following decomposition for k < bnρc:

[
Xk−1

1

]
M̂

(n)
k =

[
Xk−1

1

]Xk −

[
Xk−1

1

]>
θ̂n



=

[
Xk−1

1

]Xk −

[
Xk−1

1

]>
θ′

+

[
Xk−1

1

][
Xk−1

1

]> (
θ′ − θ̂n

)

=

[
Xk−1

1

]
M ′k + E

[Xk−1

1

][
Xk−1

1

]> (θ′ − θ̃)

+

E

[Xk−1

1

][
Xk−1

1

]>− [Xk−1

1

][
Xk−1

1

]> (θ′ − θ̂n)

+ E

[Xk−1

1

][
Xk−1

1

]> (θ̃ − θ̂n),

(2.7.2)

and similarly if we replace M ′k and θ′ with M ′′k and θ′′, respectively.
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2.7. Consistency of the test

Based on (2.7.2),

S(0, bntc) := n−111Ĩ
−1/2

bntc∑
k=1

[
Xk−1

1

]
M̂

(n)
k

= n−111Ĩ
−1/2

bntc∑
k=1

[
Xk−1

1

]
M ′k

+ n−111Ĩ
−1/2

bntc∑
k=1

E

[Xk−1

1

][
Xk−1

1

]> (θ′ − θ̃)

+ n−111Ĩ
−1/2

bntc∑
k=1

E

[Xk−1

1

][
Xk−1

1

]>− [Xk−1

1

][
Xk−1

1

]> (θ′ − θ̂n)

+ n−111Ĩ
−1/2

bntc∑
k=1

E

[Xk−1

1

][
Xk−1

1

]> (θ̃ − θ̂n)

=: S1(0, bntc,θ′) + S2(0, bntc,θ′) + S3(0, bntc,θ′) + S4(0, bntc),

(2.7.3)

and similarly,

S(0, bntc) = S1(0, bntc,θ′′) + S2(0, bntc,θ′′) + S3(0, bntc,θ′′) + S4(0, bntc).

Introducing now Si(a, b,θ) := Si(0, b,θ) − Si(0, a,θ), i = 1, 2, . . . , p + 1, the quantity that

interests us is

∣∣∣∣∣ sup
t∈[0,1]

S(0, bntc)− ψ1

∣∣∣∣∣ 6 sup
t∈[0,1]

∣∣S1(0, bnρc ∧ bntc,θ′) + S1(bnρc ∧ bntc, bntc,θ′′)
∣∣

+

∣∣∣∣∣ sup
t∈[0,1]

(
S2(0, bnρc ∧ bntc,θ′) + S2(bnρc ∧ bntc, bntc,θ′′)

)
− ψ1

∣∣∣∣∣
+ sup
t∈[0,1]

∣∣S3(0, bnρc ∧ bntc,θ′) + S3(bnρc ∧ bntc, bntc,θ′′)
∣∣

+ sup
t∈[0,1]

|S4(0, bntc)| .

(2.7.4)

The first, third and fourth terms in (2.7.4) are all oP(1) according to Lemmas 2.9.3, 2.9.2 and

2.9.4, respectively. All that remains is the second term. Let us notice here that Q′ and Q′′

are both symmetric, which we will exploit repeatedly. It is evident from the definition of θ̃
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Chapter 2. The discrete case

(see Lemma 2.6.3) that

θ′ − θ̃ = θ′ − (1− ρ)(ρQ′ + (1− ρ)Q′′)−1Q′′(θ′ − θ′′),

and so

11Ĩ
−1/2

E

[X̃ ′
1

][
X̃
′

1

]> (θ′ − θ̃) = 11Ĩ
−1/2

Q′(1− ρ)(ρQ′ + (1− ρ)Q′′)−1Q′′(θ′ − θ′′)

=
ψ1

ρ
,

and similarly,

11Ĩ
−1/2

E

[X̃ ′′
1

][
X̃
′′

1

]> (θ′′ − θ̃) = 11Ĩ
−1/2

Q′′(1− ρ)(ρQ′ + (1− ρ)Q′′)−1Q′′(θ′ − θ′′)

=
ψ1

1− ρ
,

since, by an easy calculation,((
ρQ′

)−1
+ ((1− ρ)Q′′)−1

)−1
= ρ(1− ρ)

(
Q′
(
ρQ′ + (1− ρ)Q′′

)−1
Q′′
)
.

Now we can write∣∣∣∣∣ sup
t∈[0,1]

(
S2(0, bnρc ∧ bntc,θ′) + S2(bnρc ∧ bntc, bntc,θ′′)− ψ1

)∣∣∣∣∣
6

∣∣∣∣∣ sup
t∈[0,1]

(
bnρc ∧ bntc

nρ
− (bntc − bnρc)+

n(1− ρ)
− 1

)
ψ1

∣∣∣∣∣
+ T−111Ĩ

−1/2
sup
t∈[0,1]

∣∣∣∣∣∣
∫ (ρT )∧t

0

[
0 E(Y ′∞)− E(Yu)

E(Y ′∞)− E(Yu) E(Y 2
u )− E(Y ′2∞)

]>
(θ′ − θ̃) du

∣∣∣∣∣∣
+ T−111Ĩ

−1/2
sup
t∈[0,1]

∣∣∣∣∣∣
∫ (ρT )∧t

0

[
0 E(Y ′∞)− E(Yu)

E(Y ′∞)− E(Yu) E(Y 2
u )− E(Y ′2∞)

]>
(θ′ − θ̃) du

∣∣∣∣∣∣ .
The second and third terms converge to 0 by Lemma 2.3.1. We conclude the proof for the

first term in (2.7.1) by noting that the supremum of the first term is clearly attained at t = ρ

and is

1− bnρc
nρ
→ 0.
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2.8. Estimation of the change point

All that remains is showing that the second term in (2.7.1) is oP(1). To see this, consider,

with the L1-norm ‖·‖, and its induced matrix norm ‖·‖∗,

sup
t∈[0,1]

n−111

( În
n

)−1/2
− Ĩ

−1/2

 bntc∑
k=1

[
Xk−1

1

]
M̂

(n)
k

6

∥∥∥∥∥∥
(
În
n

)−1/2
− Ĩ

−1/2

∥∥∥∥∥∥
∗

∥∥∥Ĩ1/2∥∥∥
∗

sup
t∈[0,1]

∥∥∥∥∥∥n−1Ĩ−1/2
bntc∑
k=1

[
Xk−1

1

]
M̂

(n)
k

∥∥∥∥∥∥ ,
(2.7.5)

which is clearly oP(1) since the first factor is oP(1) (note that Ĩ is invertible, hence we can

use Lemma 2.6.3 and the continuous mapping theorem), the second factor is finite, and the

third has just been shown to be K + oP(1) for some constant K. 2

2.8 Estimation of the change point

Based on the score vector analogy, if there is a change in the i-th parameter, the estimator

of τ is

τ̂n := n inf

{
t ∈ (0, 1) : M̂

(i)

n (t) = sup
0<t<1

M̂
(i)

n (t)

}
(2.8.1)

for the downward one-sided test,

τ̂n := n inf

{
t ∈ (0, 1) : M̂

(i)

n (t) = inf
0<t<1

M̂
(i)

n (t)

}
(2.8.2)

for the upward one-sided test, and

τ̂n := n inf

{
t ∈ (0, 1) :

∣∣∣∣M̂(i)

n (t)

∣∣∣∣ = sup
0<t<1

∣∣∣∣M̂(i)

n (t)

∣∣∣∣}(2.8.3)

for the two-sided test.

2.8.1 Theorem. If CA holds, then we have

τ̂n − bnρc = OP(1) as n→∞.

Consequently, if we define ρ̂n := τ̂n
n , then ρ̂n − ρ = OP(n−1).

2.8.2 Remark. This result is slightly stronger than the similar Proposition 3.1 in Hušková

et al. (2007). Similar results are valid for change in a location parameter (see Csörgő and

Horváth, 1997), and in these cases the limit distribution is nondegenerate. Therefore we can

conjecture that Theorem 2.8.1 cannot be improved upon in terms of convergence rate.
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Chapter 2. The discrete case

Proof. The statement can be written in the form

lim
K→∞

sup
n∈N

P(|τ̂n − bnρc| > K) = 0,

which is equivalent to

lim
K→∞

lim sup
n→∞

P(|τ̂n − bnρc| > K) = 0.

Hence to prove the statement it is enough to show that

lim
K→∞

lim sup
n→∞

P

(
max

ρ−K
n
<t<ρ+K

n

M̂
(i)

n (t) 6 max
0<t6ρ−K

n

M̂
(i)

n (t)

)
= 0,(2.8.4)

lim
K→∞

lim sup
n→∞

P

(
max

ρ−K
n
<t<ρ+K

n

M̂
(i)

n (t) 6 max
ρ+K

n
<t<1

M̂
(i)

n (t)

)
= 0.(2.8.5)

For (2.8.4) we consider with a constant K, K < bnρc,

P

 sup
ρ−K

n
<t<ρ+K

n

M̂
(i)

n (t) 6 sup
0<t6ρ−K

n

M̂
(i)

n (t)



6 P

M̂
(i)

n (ρ) 6 sup
0<t6ρ−K

n

M̂
(i)

n (t)

 = P

(
inf

0<t6ρ−K
n

M̂
(i)

n (ρ)− M̂
(i)

n (t) 6 0

)

= P

 inf
K6`6bnρc−1

1iÎ
−1/2
n

bnρc∑
j=bnρc−`+1

[
Xk−1

1

]
M̂

(n)
j 6 0



= P

 inf
K6`6bnρc−1

n1/2`−11iÎ
−1/2
n

bnρc∑
j=bnρc−`+1

[
Xk−1

1

]
M̂

(n)
j 6 0

 .

As in Theorem 2.7.1, we only prove for i = 1. For any K 6 ` 6 bnρc the expression

(2.8.6) n1/2`−111Î
−1/2
n

bnρc∑
j=bnρc−`+1

[
Xk−1

1

]
M̂

(n)
j

can be decomposed into five terms in a similar way to (2.7.1) and (2.7.2). Now, (2.8.6) can

only be negative in two cases: either the dominant term in the decomposition is less than or

equal to ψi
2 , or it is greater—in which case one of the other four terms has to be less than

−ψi
8 (for the definition of ψi, see Theorem 2.7.1).
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2.9. Lemmas for Theorems 2.7.1 and 2.8.1

To make what we said concrete,

P

 inf
K6`6bnρc−1

n1/2`−11iÎ
−1/2
n

bnρc∑
j=bnρc−`+1

[
Xk−1

1

]
M̂

(n)
j 6 0



6 P

 min
K6`6bnρc−1

`−111Ĩ
−1/2

bnρc∑
j=bnρc−`+1

E

[Xk−1

1

][
Xk−1

1

]> (θ′ − θ̃) 6
ψ1

2



+ P

 max
K6`6bnρc−1

∣∣∣∣∣∣`−111Ĩ
−1/2

bnρc∑
j=bnρc−`+1

[
Xk−1

1

]
M ′k

∣∣∣∣∣∣ > ψ1

8



+ P

ψ1

8
6 max

K6`6bnρc−1

∣∣∣∣∣∣`−111Ĩ
−1/2

bnρc∑
j=bnρc−`+1

E

[Xk−1

1

][
Xk−1

1

]>

−

[
Xk−1

1

][
Xk−1

1

]> (θ′ − θ̂n)

∣∣∣∣∣∣


+ P

 max
K6`6bnρc−1

∣∣∣∣∣∣`−111Ĩ
−1/2

bnρc∑
j=bnρc−`+1

E

[Xk−1

1

][
Xk−1

1

]> (θ̃ − θ̂n)

∣∣∣∣∣∣ > ψ1

8



+ P

 sup
K6`6bnρc−1

∣∣∣∣∣∣`−111

( În
n

)−1/2
− Ĩ

−1/2

 bnρc∑
j=bnρc−`+1

[
Xk−1

1

]
M̂

(n)
j

∣∣∣∣∣∣ > ψ1

8

 .

As a consequence of (2.3.2) the first term can be shown to converge to zero for any K as

n → ∞. This is a rather elementary exercise in calculus and it is proven in Lemma 2.9.5.

Because of (2.3.2) and Lemma 2.9.4, the fourth term also converges to zero for all K as

n→∞. Indeed, (θ̃ − θ̂n)
P−→ 0 and

max
K6`6bnρc

`−1
bnρc∑

j=bnρc−`+1

E

[Xk−1

1

][
Xk−1

1

]> 6 max
16k6bnρc

E

[Xk−1

1

][
Xk−1

1

]> ,

and due to (2.3.2) the right hand side is bounded as n→∞. The convergence of the second

and third terms is the statement of Lemma 2.9.7. The fifth term can be handled in the same

way as in (2.7.5). To prove (2.8.5) the proof is analogous with one exception: in place of

Lemma 2.9.5 we need Lemma 2.9.6. 2

2.9 Lemmas for Theorems 2.7.1 and 2.8.1

The lemmas collected here are crucial to the proofs of our main theorems, but their proofs

are somewhat tedious, hence they have been collected here together for the interested reader.
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Chapter 2. The discrete case

Lemmas 2.9.2, 2.9.3 and 2.9.7 each contain two similar statements – one about Xk and

another about X⊗2k . In both cases, we will only prove the first statement – the second one

can always be proved in the same manner by using (ii) from Lemma 2.3.3 instead of (i) from

the same Lemma. First we recall a Hájek–Rényi type result that will be critical not only

here, but also in the continuous case.

2.9.1 Lemma. (Kokoszka and Leipus, 1998, Theorem 3.1) Let (Yn)n∈N be a sequence

of random variables with finite second moments, and let (cn)n∈N be a sequence of nonnegative

constants. Then, for any a > 0,

a2 P

 max
16k6n

ck

∣∣∣∣∣∣
k∑
j=1

Yj

∣∣∣∣∣∣ > a

 6
n−1∑
k=1

|c2k+1 − c2k|
k∑

i,j=1

E(YiYj)

+ 2
n−1∑
k=1

c2k+1

E
(
Y 2
k+1

) k∑
i,j=1

E (YiYj)

1/2

+ 2
n−1∑
k=0

c2k+1 E(Y 2
k+1).

2.9.2 Lemma. For a time-homogeneous INAR(p) process satisfying condition C0 and any

γ < 1
4 we have

max
16k6n

kγ−1

∥∥∥∥∥
k∑
i=1

(Xk−1 − E(Xk−1))

∥∥∥∥∥ = OP(1)

and

max
16k6n

kγ−1

∥∥∥∥∥
k∑
i=1

(
X⊗2k−1 − E

(
X⊗2k−1

))∥∥∥∥∥ = OP(1).

Proof. We will follow the proof of Lemma 4.2 in Hušková et al. (2007) and apply Lemma

2.9.1 with ck = kγ−1 and Yi,q = Xi−1−q − E(Xi−1−q) for 0 6 q 6 p− 1 to show that the

result holds for each component of the vectors. This implies convergence of the 1-norm, and

because of the equivalence of vector norms, it is sufficient for the proof of the statement. We

have ∣∣∣∣ 1

(k + 1)2−2γ
− 1

k2−2γ

∣∣∣∣ 6 2(1− γ)

k3−2γ

and
k∑
i=1

k∑
j=1

E(Yi,qYj,q) =

k−1−q∑
i=−q

k−1−q∑
j=−q

Cov(Xi, Xj) 6 κk

for some constant κ according to Lemma 2.3.3.
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Therefore,

n−1∑
k=1

∣∣∣∣ 1

(k + 1)2−2γ
− 1

k2−2γ

∣∣∣∣ k∑
i=1

k∑
j=1

E(Yi,qYj,q) + 2

n−1∑
k=1

k2γ−2 E1/2(Y 2
k+1,q)

 k∑
i,j=1

E (Yi,qYj,q)

1/2

+ 2

n−1∑
k=0

k2γ−2 E(Y 2
k+1,q)

6 (2κ− 2κγ)

n−1∑
k=1

k2γ−2 + 2(κU1)
1/2

n−1∑
k=1

k2γ−3/2 + 2U1

n−1∑
k=0

k2γ−2,

where U1 is the upper boundary of (Var(Xn))n∈N. The limit of the right hand side as

n→∞ is finite, which completes the proof. We note the necessity of γ < 1
4—otherwise the

second term in the last expression would not be bounded. 2

2.9.3 Lemma. For a time-homogeneous INAR(p) process satisfying condition C0 and any

γ < 1
4 we have

max
16k6n

kγ−1

∣∣∣∣∣
k∑
i=1

Mi

∣∣∣∣∣ = OP(1).

and

max
16k6n

kγ−1

∣∣∣∣∣
k∑
i=1

Xi−1Mi

∣∣∣∣∣ = OP(1).

Proof. We apply 2.9.1 in the same way as in the proof of Lemma 2.9.2 with ck = kγ−1 and

Yi = Mi. We note that the Mk are martingale differences, therefore any product MiMj , i 6= j

has zero mean. Furthermore, the sequence (VarMk)k∈N is clearly bounded, and denoting its

upper bound by U , we have

n−1∑
k=1

∣∣∣∣ 1

(k + 1)2−2γ
− 1

k2−2γ

∣∣∣∣ k∑
i=1

k∑
j=1

E(YiYj) + 2
n−1∑
k=1

k2γ−2 E1/2(Y 2
k+1)

 k∑
i,j=1

E (YiYj)

1/2

+ 2
n−1∑
k=0

k2γ−2 E(Y 2
k+1)

6 U(2− 2γ)

n−1∑
k=1

k2γ−2 + 2U

n−1∑
k=1

k2γ−3/2 + 2U

n−1∑
k=0

k2γ−2,

whence the final steps of the proof are the same as in Lemma 2.9.2. 2

2.9.4 Lemma. Under the conditions of Theorem 2.7.1 we have

θ̂n − θ̃ = OP(n−1/2).
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Chapter 2. The discrete case

Proof. The difference can be decomposed in the following way:

n1/2(θ̂n − θ̃) = (n−1Qn)−1n−1/2

bnρc∑
k=1

Xk

[
Xk−1

1

]
−QnQ̃

−1
(
ρC ′

[
α′

µ′

])

+

n∑
k=bnρc+1

Xk

[
Xk−1

1

]
−QnQ̃

−1
(

(1− ρ)C ′′

[
α′′

µ′′

]) .

(2.9.1)

The first factor converges to Q̃
−1

stochastically, and will therefore be omitted from further

calculations. The second factor has been split in two and only the first part will be analyzed

in detail. The analysis of the second part is completely analogous. We split the first part in

the second factor in the following way:

n−1/2

bnρc∑
k=1

Xk

[
Xk−1

1

]
−QnQ̃

−1
(
ρQ′

[
α′

µ′

])

= n−1/2

bnρc∑
k=1

M ′k

[
Xk−1

1

]+ n−1/2
(
Qbnρc − ρQnQ̃

−1
Q′
)[α

µ′

]
.

(2.9.2)

The first term is

n−1/2

bnρc∑
k=1

Z ′k

 ,

which is asymptotically normal, and therefore OP(1) according to Theorem 2.5.3 (the same

reasoning applies after the change, since Lindeberg’s theorem is valid for triangular arrays as

well). It remains to show that n−1/2
(
Qbnρc − ρQnQ̃

−1
Q′
)

is stochastically bounded. We

decompose it in the following way:

n−1/2
(
Qbnρc − ρQnQ̃

−1
Q′
)

= n−1/2
(
Qbnρc − E(Qbnρc)

)
+ n−1/2

[
E(Qbnρc)− bnρcQ′

]
− n−1/2{ρ[Qn − E(Qn)]Q̃

−1
Q′}

− n−1/2{ρ[E(Qn)− nQ̃]Q̃
−1
Q′}

− n−1/2{ρnQ′ − bnρcQ′}.

(2.9.3)

The last term in (2.9.3) is deterministic and o(1). We know from (2.3.8) that the variances

of the first and third terms are bounded. Denoting the common upper bound by K we have,

36



2.9. Lemmas for Theorems 2.7.1 and 2.8.1

from Markov’s inequality, for all n,

P
(
n−1

∥∥∥Qbnρc − E(Qbnρc)
∥∥∥2 > a

)
<
K

a
→ 0 as a→∞,

and similarly for the third term. Consequently, the first and third terms in (2.9.3) are OP(1).

Recalling Lemma 2.3.1 we have

∥∥∥E(Qbnρc)− bnρcQ′
∥∥∥ =

∥∥∥∥∥∥
bnρc∑
k=1

E

[
Xk−1

1

][
Xk−1

1

]>
−Q′

∥∥∥∥∥∥
6
bnρc∑
k=1

∥∥∥∥∥∥E
[
Xk−1

1

][
Xk−1

1

]>
−Q′

∥∥∥∥∥∥ 6
bnρc∑
k=1

πk = O(1),

because the matrices within the sum consist entirely of the entries of X⊗2k −
(
X̃
′)⊗2

. A

similar calculation is valid for the fourth term. This implies the boundedness of the second

and fourth terms of (2.9.3), hence our proof is complete. 2

2.9.5 Lemma. Let an → a > 0, n→∞ and ai > 0 for all i ∈ N. Then

min
16k6n

k−1
n∑

i=n−k+1

ai → a, n→∞.

Proof. First we note that for any ε > 0 and sufficiently large n, we have

min
16k6n

k−1
n∑

i=n−k+1

ai < a+ ε.

This can be seen by choosing k = 1 for every n. Now we show

min
16k6n

k−1
n∑

i=n−k+1

ai > a− ε.

Let ν(ε) be the threshold index so that for n > ν(ε) we have |an − a| < ε
2 . Let us denote

by K the sum
∑ν(ε)

i=1 ai. Clearly,∣∣∣∣∣ min
16k6n−ν(ε)

k−1
n∑

i=n−k+1

ai − a

∣∣∣∣∣ < ε

2
.

Furthermore, for any n > k > n− ν(ε) we have

k−1
n∑

i=n−k+1

ai > n−1
n∑

i=ν(ε)

ai =
n− ν(ε)

n

(n− ν(ε))−1
n∑

i=ν(ε)

ai

 .
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Chapter 2. The discrete case

For sufficiently large n the first factor is close to 1, and the second factor is closer to a

than ε
2 for every n. This suffices for the proof. 2

2.9.6 Lemma. Let an → a > 0, n→∞ and ai > 0 for all i ∈ N. Then

lim
K→∞

inf
k>K

k−1
k∑
i=1

ai = a, n→∞.

Proof. We only need to observe that convergence of an implies convergence in Cesaro mean

as well, therefore, for a sufficiently large K and for all k > K the average k−1
∑k

i=1 ai is close

to a. 2

2.9.7 Lemma. For a time-homogeneous INAR(p) process satisfying condition C0 we have

for any a > 0,

lim
K→∞

lim sup
n→∞

P

 max
K6`6bnρc−1

∥∥∥∥∥∥`−1
bnρc∑

j=bnρc−`+1

(E(Xj−1)−Xj−1)

∥∥∥∥∥∥ > a

 = 0

and

lim
K→∞

lim sup
n→∞

P

 max
K6`6bnρc−1

∥∥∥∥∥∥`−1
bnρc∑

j=bnρc−`+1

(
E(X⊗2j−1)−X

⊗2
j−1

)∥∥∥∥∥∥ > a

 = 0.

Similarly,

lim
K→∞

lim sup
n→∞

P

 max
K6`6bnρc−1

∥∥∥∥∥∥`−1
bnρc∑

j=bnρc−`+1

[
Xj−1

1

]
Mj

∥∥∥∥∥∥ > a

 = 0.

Proof. Similarly to the proof of Lemma 2.9.2 we will again employ Lemma 2.9.1 with

ck = (K + k − 1)−1 and Y1,q =
∑bnρc

j=bnρc−K+1Xj−q and Yi,q = Xbnρc−K+1−i−q for i > 2 and

0 6 q 6 p− 1.

By an easy calculation

k∑
i,j=1

E(YiYj) =

bnρc∑
i,j=bnρc−K−k+1

E((Xi−1 − E(Xi−1))(Xj−1 − E(Xj−1))).

Therefore, applying the same estimations and notations as in the proof of Lemma 2.9.2 with

γ = 0, we obtain the following upper limit for the probability in question:

2κ

bnρc−1∑
`=K

(`+ 1)−2 + U1

bnρc−1∑
`=K

(`+ 1)−3/2 +
U1

K
+ U1

bnρc−1∑
`=K−1

(`+ 1)−2.
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It is obvious that as n → ∞ and then K → ∞, the above expression converges to 0,

which suffices for our proof. As in Lemma 2.9.2, for the second statement we merely take (ii)

instead of (i) from Lemma 2.3.3.

For the third statement the arguments are the same, just as the proof of Lemma 2.9.3 is a

simple analogue of Lemma 2.9.7. We note that (Mn)n∈N is a martingale difference sequence,

hence its elements are pairwise uncorrelated. Furthermore, Var(Mn)n∈N is bounded, which

implies Var(M1 + . . . + Mn) = O(n) immediately, and similarly for the other components

of the vector to be summed. 2

2.10 Illustration

Now we provide two real data examples of the use of our method. Since our model includes

initial values, the series were not investigated in their full length, but the first p values were

taken as the initial values X−p+1, . . . , X0.

Our first example is the dataset of monthly polio cases in the US, as reported by the

Centers for Disease Control and Prevention. It is available online at Hyndman (nd) and is

166 long. In Kang and Lee (2009) the authors found a significant decreasing trend in this

series, while in Davis and Wu (2009) and Davis et al. (2000) the trend was found insignificant.

It is widely agreed (see also Silva (2005)) that the underlying process is first-order, which

is also supported by the partial autocorrelation function. Therefore we treated it as an

INAR(1) process and calculated the CLS estimates given by (2.4.1). They were α̂1 = 0.30646

and µ̂ = 0.94091. The maximum of the absolute value of M̂(1)
166 was 1.2647 and the maximum

of the absolute value of M̂(2)
166 was 1.1232. Applying the two-sided test simultaneously to the

two parameters and requiring an overall significance level of 0.05, the critical value for each

component is 1.48 (the individual significance levels are 1 −
√

0.95 u 0.0253), therefore, the

null hypothesis is not rejected.

Our second example is a dataset of public drunkenness intakes in Minneapolis, also ac-

cessible at Hyndman (nd). This dataset is 139 long. After an examination of the partial

autocorrelation function a seasonal INAR(12) model seems a rational choice, but with the

assumption that only α1 and α12 are nonzero (for another similar calculation, see the real

data section in Barczy et al. (2011)). The estimates are


α̂1

α̂12

µ̂

 =


n∑
k=1


Xk−1

Xk−12

1



Xk−1

Xk−12

1


>
−1

n∑
k=1

Xk


Xk−1

Xk−12

1

 =


0.8154

0.1419

9.6944

 .

The maxima of the absolute values of the respective components of M̂n are 2.0333, 1.3497

and 1.5788. A comparison with the critical value of 1.545 (individual significance of approxi-
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Chapter 2. The discrete case

mately 0.017) results in the rejection of the null hypothesis. Based on
(∑k

i=1 M̂
(n)
k Xk−1

)139
k=1

our estimate for the change point is 41 (i.e., the 53rd entry in the original series). Repeating

the procedure for the series before and after the change, the null hypothesis is accepted for

both of them. For the series after the change, the CLS estimate of α12 is negative but an

inspection of the partial autocorrelation function reveals that this series is more appropri-

ately modeled as an INAR(1) process, for which the parameter estimates are α̂1 = 0.8915

and µ̂ = 24.8429 and the null hypothesis is accepted.

40



Chapter 3

General remarks about the Heston

and Cox–Ingersoll–Ross models

In this brief chapter we will summarize some well-known properties of the Heston and Cox–

Ingersoll–Ross models, which will be used repeatedly later on. Compared to the INAR(p)

model, the results presented herein are deeper and require a more detailed knowledge of

stochastic analysis; hence the decision to collect them here in one place, with reference to the

papers and monographs where detailed proofs of these fundamental results can be found.

As a reminder, the Heston model is defined bydYt = (a− bYt) dt+ σ1
√
Yt dWt,

dXt = (α− βYt) dt+ σ2
√
Yt
(
%dWt +

√
1− %2 dBt

)
,

t > 0,(3.0.1)

where a ∈ R++, b, α, β ∈ R, σ1 ∈ R++, σ2 ∈ R++, % ∈ (−1, 1), and (Wt, Bt)t>0 is a 2-

dimensional standard Wiener process. The Cox–Ingersoll–Ross process is the process Y in

the definition, and in Chapter 4 we will use σ := σ1.

3.1 Solutions and (conditional) means

The next proposition is about the existence and uniqueness of a strong solution of the SDE

(3.0.1), see, e.g., Barczy and Pap (2016, Proposition 2.1).

3.1.1 Proposition. Let (η0, ζ0) be a random vector independent of (Wt, Bt)t∈R+ satisfying

P(η0 ∈ R+) = 1. Then for all a ∈ R++, b, α, β ∈ R, σ1, σ2 ∈ R++, and % ∈ (−1, 1),

there is a (pathwise) unique strong solution (Yt, Xt)t∈R+ of the SDE (3.0.1) such that

P((Y0, X0) = (η0, ζ0)) = 1 and P(Yt ∈ R+ for all t ∈ R+) = 1. Further, for all s, t ∈ R+
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Chapter 3. General remarks about the Heston and Cox–Ingersoll–Ross models

with s 6 t,

Yt = e−b(t−s)Ys + a
∫ t
s e−b(t−u) du+ σ1

∫ t
s e−b(t−u)

√
Yu dWu,

Xt = Xs +
∫ t
s (α− βYu) du+ σ2

∫ t
s

√
Yu d(%Wu +

√
1− %2Bu).

(3.1.1)

Y 2
t = e−2btY 2

0 +

∫ t

0
e−2b(t−u)(2a+ σ2)Yu du+ 2σ

∫ t

0
e−2b(t−u)Y 3/2

u dWu, t ∈ R+.

(3.1.2)

The conditional distribution of Yt on Ys, where s < t, is noncentral chi-squared and we have

(3.1.3) sup
t∈R+

E(Y η
t ) <∞ for all η > 0.

Proof. By a theorem due to Yamada and Watanabe (see, e.g., Karatzas and Shreve,

1991, Proposition 5.2.13), the strong uniqueness holds for the first equation of (3.0.1). By

Ikeda and Watanabe (1989, Example V.8.2, page 221), there is a (pathwise) unique non-

negative strong solution (Yt)t∈R+ of the first equation of (3.0.1) with any initial value

ξ independent of (Wt)t∈R+ and satisfying P(ξ ∈ R+) = 1. In this case we also have

P(Yt ∈ R+ for all t ∈ R+) = 1. From here it is a simple application of the Itô’s formula for

the process (Yt)t∈R+ that

d(ebtYt) = bebtYt dt+ ebtdYt = bebtYt dt+ ebt
(
(a− bYt) dt+ σ

√
Yt dWt

)
= aebt dt+ σebt

√
Yt dWt

for all t ∈ R+. This implies the first equations in (3.1.1) – the rest can be obtained in

the same manner. The noncentral chi-squared distribution is a well-known property of the

process, and it can be found in the paper of Feller (1951). The property (3.1.3) is a direct

consequence of this fact and the calculations can be found, e.g., in Ben Alaya and Kebaier

(2013, Proposition 3). 2

Next we present a result about the first moment of (Yt, Xt)t∈R+ . For a proof, see, e.g.,

Barczy and Pap (2016, Proposition 2.2) together with (3.1.1) and Karatzas and Shreve (1991,

Proposition 3.2.10).

3.1.2 Proposition. Let (Yt, Xt)t∈R+ be the unique strong solution of the SDE (3.0.1) satis-

fying P(Y0 ∈ R+) = 1 and E(Y0) < ∞, E(|X0|) < ∞. Let us take s, t ∈ R+ such that s 6 t.
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3.2. Ergodic properties

In this case we have

E(Yt | Fs) = e−b(t−s)Ys + a

∫ t

s
e−b(t−u) du,(3.1.4)

E(Xt | Fs) = Xs +

∫ t

s
(α− β E(Yu | Fs)) du(3.1.5)

= Xs + α(t− s)− βYs
∫ t

s
e−b(u−s) du− aβ

∫ t

s

(∫ u

s
e−b(u−v) dv

)
du,

and hence[
E(Yt)

E(Xt)

]
=

[
e−bt 0

−β
∫ t
0 e−bu du 1

][
E(Y0)

E(X0)

]
+

[ ∫ t
0 e−bu du 0

−β
∫ t
0

(∫ u
0 e−bv dv

)
du t

][
a

α

]
,

E(Y 2
t ) = e−2bt E(Y 2

0 ) +

∫ t

0
(2a+ σ2)

(
e−b(2t−u) E(Y0) + a

∫ u

0
e−b(2t−u−v) dv

)
du.

Consequently, if b > 0, then

lim
t→∞

E(Yt) =
a

b
, lim

t→∞
t−1 E(Xt) = α− βa

b
,

if b = 0, then

lim
t→∞

t−1 E(Yt) = a, lim
t→∞

t−2 E(Xt) = −1

2
βa,

if b < 0, then

lim
t→∞

ebt E(Yt) = E(Y0)−
a

b
, lim

t→∞
ebt E(Xt) =

β

b
E(Y0)−

βa

b2
.

Based on the asymptotic behavior of the expectations (E(Yt),E(Xt)) as t → ∞, we

introduce a classification of the Heston model given by the SDE (3.0.1).

3.1.3 Definition. Let (Yt, Xt)t∈R+ be the unique strong solution of the SDE (3.0.1) satis-

fying P(Y0 ∈ R+) = 1. We call (Yt, Xt)t∈R+ subcritical, critical or supercritical if b > 0,

b = 0 or b < 0, respectively.

3.2 Ergodic properties

The following result states the existence of a unique stationary distribution and the ergodicity

for the CIR process (Yt)t∈R+ in the subcritical case. These statements are treated as evident

in the literature, therefore we will omit the proof, and only note that the critical elements

for it can be found, e.g., in Cox et al. (1985, Equation (20)), Li and Ma (2015, Theorem

2.6), Barczy et al. (2014a, Theorem 3.1 with α = 2 and Theorem 4.1), or Jin et al. (2016,
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Chapter 3. General remarks about the Heston and Cox–Ingersoll–Ross models

Corollaries 5.9 and 6.4). Only (3.2.4) can be considered as a slight improvement of the

existing results.

3.2.1 Theorem. Let a, b, σ1 ∈ R++. Let (Yt)t∈R+ be the unique strong solution of the

first equation of the SDE (3.0.1) satisfying P(Y0 ∈ R+) = 1. Then

(i) Yt
D−→ Y∞ as t→∞, and the distribution of Y∞ is given by

E(e−λY∞) =

(
1 +

σ21
2b
λ

)−2a/σ2
1

, λ ∈ R+,(3.2.1)

i.e., Y∞ has Gamma distribution with parameters 2a/σ21 and 2b/σ21, hence

E(Y∞) =
a

b
, E(Y 2

∞) =
(2a+ σ21)a

2b2
, E(Y 3

∞) =
(2a+ σ21)(a+ σ21)a

2b3
.(3.2.2)

(ii) supposing that the random initial value Y0 has the same distribution as Y∞, the

process (Yt)t∈R+ is strictly stationary.

(iii) for all Borel measurable functions f : R→ R such that E(|f(Y∞)|) <∞, we have

(3.2.3)
1

T

∫ T

0
f(Ys) ds

a.s.−→ E(f(Y∞)) as T →∞,

(3.2.4)
1

n

n−1∑
i=0

f(Yi)
a.s.−→ E(f(Y∞)) as n→∞.

Proof. Based on the references given before the theorem, we only need to show (3.2.4). By

Corollary 2.7 in Jin et al. (2013), the tail σ-field
⋂
t∈R+

σ(Ys, s > t) of (Yt)t∈R+ is trivial for

any initial distribution, i.e., the tail σ-field in question consists of events having probability

0 or 1 for any initial distribution. But since the tail σ-field of (Yt)t∈R+ is richer than that of

(Yi)i∈Z+ , the tail σ-field of (Yi)i∈Z+ is also trivial for any initial distribution.

Denoting the distribution of Y0 and Y∞ by ν and µ, respectively, let us introduce the

distribution η := (µ+ ν)/2. Let us introduce the following processes: (Zt)t∈R+ , which is the

CIR process with initial condition Z0 = ζ0, where ζ0 has the distribution µ; and (Ut)t∈R+ ,

which is the CIR process with initial condition U0 = ξ0, where ξ0 has the distribution η.

We use Birkhoff’s ergodic theorem (see, e.g., Theorem 8.4.1 in Dudley (2004)) in the usual

setting: the probability space is (RZ+ ,B(RZ+),L((Zi)i∈Z+)), where L((Zi)i∈Z+) denotes the

distribution of (Zi)i∈Z+ , and the measure-preserving transformation T is the shift operator,

i.e., T ((xi)i∈Z+) := (xi+1)i∈Z+ for (xi)i∈Z+ ∈ RZ+ (the measure preserving property follows

from (ii)). All invariant sets of T are included in the tail σ-field of the coordinate mappings

πi, i ∈ Z+, on RZ+ , since for any invariant set A we have A ∈ σ(π0, π1, . . .), but as T k(A) = A

44



3.2. Ergodic properties

for all k ∈ N, it is also true that A ∈ σ(πk, πk+1, . . .) for all k ∈ N. This implies that T is

ergodic, since the tail σ-field is trivial. Hence we can apply the ergodic theorem for the

function

g : RZ+ → R, g((xi)i∈Z+) := f(x0), (xi)i∈Z+ ∈ RZ+ ,

where f is given in (iii), to obtain

1

n

n−1∑
i=0

f(xi)→
∫
R+

f(x0)µ(dx0) as n→∞

for almost every (xi)i∈Z+ ∈ RZ+ with respect to the measure L((Zi)i∈Z+), and consequently

(3.2.5)
1

n

n−1∑
i=0

f(Zi)
a.s.−→ E(f(Y∞)) as n→∞,

because the distribution of Y∞ does not depend on the initial distribution. We introduce the

following event, which is a tail event of (Zi)i∈Z+ and has probability 1 by (3.2.5):

CZ :=

{
ω ∈ Ω :

1

n

n−1∑
i=0

f(Zi(ω))→ E(f(Y∞)) as n→∞

}
.

The events CY and CU are defined in a similar way and are tail events of (Yi)i∈Z+ and

(Ui)i∈Z+ , respectively. Now we can write

P(CU ) =

∫ ∞
0

P(CU |U0 = x) dη(x)

=
1

2

∫ ∞
0

P(CU |U0 = x) dµ(x) +
1

2

∫ ∞
0

P(CU |U0 = x) dν(x)

>
1

2

∫ ∞
0

P(CU |U0 = x) dµ(x) =
1

2

∫ ∞
0

P(CZ |Z0 = x) dµ(x) =
1

2
P(CZ) =

1

2
.

Here we used that P(CU |U0 = x) = P(CZ |Z0 = x) µ-a.e. x ∈ R+, since the conditional

probabilities on both sides depend only on the transition probability kernel of the CIR process

given by the first SDE of (3.0.1) irrespective of the initial distribution. Further, we note that

P(CU |U0 = x) is defined uniquely only η-a.e. x ∈ R+, but, by the definition of η, this

means both µ-a.e. x ∈ R+, and ν-a.e. x ∈ R+, and similarly P(CZ |Z0 = x) is defined

µ-a.e. x ∈ R+, so our equalities are valid. Thus, we have P(CU ) > 1
2 . But since CU is a tail

event of (Ui)i∈Z+ , its probability must be either 0 or 1 (since the tail σ-field is trivial), hence

P(CU ) = 1. Hence

2 =

∫ ∞
0

P(CU |U0 = x) dµ(x) +

∫ ∞
0

P(CU |U0 = x) dν(x) 6 µ([0,∞)) + ν([0,∞)) = 2,
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yielding that ∫ ∞
0

P(CU |U0 = x) dµ(x) =

∫ ∞
0

P(CU |U0 = x) dν(x) = 1,

and the second equality is exactly (3.2.4) after we note that, by the same argument as above,∫ ∞
0

P(CU |U0 = x) dν(x) =

∫ ∞
0

P(CY |Y0 = x) dν(x) = P(CY ).

With this our proof is complete. 2

For a subcritical CIR process we can improve on the convergence stated in Proposition

3.1.1.

3.2.2 Lemma. For a subcritical CIR process we have

(3.2.6) lim
t→∞

E(Yt) = E(Y∞) =
a

b
, lim

t→∞
E(Y 2

t ) = E(Y 2
∞) =

2a2 + a2σ2

2b2
,

moreover,

(3.2.7)

∫ ∞
0
|E(Yt)− E(Y∞)| dt <∞,

∫ ∞
0
|E(Y 2

t )− E(Y 2
∞)| dt <∞.

Proof. The first equalities are straightforward by taking expectations on both sides in

Proposition 3.1.1 (we note that the stochastic integrals in question are indeed martingales

due to (3.1.3)). From there, (3.2.6) is a question of elementary calculus: for the first equation

we write

(3.2.8) lim
t→∞

(
e−bt E(Y0) + a

∫ t

0
e−b(t−u) du

)
= lim

t→∞
a

∫ t

0
e−bv dv = a

∫ ∞
0

e−bv dv =
a

b
.

For the second equation we observe∫ t

0

∫ u

0
e−b(2t−u−v) dvdu =

1

b

(∫ t

0
(e−2b(t−u) − e−b(2t−u)) du

)

=
1

b

∫ t

0
e−2bu du+

e−bt

b

∫ t

0
e−bu du

(3.2.9)

and hence

lim
t→∞

(
e−2bt E(Y 2

0 ) +

∫ t

0
(2a+ σ2)

(
e−b(2t−u) E(Y0) + a

∫ u

0
e−b(2t−u−v) dv

)
du

)

= (2a+ σ2) lim
t→∞

(
E(Y0)e

−bt
∫ t

0
e−bw dw + a

∫ t

0

∫ u

0
e−b(2t−u−v) dv du

)
= (2a+ σ2)

1

b

∫ ∞
0

e−2bw dw.

(3.2.10)
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For the first part of (3.2.7) we consider (keeping in mind (3.2.8))

|E(Yt)− E(Y∞)| =
∣∣∣∣e−bt E(Y0)− a

∫ ∞
t

e−bu du

∣∣∣∣ 6 e−bt E(Y0) + ab−1e−bt,

which yields the result immediately. For the second part, we combine (3.2.9) and (3.2.10) to

obtain

|E(Y 2
t )− E(Y 2

∞)| =
∣∣∣∣e−2bt E(Y 2

0 ) + (2a+ σ2)e−bt
∫ t

0

(
E(Y0)e

−bu +
1

b
e−bu

)
du

−1

b

∫ ∞
t

e−2bu du

∣∣∣∣
6 e−2bt E(Y 2

0 ) + (2a+ σ2)e−bt
(
E(Y0) +

1

b

)
1

b
+

1

2b2
e−2bt.

This yields the desired result immediately. 2

3.3 Strong laws of large numbers and martingale CLT’s

Finally, we state an appropriate version of the strong law of large numbers and a martingale

central limit theorem both in continuous and discrete time, according to the continuous and

discrete time observations in the following sections. Theorems 3.3.1 and 3.3.2 refer to the

continuous case, while Theorems 3.3.3 and 3.3.4 refer to the discrete case.

3.3.1 Theorem. (Special case of Liptser and Shiryaev, 2001, Lemma 17.4) Let the

process (Wt)t∈R+ be a standard Wiener process with respect to the filtration (Ft)t∈R+ . Let

(ξt)t∈R+ be a measurable process adapted to (Ft)t∈R+ such that

P
(∫ t

0
ξ2u du <∞

)
= 1, t ∈ R+ and

∫ t

0
ξ2u du

a.s.−→∞ as t→∞.(3.3.1)

Then ∫ t
0 ξu dWu∫ t
0 ξ

2
u du

a.s.−→ 0 as t→∞.(3.3.2)

3.3.2 Theorem. (Special case of Jacod and Shiryaev, 2003, Corollary VIII.3.24.)

Let (Y n
t )t∈R+ be a series of locally square-integrable continuous martingales such that

〈Y n〉t
P−→ t, t ∈ R+, as n→∞.

Then (Y n)t∈R+

D−→ (Wt)t∈R+, where (Wt)t∈R+ is a standard Wiener process.

3.3.3 Theorem. (Shiryaev, 1989, Chapter VII, Section 5, Theorem 4) Let us take a

filtered probability space
(
Ω,F , (Fn)n∈N,P

)
. Let (Mn)n∈N be a square-integrable martingale
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with respect to the filtration (Fn)n∈N such that P(M0 = 0) = 1 and P(limn→∞〈M〉n =

∞) = 1, where (〈M〉n)n∈N denotes the predictable quadratic variation process of M . Then

Mn

〈M〉n
a.s.−→ 0 as n→∞.

3.3.4 Theorem. (Jacod and Shiryaev, 2003, Theorem VIII.3.33) Let

{(Mn,k,Fn,k) : k = 0, 1, . . . , kn}n∈N

be a sequence of d-dimensional square-integrable martingales with Mn,0 = 0 such that there

exists some symmetric, positive semi-definite non-random matrix D ∈ Rd×d such that

kn∑
k=1

E((Mn,k −Mn,k−1)(Mn,k −Mn,k−1)
> | Fn,k−1)

P−→D as n→∞,

and for all ε ∈ R++,

kn∑
k=1

E(‖Mn,k −Mn,k−1‖21{‖Mn,k−Mn,k−1‖>ε} | Fn,k−1)
P−→ 0 as n→∞.(3.3.3)

Then
kn∑
k=1

(Mn,k −Mn,k−1) = Mn,kn
D−→ Nd(0,D) as n→∞,

where Nd(0,D) denotes a d-dimensional normal distribution with mean vector 0 and

covariance matrix D.
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Chapter 4

Change detection in the continuous

case

Just as for the INAR(p) process, we will only consider subcritical CIR processes, that is,

when b > 0. We will use the first equation from (3.0.1), but replace σ1 with σ, as that will be

the single volatility parameter in this chapter – or, equivalently, we will base our calculations

on (1.3.2). Based on the process definition, our statistical problem takes the following form:

we would like to test the null hypothesis

H0 : (Yt)t∈[0,T ] is the path of a CIR process

against the alternative hypothesis

HA : ∃ρ ∈ (0, 1) : (Yt)t∈[0,ρT ] is a CIR process with parameters a = a′, b = b′, and

(Yt)t∈[ρT ,T ] is a CIR process with parameters a = a′′, b = b′′,

where a′ > 0, a′′ > 0, b′ > 0 and b′′ > 0 with (a′, b′) 6= (a′′, b′′).

4.1 Construction of parameter estimators

Our estimates will be motivated by the least-squares method, but we will not define them

as solutions to a least-squares problem. Instead first we introduce least squares estimators

based on low-frequency discrete time observations, then we will introduce our estimators as

a formal analogy.

An LSE of (a, b) based on a discrete time observation (Yi)i∈{0,1,...,n}, can be obtained by
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Chapter 4. Change detection in the continuous case

solving the extremum problem

(
âDn , b̂

D
n

)
:= arg min

(a,b)∈R2

n∑
i=1

(Yi − Yi−1 − (a− bYi−1))2.

This is a simple exercise, which has the well-known solution

[
âDn

b̂Dn

]
=

 n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>−1 n∑
i=1

[
1

−Yi−1

]
(Yi − Yi−1),

provided n
∑n

i=1 Y
2
i−1 − (

∑n
i=1 Yi−1)

2 > 0. A heuristic motivation behind these estimators

can be found, e.g., in Hu and Long (2007, p. 178). By a formal analogy, we introduce the

estimator of (a, b) based on a continuous time observation (Yt)t∈[0,T ] as

(4.1.1) θ̂T :=

[
âT

b̂T

]
:=

∫ T

0

[
1

−Ys

][
1

−Ys

]>
ds

−1 ∫ T

0

[
1

−Ys

]
dYs,

provided that the inverse is defined, that is, T
∫ T
0 Y 2

s ds−
(∫ T

0 Ys ds
)2
> 0, which is true a.s.

– this is an easy exercise. To condense our notation, we will use

(4.1.2) Qs :=

∫ s

0

[
1

−Yu

][
1

−Yu

]>
du and ds :=

∫ s

0

[
1

−Yu

]
dYu

4.1.1 Remark. The stochastic integral
∫ s
0 Yu dYu is observable, since, by Itô’s formula, we

have d(Y 2
t ) = 2Yt dYt + σ2Yt dt, t ∈ R+, hence

∫ s
0 Yu dYu = 1

2

(
Y 2
s − Y 2

0 − σ2
∫ s
0 Yu du

)
.

4.1.2 Remark. These estimates are the same as âc(T ) and b̂c(T ) in Overbeck and Rydén

(1997); this can be verified by a simple calculation. This means that even though they were

introduced formally, our estimates have statistical meaning: they are the high-frequency

limits of the conditional least squares estimates introduced for discrete observations; fur-

thermore, they are strongly consistent. Overbeck (1998) also provides the more standard

ML estimates, but we didn’t choose them because they include the term
∫ T
0 Y −1s ds, whose

moments are rather difficult to handle and require additional constraints on the value of a.

Using the definition of the CIR process from (1.3.2) one can check that[
âT − a
b̂T − b

]
= Q−1T

[
σ
∫ T
0 Y

1/2
s dWs

−σ
∫ T
0 Y

3/2
s dWs

]
.(4.1.3)
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In further calculations we will use

(4.1.4) d̃s := σ

[ ∫ s
0 Y

1/2
u dWu

−
∫ s
0 Y

3/2
u dWu

]
.

4.2 Construction of the test process

Let us fix a time horizon T ∈ R++. Our test process will be introduced as a formal analogy to

the efficient score vector, as is done in Gombay (2008). For this, we note that the estimator

(âT , b̂T ) can also be represented as a solution to a least-squares problem, namely,

(âT , b̂T ) = arg min
(a,b)∈R2

(
−
∫ T

0
(a− bYs) dYs +

1

2

∫ T

0
(a− bYs)2 ds

)
.

This can be compared with the maximum likelihood estimator

(âMLE
T , b̂MLE

T ) := arg max
(a,b)∈R2

Λa,b,T (Y ),

where the log-likelihood function Λa,b,T has the form

Λa,b,T (Y ) =

∫ T

0

a− bYs
σ2Ys

dYs −
1

2

∫ T

0

(a− bYs)2

σ2Ys
ds,

see, for example, Overbeck (1998). For the score vector, we take the partial derivatives of the

log-likelihood function w.r.t. our parameters a and b, and we arrive, for time tT , t ∈ [0, 1], at

the process∂aΛa,b,tT (Y )

∂bΛa,b,tT (Y )

 =

 ∫ tT0 dYs
σ2Ys
−
∫ tT
0

(a−bYs) ds
σ2Ys

−
∫ tT
0

dYs
σ2 +

∫ tT
0

(a−bYs) ds
σ2

 =

∫ tT

0

1

σ2Ys

[
1

−Ys

]
dMs,

where

(4.2.1) Ms := Ys − Y0 −
∫ s

0
(a− bYu) du = σ

∫ s

0

√
Yu dWu, s ∈ R+,

is a martingale. Instead of the maximum likelihood estimators we use θ̂T from (4.1.1), so,

based on the similarity between the two least-squares problems, we will use the process

(4.2.2)

∫ tT

0

[
1

−Ys

]
dMs = d̃tT

as an analogue of the true efficient score vector process. The information contained in a

continuous sample (Yu)u∈[0,tT ] is the quadratic variation of the efficient score vector process,
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Chapter 4. Change detection in the continuous case

namely,

(4.2.3)

∫ tT

0

[
1

−Ys

][
1

−Ys

]>
〈M〉s ds = σ2

∫ tT

0

[
Ys −Y 2

s

−Y 2
s Y 3

s

]
ds =: ItT ,

since 〈M〉s = σ2Ys, s ∈ R+. For each s ∈ R+, replacing the parameters by their estimates in

Ms, we obtain an estimate M̂
(T )
s , i.e.,

M̂ (T )
s := Ys − Y0 −

∫ s

0
(âT − b̂TYu) du, s ∈ R+.

Our test process will be the estimated efficient score vector multiplied by the square root of

the inverse of the information matrix, i.e.,

(4.2.4) M̂
(T )

t := I
−1/2
T

∫ tT

0

[
1

−Ys

]
dM̂ (T )

s , t ∈ [0, 1].

This process can also be written in CUSUM form M̂
(T )

t = I
−1/2
T QtT (θ̂tT − θ̂T ), t ∈ [0, 1].

Indeed,

∫ tT

0

[
1

−Ys

]
dM̂ (T )

s =

∫ tT

0

[
1

−Ys

]
dYs −

∫ tT

0

[
1

−Ys

][
1

−Ys

]>
θ̂Tds

= QtT

(
Q−1tT

∫ tT

0

[
1

−Ys

]
dYs − θ̂T

)
.

Under the null hypothesis the test process converges in distribution to a Brownian bridge,

just like in Theorem 2.5.1.

4.2.1 Theorem. Let (Yt)t∈R+ be a subcritical CIR process with P(Y0 ∈ R+) = 1. Then(
M̂

(T )

t

)
t∈[0,1]

D−→ (Bt)t∈[0,1] as T →∞,

where (Bt)t∈[0,1] is a 2-dimensional standard Brownian bridge.

Proof. We have∫ tT

0

[
1

−Ys

]
dM̂ (T )

s =

∫ tT

0

[
1

−Ys

]
dMs −

∫ tT

0

[
1

−Ys

](
dMs − dM̂ (T )

s

)
,
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and ∫ tT

0

[
1

−Ys

](
dMs − dM̂ (T )

s

)
=

∫ tT

0

[
1

−Ys

] (
âT − a−

(
b̂T − b

)
Ys
)
ds

=

∫ tT

0

[
1

−Ys

][
1

−Ys

]> [
âT − a
b̂T − b

]
ds = QtTQ

−1
T d̃T ,

with the notations from (4.1.2) and (4.1.4). Combining this with (4.2.2), for every t ∈ [0, 1],

M̂
(T )

t = I
−1/2
T

(
d̃tT −QtTQ

−1
T d̃T

)
= I

−1/2
T

(
d̃tT − td̃T

)
+ I

−1/2
T (tE2 −QtTQ

−1
T )d̃T

= (TI)−1/2
(
d̃tT − td̃T

)
+
(

(T−1IT )−1/2 − I−1/2
)
T−1/2

(
d̃tT − td̃T

)
+ I

−1/2
T (tE2 −QtTQ

−1
T )d̃T ,

where

I := σ2

[
E(Y∞) −E(Y 2

∞)

−E(Y 2
∞) E(Y 3

∞)

]
.

A simple consequence of the ergodic theorem is T−1IT
a.s.−→ I. Consequently, Theorem 4.2.1

will follow from

(4.2.5) sup
t∈[0,1]

(tE2 −QtTQ
−1
T )

P−→ 0 as T →∞,

and

(4.2.6)
(
T−1/2 d̃tT

)
t∈[0,1]

D−→ (I1/2W t)t∈[0,1] as T →∞,

where (W t)t∈[0,1] is a 2-dimensional standard Wiener process.

We begin by the proof of (4.2.6). The convergence is a simple consequence of the central

limit theorem for continuous local martingales, see (Jacod and Shiryaev, 2003, Special case of

Corollary VIII.3.24.). The process
(
T−1/2 d̃tT

)
t∈[0,1] is a locally square-integrable martingale,

therefore we only need to check the pointwise convergence of the quadratic variation. Using

(iii) from Theorem 3.2.1 it is easy to show that, for every t ∈ [0, 1],

1

T
σ2
∫ tT

0

[
Ys −Y 2

s

−Y 2
s Y 3

s

]
ds

a.s.−→ σ2t

[
E(Y∞) −E(Y 2

∞)

−E(Y 2
∞) E(Y 3

∞)

]
= tI, as T →∞.

For (4.2.5), introduce

Q :=

[
1 −E(Y∞)

−E(Y∞) E(Y 2
∞)

]
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Chapter 4. Change detection in the continuous case

and note that due to Theorem 3.2.1 we have T−1QT
a.s.−→ Q. Now, first observe that

‖tE2 −QtTQ
−1
T ‖ 6 t

∥∥∥∥QT

T
− QtT

tT

∥∥∥∥
∥∥∥∥∥
(
QT

T

)−1∥∥∥∥∥ .
For this transformation to be sensible, we needed to extend Qs

s continuously to s = 0, but

this can be done since all components of Is
s has a finite upper limit at 0 almost surely (i.e.,

the powers of Y0). Since the last factor converges to ‖Q−1‖ almost surely, for (4.2.5) it is

sufficient to show that

sup
t∈[0,1]

t

∥∥∥∥QT

T
− QtT

tT

∥∥∥∥ P−→ 0.

To exploit the almost sure convergence of QT
T , we note that QT

T
a.s.−→ Q implies

sup
s∈[T,∞)

∥∥∥∥Qs

s
−Q

∥∥∥∥ a.s.−→ 0

and thus also weakly. Now let us introduce K := sups∈[T,∞)

∥∥∥Qs
s

∥∥∥. This supremum is finite

almost surely since Qs
s is continuous on R+ and has a finite limit at infinity almost surely.

Now we observe, for an arbitrary ε > 0,

P

(
sup
t∈[0,1]

t

∥∥∥∥QT

T
− QtT

tT

∥∥∥∥ > ε

)
6 P

(
sup

06t6 ε
4K
∧1
t

∥∥∥∥QT

T
− QtT

tT

∥∥∥∥ > ε

)

+ P

(
sup
ε

4K
6t61

t

∥∥∥∥QT

T
− QtT

tT

∥∥∥∥ > ε

)

6 P
( ε

4K
2K > ε

)
+ P

(
sup
ε

4K
6t61

(
t

∥∥∥∥QT

T
−Q

∥∥∥∥+

∥∥∥∥QtT

tT
−Q

∥∥∥∥) > ε

)

6 0 + P
(∥∥∥∥QT

T
−Q

∥∥∥∥ > ε

2

)
+ P

 sup
εT
4K

6s

∥∥∥∥Qs

s
−Q

∥∥∥∥ > ε

2

 .

Dividing the last probability according to the value of K, we have

P
(

sup
06t61

t

∥∥∥∥QT

T
− QtT

tT

∥∥∥∥ > ε

)

6 P
(∥∥∥∥QT

T
−Q

∥∥∥∥ > ε

2

)
+ P

 sup
εT
4K

6s

∥∥∥∥Qs

s
−Q

∥∥∥∥ > ε

2

⋂{
K 6

√
T
}+ P(K >

√
T ),
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and so,

P
(

sup
06t61

t

∥∥∥∥QT

T
− QtT

tT

∥∥∥∥ > ε

)

6 P
(∥∥∥∥QT

T
−Q

∥∥∥∥ > ε

2

)
+ P

 sup
ε
√
T

4
6s

∥∥∥∥Qs

s
−Q

∥∥∥∥ > ε

2

+ P
(
K >

√
T
)
.

All three terms in the last expression tend to zero as T →∞, therefore (4.2.5) is proved. 2

4.3 Testing procedures

Let us denote the components of the test process (M̂
(T )

t )t∈[0,1] by (M̂
(T )

t,i )t∈[0,1], i ∈ {1, 2}.
Based on Theorem 4.2.1, we can develop the following tests with a significance level of α:

Test 1 (one-sided): if it is clear that, in case of a change, a′ < a′′, reject H0 if the infimum

of (M̂
(T )

t,1 )t∈[0,1] is smaller than C1(α), where C1(α) can be obtained from the distribution of

the infimum of a standard Brownian bridge. The same test can be applied to the supremum

(for a′ > a′′) and to (M̂
(T )

t,2 )t∈[0,1] (for a change in b).

Test 2 (two-sided): reject H0 if the supremum of (|M̂
(T )

t,1 |)t∈[0,1] is greater than C2(α),

where C2(α) can be obtained from the distribution of the supremum of the absolute value of

standard Brownian bridge. The same test can be applied to (|M̂
(T )

t,2 |)t∈[0,1] for a change in b.

Naturally, the test for a and b can be applied simultaneously, in which case the significance

levels for the individual tests have to be modified accordingly, in order to produce an overall

significance level of α – for more details, see subsection 2.5.1.

4.4 Asymptotic behavior under the alternative hypothesis

Before stating our results under the alternative hypothesis, we need more closely to examine

the ergodicity results that we can use. Let us take two parameter vectors: θ′ and θ′′.

Furthermore, we take two random variables, Y ′∞ and Y ′′∞, such that they are distributed

according to the stationary distributions corresponding to θ′ and θ′′, respectively. Let us take

a process (Yt)t∈R+ such that it evolves according to (1.3.2) with parameters θ′ until t = ρT

and with parameters θ′′ thereafter. This implies that the calculation of the martingale M

should also be different according to whether t < ρT . We will thus use

M ′s := Ys − Y0 −
∫ s

0
(a′ − b′Yu) du and M ′′s := Ys − YρT −

∫ s

ρT
(a′′ − b′′Yu) du

for s < ρT and s > ρT , respectively. We would like to apply the ergodic theorem (i.e., The-

orem 3.2.1) separately to the process before and after the change-point (i.e., ρT ). However,
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Chapter 4. Change detection in the continuous case

we cannot do this directly for the second part because the initial distribution may depend on

T . However, we do have the following parallel of (2.6.1).

4.4.1 Lemma. For a CIR process with the above conditions

(4.4.1)
1

T − ρT

∫ T

ρT
g(Yt) dt

P−→ E(g(Ỹ ′′)),

where g : R+ → R with E(|g(Ỹ )|) <∞.

Proof. For an arbitrary ε > 0

P
(∣∣∣∣ 1

T − ρT

∫ T

ρT
g(Yt) dt− E(g(Ỹ ′′))

∣∣∣∣ > ε

)

=

∫
R+

P

(∣∣∣∣ 1

T − ρT

∫ T

ρT
g(Yt) dt− E(g(Ỹ ′′))

∣∣∣∣ > ε

∣∣∣∣∣YρT = x

)
dP ρTY (x)

6
∥∥∥P ρTY − P ∗∥∥∥+

∫
R+

P

(∣∣∣∣ 1

T − ρT

∫ T

ρT
g(Yt) dt− E(g(Ỹ ′′))

∣∣∣∣ > ε

∣∣∣∣∣YρT = x

)
dP ∗(x),

where P ∗ is the distribution of Ỹ ′, P ρTY is the distribution of YρT and ‖·‖ is the total variation

norm. The first term converges to zero because the CIR process is positive Harris recurrent

(Jin et al., 2013, Theorem 2.5). This implies ergodicity by Meyn and Tweedie (1993, Theorem

6.1), since in this case the 1-skeleton (i.e., the process (Yi)i∈Z+) is clearly irreducible because

the support of the distribution of Y1 conditionally on Y0 is R+. In the second term the measure

is finite, while the integrand is bounded by 1 and converges to zero pointwise, therefore (4.4.1)

is proved by the Lebesgue Dominated Convergence Theorem. 2

The same line of reasoning can be used to apply Theorems 3.3.1 and 3.3.2 after the point

of change. Let us now introduce

d[a,b] :=

 ∫ b
a 1dYs

−
∫ b
a YsdYs

 , Q[a,b] :=

 ∫ b
a 1 ds −

∫ b
a Ys ds

−
∫ b
a Ys ds

∫ b
a Y

2
s ds

 .
With these notations,

θ̂T =
(
Q[0,ρT ] +Q[ρT,T ]

)−1
(d[0,ρT ] + d[ρT,T ]).

With the help of the ergodic theorem, we can see that this quantity has a finite weak limit:

θ̃ :=

[
ã

b̃

]
:= (ρQ′ + (1− ρ)Q′′)−1

(
ρQ′θ′ + (1− ρ)Q′′θ′′

)
,
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where

Q′ :=

[
1 −E(Y ′∞)

−E(Y ′∞) E((Y ′∞)2)

]
, Q′′ :=

[
1 −E(Y ′′∞)

−E(Y ′′∞) E((Y ′′∞)2)

]
.

Furthermore, the information matrix will have a weak limit in this case, namely,

(4.4.2)

IT
T

P−→ Ĩ := σ2

(
ρ

[
E(Y ′∞) −E((Y ′∞)2)

−E((Y ′∞)2) E((Y ′∞)3)

]
+ (1− ρ)

[
E(Y ′′∞) −E((Y ′′∞)2)

−E((Y ′′∞)2) E((Y ′′∞)3)

])

4.5 Asymptotic consistence of the test

Armed with these tools, we can derive the asymptotic behavior of the supremum of the

components (M̂
(T )

t,i )t∈[0,1], i = 1, 2, of the test process.

4.5.1 Theorem. Let us suppose that θ changes from θ′ to θ′′ at time ρT , where ρ ∈ (0, 1),

and both θ′ > 0 and θ′′ > 0 componentwise. Let us take i ∈ {1, 2}, and then define

ψi := 1>i Ĩ
−1/2

((ρQ′)−1 + ((1− ρ)Q′′)−1)−1(θ′ − θ′′).

If ψi > 0, then we have

sup
t∈[0,T ]

M̂
(T )

t,i = T 1/2ψi + oP

(
T 1/2

)
.

On the other hand, if ψi < 0, we have

inf
t∈[0,T ]

M̂
(T )

t,i = T 1/2ψi + oP

(
T 1/2

)
.

4.5.2 Remark. We can easily see that in the special case of Theorem 4.5.1 when only a

changes from a′ > 0 to a′′ > 0, we have

ψ1 = (a′ − a′′)1>1 Ĩ
−1/2

((ρQ′)−1 + ((1− ρ)Q′′)−1)−111,

and similarly, if only b changes from b′ to b′′, we have

ψ2 = (b′ − b′′)1>2 Ĩ
−1/2

((ρQ′)−1 + ((1− ρ)Q′′)−1)−112.

4.5.3 Corollary. If ψi 6= 0, then for M̂
(T )

t,i the two-sided test and the appropriate one-sided

test described in 4.3 are asymptotically weakly consistent, that is, P(H0 is rejected) → 1 as

T →∞.

4.5.4 Remark. This theorem does not prove the consistence of our test if ψi = 0. This

degenerate case is indeed possible, but characterizing it is not easy since the matrices Q′ and

Q′′ depend on θ′ and θ′′ in a nontrivial manner. What we can easily see is that when the
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change occurs in the same direction in a and b (including the case when only one of them

changes), this is not a problem. If the changes are in opposite directions, however, then there

is a point where they “cancel out” and we can’t prove Corollary 4.5.3. It can also be easily

checked that

Ĩ
−1/2

((ρQ′)−1 + ((1− ρ)Q′′)−1)−1

is positive definite, so if only one parameter changes, the sign of the corresponding ψi (i.e.,

ψ1 for a an ψ2 for b) depends on the direction: it is negative in case of an upwards change

and positive in case of a downwards change. This gives us the possibility to design one-sided

tests, as described in section 4.3.

Proof. We will only prove for i = 1 and ψ1 > 0, the other cases are completely analogous.

By the definition of M̂
(T )

t , we have

T−1/2M̂
(T )

t,1 = T−111Ĩ
−1/2

∫ tT

0

[
1

−Ys

]
dM̂ (T )

s

+ T−111

((
IT
T

)−1/2
− Ĩ

−1/2
)∫ tT

0

[
1

−Ys

]
dM̂ (T )

s .

(4.5.1)

We need to show that the supremum of this expression is ψ1 + oP(1). It is easily verifiable

that

S(0, tT ) : = T−111Ĩ
−1/2

∫ tT

0

[
1

−Ys

]
dM̂ (T )

s

= T−111Ĩ
−1/2

∫ tT

0

[
1

−Yu

]
dM ′u

+ T−111Ĩ
−1/2

∫ tT

0

[
1 −E(Yu)

−E(Yu) E(Y 2
u )

]
(θ′ − θ̃) du

+ T−111Ĩ
−1/2

∫ tT

0

[
0 E(Yu)− Yu

E(Yu)− Yu Y 2
u − E(Y 2

u )

]
(θ′ − θ̂T ) du

+ T−111Ĩ
−1/2

∫ tT

0

[
1 −E(Yu)

−E(Yu) E(Y 2
u )

]
(θ̃ − θ̂T ) du

=: S1(0, tT,θ
′) + S2(0, tT,θ

′) + S3(0, tT,θ
′) + S4(0, tT ),

(4.5.2)
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4.5. Asymptotic consistence of the test

and we can also see

(4.5.3)

T−111Ĩ
−1/2

∫ tT

0

[
1

−Ys

]
dM̂ (T )

s = S1(0, tT,θ
′′) + S2(0, tT,θ

′′) + S3(0, tT,θ
′′) + S4(0, tT )

as well. Let us now introduce Si(a, b, θ) := Si(0, b, θ) − Si(0, a, θ) for i = 1, 2, 3 (this corre-

sponds to taking the lower limit of the integral in the definition of Si(0, b, θ) as a instead of

zero). Now we can write∣∣∣∣∣ sup
t∈[0,1]

S(0, tT )− ψ1

∣∣∣∣∣ 6 sup
t∈[0,1]

∣∣S1(0, (ρ ∧ t)T,θ′) + S1((ρ ∧ t)T, tT,θ′′)
∣∣

+

∣∣∣∣∣ sup
t∈[0,1]

(
S2(0, (ρ ∧ t)T,θ′) + S2((ρ ∧ t)T, tT,θ′′)

)
− ψ1

∣∣∣∣∣
+ sup
t∈[0,1]

∣∣S3(0, (ρ ∧ t)T,θ′) + S3((ρ ∧ t)T, tTθ′′)
∣∣+ sup

t∈[0,1]
|S4(0, tT )| .

The first term is oP(1) according to Lemma 4.7.4 with γ = 0, the third term by Lemma 4.7.3

and the fourth term by Lemma 4.7.5.

Now we turn to the second term. Let us notice that Q′ and Q′′ are both symmetric,

which we will exploit repeatedly. Clearly,

θ′ − θ̃ = (1− ρ)(ρQ′ + (1− ρ)Q′′)−1Q′′(θ′ − θ′′),

and so

11Ĩ
−1/2

[
1 −E(Y ′∞)

−E(Y ′∞) E((Y ′∞)2)

]
(θ′ − θ̃) = 11Ĩ

−1/2
Q′(1− ρ)(ρQ′ + (1− ρ)Q′′)−1Q′′(θ′ − θ′′)

=
ψ1

ρ
,

and similarly,

11Ĩ
−1/2

[
1 −E(Y ′′∞)

−E(Y ′′∞) E((Y ′′∞)2)

]
(θ′′ − θ̃) = 11Ĩ

−1/2
Q′′(1− ρ)(ρQ′ + (1− ρ)Q′′)−1Q′′(θ′ − θ′′)

=
ψ1

1− ρ
.

We have exploited the fact that by an easy calculation,((
ρQ′

)−1
+ ((1− ρ)Q′′)−1

)−1
= ρ(1− ρ)

(
Q′
(
ρQ′ + (1− ρ)Q′′

)−1
Q′′
)
.
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Chapter 4. Change detection in the continuous case

Now we can write∣∣∣∣∣ sup
t∈[0,1]

(
S2(0, (ρ ∧ t)T,θ′) + S2((ρ ∧ t)T, tT,θ′′)− ψ1

)∣∣∣∣∣ 6
∣∣∣∣∣ sup
t∈[0,1]

(
ρ ∧ t
ρ
− (t− ρ)+

(1− ρ)
− 1

)
ψ1

∣∣∣∣∣
+ T−111Ĩ

−1/2
sup
t∈[0,1]

∣∣∣∣∣∣
∫ (ρT )∧t

0

[
0 E(Y ′∞)− E(Yu)

E(Y ′∞)− E(Yu) E(Y 2
u )− E(Y ′2∞)

]>
(θ′ − θ̃) du

∣∣∣∣∣∣
+ T−111Ĩ

−1/2
sup
t∈[0,1]

∣∣∣∣∣∣
∫ (ρT )∧t

0

[
0 E(Y ′∞)− E(Yu)

E(Y ′∞)− E(Yu) E(Y 2
u )− E(Y ′2∞)

]>
(θ′ − θ̃) du

∣∣∣∣∣∣ .
The first term is obviously zero, with the supremum attained at t = ρ; the other two terms

converge to zero by (3.2.7). This concludes the proof for the first term in (4.5.1).

All that remains is showing that the second term in (4.5.1) is oP(1). To see this, consider,

with the L1-norm ‖·‖, and its induced matrix norm ‖·‖∗,

sup
t∈[0,1]

T−111

((
IT
T

)−1/2
− Ĩ

−1/2
)∫ tT

0

[
1

−Ys

]
dM̂ (T )

s

6

∥∥∥∥∥
(
IT
T

)−1/2
− Ĩ

−1/2
∥∥∥∥∥
∗

∥∥∥Ĩ1/2∥∥∥
∗

sup
t∈[0,1]

∥∥∥∥∥T−1Ĩ−1/2
∫ tT

0

[
1

−Ys

]
dM̂ (T )

s

∥∥∥∥∥ ,
which is clearly oP(1) since the first factor is oP(1) (note that Ĩ is invertible, hence we can

use (4.4.2) and the continuous mapping theorem), the second factor is finite, and the third

has just been shown to be K + oP(1) for some constant K. This completes the proof. 2

4.5.5 Remark. It is apparent that the structure of the proof is essentially the same as for

Theorem 2.7.1 and some arguments are even simpler – e.g., the change occurs exactly at ρT

so we do not need to deal with the fractional part of the change point separately, as in the

analysis of the second term of (2.7.4). These simplifications must be weighed against the

need to include stochastic analysis and continuous martingale theory in our investigations.

4.6 Estimation of the change point

The natural estimate of the change point when a downward change in a is being tested, so

when ψ1 > 0, is ρ̂TT , where

(4.6.1) ρ̂T := inf
{
t ∈ [0, 1] : M̂

(T )

t,1 = sup
s∈[0,1]

M̂
(T )

s,1

}
.

Clearly, this is a well-defined, finite quantity, since M̂
(T )

t,1 has continuous trajectories almost

surely. If we are looking for an upward change in a, i.e., a′ < a′′, when ψ1 < 0, then the
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4.6. Estimation of the change point

appropriate estimate is

inf
{
t ∈ [0, 1] : M̂

(T )

t,1 = inf
s∈[0,1]

M̂
(T )

s,1

}
.

For a change in b, the appropriate estimates are

inf
{
t ∈ [0, 1] : M̂

(T )

t,2 = sup
s∈[0,1]

M̂
(T )

s,2

}
and inf

{
t ∈ [0, 1] : M̂

(T )

t,2 = inf
s∈[0,1]

M̂
(T )

s,2

}
,

for a downward and upward change, respectively, corresponding to the different tests de-

scribed in 4.3. We can define the estimate based on the two-sided test as well, but that will

eventually reduce to one of these four cases, according to the sign of the appropriate ψ.

4.6.1 Theorem. Under the assumptions of Theorem 4.5.1, if ψi 6= 0, then for the appropri-

ate change-point estimate we have ρ̂T − ρ = OP(T−1).

Proof. We will prove only for ψ1 > 0 and the estimate defined in (4.6.1) – as for Theorem

4.5.1, the other cases are completely analogous. Let us introduce the notation τ̂T := ρ̂TT .

We need to show

lim
K→∞

sup
T∈R

P(|τ̂T − ρT | > K) = 0,

or, equivalently,

lim
K→∞

lim sup
T∈R

P(|τ̂T − ρT | > K) = 0.

For this, it is sufficient to show that

(4.6.2) lim
K→∞

lim sup
T→∞

P

(
sup

ρT−K<t<ρT+K
M̂

(T )

t,1 6 sup
06t6ρT−K

M̂
(T )

t,1

)
= 0

and that

(4.6.3) lim
K→∞

lim sup
T→∞

P

(
sup

ρT−K<t<ρT+K
M̂

(T )

t,1 6 sup
ρT+K6t6T

M̂
(T )

t,1

)
= 0.

First we prove (4.6.2). We observe

P

(
sup

ρT−K<t<ρT+K
M̂

(T )

t,1 6 sup
06t6ρT−K

M̂
(T )

t,1

)
6 P

(
M̂

(T )

ρT,1 6 sup
06t6ρT−K

M̂
(T )

t,1

)

= P
(

inf
06t6ρT−K

(M̂
(T )

ρT,1 − M̂
(T )

t,1 ) 6 0

)
= P

(
inf

K6t6ρT
T 1/2t−1

∫ ρT

ρT−t
1 dM̂

(T )

s,1 6 0

)
.
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Chapter 4. Change detection in the continuous case

We apply the decomposition (4.5.1) and (4.5.2) to obtain

P
(

inf
K6t6ρT

T 1/2t−1
∫ ρT

ρT−t
1 dM̂

(T )

s,1 6 0

)

6 P

(
inf

K6t6ρT
t−111Ĩ

−1/2
∫ ρT

ρT−t

[
1 −E(Ys)

−E(Ys) E(Y 2
s )

]
(θ′ − θ̃) ds 6

ψ1

2ρ

)

+ P

(
sup

K6t6ρT

∣∣∣∣∣t−111Ĩ
−1/2

∫ ρT

ρT−t

[
1

−Ys

]
dM ′s

∣∣∣∣∣ > ψ1

8ρ

)

+ P

(
sup

K6t6ρT

∣∣∣∣∣t−111Ĩ
−1/2

∫ ρT

ρT−t

[
0 E(Ys)− Ys

E(Ys)− Ys Y 2
s − E(Y 2

s )

]
(θ′ − θ̂T ) ds

∣∣∣∣∣ > ψ1

8ρ

)

+ P

(
sup

K6t6ρT

∣∣∣∣∣t−111Ĩ
−1/2

∫ ρT

ρT−t

[
1 −E(Ys)

−E(Ys) E(Y 2
s )

]
(θ̃ − θ̂T ) ds

∣∣∣∣∣ > ψ1

8ρ

)

+ P

(
sup

K6t6ρT

∣∣∣∣∣t−111

((
IT
T

)−1/2
− Ĩ

−1/2
)∫ ρT

ρT−t

[
1

−Ys

]
dM̂ (T )

s

∣∣∣∣∣ > ψ1

8ρ

)
.

(4.6.4)

In the first term we take the probability of a deterministic event, therefore it is either 0 or

1; we show that for sufficiently large K,N it is 0. Actually, this is the same statement in

continuous time as Lemma 2.9.5, and the proof is also essentially the same.

The fourth term in (4.6.4) converges to zero as T →∞ for any K. Indeed, we have

sup
06t6ρT

∥∥∥∥∥t−1
∫ ρT

ρT−t

[
1 −E(Ys)

−E(Ys) E(Y 2
s )

]
ds

∥∥∥∥∥ 6 sup
06t6ρT

∥∥∥∥∥
[

1 −E(Yt)

−E(Yt) E(Y 2
t )

]∥∥∥∥∥ ,
where the right hand side is bounded as T → ∞, and θ̃ − θ̂T → 0 a.s., which is sufficient.

For the third term in (4.6.4) we use Lemma 4.7.6 and for the second one we can use Lemma

4.7.7. The only term that remains in (4.6.4) is the last one. This can be handled by the same

method that we applied at the end of the proof of Theorem 4.5.1. Let us consider, again with

the L1-norm ‖·‖ and its induced matrix norm ‖·‖∗,

P

(
sup

K6t6ρT

∣∣∣∣∣t−111

((
IT
T

)−1/2
− Ĩ

−1/2
)∫ ρT

ρT−t

[
1

−Ys

]
dM̂ (T )

s

∣∣∣∣∣ > ψ1

8ρ

)

6 P

(∥∥∥∥∥
(
IT
T

)−1/2
− Ĩ

−1/2
∥∥∥∥∥
∗

>
ψ1

24φρ

)
+ P

(
sup

K6t6ρT

∥∥∥∥∥t−1
∫ ρT

ρT−t

[
1

−Ys

]
dM̂ (T )

s

∥∥∥∥∥ > 3φ

)
,
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with

φ :=

∥∥∥∥∥
[

1 −E(Y∞)

−E(Y∞) E(Y 2
∞)

]
(θ′ − θ̃)

∥∥∥∥∥ .
Taking the limit as T →∞ and then K →∞, the first term does not depend on K and tends

to zero as T →∞, and for the second term we can use the same reasoning as in (4.6.4):

P

(
sup

K6t6ρT

∥∥∥∥∥t−1
∫ ρT

ρT−t

[
1

−Ys

]
dM̂ (T )

s

∥∥∥∥∥ > 3φ

)

6 P

(
sup

K6t6ρT

∥∥∥∥∥t−1
∫ ρT

ρT−t

[
1 −E(Ys)

−E(Ys) E(Y 2
s )

]
(θ′ − θ̃) ds

∥∥∥∥∥ > 2φ

)

+ P

(
sup

K6t6ρT

∥∥∥∥∥t−1
∫ ρT

ρT−t

[
1

−Ys

]
dM ′s

∥∥∥∥∥ >
φ

3

)

+ P

(
sup

K6t6ρT

∥∥∥∥∥t−1
∫ ρT

ρT−t

[
0 E(Ys)− Ys

E(Ys)− Ys Y 2
s − E(Y 2

s )

]
(θ′ − θ̂T ) ds

∥∥∥∥∥ >
φ

3

)

+ P

(
sup

K6t6ρT

∥∥∥∥∥t−1
∫ ρT

ρT−t

[
1 −E(Ys)

−E(Ys) E(Y 2
s )

]
(θ̃ − θ̂T ) ds

∥∥∥∥∥ >
φ

3

)
.

The probability of the first term tends to zero, and the rest can be handled in exactly the

same way as the corresponding terms in (4.6.4). For the proof of (4.6.3) we employ the same

technique, but we need Lemmas 4.7.8 and 4.7.9 in place of 4.7.6 and 4.7.7. 2

4.6.2 Remark. Again, this proof is in close parallel with the proof of Theorem 2.8.1. How-

ever, the underlying lemmas, which will be detailed in section 4.7, while structurally similar,

are much more difficult to prove – especially Lemma 4.7.7, where we need to use an idea from

the standard proof of the law of the iterated logarithm, and combine it with the Hájek–Rényi

type inequality from Lemma 2.9.1.

4.7 Details of the proofs

In this section we detail the necessary lemmata for the proofs of our main theorems. Some

of them, especially Lemma 4.7.1, are rather technical and depend essentially on tedious but

straightforward calculations. Others, while using more sophisticated tools, are also tailored

to the specific needs of the proofs and their proofs are not particularly insightful themselves,

hence they were relegated to this section. The one exception to this is Lemma 4.7.2, which

is an analogue of Lemma 2.9.1 and may deserve independent interest.
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Chapter 4. Change detection in the continuous case

4.7.1 Lemma. For a subcritical CIR process we have

(4.7.1) Var

(∫ t

0
Ysds

)
= O(t), t→∞, and Var

(∫ t

0
Y 2
s ds

)
= O(t), t→∞.

Proof. We show the first convergence only. We note

Var

(∫ t

0
Ysds

)
= E

(∫ t

0
(Yu − EYu)du

∫ t

0
(Yv − EYv)dv

)
=

∫∫
[0,t]2

Cov(Yu, Yv)dudv

and similarly for Var
(∫ t

0 Y
2
s ds

)
. From here, the proof could be finished simply by referring

to Overbeck and Rydén (1997, (B.3) and (B.5)). However, we have chosen to detail our

calculations (at least for Cov(Yu, Yv)), because we will require the details later on. By using

(3.1.1), we can write

Cov(Yu, Yv) = e−b(u+v) Var(Y0) + σ2
∫ u∧v

0
e−b(u+v−2w) E(Yw)dw

6 e−b(u+v) Var(Y0) +
(
E(Y0) +

a

b

)
σ2
∫ u∧v

0
e−b(u+v−2w)dw,

(4.7.2)

since

E(Yw) = e−bw E(Y0) + a

∫ w

0
e−bsds.

Furthermore,∫∫
[0,t]2

(∫ u∧v

0
e−b(u+v−2w)dw

)
dudv =

∫∫
[0,t]2

[
1

2b

(
e−b|u−v| − e−b(u+v)

)]
dudv

6
1

b

∫∫
[0,t]2

e−b|u−v|dudv = O(t).

(4.7.3)

Recalling the last line of (4.7.2) and noting∫∫
[0,t]2

e−b(u+v)dudv = O(t),

the proof is complete. 2

The following lemma is an analogue of Lemma 2.9.1, which is a Hájek–Rényi type in-

equality. With Lemma 2.9.1 one can estimate the tail probabilities of the maximum of a

random sequence, based solely on the joint moments of the elements and, critically, without

the assumption of independence. In our applications, not the supremum of a sequence but

the maximum of a function is considered, so we had to modify the statement accordingly.
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It turns out that the proof can be constructed along the lines of in Kokoszka and Lei-

pus (2000, Theorem 4.1). In that paper, a slightly stronger result than Lemma 2.9.1 was

formulated and proven; however, it was impractical to use, hence the more useful corollary

formulated in Kokoszka and Leipus (1998, Theorem 3.1), which is obtainable from Kokoszka

and Leipus (2000, Theorem 4.1) by a simple application of the Cauchy–Schwarz theorem.

4.7.2 Lemma. Let Yt be a process with a.s. continuous trajectory, α, β ∈ R+ with α < β

and c a deterministic function. Then, for any ε > 0,

ε2 P

{
sup
s∈[α,β]

(
c(s)

∫ s

0
Yudu

)2

> ε2

}
6 c(α)2

∫ α

0
E(Y 2

u ) du

+

∫ β

α

(∫ s

0

∫ s

0
E(YuYv)dudv

)
d|c(s)2|+ 2

∫ β

α
c(s)2

[
E(Y 2

s )

∫ s

0

∫ s

0
E(YuYv)dudv

]1/2
ds

Proof. For any nonnegative process Zt with a.s. continuous trajectories and a.s. locally

bounded variation, let τε be the first hitting time of [ε,∞) in [α,∞), A be the event {τε < β}
and Ds be the event {supα6u6s Zu 6 ε}. Note that Dβ = AC . Then it is easy to check that

ε1A 6 Zα +

∫ β

α
1DsdZs.

Indeed, if A occurs, the LHS is ε, and the RHS is ε, if Zα < ε and Zα if Zα > ε. If AC

occurs, the LHS is zero, while the RHS is Zβ > 0.

Let us apply this result with Zt = c(t)2
∣∣∣∫ t0 Ys ds

∣∣∣2 and for simplification let us introduce

Kα := c(α)2
∫ α
0 E(Y 2

u ) du. We take expectations on both sides:

ε2 P

(
sup
α6s6β

∣∣∣∣c(s)∫ s

0
Yudu

∣∣∣∣ > ε

)
6 E

[
c(α)2

∫ α

0
Y 2
u du

]
+ E

[∫ β

α
1Dsd

((
c(s)

∫ s

0
Yudu

)2
)]

= K(α) + E
[
2

∫ β

α
1Dsc(s)

∫ s

0
Yudu

((∫ s

0
Yudu

)
dc(s) + c(s)Ysds

)]

= K(α) + E
[
2

∫ β

α
1Ds

(∫ s

0

∫ s

0
YuYvdudv

)
d(c2(s)) + 2

∫ β

α
1Dsc

2(s)Ys

∫ s

0
Yududs

]

6 K(α) + E
[
2

∫ β

α
1Ds

(∫ s

0

∫ s

0
YuYvdudv

)
d|c2(s)|+ 2

∫ β

α
1Dsc

2(s)Ys

∫ s

0
Yududs

]
In the last step we replaced the induced norm of c2(s) by its total variation norm. Indeed, the

inequality holds because
∫ s
0

∫ s
0 YuYvdudv =

(∫ s
0 Yudu

)2
for every ω in the probability space

where Y is defined, therefore the integrand is nonnegative. Next, we replace the indicator

function by one (this will not cause the expectation to decrease, since all integrands are

nonnegative), and we employ several well-known inequalities to obtain our statement. 2
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4.7.3 Lemma. If the parameters a and b remain constant, we have, for any γ < 1
4 ,

T γ−1 sup
06t6T

∫ t

0
|Yu − E(Yu)| du = oP(1) and T γ−1 sup

06t6T

∫ t

0
|Y 2
u − E(Y 2

u )| du = oP(1).

Proof. We show that the suprema are OP(1), but this is the same statement, since for any

given γ we can take 1
2 > γ′ > γ, apply the lemma with γ′ and then multiply the suprema with

T γ−γ
′
, which is clearly o(1). Also, we only show the proof of the first statement; the proof

of the second one is completely analogous. What we actually prove is the slightly stronger

statement

sup
06t6T

tγ−1
∫ t

0
|Yu − E(Yu)| du = OP(1).

We will use Lemma 4.7.2 for the process Yt := Yt−E(Yt) and c(s) = sγ−1 and α = 0, β = T .

Then we can use Lemma 4.7.1 to conclude that∫ s

0

∫ s

0
E(YuYv) dv du =

∫ s

0

∫ s

0
Cov(Yu, Yv) dv du 6 κs, s ∈ R+,

for some constant κ > 0. Hence, in this case,∫ T

0

(∫ s

0

∫ s

0
E(YuYv)dudv

)
d|c(s)2|+ 2

∫ T

0
c(s)2

[
E(Y 2

s )

∫ s

0

∫ s

0
E(YuYv)dudv

]1/2
ds

6 κ(2− 2γ)

∫ T

0
s2γ−2 ds+ 2(Kκ)1/2

∫ T

0
s2γ−3/2 ds <∞.

This implies the desired statement immediately. 2

4.7.4 Lemma. If the parameters a and b remain constant, we have, for any γ < 1
2 ,

sup
06t6T

T γ−1|Mt| = oP(1) and sup
06t6T

T γ−1
∣∣∣∣∫ t

0
YsdMs

∣∣∣∣ = oP(1).

Proof. Similarly to the previous lemma, we only show OP(1) for the first statement. First

we note that (Mt)t∈R+ has an a.s. continuous trajectory on R+, therefore also on [0, 1]. Thus

we conclude that sup06t61 |Mt| = OP(1). Next, we use the law of the iterated logarithm for

continuous martingales. This can be put together from the Dambis–Dubins–Schwarz theorem

(Karatzas and Shreve, 1991, Theorem 3.4.6) and the law of the iterated logarithm for the

Wiener process (Karatzas and Shreve, 1991, Theorem 2.9.23).

lim sup
t→∞

|Mt|

σ2λ
(∫ t

0 Yu du
)λ 6 lim sup

t→∞

|Mt|

σ
√∫ t

0 Yu du
√

log log(σ2
∫ t
0 Yu du)

= 1 a.s., ∀λ > 1

2
,

which means that the supremum on [1,∞] is finite a.s. (since the process in question has a.s.

continuous trajectories).
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Next we note that

σ2λ
(∫ t

0 Yu du
)λ

tλ
→ σ2λ E(Y∞)λ a.s..

Now the statement of the lemma is obtained straightforwardly since

sup
06t6T

T γ−1|Mt| = max

(
sup
06t61

T γ−1|Mt|, sup
16t6T

T γ−1|Mt|
)
,

and both terms have been shown to be OP(1). 2

4.7.5 Lemma. Under the conditions of Theorem 4.5.1,

θ̂ − θ̃ = OP(T−1/2).

Proof. We have

T 1/2(θ̂ − θ̃) = (T−1QT )−1T−1/2

[
d0,τ −QT Q̃

−1
(
ρQ′

[
a

b

])

+dτ,T −QT Q̃
−1
(

(1− ρ)Q′′

[
a′′

b′′

])]
.

The first factor converges almost surely, so we analyze

T−1/2

[
d0,τ −QT Q̃

−1
(
ρQ′

[
a

b

])]
= T−1/2d̃τ + T−1/2

(
Q[0,τ ] −QT Q̃

−1
ρQ′

)[a′
b′

]
.

The first term is OP(1) by (4.2.6). We need to show that the second term is also OP(1). For

this, we can neglect the vector of the parameters, which are constant, so we investigate

T−1/2
(
Qτ − ρQT Q̃

−1
Q′
)

= T−1/2 (Qτ − E(Qτ )) + T−1/2
(
E(Qτ )− τQ′

)
− T−1/2

(
ρ(QT − E(QT ))Q̃

−1
Q′
)

− T−1/2
(
ρ(E(QT )− T Q̃)Q̃

−1
Q′
)
.

The first and third factors have a finite variance at the limit, by Lemma 4.7.1. Therefore,

by an application of Chebyshev’s inequality, we have that they are OP(1). The second and

fourth terms are deterministic and O(1) by (3.2.7). 2

4.7.6 Lemma. Under the conditions of Theorem 4.5.1 we have, for an arbitrary ε > 0,

lim
K→∞

lim sup
T→∞

P

(
sup

K6t6ρT

∣∣∣∣t−1 ∫ ρT

ρT−t
(Ys − E(Ys)) ds

∣∣∣∣ > ε

)
= 0.
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and

lim
K→∞

lim sup
T→∞

P

(
sup

K6t6ρT

∣∣∣∣t−1 ∫ ρT

ρT−t
(Y 2
s − E(Y 2

s )) ds

∣∣∣∣ > ε

)
= 0.

Proof. As for the previous lemmas, we only prove the first statement. We use Lemma 4.7.2.

We choose c(s) = s−1 and Ys = YρT−s−E(YρT−s) with α = K and β = ρT . The estimate on

the probability in question is then

K−2
∫ ρT

ρT−K
Var(Yu) du+

∫ ρT

K

(∫ ρT

ρT−s

∫ ρT

ρT−s
Cov(Yu, Yv)dudv

)
d
∣∣s−2∣∣

+ 2

∫ ρT

K
s−2

[
Var(Ys)

∫ ρT

ρT−s

∫ ρT

ρT−s
Cov(Yu, Yv)dudv

]1/2
ds.

(4.7.4)

Now we make use of (4.7.2) and (4.7.3) to show that∫ ρT

ρT−s

∫ ρT

ρT−s
Cov(Yu, Yv)dudv 6 Var(Y0)

∫ ρT

ρT−s

∫ ρT

ρT−s
e−b(u+v)dudv

+ (E(Y0) + ab−1)σ2b−1
∫ ρT

ρT−s

∫ ρT

ρT−s
e−b|u−v|dudv 6 µs,

for some positive constant µ. We introduce λ := supt∈R Var(Yt) < ∞, to continue the

estimation started in (4.7.4):

K−2Kλ+ 2

∫ ρ

K
Ts−3µs ds+ 2

∫ ρT

K
s−2(λµ)1/2s1/2 ds.

Clearly, as T → ∞ (and hence ρT → ∞), and then K → ∞, this expression tends to zero,

which completes our proof. 2

For the next lemma we will need to recall Lemma 2.9.1 once more.

4.7.7 Lemma. Under the conditions of Theorem 4.5.1 we have, for any ε > 0,

lim
K→∞

lim sup
T→∞

P

(
sup

K6t6ρT

∣∣t−1(M ′ρT −M ′ρT−t)∣∣ > ε

)
= 0.

and

lim
K→∞

lim sup
T→∞

P

(
sup

K6t6ρT

∣∣∣∣t−1(∫ ρT

ρT−t
YsdM

′
s

)∣∣∣∣ > ε

)
= 0.

Proof. We prove the first statement first. Let us take a backward partition of [0, ρT ] such

that 0 = tn < tn−1 < tn−2 < . . . < t1 < t0 = ρT. For t ∈ [ti+1, ti], we have∣∣∣∣∣M ′ρT −M ′tρT − t

∣∣∣∣∣ 6
∣∣∣∣∣M ′ρT −M ′ti+1

ρT − ti

∣∣∣∣∣+

∣∣∣∣∣M ′t −M ′ti+1

ρT − ti

∣∣∣∣∣ .
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Therefore, we have the following estimation:

P

(
sup

K6t6ρT

∣∣t−1(M ′ρT −M ′ρT−t)∣∣ > ε

)
= P

(
sup

06t6ρT−K

∣∣(ρT − t)−1(M ′ρT −M ′t)∣∣ > ε

)

6 P
(

max
i∗6i6n

∣∣∣(ρT − ti)−1(M ′ρT −M ′ti+1
)
∣∣∣ > ε

2

)

+

n∑
i=i∗

P

(
sup

ti+1<t<ti

∣∣∣(ρT − ti)−1(M ′t −M ′ti+1
)
∣∣∣ > ε

2

)
,

(4.7.5)

where i∗ = min{i : ti < ρT −K}. Let us use this estimate with ti := ρT − 2i−1 for 0 < i < n,

so that n = blog2 ρT c and i∗ = blog2Kc+ 1.

Let us now apply Lemma 2.9.1 with Y1 := M ′ti∗ −M
′
ρT , and Yk = M ′ti∗+k−1

−M ′ti∗+k−2
for

1 < k 6 n − i∗ + 1 and ck = (ρT − ti∗+k−1)−1. Let us note that due to the structure of the

ti, we have ck = 2−(i
∗+k−2) for k 6 n− i∗ and 2−(n−1) < cn−i∗+1 < cn−i∗ . Consequently, we

can use |c2k+1 − c2k| 6 |c2k+1 − 4c2k+1| = 3c2k+1. Also, notice that

k∑
i,j=1

E(YiYj) = E

(
k∑
i=1

Yi

)2

= E(M ′ti∗+k−1
−M ′ρT )2

= σ2
∫ ρT

ti∗+k−1

E(Yu) du 6 σ2µ(ρT − ti∗+k−1),

with µ = supt∈R+
E(Yt) <∞, and that, similarly,

E(Y 2
k+1) 6 σ2µ(ti∗+k − ti∗+k−1) = σ2µ2(i

∗+k−2).

All in all, with Lemma 2.9.1, we can estimate the first term in (4.7.5) by µ2−i
∗
. This does

not depend on n (hence, on T ), and since i∗ →∞ as K →∞, we have that the first term in

(4.7.5) converges to zero as ρT →∞ and then K →∞.

For the second term in (4.7.5) we will use Doob’s submartingale inequality (see, e.g.,

Karatzas and Shreve, 1991, Theorem 1.3.8. (i)) to the submartingales

Nt,i := (M ′ti+1+t −M
′
ti+1

)2, t ∈ [0, ti − ti+1], i = i∗, . . . , n,

for which clearly

P

(
sup

ti+1<t<ti

∣∣∣(ρT − ti)−1(M ′t −M ′ti+1
)
∣∣∣ > ε

2

)
= P

(
sup

06t6ti−ti+1

Nt,i >
ε2(ρT − ti)2

4

)
.
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The inequality states that

P

(
sup

06t6ti−ti+1

Nt,i >
ε2(ρT − ti)2

4

)
6

4E(Nti−ti+1)

ε2(ρT − ti)2
=

4E(M ′ti −M
′
ti+1

)2

ε2(ρT − ti)2
6

4σ2µ(ti − ti+1)

ε2(ρT − ti)2
.

Now, in our present setting, ti − ti+1 6 2i−1 and (ρT − ti)2 > 22i−4. Thus, the second term

in (4.7.5) can be estimated from above by

σ2µε2

4

n∑
i=i∗

2−i+3 6
σ2µε2

4
2−i

∗+3
∞∑
i=0

2−i.

Again, clearly this does not depend on n (thus, T ) and converges to zero as i∗ → ∞ (and

thus, as K →∞). This suffices for the first statement. The second one can be obtained in a

completely analogous way, since we only used the fact that (M ′t)t∈[0,∞] is a martingale with

essentially linear quadratic variation, which is also true of
(∫ t

0 YsdM
′
s

)
t∈[0,∞]

. 2

The following lemma is the ”forward” analogue of Lemma 4.7.6, and its proof is also the

same, with straightforward modifications.

4.7.8 Lemma. Under the conditions of Theorem 4.5.1 we have, for an arbitrary ε > 0,

lim
K→∞

lim sup
T→∞

P

(
sup

K6t6(1−ρ)T

∣∣∣∣t−1 ∫ ρT+t

ρT
(Ys − E(Ys)) ds

∣∣∣∣ > ε

)
= 0.

and

lim
K→∞

lim sup
T→∞

P

(
sup

K6t6(1−ρ)T

∣∣∣∣t−1 ∫ ρT+t

ρT
(Y 2
s − E(Y 2

s )) ds

∣∣∣∣ > ε

)
= 0.

The forward analogue of Lemma 4.7.7 can also be proved in the same manner as the original:

4.7.9 Lemma. Under the conditions of Theorem 4.5.1 we have, for any ε > 0,

lim
K→∞

lim sup
T→∞

P

(
sup

K6t6(1−ρ)T

∣∣t−1(M ′′ρT+t −M ′′ρT )
∣∣ > ε

)
= 0.

and

lim
K→∞

lim sup
T→∞

P

(
sup

K6t6(1−ρ)T

∣∣∣∣t−1(∫ ρT+t

ρT
YsdM

′′
s

)∣∣∣∣ > ε

)
= 0.
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Chapter 5

Estimates in the continuous case

In this chapter, we are going to derive CLS-like estimates for the Heston model from (3.0.1).

As noted in section 1.4, we are going to transform the parameter space first, derive estimates

for the transformed parameters, and estimate the original parameters by applying the inverse

transformation.

5.1 Estimates for the transformed parameters

Using (3.1.4) and (3.1.5), by an easy calculation, for all i ∈ N,

(5.1.1) E

([
Yi

Xi

] ∣∣∣∣Fi−1
)

=

[
e−b 0

−β
∫ 1
0 e−bu du 1

][
Yi−1

Xi−1

]
+

[ ∫ 1
0 e−bu du 0

−β
∫ 1
0

(∫ u
0 e−bv dv

)
du 1

][
a

α

]
.

Using that σ(X1, Y1, . . . , Xi−1, Yi−1) ⊆ Fi−1, i ∈ N, by the tower rule for conditional expec-

tations, we have

E

([
Yi

Xi

] ∣∣∣∣∣σ(X1, Y1, . . . , Xi−1, Yi−1)

)
= E

(
E

([
Yi

Xi

] ∣∣∣∣∣Fi−1
)∣∣∣∣∣σ(X1, Y1, . . . , Xi−1, Yi−1)

)

=

[
e−b 0

−β
∫ 1
0 e−bu du 1

][
Yi−1

Xi−1

]
+

[ ∫ 1
0 e−bu du 0

−β
∫ 1
0

(∫ u
0 e−bv dv

)
du 1

][
a

α

]
, i ∈ N,

and hence a CLSE of (a, b, α, β) based on discrete time observations (Yi, Xi)i∈{1,...,n} could

be obtained by solving the extremum problem

arg min
(a,b,α,β)∈R4

n∑
i=1

[
(Yi − dYi−1 − c)2 + (Xi −Xi−1 − γ − δYi−1)2

]
,(5.1.2)
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where the transformed parameters are

d := d(b) := e−b, c := c(a, b) := a

∫ 1

0
e−bu du,

δ := δ(b, β) := −β
∫ 1

0
e−bu du, γ := γ(a, b, α, β) := α− aβ

∫ 1

0

(∫ u

0
e−bv dv

)
du.

(5.1.3)

Minimizing the right hand side with respect to (c, d, γ, δ) ∈ R4 leads to
ĉn

d̂n

γ̂n

δ̂n

 =

E2 ⊗

 n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>−1


∑n
i=1 Yi∑n

i=1 YiYi−1

Xn − x0∑n
i=1(Xi −Xi−1)Yi−1

 ,(5.1.4)

provided that n
∑n

i=1 Y
2
i−1 > (

∑n
i=1 Yi−1)

2. Indeed, with the notation

f(c, d, γ, δ) :=

n∑
i=1

[
(Yi − dYi−1 − c)2 + (Xi −Xi−1 − γ − δYi−1)2

]
, (c, d, γ, δ) ∈ R4,

we have

∂f

∂c
(c, d, γ, δ) = −2

n∑
i=1

(Yi − dYi−1 − c),

∂f

∂d
(c, d, γ, δ) = −2

n∑
i=1

Yi−1(Yi − dYi−1 − c),

∂f

∂γ
(c, d, γ, δ) = −2

n∑
i=1

(Xi −Xi−1 − γ − δYi−1),

∂f

∂δ
(c, d, γ, δ) = −2

n∑
i=1

Yi−1(Xi −Xi−1 − γ − δYi−1).

Hence the system of equations consisting of the first order partial derivatives of f being equal

to 0 takes the form

E2 ⊗

 n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>

c

d

γ

δ

 =


∑n

i=1 Yi∑n
i=1 Yi−1Yi

Xn − x0∑n
i=1(Xi −Xi−1)Yi−1

 .
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This implies (5.1.4), since the 4× 4 matrix consisting of the second order partial derivatives

of f having the form

2

E2 ⊗

 n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>
is positive definite provided that n

∑n
i=1 Y

2
i−1 > (

∑n
i=1 Yi−1)

2. In fact, it turned out that

for the calculation of the CLSE of (c, d, γ, δ), one does not need to know the values of the

parameters σ1, σ2 and %.

The next lemma assures the unique existence of the CLSE of (c, d, γ, δ) based on discrete

time observations. Note that it is valid for all b ∈ R, i.e., not only for the subcritical Heston

model.

5.1.1 Lemma. If a ∈ R++, b ∈ R, σ1 ∈ R++, and Y0 = y0 ∈ R+, then for all n > 2, n ∈ N,

we have

P

n n∑
i=1

Y 2
i−1 >

(
n∑
i=1

Yi−1

)2
 = 1,

and hence, supposing also that α, β ∈ R, σ2 ∈ R++, % ∈ (−1, 1), there exists a unique CLSE

(ĉn, d̂n, γ̂n, δ̂n) of (c, d, γ, δ) which has the form given in (5.1.4).

Proof. By an easy calculation,

n

n∑
i=1

Y 2
i−1 −

(
n∑
i=1

Yi−1

)2

= n

n∑
i=1

Yi−1 − 1

n

n∑
j=1

Yj−1

2

> 0,

and equality holds if and only if

Yi−1 =
1

n

n∑
j=1

Yj−1, i = 1, . . . , n ⇐⇒ Y0 = Y1 = · · · = Yn−1.

Then, for all n > 2,

P(Y0 = Y1 = · · · = Yn−1) 6 P(Y0 = Y1) = P(Y1 = y0) = 0,

since the law of Y1 is absolutely continuous, see, e.g., Cox et al. (1985, formula 18). 2

5.2 Asymptotic results for the transformed parameters

5.2.1 Theorem. For a subcritical Heston model, that is, if b ∈ R++ and

(Y0, X0) = (y0, x0) ∈ R++ × R,
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the CLSE (ĉn, d̂n, γ̂n, δ̂n) in (5.1.4) is strongly consistent and asymptotically normal, i.e.,

(ĉn, d̂n, γ̂n, δ̂n)
a.s.−→ (c, d, γ, δ) as n→∞,

and

√
n


ĉn − c
d̂n − d
γ̂n − γ
δ̂n − δ

 D−→ N4 (0,G) as n→∞,

with

(5.2.1) G :=

(
E2 ⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

])−1
D

(
E2 ⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

])−1
,

where D is defined in (5.3.4). Furthermore, G is strictly positive definite.

Proof. Due to Theorem 5.1.1 we will assume that the estimators exist uniquely in the form

given by (5.1.4). Then we get


ĉn

d̂n

γ̂n

δ̂n

 =

E2 ⊗

 n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>−1



∑n
i=1 Yi∑n

i=1 YiYi−1

Xi −Xi−1∑n
i=1(Xi −Xi−1)Yi−1



=

E2 ⊗

 n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>−1
( n∑

i=1

[
Yi

Xi −Xi−1

]
⊗

[
1

Yi−1

])

=

E2 ⊗

 n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>−1

E2 ⊗

 n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>

c

d

γ

δ



+

E2 ⊗

 n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>−1
( n∑

i=1

[
Yi − c− dYi−1

Xi −Xi−1 − γ − δYi−1

]
⊗

[
1

Yi−1

])
.

(5.2.2)
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The final step depends on

E2 ⊗

 n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>

c

d

γ

δ

 =

 n∑
i=1

E2 ⊗

[ 1

Yi−1

][
1

Yi−1

]>

c

d

γ

δ



=


n∑
i=1


1 Yi−1 0 0

Yi−1 Y 2
i−1 0 0

0 0 1 Yi−1

0 0 Yi−1 Y 2
i−1






c

d

γ

δ

 =
n∑
i=1


c+ dYi−1

(c+ dYi−1)Yi−1

γ + δYi−1

(γ + δYi−1)Yi−1

 .

Continuing from (5.2.2),
ĉn

d̂n

γ̂n

δ̂n

 =


c

d

γ

δ

+

E2 ⊗

 1

n

n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>−1
( 1

n

n∑
i=1

[
εi

ηi

]
⊗

[
1

Yi−1

])

=


c

d

γ

δ

+

E2 ⊗

 1

n

n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>−1
n−1/2Mn,n,

(5.2.3)

where εi := Yi − c− dYi−1 and ηi := Xi −Xi−1 − γ − δYi−1, also,

(5.2.4) Mn,k := n−
1
2

k∑
i=1

[
εi

ηi

]
⊗

[
1

Yi−1

]
, n ∈ N, k ∈ {1, . . . , n}.

The final thing to note is that, by (3.2.2) and (3.2.4),

(5.2.5) 1

n

n∑
i=1

[
1

Yi−1

][
1

Yi−1

]>−1 =

[
1 1

n

∑n
i=1 Yi−1

1
n

∑n
i=1 Yi−1

1
n

∑n
i=1 Y

2
i−1

]−1
a.s.−→

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1

where we used that

E(Y 2
∞)− (E(Y∞))2 =

aσ21
2b2
∈ R++,

and consequently, the limit is indeed non-singular. The result is now a direct consequence of

Slutsky’s lemma and Lemmas 5.3.1, 5.3.2 and 5.3.3. 2

5.2.2 Remark. The structure of (5.2.3) is essentially the same as (2.5.6). However, the

resulting martingale is much more complicated to handle – indeed, the calculation of the
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quadratic variations and the condition checks of the martingale central limit theorem consti-

tute a considerable part of the proof and indicates the hardships that are to be expected by

carrying the research further in this direction, that is, trying to find the analogue of Theorem

2.5.1 in this setting.

5.3 Auxiliary lemmas

First we will check the conditions of the martingale central limit theorem in our setting. The

reason for this is that the quadratic variation will be calculated as a by-product and we will

require that for checking the conditions of the strong law of large numbers.

5.3.1 Lemma. Under the conditions of Theorem 5.2.1 and Mn,k defined in (5.2.4), we have

Mn,n = n−1/2
n∑
k=1

[
εk

ηk

]
⊗

[
1

Yk−1

]
D−→ N4 (0,D) ,

where D is defined in (5.3.4).

Proof. We are going to apply the martingale central limit theorem (see Theorem 3.3.4) to

Mn,k with the following choices: d = 4, kn = n, n ∈ N, Fn,k = Fk, n ∈ N, k ∈ {1, . . . , n}.
First we check that our process is indeed a martingale. By (5.1.1) and (5.1.3),

E(Yi | Fi−1) = dYi−1 + c, i ∈ N,

and hence (εi)i∈N is a sequence of martingale differences with respect to the filtration (Fi)i∈Z+ .

Similarly, by (5.1.1) and (5.1.3),

E(Xi | Fi−1) = Xi−1 + δYi−1 + γ, i ∈ N,

and hence (ηi)i∈N is a sequence of martingale differences with respect to the filtration (Fi)i∈Z+ .

This establishes the martingale property for Mn,k. The next step is computing the quadratic

variations. This is inevitably cumbersome, but not conceptually difficult. Applying the

identities (A1⊗A2)
> = A>1 ⊗A>2 and (A1⊗A2)(A3⊗A4) = (A1A3)⊗ (A2A4) (whenever

the multiplications can be performed),

E
(
(Mn,k −Mn,k−1)(Mn,k −Mn,k−1)

> ∣∣Fn,k−1)
=

1

n
E

([εk
ηk

]
⊗

[
1

Yk−1

])([
εk

ηk

]
⊗

[
1

Yk−1

])> ∣∣∣∣Fk−1
 ,
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and, continuing,

E
(
(Mn,k −Mn,k−1)(Mn,k −Mn,k−1)

> ∣∣Fn,k−1)
=

1

n
E

[εk
ηk

][
εk

ηk

]>⊗
[ 1

Yk−1

][
1

Yk−1

]> ∣∣∣∣Fk−1


=
1

n
E

[εk
ηk

][
εk

ηk

]> ∣∣∣∣Fk−1
⊗

[ 1

Yk−1

][
1

Yk−1

]> , n ∈ N, k ∈ {1, . . . , n}.

We need to calculate the conditional expectations in the first term one by one – the reader who

wishes to skip the details may find the end result in (5.3.1), (5.3.2) and (5.3.3), respectively.

By (3.1.1), we have

Yi = e−bYi−1 + a

∫ i

i−1
e−b(i−u) du+ σ1

∫ i

i−1
e−b(i−u)

√
Yu dWu

= dYi−1 + c+ σ1

∫ i

i−1
e−b(i−u)

√
Yu dWu, i ∈ N,

hence, by Karatzas and Shreve (1991, Proposition 3.2.10) and (3.1.4), we have

E(ε2i | Fi−1) = σ21 E
((∫ i

i−1
e−b(i−u)

√
Yu dWu

)2 ∣∣∣∣Fi−1) = σ21

∫ i

i−1
e−2b(i−u) E(Yu | Fi−1) du

= σ21

∫ i

i−1
e−2b(i−u)e−b(u−i+1)Yi−1 du+ σ21

∫ i

i−1
e−2b(i−u)a

∫ u

i−1
e−b(u−v) dv du

= σ21Yi−1

∫ 1

0
e−b(2−v) dv + σ21a

∫ 1

0

∫ u

0
e−b(2−v−u) dv du =: C1Yi−1 + C2.

(5.3.1)

By (3.1.1) and (3.1.4), with the notation W̃t := %Wt +
√

1− %2Bt, t ∈ R+, we compute

Xi −Xi−1 =

∫ i

i−1
(α− βYu) du+ σ2

∫ i

i−1

√
Yu dW̃u = α− β

∫ i

i−1
Yu du+ σ2

∫ i

i−1

√
Yu dW̃u

= α− β
∫ i

i−1

(
e−b(u−i+1)Yi−1 + a

∫ u

i−1
e−b(u−v) dv + σ1

∫ u

i−1
e−b(u−v)

√
Yv dWv

)
du

+ σ2

∫ i

i−1

√
Yu dW̃u

= α− βYi−1
∫ i

i−1
e−b(u−i+1) du− aβ

∫ i

i−1

(∫ u

i−1
e−b(u−v) dv

)
du

− βσ1
∫ i

i−1

(∫ u

i−1
e−b(u−v)

√
Yv dWv

)
du+ σ2

∫ i

i−1

√
Yu dW̃u,
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and, continuing,

Xi −Xi−1 = α− βYi−1
∫ 1

0
e−bv dv − aβ

∫ 1

0

(∫ u

0
e−bv dv

)
du

− βσ1
∫ i

i−1

(∫ u

i−1
e−b(u−v)

√
Yv dWv

)
du+ σ2

∫ i

i−1

√
Yu dW̃u

= δYi−1 + γ − βσ1
∫ i

i−1

(∫ u

i−1
e−b(u−v)

√
Yv dWv

)
du+ σ2

∫ i

i−1

√
Yu dW̃u,

so, consequently,

E(η2i | Fi−1) = β2σ21 E
[(∫ i

i−1

∫ u

i−1
e−b(u−v)

√
Yv dWv du

)2 ∣∣∣∣Fi−1]

+ σ22 E
[(∫ i

i−1

√
Yu dW̃u

)2 ∣∣∣∣Fi−1]

− 2βσ1σ2 E
[(∫ i

i−1

∫ u

i−1
e−b(u−v)

√
Yv dWv du

)(
%

∫ i

i−1

√
Yu dWu

)∣∣∣∣Fi−1]

− 2βσ1σ2 E
[(∫ i

i−1

∫ u

i−1
e−b(u−v)

√
Yv dWvdu

)(√
1− %2

∫ i

i−1

√
YudBu

)∣∣∣∣Fi−1].
We use Karatzas and Shreve (1991, Equation (3.2.23)) to the first, second and third terms,

and Karatzas and Shreve (1991, Proposition 3.2.17) to the fourth term, together with the

independence of W and B:

E(η2i |Fi−1) = β2σ21

∫ i

i−1

∫ i

i−1
E
(∫ u

i−1
e−b(u−w)

√
Yw dWw

∫ v

i−1
e−b(v−w)

√
Yw dWw

∣∣∣Fi−1)dvdu

+ σ22

∫ i

i−1
E(Yu | Fi−1) du

− 2βσ1σ2%

∫ i

i−1
E
(∫ u

i−1
e−b(u−w)

√
Yw dWw

∫ i

i−1

√
Yw dWw

∣∣∣ Fi−1)du− 0

= β2σ21

∫ i

i−1

∫ i

i−1

∫ u∧v

i−1
e−b(u+v−2w) E(Yw | Fi−1) dw du dv + σ22

∫ i

i−1
E(Yu | Fi−1) du

− 2βσ1σ2%

∫ i

i−1

∫ u

i−1
e−b(u−v)E(Yv | Fi−1) dv du.
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Using again (3.1.4), we get

E(η2i |Fi−1)

= β2σ21Yi−1

∫ i

i−1

∫ i

i−1

∫ u∧v

i−1
e−b(u+v−w−(i−1)) dw dv du

+ aβ2σ21

∫ i

i−1

∫ i

i−1

∫ u∧v

i−1

∫ w

i−1
e−b(u+v−w−z) dz dw dv du

+ σ22Yi−1

∫ i

i−1
e−b(u−(i−1)) du+ aσ22

∫ i

i−1

∫ u

i−1
e−b(u−v) dv du

− 2βσ1σ2%Yi−1

∫ i

i−1

∫ u

i−1
e−b(u−(i−1)) dv du− 2aβσ1σ2%

∫ i

i−1

∫ u

i−1

∫ v

i−1
e−b(u−w) dw dv du

=

(
β2σ21

∫ 1

0

∫ 1

0

∫ u′∧v′

0
e−b(u

′+v′−w′) dw′ dv′ du′

− 2βσ1σ2%

∫ 1

0

∫ u′

0
e−bu

′
dv′ du′ + σ22

∫ 1

0
e−bu

′
du′
)
Yi−1

+ aβ2σ21

∫ 1

0

∫ 1

0

∫ u′∧v′

0

∫ w′

0
e−b(u

′+v′−w′−z′) dz′ dw′ dv′ du′

+ aσ22

∫ 1

0

∫ u′

0
e−b(u

′−v′) dv′ du′ − 2aβσ1σ2%

∫ 1

0

∫ u′

0

∫ v′

0
e−b(u

′−w′) dw′ dv′ du′

=: C3Yi−1 + C4.

(5.3.2)

To calculate the off-diagonal entries in the quadratic variation, we write

E(εkηk | Fk−1) = E
(
(Yk − c− dYk−1)(Xk −Xk−1 − γ − δYk−1)

∣∣Fk−1)
= E

(
σ1

∫ k

k−1
e−b(k−s)

√
Ys dWs ×

×
(
−βσ1

∫ k

k−1

∫ u

k−1
e−b(u−v)

√
Yv dWv du+ σ2

∫ k

k−1

√
Yu dW̃u

)∣∣∣∣Fk−1)

= −βσ21
∫ k

k−1
E
(∫ k

k−1
e−b(k−s)

√
Ys dWs

∫ u

k−1
e−b(u−v)

√
Yv dWv

∣∣∣∣Fk−1) du

+ σ1σ2 E
(∫ k

k−1
e−b(k−s)

√
Ys dWs

∫ k

k−1

√
Yu dW̃u

∣∣∣∣Fk−1) .
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Again by Karatzas and Shreve (1991, Equation (3.2.23) and Proposition 3.2.17), we have

E(εkηk | Fk−1) = −βσ21
∫ k

k−1

∫ u

k−1
e−b(k+u−2v) E(Yv | Fk−1) dv du

+ σ1σ2%

∫ k

k−1
e−b(k−v) E(Yv | Fk−1) dv.

Using (3.1.4), by an easy calculation,

E(εkηk | Fk−1) = −βσ21
∫ k

k−1

∫ u

k−1
e−b(k+u−2v)

(
e−b(v−k+1)Yk−1 + a

∫ v

k−1
e−b(v−s) ds

)
dv du

+ σ1σ2%

∫ k

k−1
e−b(k−v)

(
e−b(v−k+1)Yk−1 + a

∫ v

k−1
e−b(v−s) ds

)
dv

=

(
−βσ21

∫ 1

0

∫ u′

0
e−b(u

′−v′+1) dv′ du′ + σ1σ2%e−b

)
Yk−1

− aβσ21
∫ 1

0

∫ u′

0

∫ v′

0
e−b(u

′−v′−s′+1) ds′ dv′ du′

+ aσ1σ2%

∫ 1

0

∫ v′

0
e−b(1−s

′) ds′ dv′

=: C5Yk−1 + C6, k ∈ N.

(5.3.3)

Summarizing we have for the quadratic variation, by (3.2.2) and (3.2.4),

n∑
k=1

E
(
(Mn,k −Mn,k−1)(Mn,k −Mn,k−1)

> | Fn,k−1
)

=
1

n

n∑
k=1

[
C1Yk−1 + C2 C5Yk−1 + C6

C5Yk−1 + C6 C3Yk−1 + C4

]
⊗

[
1 Yk−1

Yk−1 Y 2
k−1

]

=
1

n

n∑
k=1

[
C1 C5

C5 C3

]
⊗

[
Yk−1 Y 2

k−1

Y 2
k−1 Y 3

k−1

]
+

1

n

n∑
k=1

[
C2 C6

C6 C4

]
⊗

[
1 Yk−1

Yk−1 Y 2
k−1

]

a.s.−→

[
C1 C5

C5 C3

]
⊗

[
E(Y∞) E(Y 2

∞)

E(Y 2
∞) E(Y 3

∞)

]
+

[
C2 C6

C6 C4

]
⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]
=: D,

(5.3.4)

where the 4 × 4 limit matrix D is necessarily symmetric and positive semi-definite (indeed,

the limit of positive semi-definite matrices is positive semi-definite). For the definitions of

Ci, i = 1, . . . , 6, see (5.3.1), (5.3.2) and (5.3.3).
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We complete the proof by checking the Lindeberg condition (3.3.3). Since

‖x‖21{‖x‖>ε} 6
‖x‖4

ε2
1{‖x‖>ε} 6

‖x‖4

ε2
, x ∈ R4, ε ∈ R++,

and ‖x‖4 = (x21 + x22 + x23 + x24)
2 6 4(x41 + x42 + x43 + x44), x1, x2, x3, x4 ∈ R, it is enough to

check that

1

n2

n∑
k=1

(
E(ε4k | Fk−1) + Y 4

k−1 E(ε4k | Fk−1) + E(η4k | Fk−1) + Y 4
k−1 E(η4k | Fk−1)

)

=
1

n2

n∑
k=1

E((1 + Y 4
k−1)(ε

4
k + η4k) | Fk−1)

P−→ 0 as n→∞.

Instead of convergence in probability, we show convergence in L1, i.e., we check that

1

n2

n∑
k=1

E((1 + Y 4
k−1)(ε

4
k + η4k))→ 0 as n→∞.

Clearly, it is enough to show that

sup
k∈N

E((1 + Y 4
k−1)(ε

4
k + η4k)) <∞.

By the Cauchy–Schwarz inequality,

E((1 + Y 4
k−1)(ε

4
k + η4k)) 6

√
E((1 + Y 4

k−1)
2)E((ε4k + η4k)

2) 6
√

2
√
E((1 + Y 4

k−1)
2)E(ε8k + η8k)

for all k ∈ N. Since, as stated in (3.1.3),

sup
t∈R+

E(Y κ
t ) <∞, κ ∈ R+,(5.3.5)

it remains to check that supk∈N E(ε8k + η8k) <∞. Since, by the power mean inequality,

E(ε8k) = E(|Yk − dYk−1 − c|8) 6 E((Yk + dYk−1 + c)8) 6 37 E(Y 8
k + d8Y 8

k−1 + c8), k ∈ N,

using (5.3.5), we have supk∈N E(ε8k) <∞. Using (3.1.1),

E(η8k) = E((Xk −Xk−1 − γ − δYk−1)8)

= E

((
α− β

∫ k

k−1
Yu du+ σ2%

∫ k

k−1

√
Yu dWu + σ2

√
1− %2

∫ k

k−1

√
Yu dBu − γ − δYk−1

)8
)
,
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and using the power mean inequality again,

E(η8k) 6 67 E

(
α8 + β8

(∫ k

k−1
Yu du

)8

+ σ82%
8

(∫ k

k−1

√
Yu dWu

)8

+ σ82(1− %2)4
(∫ k

k−1

√
Yu dBu

)8

+ δ8Y 8
k−1 + γ8

)
.

By Jensen’s inequality and (5.3.5),

sup
k∈N

E

((∫ k

k−1
Yu du

)8
)

6 sup
k∈N

E
(∫ k

k−1
Y 8
u du

)
= sup

k∈N

∫ k

k−1
E(Y 8

u ) du

6

(
sup
t∈R+

E(Y 8
t )

)(
sup
k∈N

∫ k

k−1
1 du

)
= sup

t∈R+

E(Y 8
t ) <∞.

(5.3.6)

By the SDE (3.0.1), the power mean inequality, and (5.3.6),

E

((∫ k

k−1

√
Yu dWu

)8
)

6
1

σ81
E

((
Yk − Yk−1 − a− b

∫ k

k−1
Yu du

)8
)

6
47

σ81
E

(
Y 8
k + Y 8

k−1 + a8 + b8
(∫ k

k−1
Yu du

)8
)

6
47

σ81

(
2 sup
t∈R+

E(Y 8
t ) + a8 + b8 sup

t∈R+

E(Y 8
t )

)
<∞.

Further, using that the conditional distribution of
∫ k
k−1
√
Yu dBu given (Yu)u∈[0,k] is normal

with mean 0 and variance
∫ k
k−1 Yu du, we have

E

((∫ k

k−1

√
Yu dBu

)8 ∣∣∣ (Yu)u∈[0,k]

)
= 105

(∫ k

k−1
Yu du

)4

, k ∈ N,

and consequently

E

((∫ k

k−1

√
Yu dBu

)8
)

= 105E

((∫ k

k−1
Yu du

)4
)
, k ∈ N.

Hence, similarly to (5.3.6), we have

sup
k∈N

E

((∫ k

k−1

√
Yu dBu

)8
)

6 105 sup
t∈R+

E(Y 4
t ) <∞,

which yields that supk∈N E(η8k) <∞. 2
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5.3.2 Lemma. Under the conditions of Theorem 5.2.1 and Mn,k defined in (5.2.4), we have

n−1/2Mn,n
a.s.−→ 0 componentwise.

Proof. First let us observe that

Mn := n1/2Mn,n =
n∑
i=1

[
εi

ηi

]
⊗

[
1

Yi−1

]

is a martingale. The reasoning is the same as the beginning of the proof of Lemma 5.3.2. We

will use Theorem 3.3.3 componentwise to show that

Mn

n

a.s.−→ 0

componentwise, which is our statement. Let us recall (5.3.4) and introduce

Dn :=
n∑
k=1

E
(
(Mn,k −Mn,k−1)(Mn,k −Mn,k−1)

> | Fn,k−1
)
.

Now, for the components of Mn, we have 〈M (i)〉n = Di,i
n , that is, the i-th element on the

main diagonal in Dn, for i = 1, 2, 3, 4. Hence,

M
(i)
n

n
=
M

(i)
n

Dn
· Dn

n

a.s.−→ 0 ·D(i,i) = 0,

by using the convergence from (5.3.4), and D(i,i) denoting the i-th element in the main

diagonal of D. 2

5.3.3 Lemma. Under the conditions of Theorem 5.2.1, G is positive definite.

Proof. Expanding the definition of G,

G =

[C1 C5

C5 C3

]
⊗

[ 1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1 [
E(Y∞) E(Y 2

∞)

E(Y 2
∞) E(Y 3

∞)

]×
×

E2 ⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1

+

[C2 C6

C6 C4

]
⊗

[ 1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1 [
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]×
×

E2 ⊗

[
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1 ,
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from which

G =

[
C1 C5

C5 C3

]
⊗

[ 1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1 [
E(Y∞) E(Y 2

∞)

E(Y 2
∞) E(Y 3

∞)

][
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1

+

[
C2 C6

C6 C4

]
⊗

[ 1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1 [
1 E(Y∞)

E(Y∞) E(Y 2
∞)

][
1 E(Y∞)

E(Y∞) E(Y 2
∞)

]−1 .

Writing out the inverses,

G =
1

(E(Y 2
∞)− (E(Y∞))2)2

[
C1 C5

C5 C3

]

⊗

([
E(Y 2

∞) −E(Y∞)

−E(Y∞) 1

][
E(Y∞) E(Y 2

∞)

E(Y 2
∞) E(Y 3

∞)

][
E(Y 2

∞) −E(Y∞)

−E(Y∞) 1

])

+
1

E(Y 2
∞)− (E(Y∞))2

[
C2 C6

C6 C4

]
⊗

[
E(Y 2

∞) −E(Y∞)

−E(Y∞) 1

]

=
1

(E(Y 2
∞)− (E(Y∞))2)2

[
C1 C5

C5 C3

]

⊗

[
−E(Y∞)((E(Y 2

∞))2 − E(Y∞)E(Y 3
∞)) (E(Y 2

∞))2 − E(Y∞)E(Y 3
∞)

(E(Y 2
∞))2 − E(Y∞)E(Y 3

∞) E(Y 3
∞)− 2E(Y∞)E(Y 2

∞) + (E(Y∞))3

]

+
1

E(Y 2
∞)− (E(Y∞))2

[
C2 C6

C6 C4

]
⊗

[
E(Y 2

∞) −E(Y∞)

−E(Y∞) 1

]
.

All in all,

G =

[
C1 C5

C5 C3

]
⊗

a(2a+σ2
1)

bσ2
1

−2a+σ2
1

σ2
1

−2a+σ2
1

σ2
1

2b(a+σ2
1)

aσ2
1

+

[
C2 C6

C6 C4

]
⊗

2a+σ2
1

σ2
1

− 2b
σ2
1

− 2b
σ2
1

2b2

aσ2
1

 .(5.3.7)

Indeed, by (3.2.2), an easy calculation shows that

(
E(Y∞)E(Y 3

∞)− (E(Y 2
∞))2

)
E(Y∞) =

a3σ21
4b5

(2a+ σ21),

E(Y∞)E(Y 3
∞)− (E(Y 2

∞))2 =
a2σ21
4b4

(2a+ σ21),

E(Y 3
∞)− 2E(Y∞)E(Y 2

∞) + (E(Y∞))3 =
aσ21
2b3

(a+ σ21),

E(Y 2
∞)− (E(Y∞))2 =

aσ21
2b2

.
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5.3. Auxiliary lemmas

To show the statement from here, it is enough to check that

(i) the matrix [
C1 C5

C5 C3

]
is positive definite,

(ii) the matrices

[
C2 C6

C6 C4

]
,

a(2a+σ2
1)

bσ2
1

−2a+σ2
1

σ2
1

−2a+σ2
1

σ2
1

2b(a+σ2
1)

aσ2
1

 and

2a+σ2
1

σ2
1

− 2b
σ2
1

− 2b
σ2
1

2b2

aσ2
1


are positive semi-definite.

Indeed, the sum of a positive definite and a positive semi-definite square matrix is positive

definite, the Kronecker product of positive semi-definite matrices is positive semi-definite and

the Kronecker product of positive definite matrices is positive definite (as a consequence of the

fact that the eigenvalues of the Kronecker product of two square matrices are the product of

the eigenvalues of the two square matrices in question including multiplicities). The positive

semi-definiteness of the matricesa(2a+σ2
1)

bσ2
1

−2a+σ2
1

σ2
1

−2a+σ2
1

σ2
1

2b(a+σ2
1)

aσ2
1

 and

2a+σ2
1

σ2
1

− 2b
σ2
1

− 2b
σ2
1

2b2

aσ2
1


readily follows, since

a(2a+σ2
1)

bσ2
1

> 0,
2a+σ2

1

σ2
1

> 0, and the determinant of the matrices in question

are
2a+σ2

1

σ2
1

> 0 and 2b
aσ2

1
> 0, respectively. Next, we prove that the matrices

[
C1 C5

C5 C3

]
and

[
C2 C4

C4 C6

]

are positive semi-definite. Since P(Y0 = y0) = 1, we have E(ε21 | F0) = C1y0 +C2, E(η21 | F0) =

C3y0 + C4, and E(ε1η1 | F0) = C5y0 + C6 P-almost surely, hence

E(ε21)E(η21)−
(
E(ε1η1)

)2
= (C1C3 − C2

5 )y20 + (C1C4 + C2C3 − 2C5C6)y0 + C2C4 − C2
6 .

By the Cauchy–Schwarz inequality,

E(ε21)E(η21)−
(
E(ε1η1)

)2
> 0,

hence, by setting an arbitrary initial value Y0 = y0 ∈ R+, we obtain C1C3 − C2
5 > 0 and

C2C4 − C2
6 > 0.
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Thus, both matrices [
C1 C5

C5 C3

]
and

[
C2 C4

C4 C6

]
are positive semi-definite, since C1 > 0 and C2 > 0. Now we turn to check that[

C1 C5

C5 C3

]

is positive definite. Since C1 > 0, this is equivalent to showing that C1C3−C2
5 > 0. Recalling

the definition of the constants from (5.3.1), (5.3.2) and (5.3.3), we have

C1 = σ21

∫ 1

0
e−b(2−v) dv = σ21e−2b

eb − 1

b
,

C3 = β2σ21

∫ 1

0

∫ 1

0

∫ u′∧v′

0
e−b(u

′+v′−w′) dw′ dv′ du′

− 2βσ1σ2%

∫ 1

0

∫ u′

0
e−bu

′
dv′ du′ + σ22

∫ 1

0
e−bu

′
du′

= b−3
(

2e−bβ2σ21(sinh b− b) + 2bβ%σ1σ2((1 + b)e−b − 1) + b2σ22(1− e−b)
)
,

C5 = −βσ21
∫ 1

0

∫ u′

0
e−b(u

′−v′+1) dv′ du′ + σ1σ2%e−b

= b−2σ1e
−b
(
−e−bβσ1(1 + (b− 1)eb) + %σ2b

2
)
,

thus we have

C1C3 − C2
5 = b−4e−2bσ21

(
2b(2 + b2)β%σ1σ2 + 2(β2σ21 − 2bβ%σ1σ2 + b2σ22) cosh b

− (2 + b2)β2σ21 − b2(2 + b2%2)σ22

)
.

Consequently, using that

cosh b =

∞∑
k=0

b2k

(2k)!
> 1 +

b2

2

and that

β2σ21 − 2bβ%σ1σ2 + b2σ22 = (βσ1 − b%σ2)2 + b2(1− %2)σ22 > 0,
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we have

C1C3 − C2
5 > b−4e−2bσ21

(
4bβ%σ1σ2 + 2b3β%σ1σ2 + 2β2σ21 + b2β2σ21 − 4bβ%σ1σ2 − 2b3β%σ1σ2

+ 2b2σ22 + b4σ22 − 2β2σ21 − b2β2σ21 − 2b2σ22 − b4%2σ22
)

= b−4e−2bσ21(b4(1− %2)σ22) > 0.

This concludes the proof. 2

5.4 Asymptotic results for the untransformed parameters

So far we have obtained the limit distribution of the CLSE’s of the transformed parameters

(c, d, γ, δ). A natural estimate of (a, b, α, β) can be obtained from (5.1.2) using relation (5.1.3)

detailed as follows. Calculating the integrals in (5.1.3) in the subcritical case, let us introduce

the function g : R2
++ × R2 → R++ × (0, 1)× R2,

(5.4.1) g(a, b, α, β) :=


ab−1(1− e−b)

e−b

α− aβb−2(e−b − 1 + b)

−βb−1(1− e−b)

 =


c

d

γ

δ

 , (a, b, α, β) ∈ R2
++ × R2.

Note that g is bijective, with the inverse

(5.4.2) g−1(c, d, γ, δ) =


−c log d1−d

− log d

γ − cδ d−1−log d
(1−d)2

δ log d1−d

 =


a

b

α

β

 , (c, d, γ, δ) ∈ R++ × (0, 1)× R2.

Indeed, for all (c, d, γ, δ) ∈ R++ × (0, 1)× R2, we have

α = γ + aβb−2(e−b − 1 + b) = γ + (−c) log d

1− d
δ

log d

1− d
(− log d)−2(d− 1− log d)

= γ − cδ d− 1− log d

(1− d)2
.

Under the conditions of Theorem 5.2.1 the CLSE (ĉn, d̂n, γ̂n, δ̂n) of (c, d, γ, δ) is strongly

consistent, hence in the subcritical case (ĉn, d̂n, γ̂n, δ̂n) fall into the set R++ × (0, 1)×R2 for

sufficiently large n ∈ N with probability one. Hence, in the subcritical case, one can introduce

a natural estimator of (a, b, α, β) based on discrete time observations by applying the inverse
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of g to the CLSE of (c, d, γ, δ), i.e.,

(5.4.3) (ân, b̂n, α̂n, β̂n) := g−1(ĉn, d̂n, γ̂n, δ̂n)

for sufficiently large n ∈ N with probability one.

5.4.1 Remark. We would like to stress the point that the estimator of (a, b, α, β) introduced

in (5.4.3) exists only for sufficiently large n ∈ N with probability of 1. However, as all our

results are asymptotic, this will not cause a problem. From the considerations before this

remark, we obtain

(5.4.4)(
ân, b̂n, α̂n, β̂n

)
= arg min

(a,b,α,β)∈R2
++×R2

n∑
i=1

[
(Yi − dYi−1 − c)2 + (Xi −Xi−1 − γ − δYi−1)2

]
for sufficiently large n ∈ N with probability one. We note that

(
ân, b̂n, α̂n, β̂n

)
does not

necessarily provides a CLSE of (a, b, α, β), since in (5.4.4) one takes the infimum only on the

set R2
++ × R2 instead of R4. However, this is a relatively minor point. 2

5.4.2 Theorem. Under the conditions of Theorem 5.2.1 the sequence
(
ân, b̂n, α̂n, β̂n

)
, n ∈ N,

is strongly consistent and asymptotically normal, i.e.,

(ân, b̂n, α̂n, β̂n)
a.s.−→ (a, b, α, β) as n→∞,

and

√
n


ân − a
b̂n − b
α̂n − α
β̂n − β

 D−→ N4

(
0,JGJ>

)
as n→∞,

where G ∈ R2×2 is a symmetric, positive definite matrix given in (5.3.7) and

J :=


− log d

1−d −c log d−1+d
−1

(1−d)2 0 0

0 −1
d 0 0

δ log d+1−d
(1−d)2 cδ 2 log d−d+d

−1

(1−d)3 1 c log d+1−d
(1−d)2

0 δ log d−1+d
−1

(1−d)2 0 log d
1−d


with c, d and δ given in (5.1.3).

Proof. The strong consistency of (ân, b̂n, α̂n, β̂n), n ∈ N, follows from the strong consistency

of the CLSE of (c, d, γ, δ) proved in Theorem 5.2.1 and the continuity of g−1.

For the second part of the theorem we use Theorem 5.2.1, and the so-called delta method

(see, e.g., Lehmann and Romano, 2009, Theorem 11.2.14). Indeed, one can extend the
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function g−1 to be defined on R4 instead of R++ × (0, 1) × R2 (e.g., let it be zero on the

complement of R++ × (0, 1)× R2). Even with this extension, (ân, b̂n, α̂n, β̂n) takes the form

given in (5.4.3), and the Jacobian of g−1 at (c, d, γ, δ) ∈ R++ × (0, 1)× R2 is clearly J . 2
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Appendix A

Results of theoretical interest for

INAR(p)

A.1 Invertibility of the matrices Qn, Q
′ and Q′′

In (2.4.1) we assumed that the matrix Qn is invertible, and similarly, in designing the one-

sided tests we assumed that Q′ and Q′′ are positive definite. The following two lemmas will

show that these assumptions are correct.

A.1.1 Lemma. For a homogeneous INAR(p) process with µ > 0, for which either αq ∈ (0, 1)

for some q ∈ {1, 2, . . . , p} or σ > 0, we have

P(Qn is singular)→ 0.

Proof. Since

Qn =
n∑
i=1

[
Xi−1

1

][
Xi−1

1

]>
is a sum of positive semidefinite matrices, it is positive semidefinite itself. Therefore, its

singularity is equivalent to the condition that for some 0 6= v ∈ Rp+1 and every index

i ∈ {1, . . . , n}, we have

v>

[
Xi−1

1

][
Xi−1

1

]>
v = 0,

which is equivalent to the condition that the linear span of{[
Xi−1

1

]
, i = 1, . . . , n

}

is a proper subspace of Rp+1. Now, using the continuity of probability, our statement is
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equivalent to the following:

(A.1.1) P

(
span

{[
Xi−1

1

]
, i ∈ N

}
< Rp+1

)
= 0,

where < denotes proper subspace. For simplicity, throughout the proof we will use the

notation

Y i =

[
Xi−1

1

]
, i ∈ N.

It is clear that all values of (Y i)i∈N fall into Zp+ × {1}. We introduce the following notation

for the set of spaces that can be spanned by the values of the process:

(A.1.2) S := {S < Rp+1 : S = span{y1,y2, . . . ,yn}, y1,y2, . . . ,yn ∈ Zp+ × {1}, n ∈ N}.

We can notice that S is countable. Indeed, every generating system of a subspace contains a

basis, therefore every subspace S ∈ S has a basis whose elements are from Zp+ × {1}. Such a

basis is from (Zp+×{1})k where k = dimS, and 0 6 k 6 p, and of course a basis corresponds

to only one subspace. Now, since Zp+ × {1} is countable, (Zp+ × {1})k is also countable for

any k ∈ N, therefore ∪pk=0(Z
p
+ × {1})k is also countable, and so is S.

Now we reformulate the event in (A.1.1):

{
span {Y i, i ∈ N} < Rp+1

}
=

⋃
S<Rp+1

{span {Y i, i ∈ N} = S} =
⋃
S∈S
{span {Y i, i ∈ N} = S}

⊆
⋃
S∈S
{span {Y i, i ∈ N} ⊆ S} .

(A.1.3)

Since the last union is countable, we can apply σ-subadditivity to show (A.1.1) if we can

prove

(A.1.4) P (span {Y i, i ∈ N} ⊆ S) = lim
n→∞

P (span {Y 1,Y 2, . . . ,Y n} ⊆ S) = 0, ∀S ∈ S.

Here the first equality is trivial by the continuity of probability; it is the second equality which

requires a more detailed proof. The first step in the proof of (A.1.4) relies on the mechanism

by which the components of Y i+1 can be obtained from those of Y i. For a fixed S ∈ S the

elements of S can be viewed as the solutions of a homogeneous system of independent linear

equations, i.e., y ∈ S if and only if

(A.1.5)

p+1∑
j=1

λi,jy
(j) = 0, i = 1, 2, . . . , p+ 1− dimS.
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This representation is not unique, but we can fix one such representation. Now let us introduce

K(S) := min{j ∈ {1, 2, . . . , p} : max
i
|λi,j | > 0} and

c(s) := min{i ∈ {1, 2, . . . , p+ 1− dimS} : |λi,K(S)| > 0}.

This notation means that K(S) is the first column index for which a nonzero coefficient

appears in some equation in (A.1.5) and the first nonzero coefficient in the c(s)-th equation

has index K(S). We also note that K(S) = p + 1 is impossible because that would mean

that the only equation is y(p+1) = 0, which does not hold for any element of Zp+ × {1}.

Let us now fix an arbitrary i ∈ N and ω ∈ Ω from our underlying probability space such

that Y i(ω) = y = (y(1), y(2), . . . , y(p), 1)>. Then we have

Y i+K(S)(ω) =
(
Xi+K(S)−1(ω), . . . , Xi(ω), y(1), . . . , y(p−K(S)), 1

)>
(see (2.2.2)).

Hence, for Y i+K(S)(ω) ∈ S to hold, it is necessary (but usually not sufficient) that Y i+K(S)(ω)

satisfy the c(s)-th equation in (A.1.5), i.e.,

K(S)∑
j=1

λc(s),jXi+K(S)−j(ω) +

p∑
j=K(S)+1

λc(s),jy
(j−K(S)) + λc(s),p+1 = 0

⇔ λc(s),K(S)Xi(ω) +

p∑
j=K(S)+1

λc(s),jy
(j−K(S)) + λc(s),p+1 = 0.

This linear equation has a unique solution for Xi(ω) because λc(s),K(S) 6= 0. Let us denote

this unique solution by m(y, S) (by simple algebraic considerations one can see that this

quantity does not depend on the representation in (A.1.5), but this is not necessary to our

proof). Therefore, if Xi(ω) 6= m(y, S), then ω 6∈ {Y i+K(S) ∈ S,Y i = y}, hence

{Y i+K(S) ∈ S,Y i = y} ⊆ {Xi = m(y, S),Y i = y} ∀i ∈ N, ∀y ∈ Zp+ × {1}.

If m(y, S) 6∈ N, then we have {Y i+K(S) ∈ S,Y i = y} = ∅.

Now we take n = n+K(S) and split the general event from the second sequence in (A.1.4)

according to the initial value of the process:

(A.1.6){
span

{
Y 1,Y 2, . . . ,Y n+K(S)

}
⊆ S

}
=

⋃
y1∈Z

p
+×{1}

{span
{
Y 1,Y 2, . . . ,Y n+K(S)

}
⊆ S,Y 1 = y1}.
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The individual events in the union can be transformed in the following way:

{span
{
Y 1, . . . ,Y n+K(S)

}
⊆ S,Y 1 = y1} = {Y 1 ∈ S, . . . ,Y n+K(S) ∈ S,Y 1 = y1}

= {Y 1 ∈ S, . . . ,Y K(S) ∈ S,Y 1 = y1,Y 1+K(S) ∈ S, . . . ,Y n+K(S) ∈ S}

⊆ {Y 1 ∈ S, . . . ,Y K(S) ∈ S,Y 1 = y1, X1 = m(y1, S),Y 2+K(S) ∈ S, . . . ,Y n+K(S) ∈ S}

= {Y 1 ∈ S, . . . ,Y K(S) ∈ S,Y 1 = y1,Y 2 = y2,Y 2+K(S) ∈ S, . . . ,Y n+K(S) ∈ S}

⊆ {Y 1 ∈ S, . . . ,Y K(S) ∈ S,

Y 1 = y1,Y 2 = y2, X2 = m(y2, S),Y 3+K(S) ∈ S, . . . ,Y n+K(S) ∈ S}

= {Y 1 ∈ S, . . . ,Y K(S) ∈ S,Y 1 = y1,Y 2 = y2,Y 3 = y3,Y 3+K(S) ∈ S, . . . ,Y n+K(S) ∈ S}

...

⊆ {Y 1 ∈ S, . . . ,Y K(S) ∈ S,Y 1 = y1,Y 2 = y2,Y 3 = y3, . . . ,Y n = yn},

(A.1.7)

where the sequence (yi)
n
i=1 is defined by the recursion

(A.1.8) yi =



m(yi−1, S)

y
(1)
i−1
...

y
(p−1)
i−1

1


, i = 2, 3, . . . , n.

We would like to represent the probability of the last event in (A.1.7) as a product of transition

probabilities. For this we first need to determine whether the event is empty, and now we will

give two necessary conditions on y1 for its nonemptiness. The first condition is, clearly, that

all elements of the sequence defined in (A.1.8) fall into Zp+×{1}. We will not investigate this

condition in any further detail, we only note that this imposes a deterministic condition on

y1. Another deterministic condition is that Y 1 ∈ S,Y 2 ∈ S, . . . ,Y K(S) ∈ S should all hold.

Because the first K(S)−1 coefficients are all zero in any equation in (A.1.5) and Y 1 contains

all the components indexed K(S) or greater in Y 1, . . . ,Y K(S), the validity of these inclusions

is determined by y1 alone. This imposes the second (again, deterministic) condition on y1.

If we denote the set of y1 which fulfill both these conditions by Un, we have from (A.1.6) and

(A.1.7),

{
span

{
Y 1,Y 2, . . . ,Y n+K(S)

}
⊆ S

}
⊆

⋃
y1∈Un

{Y 1 = y1,Y 2 = y2,Y 3 = y3, . . . ,Y n = yn},

94



A.1. Invertibility of the matrices Qn, Q
′ and Q′′

hence by σ-subadditivity (Un is clearly countable),

P
(
span

{
Y 1,Y 2, . . . ,Y n+K(S)

}
⊆ S

)
6
∑

y1∈Un

P (Y 1 = y1,Y 2 = y2, . . . ,Y n = yn)

=
∑

y1∈Un

P(Y 1 = y1)py1,y2
py2,y3

· · · pyn−1,yn ,
(A.1.9)

where pu,v denotes the transition probability of Y from u to v. Because the sets (Un)n∈N

form a nonincreasing sequence (the second condition does not depend on n, and the first

one become more restrictive as n increases), it is sufficient to show that for any sequence

(yi)i∈N ∈ (Np0 × {1})N we have

(A.1.10) lim
n→∞

py1,y2
py2,y3

· · · pyn−1,yn = 0,

and from this we will get (A.1.4). For the proof of (A.1.10) we will need to establish upper

bounds for the transition probabilities. We will first consider the case when σ > 0, i.e., when

the innovation distribution is nondegenerate.

Let us fix u,v ∈ Np0 × {1} so that v(2) = u(1), v(3) = u(2), . . . , v(p) = u(p−1), v(p+1) = 1.

We would like to give an upper bound for pu,v. We have for every i ∈ N and any m ∈ Z+,

P

Y i+1 = v
∣∣Y i = u,

p∑
j=1

u(j)∑
`=1

ξj,i,` = m

 = P

εi = v(1) −m
∣∣Y i = u,

p∑
j=1

u(j)∑
`=1

ξj,i,` = m


= P

(
εi = v(1) −m

)
.

Applying the law of total probability we get

(A.1.11) pu,v =
∑
m∈Z+

P(εi = v(1) −m)P

 p∑
j=1

u(j)∑
`=1

ξj,i,` = m

 6 max
k∈Z+

P(εi = k) < 1,

since the innovation distribution was nondegenerate. Therefore, if σ > 0, then we have a

uniform upper bound on the transition probabilities, which implies (A.1.10) immediately.

The other case is if the innovation distribution is degenerate. First we note that in this case

the innovation is equal to its expectation µ > 0 almost surely, so that all components of Y i are

positive for i > p+ 1. According to the conditions, there is a coefficient αq, q ∈ {1, 2, . . . , p}
such that 0 < αq < 1. Similarly to the previous reasoning, if additionally we suppose that
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all components of u and v are greater or equal to µ, we have

P

Y i+1 = v
∣∣Y i = u, µ+

 p∑
j=1
j 6=q

u(j)∑
`=1

ξj,i,`

+

u(q)−1∑
`=1

ξq,i,` = m



= P

ξq,i,u(q) = v(1) −m
∣∣Y i = u, µ+

 p∑
j=1
j 6=q

u(j)∑
`=1

ξj,i,`

+

u(q)−1∑
`=1

ξq,i,` = m


= P

(
ξq,i,u(q) = v(1) −m

)
.

Here we note that ξq,i,u(q) is a meaningful notation because u(q) > µ and µ is a positive

integer. Applying the law of total probability again, we have that

pu,v 6 max(αq, 1− αq) < 1,

which again gives a uniform upper bound for the transition probabilities and yields (A.1.10).

With this our proof is complete. 2

It may be worth noting that Lemma A.1.1 imposes very weak conditions on the process—

we only neglect the trivial case when all innovation and offspring distributions are degenerate.

Also, the lemma does not require that the process start from zero—the initial distribution

can be arbitrarily chosen on U . This gives us a chance to prove two important corollaries.

A.1.2 Corollary. For an INAR(p) process under the alternative hypothesis satisfying the

assumptions of Lemma A.1.1 both before and after the change, and τ = max(1, bnρc) for

some ρ > 0 constant, we have

P(Qnis singular)→ 0.

Proof. To show this statement we only need to note that due to Lemma A.1.1 we have

P(Qbnρcis singular)→ 0,

and clearly

{Qnis singular} ⊆ {Qbnρcis singular}

due to the reasoning at the beginning of the proof of Lemma A.1.1. 2

A.1.3 Corollary. Under the conditions of Theorem 2.7.1 both Q′ and Q′′ are positive

definite.

Proof. First we prove for Q′. We note that Lemma A.1.1 did not impose any conditions on

the initial distribution of the process Y , therefore we can start the process from its stationary
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distribution (the existence of which is a trivial corollary of the existence of such a distribution

for X before the change). Now, the singularity of Q′ is equivalent to the condition

P

([
X̃ ′

1

]
∈ S

)
< 1, ∀S < Rp+1.

Let us now suppose that the stationary distribution of Y is concentrated on a proper subspace

S < Rp+1. From (A.1.4), however, we conclude that the probability of the process remaining

in S forever is zero. As the distribution of Y n is the stationary distribution for every time n,

this is an immediate contradiction. Therefore Q′ is nonsingular, but since it is a covariance

matrix, it is positive semidefinite, therefore it has to be positive definite. The proof is the

same for Q′′. 2

A.2 The conditional moments of Mk

We shall now derive several moments of Mk conditionally on Fk−1 (this calculation is a

reproduction of that in T. Szabó (2011a)). Let us write Mk in the form

Mk =

Xk−1∑
j=1

(ξ1,k,j − α1) +

Xk−2∑
j=1

(ξ2,k,j − α2) + . . .+

Xk−p∑
j=1

(ξp,k,j − αp) + (εk − µ).

All the terms on the right hand side have zero mean and are independent of each other

conditionally on Fk−1, therefore

E(M2
k |Fk−1) = α1(1− α1)Xk−1 + . . .+ αp(1− αp)Xk−p + σ2.

Similarly,

E(M4
k |Fk−1) =

p∑
i=1

E((ξi,1,1 − αi)4)Xk−i + 3

p∑
i,j=1,i 6=j

E((ξi,1,1 − αi)2(ξj,1,1 − αj)2)XiXj

+ 6

p∑
i=1

(
Xi

2

)
E2((ξi,1,1 − αi)2)

+ 6

p∑
i=1

Xk−i E((ξi,1,1 − αi)2(ε1 − µ)2) + E((ε1 − µ)4),
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and, after substituting the expectations,

E(M4
k |Fk−1) = α>4 Xk−i + 3

p∑
i,j=1,i 6=j

αi(1− αi)αj(1− αj)XiXj

+ 6

p∑
i=1

(
Xi

2

)
α2
i (1− αi)2 + 6α>2Xk−1σ

2 + E((ε1 − µ)4).

A.3 Strong approximation for the test process

If one is prepared to get more involved in approximation theory than strictly necessary for

Theorem 2.5.1, the result found there can be improved considerably. As this is theoretically

interesting, but doesn’t change our tests at all, we will discuss it here in the Appendix. This

formed the backbone of T. Szabó (2011a), and was indeed the author’s first result on the

problems considered in the present thesis. We will begin with a simple calculus result:

A.3.1 Proposition. Let (an)n∈N be a sequence of nonnegative numbers such that

an
nβ
→ 0 as n→∞

for some β > 0. Then

sup
16k6n

ak
nβ
→ 0 as n→∞.

Proof. Based on the assumption we have

∀ε > 0 : ∃ν(ε) > 0 :
an
nβ

< ε, if n > ν(ε).

For a fixed ε > 0 put

S(ε) := sup
16i6ν(ε)

ai

and

ν2(ε) := max

(
ν(ε),

(
S(ε)

ε

)1/β
)
.

We will conclude the proof by showing that if n > ν2(ε), then

(A.3.1) sup
16k6n

ak
nβ

< ε.

Indeed, if 1 6 k 6 ν(ε), then
ak
nβ

6
S(ε)
S(ε)
ε

= ε.
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On the other hand, if ν(ε) 6 k 6 n, then

ak
nβ

6
ak
kβ

6 ε,

which completes the proof. 2

The starting point for strong approximation is the following theorem:

A.3.2 Theorem. (Eberlein, 1986) Let (Y k)k>1 be a sequence of d-dimensional random

vectors, T k(`) := Y `+1 + · · · + Y `+k for ` > 0, k > 1, and G` the σ-algebra generated

by the random vectors Y 1, . . . , Y `. Assume

(i) E(Y k) = 0 for all k > 1.

(ii) There exists δ > 0 such that

sup
`>0
‖E (T k(`) | G`)‖1 = O(k1/2−δ),

where ‖ · ‖1 denotes the L1-norm.

(iii) There exists δ > 0 such that

sup
`>0

∥∥∥E{T k(`)T k(`)> | G`}− E
{
T k(`)T k(`)

>
}∥∥∥

1
= O(k1−δ),

where ‖X‖1 denotes the sum of the L1-norms of the entries of a random matrix X.

(iv) There exist δ > 0 and a covariance matrix Σ such that

sup
`>0

∥∥∥k−1 E{T k(`)T k(`)>}−Σ
∥∥∥ = O(k−δ).

(v) There exists δ > 0 such that

sup
k>1

E(‖Y k‖2+δ) <∞.

Then there exist κ > 2 and a d-dimensional standard Wiener process (W(x))x>0 such

that, almost surely,

btc∑
k=1

Y k −Σ1/2W(t) = O(t1/κ) as t→∞.

With the help of this, we can prove the following stronger version of Theorem 2.5.3:
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A.3.3 Theorem. Under condition C0 from Definition 2.2.1, there exists a p+1-dimensional

standard Wiener process
(
W(x)

)
x>0

such that, with some κ > 2,

k∑
j=1

Zj − I1/2W(k) = o(k1/κ) a.s., as k →∞.

Proof. We will set Y k := Zk and show that the conditions for Theorem A.3.2 hold. Because

Zk are martingale differences, conditions (i) and (ii) (with k = 1/2) are fulfilled automatically.

For condition (iii) we first observe that Zk are pairwise uncorrelated with respect to any

F` (again due to the law of iterated expectations) and G` = F`, ` ∈ N, hence

E(T k(`)T k(`)
>|G`) = E(Z`+1Z

>
`+1|F`) + . . .+ E(Z`+kZ

>
`+k|F`).

Let us introduce

B`,i := E(Z`+iZ
>
`+i|F`) = E

([
M2
`+iX`+i−1X

>
`+i−1 M2

`+iX`+i−1

M2
`+iX

>
`+i−1 M2

`+i

]∣∣∣∣∣F`
)

Let us denote by V `,i the column vector

(A.3.2) V `,i :=



E(M2
`+i|F`)

E(M2
`+iX

⊗2
`+i−1|Fk−1)

E(M2
`+iX`+i−1|F`)

E(X⊗3`+i−1|F`)

E(X⊗2`+i−1|F`)

E(X`+i−1|F`)


Clearly, all the entries of B`,i are contained in V `,i. Therefore, if we show that

sup
k>1

sup
`>0

∥∥∥∥∥
k∑
i=1

V `,i −
k∑
i=1

E(V `,i)

∥∥∥∥∥
1

<∞,

then we can conclude that (iii) holds with δ = 1. First we want to show that the following

recursion applies:

(A.3.3) V `,i+1 = RV `,i +R, i > 1

where R is a block upper triangular matrix containing only 0,A,A⊗2,A⊗3 in its main diago-

nal, and R is a column vector whose entries depend only on the moments of ξi(1, 1), 1 6 i 6 p

and ε(1). Here A is the coefficient matrix defined in (2.2.3); however, R is not the same ma-
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trix as in that section. The initial condition is

V `,1 = P(X`),

where the entries of P(X`) are third-degree multivariate polynomials of the entries of X`.

To verify (A.3.3), first note that the first 3 components of V `,i can be expressed as a linear

combination of the entries of the last 3 components, since these contain the conditional

expectations of all possible three-factor products

X`+i−i1X`+i−i2X`+i−i3 , 1 6 i1, i2, i3 6 p.

To prove this, we apply the law of iterated expectations:

E(M j
`+i|F`) = E(E(M j

`+i|F`+i−1)|F`), j = 1, 2,

whence we can refer to Section A.2 and note that E(M j1
`+i|F`+i−1) can be expressed by a linear

combination of entries ofXk−1 and a constant term. It remains to show that for all 1 6 j 6 4,

the conditional expectation E(X⊗j`+i−1|F`) can be expressed as a linear combination of the

entries of E(X⊗j1`+i−2|F`), 1 6 j1 6 j and a constant term depending only on the moments of

ξi(1, 1), 1 6 i 6 p and ε(1). Consider

E(X⊗j`+i−1|F`) = E((M `+i−1 +A(X`+i−2) + µ)⊗j |F`),

based on the regression equation (2.2.5), where

(A.3.4) Mk := Mk1, µ := µ1.

The Kronecker product is not symmetric but linear in both factors, hence after expansion

of (M `+i−1 + A(X`+i−2) + µ)⊗j the resulting terms will be tensor products with factors

X`+i−2,M `+i−1,µ such that the sum of the exponents is j. One such term will be X⊗j`+i−2,

which will account for A⊗j in the main diagonal of R. The entries of the other terms will

be products with factors M`+i−1, µ and the entries of X`+i−2. The sum of the exponents

should again be equal to j. For a typical product, we can put

E(M j1
`+i−1µ

j2
ε X

j3
`+i−i1X

j4
`+i−i2X

j5
`+i−i3 |F`)

= E(E(M j1
`+i−1µ

j2
ε X

j3
`+i−i1X

j4
`+i−i2X

j5
`+i−i3 |F`+i−2)|F`), 2 6 i1, i2, i3 6 p+ 1,

j1 + j2 + j3 + j4 + j5 = j.

All the factors but M`+i−1 are F`+i−2-measurable and so we can again apply the results of Sec-

tion A.2 to show the desired statement. Note that in the terms appearing in E(M j1
`+i−1|F`+i−2)

the combined exponent of the X’s is strictly smaller than j1. Therefore there will be no added
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terms to A⊗j in the main diagonal of R in the rows corresponding to E(X`+i−1|F`).

Having proved (A.3.3) we can proceed with the proof of (iii). The recursion implies

(A.3.5) V `,i =
i∑

j=2

Ri−jR+Ri−1 P(X`), i > 1

The matrix R is block upper triangular, therefore its eigenvalues are the eigenvalues of the

blocks in its main diagonal: A,A⊗2 and A⊗3. The eigenvalues of these blocks are less than

1 (it is a well-known property of the Kronecker product that ρ(A ⊗B) = ρ(A)ρ(B)), thus

we can conclude that ρ(R) < 1 holds for the spectral radius. Therefore

lim
i→∞

V 0,i =
∞∑
j=0

(R)jR = (E −R)−1R =: V 0,

where E is an identity matrix of appropriate dimension. Because all the entries of V 0 are

finite, we conclude that

(A.3.6) lim
k→∞

E(X⊗βk ) = lim
k→∞

E(X⊗βk |F0) =: ηβ

exists for β = 1, 2, 3 and therefore it must also be the expectation E(X̃
⊗β

), where X̃ has the

unique stationary distribution of Xk.

Now, (A.3.5) implies∥∥∥∥∥
k∑
i=1

V `,i −
k∑
i=1

E(V `,i)

∥∥∥∥∥
1

=

∥∥∥∥∥
(

k∑
i=1

Ri−1

)
(P(X`)− E(P(X`)))

∥∥∥∥∥
1

6

∥∥∥∥∥
k−1∑
i=0

Ri

∥∥∥∥∥
1

‖P(X`)− E(P(X`))‖1 .

Using (A.3.6) we can conclude

‖P(X`)− E(P(X`))‖1 6 ‖P(X`)− E(P(X`))‖2 →
∥∥∥P(X̃)− E

(
P
(
X̃
))∥∥∥

2
<∞,

as `→∞ where X̃ has the unique stationary distribution of Xk. Therefore

(A.3.7) sup
`>0
‖P(X`)− E(P(X`))‖1 <∞.

Because

lim
i→∞

k−1∑
i=0

Ri =
∞∑
i=0

Ri = (E −R)−1

102



A.3. Strong approximation for the test process

exists, we have

sup
k>1

∥∥∥∥∥
k−1∑
i=0

Ri

∥∥∥∥∥
1

<∞

and together with (A.3.7) this implies

sup
k>1

sup
`>0

∥∥∥∥∥
k∑
i=1

V `,i −
k∑
i=1

E(V `,i)

∥∥∥∥∥
1

<∞,

which completes the proof of (iii).

Now we show that (iv) is satisfied with Σ = I and δ = 1. Similarly to the proof of (iii),

we first notice that

E
(
T k(`)T k(`)

>
)

= E
(
Z`+1Z

>
`+1

)
+ . . .+ E

(
Z`+kZ

>
`+k

)
.

Now we take, from (2.5.1),

In =

n∑
k=1

E
(
ZkZ

>
k |Fk−1

)
, E(In) =

n∑
k=1

E
(
ZkZ

>
k

)
,

so that

E
(
T k(`)T k(`)

>
)

= E(I`+k)− E(Ik)

Let us consider the form of In and I. The entries of E(In) are entries from
∑n

k=1 E(Xk−1),∑n
k=1 E(X⊗2k−1) and

∑n
k=1 E(X⊗3n−1) multiplied by constants. In I these moments are replaced

by the respective moments of the stationary distribution, but the multiplicating constants

remain the same. Hence, it will be enough to show

sup
`>0

k∑
j=1

∥∥∥EX⊗β`+j−1 − ηβ∥∥∥ = O(1) as k →∞, β = 1, 2, 3.

For this, it is sufficient that, with m := ρ(R),

(A.3.8) E(X⊗βi ) = ηβ + O(mi) as i→∞, β = 1, 2, 3,

because then, for some K > 0,

sup
`>0

k∑
j=1

∥∥∥EX⊗β`+j−1 − ηβ∥∥∥ 6 sup
`>0

k∑
j=1

Km`+j−1 6 K
∞∑
j=1

mj−1 =
K

1−m
,
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since m < 1. We can prove (A.3.8) by considering

‖V 0,i − V 0‖ =

∥∥∥∥∥∥Ri−1 P(X0) +
∞∑

j=i−1
RjR

∥∥∥∥∥∥
6
∥∥Ri−1∥∥‖P(X0)‖+

∥∥∥∥∥∥
∞∑
j=0

Rj

∥∥∥∥∥∥ ‖R‖
 = O(mi),

because the second factor is constant, and by a well-known result in matrix analysis

lim
i→∞

∥∥Ri
∥∥1/i = ρ(R) = m.

For (v) we consider

E(‖Zk‖4 |Fk−1) = E((M2
k (X2

k−1 + . . .+X2
k−p + 1))2|Fk−1)

= (X2
k−1 + . . .+X2

k−p + 1)2 E(M4
k |Fk−1) = P(Xk−1),

where P(Xk−1) is a degree six polynomial of the entries of Xk−1 (see A.2). Because E(ε61) <

∞, we have

E(E(‖Zk‖4 |Fk−1)) 6 E(P(Xk−1))→ E(P(X̃)) <∞

because of (A.3.8). 2

The following lemma provides the asymptotics for the partial sums of Xk and X⊗2k .

A.3.4 Lemma. If the assumptions of Theorem A.3.5 hold, then the sequence of random step

processes

X n(t) :=
1

n

bntc∑
k=1

[
X⊗2k

Xk

]
, t ∈ [0, 1]

converges in distribution on the Skorokhod space D([0, 1]):

X n
D−→ X ,

where

X (t) := t

[
η2

η1

]

Proof. We apply the multidimensional martingale central limit theorem (see Theorem 3.3.4)

for the sequences (Un,k,Fk)16k6n, n > 1, where

Un,k :=
1

n

[
X⊗2k

Xk

]
.
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The ergodic theorem implies

1

n

bntc∑
k=1

E(Xk|Fk−1) =
1

n

bntc∑
k=1

(AXk−1 + µ)
a.s.−−→ t(Aη1 + µ) = tη1, t ∈ [0, 1].

Similarly,

1

n

bntc∑
k=1

E(X⊗2k |Fk−1)
a.s.−−→ tη2, t ∈ [0, 1]

Therefore, the asymptotic expectation is

bntc∑
k=1

E(Un,k|Fk−1)
a.s.−−→ t

[
η2

η1

]
.

The asymptotic covariance matrix is 0, because

bntc∑
k=1

E(Un,kU
>
n,k|Fk−1) =

1

n2

bntc∑
k=1

E

[X⊗2k
Xk

][
X⊗2k

Xk

]>∣∣∣∣∣∣Fk−1
 a.s.−−→ 0, t ∈ [0, 1],

because

1

n

bntc∑
k=1

E

[X⊗2k
Xk

][
X⊗2k

Xk

]>∣∣∣∣∣∣Fk−1
 a.s.−−→ E


X̃⊗2
X̃

X̃⊗2
X̃

>
 , t ∈ [0, 1],

which is a finite quantity, as the entries of the matrix are all contained in η1,η2,η3,η4, which

are all finite. Furthermore, we have

bntc∑
k=1

E(‖Un,k‖2 |Fk−1) =
1

n2

bntc∑
k=1

E(
∥∥X⊗2k ∥∥2 + ‖Xk‖2 |Fk−1)

a.s.−−→ 0, t ∈ [0, 1],

because

1

n

bntc∑
k=1

E(
∥∥X⊗2k ∥∥2 + ‖Xk‖2 |Fk−1)

a.s.−−→ E
(∥∥∥X̃⊗2∥∥∥2)+ E

(∥∥∥X̃∥∥∥2) ,
This proves the conditional Lindeberg condition. 2

Now we are ready to state the strong approximation counterpart of Theorem 2.5.1.

A.3.5 Theorem. Under C0 we can define a sequence of p+ 1-dimensional standard Brow-

nian bridges (Bn(t))06t61, n > 1, such that

sup
06t61

∥∥∥M̂n(t)−Bn(t)
∥∥∥ = oP(1) as n→∞.

We can reuse the first few steps from the proof of Theorem 2.5.1, up until (2.5.7). Continuing
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from there, M̂n(t) takes the form

M̂n(t) = Î
−1/2
n

bntc∑
k=1

Zk −An(t)

n∑
k=1

Zk


with

An(t) :=

bntc∑
k=1

[
Xk−1

1

][
Xk−1

1

]> n∑
k=1

[
Xk−1

1

][
Xk−1

1

]>−1 ,
Let us now introduce the process

Mn(t) := n−1/2I−1/2

bntc∑
k=1

Zk − t
n∑
k=1

Zk

 .

We will first show that there is a sequence (Bn(t)06t61), n > 1 of p+ 1-dimensional standard

Brownian bridges such that

(A.3.9) sup
06t61

‖Mn(t)−Bn(t)‖ = oP(1) as n→∞.

Let W the Wiener process provided by Theorem A.3.3. Putting

wn =

∥∥∥∥∥I−1/2
n∑
k=1

Zk −W(n)

∥∥∥∥∥
we have that wn = o(n1/κ) on an event of probability 1. Now note that

sup
06t61

∥∥∥∥∥∥I−1/2
bntc∑
k=1

Zk −W(bntc)

∥∥∥∥∥∥ = max
06k6n

wk.

Using Proposition A.3.1 we have

sup
06t61

∥∥∥∥∥∥I−1/2
bntc∑
k=1

Zk −W(bntc)

∥∥∥∥∥∥ = o(n1/κ) a.s.

Consequently,

sup
06t61

∥∥∥∥∥∥n−1/2I−1/2
bntc∑
k=1

Zk − n−1/2W(bntc)

∥∥∥∥∥∥ = o

(
n1/κ

n1/2

)
= o(1) a.s.

and similarly

sup
06t61

∥∥∥∥∥n−1/2I−1/2t
n∑
k=1

Zk − n−1/2tW(n)

∥∥∥∥∥ = o(1) a.s.,
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because κ > 2. By the triangle inequality we conclude that∥∥∥Mn(t)− n−1/2(W(bntc)− tW(n))
∥∥∥ = o(1) a.s.

The process Bn(t) will be defined by

n−1/2(W(nt)− tW(n)),

which is obviously a Brownian bridge, since n−1/2W(nt) is a standard Wiener process. It

remains to show that

sup
06t61

∥∥∥n−1/2(W(bntc)− tW(n))− n−1/2(W(nt)− tW(n))
∥∥∥

= sup
06t61

∥∥∥n−1/2(W(bntc)−W(nt))
∥∥∥ = oP(1).

Because the components of W(t) are independent, it suffices to show that

(A.3.10) sup
06t61

∣∣∣n−1/2(W(1)(bntc)−W(1)(nt))
∣∣∣ = oP(1),

where W(1)(t) is the first component of W(t), and is a standard Wiener process. For any

ε > 0 we have

P
(

sup
06t61

∣∣∣n−1/2 (W(1)(bntc)−W(1)(nt)
)∣∣∣ > ε

)

6
n∑
k=1

P
(

sup
06u61

∣∣∣W(1)(k − 1 + u)−W(1)(k − 1)
∣∣∣ > ε1/2

)

6 4n
(

1− Φ
(
εn1/2

))
by Csörgő (2010, Proposition 51.1). By Csörgő (2010, Lemma 34.2) we have

4n
(

1− Φ
(
εn1/2

))
6

n√
2πεn1/2

e−
ε2n
2 → 0,

which proves (A.3.10) and thus, (A.3.9). Now we only need to show

(A.3.11) sup
06t61

∥∥∥M̂n(t)−Mn(t)
∥∥∥ = oP(1) asn→∞.
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We apply the triangle inequality:

∥∥∥M̂n(t)−Mn(t)
∥∥∥ 6

∥∥∥Î−1/2n − n−1/2I−1/2
∥∥∥
∥∥∥∥∥∥
bntc∑
k=1

Zk − t
n∑
k=1

Zk

∥∥∥∥∥∥
+
∥∥∥În∥∥∥ ‖An(t)− tE‖

∥∥∥∥∥
n∑
k=1

Zk

∥∥∥∥∥ .
We have n−1În → I a.s., hence∥∥∥Î−1/2n − I−1/2n−1/2

∥∥∥ = o(n−1/2) a.s.

and ∥∥∥În∥∥∥ = O(n−1/2) a.s.

Using (A.3.9) and the definition of Mn(t) we have

sup
06t61

∥∥∥∥∥∥
bntc∑
k=1

Zk − t
n∑
k=1

Zk

∥∥∥∥∥∥ 6 n1/2
∥∥∥I−1/2∥∥∥( sup

06t61
‖Mn(t)−Bn(t)‖+ sup

06t61
‖Bn(t)‖

)

= OP(n1/2).

Here we have used the fact that the processes Bn(t) are identically distributed, therefore

sup06t61 ‖Bn(t)‖ = OP(1). According to Theorem A.3.3, we have∥∥∥∥∥
n∑
k=1

Zk

∥∥∥∥∥ 6

∥∥∥∥∥
n∑
k=1

Zk − I1/2W(n)

∥∥∥∥∥+
∥∥∥I1/2W(n)

∥∥∥ = OP(n1/2),

because
∥∥∥I1/2W(n)

∥∥∥ = OP(n1/2) due to the well-known growth rate of the standard Wiener

process.

Finally, because the supremum is a continuous functional on the space C[0, 1], we have

by the continuous mapping theorem and Lemma A.3.4

sup
06t61

‖An(t)− tE‖ = oP(1).

We have shown (A.3.11), and this completes our proof. 2
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Summary

The thesis is concerned with providing statistical methods for detecting change in the param-

eters of a stochastic process. This is generally a longstanding problem in time series analysis

(Csörgő and Horváth, 1997), but investigating it for branching processes has received less

attention.

The basic setup for change detection will be the following:

1. We will take a vector-valued process Xt, indexed either by the natural numbers or the

nonnegative real numbers and take a sample of it on the interval 0 6 t 6 T.

2. We will choose a parameter θt governing the dynamics of the process. The main

question will be whether this parameter is constant in t, or, formally, we would like to

test

H0 : ∃θ : θt = θ, t ∈ [0, T ]

against the alternative hypothesis

HA : ∃ρ ∈ (0, 1) : θt = θ′, t ∈ [0, ρT ) and θt = θ′′, t ∈ [ρT , T ]

for some θ′ 6= θ′′. An important additional condition will be for stability: θ, θ′, θ′′

have to be such that X have a unique stationary distribution under H0, and both parts

of the process (before and after the change) have a unique stationary distribution under

HA.

3. We will find an appropriate vector-valued function f such that

M t := Xt −X0 −
∫ t

0
f(θs;Xs−) ds

will be a martingale. Here Xs−, a slightly informal notation, means Xs for continuous

s and Xs−1 for discrete s. Similarly, the integral is simply a sum for discrete s.
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4. Assuming θt = θ for all t, we will estimate θ with θ̂T based on the conditional least

squares (CLS) method of Klimko and Nelson (1978).

5. We will replace θt with θ̂T in the definition of M t to obtain M̂
(T )

t .

6. We will prove that if θt is constant in t, then

M̂
(T )

u := Î
−1/2
T M̂

(T )

uT , u ∈ [0, 1]

converges in distribution to a Brownian bridge on [0, 1], for some random normalizing

matrix ÎT , which is calculable from the sample.

7. Consequently, we will construct tests for the change in θ, using the supremum or

infimum of M̂
(T )

u as a test statistic (based on the direction of change).

8. We will prove that if there is a single change in θt on [0, T ], then the test statistic will

tend to infinity stochastically as T →∞.

9. We will prove that the arg max, or arg min, of M̂
(T )

u is a good estimator of the change

point in θt.

The INAR(p) process

In Chapter 2, based on Pap and Szabó (2013), we will prove results for the integer valued

autoregressive process of order p (INAR(p)), defined by:

Xk = α1 ◦Xk−1 + · · ·+ αp ◦Xk−p + εk, k = 1, 2, . . . ,

where the εk are i.i.d nonnegative integer-valued random variables with mean µ, and ◦ is the

binomial thinning operator: for a random nonnegative integer-valued random variable Y and

α ∈ (0, 1), α ◦ Y denotes the sum of Y i.i.d Bernoulli random variables with mean α, also

independent of Y . This process was first proposed by Alzaid and Al-Osh (1987) for p = 1

and Du and Li (1991) for higher p values.

The parameter vector is

θ :=


α1

...

αp

µ

 ,

with the stability condition

α1 + . . .+ αp < 1.
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Summary

We are able to use the standard conditional least squares estimates from (2.4.1) and classical

martingale theory to create a test process that is shown in Theorem 2.5.1 to converge to a

p + 1-dimensional Brownian bridge. Based on this, we can construct the tests, as described

in subsection 2.5.1.

The weak consistence of the test is established in Theorem 2.7.1. The proof uses a

decomposition of the test process as given in (2.7.2), and Lemma 2.9.1 in order to estimate

the suprema of the negligible terms in the decomposition. It turns out that essentially the

same tools can be applied to prove the asymptotic properties of the change-point estimator,

given in Theorem 2.8.1.

The Cox–Ingersoll–Ross process

Chapter 4, based on Pap and Szabó (2016), is about change detection in the Cox–Ingersoll–

Ross (CIR) process:

dYt = (a− bYt) dt+ σ
√
Yt dWt, t ∈ R+,

where a, b, σ > 0 and (Wt)t>0 is a standard Wiener process. The constraint on a and b will

be the stability condition itself.

This process was first investigated by Feller (1951), proposed as a short-term interest-rate

model by Cox et al. (1985), and became one of the most widespread “short rate” models in

financial mathematics. Inevitably, therefore, describing its statistical properties is of great

importance and has received considerable interest.

Our parameter vector will be

θ :=

[
a

b

]

It turns out that the theorems and their proofs can be constructed along the same lines

as for the INAR(p) process. The estimates given in (4.1.1) are not the usual ones, but their

structure is similar to the CLS estimates in the INAR(p) case, and the martingale in (4.2.1) is

also similar. The main result under the null hypothesis is Theorem 4.2.1. Its proof depends on

the same apparatus as Theorem 2.5.1. Also, it is apparent that the statements of Theorems

4.5.1 and 4.6.1 are very similar to Theorems 2.7.1 and 2.8.1, respectively. This is reflected

in their proofs; however, some of the steps require more advanced tools. In particular, we

believe Lemma 4.7.2 (replacing Lemma 2.9.1) to be a new result, and the proof of Lemma

4.7.7 is significantly more involved than that of Lemma 2.9.7.

Parameter estimation for the Heston model

In Chapter 5, based on Barczy et al. (2016), we propose conditional least squares estimates

(CLSE’s) for the Heston model, which is the solution of a two-dimensional stochastic differ-
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ential equation:dYt = (a− bYt) dt+ σ1
√
Yt dWt,

dXt = (α− βYt) dt+ σ2
√
Yt
(
%dWt +

√
1− %2 dBt

)
,

t > 0,

where a > 0, b, α, β ∈ R, σ1, σ2 > 0, % ∈ (−1, 1), and (Wt, Bt)t>0 is a 2-dimensional standard

Wiener process. It is immediately apparent that Y is just the Cox–Ingersoll–Ross process

introduced before. The stability condition is b > 0 here as well, similarly to the CIR process.

Introducing CLSE’s for (a, b, α, β) based on discrete time observations turns out to be

impractical, as the conditional means, and consequently, the resulting partial derivatives

depend on the parameters in a complicated manner. Therefore we transform the parameter

space, as defined in (5.1.3), and derive CLSE’s for the transformed parameter vector, which

will result in linear partial derivatives, given in (5.1.4). We prove strong consistence and

asymptotic normality in Theorem 5.2.1, using the same tools of martingale theory as for

the CIR process (collected in Chapter 3) – however, the calculations turn out to be much

more cumbersome than in Chapter 4. Applying the inverse transformation to the CLSE’s

leads to estimates for the original parameters. These are given in (5.4.3), and their strong

consistence and asymptotic normality is proven in Theorem 5.4.2, based on Theorem 5.2.1

and the so-called delta method.
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Összefoglaló

Az értekezés célja, hogy olyan módszereket adjon, amellyel változást észlelhetünk egy szto-

chasztikus folyamat paramétereiben. Ez általánosságban véve egy régóta vizsgált probléma

az idősoranaĺızisben (Csörgő és Horváth, 1997), de az elágazó folyamatok területén ezidáig

kevesebb figyelmet kapott.

Módszerünk a következő lépésekből fog állni:

1. Veszünk egy vektorértékű Xt folyamatot, amelyet vagy a természetes, vagy a nem-

negat́ıv valós számokkal indexelünk, és mintát veszünk a folyamatból a 0 6 t 6 T

intervallumon.

2. Választunk egy θt paramétert, amely a folyamat dinamikáját iránýıtja. A fő kérdés az

lesz, hogy ez a paraméter t-ben állandó-e, vagyis tesztelni szeretnénk a

H0 : ∃θ : θt = θ, t ∈ [0, T ]

nullhipotézist a

HA : ∃ρ ∈ (0, 1),θ′ 6= θ′′ : θt = θ′, t ∈ [0, ρT ) és θt = θ′′, t ∈ [ρT , T ]

alternat́ıv hipotézissel szemben. Fontos további feltétel lesz a stabilitás: θ, θ′, θ′′

olyanok kell legyenek, hogy H0 mellett X-nek legyen egyértelmű stacionárius eloszlása,

HA mellett pedig ez a folyamat változás előtti és változás utáni részére is teljesüljön.

3. Keresünk egy vektorértékű f függvényt, amelyre

M t := Xt −X0 −
∫ t

0
f(θs;Xs−) ds

martingál lesz. Itt Xs− egyszerűen Xs-t jelöli folytonos s-re, és Xs−1-et diszkrét s-re.

Hasonlóképpen diszkrét s-re az integrál egyszerűen összegzést jelent.
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4. Feltételezzük, hogy θt = θ minden t-re, és Klimko és Nelson (1978) feltételes legkisebb

négyzetes (CLS) módszere alapján egy θ̂T -vel jelölt becslést adunk a θ paraméterre.

5. Béırjuk θt helyére θ̂T -t az M t folyamat defińıciójában, hogy megkapjuk M̂
(T )

t -t.

6. Belátjuk, hogy ha θt állandó t-ben, akkor

M̂
(T )

u := Î
−1/2
T M̂

(T )

uT , u ∈ [0, 1]

eloszlásban konvergál egy standard Brown-h́ıdhoz a [0, 1] intervallumon. Itt ÎT egy

véletlen normáló mátrix, amely a mintából számolható.

7. Ezt felhasználva teszteket definiálunk a θ-ban történő változásra oly módon, hogy M̂
(T )

u

szuprémumát vagy infimumát használjuk tesztstatisztikaként, a változás irányának

függvényében.

8. Belátjuk, hogy ha θt a [0, T ] intervallumon egyetlen pontban változik, akkor a tesztsta-

tisztikánk T → ∞ mellett sztochasztikusan végtelenhez tart, azaz a tesztünk gyengén

konzisztens.

9. Belátjuk, hogy az M̂
(T )

u folyamat minimum-, illetve maximumhelye jó becslés a θt-ben

történt változás időpontjára.

Az INAR(p) folyamat

A 2. fejezetben Pap és Szabó (2013) alapján bemutatjuk a p-edrendű egészértékű autoreg-

ressziós (INAR(p)) folyamatra elért eredményeket. A folyamat defińıciója:

Xk = α1 ◦Xk−1 + · · ·+ αp ◦Xk−p + εk, k = 1, 2, . . . ,

ahol az εk-k független, azonos eloszlású véletlen változók µ várható értékkel, és ha Y nemne-

gat́ıv egész értékű véletlen változó és α ∈ (0, 1), akkor α ◦ Y jelöli Y db, egymástól és Y -tól

is független α várható értékű Bernoulli-eloszlású véletlen változó összegét. A modellt Alzaid

és Al-Osh (1987) vezette be p = 1-re, majd Du és Li (1991) magasabb p értékekre.

A paramétervektorunk

θ :=


α1

...

αp

µ

 ,

a stabilitási feltétel pedig

α1 + . . .+ αp < 1.
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A (2.4.1) formulában megadott CLS becsléseket és klasszikus martingálelméletet használva

egy olyan folyamatot definiálhatunk, amelyről a 2.5.1 Tétel megmutatja, hogy a nullhipotézis

mellett egy p+1-dimenziós standard Brown-h́ıdhoz tart. Ez alapján a 2.5.1 szakaszban léırtak

szerint definiálhatunk változásészlelési eljárásokat.

A teszt gyenge konzisztenciáját a 2.7.1 Tételben látjuk be. A bizonýıtásban a (2.7.2)

felbontást használjuk fel, valamint többször alkalmazzuk a 2.9.1 Lemmát a felbontás elha-

nyagolható tagjainak becslésére. Ugyanezek az eszközök lesznek alkalmazhatók a változási

időpont becslésének aszimptotikus vizsgálatánál is, amelyet a 2.8.1 Tételben teszünk meg.

A Cox–Ingersoll–Ross-folyamat

A 4. fejezet Pap és Szabó (2016) alapján a Cox–Ingersoll–Ross (CIR)-folyamatban történő

változásészlelésről szól. A folyamat defińıciója:

dYt = (a− bYt) dt+ σ
√
Yt dWt, t ∈ R+,

ahol a, b, σ > 0 és (Wt)t>0 egy standard Wiener-folyamat. A stabilitási feltételünk maga az

a-ra és b-re tett megkötés lesz.

A folyamatot először Feller (1951) tanulmányozta, majd Cox et al. (1985) javasolták

”
short-term” kamatlábmodellként, amelyek közül az egyik legelterjedtebb lett. A folyamat

statisztikai vizsgálata ı́gy természetesen fontos kérdés volt és sok figyelmet kapott.

A paramétervektorunk a következő lesz:

θ :=

[
a

b

]
.

Ki fog derülni, hogy a CIR-folyamatra vonatkozó tételek hasonló módon fogalmazhatók

meg és bizonýıthatók, mint az INAR(p) folyamat esetén. A (4.1.1) formulában adott becslések

nem a szokásosak, de a szerkezetük hasonló az INAR(p) esetben kapott CLS becslésekhez,

és a (4.2.1) formulában definiált martingál is hasonló a diszkrét idejű megfelelőjéhez. A

nullhipotézis mellett kapott fő eredményünk a 4.2.1 Tétel, melynek bizonýıtása ugyanazt az

eszközkészletet használja, mint a 2.5.1 Tételé. Az is szembetűnő, hogy a 4.5.1 és 4.6.1 tételek

álĺıtásai rendḱıvül hasonĺıtanak rendre a 2.7.1 és 2.8.1 Tételekre. Ez a bizonýıtásokban is

megjelenik, azonban bizonyos lépések fejlettebb eszközöket ḱıvánnak, mint a diszkrét esetben.

Különösen is megemĺıtjük a 4.7.2 Lemmát, amely a 2.9.1 Lemma helyét veszi át, és amelyet

új eredménynek vélünk; továbbá rámutatunk, hogy a 4.7.7 Lemma bizonýıtása lényegesen

összetettebb, mint a neki megfelelő 2.9.7 Lemmáé.
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Paraméterbecslés a Heston-folyamatra

Az 5. fejezetben Barczy et al. (2016) alapján mutatunk be egy CLS módszeren alapuló pa-

raméterbecslést a Heston-modellre, melyet a következő sztochasztikus differenciálegyenlet

deifniál: dYt = (a− bYt) dt+ σ1
√
Yt dWt,

dXt = (α− βYt) dt+ σ2
√
Yt
(
%dWt +

√
1− %2 dBt

)
,

t > 0,

ahol a > 0, b, α, β ∈ R, σ1, σ2 > 0, % ∈ (−1, 1), és (Wt, Bt)t>0 egy kétdimenziós standard

Wiener-folyamat. Azonnal látható, hogy Y éppen az imént bevezetett Cox–Ingersoll–Ross-

folyamat. A stabilitási feltétel itt is, éppúgy, mint a CIR-folyamatra, b > 0.

Hamar kiderül, hogy diszkrét megfigyelések alapján CLS becslést adni az (a, b, α, β) pa-

raméterekre igen nehéz, mivel a feltételes várható értékek, következésképpen a parciális de-

riváltak, összetett módon függnek a paraméterektől. Ezért transzformáljuk a paraméterteret

az (5.1.3) függvénnyel, és a transzformált paraméterekre adunk CLS becslést, amihez már

lineáris egyenleteket kell megoldanunk. A becsléseket az (5.1.4) formula adja meg. Az 5.2.1

Tételben erős konzisztenciát és aszimptotikus normalitást bizonýıtunk ugyanazokkal a mar-

tingálelméleti eszközökkel, amelyeket a CIR-folyamatra használtunk (ezeket a 3. fejezetben

gyűjtöttük össze). A szükséges számolások azonban sokkal körülményesebbnek bizonyulnak,

mint a 4. fejezetben. A CLS becslésekre alkalmazva a transzformáció inverzét, becsléseket

kapunk az eredeti paraméterekre. Ezt az (5.4.3) formulában adjuk meg. Ezen becslések erős

konzisztenciáját és aszimptotikus normalitását pedig a 5.4.2 Tételben látjuk be, alapozva

egyfelől az 5.2.1 Tételre, másfelől az úgynevezett delta-módszerre.
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Pap, G. and Szabó, T. T. (2016). Change detection in the Cox–Ingersoll–Ross model. Statis-

tics & Risk Modeling, 33(1-2):21–40.
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T. Szabó, T. (2011a). Change point detection for integer-valued autoregressive (INAR(p))

processes. Paper presented at the Hungarian National Conference of Scientific Students’

Associations (OTDK).
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