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Chapter 1

Introduction

1.1 Historical background

Change detection is a naturally occurring question in statistics, and time series analysis in
particular. One of the most widely used assumptions in time series analysis is that the
dynamics of the process do not change over time, which allows us to collect a large enough

samples for analysis. Obtaining a test for that assumption is therefore a natural desire.

The most widely cited early papers are Page (1954, 1955), and much of the early work
was done in the field of control theory. The focus was at first (and to some extent, still is)
on detecting a change in the mean of a series of independent variables. The distributions
of the variables were often assumed to come from some parametric family, enabling the
statistician to use likelihood methods to test for a change. Two main generalizations of that
first model have suggested themselves from the outset: nonparametric cases, in which the null
hypothesis only states that our sample consists of i.i.d. variables, and classical time series
such as autoregressive moving average (ARMA) or generalized autoregressive conditional
heteroskedasticity (GARCH) models, and more recently, even functional observations (Berkes
et al., 2009).

As we have mentioned, likelihood-based methods have been successful for a wide range
of processes. Most of these results are skilfully collected and presented in the canonical
monograph of Csorgé and Horvath (1997). However, with our processes, the exact likelihood
is usually unavailable because we do not make any distribution assumptions. That being

said, our approach is motivated by the quasi-likelihood method of Gombay (2008).

The original cumulative sums (CUSUM) method of Page also continued to receive at-
tention and was used in contexts where the likelihood function was either incalculable or
impractical — see, e.g., Ploberger and Kramer (1992) and Lee et al. (2003). Also known as
the Hinkley method, it was used for ARMA models by Baikovicius and Gerencsér (1992) and
for hidden Markov models by Gerencsér and Prosdocimi (2010).
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U-statistics have also been applied to the problem, especially if there were no distribution
assumptions on the observations. For example, Gombay (2001) considered results under the

alternative hypothesis as well.

Also, a significant portion of the literature is concerned with sequential or online methods,
i.e., the observations are assumed to arrive one after another, and the objective is to detect
a change as soon as possible. Berkes et al. (2004) used quasi-likelihood scores, closely related
to our process, for this task. In contrast, our method will be offline, that is, we will receive

all of our observations before starting the analysis.

The main objective of this thesis is to prove asymptotic properties of the testing procedure
under the alternative hypothesis as well as the null hypothesis. We believe this to be impor-
tant because, if investigated only under the null hypothesis, a change-detection procedure is
essentially a model-fitting test, and results under the alternative are necessary to verify its

use for the more special task of change detection.

The difficulty in applying the standard results to branching processes lies in the additional
randomness introduced by the branching mechanism. This makes it impossible to follow
likelihood-based methods except under very special circumstances. We are left, then, with
few tools. Our method of choice is the martingale approach, since its foundations are well-
explored and have several canonical monographs — Karatzas and Shreve (1991) and Jacod
and Shiryaev (2003) will be the ones we use most. Also, martingale methods can be relatively

easily extended to continuous time, as demonstrated below.

Nevertheless, we will not try to conceal the fact that our research was mainly motivated
by Csorgé and Horvéath (1997) and Gombay (2008), even if their methods of proof were not
applicable to our processes. That motivation is largely explained by the fact that our first
focus was the INAR(p) process, which resembles an AR(p) process in its covariance structure
so it was hoped that the results for AR(p) processes can be extended to it. Indeed that hope
has come true, and the following pages hopefully demonstrate how much further that idea

can be taken if one is willing to perform more extensive calculations.

1.2 Notations

Let N, Z4, R, Ry and R, denote the sets of positive integers, non-negative integers, real
numbers, non-negative real numbers and positive real numbers, respectively. For z,y € R,
we will use x A y := min(x,y). By ||z|, ||A|| and p(A), we denote the Euclidean norm of
a vector © € R% the induced matrix norm of a matrix A € R%? and the spectral radius
of A, respectively. By Eq € R¥9, we denote the d x d identity matrix (the more common
notation I will be reserved for our information matrices), and by 1;, the i-th unit vector. The
Borel o-algebra on R will be denoted by B(R). Continous martingales will make a frequent

appearance; as usual, their quadratic variation will be denoted by (-).
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Unless otherwise noted, asymptotic statements are all to be understood as T" — oo, or
n — 00, as appropriate for continuous and discrete time, respectively. Modes of convergence
will be stated as iﬁ Py and * for convergence in probability, in distribution and almost
surely, respectively. For rates of convergence, we will use the Landau asymptotic notation:
for a stochastic process Xy, the notation X; = Op(g(t)) means that the collection of measures
(ﬁ(%))bto is tight for some ¢y > 0 (£ stands for distribution, and note that ¢ can be either
discrete or continuous here). Also, X; = op(g(t)) means simply that % 0.

As for the probabilistic setup, in continuous time, (Q,]—" , (Fi)ter +,IP’) will always be a
filtered probability space satisfying the usual conditions, i.e., (2, F,P) is complete, the fil-
tration (F)icr, is right-continuous and Fy contains all the P-null sets in F. Also, in case of
the Heston model, (F);er, will correspond to (Wi, By)ier, , a standard Wiener process, and
a given initial value (1o, (o), independent of (W, By)ser, , such that P(ny € Ry) = 1. Details

of this construction can be found in Karatzas and Shreve (1991, Section 5.2).

1.3 Key results: change detection

Chapters 2 and 4 describe change detection tests for a discrete and a continuous time process,

respectively. These tests have a lot of common steps, which are summarized below:

1. We will take a vector-valued process X, indexed either by the natural numbers or the

nonnegative real numbers and take a sample of it on the interval 0 < ¢ < 7.

2. We will choose a parameter 8; governing the dynamics of the process. The main
question will be whether this parameter is constant in ¢, or, formally, we would like to
test

Ho: 30: 6, =0, t€|0,T]

against the alternative hypothesis
Hpa:3p€(0,1): 6, =6, t€[0,pT) and 0, =0", t € [pT,T]

for some @' # 0”. An important additional condition will be for stability: 0, 8’, 8”
have to be such that X have a unique stationary distribution under Hy, and both parts

of the process (before and after the change) have a unique stationary distribution under
Ha.

3. We will find an appropriate vector-valued function f such that
t
M; =X;— Xg— / f0s; X5 )ds
0

will be a martingale. Here X ,_, a slightly informal notation, means X, for continuous

s and X 41 for discrete s. Similarly, the integral is simply a sum for discrete s.
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4. Assuming 0; = 0 for all ¢, we will estimate 6 with §T based on the conditional least
squares (CLS) method of Klimko and Nelson (1978).

5. We will replace 8; with éT in the definition of M, to obtain ]\/ZET).

6. We will prove that if 8; is constant in ¢, then

M, =1 "My el

converges in distribution to a Brownian bridge on [0, 1], for some random normalizing

matrix fT, which is calculable from the sample.

7. Consequently, we will construct tests for the change in 6, using the supremum or

(T
infimum of Mi ) as a test statistic (based on the direction of change).

8. We will prove that if there is a single change in ; on [0, 7], then the test statistic will
tend to infinity stochastically as T' — oo.

—~ (T
9. We will prove that the arg mazx, or arg min, of MEL ) is a good estimator of the change

point in 6.

Now we introduce the two special cases in our focus.

1.3.1 The INAR(p) process

The integer-valued autoregressive process of order p (denoted by INAR(p)) is defined by the

following equation:
(1.3.1) XkIOélOXk_1+--~+OpoXk_p+8k, keN,

where the ¢ are i.i.d nonnegative integer-valued random variables with mean p, and for a
random nonnegative integer-valued random variable Y and « € (0,1), oY denotes the sum
of Y i.i.d Bernoulli random variables with mean «, also independent of Y. This process was
first proposed by Alzaid and Al-Osh (1987) for p = 1 and Du and Li (1991) for higher p

values. In this case the parameter vector will be

a1

Qp

,u

Change detection methods for INAR(p) processes in general (i.e., with no prespecified innova-

tion distribution) have only been proposed in a few papers — we refer to Kang and Lee (2009)
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especially, where the authors give a test statistics similar to ours for a more general model.
However, no result are available in these papers under the alternative hypothesis and the
asymptotics of the change-point estimator are not given — we will give some answers to both
of these questions which strengthen the theoretical foundations of the method considerably.
Also, Hudecovd et al. (2015) used the probability generating function to detect changes in
the process. They prove the consistency of their test, but do not give the asymptotics of the

change-point estimator.

We will define our martingale (or rather, its martingale differences) in (2.2.4), and the CLS
estimates in (2.4.1). Our test process will be given in (2.5.2), and its asymptotic distribution
under Hg in Theorem 2.5.1. Under the alternative hypothesis the weak consistency of the
test is proved in Theorem 2.7.1, and the asymptotic properties of the change-point estimator
in Theorem 2.8.1. Finally, we will give a numerical illustration based on a widely analyzed
polio dataset in 2.10. These results have been published in Pap and Szabé (2013). Appendix
A contains some additional results, which our not necessary for our tests but are worthy
of interest from a theoretical standpoint — in particular Theorem A.3.5 about the strong

approximation of our test process under Hy.

1.3.2 The Cox—Ingersoll-Ross process
The Cox-Ingersoll-Ross (CIR) process:
(1.3.2) dY; = (a — bY;) dt + o/Y; dW,, t € R,

where a € Ry, b € Ry, 0 € Ry; and (W;)er, is a standard Wiener process. The
constraints on the parameter values ensure the ergodic behavior of our process — for details
see Theorem 3.2.1 below. These constraints also ensure that any solution of (1.3.2) starting

from a nonnegative value stays nonnegative almost surely — see Proposition 3.1.1.

This process was first investigated by Feller (1951), proposed as a short-term interest-rate
model by Cox et al. (1985), and became one of the most widespread “short rate” models in

financial mathematics.

Because of the central role that the process plays in financial mathematics, it has received
considerable interest from statisticians, but mostly in the space of parameter estimation.
Overbeck (1998) provided estimators based on continuous time observations, while the low-
frequency discrete time CLS estimators were proposed by Overbeck and Rydén (1997). Li
and Ma (2015) extended the investigation to so-called stable CIR processes driven by an

a-stable process instead of a Brownian motion.

In change point detection, more regular processes (such as Ornstein—Uhlenbeck) and
sequential analysis received most of the attention. The CIR process, which can be constructed

as a limit of branching processes, presents a more challenging problem since many standard
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results are not directly applicable to it, chiefly because the diffusion coefficient is not Lipschitz
continuous. Consequently, there are a handful of change detection tests for the CIR process in
the literature: Schmid and Tzotchev (2004) used control charts and a sequential method i.e.,
an online procedure. In contrast, our approach is offline, where we assume the full sample
to be known before starting investigations. They also supposed noisy observations, which
will not be our interest. Guo and Hérdle (2017) used the local parameter approach based
on approximate maximum likelihood estimates. In essence, they wanted to find the largest
interval for which the sample fits the model. Their method is based on a discrete sample,

whereas we will use a continuous one.

It turns out that the approach outlined in Chapter 2 can be extended to the CIR process
with relatively straightforward modifications, at least concerning the statement. Adapting
the proofs, however, required some results that are noteworthy on their own. In particular, in
Lemma, 4.7.2, which will be essential in continuous time, we prove a Hédjek-Rényi type result
estimating the tail probabilities of the supremum of a continuous time stochastic process.
This is an extension to continuous time of Lemma 2.9.1, and we believe it to be a new result

that may find other applications beside this particular one.

Our parameter vector in this case will be

-

Change detection in ¢ is not necessary, since we can establish almost surely whether o is
constant across our sample. Indeed, the volatility parameter o can be calculated almost
surely from an arbitrarily small part of a continuous sample, see, e.g., Barczy and Pap (2016,
Remark 2.6) or Overbeck and Rydén (1997, remark after Theorem 3.6).

We will give our estimators in (4.1.1), the martingale in (4.2.1), and the test process
in (4.2.4). The asymptotic distribution of the test process under the null hypothesis will
be given by Theorem 4.2.1. Weak consistence under the alternative hypothesis is proved
in Theorem 4.5.1 and the asymptotic properties of the change-point estimator are given in
Theorem 4.6.1. These results have been published in Pap and Szabé (2016).

1.4 Key results: parameter estimation

In the final chapter we will continue to extend our investigations by proposing conditional
least squares estimators for the Heston model. The Heston model is a solution of a two-

dimensional stochastic differential equation:

dY; = (a — bY;) dt + o1v/Y; dW;,
(1.4.1) e=( 2 VYW, t>0,

dX; = (a — BY;) dt + 02/ Y; (0dWy + /1 — 0> dBy),
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where a € Ryy, b,a,8 € R, 01 € Ryy, 09 € Ry, 0 € (—1,1), and (W, By)e>o is a 2-
dimensional standard Wiener process, see Heston (1993). It is immediately apparent that
Y is just the Cox—Ingersoll-Ross process introduced in (1.3.2). Various interpretations of Y

and X in financial mathematics are mentioned in, e.g., Hurn et al. (2013, Section 4).

Historically, most efforts have concentrated on parameter estimation for the CIR model
only, and not the higher dimension Heston model. Specifically, Theorems 3.1 and 3.3 in
Overbeck and Rydén (1997) correspond to our Theorem 5.4.2; but they estimate the volatility
coefficient o1 as well, which we will assume to be known. For a more complete overview of
parameter estimation for the Heston model see, e.g., the introduction in Barczy and Pap
(2016).

We will focus on the subcritical case exclusively, i.e., when b > 0 (see Definition 3.1.3). In
this case, just as in the previous section, the process Y has a unique stationary distribution.
We would like to introduce conditional least squares estimators (CLSE’s) for (a, b, «, 5) based
on discrete time observations. It will turn out, however, that, if not impossible, this is highly
impractical, as the resulting partial derivatives depend on the parameters in a complicated
manner. Therefore we transform the parameter space, and derive CLSE’s for the transformed
parameter vector, which will result in linear partial derivatives. Applying the inverse trans-
formation to the CLSE’s will lead to estimators for the original parameters, which could be
considered CLSE’s by a slight abuse of the term. However, we will refrain from referring to

them as such.

We do not estimate the parameters o1, oo and g, since these parameters could — in prin-
ciple, at least — be determined (rather than estimated) using an arbitrarily short continuous
time observation (Xt),c(o,7) of X, where T' > 0, see, e.g., Barczy and Pap (2016, Remark 2.6).
In Overbeck and Rydén (1997, Theorems 3.2 and 3.3) one can find a strongly consistent and
asymptotically normal estimator of o1 based on discrete time observations for the process Y.
In any case, it will turn out that for the calculation of the estimator of (a,b, a, ), one does

not need to know the values of the parameters o1, 09 and p.

An alternative approach to using CLSE’s would have been to calculate the discretized
version of the maximum likelihood estimators derived in Barczy and Pap (2016) using the
same procedure as Ben Alaya and Kebaier (2013, Section 4) apply for discrete time obser-
vations of high frequency. The relatively simple structure of the estimators we will arive at,

however, makes them more appealing to us.

By this point it will hopefully become apparent how much easier the simple structure
of CLSE’s makes the task of change detection, an avenue which has been opened for the
Heston model by these results, but not brought to its conclusion so far — this remains one of
the most natural direction in which to extend our efforts. On the other hand, the lengthy
calculations in the auxiliary lemmas in section 5.3 hint at the increasing complexity one has
to face in advancing further towards constructing change detection procedures — even if that

complexity promises to be merely computational and not conceptual.
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Instead of the original parameters a, b, o, 3, we will first estimate some transformed param-
eters, defined in (5.1.3). For these transformed parameters our estimates can be established
by the standard CLS method in (5.1.4). The strong consistency and asymptotic normality of
these estimators is proven in Theorem 5.2.1. After applying the inverse transformation, it is
relatively easy to construct the estimates for the original values and obtain their asymptotic
properties. The inverse transformation is given in (5.4.3), and the strong consistency and
asymptotic normality of the resulting estimates are proven in Theorem 5.4.2. These results
have been published in Barczy et al. (2016)
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The discrete case

2.1 Introductory definitions

A time-inhomogeneous INAR(p) process is a sequence (Xj)g>—p+1 given by

Xk—1 Xk—p
(2.1.1) Xp= > Gujt-+ Y &urjter KEN,
j=1 j=1

where {er : k € N} 1is a sequence of independent non-negative integer-valued random
variables, for each k € N and ¢ € {1,...,p} the sequence {&;:j € N} is a sequence
of i.i.d. Bernoulli random variables with mean «;; such that these sequences are mutually
independent and independent of the sequence {er : k € N}, and Xy, ..., X_,41 are
non-negative integer-valued random variables independent of the sequences {&; : j € N},
keN, ie{l,...,p}, and {e} : k € N}. The numbers «;} are called coefficients, and we
will refer to €3, €2,... as the innovations. Time-homogeneous INAR(p) processes have a

number of applications, which are summarized, e.g., in Barczy et al. (2011).

The reason that we initially define our process as time-inhomogeneous is that we would
like to test for a change in the parameters, therefore we have to allow them to vary over
time. In the proofs, however, a majority of the results will be based upon the properties of

time-homogeneous INAR(p) processes.

Now we proceed with the formulation of the statistical problem. We assume pup :=

E(er) < 0o and 0 < o} := Var(eg) < oo. Write the parameter vectors as

o1k

Qp,k

Mk
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and let us choose a subset PV of {1,2,...,p+ 1} such that
(2.1.2) PV = {i1,i9,...,4¢} for some £ > 0, i1 <ig<...<iy.
Also, we can write

NV = PVE = {1, o, dprie}y 1 <o <.or < jpiits
where HC denotes the complement of a set. Let us now define

(1) 9(]&)

(i1) pliz) 701(€ie))T7 n = (077,67, ...

@ = (01,00 ,pUr )T

The vector ¢, is the parameter vector of interest and ), is the 'nuisance’ parameter
vector. For a fixed number of observations n we want to test the null hypothesis

Hy : €1,...,&n are identically distributed and 6, =60, =--- =8,

against the alternative

Hy - there is an integer 7 € {1,...,n — 1} such that
pL=""F P F P ==y but ;==
€1,...,&r are identically distributed,
and €r41,...,&, are identically distributed.

Under the null hypothesis Hy, then, we have

Qag1 Qaln aq

(87
p,1 Apn Ap H
L H1 ] | Hn | L M|

2.2 Regression equations

The INAR(p) process is formally analogous to the AR(p) process. To exploit this analogy we

need to state several regression equations for the process.

10
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First we create a Markov chain from our process the usual way, by extending the state space:

Xk

X
(2.2.1) Xpo= |75

Xiep

The equivalent of (2.1.1) for the vector-valued process (Xg)ren defined in (2.2.1) is

p Xk—i
(2.2.2) Xp=> > &pj+en
i=1 j=1
where
E1k,j §okj Ep—1k,j Ep,k.j Ek
1 0 0 0 0
El»kvj = 0 ) 627k7j = 1 ? €p717k’] = 0 ) €p7k7] = 0 ) Ek = O
i 0 | i 0 | i 1 | i 0 | _O_

This form makes it even more apparent that the INAR(p) process is a special multi-
type branching process with immigration. According to standard literature (see, e.g., Quine,
1970), if the matrix

a1 Qo e Qpo1
1 0 0 0
(2.2.3) A= |E(& 1) - E(gp,lvl)] -
0 o --- 0 0
0 0 L0

is primitive (i.e., some power of it is elementwise positive), the ergodicity of the process
depends only on the spectral radius p(A), and the process is ergodic if p(A) < 1. In Barczy
et al. (2011, (2.7)), it is shown that this is equivalent to the condition that oy +... 4+, < 1.
For the primitivity, it is sufficient to have a;, > 0 and that the greatest common denominator
of the numbers ¢ such that a; > 0is 1. Equivalently, the process (2.1.1) is referred to as stable,
unstable or explosive whenever a1 +---4+ap <1, a1 +---+ap=1 or a;+---+aop > 1,
respectively. Basic differences between the three types are summarized in Barczy et al. (2011).
In this terminology, we will study only the stable case a1 +---+a, <1 with o, > 0. To

condense these conditions into one, we introduce the following definition.

11
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2.2.1 Definition. A time-homogeneous INAR(p) process (Xi)r>—pt1 is said to satisfy con-
dition Co, if B(X§) < oo, ..., B(X® ) < oo, E(f) <oo, an+---+ap<1, p>0 all
hold for it, and if, furthermore, ay, > 0 and the greatest common denominator of the numbers
1 such that a; > 0 is 1.

To further emphasize the similarities with AR(p) processes, we can define
(2.2.4) My =X, —E(Xp|Fro1) =Xp —a' X1 —p, k€N,
where (F),)nen is the natural filtration, and write

(2.2.5) Xp=AXp-1+ (u+ Mg)ly,

where 17 is the first unit vector. It is clear from the definition that M}, k € N is a series of

martingale differences. Based on (2.2.5) we obtain

X7 =(AX 1) + ((n+ Mi)11)®* + (AX 1) @ ((p + My)11)
+ (4 Mp)1,) ® (AX 1)
(2.2.6)
= AP2XG2 )+ (n+ M)* 172 + (o + My)(AX 1) © 1y
+(p+ M)l @ (AX 1),

where ® denotes Kronecker product of matrices.

2.2.2 Remark. We have chosen the INAR(p) process on account of its ubiquity in modelling
integer valued time series. However, in the following considerations, nothing about the matrix
A will be exploited other than its spectral radius. Therefore, our results should be equally

applicable to general p-type branching processes as well.

2.3 Asymptotic properties of the process under C,

Under Cy let us denote by X a random vector with the unique stationary distribution of
(X%)k>—pt1. Because our process is ergodic, we can apply the ergodic theorem. In its

well-known form it states that if E(| g(f)\(/)|) < oo for some function g, then
1 = a.s, NV
(2.3.1) - > 9(X) = E(g(X)).
k=1

This is, for example, Theorem 2 in I.15. in Chung (1960). However, instead of the convergence

of averages, we will frequently require the convergence of expectations, i.e.,

(2.3.2) EX%) SEX), e,

12



2.3. Asymptotic properties of the process under Cy

whenever the right hand side is finite. This is Theorem 14.0.1 in Meyn and Tweedie (2009).
The result in (2.3.2) also implies convergence of any component of the matrices. Under the

alternative hypothesis we will additionally apply

(2.3.3) > IP(X, =12) -~ P(X =1)| — 0.

p
TEL,

This result can be found in Meyn and Tweedie (2009, Theorem 13.1.2). We conclude our
introductory remarks with a definition. The following vector contains the variances of the

Bernoulli variables used in the evolution of the process:

(2.3.4) o= [ar(1—ap), ..., 0p(1 —ap)] .

The convergence rate in (2.3.2) can be estimated by the following lemma.

2.3.1 Lemma. Under Cy there is a constant m € (0,1) such that

|E(X:) - EX) = 0(x"),  |E(XE2) ~E(X )| = O(x").

Proof.

We use (2.2.5) to conclude that
E(X;) = AE(X5_1) + pli.
Taking the limits as & — co we have
E(X)=AE(X) + ply,

hence

(2.3.5) E(X;) — E(X) = A(E(X)1) - E(X)).
Similarly, from (2.2.6) and E(MZ2|F—1) = o] X—1 + 0% we have

(2.3.6)

E(XP2) -~ E(X ©

T = ATERXE) - EX ) + (o] (B(X o) — E(X)))157

+ u(AEX 1) - E(X))) @ 11 + p1y @ (A(E(X 1) — E(X)))

) +192a] (B(X 1) - E(X))

+ (A1) (E(Xg1) —E(X)) + u(1; @ A)(E(X 1) — E(X)).

= AP(E(X %) - E(X

Here we used the fact that for any ¢ € R and real vector v we have cv = vc¢, where the second

13



Chapter 2. The discrete case

multiplication is a proper matrix product. Furthermore, we used the following property of
the Kronecker product: for any matrices A, B,C, D, if the operations on both sides are
permitted, we have (AB) ® (CD) = (A ® C)(B ® D); specifically, if C' is a column vector,
(AB)C=(AB)®(C-1)=(A®C)(B®1) = (A® C)B (this identity can also be used

when the first factor consists of a single factor instead of the second). Hence,

E(X;)-E(X) A 0 ]| E(X)1)-E(X)

—~®2 = ~—®2 .
E(XP)-E(X ) 19%a] +p(A® 1) +u(l1 ® A) A®?||E(XT?)-E(X )

Let us denote the multiplicating matrix on the right hand side by D. We note that D is
block lower triangular and that due to the properties of the Kronecker product, p(A%®?) =
(p(A))? < p(A) . From these it is clear that p(D) = p(A) < 1. It is well-known that then
there exists an induced matrix norm |-||, for which p(A) < ||A||, < 1. This, and the

equivalence of vector norms suffice for the proof. O

2.3.2 Remark. The finiteness of the respective moments of the stationary distribution can
be derived using the same approach as in the proof of formulas (2.2.3), (2.2.4) and (2.2.10)
in Barczy et al. (2011). We note that the stationary distribution has exactly as many finite
moments as the innovation distribution and the initial distributions have in common, because

the Bernoulli distribution is bounded and therefore all of its moments are finite.

The following lemma will be used for our results repeatedly. It shows that while the values
of the process are not independent, their dependence is weak and the autocovariance of the

process decays rapidly, so that the sum of all autocovariances up to n is linear in n.

2.3.3 Lemma. Under Cy we have

(i) Var(Xi+ Xo + ...+ Xp) = 231" Cov(X;, X;) = O(n),

(ii) Var(Xle_q + X2X2_q + ...+ Xan_q) = Z?,jzl COV(XiXi_q,Xij_q) = O(n) fO?”
all 0<g<p—1.

Proof. Although the lemma is stated for the process (Xp,)nen, calculations will require that

we investigate the process (X, )nen. Therefore, we will prove the following statements:
(2.3.7) |[Var(X1+ Xao+ ...+ X,)|| = O(n)

in the place of (i) and

(2.3.8) [Var(X$? + X§% + ...+ X¥%)|| = O(n)

in the place of (ii).

14



2.3. Asymptotic properties of the process under Cy

First we will prove (2.3.7). Since (2.3.2) implies that (||Var(X;)|),cy is a (convergent and

hence) bounded series, we will only need to deal with

Zn: COV(XZ‘, X]) — zn: COV(Xini)a

ij=1 i=1
since the latter sum is clearly O(n). It is immediate from (2.2.5) that
Xp —E(Xp) = A(X o1 — E(X5_1)) + My1y.
Let us now fix 1 <4 < j and write
Cov(Xi, X;) = E [(X: — E(X))(X; — E(X,))]
(2:3.9) = E |(X: - B(X:) E(X, ~ E(X;)|F-) |
—E |(X; — B(X)(A(X;1 — E(X;-1)) | = Cov(Xi, X;-1)AT.

If we perform the calculations for the case 1 < j < i as well, we can see that, after |j — 1]

iterations,
(23.10) Cov(Xi, X;) = AU Var( X ings ) (A1),

Because p(A) < 1, there exists a matrix norm ||-||, for which p(A) < ||A]|, = 7 < 1.
With this norm, (2.3.10), and the boundedness of (Var(X};));cn we can establish

HCOV(Xh XJ)H* - O(ﬂli_jl)v

which yields (2.3.7) immediately.

For (2.3.8) our reasoning will be very similar, although with more tedious calculations.
First we note that (2.3.2) implies boundedness for HVar(Xfw)H also. From (2.2.6) we have

E(X}? — E(X %) Feo1) = A®(XG2) - E(X2) + o (X1 — E(Xp-1)177
+ p[AX 1 —E(Xp-1))] @ 11 + 51y @ [A(X -1 —E(X k1))
= APA(XP? - EB(XP%) +17%a) (X1 — E(Xj-1))
+ u[A @ L ( X1 —E(X 1)) + (11 @ A) (X o1 —E(X k1)),
analogously to (2.3.6). Now, similarly to (2.3.9) we get, for 1 <i < j,
Cov(X {2, X9?) = Cov(X %, X52)(A%%) T + Cov(X %, X 1)on (1777

+uCov(X®% X; 1) (A® 1) +puCov(XE% X, 1) (L A)".

15



Chapter 2. The discrete case

Here
Cov(X 2, X ;1) = E[(XP? —B(XP) (X1 —E(X;0) ],

a p? x p matrix. Also similarly to (2.3.9) we have
Cov(X%? X ;) = Cov(X$? X,;-1)AT.

Summarizing, we get the following regression:

(2.3.11)
Cov(XP*, X)) | A 0 | |[Cov(XP% X, 4)"
Cov(X %, X9%)T 1P%a] + p(A® 1)+ p(l1 © A) A®?] |Cov(X P2, X927

Note that the multiplicating matrix on the right hand side is just D from the proof of Lemma
2.3.1. Now, similarly to (2.3.10), we have

(2.3.12)

2 o
Cov(X %, X ;)" _ pU-i+ COV(Xiin(i,jyXmin(i,j))T (DT)(%JH .
Cov(X$?, X;Z)Q)T Cov(X 2 X2 ))T

min(z,5)’ <7 min(¢,5

Now we only need to note that (Cov(X P2, X;))eny is a bounded sequence due to (2.3.2),
and we can finish the proof of (2.3.8) in the same way as (2.3.7). O

2.4 Conditional least squares estimates

Recalling (2.2.4), the conditional least squares estimators of the parameters, first introduced

by Klimko and Nelson (1978), can be calculated by minimizing the sum of squares

I, 2 _Ll¢ T 2
Ry(aq,...,0p, 1) := §ZM’<~‘ = §Z(X’“ —a Xg_1— )
k=1 k=1
with respect to o, ..., ap, u. With a reasoning completely analogous to that of Lemma 3.1

and Proposition 3.1 in Barczy et al. (2014b) we can show that whenever Q,, is invertible, R,

has a unique minimum given by

p o B[] o] o

Iin

Also, with the help of (2.3.1),

(2.4.2) Zn 2% 0 =F

16



2.4. Conditional least squares estimates

Now, we will show in A.1 that Q,, is, in fact, invertible with an asymptotic probability of
1, therefore the parameter estimates exist and are unique with an asymptotic probability of
1. As all our results our asymptotic, this will be sufficient for the purposes of the paper.

)

Replacing the parameters by their estimates in M} we obtain M, ,gn , l.e.,

—~ -~ X —
(2.4.3) M™ .= X, -9, [ ’; 1] .

Although not a parameter in which we are looking for change, the estimate of the variance

of the innovation o2 will also appear in our test process, therefore we have to provide an

estimator for it. To do this, we introduce
Ny = M — E(M?|Fr—1) = MP —a1(1 —a1)Xpq — - — ap(1 — ) Xpp — 02, k=0,
Minimizing Y 7_, N? with respect to 0% we obtain the conditional least squares estimate

1 n
(2.4.4) 72 = - > (M = on(1 = 00)Xpoy — -+ — ap(1 = 0p) Xp—p).

k=1
However, in this estimate the true parameters are still present. The estimate that we will
use is given by replacing the a coefficients and p both in the formula and in M, ,3 by their

estimates:
(24.5) 62 = —% :1 ((ﬁén)f — & (1 - a@) Xjqg— - —a (1 - a]gm) Xk_p) :

The strong consistency of the estimates is established below. This is a well known result
by Du and Li (1991), we only include it to demonstrate a relatively simple proof with our

notations.

2.4.1 Theorem. (Du and Li, 1991) If the process satisfies Cy then

(n)

~92 a.s,

(2.4.6) 0" 250 and 52 2% 52,

Proof. First of all, it is a matter of simple calculations (see A.2) and a straightforward

application of (2.3.1) that, provided that the second moment of ¢; exists,

1 < ~
2.4.7 N ME s ol BE(X 2
( ) n}; i — a, E(X)+ 07,

17



Chapter 2. The discrete case

with a, given in (2.3.4). Hence, taking the limits of the expectations in (2.2.5) and (2.2.6)

we have

EX) = AEX)+pu
EX™) = AREXTY) 4 (12 +al E(X) +02) + pler ® AE(X) + AE(X) ® e1).

Now we note that

Xk
U = , keN
X1

satisfies a similar recursion to (2.2.2). The equivalent of the matrix A can then be shown to
have a spectral radius smaller than 1, hence (Uy)gen is ergodic, and we can apply (2.3.1).
Moreover, it is clear that if U denotes a vector with the unique stationary distribution of
(Uk)ken then

L
I
ol

7 (p+1)
and for the components of U we also have

U@ U®+1)

~ L
U(I)ZZ&J._F..._}_ Z &pj+ e,
j=1 j=1

where &; ; £ 11,0 =1,...,p, j € Nand ¢ £ €1 such that all these variables are totally
independent and also independent of (U®, ..., U®))T  Hence (2.3.1) implies.

:
-

n X _pt1

1 Xk-1| p Xy
I (P SLYRRES i
=1 j=1

(2.4.8)

=E ((051)?0 +o ap),z—p—i—l + u)

as n — oo (here € £ £1).

From this we immediately conclude

~(n 11 X
0():<Q") 12)@[ - 1] 5 Q7'Qo=.
n nkzl 1

A similar result can be derived for the estimate of o2. By recalling (2.4.7) and computing

the strong limit of the other summands in (2.4.4), we obtain the strong consistency of 2

18



2.5. Construction of the test

immediately. The same reasoning shows that if the second moment of the stationary distri-
bution is finite (in this case we already know that 5(") is a consistent estimator), then the
limits of the estimators E% and 3% are the same almost surely; hence, the strong consistency
of 52 is established. O

2.4.2 Remark. The CLS estimates are strongly consistent under the null hypothesis only,
and the estimation procedure itself supposes that the null hypothesis is valid; however, the
calculations can be carried out under the alternative hypothesis as well. Under the alternative

hypothesis the weak limit of §n is given in Lemma 2.6.3.

2.5 Construction of the test

We will use a formal analogy between the INAR(p) process and the well-known AR(p) process
(Venkataraman, 1982) to obtain analogues of score vector and information quantities as in
Gombay (2008). We briefly recall the motivation of the test process as given in T. Szabd
(2011b). Due to the martingale central limit theorem,

— Z Mk A (ﬁwt)te[o,l] )

te(0,1]

where c is a constant depending on @ and o2, and (W;)o<i<1 is a standard Brownian motion.

Therefore, by a rough approximation
(My,...,M,) ~ N(0,cE,),

where E, is the n x n identity matrix. The approximate likelihood function is

1 R~ o2
(2me)n/2 P 727022 R
k=1

We will take the derivative of the log-likelihood function and work with that quantity. The
first term will be regarded as constant. This is a simplification because ¢ actually depends
on the parameters but taking this into account leads to calculations that are difficult to
handle. Also, we will not take into account the constant factor before the sum of the M
but will rather work with the analogue of the information matrix. Therefore, we consider the

following analogue of the loglikelihood function:

n
Ry(o1,...,0p, 1) = —2~1 ZM,?
k=1
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Chapter 2. The discrete case

Note that this is the sum that we had to minimize for CLS estimations. The role of the score

Xj—l
1

vector will be played by

k
~VR(8,) =S M"
j=1

The information matrix I, is defined by

I, := i:IE[{VRk(G) — VR 1(0)}{VRk(0) = VR 1(0)} " | Fio1]
k=1

(2.5.1) .

X1 || Xk
1 1 ’

where o, comes from (2.3.4). Now we define I, by replacing in I, the variance o and all

the parameters in @ by their CLS estimates. This leads to the p + 1-dimensional test process
(M, (t))o<t<1 given by

[t
_ . [ X
(2.5.2) M) =1, M,E")[ ’; 1].
k=1

Note that the process (M, (t))o<i<1 can also be written in the CUSUM form

nt
M) =1, LZJXk [X“
k=1 1

=12 aLmJ an, =12 ~ ~
—4n QLntJ <[,\ ] - [ ]) —4in QLntJ <0|_ntj _071) :

Bt fin,

" X
] —Quuy Q. Y X | 1]
k=1

Under the null hypothesis we have the following result, which allows the construction of

various test statistics.

2.5.1 Theorem. If (Xy)k>—pt1 satisfies Hy and condition Cy, then

—

D
M, — B as n — 0o,

where (B(t))o<t<1 s a (p + 1)-dimensional standard Brownian bridge, and 25 denotes

convergence in distribution on the Skorokhod space D([0,1]).

2.5.2 Remark. This theorem will be sufficient for our tests, and its proof is relatively simple.
It is of theoretical interest, however, whether this convergence can be strengthened. It turns
out that we can, in fact, prove that there is a series of Brownian bridges that our test process

approximates in the strong sense. This will be presented as Theorem A.3.5 later on.
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2.5. Construction of the test

First we show the following application of the martingale central limit theorem.

2.5.3 Theorem. Let

1 X1
Z,(t) = Zi, tel0,1], Z = M s k=1,2,
0= 3z el ]
Under the assumptions of Theorem 2.5.1
anIlﬂw, n — 00,

where (W(t))o<t<1 is a (p + 1)-dimensional standard Wiener process.

Proof. By (2.3.1) we have

1)

and since o; and 6, are strongly consistent estimators, therefore we have

(2.5.3) AN T=FE | (a X +0?)

(2.5.4) n ', 25T

as well. We will use the martingale central limit theorem for the martingale differences

ﬁzk, neN, k=1,2, ..., n. To compute the variance function, we write
[nt] |nt| T
1 LntJ 1 Xk—l Xk—l
S E(ZyZ[ | Fr) = —— Y E(M}Fi
n;(kklfkl) - WJ;( k!kl)[ ) ][ .
i 1 X [x0]
n T 2 k—1 k—1
= e a* Xk_ +0
n |nt] ;( 1+ o) 1 ] [ 1 ]
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Chapter 2. The discrete case

It remains to check the so-called conditional Lindeberg condition:

(e SR (T

Xrezos

~7:k: 1)

E(M{|F )(XP 4. A+ X, +1)

’Vl

1
= o2
k=1

[nt)

1
= W ZP(Xk—I)a
k=1

where P is a polynomial of degree six, because E(M|Fx—_1) is a second-degree polynomial
of X1 (this is is detailed in section A.2). The sixth moment of the stationary distribution

is finite due to the assumptions in Cg, hence (2.3.1) implies

Lnt)

1 a.s. ~
il > P(Xp1) 25 E(P(X)) < .
k=1
This means
[nt]
52n2 Z P(Xp1) 250,

implying Lindeberg’s condition. All the conditions of the martingale central limit theorem

have been checked; the proof is therefore complete. O

Based on this Theorem, we can use the structure of the estimates to complete the proof of

our main result under the null hypothesis.

Proof of Theorem 2.5.1. Let us introduce the notation

X1

. k=1,2,...
1

First we note that

[nt| |nt|

) o 7 Xy,
(2.5.5) Z z)" = v > (2~ Zy) = Z Zp+ Z [ 11] .
k=1 k=1

Recalling the definitions of M} and M, Ign),

) (e ) s 1]
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2.5. Construction of the test

Substituting 8, from (2.4.1),

/én_OZQ;Ll (ZXk !Xk:—l )_0

k=1 1 |

n (X, | N[X X, ]
(2.5.6) =@, [ Yo x| - U 6T

k=1 L 1 i k=1 1 1

hence by (2.5.5),
1/2 [nt] ) 1/2 [nt]
~— 70 _ mi
(2.5.7) 1,7z, = Z —Z1— Q| Qn 1 Z
k=1
In the next step we notice that according to (2.3.1),

nt]
n

-1
Q@i = ] (LnltJQV“fJ) (iQn) A 1 Qu, Quy = tEp1 Ve [0,1],

where E,1 is the p + 1-dimensional identity matrix and

ol

Now we apply (2.5.7), Theorem 2.5.3, and (2.5.4) to conclude that

T

nt
31 Z L5 W(t) — W) )sepoy-
k=

tel0,1]

This completes our proof.

2.5.1 Testing procedures

By the continuous mapping theorem we obtain the following corollary of Theorem 2.5.1.
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Chapter 2. The discrete case

2.5.4 Corollary. Under the assumptions of Theorem 2.5.1 we have

(2.5.8) sup //\/Ygf)(t) N sup B(t),
0<t<1 0<t<1
. "0 D .
(2.5.9) Oggilj\/ln (t) — ogtlil B(t),
(2.5.10) sup |[MD (&) 25 sup |B(t)]
0<t<1 0<t<1
as n — 0o, where (ﬂ/l\,(f) (t)o<i<1, t=1,...,p+1, denotes the components of (J/\\/ln(t))ogtgl,

and (B(t))o<t<1 1S a standard Brownian bridge.

Since (B(t))o<t<1 in Theorem 2.5.1 has independent components, we need to define the
tests component-wise only. For simultaneous test-for-change in d parameters, to have an
overall level of significance «, we use o :=1— (1 —a)'/¢ for each component. We can
test for change in a single component, #%), i € PV (with 00) = q; fori=1, 2, ..., p and
6P+ = ;i according to the definition of ) in the following way:

Two different tests can be constructed:

Test 1 (one-sided): If

sup MO () > Ci(o*) or inf MD(t) < —Ci(a*),

0<t<1 0<t<1

then we conclude that there was a downward or upward change in parameter 6() (respec-

tively) along the sequence Xo, X1, ..., Xp.

Test 2 (two-sided): If

sup [MD(1)] = Cala®),

0<t<1

then we conclude that there was a change in parameter 6 along the sequence Xy, X1, ...,
X,

Critical values are obtained from the limit distributions in Corollary 2.5.4, namely, from
the identities

]P(sup B(t) > az) —e 2" >0,

o<1
o0
2,.2
P < sup |B(t)| > 93) =2) ()M p >0,
0<t<1 k—1

respectively, where (B(t))o<t<1 is a Brownian bridge.



2.6. The process under the alternative hypothesis

2.6 The process under the alternative hypothesis

While in Theorem 2.5.1 we were able to consider longer and longer samples taken from the
same process, this approach has to be modified for the alternative hypothesis. More precisely,
we have to consider a series of time-inhomogeneous INAR(p) processes, where the n-th one
has a point of change at |np| (we will suppress this in the notation for simplicity). Now,
the parts of these processes before the change (i.e., (XZ)ZLZ’{J) can be handled as a sample
taken from an infinite INAR(p) process (at least in distribution), but this is not true for the
second part (i.e., (X;)i>|np|+1), because the initial distribution of this process depends on n.
Therefore, for a rigorous analysis we need to refine the results of 2.3. We will impose some

additional conditions on the parameters of the process, which are summarized below.

2.6.1 Definition. We will say that an INAR(p) process (Xi)p>—p+1 satisfies Ca if 7 =
|np] for some p € (0,1), both (Xi)—pti<k<r and (Xi)k=r+1 satisfy condition Cqy, and the

parameter vectors for the processes (Xy)_pri<k<r and (Xg)k=r+1 are

/ "
0 = [a/] , and 0" .= !a//] ;
u 1

-~/ -/
respectively. In this case, X and X will denote variables with the unique stationary distri-

butions of the two halves of the process, respectively. We will use the following notations:

T

/X/, fX//T ) X” 3{/// B / )
BT} ace([FIFT) ammnoner
1 1 1 1

Q =E

2.6.1 Ergodicity
The equivalent of (2.3.1) is the following.

2.6.2 Lemma. Under Cp we have

Y g(Xk) S EX))),
k=|np]+1

1

(2.6.1) ]

whenever g : 7 — R with E(|g(f)z”)|) < 0.
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Chapter 2. The discrete case

Proof. For an arbitrary ¢ >0

n
1 —~

Pl X X0 -EGE")| >
[ S0 Ay Y

n
—/

=S P Y X B )| > e Xy = o | B(X ) =),

zeZb " \‘an k=|np|+1
and
1 n —
P k=|np|+1

by the ergodic theorem for each x € Zﬁ, additionally

P(X |y = 2) < |B(X | = 2) —P(X =2)| + P(X = 2),

np np|

and one can use (2.3.3). O

We will also apply that for all € > 0 there exists v such that
(2.6.2) IE(X k) —E(X )| <e  forall n>v andall k> wv.
For this, first observe that as a consequence of (2.3.5), there exists 7" € (0,1) such that
NE(X ) — EX )| < (@) E(X ) —E(X)| k€N

Next, for all 7 > 0, choose v; and wp such that (/) < n forall k > v; and
[ E(X |np)) — E(}/)H <n forall n>wv,. Hence

- -~/ -~/ -~
IE(X [ppj2) — E(XO) < 01 E(X ) — E(X)| + | E(X) - E(X)])
2 -~/ -~
<7+l B(X) —E(X).-
For the behavior of the CLS estimates under Cp, we have the following result.

2.6.3 Lemma. Under C5 we have

6, 6:=Q  (hQ0+(1-9Q"e")
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Proof. By (2.3.1) and (2.6.1) we obtain

1 1 1 O Xp—1| | Xk—1| p ~
an:*QanJ-i-* Z [ ] [ ] —>PQ/+(1—p)Q”:Q,
n n n 1 1
k=|np|+1
as m — o0o. Moreover, exactly as in (2.4.8),
Lnp)
1 X
(2.6.3) = NP % R e «
"= 1 a

as m — oo. In a similar way, using (2.6.1)
1 n Xk,1 P «
- Y X [ ] — (1-pQ" .
n 1 NH
k=|np|+1

The second statement of the lemma can be proved in the same way by an analogy with
(2.5.3). O

2.7 Consistency of the test

The following theorem, the analogue of Theorem 3.1 in Huskovéa et al. (2007), describes
the behavior of the maximum of the test process if a change occurs in the mean of the
innovation. An immediate consequence of the theorem is that the test statistic tends to
infinity stochastically as n — oo, which suffices for the weak consistency of the proposed

test. For further discussion of this result, see Remark 4.5.4, which applies here equally.
2.7.1 Theorem. Suppose that Cy holds. Fori=1,2,...,p+ 1, let us define
/2

b= 17T (@) + (L= p)@) )70 - 0.

If ¢; > 0 then for the i-th component of the test process,

sup J/\\/ln(t)(i) = nl/zwi + o]p(nl/Q),

0<t<1

and conversely, if ¥; < 0 then

Proof. We will only prove for ¢ = 1 and 1 > 0, the other cases are completely analogous.
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Chapter 2. The discrete case

We will use the following notations:

T T
X X X X X
s TR e e N v

and similarly for M] and Z}. The proof will be given for the process before [np] in
detail. The analysis of the process after |np| can be handled analogously. In the proof we
will rely repeatedly on ideas from Huskova et al. (2007). The task is essentially to determine

the weak limit of the supremum of

— ) X,
nY2M,(t) = n T Z M,gn)

=L 1
(2.7.1)
T 1z ~—1/2 Lnt] X —
+n 1, = I Z kol M,in).
" = L1
For the first term of (2.7.1) we apply the following decomposition for k < [np]:
X (X1 X))
k-1 M}gn) | xR B,
1 1 1
(X1 X] X X,
= [T = T e = T (-8
| 1] | 1] 1 1
(X1 X X,
(2.7.2) = |7 M +E "”‘1] [ ’“‘1] )
1 1 1

+E

X X !
k—1 k-1 > N
] [ Y-

and similarly if we replace M} and @ with M’ and 0", respectively.
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2.7. Consistency of the test

Based on (2.7.2),

(2.7.3)
~—1/2 L] Xi_1]| —~
S0, |nt]) :==n""1 T T [ ] M
k=1 1
_ n—11ﬁ1/2§t:J [X’“] M}
k=1 1

|nt] r T
~_ X | [Xee -

k=1

[nt]
+ n_llljil/2 Z (]E

k=1

nt] (T T
- X1] [X5 L
ot PR T | 660
=\ 1 1

=: 51(0, |nt],0) + S5(0, |nt],0') + S5(0, [nt],8) + S4(0, [nt]),
and similarly,
S(0, |nt]) = S1(0, |nt],0”) + S2(0, |nt], 0") + S3(0, [nt],8") + S4(0, | nt)).

Introducing now S;(a,b,0) := S;(0,b,0) — S;(0,a,60), i = 1,2,...,p+ 1, the quantity that

interests us is

(2.7.4)
sup S(0, [nt]) — 1| < sup [S1(0, [np) A [nt],0") + Si(|np] A |nt], [nt],8")|
te[0,1] te[0,1]
g (5200, Lnp] A Lnt], 0+ Sy(lnp] L], Lt 67)) =

+ tzl[épl] ‘S3<07 [np| A LntJ ) 0/) + S3([np] A LntJv [nt], 0”)‘

+ sup |S4(0, [nt])|.
te(0,1]

The first, third and fourth terms in (2.7.4) are all op(1) according to Lemmas 2.9.3, 2.9.2 and
2.9.4, respectively. All that remains is the second term. Let us notice here that Q" and Q"

are both symmetric, which we will exploit repeatedly. It is evident from the definition of 0
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Chapter 2. The discrete case

(see Lemma 2.6.3) that

0 —0=0—(1-p)(p@ +(1-)Q")'Q"(6' "),

and so

g e T
1,1 "’k (H ﬁ ] )(0'?9’)1J“2Q'<1p><pcz'+<1p)Q">1Q"<0'0">

and similarly,

1,7 *E (

since, by an easy calculation,

(@) + (= p@) ™) =p1-0) (Q (@ + (1 -0Q") Q).

~ 17 =t 1
X X ~ ~
| ] [ 1 ] ) (0"—8) =11 °Q"(1- )o@ + (1 - p)Q")'Q"(6' 0"

Now we can write

sup (S2(0, [np] A [nt],0') + Sa(|np| A [nt], [nt], 6") — 1)

te(0,1]
< | suwp (anj Alnt]  (Int] — [np])* 1) "
t€[0,1] np n(l—p)
(pT)NE [ 0 E(Y.) - E(Y,)] !
+T_1117_1/2 sup / > Y (0’ — 6) du
tef0.1] |Jo [E(Y3) —E(Ya) E(Y7) - E(YZ)]
(PTINE [ 0 E(YL) - E(Yy)]
—_— P — ~
+ 7711 12 sup / (Yoo) (¥o) (60" —0)du
tef0,1]{/o E(YL) - E(Y.) E(Y7)-E(YZ)]

The second and third terms converge to 0 by Lemma 2.3.1. We conclude the proof for the
first term in (2.7.1) by noting that the supremum of the first term is clearly attained at t = p

and is
[np)

1 - 22
np

— 0.
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2.8. Estimation of the change point

All that remains is showing that the second term in (2.7.1) is op(1). To see this, consider,

with the Li-norm ||-||, and its induced matrix norm ||-||.,
~ —1/2 |nt)
In T X T (n
sup n 11, — —TI 1/2 Z bl M,g )
te0,1] n k=1 1
(2.7.5)
= Lnt]
I, e T T Xk T r(n
I, 712 H 7112 sup |[n-17 1/22 k—1 M,E ) ’
n * t€[0,1] — 1

which is clearly op(1) since the first factor is op(1) (note that I is invertible, hence we can
use Lemma 2.6.3 and the continuous mapping theorem), the second factor is finite, and the

third has just been shown to be K + op(1) for some constant K. O

2.8 Estimation of the change point

Based on the score vector analogy, if there is a change in the i-th parameter, the estimator

of 7 is
~ . @y @
(2.8.1) Tn:=ninf ¢t € (0,1) : M, (t) = sup M, (t)
0<t<1
for the downward one-sided test,
(2.8.2) 2= ninfdte (0,1): M @) = inf M (1)
" ’ " o<t<1~ "
for the upward one-sided test, and
~ . — (i) — (4)
(2.8.3) T :=ninf {t € (0,1) : M, (t)| = sup M, (¢)
0<t<1
for the two-sided test.
2.8.1 Theorem. If C4 holds, then we have
Tn — |np] = Op(1) as n — 0o.

Consequently, if we define p, := %", then pp, — p = Op(n~1).

2.8.2 Remark. This result is slightly stronger than the similar Proposition 3.1 in Huskova
et al. (2007). Similar results are valid for change in a location parameter (see Csorgé and
Horvath, 1997), and in these cases the limit distribution is nondegenerate. Therefore we can

conjecture that Theorem 2.8.1 cannot be improved upon in terms of convergence rate.
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Chapter 2. The discrete case

Proof. The statement can be written in the form

lim supP(|7,, — [np]| = K) =0,
K—00 pneN
which is equivalent to
lim limsupP(|7, — [np]| > K) = 0.

K—0o n—osco

Hence to prove the statement it is enough to show that

(2.8.4) lim limsupP max .//\\/l(i)(t) < max J/\jl(i)(t) =0,
K K n K n
—0 n—oo p— o <t<p+: 0<t<p—3;
(2.8.5) lim limsupP max .//\\/IS)(t) < max J/\Z:)(t) =0.
—00 n—oo p—E<t<pt & p+E<t<1

For (2.8.4) we consider with a constant K, K < |np],

vio @

P sup M, (1) < sup M, (t)

p—E<t<pt £ o<t<p—E
= () =, () _ . (i) =, ()
<PIM, (p)< sup M, ()] =P inf M, (p)—M, (t) <0
o<t<p—E 0<t<p—1

~ Xi—1| —~
—p| w11, % [ g 1] M <0
K<t<|np|—1 A 1 J
j=Inp]—t+1

[np)

=P inf nl/QZ_lli/I\il/2 E B ) <0
K<< np|—-1 " .
j=lnp]—t+1

As in Theorem 2.7.1, we only prove for i = 1. For any K < ¢ < |np| the expression

[np)
o X 1| —~
(2.8.6) n2, 1, Y [ g 1] M
j=|np]—L+1 1

can be decomposed into five terms in a similar way to (2.7.1) and (2.7.2). Now, (2.8.6) can
only be negative in two cases: either the dominant term in the decomposition is less than or
equal to %, or it is greater—in which case one of the other four terms has to be less than

—% (for the definition of 1);, see Theorem 2.7.1).
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2.9. Lemmas for Theorems 2.7.1 and 2.8.1

To make what we said concrete,

[np)
. X1 ] —
Pl 2007 [ g 1] M™ <0

K<t<|np]—1 j=np|—t+1 1
X X ~
kl] [ kl] )(9/ 9) < ”lgl

~ 172 [np]
<P min ¢~ 1141 Z E

K<t<|np|—1 1

j=lnp]—t+1
~1/2 \_npj Xk—l ,¢1

+P max [0 '1,T > M| > —

K<< np) -1 . 1 8

j=lnp]—t+1

1 ~-1/2 ) Xpo1| [Xg1 '
+P| =< max |14 § E

8 K<< np|—1 . 1 1

j=lnp]—t+1

Lnp) i
+P max 671117_1/2 Ep E Xr-1| | Xi 6—06,)| > 2
K<< np|—1 ) "
j=|np]—0+1 L

L\ ) R (X ol o
-1 -n 17 - ‘)| 5 7L
+P sup 771 ( - > I Z [ ] M;™| = S

Kstslne) =1 j=lnpl o1 L1

As a consequence of (2.3.2) the first term can be shown to converge to zero for any K as
n — oo. This is a rather elementary exercise in calculus and it is proven in Lemma 2.9.5.
Because of (2.3.2) and Lemma 2.9.4, the fourth term also converges to zero for all K as
n — co. Indeed, (8 — 6,,) 50 and

Lne) X Xl X Xl
max (1 Z E k_ll [ k_ll < max E [ k_ll [ k_ll ,
K<(<[np| 1 1 1<k< [np) 1 1
j=lnp]—t+1

and due to (2.3.2) the right hand side is bounded as n — oo. The convergence of the second
and third terms is the statement of Lemma 2.9.7. The fifth term can be handled in the same
way as in (2.7.5). To prove (2.8.5) the proof is analogous with one exception: in place of

Lemma 2.9.5 we need Lemma 2.9.6. O

2.9 Lemmas for Theorems 2.7.1 and 2.8.1

The lemmas collected here are crucial to the proofs of our main theorems, but their proofs

are somewhat tedious, hence they have been collected here together for the interested reader.

33



Chapter 2. The discrete case

Lemmas 2.9.2, 2.9.3 and 2.9.7 each contain two similar statements — one about X and
another about X ,;8)2. In both cases, we will only prove the first statement — the second one
can always be proved in the same manner by using (ii) from Lemma 2.3.3 instead of (i) from
the same Lemma. First we recall a Hajek—Rényi type result that will be critical not only

here, but also in the continuous case.

2.9.1 Lemma. (Kokoszka and Leipus, 1998, Theorem 3.1) Let (Y,,)nen be a sequence
of random variables with finite second moments, and let (c,)nen be a sequence of nonnegative

constants. Then, for any a > 0,

1<k<n

k n—1 k
a’P | max ¢ ZYJ > a <Z\cz+170i| Z]E(YZY])
J=1 k=1 i,j=1

n—1 k 1/2
+2) G (E(V) ) E(YY))
k=1 1,7=1

n—1

+2 Z C1 E(Yi21)-
k=0

2.9.2 Lemma. For a time-homogeneous INAR(p) process satisfying condition Coy and any
v < % we have

K
y—1 _ —
max k ;(Xk—l E(Xk—l))‘ Op(1)
and
k
_ 2 2
Jmax k77 E_lﬁ (X2 —E(X5)) ' = Op(1).

Proof. We will follow the proof of Lemma 4.2 in Huskové et al. (2007) and apply Lemma
2.9.1 with ¢y =k and Y, = Xic1—q — E(Xij—1—4) for 0< g <p—1 toshow that the
result holds for each component of the vectors. This implies convergence of the 1-norm, and

because of the equivalence of vector norms, it is sufficient for the proof of the statement. We

have
1 1 2(1 — )
(k+1)22v K22y k3—27
and
k k k—1—qk—1—q
SN EigYig) = >, Y Cov(X;, X;) < sk
i=1j=1 i=—q j=—q

for some constant k according to Lemma 2.3.3.
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2.9. Lemmas for Theorems 2.7.1 and 2.8.1

Therefore,
n—1 1 kk 1/2
2y—2 11/2
(k+1)2- 2y ]<;2 2y ZZ (YigYjq) "‘QZkV E/ Yqu ZE YiqYiq)
k= i=1j=1 k=1 ij=1
n—1
+2) KPR ,)
k=0
n—1 n—1
< (26— 267) Y K2 4 2(kU1) 1/2219’7 32 400 Y kD2,
k=1 k=1 k=0

where Uj is the upper boundary of (Var(Xy))nen. The limit of the right hand side as
n — oo is finite, which completes the proof. We note the necessity of v < i—otherwise the

second term in the last expression would not be bounded. O

2.9.3 Lemma. For a time-homogeneous INAR(p) process satisfying condition Coy and any
v < % we have

k
k1 M;| = 1).
e B |D Mif = Oe()
and
k
1 X, 1 M;| = 1).
1211?31 z; i—14V14 O[P’()
1,:

Proof. We apply 2.9.1 in the same way as in the proof of Lemma 2.9.2 with ¢;, = k7! and
Y; = M;. We note that the M}, are martingale differences, therefore any product M;M;,i # j
has zero mean. Furthermore, the sequence (Var My )en is clearly bounded, and denoting its

upper bound by U, we have

1/2
- E ok
1 1 2y—2 1/2
Z (k+1)2-27 T k22 ZZE(YY +2Zk "R Yk+1 Z E (YY})
k=1 i=1 j=1 k=1 i,j=1
n—1
+2) ETTPE(YV)
k=0
n—1 n—1 n—1
SUR=-29)Y K2 4+2U0) K32 420> kD72
k=1 k=1 k=0
whence the final steps of the proof are the same as in Lemma 2.9.2. O

2.9.4 Lemma. Under the conditions of Theorem 2.7.1 we have

6, — 0 = Op(n~1/?),
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Chapter 2. The discrete case

Proof. The difference can be decomposed in the following way:

(2.9.1)
[np] !

nl/?(/én _ 6) _ (n_lQn)_ln_1/2 ZXk [Xlill _ Qné_l (pC/ Ot/ )
k=1 H

i e )

k=|np|+1

~_1
The first factor converges to @  stochastically, and will therefore be omitted from further
calculations. The second factor has been split in two and only the first part will be analyzed
in detail. The analysis of the second part is completely analogous. We split the first part in

the second factor in the following way:

[np) i /
n~1/2 ZXk Xkl] - Qnéil (PQI [a/]>
k=1 |1 H

(2.9.2)

[np]
— 12 Zle/c [Xkl

The first term is
[np)

Sz,
k=1

which is asymptotically normal, and therefore Op(1) according to Theorem 2.5.3 (the same

reasoning applies after the change, since Lindeberg’s theorem is valid for triangular arrays as
~—1

well). It remains to show that n~1/2 (Qan | — rQ,Q Q/) is stochastically bounded. We

decompose it in the following way:

(2.9.3)
n—1/2 (QanJ - ané_lQl) = n_1/2 (Qtan - E(Qtan)) + n_1/2 [E(QL”PJ) — {’I’LpJQ,

—n 2Q, —E@Q,)IQ Q')
—n PE(Q,) - nQIQ Q')
—n" Q' — |np)Q'}.

The last term in (2.9.3) is deterministic and o(1). We know from (2.3.8) that the variances

of the first and third terms are bounded. Denoting the common upper bound by K we have,
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2.9. Lemmas for Theorems 2.7.1 and 2.8.1

from Markov’s inequality, for all n,

P (nl HQWJ — E(QLWJ)HQ > a) < % — 0 as a — oo,

and similarly for the third term. Consequently, the first and third terms in (2.9.3) are Op(1).

Recalling Lemma 2.3.1 we have

k=1 1

1
T

o) Xp—1| [ Xk !
|E@up) — o) | = 32 E[ ” ] -Q
L)

[np]
X 1| [ Xpo
<SEI] -eemom
k=1 1 1 k=1
. i1 . . . ®2 <\ ®2
because the matrices within the sum consist entirely of the entries of X ;= — (X ) A

similar calculation is valid for the fourth term. This implies the boundedness of the second

and fourth terms of (2.9.3), hence our proof is complete. O

2.9.5 Lemma. Let a, - a >0, n— oo and a; >0 forall i € N. Then

n

min k7! g a; = a, N — 00.
1<k<n .
i=n—k+1

Proof. First we note that for any ¢ > 0 and sufficiently large n, we have
n

min k! g a; < a-+te.
1<k<n
i=n—k+1

This can be seen by choosing k=1 for every n. Now we show

n

min k7! Z a; > a—E¢.

1<k<n .
i=n—k+1

Let v(e) be the threshold index so that for n > v(e) we have |a, —a| < 5. Let us denote
by K the sum Z;jfl) a;. Clearly,
n

. _ 13

min k7! E a; —al < —.

1<k<n—v(e) . 2
i=n—k+1

Furthermore, for any n >k >n —v(e) we have

E1 Z a; >n"! Z a; = n_ny(g) (n—uv(e))™? Z a;
i=n—k+1 i=v(e) i=v(e)
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Chapter 2. The discrete case

For sufficiently large n the first factor is close to 1, and the second factor is closer to a

than 5 for every n. This suffices for the proof. O

2.9.6 Lemma. Let a, =+ a >0, n—> oo and a; >0 forall i € N. Then

k
lim inf k7! E a; =a, N — 0.
K- k2K 1

=

Proof. We only need to observe that convergence of a,, implies convergence in Cesaro mean
as well, therefore, for a sufficiently large K and for all k£ > K the average k! Zle a; is close
to a. d

2.9.7 Lemma. For a time-homogeneous INAR(p) process satisfying condition Cy we have

for any a >0,

[np]
lim li P (1 E(X,;_1)—X;_1)||>a] =0
AP ety | 2, B X)) > e
J=lnp]—t+1
and
[ne]
lim i P ¢! @EX®2-—X®2> —0.
AP sy | 2, (BT XR) e
j=lnp|—€+1
Similarly,
Lnp) X,
lim limsupP max ¢t Z [ ]_]Mj >al|l =0
K—oo n—oo K<< np|—1 ) 1
j=lnp]—t+1

Proof. Similarly to the proof of Lemma 2.9.2 we will again employ Lemma 2.9.1 with
co=K+k—-1)"1land Vi, = th'ipﬁanfKH Xj—qand Y g = X|pp|—K41-i—q for i > 2 and
0<g<p-1

By an easy calculation

k [np)
> E(WY;) = > E((Xi—1 — E(Xi-1))(Xj—1 — E(X-1)))-
ij=1 ij=|np|—K—k+1

Therefore, applying the same estimations and notations as in the proof of Lemma 2.9.2 with

v = 0, we obtain the following upper limit for the probability in question:

[np]—1 [np]—1 , U, [np]—1

-2 -3/2 Z -2

2K E (E—l—l) + U, E (£—|—1) +f+Ul (€—|—1) .
=K =K =K—1
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2.10. Illustration

It is obvious that as n — oo and then K — oo, the above expression converges to 0,
which suffices for our proof. As in Lemma 2.9.2, for the second statement we merely take (ii)

instead of (i) from Lemma 2.3.3.

For the third statement the arguments are the same, just as the proof of Lemma 2.9.3 is a
simple analogue of Lemma 2.9.7. We note that (M,,),en is a martingale difference sequence,
hence its elements are pairwise uncorrelated. Furthermore, Var(M,,),en is bounded, which
implies Var(M; + ...+ M,) = O(n) immediately, and similarly for the other components

of the vector to be summed. O

2.10 Illustration

Now we provide two real data examples of the use of our method. Since our model includes
initial values, the series were not investigated in their full length, but the first p values were

taken as the initial values X_,1,..., Xo.

Our first example is the dataset of monthly polio cases in the US, as reported by the
Centers for Disease Control and Prevention. It is available online at Hyndman (nd) and is
166 long. In Kang and Lee (2009) the authors found a significant decreasing trend in this
series, while in Davis and Wu (2009) and Davis et al. (2000) the trend was found insignificant.
It is widely agreed (see also Silva (2005)) that the underlying process is first-order, which
is also supported by the partial autocorrelation function. Therefore we treated it as an
INAR(1) process and calculated the CLS estimates given by (2.4.1). They were &; = 0.30646
and 7 = 0.94091. The maximum of the absolute value of M %)6 was 1.2647 and the maximum
of the absolute value of /T/l\%)ﬁ was 1.1232. Applying the two-sided test simultaneously to the
two parameters and requiring an overall significance level of 0.05, the critical value for each
component is 1.48 (the individual significance levels are 1 — 1/0.95 = 0.0253), therefore, the

null hypothesis is not rejected.

Our second example is a dataset of public drunkenness intakes in Minneapolis, also ac-
cessible at Hyndman (nd). This dataset is 139 long. After an examination of the partial
autocorrelation function a seasonal INAR(12) model seems a rational choice, but with the
assumption that only a1 and aj2 are nonzero (for another similar calculation, see the real

data section in Barczy et al. (2011)). The estimates are

T\ —1
& x| [xes . Xp1 0.8154
Q| = Z Xi—12| [Xk-12 Z Xk | Xg—12| = |0.1419
m =L 1 h=1 1 9.6944

The maxima of the absolute values of the respective components of M\n are 2.0333, 1.3497

and 1.5788. A comparison with the critical value of 1.545 (individual significance of approxi-
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— 139
mately 0.017) results in the rejection of the null hypothesis. Based on (Zle M,E”)Xk_l)

our estimate for the change point is 41 (i.e., the 53rd entry in the original series). Repeatiﬁg

the procedure for the series before and after the change, the null hypothesis is accepted for
both of them. For the series after the change, the CLS estimate of ajs is negative but an
inspection of the partial autocorrelation function reveals that this series is more appropri-
ately modeled as an INAR(1) process, for which the parameter estimates are a; = 0.8915

and 71 = 24.8429 and the null hypothesis is accepted.
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Chapter 3

General remarks about the Heston

and Cox—Ingersoll-Ross models

In this brief chapter we will summarize some well-known properties of the Heston and Cox—
Ingersoll-Ross models, which will be used repeatedly later on. Compared to the INAR(p)
model, the results presented herein are deeper and require a more detailed knowledge of
stochastic analysis; hence the decision to collect them here in one place, with reference to the

papers and monographs where detailed proofs of these fundamental results can be found.

As a reminder, the Heston model is defined by

dY; = (a — bY;) dt + o1v/Y; dW4,
(3.0.1) 0= 2 YW t>0,

dX; = (a— Bn)dt—i-ag\/?t(gdwt + mdBt),

where a € Ryy, by, € R, 01 € Ryy, 09 € Ry, 0 € (—1,1), and (Wi, By)iso is a 2-
dimensional standard Wiener process. The Cox—Ingersoll-Ross process is the process Y in

the definition, and in Chapter 4 we will use o := 0.

3.1 Solutions and (conditional) means

The next proposition is about the existence and uniqueness of a strong solution of the SDE
(3.0.1), see, e.g., Barczy and Pap (2016, Proposition 2.1).

3.1.1 Proposition. Let (n9,(o) be a random vector independent of (Wi, By)icr, satisfying
P(no € Ry) = 1. Then for all a € Ryy, bya,f €R, 01,00 € Ryy, and o € (—1,1),
there is a (pathwise) unique strong solution (Y3, Xy¢)ier, of the SDE (3.0.1) such that
P((Yo, Xo) = (m0,¢0)) =1 and P(Y; € Ry forall t € Ry)=1. Further, for all s,t € Ry
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Chapter 3. General remarks about the Heston and Cox—Ingersoll-Ross models

with s < t,

(3.1.1)
Y, = e -9y, 4+ ¢ fst e (=1 dy + oy fst e 0t=w) /Y. AW,
Xy = X5+ [Ha— BY,) du+ oo [L /Yy d(oWy + /1 — 02By).

(3.1.2)

t t
Y2 =e My2 4 / e (20 4 62)Y, du + 20 / e REIYS2aw,,. teR,.
0 0

The conditional distribution of Y; on Yy, where s < t, is noncentral chi-squared and we have

(3.1.3) sup E(Y,7) < o0 for all mp > 0.
teR4

Proof. By a theorem due to Yamada and Watanabe (see, e.g., Karatzas and Shreve,
1991, Proposition 5.2.13), the strong uniqueness holds for the first equation of (3.0.1). By
Ikeda and Watanabe (1989, Example V.8.2, page 221), there is a (pathwise) unique non-
negative strong solution (Y;)icr, of the first equation of (3.0.1) with any initial value
¢ independent of (W;);er, and satisfying P({( € Ry) = 1. In this case we also have
P(Y; e Ry for all ¢t € Ry)=1. From here it is a simple application of the Itd’s formula for
the process (Y;)icr, that

d(e"Y;) = beY; dt + e dY; = be"Y; dt + " ((a — bY;) dt + o/ Y; W)

= ae’ dt + Uebt\/ Y, dW;

for all ¢ € R4. This implies the first equations in (3.1.1) — the rest can be obtained in
the same manner. The noncentral chi-squared distribution is a well-known property of the
process, and it can be found in the paper of Feller (1951). The property (3.1.3) is a direct
consequence of this fact and the calculations can be found, e.g., in Ben Alaya and Kebaier
(2013, Proposition 3). O

Next we present a result about the first moment of (Y;, X¢)ier,. For a proof, see, e.g.,
Barczy and Pap (2016, Proposition 2.2) together with (3.1.1) and Karatzas and Shreve (1991,
Proposition 3.2.10).

3.1.2 Proposition. Let (Y;, Xi)icr, be the unique strong solution of the SDE (3.0.1) satis-
fying P(Yo € Ry) =1 and E(Yp) < oo, E(|Xo|) < oco. Let us take s,t € Ry such that s < t.
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In this case we have

t
(3.1.4)  E(Y:|Fs) :e—b(t—s)stra/ e bt gy,

(3.15)  E(X)|F) = X, + /t(a  BE(Y, | Fy)) du

=X, 4 at—s) BY/ bu— S>du—a5/ (/ (u— ”)dv>du,

and hence
E(Y;) [ e bt 0] [E(Yo) [ [re b du 0] H
t + u ’
E(X;) B fyedu 1| |E(Xo) - fo (fye™dv)du t] |a

t u
E(Y?) = o 20t E(YF) —|—/ (2a + o?) <e_b(2t_u) E(Yy) + a/ e bRt—u—v) dv> du.
0 0

Consequently, if b >0, then

: _a o _  pPa
thigoE(iﬁ) =3 t%t E(X}) =« >
if b=0, then
1
1 _ =2 _ 1
thjgot E(Y;) = a, thggot E(X;) = 2,8@,
if b<0, then
: bt _ _a : bt é Ba
thj{)loe E(Y;) = E(Yp) 2 thj})loe E(Xy) = 2 E(Yy) — R

Based on the asymptotic behavior of the expectations (E(Y;),E(X;)) as t — oo, we
introduce a classification of the Heston model given by the SDE (3.0.1).

3.1.3 Definition. Let (Y3, Xi)ier, be the unique strong solution of the SDE (3.0.1) satis-
fying P(Yo € Ry) = 1. We call (Y;, Xy)ier, subcritical, critical or supercritical if b > 0,
b=0 or b<0, respectively.

3.2 Ergodic properties

The following result states the existence of a unique stationary distribution and the ergodicity
for the CIR process (Y;)icr, in the subcritical case. These statements are treated as evident
in the literature, therefore we will omit the proof, and only note that the critical elements
for it can be found, e.g., in Cox et al. (1985, Equation (20)), Li and Ma (2015, Theorem
2.6), Barczy et al. (2014a, Theorem 3.1 with @ = 2 and Theorem 4.1), or Jin et al. (2016,
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Chapter 3. General remarks about the Heston and Cox—Ingersoll-Ross models

Corollaries 5.9 and 6.4). Only (3.2.4) can be considered as a slight improvement of the

existing results.

3.2.1 Theorem. Let a,b,o01 € Ryy. Let (Y;)ier, be the unique strong solution of the
first equation of the SDE (3.0.1) satisfying P(Yp € Ry) =1. Then

(i) Y, 2, Yo as t— oo, and the distribution of Ys 15 given by

2\ —2a/0%
(3.2.1) E(e =) = (1 + ‘;p) ,  AERy,

i.e., Yoo has Gamma distribution with parameters 2a/o? and 2b/o?, hence

(3.2.2)  E(Ya) = %

(2a + 0%)a
202

(2a + o?)(a+ 0?)a

E(Y2) =
( OO) 2b3

E(YZ) =

(ii) supposing that the random initial value Yy has the same distribution as Y, the

process (Yy)ier, s strictly stationary.

(iii) for all Borel measurable functions f:R — R such that E(|f(Yso)|) < 0o, we have

17T as
(3.2.3) T/o FY)ds =5 B(f(Ya)  as T — oo,
1 n—1
(3.2.4) - S ) EHE(f(Yee)) s n— 0.
=0

Proof. Based on the references given before the theorem, we only need to show (3.2.4). By
Corollary 2.7 in Jin et al. (2013), the tail o-field (Ve 0(Ys, s > t) of (Y)ier, is trivial for
any initial distribution, i.e., the tail o-field in question consists of events having probability
0 or 1 for any initial distribution. But since the tail o-field of (Y;)ser, is richer than that of
(Yi)icz. , the tail o-field of (Y;);cz, is also trivial for any initial distribution.

Denoting the distribution of Yy and Y, by v and pu, respectively, let us introduce the
distribution 7 := (4 + v/)/2. Let us introduce the following processes: (Z;);er, , which is the
CIR process with initial condition Zy = (g, where (p has the distribution p; and (Uy)er, ,
which is the CIR process with initial condition Uy = £y, where £y has the distribution 7.

We use Birkhoff’s ergodic theorem (see, e.g., Theorem 8.4.1 in Dudley (2004)) in the usual
setting: the probability space is (R%+, B(R%+), L((Z;)icz, )), where L((Z;)icz,) denotes the
distribution of (Z;);cz, , and the measure-preserving transformation 7" is the shift operator,
ie., T((zi)iez,) = (®it1)iez, for (zi)icz, € R%+ (the measure preserving property follows
from (ii)). All invariant sets of T" are included in the tail o-field of the coordinate mappings

7,1 € Zy, on R?+ since for any invariant set A we have A € o(mg, 71, ...), but as T#(A) = A
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3.2. Ergodic properties

for all k € N, it is also true that A € o(mg, Tga1,...) for all & € N. This implies that T is
ergodic, since the tail o-field is trivial. Hence we can apply the ergodic theorem for the

function
g: RZ+ — R, g((xi)i€Z+) = f($0)7 ($i)i€Z+ € RZ+7

where f is given in (iii), to obtain

1 n—1

- Z flxi) — f(zo) p(dzxo) as n — 0o

n
i=0 Ry

for almost every (z;);ez, € R%+ with respect to the measure £((Z;);ez, ), and consequently

(3.2.5)

because the distribution of Y., does not depend on the initial distribution. We introduce the

following event, which is a tail event of (Z;);cz, and has probability 1 by (3.2.5):

n—1
Cy:= {w eN: %Zf(Zl(w)) = E(f(Yoo)) as n — oo} .
=0

The events Cy and Cy are defined in a similar way and are tail events of (Y;);cz, and

(Ui)iez.., respectively. Now we can write

B(Cy) = /0 Y B(Cy | U = 2) dy(a)

1 [ 1 [
2 /0 P(Cu |Up = ) dp(x) + B /0 P(Cy |Up = x)dv(z)

Here we used that P(Cy |Uy = ) = P(Cz | Zy = z) p-ae. © € Ry, since the conditional
probabilities on both sides depend only on the transition probability kernel of the CIR process
given by the first SDE of (3.0.1) irrespective of the initial distribution. Further, we note that
P(Cy |Uy = z) is defined uniquely only n-a.e. x € Ry, but, by the definition of 7, this
means both p-a.e. z € Ry, and v-a.e. x € Ry, and similarly P(Cz|Zy = x) is defined
p-a.e. x € Ry, so our equalities are valid. Thus, we have P(Cy) > % But since Cy is a tail
event of (U;)iez, , its probability must be either 0 or 1 (since the tail o-field is trivial), hence
P(Cy) = 1. Hence

2= /OO P(Cy |Up = z)dp(x) + /00 P(Cy | Uy = z)dv(z) < p(]0,00)) + ([0, 00)) = 2,
0 0
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Chapter 3. General remarks about the Heston and Cox—Ingersoll-Ross models

yielding that

/Oo P(Cy|Up = x)du(x) = /OO P(Cy |Up = x)dv(x) =1,
0 0

and the second equality is exactly (3.2.4) after we note that, by the same argument as above,

/OO P(Cy | Uy = 2) dv(z) = /Oo P(Cy | Yo = ) du(z) = P(Cy).
0 0

With this our proof is complete. O

For a subcritical CIR process we can improve on the convergence stated in Proposition
3.1.1.

3.2.2 Lemma. For a subcritical CIR process we have

. B _a 2\ 202 + a0
(3.2.6) Jim B(Y)) =E(Yoo) = 5, Mm E(Y)) =E(YZ) = =5
moreover,
(3.2.7) / |E(Y;) — E(Yao)| dt < oo, / |E(Y?) —E(Y2)|dt < co.
0 0

Proof. The first equalities are straightforward by taking expectations on both sides in
Proposition 3.1.1 (we note that the stochastic integrals in question are indeed martingales
due to (3.1.3)). From there, (3.2.6) is a question of elementary calculus: for the first equation

we write

t t o0
(3.2.8) tlim (ebt E(Yy) + a/ e~bt—) du) = lim a/ e Wdv = a/ e Wdv = %
0 0

—00 0 t—o00

For the second equation we observe

t
/ / b(2t—u—v) dvdu = % (/ —2b(t—u) —b(2t—u))du>
0

(3.2.9)

1/25 o q —bt t b d

- e Y u—l—— e du

b Jo b Jo
and hence

t U
lim (e_thIE(YOZ) + / (2a + o?) < eI E(Y) 4 a / e b(3tu=v) dv) du)
o0 0
(3.2.10) = (2a+02)tli>m <E(Y0)e_bt/ —bw dw—l—a/ / b2t-u—v dvdu)
o0 0

1 o
= (2a+ 02)b/0 e 2 du.
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For the first part of (3.2.7) we consider (keeping in mind (3.2.8))

|E(Y;) — E(Yao)| = < ME(Yp) +ab~le M,

o0
e M E(Yp) — a/ e duy
t

which yields the result immediately. For the second part, we combine (3.2.9) and (3.2.10) to

e_bu> du

obtain

[E(Y?) - E(YZ)| =

S| =

t
e_%tE(}/OQ)—}—(QCL—}—UZ)e_bt/ (E(}/o)e_bu—}—

0
1 oo
_/ ef2budu
b J
1y 1 1 —2bt

< e PE(YE) + (2a + 0%)e (E(YO) + b> TR

This yields the desired result immediately. O

3.3 Strong laws of large numbers and martingale CLT’s

Finally, we state an appropriate version of the strong law of large numbers and a martingale
central limit theorem both in continuous and discrete time, according to the continuous and
discrete time observations in the following sections. Theorems 3.3.1 and 3.3.2 refer to the

continuous case, while Theorems 3.3.3 and 3.3.4 refer to the discrete case.

3.3.1 Theorem. (Special case of Liptser and Shiryaev, 2001, Lemma 17.4) Let the
process (Wi)ier, be a standard Wiener process with respect to the filtration (Fi)ier, . Let
(&)ter, be a measurable process adapted to (Fi)ier, such that

t t
(3.3.1) ]P’(/ fgdu<oo> =1, teR, and / 2 du 2% oo as t— oo.
0 0

Then

¢
u dWU a.s.
(3.3.2) fo&i -0 as t — oo.

fot 2 du

3.3.2 Theorem. (Special case of Jacod and Shiryaev, 2003, Corollary VIII.3.24.)

Let (Y{")ier, be a series of locally square-integrable continuous martingales such that
(Y™, Lt, teRy, as n — oo.

Then (Y")er, N (Wi)ier,. , where (Wy)ier, is a standard Wiener process.

3.3.3 Theorem. (Shiryaev, 1989, Chapter VII, Section 5, Theorem 4) Let us take a
filtered probability space (Q,}", (fn)neN,]P’). Let (My)nen be a square-integrable martingale

47



Chapter 3. General remarks about the Heston and Cox—Ingersoll-Ross models

with respect to the filtration (Fp)nen such that P(My =0) =1 and P(limy, oo (M), =
o) =1, where ((M)p)nen denotes the predictable quadratic variation process of M. Then

Mn a.s.
() -0 as n — oo.

3.3.4 Theorem. (Jacod and Shiryaev, 2003, Theorem VIII1.3.33) Let

{(Mn,lm]:n,k) k= 07 17 o :kn}nEN
be a sequence of d-dimensional square-integrable martingales with M, o = 0 such that there
exists some symmetric, positive semi-definite non-random matriz D € R¥™¢ such that

kn

P
S E(Myy— Mpjg1) (Mg — Mpg1)" | Fag1) — D as n— oo,
k=1

and for all ¢ € Ry,

kn
P
(333) D E(IMug — Mo Lt o~ My s)ze} | Frk-1) — 0 as n— oo,
k=1
Then
kn »
S (Mg~ Myjo1) = Myg, — Ng(0,D)  as n— o0,
k=1

where Ng(0,D) denotes a d-dimensional normal distribution with mean vector 0 and

covariance matriz D.

48



Chapter 4

Change detection in the continuous

case

Just as for the INAR(p) process, we will only consider subcritical CIR processes, that is,
when b > 0. We will use the first equation from (3.0.1), but replace o1 with o, as that will be
the single volatility parameter in this chapter — or, equivalently, we will base our calculations
on (1.3.2). Based on the process definition, our statistical problem takes the following form:

we would like to test the null hypothesis
Ho : (Yi)tepo, 1) is the path of a CIR process
against the alternative hypothesis

Ha : 3p € (0,1) : (Ys)seo o1y is @ CIR process with parameters a = a', b= 1b', and

(Yt)ie|pr,m 18 a CIR process with parameters a = a’, b=1"V",

where a’ >0, a” >0, b >0 and " > 0 with (a’,b") # (a”,b").

4.1 Construction of parameter estimators

Our estimates will be motivated by the least-squares method, but we will not define them
as solutions to a least-squares problem. Instead first we introduce least squares estimators
based on low-frequency discrete time observations, then we will introduce our estimators as

a formal analogy.

An LSE of (a,b) based on a discrete time observation (Y;);c{o,1,....n}, can be obtained by
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Chapter 4. Change detection in the continuous case

solving the extremum problem

(GE,ZE) ;= arg min Z(Yé —Yi1 = (a—bY;-1))%,
(a,b)ER? ;2

This is a simple exercise, which has the well-known solution

T
n

D

=1

1
Y1

1
Yi1

1

}/ti - Yi—l )
v ( )

ap "
ED]: 2

n =1

provided n 37 Y2, — (32, ¥i1)® > 0. A heuristic motivation behind these estimators
can be found, e.g., in Hu and Long (2007, p. 178). By a formal analogy, we introduce the

estimator of (a,b) based on a continuous time observation (Y;).c(o,7 as

N 3 T T o
(4.1.1) 0= |.T| = / ds /
0 0

by
provided that the inverse is defined, that is, Tf(;f Y2ds — (fUT Y ds)2 > 0, which is true a.s.

— this is an easy exercise. To condense our notation, we will use

1
—Y;

1
—Y;

1
—Y;

dys,

1
-Y,

1
-Y,

1
-Y,

dYy,

(4.1.2) Q. - /0

du and d, = /
0

4.1.1 Remark. The stochastic integral fos Y, dY, is observable, since, by It6’s formula, we
have d(Y?) = 2Y;dY; + 0?Y; dt, t € Ry, hence [J Y, dY, = 3(Y? = Y@ — 02 [; Y du).

4.1.2 Remark. These estimates are the same as a°(T) and b°(T) in Overbeck and Rydén
(1997); this can be verified by a simple calculation. This means that even though they were
introduced formally, our estimates have statistical meaning: they are the high-frequency
limits of the conditional least squares estimates introduced for discrete observations; fur-
thermore, they are strongly consistent. Overbeck (1998) also provides the more standard
ML estimates, but we didn’t choose them because they include the term fOT Y, ! ds, whose

moments are rather difficult to handle and require additional constraints on the value of a.

Using the definition of the CIR process from (1.3.2) one can check that

ap—a Lo fEvd 7 aw,
(4.1.3) N =Qr T \,3/2 :
by — b —o [TY{? aw,
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4.2. Construction of the test process

In further calculations we will use

(4.1.4) ds =0

Jy va’? aw,
=[5 vl aw,

4.2 Construction of the test process

Let us fix a time horizon T" € Ry ;. Our test process will be introduced as a formal analogy to
the efficient score vector, as is done in Gombay (2008). For this, we note that the estimator

(aT,BT) can also be represented as a solution to a least-squares problem, namely,

R T 1 (T
(ar,br) = argmin (—/ (a —bY,) dY, + 2/ (a — bY;)? ds> .
0 0

(a,b)eR?
This can be compared with the maximum likelihood estimator

(AMLE bMLE)

ar argmax Agp7(Y),

(a,b)eR?

where the log-likelihood function A, 7 has the form

T T 2

a— bY, 1 (7 (a—bYy)
Aapr(Y) = av, — = [ =g,
nr(¥) /o %Y, 2/0 Y,

see, for example, Overbeck (1998). For the score vector, we take the partial derivatives of the
log-likelihood function w.r.t. our parameters a and b, and we arrive, for time ¢7T', ¢t € [0, 1], at

the process

tT 4y, T (a—bY:)d
OalNapir(Y) | Jo Udg;s —Jo N O'QYS) : _ /tT 1 1 Y
- - 2 Sy
abAa,b,tT(Y) . (;ST (?;S ftT (a—bYs)ds bY o O Y, -Y
where
S
(4.2.1) M, ::YS—YE)—/ (a — bYy) du—a/ VY, AWy, seRy,
0

is a martingale. Instead of the maximum likelihood estimators we use 67 from (4.1.1), so

based on the similarity between the two least-squares problems, we will use the process

(4.2.2) /0 "

as an analogue of the true efficient score vector process. The information contained in a

dM, = dyr
~Y,

continuous sample (Yy)ye[o,7) s the quadratic variation of the efficient score vector process,
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Chapter 4. Change detection in the continuous case

namely,

(4.2.3) /O "

since (M), = 0Y;, s € Ry. For each s € R, replacing the parameters by their estimates in

1
—Y;

1
—Y;

Yy -Y7

S

_Y2 YS

s

T T
(M)sds = 02/ ds =: I,
0

M, we obtain an estimate ]\/ﬂT), ie.,
—_~ S o~
MT) =Y, - Yy — / (ar — brYy,) du, seR,.
0

Our test process will be the estimated efficient score vector multiplied by the square root of

the inverse of the information matrix, i.e.,

- tT
(4.2.4) M- 1;1/2/
0

Y

—~ (T _ ~ .
This process can also be written in CUSUM form M,E ) ITl/QQtT(OtT —0r),t €[0,1].

Indeed,
tT 1 P tT 1 tT 1 1 N
/ dM(") = / dy, — / O7ds
0 |-Ys 0o |—Ys o |-Yi| |-Y;
1 tT 1 R
Q| Qi | av, by |.
0 [—Ys

Under the null hypothesis the test process converges in distribution to a Brownian bridge,
just like in Theorem 2.5.1.

4.2.1 Theorem. Let (Y})ier, be a subcritical CIR process with P(Yy € Ry) = 1. Then

D

i
(M — (Bt)iepo,1) as T — o0,

¢ )te[o,l]

where (Bt)elo,1) s a 2-dimensional standard Brownian bridge.

Proof. We have

/tT
0

(dMs - dz\Z(T)),

tT
au, - [
0

1 1
=Y =Y =Y
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4.2. Construction of the test process

and
tT 1 e T [ 1 i N
/ (anz, — abi(™) = / (a7 —a— (br — b)Ya)ds
o |-Ys 0 |—Ys]
- - T
/tT 1 1 ar —a q 0 Q_ld
= —~ S = T,
o |-vi| |-v.| |br—b e

with the notations from (4.1.2) and (4.1.4). Combining this with (4.2.2), for every ¢ € [0, 1],

o7 _ 12 (5 -1 U2 (G — td . )d
M, = IT1/2 (dtT - QtTQTldT> = ITl/2 (dtT - th) ™ ITl/Q(tE2 - QtTQTl)dT

— (TT)~/? (ZitT - tZtT) n ((T—llT)—l/2 - 1—1/2> 712 (’EltT . t’ciT)
-1/2 1\
+ 1" (tE2 — QurQr )dr,
where

E(Ye) —E(YZ)
—E(YZ) E(YZ)

I:=o2

A simple consequence of the ergodic theorem is T I =2 I. Consequently, Theorem 4.2.1

will follow from

(4.2.5) sup (tE2 — QurQr ) 50 as T — oo,
te[0,1]
and
1/27 D
(4.2.6) (T2 dir) o0 — TP Waliepy  as T — oo,

where (Wt>t€[0,1] is a 2-dimensional standard Wiener process.

We begin by the proof of (4.2.6). The convergence is a simple consequence of the central
limit theorem for continuous local martingales, see (Jacod and Shiryaev, 2003, Special case of
Corollary VIII.3.24.). The process (T‘l/2 '&tT)te[O 1

therefore we only need to check the pointwise convergence of the quadratic variation. Using

is a locally square-integrable martingale,

(iii) from Theorem 3.2.1 it is easy to show that, for every ¢ € [0, 1],

1, Ty, —v2] L. E(Yy) —E(Y2
02/ ° *lds 2% 0%t (Yoo) (¥so) =tI, asT — oo.
Jo |-v2 v} —E(YZ) E(YR)
For (4.2.5), introduce
1 —E(Ya)
Q= ;
—E(Ys) E(Y)
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Chapter 4. Change detection in the continuous case

and note that due to Theorem 3.2.1 we have T7'Q; =% Q. Now, first observe that

Lo e @
Itz - Qurr'l < o | %2 - 2

H QT

For this transformation to be sensible, we needed to extend st continuously to s = 0, but
this can be done since all components of % has a finite upper limit at 0 almost surely (i.e.,
the powers of Yp). Since the last factor converges to ||Q!| almost surely, for (4.2.5) it is

sufficient to show that
Qr Qur
T tT

sup t
te[0,1]

£ Qr

7L, we note that QT 25

To exploit the almost sure convergence o — @ implies

sup ’
s€[T,00)

. This supremum is finite

and thus also weakly. Now let us introduce K := sup,c(r, ) H%

% is continuous on Ry and has a finite limit at infinity almost surely.

)

almost surely since

Now we observe, for an arbitrary € > 0,

P supt‘QTQtT >e| <P sup ‘QTQtT
t€[0,1] T tr 0<t< 75 AL T tr

NAK

+P[ sup tHQT—QtT > €
1= <t<1 T

< P(EQK > e)

e (o, (% -] % -]} -
T <t<1

<0+P<HQT —QH )+IP’ sup

‘T 2 <s

T
Dividing the last probability according to the value of K, we have
P ( sup t

> 6>
0<t<1

P17 -al>5) = {1

eT
IR SS

Qr Qu
¢T

%_QH>; ﬂ{Kgﬁ} +P(K > VT),
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and so,

P ( sup t||— —
0<t<1

Qr €
(% -el>5)

Efgs

L_q| > ) (x> vr).
All three terms in the last expression tend to zero as T'— oo, therefore (4.2.5) is proved. O

4.3 Testing procedures

—~ (T —~(T
Let us denote the components of the test process (ME ))te[O,l] by (Mi,i))tG[O,lh i€ {1,2}.

Based on Theorem 4.2.1, we can develop the following tests with a significance level of a:

Test 1 (one-sided): if it is clear that, in case of a change, a’ < a”, reject Hy if the infimum
—~ (T
of (Mi,l))te[o,l] is smaller than C(«), where C1(«) can be obtained from the distribution of

the infimum of a standard Brownian bridge. The same test can be applied to the supremum
—~ (T
(for a’ > a”) and to (M,EQ)),:E[O,” (for a change in b).

—~ (T
Test 2 (two-sided): reject Hy if the supremum of (]Mi’l)

where Ca(a) can be obtained from the distribution of the supremum of the absolute value of

—~ (T
standard Brownian bridge. The same test can be applied to (\M;Q)

)tefo,1) is greater than Co(a),

Dte[o” for a change in b.

Naturally, the test for a and b can be applied simultaneously, in which case the significance
levels for the individual tests have to be modified accordingly, in order to produce an overall

significance level of o — for more details, see subsection 2.5.1.

4.4 Asymptotic behavior under the alternative hypothesis

Before stating our results under the alternative hypothesis, we need more closely to examine
the ergodicity results that we can use. Let us take two parameter vectors: 6 and 6”.
Furthermore, we take two random variables, Y and Y7, such that they are distributed
according to the stationary distributions corresponding to 8’ and 8", respectively. Let us take
a process (Y;)ier, such that it evolves according to (1.3.2) with parameters 8" until ¢t = pT’
and with parameters 8" thereafter. This implies that the calculation of the martingale M
should also be different according to whether ¢ < pT". We will thus use
s

S
M. =Y, - Yy — / (a' —b'Y,)du and M!:=Y;—Y,pr — / (a" —b"Y,)du
0 T

for s < pT and s > pT, respectively. We would like to apply the ergodic theorem (i.e., The-

orem 3.2.1) separately to the process before and after the change-point (i.e., pT'). However,
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Chapter 4. Change detection in the continuous case

we cannot do this directly for the second part because the initial distribution may depend on

T. However, we do have the following parallel of (2.6.1).

4.4.1 Lemma. For a CIR process with the above conditions

T ~
(4.4.1) o | a0t L BT,
0

where g : Ry — R with E(|g(Y)]) < oo.

Proof. For an arbitrary € > 0

(|77 [ a0 a0 B7)] >
-/ = (‘T_lpT [ atirar = Elar | >

o (| [ e - B> -
Ry T—pT Jyr

where P* is the distribution of Y7, Pf,T is the distribution of Y,r and |- is the total variation

Y = x) dPiT (x)

T
<[lm -

Yor = ac) dP*(z),

norm. The first term converges to zero because the CIR process is positive Harris recurrent
(Jin et al., 2013, Theorem 2.5). This implies ergodicity by Meyn and Tweedie (1993, Theorem
6.1), since in this case the 1-skeleton (i.e., the process (Y;);ez, ) is clearly irreducible because
the support of the distribution of Y7 conditionally on Y is R. In the second term the measure
is finite, while the integrand is bounded by 1 and converges to zero pointwise, therefore (4.4.1)

is proved by the Lebesgue Dominated Convergence Theorem. O

The same line of reasoning can be used to apply Theorems 3.3.1 and 3.3.2 after the point

of change. Let us now introduce

[P1ay; fP1ds — [PV,ds
d[a,b} = ) Q[a,b] =

~ [, YadY, — [y Yeds [ Y2 ds

With these notations,
~ -1
Or = (Q 0,07] + Q[pm) (djo,p11 + dipr,17)-
With the help of the ergodic theorem, we can see that this quantity has a finite weak limit:

0= E] = (pQ +(1-p)Q") ™ (bQ'¢' +(1-)Q"0"),
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4.5. Asymptotic consistence of the test

where
1 -E(Y%)

-~E(YL) E(YL)?)

1 —E(Y%)

Q=
~E(YZ) E((YZ)?)

Q=

Furthermore, the information matrix will have a weak limit in this case, namely,

(4.4.2)
It & 5 _ o (p E(Y.) —E((YL))

—E((YL)?)  E((YL)?)

E(YZ)  —E((YX)?)

PO ey B

T

)

4.5 Asymptotic consistence of the test

Armed with these tools, we can derive the asymptotic behavior of the supremum of the
T)

components (.//\\/1,5z )te[o,l}a i = 1,2, of the test process.

4.5.1 Theorem. Let us suppose that @ changes from 8" to 8" at time pT, where p € (0,1),
and both @' > 0 and 8" > 0 componentwise. Let us take i € {1,2}, and then define

1/2

Y= 1T ((0Q) 7 + (1= p)Q")) N - 0").

If 1; > 0, then we have

sup J/\ZETZ) = T2 + op <T1/2) )
te[0,T]

On the other hand, if ¢; < 0, we have
. (1)
inf M, ;

— T1/2 ; T/2)
t€[0,T] vi+op ( )

4.5.2 Remark. We can easily see that in the special case of Theorem 4.5.1 when only a
changes from a’ > 0 to a” > 0, we have

o= (@ — T T (@)™ + (1 - Q")) 1y,

and similarly, if only b changes from ¥’ to 0", we have
do = (0~ BT (@) + (- 0)Q) ) .

—~ (T
4.5.3 Corollary. If; # 0, then for M;i) the two-sided test and the appropriate one-sided
test described in 4.3 are asymptotically weakly consistent, that is, P(Hg is rejected) — 1 as
T — oo.

4.5.4 Remark. This theorem does not prove the consistence of our test if ¢»; = 0. This
degenerate case is indeed possible, but characterizing it is not easy since the matrices Q' and

Q" depend on @ and " in a nontrivial manner. What we can easily see is that when the
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Chapter 4. Change detection in the continuous case

change occurs in the same direction in a and b (including the case when only one of them
changes), this is not a problem. If the changes are in opposite directions, however, then there
is a point where they “cancel out” and we can’t prove Corollary 4.5.3. It can also be easily
checked that

~—1/2

I (@) +(1-pQ")™H™

is positive definite, so if only one parameter changes, the sign of the corresponding v; (i.e.,
Yy for a an 19 for b) depends on the direction: it is negative in case of an upwards change
and positive in case of a downwards change. This gives us the possibility to design one-sided

tests, as described in section 4.3.

Proof. We will only prove for ¢ = 1 and 1 > 0, the other cases are completely analogous.
— (T
By the definition of Mi ), we have

P . tT 1 P
12 o 7 / dM ™
, 0 |-y,
(4.5.1)
71/2 o tT 1 o
LT, (IT> 7 / AT,
T 0 f}/s

We need to show that the supremum of this expression is ¢; + op(1). It is easily verifiable
that

12 [T I o
S(0,¢T) : =T 11,1 / dm (™)
0

Y

o T [
=T'1,1 1/2/
0 -Y,

—ip T 1 —E(Y, ~
F T 1/2/ (2) (0 — 8)du
(4.5.2) o [-E(Y.) E(Yy)
L E(Y,) - Y, .
v T 1/2/ (¥o) @ — 0r)du
0 _E(Yu) - Yu Yu2 - E(YUQ)
—p T ~E(Y)] ~
crT 1/2/ Yl @6y du
o |[-E(Y.) E(Y7)

=: 5 (O, tT, 9/) + 52(0, tT, 9/) + 53(0, tT, 9/) + 54(0, tT),
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4.5. Asymptotic consistence of the test

and we can also see

(4.5.3)

71,1 1/2/ AM®) = §1(0,1T,0") + S2(0,T,8") + S5(0, (T, ") + S4(0,tT)
0

Y

as well. Let us now introduce S;j(a,b,0) := S;(0,b,0) — S;(0,a,0) for i = 1,2,3 (this corre-
sponds to taking the lower limit of the integral in the definition of S;(0,b,0) as a instead of

zero). Now we can write

sup S(0,tT) —n

< sup [51(0,(p AT, 0') + S1((p AT, T, 0")|
te€[0,1]

te(0,1]

+ [ sup (S2(0,(p At)T,0") + Sa((p A )T, tT,0")) — oy

te(0,1]

+ sup [S5(0,(p At)T,0') + S3((p A t)T,tTO")| + sup |S4(0,¢T)|.
t€[0,1] t€[0,1]

The first term is op(1) according to Lemma 4.7.4 with v = 0, the third term by Lemma 4.7.3
and the fourth term by Lemma 4.7.5.

Now we turn to the second term. Let us notice that Q' and Q" are both symmetric,

which we will exploit repeatedly. Clearly,

0-0=>1-p(pQ +(1-pQ")'Q"(® -0,

and so
~-1/2 1 -EYL) |, = ~—1/2 ., / m—1igl _ o
1,1 0'—0)=1,1 1- 1- 6 -0
1 _E(YL) E((Yéo)Q)( )=1 Q(1-p)(pQ +(1—-p)Q") Q"( )
_ "
p 9
and similarly,
~—1/2 1 —EYZ) v ~=1/2 __, / =1y p! "
1,7 0" —-0)=1.1 1-— 1— 0 —0
. B E((Ygg)Q)( ) =1 Q' (1-p)(pQ +(1-pQ") Q' )
_
=1,

We have exploited the fact that by an easy calculation,
n-—1 m—1) "} / / m—1 ~n
(k@) +((1=nQ@)")  =p(1-p) (Q (W@ +(1-pQ") "' Q").
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Chapter 4. Change detection in the continuous case

Now we can write

/ " p Nt (t — p)+
sup (S2(0, (p A)T,0') + Sa((p AT, tT, 0") —ap1)| < | sup — — 1)
t€[0,1] tefoa] \ P (1-p)
(Tt [ 0 E(YL) ~E(Y,)]
+ T_lllﬂIVA/2 sup / > ¢ (0" — 6) du
tefo,1] | Jo (E(YL) - E(Y.) E(Y7)-EYD)]
(bTine [ 0 E(YL) —E(Y)]
+T_1117_1/2 sup / (Yoo) — E(Yu) (0 — 6)dul.
tefo,1] | Jo (E(YS) —E(Ya) E(Y7) - E(YZ2)]

The first term is obviously zero, with the supremum attained at ¢t = p; the other two terms

converge to zero by (3.2.7). This concludes the proof for the first term in (4.5.1).

All that remains is showing that the second term in (4.5.1) is op(1). To see this, consider,

with the Li-norm ||-||, and its induced matrix norm ||-||,

71/2 o tT 1 Py
sup 7711, (IT> -1 2 / dMS(T)
t€0,1] T 0 -Y;
-1/2 » L tT -
< (IT) -1 2 HI1/2 sup ||T7'1 1/2/ dMD|,
T § * 1€0,1] o |-Y,

which is clearly op(1) since the first factor is op(1) (note that I is invertible, hence we can
use (4.4.2) and the continuous mapping theorem), the second factor is finite, and the third

has just been shown to be K + op(1) for some constant K. This completes the proof. O

4.5.5 Remark. It is apparent that the structure of the proof is essentially the same as for
Theorem 2.7.1 and some arguments are even simpler — e.g., the change occurs exactly at pT
so we do not need to deal with the fractional part of the change point separately, as in the
analysis of the second term of (2.7.4). These simplifications must be weighed against the

need to include stochastic analysis and continuous martingale theory in our investigations.

4.6 Estimation of the change point

The natural estimate of the change point when a downward change in a is being tested, so

when ¢y > 0, is prT, where

(4.6.1) pr :=inf{t € [0,1] 1/\75? = sup /‘A"(?}
s€[0,1]

— (T
Clearly, this is a well-defined, finite quantity, since Mi,l) has continuous trajectories almost

surely. If we are looking for an upward change in a, i.e., a’ < a”, when 1; < 0, then the
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4.6. Estimation of the change point

appropriate estimate is

. () . (1)
1nf{t€ [0,1] : M, ;" = inf MSI}.
’ s€[0,1] ’
For a change in b, the appropriate estimates are
—~ (T — (T — (T
inf{t €10,1]: ME 2) = sup Mg 2)} and inf{t € [0,1] : M,E 2) nf
b b b SE ,

s€[0,1]

= inf J/\\/li,Tg) },

for a downward and upward change, respectively, corresponding to the different tests de-
scribed in 4.3. We can define the estimate based on the two-sided test as well, but that will

eventually reduce to one of these four cases, according to the sign of the appropriate .

4.6.1 Theorem. Under the assumptions of Theorem 4.5.1, if 1; # 0, then for the appropri-

ate change-point estimate we have pr — p = Op(T71).

Proof. We will prove only for ¢y > 0 and the estimate defined in (4.6.1) — as for Theorem

4.5.1, the other cases are completely analogous. Let us introduce the notation 7p := ppT.

We need to show

lim sup P(|7r — pT'| > K) =0,
K—ooeR

or, equivalently,

lim limsupP(|7r — pT| > K) = 0.
K—oco 7R

For this, it is sufficient to show that

(T —~ (T
(4.6.2) lim limsupP sup M,E 1) < sup M,E 1) =0
K—oo 7400 pT—K<t<pT+K ’ 0<t<pT—K ’
and that
oo ~ () ~ ()
(4.6.3) lim limsupP sup M,"< sup M, | =0.
K—=00o 7400 pT—K<t<pT+K ’ PpT+K<t<T ’

First we prove (4.6.2). We observe

(T)
s,1 <0

— (T — (T — (T — (T
P ( sup My < sup ME,R) <P (MiT?l < sup ME,B)
pT—-K<t<pT+K 0<t<pT—-K 0<t<pT—-K
—~(T — (T pT -
=P <O<t inf (MEJT?l - M§,1)> < 0) =P ( inf T2 / 1dM
<t<pT—-K K<t<pT pT—t
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Chapter 4. Change detection in the continuous case

We apply the decomposition (4.5.1) and (4.5.2) to obtain

(4.6.4)
pT _
IP’< inf T'%1 / 1dM§T1) <o>
K<t<pT oT—t ’
12 [PT 1 —E(Y, -
<P| inf 1,1 1/2/ (¥o) @ —0)ds < 2L
Kst<pT pT—t |[—E(Y;) E(Y?) 2p
o T [ 1
+P( sup [t7M1,0 1/2/ am’| > &
K<t<pT pT—t | =Y 8p
~_ T E(Y,) — Y, .
vP( sup |0 1/2/ (¥s) O —0r)ds| > 2
K<t<pT oT—t |E(Ys) =Y, YZ2-E(Y?) 8p
—ip T ~E(Yy)] ~ =
+P| sup [t7'14T 1/2/ (¥s) (0 —6r)ds >ﬂ
K<t<pT Tt |[—E(Y,) E(Y?) 8p
T -1/2 pT -
+P sup t_lll (T) -1 1/2 / dMS(T) >ﬁ )
K<t<pT T oT—t | =Y 8p

In the first term we take the probability of a deterministic event, therefore it is either O or
1; we show that for sufficiently large K, N it is 0. Actually, this is the same statement in

continuous time as Lemma 2.9.5, and the proof is also essentially the same.

The fourth term in (4.6.4) converges to zero as T' — oo for any K. Indeed, we have

1 -
) ,
pT—t

where the right hand side is bounded as T' — oo, and 0 — @T — 0 a.s., which is sufficient.

1 —E(W)
“E(Y) E(Y2)

1 —EMW)

< sup
—E(Y) E(YY)

o<t<LpT

sup
0<t<LpT

For the third term in (4.6.4) we use Lemma 4.7.6 and for the second one we can use Lemma
4.7.7. The only term that remains in (4.6.4) is the last one. This can be handled by the same
method that we applied at the end of the proof of Theorem 4.5.1. Let us consider, again with

the Li-norm ||| and its induced matrix norm ||-||«,

I\ Y2 pT
P sup |t711, (T) -1 1/2 /
K<t<pT T pT—t

IT>_1/2 ~=1/2 (0
<P — -1 > +P[ sup
<| < T . 249 K<t<pT

1
—Y;

62



4.7. Details of the proofs

with
1 —E(Ye)

Ew oz |C Y

o]

Taking the limit as 7" — oo and then K — oo, the first term does not depend on K and tends

to zero as T'— oo, and for the second term we can use the same reasoning as in (4.6.4):

pT

= / > 3¢
pT—t | =Y

41 /pT 1 —E(Y5)
pT—t

~E(Y) E(Y?)
T [ 1
+ P sup t_l/
K<t<pT pT—t _—Ys

>¢>
3

Lo E(Y.) - Y.
+ P sup ||t /
K<t<pT or—t |E(Ys) =Y, YZE-E(Y?)

I —E(Y)
+P sup ||t /
K<t<pT oT—t |[—E(Y,) E(Y?)

dM (™)

P sup
K<t<pT

<P( sup
K<t<pT

dM!

(0’ — GT) ds

The probability of the first term tends to zero, and the rest can be handled in exactly the
same way as the corresponding terms in (4.6.4). For the proof of (4.6.3) we employ the same
technique, but we need Lemmas 4.7.8 and 4.7.9 in place of 4.7.6 and 4.7.7. O

4.6.2 Remark. Again, this proof is in close parallel with the proof of Theorem 2.8.1. How-
ever, the underlying lemmas, which will be detailed in section 4.7, while structurally similar,
are much more difficult to prove — especially Lemma 4.7.7, where we need to use an idea from
the standard proof of the law of the iterated logarithm, and combine it with the Hajek—Rényi
type inequality from Lemma 2.9.1.

4.7 Details of the proofs

In this section we detail the necessary lemmata for the proofs of our main theorems. Some
of them, especially Lemma 4.7.1, are rather technical and depend essentially on tedious but
straightforward calculations. Others, while using more sophisticated tools, are also tailored
to the specific needs of the proofs and their proofs are not particularly insightful themselves,
hence they were relegated to this section. The one exception to this is Lemma 4.7.2, which

is an analogue of Lemma 2.9.1 and may deserve independent interest.
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Chapter 4. Change detection in the continuous case

4.7.1 Lemma. For a subcritical CIR process we have
t t

(4.7.1) Var (/ sts> =0(t), t— o0, and Var </ Ys2ds> =0(t), t— oc.
0 0

Proof. We show the first convergence only. We note

Var (/Otsts> ) (/Ot(yu —EY,)du /Ot(YU - EYU)dv> = (4/ Cov(Y,, Yy)dudv

[ I’

and similarly for Var < fot des). From here, the proof could be finished simply by referring
to Overbeck and Rydén (1997, (B.3) and (B.5)). However, we have chosen to detail our
calculations (at least for Cov(Yy,Y,)), because we will require the details later on. By using

(3.1.1), we can write

UNv
Cov(Yy, Y,) = e ) Var(Yy) + o2 / e V=20 By Y dw
0

(4.7.2)
a uAv
< e~ b(utv) Var(Yy) + <E(Yo) + g) 02/ e_b(“+”—2w)dw,
0
since w
E(Y,) = e " E(Yy) + a/ e Uds.
0
Furthermore,
Y b(uto—2w) Lo —blu—o] _ —blutv)
//(/0 e dw)dudv:// [% (e —e )]dudv
(0,¢) [0,¢]2
(4.7.3)
1
< 3 // el =tldude = O(1).
[0,¢]2

Recalling the last line of (4.7.2) and noting

// e dudo = O(t),

[0,¢]2
the proof is complete. O

The following lemma is an analogue of Lemma 2.9.1, which is a Hijek—Rényi type in-
equality. With Lemma 2.9.1 one can estimate the tail probabilities of the maximum of a
random sequence, based solely on the joint moments of the elements and, critically, without
the assumption of independence. In our applications, not the supremum of a sequence but

the maximum of a function is considered, so we had to modify the statement accordingly.
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4.7. Details of the proofs

It turns out that the proof can be constructed along the lines of in Kokoszka and Lei-
pus (2000, Theorem 4.1). In that paper, a slightly stronger result than Lemma 2.9.1 was
formulated and proven; however, it was impractical to use, hence the more useful corollary
formulated in Kokoszka and Leipus (1998, Theorem 3.1), which is obtainable from Kokoszka
and Leipus (2000, Theorem 4.1) by a simple application of the Cauchy—Schwarz theorem.

4.7.2 Lemma. Let Y; be a process with a.s. continuous trajectory, o, € Ry with o <

and c a deterministic function. Then, for any € > 0,

2P {ses&)ﬁ] <c(s) /0 Yudu>2 > 52} < cla)? /OQIE(Yf) du
+/j </0 /OSE(Yqu)dudv> d|c(s)2|—|—2/j c(s)? [E(Yf)/os /OSE(YUK,)dudv] v ds

Proof. For any nonnegative process Z; with a.s. continuous trajectories and a.s. locally
bounded variation, let 7. be the first hitting time of [¢, 00) in [a, 00), A be the event {7. < 8}
and D; be the event {sup,<,<; Zu < €}. Note that Dz = A°. Then it is easy to check that

B
elg < Z, —l—/ 1p,dZ;.
o

Indeed, if A occurs, the LHS is ¢, and the RHS is ¢, if Z, < ¢ and Z, if Z, > e. If AC
occurs, the LHS is zero, while the RHS is Zg > 0.

2
Let us apply this result with Z; = ¢(t ‘ fo Ys ds‘ and for simplification let us introduce
K, :=cla fo Y2 du. We take expectations on both sides:

( o) [ Y] > ) <8 [o2 [v2an] +2[ [ 10,0 ((c@ [ yudu)g)]
— K(a) +E :2 / T 1cls) [ vaau (( A Yudu) de(s) + c(s)sts)}
= w)+f2 15, ([ [ inaa)a@e 2 [T [
< K(a)+E :2 / "1, ( [ Yundudv) Al +2 " 1p Y, I Yududs}

In the last step we replaced the induced norm of ¢?(s) by its total variation norm. Indeed, the

inequality holds because [y [; YuY,dudv = ([ Yudu)2 for every w in the probability space
where Y is defined, therefore the integrand is nonnegative. Next, we replace the indicator
function by one (this will not cause the expectation to decrease, since all integrands are

nonnegative), and we employ several well-known inequalities to obtain our statement. O
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Chapter 4. Change detection in the continuous case

4.7.3 Lemma. If the parameters a and b remain constant, we have, for any v < i,

sup / Y, —E(Y,)|du = op(1) and ' sup / V2 —E(Y)|du = op(1).
0<t<T 0<t<T

Proof. We show that the suprema are Op(1), but this is the same statement, since for any
given v we can take 3 > 4/ > v, apply the lemma with 4/ and then multiply the suprema with
77—, which is clearly o(1). Also, we only show the proof of the first statement; the proof
of the second one is completely analogous. What we actually prove is the slightly stronger

statement

t
sup t'Yl/ Y, — E(Y,)|du = Op(1).
0

0<t<T

We will use Lemma 4.7.2 for the process Y; :=Y; —E(Y;) and ¢(s) =87 tanda =0, 3 =T.

Then we can use Lemma 4.7.1 to conclude that

/ / E(Yqu)dvdu:/ / Cov(Yy,Y,)dvdu < ks, seRy,
0 JoO 0 Jo

for some constant x > 0. Hence, in this case,

T s s T s s 1/2
/ ( / / E(Yqu)dudv> dle(s)?| 4 2 / c(s)? {E(Yf) / / E(Yumdudu] ds
0 0 JO 0 0 JoO
T T
k(2 — 27)/ §272 ds+2(K/<c)1/2/ s273/2ds < o0.
0 0

This implies the desired statement immediately. O

4.7.4 Lemma. If the parameters a and b remain constant, we have, for any v < %,

[

Proof. Similarly to the previous lemma, we only show Op(1) for the first statement. First

sup T77Y M| = op(1) and sup 171
0<t<T o<t<T

s| = O]p(l).

we note that (M;);ecr, has an a.s. continuous trajectory on R, therefore also on [0, 1]. Thus
we conclude that supge,;<; |[M;¢| = Op(1). Next, we use the law of the iterated logarithm for
continuous martingales. This can be put together from the Dambis—Dubins—Schwarz theorem
(Karatzas and Shreve, 1991, Theorem 3.4.6) and the law of the iterated logarithm for the
Wiener process (Karatzas and Shreve, 1991, Theorem 2.9.23).

M M 1
lim sup 2] < lim sup |24 =1 a.s., V)\>§,

o0 522 (fg Y, du)/\ t=roo U\/fg Y, du\/log log (o2 fg Y, du)

which means that the supremum on [1, 0o] is finite a.s. (since the process in question has a.s.

continuous trajectories).
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4.7. Details of the proofs

Next we note that

02X<L;YLdu>A

Y — 0P E(Ya)  as..

Now the statement of the lemma is obtained straightforwardly since

sup 777! M;| = max < sup T7 M|, sup T”‘l\Mt|> ,
1<t<T

0<t<T 0<t<1
and both terms have been shown to be Op(1). O
4.7.5 Lemma. Under the conditions of Theorem 4.5.1,

~

6 —60=0pT /2.

~—1 a
w0 ()
rr-and” (o )

The first factor converges almost surely, so we analyze

~—1 a
w0 ()

The first term is Op(1) by (4.2.6). We need to show that the second term is also Op(1). For

this, we can neglect the vector of the parameters, which are constant, so we investigate

Proof. We have

T8 - 8) = (17 Q) TV

T-1/2

19 _ ~ 1 a
=7 12d, + 17712 (Q[O,’T] - QrQ PQ/) [b’] .

12 (Q @@ Q) =T (Q, ~B@) + T (B(Q,) - Q)
— T2 (P(QT - E(QT))CNQAQ,)
— T2 (p(EQr) - TR)Q Q).

The first and third factors have a finite variance at the limit, by Lemma 4.7.1. Therefore,
by an application of Chebyshev’s inequality, we have that they are Op(1). The second and
fourth terms are deterministic and O(1) by (3.2.7). O

4.7.6 Lemma. Under the conditions of Theorem 4.5.1 we have, for an arbitrary € > 0,

>5>—O.

lim limsupP sup
K—oo 7400 K<t<pT

pT
-1 . s
) B
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Chapter 4. Change detection in the continuous case

>8):0.

Proof. As for the previous lemmas, we only prove the first statement. We use Lemma 4.7.2.
We choose ¢(s) = s~ and Y, = Yyr—s —E(Y,r—s) with @ = K and 8 = pT'. The estimate on
the probability in question is then

pT pT pT pT
K—Q/ Var(Yu)du—i—/ (/ / Cov(Yu,Yv)dudv> d|s™?|
pT—K K pT'—s JpT—s

T pT pT 1/2
+2/ 572 {Var(Ys)/ / COV(Yu,Yv)dudU:| ds.

K pT—s JpT'—s

and

o/ " 2 Ew?)as
0

T—t

K—oo T 500 K<t<pT

lim limsupP ( sup

(4.7.4)

Now we make use of (4.7.2) and (4.7.3) to show that

pT
/ / Cov(Yy, Y,)dudv < Var(Yp) / / et qudo
pT pT pT—s
pT pT
+ (E(Yo) + ab_l)UQb_l/ / el dude < ps,
T—s JpT—s

for some positive constant p. We introduce A := sup,cr Var(Y;) < oo, to continue the

estimation started in (4.7.4):

p pT
K2K\+ 2/ Ts3usds + 2/ s72(\w) /2512 ds.
K K

Clearly, as T'— oo (and hence pT' — 00), and then K — oo, this expression tends to zero,

which completes our proof. O

For the next lemma we will need to recall Lemma 2.9.1 once more.

4.7.7 Lemma. Under the conditions of Theorem 4.5.1 we have, for any € > 0,

lim hmsupIP’( sup ‘t 1 My — ;T_t)‘ >€> =0.

K—o0o 700 K<t<pT
pT
t! ( YSdM;> ‘ >e|=0.
pT—t

Proof. We prove the first statement first. Let us take a backward partition of [0, pT] such
that 0 =t¢t, <t 1 <tho<...<tH1i < to = pT. For t € [ti+1,ti]7 we have

and

K—oo 7500 K<t<pT

lim lim supP( sup

M;T - Mt/ M//)T Mt/H_l Mt/ - tiy1
pl —t T —t; pl —t;
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4.7. Details of the proofs

Therefore, we have the following estimation:

(4.7.5)
P < sup ‘til(M;T — M;)T,t)‘ > 5) =P < sup }(pT — 1) o M{)’ > 5)
K<t<pT 0<t<pT—K
-1 ! ! €
<P <n<1a§n (pT' — ;)" (Mpp — My, )| > 2>

(pT — t:) =" (M{ — My, )

n
€
+ P sup > <,
; (ti+1<t<ti 2)
where i* = min{i : t; < pT — K}. Let us use this estimate with t; := pT — 2~ for 0 < i < n,
so that n = |logy pT'| and i* = |log, K| + 1.

Let us now apply Lemma 2.9.1 with Y7 := Mt/i* - M;T, and Y}, = Ml{i*Jrlc—l - Mt/i*+k72 for
l1<k<n—i*+1and ¢, = (pT — t;+41_1)" . Let us note that due to the structure of the
t;, we have ¢, = 2= (" +k=2) for b < np —i* and 2~ (1) < Cn—i*41 < Cn—i+. Consequently, we

can use |t —cp| <|cp .y —4ck | = 3c;,,. Also, notice that

N 2
Z E(Y;Y;) =E <Z Yi) B E(Mt,wrkfl N /,’T)Q
ij=1 =1

1=

pT
02/ E(Yy) du < o?u(pT — tisyp_1),

Lty h—1

with p = sup,egr, E(Y;) < oo, and that, similarly,
E(YZ 1) < 02t in — tirgpo1) = o220 HH72),

All in all, with Lemma 2.9.1, we can estimate the first term in (4.7.5) by p2~% . This does
not depend on n (hence, on T'), and since i* — oo as K — 0o, we have that the first term in

(4.7.5) converges to zero as pI" — oo and then K — oc.
For the second term in (4.7.5) we will use Doob’s submartingale inequality (see, e.g.,
Karatzas and Shreve, 1991, Theorem 1.3.8. (i)) to the submartingales

Niji=(M{, o — M )2 t€[0ti—ti], i=i%...,n,

)

for which clearly

P < sup ((pT — t:)~ (M} — M{
b1 <t<t;

¢+1)

2(pT — t;)?
> )= P sup  Ny; > M .
2 0<t<t;—tit1 4
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Chapter 4. Change detection in the continuous case

The inequality states that

P < sup  Ny; >

0<t<ti—tit 4

e?(pT — t;)? < AE(Ne;—t,14) _ 4E(Mt/z B Mf{i+1)2 < 4o p(t; — tiy1)
= e2(pT —t;)? 2(pT —t:)2  ~ eX(pT —t;)?

Now, in our present setting, t; — t;11 < 201 and (pT — t;)? > 2%, Thus, the second term

in (4.7.5) can be estimated from above by

o? #5 22 i+3 < 2 z+322—

Again, clearly this does not depend on n (thus, 7") and converges to zero as i* — oo (and
thus, as K — 00). This suffices for the first statement. The second one can be obtained in a
completely analogous way, since we only used the fact that (M| )tl0,00] 18 @ martingale with

essentially linear quadratic variation, which is also true of ( fot Y. dM s’) 0] O
t€|0,00

The following lemma is the ”forward” analogue of Lemma 4.7.6, and its proof is also the

same, with straightforward modifications.

4.7.8 Lemma. Under the conditions of Theorem 4.5.1 we have, for an arbitrary € > 0,

>¢e¢| =0.
T

pT+t
t1/ (Y2)ds| >¢ | =0.
pT

The forward analogue of Lemma 4.7.7 can also be proved in the same manner as the original:

lim limsupP sup
K=o 7o K<t<(1-p)T

t—l/pﬂt(y E(Y;)) ds
P

and

lim limsupP sup
K=o 700 K<t<(1—p)T

4.7.9 Lemma. Under the conditions of Theorem 4.5.1 we have, for any e > 0,

lim limsup P sup }t L Tt — M;/T)| > 5) =0.

K—oo 7500 (thg(l—p)T
pT+t
1 (/ Y;dM;/)‘ >e| =0.
pT

and

lim limsupP sup
K=o 7400 K<t<(1—p)T
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Chapter 5
Estimates in the continuous case

In this chapter, we are going to derive CLS-like estimates for the Heston model from (3.0.1).
As noted in section 1.4, we are going to transform the parameter space first, derive estimates
for the transformed parameters, and estimate the original parameters by applying the inverse

transformation.

5.1 Estimates for the transformed parameters

Using (3.1.4) and (3.1.5), by an easy calculation, for all i € N,

(5.1.1) E( E] ‘]—"Z»_l> - [ ffb 0 +[ Jo e du o] H
Xi Blyedu 1 B (Jredv)du 1] |a

Using that o(X1,Y1,...,X;-1,Yi—1) C Fi—1, ¢ € N, by the tower rule for conditional expec-
tations, we have

(H )= (=([v)])
E o(X1,Y1,...,X;1,Y; 1) | =E | E Fi1

et 0 N fol —bu dy Of |a ieN
Bfl e tuduy 1 —Bf (g e™dv)du 1] |a 7 ’
0

and hence a CLSE of (a,b, a, ) based on discrete time observations (Y;, X;)ieq1,....n} could

Yia
Xi 1

0(X17Y17 v 7Xi—17}/;—1)>

Yiq
Xio1

be obtained by solving the extremum problem

(5.1.2) arg min Z [(Y; — dYi—y — P+ (X — X —y— 5}/;,1)2] ,
(a,b,a,8)€ER*
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Chapter 5. Estimates in the continuous case

where the transformed parameters are

(5.1.3)
1
d:=d(b) = e, c:=c(a,b) := a/ e " du,
0

1 1 u
0 :=4(b,B) := —ﬁ/o e " du, v :=7(a,b,a, ) = a — aﬁ/o (/0 e tv dv) du.

Minimizing the right hand side with respect to (c,d,,d) € R?* leads to

d, "1 1 " YiYi

(5.1.4) M =(E® Z >im1 YiYia ’
Tn o LYie1] [Yiet X, — o
[n] D (X — X1)Yi

provided that n Y " Y2, > (30, Y;—1)?. Indeed, with the notation

n

f(ca d777 5) = Z [()/:L - d}/;—l - C)2 + (X’L - Xi—l - — 6Yi—1>2:| ) (C7 d,'}/, 5) € R47

i=1
we have
a n
aiic(C) d7’y’ 5) = _QZ(Y; —dY;1 — C),
i=1
a n
87.;(07 d»% 6) = _225/;71(}/72 - dYtL’*l - C),
i=1
8 n
ar‘i(c7 d7’77 5) = _2Z<XZ - X’Z—l -7 — 5Yi—1)7
i=1
of "
%(C, d,v,6) = —QZYi—l(Xi —Xi1—7—0Y;1).

i=1

Hence the system of equations consisting of the first order partial derivatives of f being equal
to 0 takes the form

[ omm ]
Bo (S ! /| - iz Vi,
- Yi-1] [Yi1 ol Xn — o

0] (X = Xia)Yi |
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5.2. Asymptotic results for the transformed parameters

This implies (5.1.4), since the 4 x 4 matrix consisting of the second order partial derivatives

of f having the form

T
n

2E2®Z

i=1

1
Yi 1

1
Yi 1

is positive definite provided that n 3" V2, > (32, ¥i1)®. In fact, it turned out that
for the calculation of the CLSE of (¢,d,,d), one does not need to know the values of the

parameters o1, 092 and g.

The next lemma assures the unique existence of the CLSE of (¢, d,~, ) based on discrete
time observations. Note that it is valid for all b € R, i.e., not only for the subcritical Heston

model.

5.1.1 Lemma. Ifac R, beR, 01 e Ry, and Yy =yg € Ry, then foralln > 2, n €N,

we have )
p(n3 v2, > (gy) .
i=1 i=1

and hence, supposing also that o, B € R, 09 € Ry, o € (—1,1), there exists a unique CLSE

~

@,,d,.7.,6,) of (¢c,d,v,0) which has the form given in (5.1.4).

Proof. By an easy calculation,

2

WYVE - (zy) 3] SIS SV
i=1 =1 =1 j=1
and equality holds if and only if
1 n
Yii1 = %ZYH, i=1,...,n — Yo=Yi= =Y, 1.
7=1
Then, for all n > 2,

PYo=Y1=-=Y,1) <PYo=Y1) =P(Y1 =y) =0,

since the law of Y] is absolutely continuous, see, e.g., Cox et al. (1985, formula 18). O

5.2 Asymptotic results for the transformed parameters

5.2.1 Theorem. For a subcritical Heston model, that is, if b € Ry, and

(Yo, Xo) = (yo,70) € R1y xR,
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Chapter 5. Estimates in the continuous case

o~

the CLSE (ﬁn,dnﬁn,gn) in (5.1.4) is strongly consistent and asymptotically normal, i.e.,

(@ s A 0) 25 (c,d,7,8)  asm — oo,
and ~ _
¢, —c
d —d
vn| " 3>J\/’4(O,G) as n — oo,
Yn — 7
5, —6
with
1 E(Y ! 1 E(Y, !
(5.2.1) G:=|E® (Yoo) D|E;® (Yoo) ,
E(Ys) E(Y2) E(Ys) E(Y2)

where D is defined in (5.3.4). Furthermore, G is strictly positive definite.

Proof. Due to Theorem 5.1.1 we will assume that the estimators exist uniquely in the form

given by (5.1.4). Then we get

(5.2.2)
‘ L LY
Tn i=1 }/;,1 Y%*l Xz - Xifl
| 0n | D (X — Xi1)Yiq
T\ —1
L 1 1 n Y; 1
O
i |Yie1] [Yiea i | X — X Yi 1
T
1 1 1 1 d
=|Ey® FEy;®
i [Yie1] [Yiet i Yie1] [Yiea 0
)
1 1 Y, —c—dY;_1 1
+ | Ea® ®
i=1 Yvifl Yvifl i=1 Xz - Xzfl i 5)/;71 Y;,1
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5.2. Asymptotic results for the transformed parameters

The final step depends on

] A
" 1 1 ! d " 1 1 ! d
Bre (3 - (rme
o Y] Y v i—1 Yio1] [Yia v
) )
1 ovi, o0 0 ]\ [¢] [ ctdYi, |
B i Yio1 Y72, 0 dl " | (c+dYi1)Yiq
i=1 0 0 1 Yi 1 v i=1 Y+ 0Yi_1
0 0 Y Y?,l_ 0] (v + 6Yi-1)Yi1 |
Continuing from (5.2.2),
Ef ‘ T\ !
d d le| 1 1 1w |&i 1
SR ER 2D ( | @ )
Tn i n i=1 Yiq| [Yiea n i=1 L Yiq
5, 5
(5.2.3) S o
c
T —1
d 1|1 1
= + | E2® | — Z n—l/Qan’
Y n i=1 Y;‘—l Y;—l
0
where g; :=Y; —c—dY;_y and n; := X; — X;_1 — v — 0Y;_1, also,
1 €5 1
(5.2.4) M, :=n"2) ., neN, ke{l,....n}.
i=1 L Yi 1
The final thing to note is that, by (3.2.2) and (3.2.4),
(5.2.5)
1< 1 1) 1 Ly oy 1 1 B
Ly S I :
i Yiea] [Yia n > ie Yie1 n >ie1 Vit E(Ys) E(YZ)
where we used that )
2 2 _ a0;
E(Yyx) — (E(Yx))” = o2 € R+,
and consequently, the limit is indeed non-singular. The result is now a direct consequence of
Slutsky’s lemma and Lemmas 5.3.1, 5.3.2 and 5.3.3. O

5.2.2 Remark. The structure of (5.2.3) is essentially the same as (2.5.6). However, the

resulting martingale is much more complicated to handle — indeed, the calculation of the
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Chapter 5. Estimates in the continuous case

quadratic variations and the condition checks of the martingale central limit theorem consti-
tute a considerable part of the proof and indicates the hardships that are to be expected by
carrying the research further in this direction, that is, trying to find the analogue of Theorem
2.5.1 in this setting.

5.3 Auxiliary lemmas

First we will check the conditions of the martingale central limit theorem in our setting. The
reason for this is that the quadratic variation will be calculated as a by-product and we will

require that for checking the conditions of the strong law of large numbers.

5.3.1 Lemma. Under the conditions of Theorem 5.2.1 and M, defined in (5.2.4), we have

1
Yi 1

€k D

Mn,n:nil/2z —>N4(07D)7

k=1

Mk

where D s defined in (5.3.4).

Proof. We are going to apply the martingale central limit theorem (see Theorem 3.3.4) to
M, ;; with the following choices: d =4, k, =n,n e N, F,, = Fi,n e N, ke {1,...,n}.
First we check that our process is indeed a martingale. By (5.1.1) and (5.1.3),

E(Y;|Fi-1) =dYi-1+c¢, i€N,

and hence (&;);en is a sequence of martingale differences with respect to the filtration (F;)icz. -
Similarly, by (5.1.1) and (5.1.3),

E(X;|Fic1) =Xi-1+60Yi1+7, €N,

and hence (7;);en is a sequence of martingale differences with respect to the filtration (F;);ez, -
This establishes the martingale property for M, . The next step is computing the quadratic
variations. This is inevitably cumbersome, but not conceptually difficult. Applying the
identities (A; ® A2)T = A ® AJ and (A1 ® A)(A3® Ay) = (A1A3) @ (AsAy) (whenever

the multiplications can be performed),

E((Muy—Mpp1)(Mpr—Mpg—1)" | Fop-1)

()

1
Yi1

1
Yi 1

€k €k

& &

Mk Nk

.
) ‘]:k:—l ;
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5.3. Auxiliary lemmas

and, continuing,

E (M — Myp1) (M — Myj1) | Frp-1)

T

1 € € 1 1
) RLLR ® ']:k—1
n k| |7k Yio1| [Yi—1
T , , T
1 € 15
=_FE F ¥ ‘}"kl ® , neN, ke{l,...,n}.
n | |7k Yie1| [Ye—1

We need to calculate the conditional expectations in the first term one by one — the reader who
wishes to skip the details may find the end result in (5.3.1), (5.3.2) and (5.3.3), respectively.
By (3.1.1), we have

Y, =e i +a / e 00 qy + oy / e i—u) /Yy aw,
1—1 11—

1
=dYi_1+c+ o, / et Sy, dWw,,  i€N,
i1
hence, by Karatzas and Shreve (1991, Proposition 3.2.10) and (3.1.4), we have

(5.3.1)

E(s?\fi_l):o%E<<[il Z“de)

:U%/ o~ 2bli-1)gb(u=it1)y; | qy 4 52 / le—Qb(z‘—u)a/ 1e—b(u—v) do du

H) = o? / e R R(Y, | Fiy) du
i—1

—alY / 2”dv+ala// 2”“dvdu—ClY 1+ Cs.

By (3.1.1) and (3.1.4), with the notation W, := oW, + /1 — 2By, t € Ry, we compute
Xi— X, q = / (a— ,BYu)du—Hm/ VY dW, = a —5/ Yudu—i-ag/ VY, AW,
i1 i1 i1 i1
=a—-p (e_b(“_i+1)Y;_1 + a/ e =) qy + oy / e b=y, de) du
i-1 i1 i1

+ o3 / VY diW,
1—1

=«a-—pBY,_ 1/ blu=i+1) gy — a8 (/ o~ bu—v) dv) du
i—1 \Ji—1

—/Bal/i_1</iu1 “v>fdw>du+02/ VY, dW,,
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and, continuing,

1 1 u
Xi—-Xi1=a— 5Yz‘—1/ e P du — aﬁ/ </ et dv) du
0 0 0

—,301/ </ e by, dWU) du+02/ VY, dW,

i—1 i—1

=0Y; 1+ — Bal/ </ e =) /Y, dWU> du + 02/ VY, dW,,
i—1 i—1 i—1

S0, consequently,

E(n} | Fia K/H/H“’(“”fdwolu)
ol
—2,6’0102EK/;1 /iul e P Y, aw, du> <g/ii1\/}7uqu)’]-}_1}

—25010—21@{(/ / eb(“”)\/Yvdedu>(\/1—gz/ \/YudBu>’}}_1].
i—1 Ji—1 i—1

-

We use Karatzas and Shreve (1991, Equation (3.2.23)) to the first, second and third terms,
and Karatzas and Shreve (1991, Proposition 3.2.17) to the fourth term, together with the
independence of W and B:

E(nf|F;-1) / / < / e bu=w) /Y AW, / e_b(“_w)«/Ydew‘}}1> dvdu
i—1Ji—1 1—1 1—1
03 / E(Y, | Fio) du
7—1

Qﬁalagg/iIE</u "w\ﬁdw/ de‘]—} 1)du

-1

:,82 / / / b(ut+v—2w) (Yw]-"i_l)dwdudv-i-JQ/ (Yu|~E—1) du
i—1Ji—1Ji—1 -1

— 250102Q/ / efb("fv)E(Yv | Fi—1) dv du.
i—1Ji—1
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Using again (3.1.4), we get

(5.3.2)
E(ﬁz'2|-7:z‘—1)

= B*07Y;- 1/ / / blutv=w=(=1) qQy dv du
7 7 uAv w
+ aﬂzJ%/ / / / e butv=w=2) 45 dw dv du
i—1Ji—-1Ji—1 Ji—1
+02Y; 1/ b(u—(i—1)) du+a02/ / b(u=v) qy du
i—1 Ji—1
—26010291@_1/ / b(u—(i-1)) dvdu—Q(LBalagg/ / / e (=) qoy dv du
i—1 i—1Ji—1
1,1 pu'AV L,
_ <520_%/ / / e—b(u +v'—w’) dw' dv' du’
o Jo Jo
1 pu’ , 1
- ZBolaQQ/ / e do/ du'—l—a%/ —bu! du> i1
0
+ap*o / / / / b(u't+v'=w'=2") 4,/ qu’ dv’ du’
+ a02/ / b(u' =) Qo du’ — 2aﬁolagg/ / / N dw' dv' du’

=:C3Y;,_1+ Cy.

To calculate the off-diagonal entries in the quadratic variation, we write

E(epne | Fr1) = E((Yi — ¢ = AV ) (X — X1 — 7 — 6Yi—1) | Fiom1)

k
=E <01 / et =9) Y, AW, x
k—1
k U k .
X <—50—1/ / e b)Y, AW, du—l—ag/ \/Yuqu>
k—1Jk-—1 k—1

)
) ) du

k k u
= —po? / E < / e M=) /Y, W, / M) /Y, AW,
k—1 k—1 k—1

)

k k N
+ 0102 E ( / e 0k=9) v, AW, / VY, dW,
k—1 k—1
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Again by Karatzas and Shreve (1991, Equation (3.2.23) and Proposition 3.2.17), we have
k u
E(flmk | ‘Fk—l) = _/80-% / / e—b(k+u—2v) E(Yv ‘ fk—l) dv du
k=1 Jk—1

k
+ 010920 / e YET) B(Y, | Frt) do
k—1

Using (3.1.4), by an easy calculation,

(5.3.3)

k u v
E(exnk | Fr—1) = —ﬂaf/ / o~ blktu—2v) <eb(“k“)Yk1 + a/ e b(v=s) ds> dvdu
k—1Jk—1 k—1
k v
n 0102@/ —b(k—v) ( “bo-k+Dy, a/ o bw—9) ds) dv
k—1
( ﬁal / / —b(w ="+ Qo du’ + Ulagge_b> Yi_1
1 pu pof .
_ aﬁo’%/ / / e—b(u —v'—s'+1) ds’ do’ du’
o Jo Jo
1 o ,
+ (10‘10'2Q/ / e 015 qg’ 4o/
o Jo

=:C5Y_1 + Cg, k € N.

Summarizing we have for the quadratic variation, by (3.2.2) and (3.2.4),

S E (Mg — Myjp—1) (Mg — My 1) | Fopo1)

B li -Clyk_l +Cy C5Yi_1+4Cq 1 Yi._1
N 1Cs5Ye-1+Cs C3Yp1+Cy Vo1 Y72,
(5.3.4)
1 " 1C1 Cs Yi1 a Z Cy 1 Y
16 Cs Yk2—1 Yk: 1 " 1 Ce 04 Yi1 Yk2—1
s, [C1 G5 E(Ys) E(Y2)] [Cy Cs LEYL)| _
Cs O3]  |E(Y2) E(Y2)| |G Ci] |E(Ye) E(Y2)|

where the 4 x 4 limit matrix D is necessarily symmetric and positive semi-definite (indeed,
the limit of positive semi-definite matrices is positive semi-definite). For the definitions of
Cii=1,...,6,see (5.3.1), (5.3.2) and (5.3.3).
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We complete the proof by checking the Lindeberg condition (3.3.3). Since

ﬂ?”4 IIwH4
Ljja)ze) < ,  xcRY eeRyy,

2|2 L iz ey <

and ||z||* = (22 + 23 + 23 + 22)? < 4(2f + 24 + 23 + 23), 21,79, 23,74 € R, it is enough to
check that

n

1
> > (B(eh | Fro1) + Vil Bk | Frmt) + E(mi | Frmr) + Vil E(ni | Fi1))
=1

QZE +Yk1 Ek—i-nk | Fr— 1)i>0 as n — oo.
Instead of convergence in probability, we show convergence in L, i.e., we check that
QZE L+Y ) (e +mp) =0 as n — oo.

Clearly, it is enough to show that

sup E((1+ Y ) (eh +mi)) < oo.
S

By the Cauchy—Schwarz inequality,

E((1+ Yk4—1)(5i + 77%)) < \/E((l + Yk4_1)2) E((gk + 77k \f\/E 1+ Yk4 )?) E(Ei + 77/%)
for all k£ € N. Since, as stated in (3.1.3),

(5.3.5) sup E(Y) < oo, k€ Ry,
teRL

it remains to check that sup,cy E(si + 772) < 00. Since, by the power mean inequality,
E(e}) = E(|Yy — dYi—1 — ¢f*) S E((Yy +dYj1 +0)%) < 3TEQYS + %Y 1 + %),  keN,
using (5.3.5), we have sup,cy E(}) < co. Using (3.1.1),

E(ny) = E((Xg — Xp—1 —7 — 0Y51)®)

k k k 8
:E<<0z—ﬁ Yudu—l-JQQ/ \/Yuqu—i—O'Q\/l—QQ/ \/YudBu—y—éYk_1> ),
k—1 k—1

k-1
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and using the power mean inequality again,

k 8 k 8
Yudu> +a§g8< \/Yuqu>

k—1

E(ny) < 67E<a8 + 8 (

k—1

-1

k 8
+05(1 — 0*)? </ VY, dBu> + 652 | + 78> .
k
By Jensen’s inequality and (5.3.5),
k 8 k ke
supE ( Y., du) <supE ( Y3 du) = sup/ E(Y®) du
keN k—1 keN k—1 keNJEk—1

< (Sup E(Yf)) (sup/kk 1du> = sup E(Y}P) < .

teR L keN —1 teR4

(5.3.6)

By the SDE (3.0.1), the power mean inequality, and (5.3.6),

k 8 1 3 8
E((/ \/Yuqu) > <8E<<Yk—Yk_1—a—b Yudu) >
k-1 o1 k—1

7

8
4 k
< 8]E<Yk8+Yk81+a8—|—b8< Yudu> >
01 k—1

47
< — | 2 sup E(YP®) + a® + b° sup E(YY) | < co.
01 teRy teRy

Further, using that the conditional distribution of fk’il VY, dBy given (Yy)ye(ox) is normal

. . k
with mean 0 and variance fk_l Y, du, we have

k 8 k 4
E ((/ VY, dBu) ’ (Yu)ue[o,ko = 105 ( Y, du> . keN,
k-1 k—1

and consequently

E<< :I\/EdBuf) :105E<< k:Yudu>4>, k eN.

Hence, similarly to (5.3.6), we have

k 8
supE (( VY dBu> ) < 105 sup E(Y}?) < oo,

keN k-1 teR

which yields that supyey E(75) < oo. O
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5.3.2 Lemma. Under the conditions of Theorem 5.2.1 and M, i, defined in (5.2.4), we have

— a.s. .
n 1/QM,ML — 0 componentwise.

Proof. First let us observe that

1

n
.
M, :=n'""My,=>_ [ ' .
i—1

i=1 L

is a martingale. The reasoning is the same as the beginning of the proof of Lemma 5.3.2. We

will use Theorem 3.3.3 componentwise to show that

Mn as, g

n
componentwise, which is our statement. Let us recall (5.3.4) and introduce

n

Dy =) E (M — My j1)(Mpj — Mpgp1)' | Frp)-
k=1

Now, for the components of M,, we have (M®), = DX that is, the i-th element on the

main diagonal in D, for i = 1,2,3,4. Hence,

n D,

My = My . Dn 25 0. DD =,
n

by using the convergence from (5.3.4), and D) denoting the i-th element in the main
diagonal of D. O

5.3.3 Lemma. Under the conditions of Theorem 5.2.1, G is positive definite.

Proof. Expanding the definition of G,

-1

o [|6 G L E(Ye)|  |E(Ye) EQR)|) )
\ e o E(Y.) E(Y2)] [E(YZ) E(Y2)
1 R
X | Eo®
E(Ys) E(Y2)
ool ([ 1 EM) T Eea))),
Cs Cy E(Ys) E(Y2) E(Ye) E(Y2)
1 B
X E2® )
E(Ys) E(Y2)
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)

from which

T E(Y.) EO2)

E(YY) E(YR)

[e.9]

1 E(Ye)
E(Ys) E(Y2)

Chv Cs
Cs C3

1 E(Ya)

G =
E(Yoo) E(YZ)

|

Cy O . 1 E(Ya) o E(Ys) 1 E(Ys) -
Cs Cu E(Yo) E(Y2)| |E(Ye) E(Y2)| |E(Y) E(Y2)] |

Writing out the inverses,

Q- 1 C1 Cs
B (E(YOQO) - (E(YOO))2)2 05 Cg
([ E02) —E()] [B) BO2)| [EG2) -E()
—E(Ye) 1 E(YZ) E(YZ)] [-E(Yx) 1
N 1 Cy Cp o E(Y2) —E(Ya)
E(YZ) - (E(Yx))? |5 C4 —E(Yao) 1
B 1 C1 Cs
B2 - EVPP | o
o E(Yoo) (E(YZ))? — E(Yoo) E(YZ)) (E(YZ))? — E(Yeo) E(YZ)
(E(YZ))? — E(Yoo) E(YZ) E(YZ) - 2E(Yoo) E(YZ) + (E(Y))?
N 1 Cy Cg @ E(Y2) —E(Ya)
E(YR) - (E(Yx))? |Cs Cu| |—E(Yao) 1 '
All in all,
a(2a+0%) 2a+0? 2a-+02 2
Cc: C = i Cy C p p
(5.3.7) G = C; CZ _zbaj%gf Zb(s;f—;af) CZ Cj —éll; 332%1]

Indeed, by (3.2.2), an easy calculation shows that

3,2
a’oy

4b5 (2 + 0'1)

(E(Yoo) E(Y) = (E(Y))?) E(Yao) =

CL2

E(Yoo) E(V) — (B(YZ))? = 5

(2a+01)
ao

E(Y2) — 2E(Ya) E(Y2) + (E(Ya))® = T3

(a+07),

2
aoy

R(V2) - (E(Va))® = 5L
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To show the statement from here, it is enough to check that

(i) the matrix

Cr Cs
Cs Cs
is positive definite,
(ii) the matrices

a(2a+0?) 2a-+02 2a+02 2b
Cy Cs bo? o2 and o3 o3
C. C ) _ 2a+0?  2b(ato?) 2 202
6 Ca o ac? g R

are positive semi-definite.

Indeed, the sum of a positive definite and a positive semi-definite square matrix is positive
definite, the Kronecker product of positive semi-definite matrices is positive semi-definite and
the Kronecker product of positive definite matrices is positive definite (as a consequence of the
fact that the eigenvalues of the Kronecker product of two square matrices are the product of
the eigenvalues of the two square matrices in question including multiplicities). The positive

semi-definiteness of the matrices

a(2a+0?) 2a+02 2a-+02 2b
bo? B o? )

1 1 1 1

. 2a+0?  2b(ato?) and 2 2h2
o? ao? o? ao?

2 2
readily follows, since a(2§;01) > 0, 2“:201 > 0, and the determinant of the matrices in question
1 1

2
are 2a:201 > 0 and % > 0, respectively. Next, we prove that the matrices
1

1

Cy Oy
Cy Cs

C1 Cs
Cs (O3

and

are positive semi-definite. Since P(Yy = yo) = 1, we have E(e? | Fo) = Cryo+ C2, E(n? | Fo) =
C3yo + C4, and E(e1m1 | Fo) = Csyo + Cs P-almost surely, hence

E(e}) E(n}) — (E(€1771))2 = (C105 — C3)y2 + (C1Cy + C2C3 — 2C5C5)yo + C2Cy — Cg.
By the Cauchy—Schwarz inequality,
E(e) E(r) — (Eevm))” > 0.
hence, by setting an arbitrary initial value Yy = yo € Ry, we obtain C;C5 — C2 > 0 and

CyCy — 062 > 0.
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Thus, both matrices
C1 Cs
Cs Cs

Cy Cy
Cy Cg

and

are positive semi-definite, since C7 > 0 and Cy > 0. Now we turn to check that

Chy Cs
Cs C3

is positive definite. Since C7 > 0, this is equivalent to showing that C1C'3 — C’g > 0. Recalling
the definition of the constants from (5.3.1), (5.3.2) and (5.3.3), we have

1 eb -1
C = 0%/ e 4y = J%e_QbT,
0

1 p1 pu/AV R
Cs = 620'%/ / / e VW) Qo do! du!
o Jo Jo

1 pu/ 1
— 2501029/ / e qv' du/ +a§/ e U du/
0o Jo 0

’

Cs = —Bo? 01 /Ou oW =V Q! dud/ + o1090e”?
=b201e" (—e_bﬁal(l +(b—1)e") + Q02b2> ,
thus we have
0103 — C2 = b e 202 (2()(2 + b?)Booios + 2(320? — 2bBooi09 + b203) cosh b
(24 0)F202 — (2 + 5292)03).

Consequently, using that
e b2k: b2
coshb = kzo 2h)] > 1+ 5

and that
B0} — 2bBoor09 + b203 = (Bo1 — booa)? + b*(1 — 0*)os > 0,
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5.4. Asymptotic results for the untransformed parameters

we have
CC5 — 052 > b_4e_2b0% (4()590102 + 2380109 + 2B2U% + bQBQU% — 4bBocios — 203 Boo 09
+ 2b%03 + blo? — 28%07 — b2 3207 — 2703 — b4gza§>
= bt 22 (b (1 - 0?)o3) > 0.

This concludes the proof. O

5.4 Asymptotic results for the untransformed parameters

So far we have obtained the limit distribution of the CLSE’s of the transformed parameters
(¢,d,7,0). A natural estimate of (a, b, o, 5) can be obtained from (5.1.2) using relation (5.1.3)
detailed as follows. Calculating the integrals in (5.1.3) in the subcritical case, let us introduce
the function g : R, x R? — Ry x (0,1) x R?,

ab~1(1 —e7t) c
(541)  gla.ba,B) o N, (@bap) cRL, xR
4. gla,b,a, B) = = , a,b,a, x R”.
a—aBb ?(e® —1+0b) ¥ A
—Bb (1 —e?) )

Note that g is bijective, with the inverse

i logd | M
—C14

—logd

(542) g e, d,v,0) = _ pgd-lzlogd -

Y 1-d)2
logd
e

) (C, d,’}/,(S) € R++ X (07 1) x R2'

=™ L o 9

Indeed, for all (¢, d,~,d) € Ry; x (0,1) x R% we have

logd _logd
1—d51—d(_1

a=v4afb 2P —14b) =7+ (—c) ogd)~2(d—1—logd)

d—1—1logd

SO e

Under the conditions of Theorem 5.2.1 the CLSE (’c\n,c?nﬁn,gn) of (¢,d,v,0) is strongly
consistent, hence in the subcritical case (¢, c?nﬁn, gn) fall into the set R4 x (0,1) x R? for
sufficiently large n € N with probability one. Hence, in the subcritical case, one can introduce

a natural estimator of (a, b, cr, 3) based on discrete time observations by applying the inverse
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of g to the CLSE of (¢, d,~,9), i.e.,

~

(5.4.3) (@ns b @, Ba) = g @ s T 31)
for sufficiently large n € N with probability one.

5.4.1 Remark. We would like to stress the point that the estimator of (a, b, a, 8) introduced
in (5.4.3) exists only for sufficiently large n € N with probability of 1. However, as all our
results are asymptotic, this will not cause a problem. From the considerations before this

remark, we obtain
(5.4.4)

n
(@nybny Gn, Bn) = argmin > [(Vi —dYi1 —¢)* + (Xi — Xio1 — 7 — 6Yi1)?]
(a,b,a,ﬁ)GRierRQ i=1

for sufficiently large n € N with probability one. We note that (an,Zn,an, En) does not
necessarily provides a CLSE of (a,b, «, 3), since in (5.4.4) one takes the infimum only on the

set ]R%L 4 X R? instead of R*. However, this is a relatively minor point. O

5.4.2 Theorem. Under the conditions of Theorem 5.2.1 the sequence (an,Zn, Qs Bn), n €N,

18 strongly consistent and asymptotically normal, i.e.,

’dngnanﬁngabaﬁ as n — 0o
( ) ) ) ) ) b )
and ~ _
an — a
by—b| p .
V| —>N4(0,JGJ ) asn — oo,
Qp —
5.8
where G € R**? is a symmetric, positive definite matriz given in (5.3.7) and
i logd logd—14+d— "t T
T1-d T2 0 0
0 ~1 0 0
J =
’ slogd+1—d 52logd—d+d_1 1 clogdtl—d
1=  “ (1-ay (1-d7?
logd—1+d~! log d
0 O==a=g) 0 1-d

with ¢, d and § given in (5.1.3).

Proof. The strong consistency of (Zin,gn, Qi Bn), n € N, follows from the strong consistency
of the CLSE of (¢,d,v,8) proved in Theorem 5.2.1 and the continuity of g~ !.

For the second part of the theorem we use Theorem 5.2.1, and the so-called delta method

(see, e.g., Lehmann and Romano, 2009, Theorem 11.2.14). Indeed, one can extend the
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function g~' to be defined on R* instead of R, x (0,1) x R? (e.g., let it be zero on the
complement of Ry x (0,1) x R?). Even with this extension, (Zin,gn, On, Bn) takes the form
given in (5.4.3), and the Jacobian of ¢g~! at (c,d,v,d) € Ry, x (0,1) x R? is clearly J. O
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Appendix A

Results of theoretical interest for
INAR(p)

A.1 Invertibility of the matrices Q,, Q' and Q"

In (2.4.1) we assumed that the matrix @,, is invertible, and similarly, in designing the one-
sided tests we assumed that Q' and Q" are positive definite. The following two lemmas will

show that these assumptions are correct.

A.1.1 Lemma. For a homogeneous INAR(p) process with p > 0, for which either aq € (0,1)
for some q € {1,2,...,p} or o >0, we have

P(Q,, is singular) — 0.

Proof. Since

is a sum of positive semidefinite matrices, it is positive semidefinite itself. Therefore, its
singularity is equivalent to the condition that for some 0 # v € RPt! and every index

i€{l,...,n}, we have
-

X X;_
v’ ! ! v=20,
1 1

which is equivalent to the condition that the linear span of

is a proper subspace of RPT!. Now, using the continuity of probability, our statement is
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equivalent to the following:

(A.1.1) P (span { [Xi_ll RS N} < Rp+1> =0,

where < denotes proper subspace. For simplicity, throughout the proof we will use the

Xio1| .
Y, = , 1 €N,

It is clear that all values of (Y;);en fall into Z% x {1}. We introduce the following notation

notation

for the set of spaces that can be spanned by the values of the process:
(A12) Si= {S < Rp-i-l 1S = Span{y17y27 . '7yn}7 Y,Y2:-- - Yp S Zi X {1}? ne N}

We can notice that S is countable. Indeed, every generating system of a subspace contains a
basis, therefore every subspace S € S has a basis whose elements are from ZF x {1}. Such a
basis is from (Z% x {1})¥ where k = dim S, and 0 < k < p, and of course a basis corresponds
to only one subspace. Now, since Z x {1} is countable, (ZE x {1})* is also countable for
any k € N, therefore UY_(Z x {1})* is also countable, and so is S.

Now we reformulate the event in (A.1.1):

(A.1.3)
{span{Y ;i e N} <R"*'} = | | {span{Y;,ie N} =S} =[] {span{Y,,i € N} = 5}
S<Rp+1 SeS

C U {span{Y;,i € N} C S}.
Ses

Since the last union is countable, we can apply o-subadditivity to show (A.1.1) if we can

prove
(A.14) P(span{Y,;,i € N} CS) = li_)m P(span{Y1,Y9,...,Y,} CS)=0, VSeS.

Here the first equality is trivial by the continuity of probability; it is the second equality which
requires a more detailed proof. The first step in the proof of (A.1.4) relies on the mechanism
by which the components of Y;11 can be obtained from those of Y;. For a fixed S € S the
elements of S can be viewed as the solutions of a homogeneous system of independent linear

equations, i.e., y € S if and only if

p+1
Al5 Ny =0, i=1,2,...,p+1—dim§.
)-]
j=1
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This representation is not unique, but we can fix one such representation. Now let us introduce
K(S) :=min{j € {1,2,...,p} : max|\; ;| > 0} and
(2
c(s) :=min{i € {1,2,...,p+1—dim S} : |\; ()| > 0}.

This notation means that K(S) is the first column index for which a nonzero coefficient
appears in some equation in (A.1.5) and the first nonzero coefficient in the ¢(s)-th equation
has index K(S). We also note that K(S) = p + 1 is impossible because that would mean
that the only equation is y**1) = 0, which does not hold for any element of Z% x {1}.

Let us now fix an arbitrary ¢ € N and w € ) from our underlying probability space such
that Yi(w) =y = (y,y@,...,y® 1)T. Then we have

.
Yiik(9)®@) = (Xipri 1 @) Xilw), g,y K1) (see (2:22).

Hence, for Y ;; (s)(w) € S to hold, it is necessary (but usually not sufficient) that Y; , x(g)(w)
satisfy the ¢(s)-th equation in (A.1.5), i.e.,

K(9) P ‘
D A Xirk©-i @+ Y Ay + A =0
J=1 j=K(S)+1
p .
& Acte),k(5)Xi(w) + Z Ae(s) iV D £ X gy pi1 = 0.
J=K(S)+1

This linear equation has a unique solution for X;(w) because ) k(s) # 0. Let us denote
this unique solution by m(y,S) (by simple algebraic considerations one can see that this
quantity does not depend on the representation in (A.1.5), but this is not necessary to our
proof). Therefore, if X;(w) # m(y, ), then w € {Y;  x(5) € S,Y; =y}, hence

{Yiike) €S Yi=y} C{X;=m(y,5),Y; =y} VieN, VyeZi x{1}.

If m(y,S) € N, then we have {Y;; g(5) € S, Y; =y} = 0.

Now we take n = n+ K (S) and split the general event from the second sequence in (A.1.4)
according to the initial value of the process:
(A.1.6)

{span {Yl,YQ, .o 7Yn+K(S)} g S} = U {span {Yl,YQ,. i .7Yn+K(S)} g S,Y1 = yl}.
ylezix{l}
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The individual events in the union can be transformed in the following way:

(A.1.7)

{span{Y1,....Y g} CSYi=9y1}={Y1€S5,....Yigs €S Y=y}
={Y1€85,....Ygs €SY1=9y1,Y 11k €S-, Yyik) €5}
C{Y1€8,.... Yk €5, Y1 =y, X1 =m(y1,9), Yoyk(s) €5 Ynir(s) €S}
={Y1€8,... .Y €SY1=y, Yo =95, Yo,k €S, .-, Ynir(s) €5}

c{Yy, ES,...,YK(S) €S,
Yi=y, Y=y, Xo = m(y2ﬂs)’Y3+K(S) €5,... 7Yn+K(S) € S}

={Y1€8,....Yg€9Y1=91,Y2 =95, Y3=93, Y355 €S5,..., Y 1k(5 €5}

C{Y1€5,.... Yk €S Y1=y, Y2 =45, Y3=y3,.... Y, = y,},

where the sequence (y;)!"_; is defined by the recursion

m(yi—17 S)
)
(A.1.8) Y, = : Ci=23....n

yl(pll)

1

We would like to represent the probability of the last event in (A.1.7) as a product of transition
probabilities. For this we first need to determine whether the event is empty, and now we will
give two necessary conditions on y; for its nonemptiness. The first condition is, clearly, that
all elements of the sequence defined in (A.1.8) fall into Z% x {1}. We will not investigate this
condition in any further detail, we only note that this imposes a deterministic condition on
y1. Another deterministic condition is that Yy € S, Y2 € S,..., Y g(5) € S should all hold.
Because the first K (S) —1 coefficients are all zero in any equation in (A.1.5) and Y'; contains
all the components indexed K () or greater in Y1, ..., Y g(g), the validity of these inclusions
is determined by y; alone. This imposes the second (again, deterministic) condition on y;.
If we denote the set of y; which fulfill both these conditions by Uy, we have from (A.1.6) and
(A.1.7),

{Spa'n {Y17Y27"'7YR+K(S)} - S} - U {Yl = y17Y2 = y27Y3 =Ys--- Y = yn}’
y,€Un
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hence by o-subadditivity (U, is clearly countable),

P(span{Y1,Y2,....Y g} €S < Y P(Yi=y,Yo=1y,,....Y, =y,
ey,
(A.1.9) .

= Z P(Y'1 = 41)Py; 92Pysys = Py 190
Y1€Un

where p,, ., denotes the transition probability of Y from w to v. Because the sets (Uy)nen
form a nonincreasing sequence (the second condition does not depend on n, and the first
one become more restrictive as n increases), it is sufficient to show that for any sequence
(y;)ien € (N§ x {1})N we have

(All()) Jgr&pyl,yzpyg,yg o ‘pynflvyn = 0’

and from this we will get (A.1.4). For the proof of (A.1.10) we will need to establish upper
bounds for the transition probabilities. We will first consider the case when o > 0, i.e., when

the innovation distribution is nondegenerate.

Let us fix u,v € Nj x {1} so that 0@ = D) B = @) @) = D) et = 1

We would like to give an upper bound for py, .. We have for every ¢ € N and any m € Z,

p u(]) P u(])
1
P Yi+1:'in:u,ZZ§j7i7g:m =P 5i:v()—m|Yi:u,ZZ§jviyg:m
Jj=lt=1 j=1t=1

:]P)<5i:v(1)—m>.

Applying the law of total probability we get

p ul
(AL1D)  pup= > Plei=vW-mP|{Y ) gir=m| < max P(e; = k) <1,
X SY/nn
meZy j=1¢=1

since the innovation distribution was nondegenerate. Therefore, if ¢ > 0, then we have a

uniform upper bound on the transition probabilities, which implies (A.1.10) immediately.

The other case is if the innovation distribution is degenerate. First we note that in this case
the innovation is equal to its expectation p > 0 almost surely, so that all components of Y'; are
positive for ¢ > p 4+ 1. According to the conditions, there is a coefficient a4, ¢ € {1,2,...,p}

such that 0 < a4, < 1. Similarly to the previous reasoning, if additionally we suppose that
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all components of u and v are greater or equal to u, we have

p wl@ w1
PlYin=vYi=upn+ [ DD &ie|+ Y, &uie=m
j=1 ¢=1 =1
J#q
p u(]) u(q)—l
1
=P & iuw = o) — m|Y; =u,pu+ ZZ@,M + Z Egie=m

J=1 =1 =1
J#4q

=P (gq,i,u(Q) = oM — m) .

Here we note that & ) is a meaningful notation because u(¥ > p and p is a positive

qyiul

integer. Applying the law of total probability again, we have that
Pup < max(ag, 1 —ay) <1,
which again gives a uniform upper bound for the transition probabilities and yields (A.1.10).

With this our proof is complete. |

It may be worth noting that Lemma A.1.1 imposes very weak conditions on the process—
we only neglect the trivial case when all innovation and offspring distributions are degenerate.
Also, the lemma does not require that the process start from zero—the initial distribution

can be arbitrarily chosen on U. This gives us a chance to prove two important corollaries.

A.1.2 Corollary. For an INAR(p) process under the alternative hypothesis satisfying the
assumptions of Lemma A.1.1 both before and after the change, and T = max(1, |np|) for
some p > 0 constant, we have

P(Q,,is singular) — 0.

Proof. To show this statement we only need to note that due to Lemma A.1.1 we have
P(Q|,,is singular) — 0,

and clearly

{Q,,is singular} C {Q,,,is singular}

due to the reasoning at the beginning of the proof of Lemma A.1.1. O

A.1.3 Corollary. Under the conditions of Theorem 2.7.1 both Q' and Q" are positive
definite.

Proof. First we prove for Q’. We note that Lemma A.1.1 did not impose any conditions on

the initial distribution of the process Y, therefore we can start the process from its stationary
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distribution (the existence of which is a trivial corollary of the existence of such a distribution

for X before the change). Now, the singularity of Q' is equivalent to the condition

)?/
P([ ]eS) <1, VS <R
1

Let us now suppose that the stationary distribution of Y is concentrated on a proper subspace
S < RPFL. From (A.1.4), however, we conclude that the probability of the process remaining
in S forever is zero. As the distribution of Y, is the stationary distribution for every time n,
this is an immediate contradiction. Therefore Q' is nonsingular, but since it is a covariance
matrix, it is positive semidefinite, therefore it has to be positive definite. The proof is the

same for Q" O

A.2 The conditional moments of M,

We shall now derive several moments of M}, conditionally on Fj_; (this calculation is a
reproduction of that in T. Szab6 (2011a)). Let us write M}, in the form

Xk,1 Xk72 Xk*:ﬂ
My = Z 1k — 1) + Z Sk —2) +... + Z (&pkg — ap) + (e — 1)
=1 =1 =1

All the terms on the right hand side have zero mean and are independent of each other

conditionally on Fj_1, therefore
E(M7|Fr—1) = ar1(l — a1) Xp—1 + ...+ ap(l — o) Xpp + 0>

Similarly,

p p
E(MFe-1) =Y B((Gn1 — o)) Xei +3 Y E((&nn — @) (€1 — 0)?) XiX;
i=1 i.j=Li#]

+6Z< )IE2 (&in1 —)?)

+6 Z Xk 1 §z71,1 - az)Q(El - M)2) + E(<€1 - :u)4)7
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Appendix A. Results of theoretical interest for INAR(p)

and, after substituting the expectations,

p
E(Mé’fk—l) = aIXk_i +3 Z a;(1— ai)aj(l — aj)Xin
ij=1,i#j

p
X
+6y ( 2z> 02(1 — a)? + 60 Xj-10% + E((e1 — r)").
i=1

A.3 Strong approximation for the test process

If one is prepared to get more involved in approximation theory than strictly necessary for
Theorem 2.5.1, the result found there can be improved considerably. As this is theoretically
interesting, but doesn’t change our tests at all, we will discuss it here in the Appendix. This
formed the backbone of T. Szabé (2011a), and was indeed the author’s first result on the

problems considered in the present thesis. We will begin with a simple calculus result:

A.3.1 Proposition. Let (ay)nen be a sequence of nonnegative numbers such that

an
— =0 asn— o
nb
for some B > 0. Then
ayg
sup —5 — 0 asn—
1<k<n T

Proof. Based on the assumption we have

Gn

Ve>0:3v(e) >0: 5

<€, if n > v(e).
For a fixed € > 0 put

S(e) := sup a4

1<i<p(e)

Vo(€) := max (V(e), <S i€)>w> .

We will conclude the proof by showing that if n > v5(e€), then

and

o
(A.3.1) sup —5 < €.

1<k<n

Indeed, if 1 < k < v(e), then




A.3. Strong approximation for the test process

On the other hand, if v(e) < k < n, then

ae _a
koo Ok

nB S kP

N

€

which completes the proof. O

The starting point for strong approximation is the following theorem:

A.3.2 Theorem. (Eberlein, 1986) Let (Yi)r>1 be a sequence of d-dimensional random
vectors, Tp(l) =Y 1+ +Ypx for £>0, k=1, and Gy the o-algebra generated
by the random vectors Y1, ..., Y. Assume

(i) E(Yg) =0 forall k>1.

(ii) There exists d >0 such that
Sup B (T4(¢) | Go) |, = O(K'/22),

where || - |1 denotes the Li-norm.

(iii) There exists 6 >0 such that

sup [E{T4(OT4(0)T |6} ~ E{TW(OTH(0)T }|| = OG*),

where || X||1 denotes the sum of the Li-norms of the entries of a random matriz X.

(iv) There exist 6 >0 and a covariance matriz 3 such that

sup Hk;—l E {Tk(é)Tk(E)T} - zH = O(k™).

(v) There exists § >0 such that

sup B(||Y ]|*1?) < oo.
k=1

Then there exist k > 2 and a d-dimensional standard Wiener process (W(x))z>0 such

that, almost surely,
[t]
ZYk —S2W(t) = O(t'")  ast — oo.
k=1

With the help of this, we can prove the following stronger version of Theorem 2.5.3:
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A.3.3 Theorem. Under condition Cy from Definition 2.2.1, there exists a p+1-dimensional

standard Wiener process (W(:c)) such that, with some Kk > 2,

x>0

ZZ —I'°W(k) = o(k'") a.s., as k — c.

Proof. We will set Y, := Z}. and show that the conditions for Theorem A.3.2 hold. Because
Z, are martingale differences, conditions (i) and (ii) (with & = 1/2) are fulfilled automatically.

For condition (iii) we first observe that Zj are pairwise uncorrelated with respect to any

Fe (again due to the law of iterated expectations) and Gy = Fy, ¢ € N, hence
E(Tw(O)Tw(0)T1Ge) = B(Z011Z0 1| Fo) + - + E(Zox Z 4| F0).-

Let us introduce

By, =E(ZZ/,;|F) =E <

2 T 2
Mj  Xori1 Xy Me+iX£+z‘—1]

2 2
ME—HXE—H 1 M€+z

7)

Let us denote by V; the column vector

E(MZQHU:K)
E(M42+1X?+z 1"Fk*1)

E(MZ X pri1|Fe)
(A32) Vg,i =

E(X ¢1i—1|Fe)

Clearly, all the entries of By; are contained in V ;. Therefore, if we show that

sz Z]E Vi)

sup sup
k>1 £>0

<oo,

then we can conclude that (iii) holds with 6 = 1. First we want to show that the following

recursion applies:
(A.3.3) Viigi=RV,;+R1>1

where R is a block upper triangular matrix containing only 0, A, A®2, A®3 in its main diago-
nal, and R is a column vector whose entries depend only on the moments of £;(1,1),1 <i < p

and €(1). Here A is the coefficient matrix defined in (2.2.3); however, R is not the same ma-
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A.3. Strong approximation for the test process

trix as in that section. The initial condition is
Vi =P(Xy),

where the entries of P(X) are third-degree multivariate polynomials of the entries of X,.
To verify (A.3.3), first note that the first 3 components of V¢, can be expressed as a linear
combination of the entries of the last 3 components, since these contain the conditional

expectations of all possible three-factor products
KXovioiy Xovioig Xotiiz, 1< 11,12,13 < p.
To prove this, we apply the law of iterated expectations:
(M, | Fo) = BE(M], | Ferim)| Fo), 5 =12

whence we can refer to Section A.2 and note that E(M, giz

combination of entries of X;_1 and a constant term. It remains to show that for all 1 < j < 4,

|Fr+i—1) can be expressed by a linear

the conditional expectation E(X ?ji_1|f4) can be expressed as a linear combination of the
entries of E(X Z@ﬁ—z’ff)v 1 < j1 < j and a constant term depending only on the moments of
&(1,1), 1 <i<pande(l). Consider

E(XE, || F)) = B(Meyi1 + A(Xri0) + )| F),
based on the regression equation (2.2.5), where
(A34) Mk = Mkl, H = ,ul.

The Kronecker product is not symmetric but linear in both factors, hence after expansion
of (My i1+ A(X i 2) + pu)® the resulting terms will be tensor products with factors
Xyyi—o,Myy;1,p such that the sum of the exponents is j. One such term will be Xﬁjid,
which will account for A®7 in the main diagonal of R. The entries of the other terms will
be products with factors My4;_1, p and the entries of Xy,;_5. The sum of the exponents
should again be equal to j. For a typical product, we can put

E(Mgiz‘—lﬂngjg o X4 x5

C+i—iy M l+i—io €+z’—z‘3“’r€)

= E(E(MZ—I&-i—IM?Xﬁ-i—ilXgii—igXZii—i3’F@Jri*Q)’F@)v 2 <iy,i2,i3 <p+ 1,
J1+J2+J3+ ja+Jjs = J.
All the factors but My, ;1 are Fy4;_o-measurable and so we can again apply the results of Sec-

tion A.2 to show the desired statement. Note that in the terms appearing in E(M Zj_i_l | Frti2)

the combined exponent of the X’s is strictly smaller than j;. Therefore there will be no added
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terms to A%/ in the main diagonal of R in the rows corresponding to E(X ¢y;_1|F).

Having proved (A.3.3) we can proceed with the proof of (iii). The recursion implies

(A.3.5) Vii=Y RTR+RTP(X,), i>1
j=2

The matrix R is block upper triangular, therefore its eigenvalues are the eigenvalues of the
blocks in its main diagonal: A, A®? and A®3. The eigenvalues of these blocks are less than
1 (it is a well-known property of the Kronecker product that p(A ® B) = p(A)p(B)), thus
we can conclude that p(R) < 1 holds for the spectral radius. Therefore

o0

lim Vo, = Z(R)J’R = (E-R)'R=:V,,
71— 00 ]:0

where E is an identity matrix of appropriate dimension. Because all the entries of Vy are

finite, we conclude that
(A.3.6) Jlim E(XPP) = Jlim E(X P Fo) = mg

~®ﬁ)

exists for = 1,2,3 and therefore it must also be the expectation E(X ), where X has the

unique stationary distribution of Xy.

Now, (A.3.5) implies

K K
> V=Y E(Vy)
i=1 i=1

k
_ (Z R> (P(X,) ~ B(R(X)
=1

1 1

k-1

DR

1=0

N

IP(Xe) — E(P(X ()] -
1

Using (A.3.6) we can conclude
IP(X2) — E@(X)]; < IP(X,) — BEX), = [P (X) —E (P (X)), < .
as £ — 0o where X has the unique stationary distribution of X . Therefore

(A3.7) sup [B(X)) ~ E(B(X )] < o

Because

k—1 [e's)
lim > RR=) R =(E-R)"'
=0 1=0
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A.3. Strong approximation for the test process

exists, we have
k—1

DR

1=0

< 00
1

sup
k=1

and together with (A.3.7) this implies

th ZE Vi)

sup sup
k>1 £>0

<oo,

which completes the proof of (iii).

Now we show that (iv) is satisfied with ¥ = I and § = 1. Similarly to the proof of (iii),

we first notice that

E <Tk(€)Tk(€)T> —E <Zg+1ZZ+1) 4. +E <Zg+kZZ+k> .

Now we take, from (2.5.1),

n n

L,=Y E(Z:Z[|Fi1), Ed) =Y E(2:2]),

k=1 k=1

so that
E (Tk(e):rk(ef) — E(Ioip) — E(I})

Let us consider the form of I,, and I. The entries of E(I,,) are entries from » ;_; E(X;_1),
S E(XP?) and Yo7 E(X%?)) multiplied by constants. In I these moments are replaced
by the respective moments of the stationary distribution, but the multiplicating constants

remain the same. Hence, it will be enough to show

SZI;%)ZHEXZJFJ ) nﬁu_ as k — o0, f=1,2,3.

For this, it is sufficient that, with m := p(R),
(A.3.8) E(X(?ﬂ) =g+ O(m%) asi— oo, 3=1,2,3,

because then, for some K > 0,

X~ <o < = 2
7j=1

103



Appendix A. Results of theoretical interest for INAR(p)

since m < 1. We can prove (A.3.8) by considering

IVoi— Vol = |R'P(X0)+ Y RR
j=i—1

<[ BY| { IPXo)ll + || R IR|| | = O(m?),
7=0

because the second factor is constant, and by a well-known result in matrix analysis

lim || BR[| = p(R) = m.

1—00

For (v) we consider

E(|Zk* |Fiem1) = E(ME(XF_y + -+ X7, + 1) Fin)

= (Xp  +. + X0, + DPE(M|Freor) = P(X 1),

where P(X;_1) is a degree six polynomial of the entries of X_1 (see A.2). Because E(ef) <

oo, we have

EE(|Zk]|* |Fi-1)) < E(B(X k1)) = E(P(X)) < co
because of (A.3.8). O

The following lemma provides the asymptotics for the partial sums of X and X ?2.

A.3.4 Lemma. If the assumptions of Theorem A.3.5 hold, then the sequence of random step

processes

Lnt]

X,(t) = %Z [

k=1

®2
Xk

Xk], t€0,1]

converges in distribution on the Skorokhod space D([0,1]):
X, — X,

where

X(t):=t [772]

™

Proof. We apply the multidimensional martingale central limit theorem (see Theorem 3.3.4)

for the sequences (U, i, Fi)1<k<n, = 1, where

Upip:=— kol
| X,
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A.3. Strong approximation for the test process

The ergodic theorem implies

[nt] [t

1 1 s
- > E(Xk|Fro1) = - D (AX g+ p) 255 t(Any + p) =ty t € [0,1].
k=1 k=1
Similarly,
Lnt)
1
- ZE(X§2“F1€—1) is'_) t772’ te [O) 1]
n
k=1

Therefore, the asymptotic expectation is

o M2
ZE(UH,ka,l) 255t [ ] .
k=1 A

The asymptotic covariance matrix is 0, because

|nt] [nt] ®2 ®2 T
1 X X
T k k a.s.
Y E(Un kU, g Fi1) = 2 kE—1E [ ] [ ] Fe-1 | —> 0, tel0,1],

k=1 Xy Xy
because
[nt] ®2 ®2] | —®2] [=®2] '
1 X, X, as. X X
-3 E Feor | = E| T2 || = , telo,1],
ni3 Xy Xy X X

which is a finite quantity, as the entries of the matrix are all contained in 1, 15, 13, 74, Wwhich

are all finite. Furthermore, we have

[nt] |nt]
1 2 S

> E([Un il | Fr-1) = EZE(HX%H Xkl | Frmr) 2250, te0,1],

k=1 k=1

because
[nt]

LS el it 25 (R < []),

This proves the conditional Lindeberg condition. O

Now we are ready to state the strong approximation counterpart of Theorem 2.5.1.

A.3.5 Theorem. Under Cy we can define a sequence of p + 1-dimensional standard Brow-

nian bridges (Bp(t))o<t<1, n =1, such that

sup
0<t<1

I

Mn(t)—Bn(t)H:o]p(l) a5 n - co.

We can reuse the first few steps from the proof of Theorem 2.5.1, up until (2.5.7). Continuing
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from there, .//\\/ln(t) takes the form

I_TLtJ n
— ~—1/2
M) =T, " (D Zr— Au())  Zs
k=1 k=1
with
T x x| [ [x o]\
k—1 k—1 k—1 k—1
= L1 1 = L1 1
Let us now introduce the process
I_Tltj n

M, (t) :=n V21712 Z Zy — tz Zs
k=1 k=1

We will first show that there is a sequence (B,,(t)o<i<1),n = 1 of p+ 1-dimensional standard

Brownian bridges such that

(A.3.9) sup ||[My(t) — By(t)|| = op(l) asn — oo.

0<t<1

Let W the Wiener process provided by Theorem A.3.3. Putting

Wn =

I'2N" 7, — W(n)
k=1

we have that w, = o(n'/*) on an event of probability 1. Now note that

[nt]
su /2 Z, — W(|nt = max Wg.
Sup kzzl k (Lnt]) [max wy

Using Proposition A.3.1 we have

Lt
sup ||[I71/? Z Z, —W([nt))|| = o(n'/*) as.

0<t<1 k=1

Consequently,

LntJ 1/K)
sup |[n~1/211/2 Z Zy —n PW(|nt])|| = o (n) =o(1) as.

0<i<1 1

and similarly

n 12112 Z Z, —n 20w (n)
k=1

sup
0<t<1

=o(1) as,
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because x > 2. By the triangle inequality we conclude that
HMn(t) — 0 V2 0W((nt]) — tW(n))H —o(1) as.
The process By, (t) will be defined by
2 (W(nt) — tW(n)),

which is obviously a Brownian bridge, since n='/2W(nt) is a standard Wiener process. It

remains to show that

sup [ 2W(([nt]) — () = 0~ (W(nt) — W ()|

0<i<1

= sup_[n =2 ([nt]) - W(nt)|| = op(1).

0<t<1

Because the components of W(t) are independent, it suffices to show that

(A.3.10) sup

o<1

=2V ([t ]) = WO (1)) | = 02(1),

where WD (#) is the first component of W(t), and is a standard Wiener process. For any

€ > 0 we have

P < sup ‘n_l/Q (W(l)(LntJ) - W(l)(nt)ﬂ > e)

0<t<1

< i[[” ( sup
k=1

o<u<l

<dn (1 s (6n1/2>>

by Csorgd (2010, Proposition 51.1). By Csorgé (2010, Lemma 34.2) we have

WOk =1 +u) - W (k — 1)] > 61/2)

6271

_ 1/2 5
4n<1 <I>(en ))émenlme 2 =0,

which proves (A.3.10) and thus, (A.3.9). Now we only need to show

(A.3.11) sup H/\A/tn(t) - Mn(t)H = op(1) asn — co.

0<i<1
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We apply the triangle inequality:

[nt]

T;W B n,1/2171/2H Z Z — tz Zy,

[ Mat) = Ma)| < |

n
t) —tE| ‘ >z,
k=1

We have n='I,, — I a.s., hence

|

f;lﬂ_ I—1/2n—1/2H =o(n %) as.

and
|7.

Using (A.3.9) and the definition of M,,(t) we have

=0 Y?) as.

sup sz—tsz <n1/2HI 1/2H<sup M (t) — n(t)||+0i1tlgl|yzsn(t)|y)

0<t<1 0<t<1
= Op(n'/?).

Here we have used the fact that the processes B, (t) are identically distributed, therefore
supgci<t || Bn(t)|| = Op(1). According to Theorem A.3.3, we have

Sz, - IPW(n
k=1

[t -

because HIl/QW(n) H = Op(n'/?) due to the well-known growth rate of the standard Wiener

process.

Finally, because the supremum is a continuous functional on the space C|0, 1], we have

by the continuous mapping theorem and Lemma A.3.4
sup ||A,(t) — tE| = op(1).
o<t<1

We have shown (A.3.11), and this completes our proof. O
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Summary

The thesis is concerned with providing statistical methods for detecting change in the param-
eters of a stochastic process. This is generally a longstanding problem in time series analysis
(Csorgé and Horvath, 1997), but investigating it for branching processes has received less

attention.

The basic setup for change detection will be the following:

1. We will take a vector-valued process X, indexed either by the natural numbers or the

nonnegative real numbers and take a sample of it on the interval 0 < ¢ < 7.

2. We will choose a parameter 6; governing the dynamics of the process. The main
question will be whether this parameter is constant in ¢, or, formally, we would like to
test

Ho: 30: 6, =0, tc]|0,T]

against the alternative hypothesis
Hp:3p€(0,1): 6, =6, t€[0,pT) and 0, =80", t € [pT,T)]

for some @' # @”. An important additional condition will be for stability: 6, ', ”
have to be such that X have a unique stationary distribution under Hy, and both parts

of the process (before and after the change) have a unique stationary distribution under
Ha.

3. We will find an appropriate vector-valued function f such that
t
M; =X;— Xq— / f0s; X5 )ds
0

will be a martingale. Here X 5_, a slightly informal notation, means Xy for continuous

s and X ,_1 for discrete s. Similarly, the integral is simply a sum for discrete s.
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4. Assuming 0; = 0 for all ¢, we will estimate 6 with §T based on the conditional least
squares (CLS) method of Klimko and Nelson (1978).

5. We will replace 8; with éT in the definition of M, to obtain ]\/ZET).

6. We will prove that if 8; is constant in ¢, then

M, =1 "My el

converges in distribution to a Brownian bridge on [0, 1], for some random normalizing

matrix fT, which is calculable from the sample.

7. Consequently, we will construct tests for the change in 6, using the supremum or

(T
infimum of Mi ) as a test statistic (based on the direction of change).

8. We will prove that if there is a single change in ; on [0, 7], then the test statistic will
tend to infinity stochastically as T' — oo.

—~ (T
9. We will prove that the arg mazx, or arg min, of MEL ) is a good estimator of the change

point in 6.

The INAR(p) process

In Chapter 2, based on Pap and Szabé (2013), we will prove results for the integer valued
autoregressive process of order p (INAR(p)), defined by:

Xk:OéloXk_l—l-"-—{—OpoXk_p—i-ﬁk, k=1,2,...,

where the ¢ are i.i.d nonnegative integer-valued random variables with mean p, and o is the
binomial thinning operator: for a random nonnegative integer-valued random variable Y and
a € (0,1), oY denotes the sum of Y i.i.d Bernoulli random variables with mean «, also
independent of Y. This process was first proposed by Alzaid and Al-Osh (1987) for p = 1
and Du and Li (1991) for higher p values.

The parameter vector is

with the stability condition
a1+ ...+ ap < 1.
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Summary

We are able to use the standard conditional least squares estimates from (2.4.1) and classical
martingale theory to create a test process that is shown in Theorem 2.5.1 to converge to a
p + 1-dimensional Brownian bridge. Based on this, we can construct the tests, as described

in subsection 2.5.1.

The weak consistence of the test is established in Theorem 2.7.1. The proof uses a
decomposition of the test process as given in (2.7.2), and Lemma 2.9.1 in order to estimate
the suprema of the negligible terms in the decomposition. It turns out that essentially the
same tools can be applied to prove the asymptotic properties of the change-point estimator,

given in Theorem 2.8.1.

The Cox—Ingersoll-Ross process

Chapter 4, based on Pap and Szab6 (2016), is about change detection in the Cox-Ingersoll-
Ross (CIR) process:
dY; = (a = bY;)dt + o/ Y AWy, t € Ry,

where a,b,0 > 0 and (W;)¢>0 is a standard Wiener process. The constraint on a and b will
be the stability condition itself.

This process was first investigated by Feller (1951), proposed as a short-term interest-rate
model by Cox et al. (1985), and became one of the most widespread “short rate” models in
financial mathematics. Inevitably, therefore, describing its statistical properties is of great

importance and has received considerable interest.

-

It turns out that the theorems and their proofs can be constructed along the same lines

Our parameter vector will be

as for the INAR(p) process. The estimates given in (4.1.1) are not the usual ones, but their
structure is similar to the CLS estimates in the INAR(p) case, and the martingale in (4.2.1) is
also similar. The main result under the null hypothesis is Theorem 4.2.1. Its proof depends on
the same apparatus as Theorem 2.5.1. Also, it is apparent that the statements of Theorems
4.5.1 and 4.6.1 are very similar to Theorems 2.7.1 and 2.8.1, respectively. This is reflected
in their proofs; however, some of the steps require more advanced tools. In particular, we
believe Lemma 4.7.2 (replacing Lemma 2.9.1) to be a new result, and the proof of Lemma

4.7.7 is significantly more involved than that of Lemma 2.9.7.

Parameter estimation for the Heston model

In Chapter 5, based on Barczy et al. (2016), we propose conditional least squares estimates

(CLSE’s) for the Heston model, which is the solution of a two-dimensional stochastic differ-
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ential equation:

AY; = (a - bY0) di 4 01T AW,
dX; = (o — 8Y}) dt—i—ag\/?t(gth + mdBt),

t>0,

where a > 0, b,a, f € R, 01,09 > 0, 0 € (—1,1), and (W}, By)>0 is a 2-dimensional standard
Wiener process. It is immediately apparent that Y is just the Cox—Ingersoll-Ross process

introduced before. The stability condition is b > 0 here as well, similarly to the CIR process.

Introducing CLSE’s for (a,b, «, ) based on discrete time observations turns out to be
impractical, as the conditional means, and consequently, the resulting partial derivatives
depend on the parameters in a complicated manner. Therefore we transform the parameter
space, as defined in (5.1.3), and derive CLSE’s for the transformed parameter vector, which
will result in linear partial derivatives, given in (5.1.4). We prove strong consistence and
asymptotic normality in Theorem 5.2.1, using the same tools of martingale theory as for
the CIR process (collected in Chapter 3) — however, the calculations turn out to be much
more cumbersome than in Chapter 4. Applying the inverse transformation to the CLSE’s
leads to estimates for the original parameters. These are given in (5.4.3), and their strong
consistence and asymptotic normality is proven in Theorem 5.4.2, based on Theorem 5.2.1
and the so-called delta method.
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Appendix C

Osszefoglalé

Az értekezés célja, hogy olyan mddszereket adjon, amellyel valtozast észlelhetiink egy szto-
chasztikus folyamat paramétereiben. Ez dltaldanossagban véve egy régéta vizsgalt probléma
az id6soranalizisben (Csorgd és Horvath, 1997), de az eldgazé folyamatok teriiletén ezidéig

kevesebb figyelmet kapott.

Moédszeriink a kovetkezé 1épésekbdl fog allni:

1. Vesziink egy vektorértékli X; folyamatot, amelyet vagy a természetes, vagy a nem-
negativ valds szamokkal indexeliink, és mintat vesziink a folyamatbdl a 0 < ¢t < T

intervallumon.

2. Valasztunk egy 0; paramétert, amely a folyamat dinamikajat iranyitja. A f6 kérdés az

lesz, hogy ez a paraméter t-ben allando-e, vagyis tesztelni szeretnénk a
Hp: 30: 6, =0, tec|0,T]
nullhipotézist a
Ha:3p€(0,1),0 #£60": 0, =6, tc[0,pT) és 0, =0", te[pT,T]

alternativ hipotézissel szemben. Fontos tovabbi feltétel lesz a stabilitas: 0, €', 8"
olyanok kell legyenek, hogy Hy mellett X -nek legyen egyértelmii stacionarius eloszlasa,

Ha mellett pedig ez a folyamat valtozas el6tti és valtozds utani részére is teljestiljon.

3. Kerestink egy vektorértékli f fliggvényt, amelyre
t
M; . =X;— Xo— / f0s; X5 )ds
0

martingal lesz. Itt X, egyszertien X -t jeloli folytonos s-re, és X ;_1-et diszkrét s-re.

Hasonléképpen diszkrét s-re az integral egyszeriien Osszegzést jelent.
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Appendix C. Osszefoglalé

Az

A 2.

. Feltételezziik, hogy 6; = 6 minden t-re, és Klimko és Nelson (1978) feltételes legkisebb

négyzetes (CLS) mddszere alapjan egy aT—Vel jelolt becslést adunk a 8 paraméterre.

(T)

~ —~(T
. Beirjuk 8; helyére Op-t az M, folyamat definicigjaban, hogy megkapjuk M, "-t.

. Belatjuk, hogy ha 6, allando t-ben, akkor

M =T we 0]

eloszlasban konvergédl egy standard Brown-hidhoz a [0,1] intervallumon. Itt Ir egy
véletlen normdalé matrix, amely a mintabdl szamolhato.

—~ (T
Ezt felhasznélva teszteket definidlunk a @-ban torténé valtozasra oly médon, hogy Mi )

szuprémumat vagy infimumat hasznaljuk tesztstatisztikaként, a valtozas irdanyanak

fliggvényében.

. Beldtjuk, hogy ha 8; a [0, T] intervallumon egyetlen pontban véltozik, akkor a tesztsta-

tisztikdank T" — oo mellett sztochasztikusan végtelenhez tart, azaz a tesztiink gyengén

konzisztens.

—~ (T
. Belatjuk, hogy az ./\/lq(J ) folyamat minimum-, illetve maximumbhelye j6 becslés a 0;-ben

tortént valtozés idépontjéra.

INAR(p) folyamat

fejezetben Pap és Szabd (2013) alapjan bemutatjuk a p-edrendii egészértékii autoreg-

resszios (INAR(p)) folyamatra elért eredményeket. A folyamat definicidja:

Xk:Oquk_l—I—-'-—{—OzpoXk_p—l-Ek, k=1,2,...,

ahol az -k fiiggetlen, azonos eloszlasu véletlen valtozok p varhato értékkel, és ha Y nemne-

gativ egész értékii véletlen véltozé és o € (0, 1), akkor awo Y jeloli Y db, egyméstol és Y-tél

is fiiggetlen « varhaté értékii Bernoulli-eloszlasi véletlen valtozé Osszegét. A modellt Alzaid
és Al-Osh (1987) vezette be p = 1-re, majd Du és Li (1991) magasabb p értékekre.

A paramétervektorunk

aq

a stabilitasi feltétel pedig

a1+...+ap<l.
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Osszefoglalé

A (2.4.1) formuldban megadott CLS becsléseket és klasszikus martingalelméletet haszndlva
egy olyan folyamatot definidlhatunk, amelyrdl a 2.5.1 Tétel megmutatja, hogy a nullhipotézis
mellett egy p+1-dimenzids standard Brown-hidhoz tart. Ez alapjan a 2.5.1 szakaszban leirtak

szerint definidlhatunk valtozasészlelési eljarasokat.

A teszt gyenge konzisztencidjat a 2.7.1 Tételben latjuk be. A bizonyitdsban a (2.7.2)
felbontast hasznaljuk fel, valamint tobbszor alkalmazzuk a 2.9.1 Lemmat a felbontas elha-
nyagolhatd tagjainak becslésére. Ugyanezek az eszkozok lesznek alkalmazhatok a valtozasi

idopont becslésének aszimptotikus vizsgalatdnal is, amelyet a 2.8.1 Tételben tesziink meg.

A Cox—Ingersoll-Ross-folyamat

A 4. fejezet Pap és Szabd (2016) alapjan a Cox—Ingersoll-Ross (CIR)-folyamatban torténd

valtozasészlelésrdl szol. A folyamat definicidja:
dY; = (a —bY3) dt + o/ Y dWy, t € Ry,

ahol a,b,0 > 0 és (Wy)>0 egy standard Wiener-folyamat. A stabilitasi feltételiink maga az

a-ra és b-re tett megkotés lesz.

A folyamatot el6szor Feller (1951) tanulményozta, majd Cox et al. (1985) javasoltak
,short-term” kamatlabmodellként, amelyek koziil az egyik legelterjedtebb lett. A folyamat

statisztikai vizsgalata igy természetesen fontos kérdés volt és sok figyelmet kapott.

A paramétervektorunk a kovetkezo6 lesz:

- H

Ki fog deriilni, hogy a CIR-folyamatra vonatkozé tételek hasonlé médon fogalmazhatok
meg és bizonyithaték, mint az INAR(p) folyamat esetén. A (4.1.1) formuldban adott becslések
nem a szokdsosak, de a szerkezetiik hasonlé az INAR(p) esetben kapott CLS becslésekhez,
és a (4.2.1) formuldban definidlt martingél is hasonlé a diszkrét idejii megfelel6jéhez. A
nullhipotézis mellett kapott f6 eredménytink a 4.2.1 Tétel, melynek bizonyitdsa ugyanazt az
eszkozkészletet hasznalja, mint a 2.5.1 Tételé. Az is szembetiing, hogy a 4.5.1 és 4.6.1 tételek
allitasai rendkiviil hasonlitanak rendre a 2.7.1 és 2.8.1 Tételekre. Ez a bizonyitasokban is
megjelenik, azonban bizonyos 1épések fejlettebb eszkozoket kivannak, mint a diszkrét esetben.
Kiilonosen is megemlitjiik a 4.7.2 Lemmat, amely a 2.9.1 Lemma helyét veszi at, és amelyet
1j eredménynek véliink; tovabbd ramutatunk, hogy a 4.7.7 Lemma bizonyitdsa lényegesen

Osszetettebb, mint a neki megfelel6 2.9.7 Lemmaé.
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Appendix C. Osszefoglalé

Paraméterbecslés a Heston-folyamatra

Az 5. fejezetben Barczy et al. (2016) alapjan mutatunk be egy CLS mddszeren alapul6 pa-
raméterbecslést a Heston-modellre, melyet a kovetkezd sztochasztikus differencidlegyenlet

deifnidl:

dY; = (a — bY;) dt + o1/Y, dW,

t >0,
dX; = (Oé _/6}/15) dt—l—o‘g\/?Vt(Qth + ﬂdBt),

ahol a > 0, b,a, 8 € R, 01,00 > 0, 0 € (—1,1), és (W, By)i>0 egy kétdimenzids standard
Wiener-folyamat. Azonnal lathatd, hogy Y éppen az imént bevezetett Cox—Ingersoll-Ross-

folyamat. A stabilitasi feltétel itt is, éppugy, mint a CIR-folyamatra, b > 0.

Hamar kideriil, hogy diszkrét megfigyelések alapjan CLS becslést adni az (a, b, «v, 5) pa-
raméterekre igen nehéz, mivel a feltételes varhato értékek, kovetkezésképpen a parcidlis de-
rivaltak, Osszetett modon fliggnek a paraméterektdl. Ezért transzformaljuk a paraméterteret
az (5.1.3) fiiggvénnyel, és a transzformélt paraméterekre adunk CLS becslést, amihez mér
linedris egyenleteket kell megoldanunk. A becsléseket az (5.1.4) formula adja meg. Az 5.2.1
Tételben erds konzisztenciat és aszimptotikus normalitast bizonyitunk ugyanazokkal a mar-
tingdlelméleti eszkozokkel, amelyeket a CIR-folyamatra hasznaltunk (ezeket a 3.fejezetben
gyljtottiik ossze). A sziikséges szamoldsok azonban sokkal koriilményesebbnek bizonyulnak,
mint a 4.fejezetben. A CLS becslésekre alkalmazva a transzformacié inverzét, becsléseket
kapunk az eredeti paraméterekre. Ezt az (5.4.3) formuldban adjuk meg. Ezen becslések erds
konzisztencidjat és aszimptotikus normalitasat pedig a 5.4.2 Tételben latjuk be, alapozva

egyfeldl az 5.2.1 Tételre, mésfel6l az dgynevezett delta-mddszerre.
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