Non-equilibrium dynamics of one-dimensional isolated

quantum systems

Ph.D. Thesis

Gergo Roosz

supervisor: Ferenc Igléi

Theoretical Physics Department, University of Szeged
Doctoral School of Physics
Wigner Research Center for Physics

Szeged, Hungary
2017



11

To Maria



11

Szerzo6i nyilatkozat

Kijelentem, hogy a doktori disszertaciomban foglaltak a 2. és a 3. fejezetek kivételével,
melyek az irodalomban fellelhet6 eredményeket tekintik at, sajat munkam eredményei, és
csak a hivatkozott forrasokat hasznaltam fel. Tudomasul veszem azt, hogy
disszertaciémat a Szegedi Tudomanyegyetem konyvtaraban, a kolesonozheté konyvek
kozott helyezik el.



Contents

Introduction

Ground-state properties of quantum spin chains

2.1 Homogeneous transverse-field Ising chain . . . . . ... ... ... ... ..

2.2 Finonacci Ising quantum quasi-crystal . . . . . . ... ... 0000
2.2.1 Other quasi-periodic sequences defined by substitution . . . . . ..
2.2.2 Harris-Luck criteria . . . . . . . .. .. L

2.3 Harpermodel . . . . . . . . ...
2.3.1 Aubry-André duality . . . . ... ...

2.4 Disordered quantum Ising chain . . . . . .. .. ... .. ... ... ..

Quench dynamics of homogeneous systems

3.1 Numerical results on global quenches . . . . . .. ... .. ... .. ...,
3.1.1 Magnetization . . . . . . ..o
3.1.2  Entanglement entropy . . . . . ... ... 0L

3.2 Quasi-classical description . . . . . . ...
3.2.1 Correlation functions . . . . . . . .. ...
3.2.2 Local magnetization . . . . . . ... ... 0L
3.2.3 Entanglement entropy . . . . . ... ..o

3.3 Spectra and the dynamical properties . . . . . . . . . ... ... ... ...

3.4 Experiments . . . . . . . ...

Local quenches
4.1 Introduction . . . . . . . .. ..
4.2 Model . . . .
4.3 Composite defect exponents . . . . . . ... ... oL
4.2 Scaling behavior in imaginary time . . . . . . . .. .. ... .. ... ...
4.3 Scaling behavior in real time . . . . . . .. ... oL
4.4  Numerical investigations . . . . . . . . . .. .. oL
4.4.1 Technical details . . . . . . .. ... ... ... .. ...
4.4.2 Ordered defect in the initial state . . . . . . . ... ... ... ...
4.4.3 Non-ordered defect in the initial state . . . . . . . . ... ... ...

4.5 DISCUSSION . . . . . .

v

10
12
13
13
14

18
18
18
20
21
23
24
25
26
27



CONTENTS

5 Quench dynamics of the Ising quantum quasi-crystal

5.1 Themodel . . . . ... ...
5.2  Entanglement entropy . . .

5.3 Local magnetization . . . .

5.4 Interpretation by wave packet dynamics . . . . . ... ...

5.5 Discussion . . .. ... ...

6 Quench dynamics of the Harper model

6.1 Quasi periodic XX-chain . .
6.2 Entanglement entropy . . .

6.3 Local magnetization . . . .

6.4 Semiclassical interpretation

6.5 Discussion . . . .. ... ..

7 Nearly adiabatic dynamics of the Harper model

7.1 Kibble-Zurek scaling . . . .

7.2 Density of defects in the adiabatic dynamics . . . . . . .. ... ... ...

7.3 Numerical results and scaling theory . . . . . .. ... ... ... ... ..

7.4 Discussion . . .. ... ...

8 Quench dynamics of the disordered Ising model

8.1 Introduction . . .. ... ..
82 Themodel . . .. ... ...

8.2.1 Numerical calculation of time evolution . . . . . . . . . . . . .. ..

8.3 From fully ordered initial state to the ferromagnetic phase . . . . . .. ..

8.4 Quench to the critical point

8.4.1 Ferromagnetic initial state . . . . . . ... ...

8.4.2 Paramagnetic initial state . . . . . ... ...

8.5 Discussion . . .. ... ...

9 Conclusion

10. Osszefoglalé

10.1. Bevezetés . . . . . . . . ..

10.2. Altalanositott lokélis kvencs

10.3. A Finonacci Ising kvazikristaly nem egyensilyi dinamikaja . . . . . . . . .

10.4. A Harper-modell nem egyensilyi dinamikaja . . . . . . .. ... ... ...

10.5. Kozel adiabatikus dinamika a Harper modellben . . . . . . . . . . . . . ..

10.6. A rendezetlen Ising modell dinamikaja . . . . . . .. ... ... ... ...

10.7. Konkluzié . . .. .. .. ..

11 Acknowledgements

45
45
45
47
20
51

54
o4
95
o7
o7
99

60
60
62
63
66

68
68
69
69
72
73
73
74
78

79

81
81
82
84
86
86
87
38

91



vi CONTENTS
A Time Evolution, Eigenstates 93
A.1 Transformation to quadratic form . . . . . . . . . .. ... ... ... ... 93
A.2 Solution of a general quadratic operator . . . . . . . . ... ... ... .. 94
A.3 Solution of the homogeneous Ising chain . . . . . ... ... . ... .... 95
A.4 Time evolution of the ¢, clT operators . . . . . . ... ... 96
A5 Majorana fermions . . . .. ... Lo 98

B Quantities of interest 99
B.1 Magnetization . . . . . .. ..o L 99
B.1.1 Definition . . . . . . . ... 99

B.1.2 Calculation method . . . . . . . ... ... oo 99

B.2 Propagator . . . . . ... 101
B.3 Entanglement entropy . . . . . .. .. ..o 102
B.3.1 Schmidt decomposition . . . . . . . ... ..o 102

B.3.2 Definition of entanglement entropy . . . . . .. ... ... ... .. 103

B.3.3 Properties of entanglement entropy . . . . . .. ... ... ... .. 104

B.3.4 Calculation of entanglement entropy in spin chains . . . . . .. .. 105



Chapter 1
Introduction

Non-equilibrium relaxation in a closed quantum system following a change of some para-
meter(s) in the Hamiltonian is of recent interest, both experimentally and theoretically.
Considering the speed of variation of the parameter, we generally discriminate between
two limiting processes. For the quench dynamics, the parameter is modified instantan-
eously, which experimentally can be realized in ultra cold atomic gases [1-11] using the
phenomenon of Feshbach resonance. In this process the evolution of different observables
after the quench is of interest, as well as the possible existence and properties of the sta-
tionary state, in particular in integrable and non-integrable systems [12-57]. In the other
limiting relaxation process, in the so called nearly adiabatic dynamics the parameter is
varied very slowly, usually linearly in time with a rate 1/7 across a phase-transition point.
At the start of the process the system is in the ground state of the Hamiltonian. If the
variation of the Hamiltonian would be much slower than the time scale of the smallest gap,
the system would remain exponentially close to the instantaneous ground state. However
when the system reaches the critical point, the smallest gap goes to zero, and the variation
of the Hamiltonian cannot be slow enough to remain in the instantaneous ground state.
The question, how far is the described system from the instantaneous ground state, is
target of extensive investigations in the literature [50, 56, 58-74].

We mention that the parameter in the Hamiltonian of a closed system can be driven
periodically or randomly in time, and the non-equilibrium dynamics of these driven systems
draws attention both experimental [75] and theoretical [76] [77].

Many results for quantum quenches have been obtained for homogeneous systems [12,
16-33,50,51,55]; for example, the relaxation of correlation functions in space and in time
have generally an exponential form, which defines a quench-dependent correlation length
and a relaxation time. Many basic features of the relaxation process can be successfully
explained by a quasi-particle picture [38,51,56]: after a global quench quasi-particles are
created homogeneously in the sample and move ballistically with momentum dependent
velocities. The behavior of observables in the stationary state is generally different in
integrable and in non-integrable systems. For non-integrable models, thermalization is
expected [16-24,50,51] and the distribution of an observable is given by a thermal Gibbs
ensemble; however, in some specific examples this issue has turned out to be more complex

[25-27,32]. By contrast, it was conjectured that stationary state averages for integrable
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models are described by a generalized Gibbs ensemble [16], in which case each integral of

motion is separately associated with an effective temperature.

Concerning quantum quenches in inhomogeneous systems, there have been only a few
studies in specific cases; for example, entanglement entropy dynamics in random quantum
chains [78-80] and in models of many-body localization [81,82]. In some of these cases the
eigenstates are localized, which prevents the system from reaching a thermal stationary

state.

A special type of inhomogeneity, interpolating between homogeneous and disordered
systems, is a quasi-crystal [83,84] or an aperiodic tiling [85]. Quasi-crystals are known to
have anomalous transport properties [86,87], which is due to the fact that in these systems
the long-time motion of electrons is not ballistic, but an anomalous diffusion described by
a power law. One may expect that the quasi-particles created during the quench have a

similar dynamical behavior, which in turn affects the relaxation properties of quasi-crystals.

Quasi-crystals of ultra cold atomic gases have been experimentally realized in op-
tical lattices by superimposing two periodic optical waves with different incommensurate
wavelengths. An optical lattice produced in this way realizes a Harper’s quasi-periodic
potential [88,89], for which the eigenstates are known to be either extended or localized
depending on the strength of the potential. Different phases of the Bose-Hubbard model
with such a potential have been experimentally investigated [90,91]. There have also been

theoretical studies concerning the relaxation process in the Harper potential [92,93].

The dissertation is organized as follows: In chapter 2 the investigated quantities are
defined and the most important equilibrium properties of the investigated models are out-
lined. In chapter 3 some results about the after quench dynamics of spin chains from
the literature are recapitulated. These results will be referred and extended in the later
sections.

Our new results are presented in Chapters 4-8. Below we briefly summarize the main res-
ults from these Chapters.

In Chapter 4 the dynamics after a composite local quench is investigated. Composite
here means that not only one site was modified during the quench, but the local magnetic
fields on two neighboring sites and the coupling between them. The quench was done in
a quantum Ising chain, and a coupling and the two neighboring local magnetic field are
changed suddenly. We calculated the local magnetization on the quench site. A relation
with a 2D classical spin system was found, and using this relation a closed formula was
conjectured for the time evolution of the local magnetization. These closed formulas are
the main results of the chapter. We validated the formulas with precise numerical calcula-
tions using free-fermion techniques.

In Chapter 5 we investigated the after quench dynamics of the Fibonacci quasi-crystal.
The quantum Ising chain in its homogeneous version is perhaps the most studied model
for non-equilibrium relaxation [13-15,34-44,57,94]. We focus on the Fibonacci lattice, for
which many equilibrium properties of the quantum Ising model are known [95-101]. In this

chapter we investigated the after-quench dynamics of the magnetization and entanglement



entropy with numerical free-fermion calculations. We found, that the entanglement entropy
shows a power law increase after the quench, and the magnetization shows a stretched ex-
ponential increase. We also found a dynamical phase transition associated with the local
magnetization, which is not present in the homogeneous system. The results were inter-
preted with quasi-classical reasoning.

In chapter 6 the quench dynamic of the Harper model was investigated. In this model
there is a localization-delocalization transition, separating a localized phase and an ex-
tended phase. We investigated the dynamics of the entropy and the magnetization after
different quenches ending in the extended phase, at the critical point or in the localized
phase. We explored the functional form of the relaxation of the entanglement entropy and
the magnetization in the aforementioned quenches. We found, that both quanties remain
finite if the quench ends in the localized phase. If the quench ends in the extended phase
the behavior is strongly similar to the behavior of the homogeneous systems: The entangle-
ment entropy grows linearly, and the magnetization decrease exponentially. If the quench
ended at the transition point, the entanglement entropy grows as a power-law, and the
magnetization decreases with a starched exponential.

In chapter 7 we investigated a nearly adiabatic process in the Harper model by slowly
varying one of the parameters of the Hamiltonian, and the system is driven over the trans-
ition point. We investigated how far is the system from the instantaneous ground state
after crossing the localization-delocalization transition with finite speed. We present the
results of our large-scale numerical simulations, and give a modified version of the so-called
Kibble-Zurek scaling, which fits the numerical results well.

In chapter 8 we investigated the local magnetization after a global quench in a disordered
Ising chain. We explored the functional form of the relaxation of the local magnetization
with numerical free-fermion calculations. Two kinds of initial states were used in our calcu-
lations: one of these is ferromagnetic, in which all spins point in the X direction, the local
magnetization is 1. The other initial state is paramagnetic, in which all spins show in the
Z direction, and the local magnetization in the direction of the interaction (X-direction) is

Zero.

The main results are: If the system after the quench is off-critical, the magnetization
remains finite. If the quench starts form the totally ferromagnetic phase, and ends in the
critical point, the magnetization shows an ultra slow decrease. If the quench start from
the totally paramagnetic state, and ends at the critical point, the magnetization increases,
which is a unique property of the disordered Ising chain: In all quenches performed in
homogeneous and quasi-periodic Ising chains the local magnetization always decreases.
There has been intensive investigations about the after quench dynamics of the entangle-
ment entropy in disordered spin chains [79-82]. The results about the magnetization are
in good agreement with these previous studies. At the end of the dissertation there is
an Appendix, in which detailed calculations are presented: the solution of the eigenvalue
problem of different spin chains; the calculation of the magnetization and the entanglement
entropy in spin chains; some facts about the "meaning” of the entanglement entropy. The

dissertation is based on the following articles:
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1. Ferenc Igléi, Gergd Rodsz, Yu-Cheng Lin Nonequilibrium quench dynamics in quantum
quasicrystals New J. Phys. 15, 023036 (2013)

2. Ferenc Igléi, Gergd Rodsz, Loic Turban Fvolution of the magnetization after a local
quench in the critical transverse-field Ising chain J. Stat. Mech. (2014) P03023
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In the thesis the following abbreviations are used:

TIC Transverse-field Ising Chain

SDRG Strong Disorder Renormalization Group
RSRG-X Real-Space Renormalization Group for eXcited states
CFT Conformal Field Theory



Chapter 2

Ground-state properties of quantum

spin chains

In this Chapter we review the previously known ground-state properties of the models
studied in this work. We also list the definitions of the investigated quantities. The details
of calculation are presented in Appendix B.

The models investigated in this work are special cases of the inhomogeneous XY-model

L L L
1 L, 14y . 1—7
:§Zhlgl +TZJlUl UZ+I+TZJIU;JO-ZZJ+1 . (2.1)
=1 =1 =1

Here L is the number of spins, of and o] are the Pauli matrices. Here 7~ = 1 and the
parameters J; and h; are dimensionless numbers. With the Jordan-Wigner transformation

[104] [105] the operator (2.1) can be written with fermion operators ¢ and c}.:

L L
1
H=— Zh (clcl 1/2)— Z cl+1+cl+1)—— Z Ji( cl+cl)(cl+1 clTH)
1=1 1=1

I+ 1 - —im el
+JLw[ 5 7(cE—cL)(chlH S ek + el —q)] LS (2.2)
Here w = 0 corresponds to the free boundary conditions, and w = 1 corresponds to

the periodic boundary conditions. The P = ™" Siccle; parity operator commutes with
the Hamiltonian 2.2. One can diagonalize the Hamiltonian in the eigensubspaces of P.
P has two eigenvalues, +1 if the number of particles is even, and —1 if the number of
particles is odd. In the even subspace P = +1, in the odd subspace P = —1. In the
even and in the odd subspace the Hamiltonian is quadratic in the ¢, clT operators. The
ground state of Hamiltonian 2.2 is in the even subspace. With an appropriate Bogoliubov

transformation [196] new fermions (1 and n/) can be introduced

N

w= 3 (500 + BaD)er + 5(@0) — W) ) | (23)

%

5
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and with these new fermionic operators the (2.1) Hamiltonian is diagonal:

L

H = Z exime + const. . (2.4)
k=1

The ®4(7) and V(i) quantities in equation (2.3) are real numbers. Their calculation, and
the details of this standard diagonalization technique can be found in Appendix A. For

later reference I define here the Majorana operators:

CVLQl,1 =+ C}L (25)
iy =i(c—d), (2.6)

which are self adjoint operators, and often make calculations more simple. The Majorana
operators satisfies the following simple anti-commutation rule: {a;, ar} = 20;,. The time
evolution of the Majorana operators after a sudden quench can be expressed in the form
am(t) = ZiL:1 P,,.n(t)a,, where P, ,(t) are real coefficients. The calculation of the P, ,,(t)
coefficients are detailed in Appendix A.5. One gets the inhomogeneous XX model with

transverse field with v = 0:

L
1
(070n1 T 0000 41) — B Z hnoy, (2.7)

1 n=1

HXX:_

DN | —
]~

n

here all of the couplings are 1, and the h,, transverse field is inhomogeneous. With h,, =

hcos(27m@)n one gets the Harper model, which is investigated in more detail in this

work. One gets the transverse-field Ising chain from Hamiltonian (2.2) with v = 1:

= 1L
Hising = —3 Jiojoi, — 5 Z hiof +wJpoioy . (2.8)
i=1 i=1
In this work, three variants of the Ising chain will be investigated: One nearly homogeneous
with a (generalized) local defect, a quasi-periodic, and a disordered where the magnetic
fields and the couplings are (independent) random numbers.
One of the investigated quantities is the local magnetization. The Ising model shows fer-
romagnetic order in the x direction if the transverse field is small enough. The most
straightforward choice to characterize the magnetic order would be the expectation value
of 0,. However this expectation value in the ground-state is always zero because of sym-
metry reasons. One possible solution is to add an infinitesimally small symmetry breaking
field. One adds a longitudinal field b to the Ising Hamiltonian and investigates the magnet-
ization in the ground state of the modified Hamiltonian H, = Higine +bV with V' = Zf\il of
It can be shown [167] , that the magnetization in the b — 0 limit can be calculated as the
off-diagonal matrix member of o; between the ground state of (2.8) denoted by |¥g), and
the excited state of (2.8) denoted by |Wy).

my = lim(o}) = (V|07 |Vy) (2.9)
b—0
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An other interesting quantity investigated in this work is the entanglement entropy. The
formal definition is as follows. One divides the investigated system to two parts A and B.
One consider the density matrix of the system, which is simply the projector made from
the state vector of the system: p = |U)(¥|. The reduced density matrix of subsystem A is
defined by tracing out for the degrees of freedom of the B system.

pa = Trpp (2.10)

The reduced density matrix of the B subsystem is defined similarly pgp = Trap. The

entanglement entropy is defined as the von Neuman entropy of ps or pg:
S =Trapalnps = Trgpglnpp. (2.11)

The set of the non-zero eigenvalues of p4 and pp are identical, this is the reason why
the second equality holds in the previous equation. More details on the definition of the
entanglement entropy, and the calculation method for spin chains are included in Appendix
B.3. In this work A is always the first [ spins of the chain, and B is the other L — [ spins.
The definition allow any kind of partition. The choice of two intervals is the most simple

and perhaps the most interesting.

2.1 Homogeneous transverse-field Ising chain

The homogeneous Ising chain is derived from (2.8) with setting all of the couplings to J
and all of the magnetic fields to h. The model is exactly solvable, one first transform it to
a fermion system with the Jordan-Wigner transformation (A.5) [104] than diagonalize it
with a Bogoliubov transformation [105] [106]. The steps of this calculation are outlined in
Appendix A.3. There is a quantum phase transition in the model, the transition point is
h = 1. For h < 1 there is a long-range order in the x direction which is characterized by
non-zero transverse magnetization m;. The h < 1 phase is ferromagnetic, and the h > 1
phase is paramagnetic.

The paramagnetic and the ferromagnetic phases are mapped to each other by the duality
transformation [107]. To see this, let us investigate the Ising model with periodic boundary

conditions ( w = 1 in equation (2.8)). One can define a new set of Pauli matrices:

07107
I, <ioF, ) (2.12)

— > 2 T
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With these matrices the Hamilton operator takes the form:
1 h &
e — LS oo I
i=1 i=1

= h <
- 3y bS
i=1 =1
L L
= h _%%ZT;_%ZQWH : (2.13)
=1

=1

So the spectra of the Hamiltonians Hfsei;igdic(h) and h?—[fs'?ffgdic(l /h) is the same. If h is in
the ferromagnetic phase than 1/h is in the paramagnetic phase, the duality connect the
two sides of the critical point.
The most important correlation functions have been calculated in [106]. The long-range
limit of the XX correlation function (C7(cy0{,_,.)) shows the phase transition spectacu-
larly. In the paramagnetic phase lim, ., C¥ = 0, there is no long range order. In the
ferromagnetic phase the long range limit is nonzero:

lim CF = (1 - R4 (2.14)
The m, transverse magnetization behaves similarly to the C?¥ correlation function, non-zero
in the ferromagnetic phase, goes to zero approaching the critical point (m; = (1 — h?)?),
and zero in the paramagnetic phase. The magnetization exponent is § = 1/8.
Using the C¥ correlation function one can obtain the correlation length of the system. One
find [108] that the correlation function shows an asymptotic decrease C* ~ exp(—r/¢§),

where the inverse of the correlation length is:

L1 —1)e-20/h=1/T h<1,T—0
— xT _
Z = ¥ h=1 : (2.15)

At the critical point, the XX correlation function decays as a power law: C% ~ 1/r1/4
which defines the n = 1/4 critical exponent [106]. In equation (2.15) T is the temperature.
In the ground state (at zero temperature) one finds £ = 1/(1 — 1/h) for h > 1, so the
critical exponent of the correlation length is v = 1. Approaching the critical point from the
paramagnetic phase the smallest gap closes as A ~ (h—1) [107], so the dynamical exponent
of the model is z = 1. The entanglement entropy between two blocks of spins remains finite
in the L — oo thermodynamic limit both in the ferromagnetic and paramagnetic phases.
This behavior is a special case of the general "area-law”: In a non-critical system the
entanglement entropy is proportional to the area between the two subsystem [109]. In the
critical point of the TIC, the entanglement entropy shows a totally different behavior, it
grows logarithmically [110]:

S=c¢/6InL. (2.16)
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where ¢ = 1/2 is the central charge of the corresponding conformal field theory [168]. The
logarithmic growth of the entanglement entropy is a typical property of one-dimensional
critical systems. In a finite system the entanglement entropy shows a maximum at the

critical point.

2.2 Finonacci Ising quantum quasi-crystal

The Finonacci Ising quasi-crystal is defined by the Hamiltonian:

H = —% Z Jiool |+ hza; : (2.17)

( of and o} are Pauli matrices at site i.) The couplings, J;, are site dependent, and
parameterized as:
J, = Jrli (2.18)

Here r > 0 is the amplitude of the inhomogeneity, » = 1 corresponds to the homogeneous
system, the smaller r correspond to the stronger inhomogeneity. The f; numbers are

integers taken from a quasi-periodic sequence, from the so-called Fibonacci sequence.

The interaction J in (2.18) is fixed with J = 77, where
T ZiLzl fi _ 1
p= i =Pt = 219

is the fraction of units 1 in a very long (infinite) sequence.

The Fibonacci sequence is defined by the following algebraic expression :

fi=1+ H - [”1} , (2.20)

w w

where [z] denotes the integer part of z, and w = (v/541)/2. The sequence can alternatively
defined by a substitution rule

A — AB
B —= A

The lengths of the possible realizations of the Fibonacci chain are Fibonacci numbers
(1,2,3,5 ...). The first few realizations are:

AB

ABA

ABAAB
(2.21)
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One can get the (n 4 1) string by copying the (n — 1)th string after the nth string. The
phase transition of the homogeneous model survive in the quasi-periodic one, there is a
ferromagnetic phase if h is smaller than a critical value, and there is a paramagnetic phase,
if h is bigger than the critical h.. The critical magnetic field can be calculated with Pfeuty’s
result [111]. Pfeuty investigated an inhomogeneous Ising chain (2.8) with inhomogeneous
couplings and magnetic fields. The smallest excitation becomes zero (the system is critical)

in an inhomogeneous Ising model if
e by =11, J; (2.22)

This relation holds for arbitrary choice of the couplings and magnetic fields, so for every
type of inhomogeneity. In Hamiltonian (2.17) the parameters were selected such a way

that the critical point is h. = 1.

In the literature various types of quasi-periodic sequences have been defined with vari-
ous substitution rules [101] [112]. The Fibonacci sequence was found to be an irrelevant
perturbation in the transverse Ising model, which means, the critical properties (exponents)

are common with the homogeneous model.

2.2.1 Other quasi-periodic sequences defined by substitution

In this section some examples of quasi-periodic sequences are listed, and their basis prop-

erties are obtained.

1. Fibonacci sequence defined above in detail.

2. Thue-Morse sequence. The substitution rule is

A — AB
B — BA (2.23)

Starting with letter A the first few realizations are: A, AB, ABBA, ABBABAAB.

3. Period doubling sequence. The substitution rule is:

A — BB
B — BA (2.24)

Starting with letter B the first few realizations are: B, BA, BABB, BABBBABA.

4. The Rudin-Shapiro-sequence is defined using an alphabet of four letters A,B,C,D.
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The substitution rule is:

A— AB
B — AC
C— DB
D — DC

Starting with letter A the first few realizations are: A, AB, ABAC, ABACABDC.
Usually when the Rudin-Shapiro-sequence is investigated only two interaction strength

are used (Jy and Jp), and each letter denotes two neighboring couplings:

A= JoJy
B — JyJp
C — JiJy
D — J1J;

For example the string ABAC' denotes the next set of couplings: Jy, Jo; Jo, J1; Jo,
Jo; J1, Jo.

A quasi-periodic sequence usually described by the asymptotic density of different inter-
actions, and the so-called wandering exponent (), which characterizes the deviation of
the couplings from the average. More formally the wandering exponent is defined by the

following equation:

L
Y Si—LI~LP, (2.25)
=1

where J is the average coupling in the thermodynamic (L — oo) limit. The asymptotic
density of the different letters, and the wandering exponent can be obtained investigating
the substitution matrix. We present this method on the Fibonacci sequence, and list the
results for the other sequences. Let us denote the string which substitutes A (B) with s(A)
(s(B)). For the Fibonacci chain s(A) = AB and s(B) = A. The number of the B letters

in s(A) is denoted by nsB(A). The substitution matrix is defined as:

nZ(A) nZ(B)
M = s(A) _s(B) | - (2.26)
n n

B B

11
(1) oo

And the number of the A and B letters in the mth realization is:

m s s (m—1
W\ (s " (g .
L N U L B |

For the Fibonacci chain:
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The asymptotic density of letters are given by the components of the eigenvector of M
In|A;]
In|A2]?

is the largest eigenvalue of M, and A, is the second largest eigenvalue of M. In the case of

where \;

corresponding to it’s maximal eigenvalue. The wandering exponent is § =

the Rudin-Shapiro chain M is a 4 x 4 matrix. The results for the different sequences are

as follows:

1. In the Fibonacci sequence the density of A letters is ps = 1/w, the density of the B

letters is pp = 1/w?. The wandering exponent is 3 = —1.
2. For the Thue-Morse sequence py = pp = 1/2 and f = —oo0.
3. For the period doubling sequence ps = 1/3, pp = 2/3 and g = 0.

4. For the Rudin-Shapiro sequence p(Jy) = p(J1) =1/2 and 5 = 1/2.

2.2.2 Harris-Luck criteria

The Harris-Luck criteria classifies the different quasi-periodic sequences according to their
effect on the static critical behavior. The criteria can be obtained with the following
phenomenological argument. Let us consider a spherical region of the quasi periodic model
with radius R, and let’s denote this region with €. (In one dimension € is an interval
of length 2R.) Let’s denote the number of couplings in 2 by B(f2), and the sum of the
couplings by ¥(2) = >, .cq
volume || of the region 2, which is proportional to R”, where D is the spatial dimension
of the system. The average coupling Jy is defined as Jy = limg_0o 2(2)/B(2). The Jy

average coupling determines the h, critical field in the thermodynamic limit.

J;.j. The aforementioned two quantities are proportional to the

For a big but finite 2 region the deviation from the average is characterized by:
Y(Q) — JoB(Q) ~ RP? (2.29)

where 3 is the wandering exponent. The correlation length of the system is &, & ~ 077,
where 0 is the distance from the critical point. The typical difference of the J couplings

from Jj is:
J—Jo X)) - SBQ) £PP _ ¢-D0-p)
J B(Q) &b '

We introduce the local control parameter d; which is given by §; ~ J;. The typical deviation

(2.30)

of the local control parameter is:
A§; ~ P8 (2.31)

The perturbation is irrelevant if Ad; < ¢ in the thermodynamic limit, which gives the

following criteria for the irrelevance:

Dv(f—1)4+1<0. (2.32)
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The above condition is called the Harris-Luck criteria. The criteria states, that in the
transverse Ising chain where D = 1 and v = 1 the Fibonacci and the Thue-Morse sequence
are irrelevant perturbations, the period doubling sequence is a marginal perturbation, and

the Rudin-Shapiro is a relevant perturbation.

2.3 Harper model

The Harper-model [88], also called Aubry-André model [89], is a quasi-periodic version of
the XX-model. It’s Hamilton operator is:

L L

H=— Z(Uﬁaﬁﬂ +olol. ) — Z hnor . (2.33)

n=1 n=1

Here h,, = hcos(2nfn) with g = ‘/52_1 = 1/w is the inverse of the golden mean, h is the
amplitude of the quasi-periodic modulation. The w parameter is irrational, this makes the
system quasi-periodic. There is a localization-delocalization transition in the model [102],
the transition point is A = 1. For |h| < 1 the eigenstates are extended over the whole
system, for |h| > 1 the eigenstates are exponentially localized [89]. With the Jordan-Wigner
transformation, a set of fermionic operators (¢, clT) can be introduced (see Appendix A),

and the Hamiltonian takes the following form (which is a special case of equation 2.2):

L

L
1
H= 2 Z(CLan + CLHCn) —h Z cos(2mfn)chen (2.34)
n=1

n=1

which was also the original form of the model introduced by Harper [88].

2.3.1 Aubry-André duality

Following Aubry and André [89] a new set of fermion operators (cy, CTE, k=1...L) are

introduced:

= % ; exp(i27kfn)c, (2.35)

which are eigenstates of the momentum operator with eigenvalue: k = kF,_imodF,, where
F,, is the n-th Fibonacci number and L = F),. In terms of these the Hamiltonian is given
by:
h 2 & _
H= ) Z(&LCEH + c%HCE) % ZCOS(QWB/C)CTECE : (2.36)
k=1 k=1

Note that Eq.(2.36) is in the same form as that in Eq.(2.34), thus the Hamiltonian

satisfies the duality relation:

H(R) ~ WH(L/h) . (2.37)

Here ~ denotes, that the two Hamiltonians are similar: their spectrum is the same.
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Through Eq.(2.37) the small A regime of the Hamiltonian, in which the eigenstates are
extended in real space are connected with the large h regime, in which the eigenstates have
extended properties in Fourier space, thus these are in real space localized. The localiza-
tion transition takes place at the self-duality point, thus the critical amplitude of the field
is h, = 1. For h > 1 the localized states have a finite correlation length, &, which is given

as [89]:
1

" In(h)’
for all eigenstates of H. We will use the h — £o00 limits in Chapter 7. For large |h| the

3 h>1, (2.38)

$qn quantities are given as:

Ggn = Onng, €= —hcos(2mfng), |h]>1. (2.39)

2.4 Disordered quantum Ising chain

The disordered Ising chain is defined by the Hamiltonian:

L L
1 X T z
H = -5 22:1: Jioiof, + ; hiof | . (2.40)

Here J; and h; are positive independent random numbers, selected from the distributions
7(J;) and p(h;) respectively. It was found, that the critical behavior is universal, inde-
pendent form the concrete shape of the distribution in the thermodynamic limit [115].

In the numerical simulations (presented in Chapter 8 ) We used uniform distribution
over [0, 1] for 7(.J;), and uniform distribution over [0, 4] for p(h;). The results recapitulated
in this section are true for general selection of m(.J;) and p(h;).

Pfeuty’s result about the criticality of the Ising chain [111] also holds for one realization
of the disordered chain, so a concrete realization is critical if IT_, (h;) = ITZ | J; (see equation
(2.22)), or equivalently Zle In(h;) = Zle In J;. The distribution of the disordered chains
is called critical if the average of the logarithm of the local magnetic fields (h;) and the

average of the logarithm of the couplings (.J;) are equal:

Inh=1InJ. (2.41)

Here the over line denotes the average over the probability distribution. Note, that with
our choice of parameters the system is critical with h = 1. If Inh > InJ the system is

paramagnetic if In(h) < In(J) the system is ferromagnetic. The distance of the critical

point is usually measured with the parameter, introduced by Fisher [115]:

In(h) —In(J)

0= var(h) + var(J) ’

(2.42)

where var(J) is the varience of the couplings, and var(h) is the variance of the magnetic

fields. The disordered Ising chain shows equilibrium properties which are rather different
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from the properties of the homogeneous or quasi-periodic models.

Investigating the local magnetization one finds, in the critical point the typical real-
izations gives negligible contribution to the average. The average is dominated by so-
called rare events, which has vanishing probability but gives O(1) contribution to the
average [115] [116].

An other remarkable property of the disordered Ising chain is the existence of the so-
called Griffiths phase [116]. This phase is region in the neighborhood of the critical point.
It is the region where in the ferromagnetic phase some rare samples can be paramagnetic,
and in the paramagnetic phase some rare samples can be ferromagnetic. I summarize here
the properties of the surface magnetization, and the low-lying excitations. The surface
magnetization is a good example for a rare-event dominated average, and the properties of
the low-lying excitations will be used in Chapter 8. The surface magnetization m, = my
is related to the local transverse fields and couplings with a relatively simple formula [117]
[118] :

ms =

L—1 B\ 2 —1/2
1+ 1, (7;) ] , (2.43)
=1

where h; and J; are arbitrary positive real numbers. In the critical point, the typical value

of the magnetization is determined by the largest term of the sum in equation (2.43). The
typical value of the largest term is ~ exp(constL'/?) so the typical value of the surface
magnetization is:

m¥P(L) ~ exp(—const.LY?) . (2.44)

The average surface magnetization shows a rather different behavior [14]. There are rare

realizations where the random variables €; = ln% behaves like a surviving walk. This
J

realizations has O(1) contribution to the average of the magnetization, and dominate the

average. The average magnetization is:
(s)
[Ms)an(L) ~ L™ fU?(fL) =1/2. (2.45)

In the ferromagnetic phase close to the critical point the surface magnetization is: [mg]q(9) ~
|67 with 8, = 1. The typical and the average correlations can be described with differ-
ent correlation lengths. From the finite size dependence of the surface magnetization one
obtains: £ ~ |§|7” with v = 2. The typical correlations decay faster: &, ~ |d|7"»» with
Viyp = 1.

In the remaining of this section we summarize the basic properties of the low-lying excit-

ations of the disordered transverse Ising model. The lowest excitation energy is [98]:
— rL—1 hz
e1(L) ~ memgll A (2.46)

where m, and m, are the boundary magnetizations on the two ends of the chain.
In the critical point the order of magnitude of the lowest excitation is given by the boundary
magnetization, so

(0 =0,L) ~exp [— constLl/ﬂ . (2.47)
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The typical time scale is given by the inverse of the lowest excitation #, ~ ¢!, and the
length scale in the neighborhood of the critical point is given by the system size (£ ~ L),

so the length and time scale is connected as:
Int~ &Y, (2.48)

where W = 1/2 [115] [117] [103]. In the homogeneous and quasi periodic quantum Ising
chains a power law scaling connect the time and the length scale ¢, ~ £* with a finite 2
dynamical exponent. The (2.48) equation is a sign of an ultra-slow dynamics, where the
dynamical exponent is formally infinite.

In the paramagnetic Griffiths phase, where § > 0, and max{J} > min{h} there are rare
regions of size l..,c Where the local couplings are stronger than the local magnetic fields,
and the system is locally ferromagnetic. Note that the boundaries of the Griffiths phase
depends on the probability distribution of h; and J;. For example with the box distributions
used in Chapter 8 and already mentioned after the definition of the model, the Griffiths
phase extends over the whole off-critical (ferromagnetic and paramagnetic) region. The
energy gap in the aforementioned locally ferromagnetic rare samples is exponentially small

in Lare: € ~ exp|—constlare], so the relation between the length and the time scale is:
t, ~ &, (2.49)

with a finite dynamical exponent z. This scaling relation is typical for the Griffiths phase
[119]. The dynamical exponent in the Griffiths phase is continuous function of the ¢

parameter. The precise value of z is given by the positive root of the equation:

(]

In the ferromagnetic phase the lowest excitation is exponentially small. The dynamical

exponent is usually obtained from the second gap, and found to be the positive root of

()]

However, the exponentially small first gap is also interesting from the viewpoint of the

dynamics, as the reader will see it in chapter 8.

The eigenstates of the off-critical disordered Ising model are localized [115]. In the
critical system there is a finite localization length for every excitations with ¢ > 0, but
the localization length is divergent for e — 0 [120] [115]. The equilibrium properties of
the random chain can be best understood with the strong disorder renormalization group
(SDRG), which was applied by Fisher [115] to the critical point of the model and later was
generalized to the Griffiths phase [116]. The SDRG is a real-space renormalization group
method where the decimation step is the elimination of the strongest of the couplings
and magnetic fields. It is possible to follow the transformation of the distribution of the

magnetic fields and couplings under the renormalization flow. From these distributions
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one can conclude exact results about the thermodynamic behavior.

17



Chapter 3

Quench dynamics of homogeneous

systems

The quench dynamic means, that the quantum system is in its ground state initially, and
an external parameter is changed instantaneously. With the new value of the external
parameter the initial ground state is not an eigenstate of the new Hamiltonian, and a non-
trivial time evolution starts. More formally let’s denote the Hamiltonian of the system with
H(h), where h is the external parameter. For t < 0 h = hy and the system is prepared in
the ground state of H(hg). Let’s denote this initial state with |\I/éo)>. At t = 0 the value of
the external parameter is changed instantaneously to h # hg, and remain h for ¢ > 0. The

wave vector of the system is
—i 0
W (1)) = e O w) (3.1)

fort > 0. The |\If(()0)) original state of the system is usually not eigenstate of the after-quench
Hamiltonian H(h), and a non-trivial dynamics starts after the quench.
Usually we use the Heisenberg picture. The operator of physical observable A evolves

in the Heisenberg picture as
AH(t) — eiH(h)tAe—iH(h)t ) (32)

The expectation value of the A observable is calculated as (A) = (\IIE)O)|AH (t)|\1180)>. A two
point correlation function can be calculated as C4 p(t1,t2) = <\I/(()O)\AH(t1)BH(t2)]\IJéO)> =
<\I/(()0) lexp(iH (h)t1) Aexp(—iH (h)(t; —t3))Bexp(—iH (h)ts) |\I/(()O)>. The time evolution of the

most simple operators are written down in detail in Appendix A.

3.1 Numerical results on global quenches

3.1.1 Magnetization

In [37] the authors investigated the quantum Ising model. Here we recapitulate the main
numerical results about the dynamics of the magnetization (order parameter). For very
long times (¢ > L) the magnetization reaches an asymptotic value in a finite system.( In

figure 3.1 this regime is not show. The oscillations which can be seen in figure 3.1 decay,

18
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and become negligible for very long times.) The magnetization is measured on the [ th
site in a system of total length of L spins. We assume L/2 > [ so the nearest boundary is
at the first spin. For times of the same order of magnitude of the system length, different

regimes can distinguished.

1. For short times (¢ < L) the relaxation of the magnetization is exponential:
my(t) = A(t)exp(—t/7) fort <t . (3.3)

This regime can be seen in figure 3.1 in the left-bottom panel before the first min-
imum. The A(t) prefactor is O(1). It is found to be oscillating if the quench ends in
the disordered phase A(t) ~ cos(at+b), and positive (A(t) ~ cos(at+b)+c > 0) if the
quench ends in the ferromagnetic phase. This first regime ends after ¢; time. It was
found that ¢; = [/Vez, Where v, is the maximum group velocity ! in the system.
In other words v,,., is the time needed by the fastest possible signals to reach the
[th spin from the boundary. If the bulk of an infinite system is investigated,(L — oo
and [ — oo with [/L = constant) only this first regime exist.

2. Quasi-stationary regime. This regime can be seen in the left upper panel of figure 3.1,
when the magnetization is measured far from the center of the chain. (The length of
the chain was L = 256 so the center is [ = 128. If the measured spin is far from the
center, the quasi-stationary regime is long (see the curve corresponding to [ = 16), if
the spin is closer to the center the quasi-stationary regime becomes shorter (see the
curve corresponding to [ = 64), if the measured spin is in the middle of the chain
(I = 128) the quasi-stationary regime vanishes.)

In this regime the decrease of the magnetization is much slower than in the previous
one. This regime starts when the fastest quasi-particles starting from the closer
boundary reach the measured spin (¢;), and ends when the quasi-particles starting
from the other end of the chain (Lth) spin reach the measured spin (time (L—1)/vmqz).
This regime holds for t; <t < T —t; where T = 1/

If one investigates a half infinite system, so the L — oo limit with fixed [, the

magnetization remains forever in this stationary regime.

3. Reconstruction regime.

After time T — t; the magnetization starts to increase
my(t) ~ exp(t/7’) . (3.4)
This regime ends at time 7', when the fastest signals has run over the whole chain.

4. After time T approximately periodic behavior starts with period T". This periodicity

is the result of repeating reflection of signals at the end of the chain.

IThe group velocity is given by v = 863(15 )
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Figure 3.1. Upper row: Magnetization dynamics after a quench from hy = 0 to h = 0.5
(left) and from h = 0.5 to h = 1.5 (right). Lower row: Entanglement entropy dynamics
after a quench from hg = 0 to h = 0.5 (left) and from hg = 0.5 to h = 1.5 (right). The
gray curve is the result of the semiclassical calculation which is detailed in section 3.2.3
This figure is based on figure 1. of [79].

3.1.2 Entanglement entropy

Numerical investigations about the dynamics of the entanglement entropy were done in [56]
and [122]. In this subsection the main numerical results about the after quench dynamics
are recapitulated. The entanglement between the block of the first [ spins, and the other
L — [ spins was calculated. The typical dynamics of entropy is shown in figure 3.1.

The dynamics can divided to different regimes (shown in figure 3.1, lower panel ),

similarly to the magnetization:

1. For t < [/, the entanglement entropy increase. The functional form is found to
be:
S = a(h, ho)t , (3.5)

the a(h, hy) prefactor depends on the pre- and afterquench magnetic fields.

2. There is an intermediate region
U Vmae <t < (L —1)/Vmaz , (3.6)

where the entanglement entropy remain nearly constant. In the L — oo limit with
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finite [ this constant value is the asymptotic value (t — oo) of the entanglement

entropy.

3. For
(L —=1)/Vmaz <t <T = L/Unax (3.7)

the entropy decreases.

4. After t > T an approximately periodic oscillation begins with period T

3.2 Quasi-classical description

The quasi-classical description was first applied by Sachdev and Young [123] for finite
temperatures in equilibrium. Later this type of description was modified to describe zero
temperature non-equilibrium dynamics [37] of the local magnetization and the correlation
functions and also has been used to interpret the dynamical entanglement entropy [122]
[56]. In this subsection we follow articles [37] and [122] and describe the dynamics of the
magnetization and the entanglement entropy with the use of quasi-particles.

The quasi-classical transition works best if the quench ends in the ferromagnetic phase
(h < 1), and additionally h is small, not too close to the critical point.

With zero transverse magnetic field the ground state is twofold degenerate |¥y) =
al|++ +---4) + b — — —...) where |[+) and |—) are eigenstates of |o,). The lowest
excitation is (L — 1) times degenerate: [n) = |+ 4+ 4+ -+ 4+ —— — -+ — —— ), here n is
the position of the domain wall (kink).

A small transverse magnetic field h > 0 destroys the degeneracy of the lowest lying
excitations. First order perturbation gives that the low lying excitations are Fourier trans-

formations of the |n) domain wall states.

B(p) = 3 auln) (3.8)

where a,, = 1/2/Lsin(pn), e,(p) = 1 — hcos(p) and p has L — 1 discrete values in the [0, 7]
interval.

The low lying excitations are Fourier transformations of domain walls, so a wave packet
formed from them represents a moving domain wall. It is known that the group velocity
of a wave packet which is localized in momentum space around momentum p is

%7hsinp (3.9)

U= dp €p
In the quasi-classical picture the quasi-particles are created at the moment of the quench
homogeneously in the chain with momentum dependent probabilities. After they have
been created, they move ballisticaly (with constant speed) and are reflected from the ends
of the chain. After their creation the quasi-particles are considered to move determinist-
ically. The Ising model (with arbitrary couplings and magnetic field) can be transformed

to free fermions, the details can be found in Appendix A. In particular the after-quench
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Hamiltonian with magnetic filed h can be written with fermion operators n; and 77,1 in the

following diagonal form:
=3 ekl (310)
k

where £ is the momentum, which is a quasi-continuous variable in a large system, and

en(k) = \/(h — cosp)? +sin’ p the excitation energies. The 1 operators are connected to

the ¢ operators by tha following Bogoliubov transformation:

Ng = uch+ivch (3.11)

—q
Ny = vy +uge, (3.12)

where uy,(p) = \/(en(p) + h — cosp)/(2en(p)) and va(p) = +/(en(p) — (h — cosp))/(2en(p))
The ground state of the after quench Hamiltonian is the vacuum of the n fermions, denoted

by |0), The ground state before the quench (denoted by W) can be expressed with the
ground state after the quench ( |0))

W) =0, Uy + Varfnl, | 10) (3.13)

where V), = wp,(p)vn(p) — vny(p)un(p) and U, = up,(p)un(p) + vne(p)vn(p), and defined
in detail in Appendix A.3. From (3.13) one can see, that the quasi-particles are created
in pairs with opposite momenta. (This is also required to fulfill the conservation of the
momenta.) The probability of the creation of a quasi-particle pair on a given site with

momenta p and —p is:

fr = <\I/0|7];T;77p|\1j0> = ‘/;72 5 (3.14)
— 1
g, = L[y hof=(ho + h)cosp + (3.15)
2 €no (P)en(p)

The motion of the quasi-particle pairs is periodic with period time 27}, = Qi. The position
of the initially right moving quasi-particle is denoted by x;(¢), the position of the initially
left moving quasi-particle is denoted by x5 (t). If a quasi-particle pair start from xq the left
moving particle reach the boundary at t, = /v, the right moving quasi-particle reach
the left boundary at time ¢, = (L — x)/v,. For t < T, the positions of the quasi-particles

are:

(t) ) + Upt fOI' t S tb (3 16)
zi(t) = .
' 2L — 9 —vpt for ¢, <t <T,,

— vt | t<t,
wo(t) =4 0T = (3.17)
vt —xg for t, <t <T,.

The quasi-particles meet at t = T}, in L — x9. Between T, and 27}, another two reflections
happen, and at ¢ = 27}, the quasi-particles meet again, at the position of their creation, z
and with the same direction of velocities as at the time of their creation. The quasi-particles

move periodically with 27}, period.

When a quasi-particle passes a spin the spin is flipped in the X direction. The two

elements of the quasi-particle pair are correlated with each other, but the quasi-particles



3.2. QUASI-CLASSICAL DESCRIPTION 23

(1,

T

Figure 3.2. Quasi-particle trajectories after a global quench.

from different pairs (starting from different positions) are uncorrelated.

3.2.1 Correlation functions

The correlation functions are defined as:
C(?”l, tl, T2, t2) = <\D()|O'fl (tl)UfQ (tQ)‘\IjU> . (318)

The behavior of this correlations are interesting on its own right, however in this work I
include them, because they are used during the calculation of the local magnetization. The
motion of the quasi-particles after the quench is deterministic, but the creation process is
stochastic. To calculate the expectation value of correlation functions, one has to average
over the possible initial configurations of the quasi-particles.

With a given quasi-particle initial configuration C(ry,t1;79,t) is +1 if the traject-
ories intersect the (r1,;79,t2) line even times, and —1 if the trajectories intersect the
(r1,t1; 79, t2) line odd times.

The probability, that the quasi-particles started from the same site intersect the line
(r1,t1;72,t2) an odd number of times is denoted by Q(r1,t1, 72, t2).

The probability that for a given set of n sites the kinks passed odd times the (ry, t1; 72, t5)

line is:
O(Tl t1'7"2 tg) L L— L! L -2 ;
) U1, 12, _ —1)"O™(1— n___ 7 (1-9 ~ Q(r1,t1;r2,t2) L . (3.19
Gl ;( Q=@ Gy = (12Q) ~e (3.19)

To calculate Q(rq,t1;rats) one has to average over the quasi-particle pairs with different

momenta between 0 and 7:
1 s
Q(r1,t1;72,t2) = %/ dpfp(ho, h)gy(r1,t1; 72, t2) (3.20)
0

In the previous equation ¢,(r1,t1;72,t2) denotes the probability that the two traject-

ories of a quasi-particle pair (x1(t) and z5(t)) together intersect the line (ry,t1;79,t9) odd
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number of times. The g, probability can be calculated as the sum of the probabilities

ap(o|71, t15 72, t2):

L
Q= z/o dxoqy(xo|ry, ti;re, ta) | (3.21)

where g, (20|71, t1; 72, t2) denotes the probability that the quasi-particle pair which originally
started from xy with momenta p intersects the line (11, ¢1;79,t2) together odd number of

times.

3.2.2 Local magnetization

The local magnetization can be expressed as the correlation function of the /th spin at time
t, and the [th spin at ¢ = 0 with the condition that the spin is fixed initially (o] = +1).

my(t) = mleq0|af(t:0)=+1(l, 0;1,1) (3.22)

The aforementioned quantities (¢(t,1), g,(t,1)) take special, more simple form:

q(t,l) = Q|Uf(t=0):+1(l70;lat) (323)
1 iy

ot.) = 5= [ dnfylona ) (3.24)
L

w(t.) = [ duogalt). (3.25)
0

To calculate the local magnetization one has to evaluate ¢,(¢,1).

for early times, when the reflections at the ends did not play a role, g,(t,1) is simply
proportional with the length of the region from where the quasi-particles could reach the
[ th site. The first reflected quasi-particles reach the Ith spin at ¢; = [/v,, so for t < t;
q(t,1) = 2u,t/L.

After the quasi-particles reflected from the left boundary (neighborhood of the first
spin) arrives, the ¢,(¢,[) probability remains constant. This constant period remain until
the reflections from the right end did not arrive, so for t; = l/v, <t <ty = (L —1)/v, the
qp(t, 1) probability is constant p,(t,1) = 2{/L.

When the quasi-particles reflected from the right end arrives at the investigated site [,
the ¢,(¢,1) probability becomes to decrease, and it decreases until t = T}, = L/v,. At time
T, the g,(t, 1) probability becomes zero again.

2u,t/L  for t<ty
q(t, 1) = 2l/L for ¢ <t<ty (3.26)
2 —2u,t/L for ty <t <T,
Since after T}, time the quasi-particles reach their original position, ¢, is periodic with
period T},:
@t +nT,0) =q(t,l) (n=1,2...). (3.27)

The ¢ function is not periodic, because the quasi-particle pairs with different momenta
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Figure 3.3. The quasi-particle pair denoted by (1) gives no contribution to the entanglement
entropy. The other quasi-particle pair denoted by (2) gives non-zero contribution to the
entanglement entropy.

has different speed and different period time. In an half-infinite system, so in the limit of

L — oo with [ = const. the t; time becomes formally infinite, and

2u,t/L for t<t
gp(t,1) = { o/ : (3.28)

21/L  for t>t.

The magnetization is in the L — oo limit:

mu(®) :mleqexp(—t% /0 ' dpvpfp(ho,h)@(l—vpt))exp(—lg / " dpf,(ho, B)O(uyt—1)) (3.29)

0

The relaxation time of the magnetization is:
1 2 [T
Tmag(ho, h) = — [ dpvyfy(ho, h) - (3.30)
0

3.2.3 Entanglement entropy

In this section the quasi-classical description of the after quench entanglement entropy, and
some analytical results about the entropy are summarized. From (3.13) it can be seen that
the quasi-particles from one pair are entangled, and quasi-particles from different pairs are
not entangled.

A quasi-particle pair gives non-zero contribution to the entanglement entropy between
blocks A and B if one member of the pair is in A and the other member is in B.

The contribution of one quasi-particle pair is

sp=—(1—fp,)In(1—=f,) = fpInf,. (3.31)

Summing up the contributions of all quasi-particle pairs one obtains the precise value of
the entanglement entropy, see figure 3.1 The summing up of the entropies of quasi particles
(equation 3.31) is straightforward in the L — oo and [ > 1 limit.

t- [d if t <1/Vmax
sty = TS v /v (3.32)
l%fdpsp it > /v,

which corresponds to the exact results of [57]. In this limit (L — oo and [ > 1), there
is only an increasing regime, and a plateau regime. There are no oscillations, because the
quasi particles are reflected only from one end. The oscillations in finite systems (figure

3.1) are results of the interference of the quasi particles reflected from the opposite ends of
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the system.

3.3 Spectra and the dynamical properties

Usually the spectra of the Hamiltonian (after the quench) determines the mean features of
the dynamics. This will be illustrated by examples. The spectra of the operators can be
divided to three classes [113]:

1. Absolutely continuous spectra. The spectra of the most homogeneous systems are
absolutely continuous. For example the spectra of the homogeneous Ising model or
the homogeneous XX model is absolutely continuous. However, there are inhomo-
geneous models with absolutely continuous spectra, for example the spectra of the
Harper model is absolutely continuous in its extended phase.

The models with absolutely continuous spectra usually have eigenstates extended

over the whole system. 2

2. The second type is the so-called singular continuous spectra. Such spectra shows a
fractal like behavior.
This type of spectra is observed in certain quasi-periodic systems: in the critical

point of the harper model [102] or in the Fibonacci quasi-crystal [113].

3. The third kind is the pure point spectra, which is typical for disordered systems
(disordered Ising chain [115], Anderson model with diagonal and off diagonal dis-
order [120] ).

There are quasi-periodic systems with pure point spectra, an example is defined by
a substitutionary rule in [121] and the Harper model in its localized phase is also has
pure point spectra.

Usually there is a finite localization length if the spectrum is pure point spectrum.
The energy-dependent localization length shows the spatial extension of the eigen-
states with the given energy. It can happen, that the localization length is finite
almost in the whole spectra, but becomes divergent at a special energy value. This
happens in the critical point of the disordered Ising chain [115] and in the off-diagonal
Anderson model [120]. 3

There are a vast of literature about the dynamics of systems with various types of spectrum.

The results of the numerical and exact investigations can be summarized as follows:

1. In the case of absolutely continuous spectra the dynamics is usually ballistic. Ballistic

here means that the ”"signals” travel with constant velocity in the chain.

2Tt is naturally possible to create a Hermitian operator with absolutely continuous spectra and localized
eigenstates. For example one can consider the spectra of the homogeneous XX model, and a complete basis
of localized eigenvectors. Then one define the operator as the eigenbasis is the aforementioned localized
complete set, and the spectra is the spectra of the XX model. However in simple physically inspired models
the absolutely continuous spectra is exist together with the extended eigenstates.

3The spectra of the one particle excitations of the disordered Ising chain and the set of the positive
eigenenergies of the off-diagonal Anderson model are identical.
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2. If the spectra is singular continuous the dynamics is slower,the wave packets spread
as a power law. This was observed in the critical point of the Harper model [102]

and in the Fibonacci quasi-crystal.

3. If there is pure point spectrum, localization or extremely slow dynamic was found.
Here localization means that the wave packet reaches a finite width in an infinite
system, as in the localized phase of the Harper model. Ultra slow growth of the
entanglement entropy after a quench was found in the disordered Ising chain and for

other disordered models.

A qualitative explanation of the above results was developed by Thouless and Piéchon in
their articles [128]. They investigated the typical variation of the energy levels (AE) of
a one-dimensional system when the boundary conditions are changed. The AFE energy
scale defines a time scale t* ~ 1/AFE. A wave packet needs t* time to spread trough
the entire chain of length L. One gets the diffusion exponent of the wave packet with
the 22(t*) ~ (t*)?> ~ L? relationship. In a model with absolutely continuous spectrum
the typical variation of energy levels is AE ~ 1/L, which implies 0 = 1. In a model
with pure point spectrum, AE ~ 1/L and ¢ ~ InL/L = 0. If the spectra is singular-
continuous, the relation between the variation of energy levels and the system size is more
complicated, AE ~ L~/ with various exponents o. Detailed investigations shows, that
the ¢th moment of a wave-packet starting form the 4yth site behaves as (9 (i, t) ~ tolioa)

where the exponent o(ig, ¢) depends on the initial position 4.

3.4 Experiments

In the past two decades the experimental study of non-equilibrium quantum dynamics
become possible in systems of trapped ultra-cold atoms [12]. The gas of neutral atoms
(mostly alkali atoms) is cooled with subsequent methods. In a typical experiment the gas
is first cooled by laser cooling [129] and then trapped in a magnetic or magneto-optical
trap, and the trapped gas is cooled further by microwave evaporate cooling [130]. These
systems were the first realizations of a Bose-Einstein condensate of weakly interacting
particles, and the pioneers of this experiments Eric A. Cornell, Wolfgang Ketterle and
Carl E. Wieman has been awarded with the 2001 Nobel Prize in Physics for constructing
these experiments. The usual way of studying a trapped condensate is the time-of-flight
measurement: The trap is turned off instantaneously, and the atoms of the condensate ex-
tends ballistically. The extended atomic cloud is photographed later. Since the condensate
is located in a small volume, the velocity distribution can be obtained by time-of-flight
measurement [131]. Cooling and trapping fermions is also possible. however technically
even more challenging, since the thermalization during the evaporating cooling is slower
than in the bosonic case due to the exclusion principle [132].

The systems built from trapped cold atoms are well isolated from the environment and
can be considered as closed systems during the duration of experiments. The time scale

of the dynamics of these cold-atom systems is much longer than the usual time scales in
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solid sates. The reason of the longer time scale, is the dilute nature of this systems. The
typical time scale is a few ms which makes possible to experimentally follow the dynamics.
The interaction strength (usually characterized by the s-wave scattering length) between
the trapped atoms is tunable with an external magnetic filed due to the Fresbach reson-
ance [133].

With the use of the so-called optical lattices [134] experimental realization of lattice mod-
els became possible. An optical lattice is formed by the interference of contra propagating
laser beams, which create an effective optical potential. Atoms can be trapped at the
minima of the optical potential. (The minima of the optical potential are actually maxima
of the light intensity.)

One of the most natural models emerging in optical lattices is the Bose-Hubbard model
and the Fermi-Hubbard model [135]. Even the monitoring of a single atom became possible
in Hubbard-like models [136]. Among investigating naturally emerging models in optical
lattices it is possible to simulate several solid-state-physics inspired models [137]. Ising and
XY models were engineered on triangular lattice [138]. The metal-insulator transition was
observed in the experimental realization of the Harper-model [139]. Disordered systems
were also realized in optical latices [137].

The quench dynamics of isolated systems were investigated in many experiments. Kinoshita
investigated [3] [4] the quench dynamics and the steady state of an effectively one-dimensional
system. It was found, that the system does not reach a thermal steady state in the ob-
tainable time regime, the system was close to the integrable Lieb-Liittinger model. The
nearly integrability may be the reason of the lack of the thermalization. Marc Cheneau and
his colleges investigated the spreading of correlations in a one dimensional Bose-Hubbard
model [10]. They demonstrated experimentally the light-cone-like spreading of the correl-
ations, which is characteristic in homogeneous systems, and has been used in Section 3.2.
Nearly-adiabatic dynamics was also investigated in systems of ultra-cold atoms. Weiler et
al. investigated a Bose gas, which was cooled below the BEC transition point [140]. They
demonstrated spontaneous forming of defects (vortices) during the process. Sadler et al. [6]
investigated a spinor Bose gas (87 Rb). This system shows both magnetism and superfluid-
ity. They have driven this system over a quantum phase transition, and investigated the
density of "generated defects”. Here defects refer to any difference from the ground state
of the instantaneous Hamiltonian.

A periodically driven interacting Harper model was studied recently [75]. The periodic
driving induce a delocalized regime in the phase diagram of the system.

These experiments with cold atoms draw attention on their own right. On the other hand,
these experiments lead to better understanding of solid state physics. Furthermore these

systems may serve as a hardware of quantum computing [139].



Chapter 4

Local quenches

4.1 Introduction

The non-equilibrium process after a sudden change of a parameter ”"quench” at T' = 0 is of
recent interest, and there were much attention paid to the [13-51,55-57] global quenches,
where the parameters are varied homogeneously in space.

The local quench is another interesting question, when parameters are modified locally
at a given site. Experimental realization of local quenches is X-ray [141] absorption
in metals. The theoretically most investigated systems in this field are the critical one-
dimensional systems.

For those systems, exact analytical results have been derived using conformal field
theory (CFT) [142,143].

In CFT one investigates the continuum limit of the model, where the system evolves
in a continuous two dimensional space-time (z,¢). In this description the local quench
means the sudden change of a parameter at a given spatial (z) position, for example the
strength of the coupling at = 0, changes from k; before the quench (¢t < 0) to ko, after
the quench (¢ > 0). The expectation value of operators are calculated with path-integral
methods. These conformal methods usually work for appropriate boundary conditions:
k = 0 (uncoupled half chains) or k = oo (fixed local spin) and x = 1, i.e., uniformly
coupled chain. Among other quantities the after quench entanglement entropy has been
studied by CFT ( [122,144-147]), after joining two initially independent systems (changing
from k1 = 0 to ko = 1), the entropy grows logarithmically [142], and the prefactor of the
logarithm is universal S(t) = (¢/3) Int + const, it is one third of the central charge of the
CFT. In finite systems the entropy cannot grow without limit, in a system of length L the
entropy starts to grow for short times, but for long times it shows a periodic variation in
terms of ¢t/L [143].

Various correlation functions and also the magnetization have been investigated with
CFT: the time (measured from the time of the quench ) and spatial (distance measured
from the site of the local quench) dependence is usually characterized by power laws [142],
and the exponents are combinations of bulk and surface static scaling dimensions. The
CFT predictions have been tested against numerical calculations in concrete models [94],

and good agreement has been found.

29
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There were studies about local quenches in non-conformally invariant systems. For
quenches ending in the ordered phase of the transverse Ising chain, a semiclassical de-
scription was applied [38], which has been verified by numerical simulations [94]. The
strong disorder renormalization group method was modified to describe the dynamics of
disordered systems [103] such as TIC (transverse Ising chain), and the entanglement en-
tropy [79,82] and the full counting statistics was [80] investigated with this modified
renormalization group. In critical disordered systems, both quantities has an ultra slow
S(t) ~ Inlnt time dependence, which was tested against numerical calculations.

In this section we study the time evolution of the local magnetization at the critical
point of the TIC, after a generalized local quench: The value of the local coupling and also
the value of the local fields are changed at the time of the quench ¢ = 0. The static critical
behavior near a local defect in the TIC is non-universal, the scaling dimension of the local
magnetization continuously varies with the defect strength x; = x;(k;) [118,148-152]. Later
this question has been studied with various methods, S-matrix theory [153], , conformal
methods [154-159] and conformal field theory [160-162].

The ground state [122], [163-165] and the dynamical [122,166] entanglement entropy
across a defect also shows a similar behavior: the so-called effective central charge is a
prefactor of the entropy, and a continuous function of the defect parameters. It is expected,

that the non-equilibrium relaxation of the magnetization is also non-universal.

4.2 Model

I consider a critical TIC of length L with free boundary conditions and a defect at L/2.

The Hamiltonian of the system is

L

Hi=—5 Zan0n+1+ —1)07 507 jo1 +Z opt(hii—1)07 5 + (hia—1)07 joiq | - (4.1)

n=1

The index i = 1, 2 refers to the values of the transverse fields h;1, h;s and the coupling J;,
before and after the quench at ¢t = 0. In this chapter the after quench time dependence
of the local magnetization is in the focus of the interest. I follow the evolution of the
local magnetization at the defect, mg(t) = my—r/2(t). To investigate this generalized local
quench a two dimensional classical model is introduced in section 4.3. The imaginary time
version of the above described quench is in close relation with this classical model. The
imaginary time version of the quench is defined on the n-7 plane, where n is the number
of the spins, and 7 is the imaginary time. The quench process investigated in the n — 7
plane corresponds to a two-dimensional (2d) classical critical Ising model with a composite
ladder defect at the center (see figure 4.1 for an illustration; the x axes corresponds to 7
and n corresponds to y ).
With the help of the two-dimensional classical model, exact results can be obtained for the
imaginary time version. This results are summarized in section 4.3.
The real time behavior is obtained by analytical continuation the imaginary time behavior

in section 4.3. To do this, we use previous exact results from the literature about special
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Figure 4.1. Composite line defect in the critical two-dimensional square lattice Ising model.
The composite defect is made of two half-lines of perturbed couplings on a ladder.

cases of the local quench.
The results are validated by large scale numerical simulations which are written down in

section 4.4.

4.3 Composite defect exponents

In this section the critical classical Ising model on the square lattice is investigated with a
line defect as shown in figure 4.1. The composite defect results from the junction of two
semiinfinite line defects, indexed 1 and 2, with different horizontal (X;;) and vertical (K;)
perturbed couplings (i, = 1,2). Since the scaling dimension of the bulk energy density,
x. = 1, is the same as the dimension of the line defect, the perturbation is marginal and
varying local magnetic exponents are expected as for the infinite line defect [148,149].

In the off-critical system the local behavior of the magnetization, at a distance from the
defect smaller than the bulk correlation length £, is governed by three different exponents.
In the central region the local magnetization exponent x5 is influenced by the two parts
of the composite defect. Outside this region, at a distance larger than ¢ from the junction,
the local magnetization exponents, x; and x5y, are the same as for infinite line defects.

One can calculate the composite defect exponent x5 using conformal methods and
finite-size scaling [154-159].

In a first step, the infinite critical system of figure 4.1, with a single composite line defect
along the z-axis, is transformed into a cylinder with two equidistant line defects, 1 and 2,
parallel to the cylinder axis, through the conformal transformation w = (L/27) In z where
z =2+ iy and w = u + iv. The system after the transformation (shown in figure 4.2(a)),
is infinite along the u-axis and periodic with size L, even, in the transverse direction. The
gap-exponent relation [168] can be used in the cylinder geometry to calculate the composite
defect exponents.

Although the column-to-column transfer matrix can in principle be diagonalized for
arbitrary couplings, the calculations are more simple in the strongly anisotropic (Hamilto-
nian) limit [107, 169] where the couplings in the longitudinal direction (X, in the bulk

and K;; on the line defects) are strong while the couplings in the transverse direction (K,
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Figure 4.2. (a) Under the conformal transformation w = (L/27)In z the full plane with
a composite line defect becomes an infinite cylinder with circumference L and two infin-
ite equidistant line defects, parallel to the cylinder axis. (b) In the extreme anisotropic
limit, the column-to-column transfer operator can be expressed as the exponential of the
Hamiltonian of a TIC, up to a rescaling factor.

in the bulk and K; on the line defects) are weak. For a critical bulk in the extreme an-
isotropic limit, corresponding to a continuous imaginary time along the u-axis, the ratio
Koo/ K;,. — 1 whereas on the line defects K;/K;, — J; and K};/K;. — hy;. Here K, is
defined by the implicit equation tanh K, = exp (—2K,,).

Then the transfer operator is T = exp(—2K H) where H is the Hamiltonian of a

TIC [106] (see figure 4.2(b))

L
1 T T T T z z
H = —3 E OnOpi + (1 =1 opof +(J2—1) Or/29L/2+1

n=1
L

+ Y on 4 (hn —1)0f + (hiz = 1) 07 + (haa — 1) 05 g + (han = 1) 05 o 1 | - (4:2)

n=1

With the Jordan-Wigner transformation the Pauli spin operators ¢ and o7, are ex-
pressed in terms of fermion operators. [104] See details in Appendix A.4. The Hamiltonian
becomes quadratic in terms of fermion operators, but involves an operator P = (—1)9, as-
sociated with the bond between the last (Lth) and the first spin.. The P operator commutes
with H, and its eigenvalues are +1 and —1 corresponding to () = 0 and ) = 1. The number
of fermions is even (odd) if @ = 0 (Q = 1). In each subspace H(Q) is diagonalized by a
Bogoliubov transformation [106,170] and takes the form H = )", € (7711% — %) in terms

of the new fermion operators n; and 77;2. One gets the square of the excitation energies as
the Q-dependent eigenvalues of the L x L matrix equation (M — €}) ®; = 0 with line n
(1 <n < L) given by:

h(n—1)J(n—1)®x(n—1) + [A*(n)+J*(n—1) =] ®r(n) +h(n) J (n)®Pr(n+1)=0. (4.3)
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Figure 4.3. The conformal transformation w = 22 maps the upper half-plane onto the full
plane with a cut along the positive real axis.

In lines 1 and L one has to replace J; by (—1)2F1J;. h(n) is the transverse field at site n
and J(n) the coupling between sites n and n + 1 as shown in figure 4.2(b).

With €2 = 4sin?(k/2) and using the Ansatz

(1) =—A, P(n)=(-1)"(Be™ +Ce™) (n=2,L/2),
Op(L/2+1)= (=1)!*D,  ®y(n) = (-1)" (Ee*™+Fe ™) (n=L/2+1,L), (4.4)

equation (4.2) becomes a linear system of six equations for the amplitudes A to F. The

characteristic equation gives the allowed values of k in each () sector.

In the limit of large systems (continuum limit, 1/L — 0), with ¢, = k = «/L, one can
expand the characteristic equation in powers of 1/L. To leading order, O (L~?), is found

to be

cosa = [Kl - (=1 @}2 _ [1 +(=1)¢ “1“2]2
(k1 — (1)@ ko)” + [1 4 (=1)@ Kyko]”
ki = h;]hQ (i=1,2), (4.5)

where k; is an effective bond interaction. This can be rewritten as

o k1 — (—1)9 Ky o m
cot <§> =1y (—(1)19)51/@-2 = tan (5 N 5) ‘ (46)
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By introducing the angle §; = arctan(1/k;) (i = 1,2) one gets the relation

o <g B E) | tanf — (—1)9 tan6,
2 2/ T 14 (=1)9 tan6, tanb,
= *tan [t — (—1)96,] . (4.7)

Thus the fermionic excitation energies take the form [157,159]

_271'

Q) =T (124 8g+7),  Q=0,1, (18)
where r is an integer and
6, — 6 0, + 6
AOI ! 2 5 Alzl— 11_2. (49)

One gets the magnetization exponent from the gap-exponent relation [168]

L
x93 = —(FE, — Ey), 4.10
= o (B, — Fo) (4.10)
where Ey = Ey(0) is the ground-state energy of H in equation (4.2 which belongs to the
even sector of the fermionic Hamiltonian whereas F,, which is the first excited state of H,
belongs to the odd sector. These two states belong to different sectors, so the gap involves

the difference AFE between the ground-state energies in the two sectors and is given by
Eo — EO = AE + 60(1) = E()(l) — E()(O) + 60(1) 3 (411)

with [157]
2

AFE
L

B (A2 - Ag)} el =1/2— A (4.12)

A simple expression for the local magnetization exponent is obtained by collecting the

above results:

2 1 1
T12 = —; arctan (—) arctan (—) = /1125 . (4.13)
T

R1 Ro

This result can be proven for the “composite defect” shown in figure 4.3(b) where x; = 0
(cut on the positive u-axis) and ks = 1 (no perturbation around the negative wu-axis).
Then z; is the free surface exponent z,,s = 1/2, x5 the bulk exponent x,, = 1/8 and from

w/m

equation (4.13) one gets x15 = 1/4. Now the conformal transformation w = 2*/7 is applied
to the critical upper half-plane of figure 4.3(a). The result of the conformal transformation
is a corner with opening angle w and corner exponents are related to the surface exponents
via T, = Trys/w [171,172]. If w = 27, the transformed system is the full plane with a cut

(see figure 4.3(b) ) so that x15 = x,5/2 = 1/4.

The gap giving the local energy density exponent is E. — Fy, where F. is the lowest

eigenstate of H with two fermions. Both states contains even fermions so that, according
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to equation (4.8), the local energy exponent, given by

L L . _

(B~ Bo) = o [ (0) + 6 (0)] = 1, (4.14)
keeps its unperturbed value. It is necessary to keep a truly marginal behavior for the local
magnetization when the defect strength is modified. Otherwise the criterion of marginality

would no longer be satisfied.

4.2 Scaling behavior in imaginary time

In this short section the result obtained for the imaginary time scaling ¢ = 7 of critical
systems are summarized and stated in a form, that the real-time continuation become
straightforward.

The parameters of the defect are different for 7 < 0 and for 7 > 0. The magnetization

has the following finite-size scaling behavior along the defect line:

mg(r,L) = L™ mi(t/L), i=1(2), 7<0(>0). (4.15)

According to exact calculations, which can be found in the next subsection, the local scaling

exponent x; is a function of the following combination of the defect parameters

Ji
= . 4.16
" haha (418)
and it is given by
2 1
= arctan? (/i_z) . (4.17)

The scaling function m}(z) = const for |z| > 1, i.e., for |7| > L and for |z| < 1 it behaves

as a power law m)(z) ~ |z|“. The value of the exponent w; depends on the scaling behavior
of the local magnetization in the region 7 < L, where the two different semiinfinite defect
lines are connected. In the junction point the local critical behavior is influenced by both

defects and the scaling of the magnetization in the asymptotic limit is:
mq(T < L, L) ~ L712 (4.18)

where 15 is the composite defect (generalized corner) exponent.

Since both scaling equations (4.15) and (4.18) are true for the system, the w; exponent
has to be x15 — x;. Using the previous result one gets for the magnetization profile in the
0 < 7 < L limit:

ma(7) ~ 77272 0< 17 < L. (4.19)

At the end of this section some special cases are treated. The scaling behavior of the
magnetization is the same on both sides of the defect, which is not trivial due to the
(possible) asymmetry. An other interesting property of the magnetization is obtained if

fixed-spin initial condition is realized either with hy; = 0 (j = 1 and/or 2) or with J; = oo,
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leading to k1 = co. With this initial condition, according to equation (4.17), 1 = x12 = 0,

so that equation (4.19) simplifies to
mP ()~ 0<7< L (4.20)
p : :

The protocol where two half-chains, initially disconnected, are connected by a bulk coupling
for 7 > 0 is a special case of the general local quench investigated here, and due to
it’s simplicity it is worth to investigate this special case. The scaling dimensions of the
magnetization are denoted by x,, and x,,,, in the bulk and at a free surface, respectively.
Initially k; = 0 and z7 = x,,s = 1/2 whereas ky = 1 and xy = x,, = 1/8 for 7 > 0. In this

special case the scaling of the magnetization is
méfb)(T) ~78 0<r< L. (4.21)

Here the (fb) superscript refers to the free boundary (surface).

4.3 Scaling behavior in real time

For the scaling behavior of the magnetization in real time, some results have been obtained
in special cases, when the final state is the homogeneous bulk one (k2 = 1), and the initial
state is also special, the spin at the defect is fixed (k1 = 00) or the chains are disconnected
(free) (k1 = 0). There is CFT-result [142] for the fixed spin initial condition.

miP ) ~ 7% 0<t< L. (4.22)

This result have been tested by numerical simulations on the TIC [94]. The time depend-
ence of the local magnetization is periodic in a finite system of length L. In an open chain

the result of [94] are described by the following sinusoidal form:
¢ —2Tm
miP (¢, L) ~ [L sin <nz)} . 0<t<lL, (4.23)

which transforms to equation (4.22) for ¢ < L. For the case, when the two half chains are

disconnected, the results of [94] can be summarized as:

£\ V4
m{P(t, L) ~ L7/ [L sin <7rz>] , 0<t<L. (4.24)
In the limit of short times the previous formula takes the following shape:
mi? (1) ~ mo(L)tY4, 0<t< L, (4.25)

where mg(L) ~ L~®ms is the equilibrium value of the defect magnetization in the initial
state.

The time exponent in equation (4.25) is 1/4 = 2(x,s/2 — x,,) where the z9 = z,, and
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T1a = Tpms/2 exponents of the protocol (k1 = 0 to k3 = 1) are in evidence.

For fixed spin initial state (equation (4.22)) the same form applies with x5 = 0.

If t? is substituted for 7 the scaling equations in imaginary time (equations (4.20) and
(4.21)) and real time (equations (4.22) and (4.25) ) become equivalent.

Thus one can wrote for the general behavior of the real time magnetization (in the

asymptotic limit of large systems L > 1) :
ma(t) ~ mo(L) t?@127%) 0 <t < L, (4.26)

with mg(L) ~ L=, In a finite-size system periodic behavior is expected in the form:

" 2(1‘12—3)2)
mg(t, L)~ L™ [L sin (Wz)] , 0<t<L. (4.27)

The above two equations are the main results of this chapter. At this point these formulas

are conjectures and will be tested by large-scale numerical simulations in the next sections.

4.4 Numerical investigations

4.4.1 Technical details

In the numerical calculations the techniques presented in the Appendix A and in chapter
B.1 are used. The TIC is expressed in terms of free fermions, (Appendix A) and the
magnetization is calculated as a Pfaffian (described in section B.1). From technical point
of view the process requires the numerical diagonalization of 2L x 2L matrices with the
real time ¢ entering as a parameter in the calculation.

In the calculations the maximum of the system sizes was L = 4096, in the general case
the largest system size was L = 512.

From the equation (4.27) one can obtain the finite size values of the defect exponents.

I calculated the defect magnetization in a system of size L at times ¢ = L/2 and
t =3L/4 and in a system of size L/2 at time t = L/4.

I investigated the ratios !

ML) = malt = L/2,L)/ma(t = L/4,L}2).
P(L) = ma(t = L/2,L)/ma(t = 3L/4,L). (4.28)

With these ratios one gets the nest combinations of exponents

Inr(L)
In2

= Oé(L) — —x1 + 2(1’12 — LL’Q) s (429)

!The value of the defect magnetization in equation (4.27) should be equal at t = L/4 and t = 3L /4 due
to the sine in equation (4.27). However in a finite system, at L/4 there are oscillations around the leading
behavior which are often not negligible, see next section.
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Figure 4.4. (a) Double logarithmic plot of the time evolution of the defect magnetization
in a finite system of length L = 1024 after a quench from an ordered defect initial state.
The values of ko in the final state vary between 1.6 and 0.4, in steps of 0.2, from top to
bottom. The dashed lines show the prediction of equation (4.26). The amplitude of the
initial oscillations is increasing with decreasing ry. (The oscillations decay with time.) (b)
The decay exponents in a system of length L = 512 are shown by circles for different values
of ko in a double logarithmic scale. The error of the estimate is smaller than the size of
the symbols. The theoretical prediction 2x4(k2) is shown by the line.

and
2In7'(L)

In2

The equation (4.29) does not depend on the exact functional form of time evolution in finite

= OCI(L) — 2(I12 — Ig) . (430)

systems (does not depend on the sine in (4.27) it is the consequence of the asymptotic
behavior (4.26) ). The functional form of the relaxation in finite systems (the sine in
equation (4.27) ) can be checked using (4.30), this equation is true only if the functional
form in (4.27) is correct. I tested (4.29) and (4.30) in chains up to L = 4096.

4.4.2 Ordered defect in the initial state

The initially ordered defect site is reached with xk; = co. In this case the exponents x; = 0
and x5 = 0 are zero. Since the other two exponents are zero, only x5 remains in the scaling
relation of the magnetization (4.26).

I used in the numerical calculations hy; = h1o = 0 and J; = 1 which corresponds to an
ordered defect in the initial state (k1 = oo). The final state of the quench is parametrized
by hoy = hgs = 1 and J, = Kky. The time dependence of the magnetization is shown in
figure 4.4(a), for various ks values.

If the quench ends with homogeneous chain, ky = 1 (middle curve in figure 4.4(a)),
the relaxation of the magnetization behaves as the conformal result: mffr) (t) ~ t71/%] see
equation (4.22). This has been checked before in [94]. If the coupling at the defect is
larger than the bulk value, k5 > 1, the decay becomes slower and slower. The exponent
of the decay (2z5 ) is in good agreement with the prediction of equation (4.26). If the
after quench defect coupling is weaker than the bulk coupling, k5 < 1 there is a decaying

oscillatory modulation on the prediction of equation equation (4.26). The amplitude of
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Figure 4.5. Scaling plot of the defect magnetization. The system sizes range from 64 to
512. The quench starts from an initially ordered defect (a) to ks = v/2 — 1 and (b) to
Ko = v/2+ 1. In the two insets, p is the ratio of the numerical result for L = 512 to the
analytical prediction in equation (4.27). The effect of the oscillations can be seen in the
insets when t/L is close to 0 or 1.

I{QZ\/§—|-1 H2:1 /432:\/5—1
L a(L) o/ (L) a(L) o/ (L) a(L) o/ (L)
128 -0.06208 -0.06243 | -0.25305 -0.25758 | -0.55512 -0.65624
256 -0.06235 -0.06293 | -0.25224 -0.25308 | -0.57922 -0.62445
512 -0.06266 -0.06267 | -0.25118 -0.25072 | -0.60196 -0.54546
1024 -0.06258 -0.06247 | -0.25008 -0.25056 | -0.54929 -0.57194
2048 -0.06248 -0.06254 | -0.25015 -0.25027 | -0.56824 -0.56046
4096 -0.06251 -0.06250 | -0.25006 -0.25013 | -0.56219 -0.56107
Conjecture | -0.0625  -0.0625 -0.25 -0.25 -0.5625  -0.5625

Table 4.1. Finite-size estimates of the relaxation exponent at the defect as defined in
equations (4.29) and (4.30) after a quench from an ordered defect to different values of k.
In the last line the conjectured exact results are given.

the oscillations increase with decreasing xo. For short time, and small enough x5 the local
magnetization may change sign. In this oscillating regime it would be difficult to directly
obtain the decay exponents from a log-log plot. To obtain the exponents, we have measured
the series of minimum [, (¢;)] and maximum values [mq.(t;)] of the oscillations.

The average of the neighboring maximum and minimum M., (t;) = [Monaz (t:)+Mmin (t:)] /2
is expected to represent an effective (non-oscillating) decay. I used this series to obtain the
decay exponents. !

The
estimated exponent values are in good agreement with the prediction of equations (4.26)
and (4.17).

The time dependence of the oscillation amplitudes, Am(t;) = Myaz(ti) — Momin(t;) was

The a

exponent has weak ko dependence, at least for small values of k5. To investigate the origin

The estimated decay exponent is shown in figure 4.4(b) as a function of k.

also studied. The decay follows a power law, Am(t) ~ ¢t~ where a = 1.6(2).

of these oscillations let us consider the quench to two uncoupled half chains, i.e., to ks = 0.

With these parameters the quench is equivalent with the decay of the surface magnetization

I Alternatively one may have to consider so long systems, where the oscillations decay in ¢ < L times.
For small ko this requires too long systems.
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starting from a fixed surface spin. With the notation of [14] (equation (4.8)) one gets for
the magnetization at the defect: mﬁfr) (t) = Pia(t). (Here Py y(t) is a coefficient in the
time evolution of the Majorana operators. See details in Appendix A.) This value can be

calculated in the critical point exactly [14]. In the thermodynamic limit the result is

2t) 732
mglﬂ(t) = Jl(t ) o~ NG cos (275 - z’ﬂ) , ke=0, (4.31)

the second equation holds for ¢t — oco. Here Ji(x) is the Bessel function of the first kind.

In the second part of the equation the asymptotic behavior of the Bessel function (at large
t) was used. The surface magnetization for ko = 0 shows a purely oscillating behavior, the
amplitude of the oscillations decays with an exponent a = 3/2.

The a = 3/2 value for the limiting case ko = 0, is in correspondence with the numerical
estimates calculated for small ks values. The numerical investigations for ko, > 0 and the
exact calculations for the limiting case ko = 0 suggest, that the time dependence can be
described as a sum of two terms.

Namely, there is a power law decay, corresponding to equation (4.26) and it is the
dominant term for positive ko values. There is an oscillating correction to (4.26), which
is usually much smaller than the mean term, but become relevant if ko < 1. Thus the

following form is expected:
miP () ~ A(kg)t72520%2) 1 B(ky)t ™% cos(2t + ) . (4.32)

Here a ~ 1.5 and the prefactors, A(ks) and B(kz) are even functions of ks due to symmetry.
For small k9 we have A(ks) ~ k3 and B(kg) =~ 1/4/7 — br3. Let’s investigate the finite-
size behavior of the defect magnetization. According to (4.27) the defect magnetization
is periodic function of the time, with period L. 2. This behavior can be explained in the
framework of the semiclassical approach. In the semiclassical description one considers
quasi-particles, which move ballistically in the chain, and reflected at the free ends. Figure
4.5(a) shows the scaled magnetization L2x2m&+) as a function of t/L for ky = /2 — 1.
Figure 4.5(a) shows the same quantity for sy = v/2 + 1.

If the after quench defect coupling (k2) is small, there are strong oscillations for short
times (f/L < 1), in agreement with equation (4.32). There is a good data collapse, in
agreement with 4.27 if ¢/L and « is not too small.

This is shown in the insets of figure (4.5) in which the ratio p of the numerical results
for L = 512 and the analytical conjecture in (4.27) is shown as a function of ¢t/L. For the
latter the prefactor is fixed in order to have a ratio p =1 at t = L/2.

With the equations (4.29) and (4.30) finite-size estimates for the defect exponent o
has been obtained. The finite-size exponents listed in table 4.1 converge quite fast to the
expected values, this verifies equation (4.26), and means that the sine in equation (4.27)
is probably exact.

For the smallest value of ko, v/2 — 1, there are strong oscillations, so the data are

2For t > L the absolute value of the sine has to be taken in equation (4.27).
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Figure 4.6. Time dependence of the defect magnetization on a log-log plot. The length
of the chain is L = 512. The strength of the defect changes from (a) x; = 0 and (b)
k1 = V2 — 1 to different values of ky during the local quench. The analytical result in
equation (4.26) is indicated by the dashed lines. Note that in both figures there are two
quenches with the same decay exponent.

non-monotonic in L.

4.4.3 Non-ordered defect in the initial state

For initially non-ordered defects the parameters hy; = hio = 1 and J; = k1 were used in the
initial state and the quench is performed to the final state with parameters ho; = hoy = 1
and Jy = ko.

I have chosen the values of %, and ky from the set {0, tan(7/8) = v/2—1,1,1/ tan(7/8) =
V2 41}

Whit this choice defect exponents are rational numbers {1/2,9/32,1/8,1/32}, and the
same is true for the composite defect exponents.

The time dependence of the defect magnetization can be seen in log—-log plots for dif-
ferent values of the initial and final defect couplings with x; = 0 and /2 — 1 in figure 4.6,
#1 = 1 and v/2 + 1 in figure 4.7. The values of k, are the remaining ones in the set given
above.

The curves have a linear scaling behavior and the slope is in good agreement with
the analytical expression in (4.26). The short-time behavior is more or less oscillating,

depending on the relative strength of the defect, before and after the quench.
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Figure 4.7. As in figure 4.6, for (a) x; = 1 and (b) x; = V2 + 1.

In order to check the scaling prediction and the functional form given in equation
(4.27) we studied the finite-size behavior of the defect magnetization. The scaled defect
magnetization mg(t, L) L*1~2#12722) can be seen in figure 4.8 for k; = 0 and for two values
of k. For the smaller value of the coupling ks = v/2 — 1 the data collapse is excellent
(figure 4.8(a)). For kg = /2 4 1 (figure 4.8(b)) the collapse is not so perfect due to
oscillations. The amplitude of these oscillations decrease with the system size. The overall
trend confirms the conjectured result in equation (4.27). The insets shows the ratio p of
the numerical results for L = 512 to the analytical conjecture in (4.27). The amplitude of
the latter is chosen so that p = 1 at ¢t = L/2. These figures also validate the conjectured
result of equation (4.27).

With the relations (4.29) and (4.30) quantitative estimates of the defect exponents have
been calculated for finite sizes up to L = 4096.

The obtained estimates of the exponents for k; = v/2 — 1 and different values of x, are
shown in table 4.2.

For each combination of k1 and ks the effective exponents converge to the conjectured
values.

At the largest size the finite-size estimate for a(L) agrees with the conjectured value
up to four or five digits except when ko is small. For small x5 the defect magnetization
shows strong oscillations (see equation (4.32)).

There is very good, although somewhat less accurate correspondence between the es-

timates for the exponent o/(L) and the conjectured values. This shows that the conjecture
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Scaling plot of the defect magnetization. The local quench goes from the

initial state with #; = 0 to a final state with (a) k3 = v/2 — 1 and (b) xy = v/2 4+ 1. The
ratio p of the numerical result for L = 512 to the analytical conjecture in equation (4.27)
is plotted in the inset.

Figure 4.9.

0.512 0.64

0.4096

Log—log plot of the time dependence of the defect magnetization in a chain

of length L = 256 with a more complex defect structure after the quench. In the initial
state J; = 1+ \/§, hiy = hig = 1 thus k1 = 1 + V2 and 27 = 1/32. In the final state
Jo =1, ho1 = \/q, hoo = 1/,/q thus ka(q) = 1, x5 = 1/8 and x5 = 1/16. The slopes for
the different values of ¢ are in good agreement with the expected one, 2(z12 — 22) = —1/8

(dashed line).

about the finite-size scaling form in equation (4.27) is most probably exact. The deviations

between the conjectured analytical formula and the numerical results came form oscilla-
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5220 52:1 KZQI\/§+1
L a(L) o (L) a(L) o/ (L) a(L) o' (L)
128 -0.52609 -0.23745 | -0.15460 -0.12094 | -0.15554 0.13977
256 -0.52870 -0.24379 | -0.15547 -0.12299 | -0.15528 0.12397
512 -0.52970 -0.24679 | -0.15586 -0.12399 | -0.15584 0.12133
1024 -0.53061 -0.24839 | -0.15606 -0.12449 | -0.15607 0.12086
2048 -0.53093 -0.24923 | -0.15616 -0.12474 | -0.15617 0.12476
4096 -0.53109 -0.24962 | -0.15620 -0.12487 | -0.15620 0.12446
Conjecture | -0.53125 -0.25 -0.15625  -0.125 | -0.15625  0.125
Table 4.2. Finite-size estimates of the relaxation exponent at the defect as defined in

equations (4.29) and (4.30) after a quench from x; = v/2 — 1 to different values of x5. The
conjectured exact results are given in the last line.

tions which are results of the discrete lattice spacing. The conformal results are connected
to the continuous limit of the model, therefore the conformal results are not expected to

describe the aforementioned oscillations.

4.5 Discussion

In this chapter the evolution of the local magnetization was studied in the transverse field
Ising chain (TIC) after a quench, when parameters at a defect are suddenly modified. At
short time, the defect magnetization follows a power-law behavior. This behavior is closely
related to the local static critical behavior at a composite line defect in the 2d classical
Ising model, which corresponds to the imaginary time version of our problem.

The composite defect exponents have been exactly calculated making use of conformal
invariance [171,172]. The local magnetic exponents are continuously varying with the
parameters of the composite defect (i.e., their values before and after the quench in real
time) because the perturbation is marginal .

In finite chains the defect magnetization is found to be a periodic function of time and
its asymptotic functional form has been conjectured based on the results of [94] an my
numerical data.

I have checked numerically (see figure 4.9 for an illustration) that details of the local
defect structure (asymmetry in the transverse fields, etc.) are indeed irrelevant and that
only the values of k; and ko matter in this respect. The defect exponents x; and x5, as
well as the composite defect exponent 15, are functions of the defect parameters x; and
Ko, as given in equation (4.16). I compared the analytical expressions for ¢ < L, as well
as for t/L = O(1) with the results of large-scale numerical calculations and an excellent
agreement has been found.

This chapter is based on the following article:
F. Igléi, G. Rodsz, L. Turban FEvolution of the magnetization after a local quench in the
critical transverse-field Ising chain J. Stat. Mech. (2014) P03023

In this article my contributions are the numerical simulations.



Chapter 5

Quench dynamics of the Ising

quantum quasi-crystal

5.1 The model

We investigate the quantum Finonacci Ising quasi-crystal, which has been defined in Section
2.2

L-1 L
1 xr T z

The length of the system L is a Fibonacci number, L = F,,. (F} =1, F, =1, F,;, =
F,+ F,1)

The couplings, J;, are site dependent, and parameterized as J; = Jrfi. Here 0 < r <1
is the amplitude of the inhomogeneity, » = 1 correspond to the homogeneous system, the
smaller r correspond to the stronger inhomogeneity. The f; numbers are integers taken

[i—H

£1] where [z] denotes

the integer part of #, and w = (v/5 + 1)/2. The interaction J in (2.18) is chosen to be

J =r~P where p is the fraction of units 1 in a very long (infinite) sequence, calculated in

from the Fibonacci sequence defined in section 2.2 f; =1+ [ } —

section 2.2. With this choice of J the critical point of the system remains h = h, = 1.

5.2 Entanglement entropy

For a chain of total length F}, with periodic boundary conditions, the entanglement entropy
Sy between a block of length ¢ = F,,_5 and its environment which has a length of F,_;
has been calculated. We investigated various values of 0 < r < 1 for the inhomogeneity
amplitude. The numerical calculations have been started from the fully ordered state with
ho = 0 to a state with A > 0 both in the ordered and in the disordered phases, as well as
at the critical point. The numerical results for S;(t) —S;(0) are shown in figure 5.1. For all
cases mentioned, Sy(t) exhibits two time-regimes: in the late-time regime, the entropy is
oscillating around an L dependent value, for short times, it increases with time according

to a power-law:

S(t) ~t7, (5.2)

45
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Figure 5.1. Dynamical entropy after a quench from hg = 0 to various values of h at the
aperiodicity parameters (a) r = 0.75, (b) r = 0.5 and (c) r = 0.25. The solid lines are the
results for L = Fjg = 987, and the dashed lines (only at h = 0.25, h = 0.5 and h = 0.75)
correspond to the data for L = Fj; = 1597. The "noise” (irregular variation) present on
the curves in the small ¢ regime is due to such low-energy excitations, which are related to
local properties of the quasi-periodic chain and are independent of the chain lengths.

with some exponent ¢ < 1, this sort time regime is the linear part in figure 5.1, where
the logarithm of the entropy is shown as the function of the logarithm of the time. The
numerical results show, that o depends on the after quench magnetic field h, and does not
depend significantly on the initial magnetic field hy. The (fitted) values of o for r = 0.25,
0.5 and 0.75 are shown in figure 5.6. For the investigated cases, o reaches it’s maximum
when the quench ends in the critical point (h = 1). The o exponent depends on the
inhomogeneity: The greater inhomogeneity (smaller 7) results in slower dynamics (smaller

o).

A characteristic fingerprint of the quasi-periodicity has been seen here: the power
law time dependence of the entanglement entropy. In the disordered systems the time
evolution is much slower (there is localization, or extra slow evolution in loglogt¢ form).
In the homogeneous systems the entanglement entropy usually grows linearly in time,
which is faster than the power law of the quasi-periodic systems. The power-law growth
of the entanglement entropy can understood in the frame of the semiclassical theory, if
one suppose that the quasi-particles moves with an anomalous diffusion. The width of a
wave grows with  ~ t” where the diffusion exponent is 0 < D < 1. The semiclassical

interpretation will be discussed in section 5.4.
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Figure 5.2. Schematic illustration of the light cones of quasi-particles for a homogeneous
quantum Ising chain (a) and for a chain with an aperiodic modulation of the couplings (the
thin/thick lines between sites represent weak/strong couplings according to a Fibonacci
sequence) (b). The quasi-particle excitations emitted at time ¢ = 0 move ballistically in
the homogeneous lattice, while their motion is anomalous diffusive with z ~ t? (D < 1)
in the quasi-periodic lattice. Pairs of quasi-particles moving to the left or right from a
given point are entangled; they will contribute to the entanglement entropy between a
region A (the region with orange sites) and the rest of the chain, region B, if they arrive
simultaneously in A and B.

5.3 Local magnetization

We calculated the local magnetization my(t) in open chains of length L = F},. The mag-
netization was calculated at site [ = F},_;', we refer this value as bulk magnetization, and
denote it with my(t). The surface magnetization m,(¢) was also studied, and some exact

results were obtained.

We are interested in the asymptotic behavior of the surface magnetization for long
time after the quench. When the quench ends in the ordered phase, h < 1, the lowest
excitation energy is €; ~ 0 (i.e. cos(e;t) = 1). As a consequence P o,—1(t) in (A.43) has
a time independent part. The non-oscillating part of the surface magnetization is defined

as: my = limy_o % fot mq(t")dt’. The stationary value is:

my = @y (1) Z¢>1<j>¢>§0><j> . (5.3)

Jj=1

Here CIDgO) (7) is one of the coefficients used in the diagonalization of the pre-quench Hamilto-

nian, q)](co) (7) was mentioned in equation (2.3) and defined in detail in Appendix A. The

() coefficients corresponds to the diagonalization of the after-quench Hamiltonian. The
ground state surface magnetization is my(h,t = 0) = ®;(1) [117,118], it is finite for h < 1

and zero in the paramagnetic phase. The @go)(l) factor shows a similar behavior: it is

With this special choice, one can minimize the finite size effects: The selected spin has similar neigh-
borhood in the chains of different lengths.
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Figure 5.3. Double logarithm of the bulk magnetization as a function of the logarithm of
the time. During the quench the transverse field is changed from hy = 0 to different values
of h at the aperiodicity parameter r = 0.75 (panel (a)), 7 = 0.5 (panel (b)), r = 0.25
(panel (c)). The length of the chain is L = Fi7 = 1597 and the magnetization is considered
at site | = Fig = 987. In panel (d) In|my(t)| is shown as a function of ¢ in the window
50 < t < 100 for different values of h at r = 0.5. The oscillations in In [my,(¢)| (i.e. in the
prefactor A(t)) occur when h is larger than a certain value h* (here h* =~ 0.85), and the
oscillations disappear for h < h*; the dynamical phase transition described in the main
text occurs at h*.

non-zero for hy < 1, and zero for hy > 1. Consequently, the stationary surface magnetiza-

tion is non-zero if hy < 1 and h < 0. If the quench starts from hy = 0, <I>§O) (j) = 61, and
2.

1 = ®2(1) so one obtains
mii(h) = [ma(h,t = 0)]*, (5:4)

The above expression gives an exact connection between the asymptotic value of the surface
magnetization and the ground state value of the surface magnetization. The (5.4) equation
gives a direct connection between the critical exponent ¢ of the non-equilibrium surface
magnetization and the critical exponent s of the equilibrium surface magnetization 3¢ =
203s. According to (5.4) and [173], for the Fibonacci chain close to the critical point h —
h. =1, one has my(h) ~ 1 — h? = (h. — h)(he + h) ~ h. — h, thus ¢ = 1.

The time dependence of the bulk magnetization have been numerically calculated for
quenches starting from Ay = 0, and ending at various h values. For inhomogeneity values

r = 0.25, 0.5, 0.75, the double logarithm of |my(t)| are shown in figure 5.3(a-c) as func-

2The (5.4) equation holds for transverse field Ising chains with any type of inhomogeneity.
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Figure 5.4. Position of the dynamical critical point for different values of the aperiodicity
parameter in a double-logarithmic plot. The straight line has a slope a = 0.24.

tions of Int¢. Investigating the figures 5.2(a-c) one obtains a linear dependence between
In |In|my(¢)|| and In¢, which means, that the local magnetization decreases as a stretched

exponential function of time:

mp(t) ~ A(t)exp (—Ct") . (5.5)

The bulk magnetization decays exponentially in the homogeneous system, so for zero
inhomogeneity (r =1) p = 1.
There is a dynamical phase transition in the homogeneous case: If the quench ends in the
ferromagnetic phase (h < 1), the magnetization remains positive for all times, however,
if the quench ends in the paramagnetic phase (h > 1), the magnetization oscillate. One
would expect, that there is a similar phase transition in the Finonacci Ising chain, and
indeed, the A(t) prefactor shows a dynamical phase transition, however the transition
point depends on the strength of the inhomogeneity, on r. For small enough after quench
magnetic fields, the magnetization remains positive, if the magnetic field is larger than
a value h(r), the magnetization decreases with oscillations. In the oscillating phase one
can define a characteristic time, t,e(h, ), as the average period of A(t). This time scale
( tper(h,7)) diverges if h — h(r)*. This behavior is shown in figure 5.2, panel (d) in
this figure In [my(t)] is plotted as a function of ¢. The curves for h = 0.86,1.0 and 1.25
oscillate, but the oscillations vanish for h = 0.81 and for h = 0.84. The transition point
is identified as h* = 0.850(5). In the quasi-periodic Finonacci Ising chain the dynamical
phase transition point is different from the static phase transition point. (The latter is
1.) The dynamical phase transition point, h(r), is smaller than the static phase transition

point: h(r) < 1. The measured values of h(r) can be approximated with a power law of r:
h*(r) ~r® (5.6)

where the fitted value of a is @ = 0.24(3) (see figure 5.4). This power law can be understood
by investigating the local neighborhood of the measured spin. One doesn’t expect oscilla-

tions if the chain is locally ferromagnetic. In the case of a weakly coupled spin with one
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Figure 5.5. Double-logarithmic plot of time-dependent width of the wave-packet at different
values of h for r = 0.75 (panel (a)), » = 0.5 (panel (b)), r = 0.25 (panel (c)).

strong (J;) and one weak (.J,,) bond, the chain is locally ferromagnetic if In A < In J,+1In J,,.
It gives for the dynamical transition point h* = r2/“~1. The fitted o = 0.24(3) exponent
coincides with 2/w — 1 &~ 0.236.

The exponent p describing the decay of the local magnetization dependents both on
h and r, but it does not vary significantly with hg, at least for hg < h. Our results for
the critical exponents p = p(h,r) are shown in figure 5.6 for » = 0.75, 0.5 and 0.25 as

functions of h. The exponent p is maximal at the dynamical phase transition point h*(r).

5.4 Interpretation by wave packet dynamics

The behavior of the entanglement entropy and the local magnetization after quantum
quenches has been successfully described with a semiclassical approach in previous studies.
The semiclassical theory will be modified in this chapter to describe the dynamics of quasi-
crystals. To do so, the quasi-particles will be described as wave packets, using the method
of [87,174].

We construct a wave packet connecting sites k and [ at time ¢ in the form (see the
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”Propagator” section):

G(l, k1) = {0]ex(t)c] (0)|0) = Z{COS(G#) (@4 (D)0 (k) + Wq(1) Py (k)]

q

— 1sin(egt) [<I>q(l)\llq(k) + <I)q(k)\Ifq(l)} }, (5.7)

N[ —=

which is localized at ¢ = 0 since G(I, k,0) = 9 -

The width of the wave packet starting from site k after time ¢ is defined as:

N

d(k,t) = [Z(k —D?G(1, k,t)|2] . (5.8)
!
Since the spectrum of the Finonacci Ising chain is singular continuous, there are multiple
energy scales Ae ~ L~ with multiple exponents (). The wave packet in an aperiodic
chain is expected to follow an anomalous diffusion d(k,t) ~ t?*) . The diffusion exponent
D(k) may depend on the initial position k. The D(k) exponent will extracted from numer-
ical data. A global quench create quasi-particles at every lattice site, so we can measure
the average of d(k,t):

d(t) = d(k,t) ~ tP . (5.9)

In the numerical calculations chains of length L = F}; = 1597 with periodic boundary
condition were used. The homogeneous (r = 1) case was checked, and ballistic spreading
(D = 1) was found, as it was expected. In the quasi-periodic chains anomalous diffusion
was found (D < 1), which is seen in Figure 5.5. In Figure 5.5 the initially-position-averaged
wave packet widths are plotted, as functions of time, in a double logarithmic plot. The
diffusion exponent D is extracted from the fit to the linear part of the figures.

The variation of the exponents D, o (entanglement entropy) and p (local magnetization)
with h at a fixed r is shown in Figure 5.6, In figure 5.6 it can bee seen, that the exponents
are close to each other in the non-oscillatory phase (h < h*(r)), and there are significant
difference between them in the oscillatory phase (h > h*(r)).

In the homogeneous transverse Ising chain, the dynamic of the entanglement entropy
and the magnetization can be described with ballistically moving quasi-particles. In the
non-oscillatory phase, one can qualitatively describe the dynamic of the entanglement
entropy and the magnetization by considering quasi-particles which move with anomalous

diffusion rather than constant speed.

5.5 Discussion

In this chapter we have studied the non-equilibrium dynamics of quasi-periodic quantum
[sing chains after a global quench. In a quench process, the complete spectrum of the
Hamiltonian is relevant for the time evolution of various observables. For the quasi-periodic
quantum Ising chain the spectrum is in a very special form, which is given by a Cantor

set of zero Lebesgue measure, i.e. purely singular continuous. We have calculated numer-
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ically two quantities: the dynamical entanglement entropy and the relaxation of the local
magnetization. The entanglement entropy is found to increase in time as a power-law (see
equation (5.2)), whereas the bulk magnetization decays in a stretched exponential way (see
equation (5.5)). Both behaviors can be explained in a quasi-particle picture, in which the
quasi-particles move by anomalous diffusion in the quasi-periodic lattice. The diffusion
exponent has been calculated by a wave packet approach, and good agreement has been
found with the exponents that we obtained for the entropy and for the magnetization. We
note that the anomalous dynamics found in the global quench process is similar to the
transport properties of quasi-crystals.

Relaxation of the bulk magnetization is found to present a non-equilibrium dynamical
phase transition. The non-oscillating phase, in which the magnetization is always positive,
and the oscillating phase, in which the sign of the magnetization varies periodically in time,
is separated by a dynamical phase transition point, at which the time-scale of oscillations
diverges. This singularity point, due to collective dynamical effects, is different from the
equilibrium critical point.

A similar non-equilibrium dynamical behavior is expected to hold for other quasi-
periodic or aperiodic quantum models as long as the spectrum of the Hamiltonian is also
purely singular continuous; there is a large class of such models, for example the Thue-
Morse quantum Ising chain. If, however the spectrum of the Hamiltonian of the model is
in a different type, such as the Harper potential which has extended or localized states,
the non-equilibrium dynamics is expected to be different than the case we consider in this
chapter.

This chapter is based on the following article:

F. Igloi, G. Rodsz, Y.-C. Lin Nonequilibrium quench dynamics in quantum quasicrystals
New J. Phys. 15, 023036 (2013)

In this work the numerical calcuations about the entanglemet entropy were done by Prof.
Dr. Yu-Cheng Lin. The other numerical works and the anyalisys were done by me. The

"Interpretation by wave-packet dynamics” part is common work of the authors.



Chapter 6

Quench dynamics of the Harper

model

In the previous chapters, the results about quench dynamics of the homogeneous transverse
[sing model were shortly summarized, and we presented our own results abut the Finonacci
Ising quasi-crystal.

The spectrum of the homogeneous transverse Ising model is absolute continuous, and the
dynamics can be described using ballistically moving quasi-particles. The spectrum of the
Finonacci Ising quasi-crystal is singular-continuous and the dynamics can be (qualitatively)
described by diffusing quasi-particles.

In this chapter the Harper model will be investigated. The spectrum of this model can
be absolutely continuous, singular continuous or pure point spectra, depending on the

amplitude of the magnetic field [102], thus one expects a rich behavior of quench dynamics.

6.1 Quasi periodic XX-chain

The Harper model was defined in section 2.3, and the basic properties of the model was
also summarized in that section. In this section only notations will be introduced. The

Hamilton operator of the Harper model is:

1 L L

H= 4 Z(Uiaiﬂ + 0000 ) — Zhnai : (6.1)

n=1 n=1
Here 0% Pauli-matrices at site n. Periodic boundary conditions are applied, thus o7, =
y J— y . . . . .
of and o}, = 0f, and h,, is a quasi-periodic field:

hn, = hcos(2mfn) , (6.2)

where [ = */52_1 the inverse of the golden mean. The size of the system is a Fibonacci

number F;,. The Hamiltonian can written in terms of fermion creation and annihilation
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Figure 6.1. Dynamical entanglement entropy after a quench from hy = 0 to different
values of h (left panel). Saturation values of the entanglement entropy and the limiting
value of the width of the wave packet (diffusion) in the localized phase show a power-law
divergence close to the transition point (right panel).

operators [105]:

L

L
1
H = —5 Z(C;[LC"'H + CL-}-lCn) —h Z COS(27T67’L)CILCn ) (63)
n=1

n=1

thus equation (6.3) is a tight-binding model of spinless fermions in a quasi-periodic on-site
potential.

This Hamiltonian was first investigated by Harper, who came to this problem with
h = 1 studying the motion of electrons in a square lattice subject to perpendicular magnetic
field [88]. A new set of fermion operators (1, and 7)) are introduced in order to diagonalize
the model.

L
Ng = Z ¢q,ncn ) (64)
n=1

with 25:1 ¢q,n¢q,n’ - 571,%'
H = Z €q (ngnq - 1/2> . (6.5)
q

Here the components of vectors (¢,,) and the energy modes (¢,) are given by the almost
Mathieu equation [175]:

1 1
§¢q,n—1 + hnd)q,n + §¢q,n+1 = _€q¢q,n . (6‘6>

6.2 Entanglement entropy

I calculated the entanglement entropy, S, between a block of length, ¢ = F,,_5 and the rest
of the chain (F,_; spins) using periodic boundary conditions. There are two regimes in
the variation of the entanglement entropy (as for homogeneous chains or Finonacci Ising
chain): For short times the entanglement entropy grows, for long times it oscillates around
its asymptotic value. If the quench ends in the extended phase, the entropy grows linearly

with time Sy(t) ~ «(h)t in the short-time regime, and its asymptotic value is proportional
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Figure 6.2. Prefactor of the linear part of the dynamical entanglement entropy (left axis)
and the relaxation time (right axis) after a quench from hy = 0 to different values of h.

to the length of the block S; ~ ¢. This behavior is similar to the behavior in homogeneous
systems. Fitted values of the prefactor o can be seen in figure 6.2. The « prefactor has its
maximum around A = 0.5, from h = 0 to h = 0.5 it’s increasing, from h = 0.5 to h = 1.0
it is decreasing, and it is zero at h = 1.0, signaling that the quenches ending at h = 1.0

show a different behavior.

If the quench ends in the transition point, the entanglement entropy grows with a power

function:

S(t) ~ 17, (6.7)
with an exponent o = 0.43(5), which is a fitted value see the left panel of 6.1.

If the quench ends in the localized phase (h > 1), the entanglement entropy saturates
quickly, and its asymptotic value is independent of the length of the block ¢. T have
observed, that close to the critical point S(h) diverges:

S(h) ~ (k)| ™", (6.8)

with an exponent: ¢’ = 0.50(4), see in the right panel of Figure 6.1.

The ¢’ and o exponents are not independent, the relation between them can be found
with a phenomenological scaling. If the lengths are rescaled by a factor b > 1 the entan-

glement entropy scaled as:

S(inh,t) = b°S(b/ Inh, t/b%) | (6.9)

for h > 1, where the form of the correlation length equation (2.38) was used, and the

dynamical exponent is z = 1. Taking the scale factor b = t'/* one gets

S(lnh,t) = t/*S(tY*1nh) . (6.10)
The limiting value of the scaling function in the critical point A = 1 is lim,_,« S (u) = cst,
thus 0 = s/z = s. Taking b = 1/1In(h) one can show that ¢’ = s, thus ¢ = ¢’ in agreement

with the values extracted from numerical data.
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Figure 6.3. Bulk magnetization after a quench from hy = 0 to different values of h. In the
inset quench to the critical region is shown in agreement with the stretched-exponential
form in equation (6.11) (the straight lines have a slope p = 0.47).

6.3 Local magnetization

I calculated the local magnetization m,(t) in a chain of length L = F}, at the | = F,,_oth
spin. This value will be referred to bulk magnetization and will be denoted by m(t).
Numerical results about the time dependence of the bulk magnetization after a quench from
ho = 0 to various values of h can be seen in figure 6.3. If the quench ends in the extended
phase, (0 < h < 1) the magnetization follows an exponential decay: my(t) ~ exp(—t/7),
similarly to the homogeneous system. Fitted values for the characteristic time (7(h)) are
shown in figure 6.2 (right axis): The characteristic time shows a similar behavior as the
prefactor of the linear part of the entanglement entropy.

For a critical quench (h = 1), the behavior of the magnetization is a stretched expo-
nential:

my(t) ~ A(t)exp(—Ct") . (6.11)

Here A(t) is an oscillatory function, p = 0.47(5). This is shown in the inset of figure 6.3.
If the quench ends in the localized phase, the magnetization quickly reaches an asymptotic

value, and oscillates around it.

6.4 Semiclassical interpretation

In this section a semiclassical interpretation [37,38,51,56] will be developed, similarly as

in the case of the Finonacci Ising chain.
G(n,n',t) = (Olea(t)cl, (0)|0) = cos(egt) pgnbym » (6.12)
q

in terms of the eigenvectors and eigenvalues of equation (6.6) calculated with the magnetic
filed h, i.e. after the quench. For t = 0 G(n,n’,0) = d,,,,». The width of the wave-packet
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Figure 6.4. Time-dependent width of the wave packet at different amplitudes of the
transverse field.

started from site n after time ¢ is given by (similarly to equation (5.8)):

1/2

dn,t) = |> (n=n)?G(n, 0 )| | (6.13)

n/

which is then averaged over the starting positions, thus d(t) = d(n,t).

The d(t) width has been calculated for various after quench transverse field, these results
can be seen in figure 6.4. In the extended phase, in agreement with previous results [102]
the wave packet width d(t) grows linearly, which can be interpreted as the quasi-particles
moving ballistically, i.e. with constant velocity. From this it follows, as in the homogeneous
chains [38], that the entanglement entropy grows linearly, and the magnetization decreases

exponentially.

If the quench ends in the localized phase (h > 1), the wave packet width d(t) remains
finite d(t) — d. We found, that this finite asymptotic value (d) is proportional to the
equilibrium localization length d ~ &, see in the right panel of figure 6.1.

If the quench ends at the critical point h = 1, the width of the wave packet grows with
a power function of the time: d(t) ~ tP, where D is D = 0.477(10) in correspondence with
the results of [102]. The anomalous diffusion of the quasi-particles lead to the power-law
increase of the dynamical entanglement entropy eq. (6.7), and the stretched exponential
behavior of the bulk magnetization equation (6.11). The semiclassical picture predict, that
the diffusion exponent of the wave packet D, the exponent of the entanglement entropy o,
and the exponent of the magnetization p should be equal, and indeed these tree are equal

within the errors of the numerical data.
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6.5 Discussion

In this chapter we studied the quench dynamics of the Harper model.

If the quench ends in the localized phase, the entanglement entropy grows proportional
to the time, the magnetization decreases exponentially, and the diffusion exponent of the
wave packet is close to one. The dynamics is similar to the after quench dynamics of the
homogeneous systems: The reason is that the spectrum of the Harper model is absolutely
continuous in the extended phase.

If the quench ended in the localized phase, the width of the wave packet remains finite for
long times, similarly the entanglement entropy and the magnetization also reaches a finite
limiting value. The asymptotic value of the wave packet width is proportional with the
localization length d ~ &= ﬁ For the asymptotic value of the entanglement entropy the
S ~ |In(h)|~ relation was found with ¢’ = 0.5(4).

If the quench ended at the critical point, power-law growth of the wave packet was found
d(t) ~ t°*77 in agreement with the results of [102]. The entanglement entropy grows with
a power function of the time S(t) ~ ¢t with exponent o ~ 0.43(5). The local magnetiz-

ation decrease with a stretched exponential function: my(t) ~ exp(—Ct*) with p ~ 0.47(5).

This chapter is based on the following article:
G. Ro6sz., U. Divakaran, H. Rieger, F. Igléi Non-equilibrium quantum relaxation across a
localization-delocalization transition Phys. Rev. B 90, 184202 (2014)

The numerical simulations presented in this chapter, and the quasi-classical reasoning
were done by me. The scaling about the entanglement is common work with Prof. Dr.

Heiko Rieger and Prof. Dr. Ferenc Igloi.



Chapter 7

Nearly adiabatic dynamics of the

Harper model

Here the term "nearly adiabatic“ means that a parameter of the system is varied very
slowly. If the external parameter is varied infinitely slowly, the eigenstates of the initial
Hamiltonian evolve to the eigenstates of the final Hamiltonian.

If the system crosses during the above mentioned process a second order phase transition,
the dynamics slows down (the relaxation time diverges), and the system cannot follow the
variation of the outer parameter, regardless of how slow the variation is. In consequence
defects are generated. The standard ”paradigm” to describe the generation of the defects
is the so called Kibble-Zurek scaling.

7.1 Kibble-Zurek scaling

The Kibble-Zurek scaling gives a prediction about the density of the defects, using the
critical exponents of the (crossed) transition point. The scaling is first used by Tom W. B.
Kibble who studied the structure of the early universe [58]. Later it was applied to solid
state physics by Wojciech H. Zurek [59]. Let us denote the correlation length as £ and the
correlation time as &, which are related as & ~ &%, where z is the dynamical exponent.
Let us suppose, there is a well defined moment, when the time evolution becomes non-
adiabatic. Time evolution become non-adiabatic when the variation of the instantaneous

relaxation time is faster than the typical speed of relaxation:

(change of & during & time) ~ & . (7.1)

Which is equivalent with:
&Gl ~ & = &~ 1 (7.2)
Let’s denote the external parameter with 6. The critical point is § = 0. The outer

parameter is varied linearly in time: §(t) = (¢ — twi.)/7. Here 7 is a time scale, which
characterizes the speed of the process. The nearly adiabatic (very slow) limit is: 7 > 1.
The t.;. time is the time when the system crosses the critical point. Of course, it is

basically possible to choose .. to be the zero of the time scale, however in the later part
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of this chapter another choice will be appropriate.

Using the critical scaling of the correlation length ¢ and relaxation time &, one gets:
§e ~ &~ 0() ~ ([t = taie | /7) 7 (7.3)
Using the above relationship equation (7.1) takes the form:

‘E - tcrit. ‘_(VZ+1)

7—71/2

(7.4)

1~ €t|t:f ~

Here ¢ is the time when the system loses the adiabatic behavior. The |f — terig.| time
difference is usually referenced in the literature as Kibble-Zurek time. One can calculate

the instantancous localization length at time ¢ = ¢:

17— s | ~ 77T = €~ | — toe | ~ 7T (7.5)

In the Kibble-Zurek scaling the instantancous localization length at time ¢ = ¢ is con-
sidered to be the average distance of two defects, and the excitation probability P(7) is

supposed to be proportional to the density of the defects:

_ _dv

1
P(7) ~ (density of deffects) ~ é_d ~ T TR

~

t tait

Figure 7.1. The red curve represent the diverging relaxation time. One supposes, that there
is a given moment, when the time evolution becomes non-adiabatic. The time difference

between the aforementioned moment and the crossing of the critical point is the so called
Kibble-Zurek time.

Later (after we defined the excitation probability in our calculation) we return to the
Kibble-Zurek scaling, and investigate in details what is the Kibble-Zurek prediction for the

Harper model.
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7.2 Density of defects in the adiabatic dynamics

The transverse field is varied linearly (and slowly) h = h(t) = t/7, and the defects created
during this process. I investigate the density of the created defects, as a function of the 7
time. The time evolution starts at ¢t = —oo, when the absolute value of the magnetic field
is very large, h — —o0, so the initial state is a classical product state. In the initial state
the direction of the magnetic field gives the direction of the spins: ¢Z =1 (clc, = 1) for
cos(2mfn) > 0 and o2 = —1 (clc, = 0) for cos(2rBn) < 0.

I used chains of even lengths, so in the initial state half of the spins directed in —z
direction and half of the spins directed in 4z direction, in fermionic language, the initial
state is half-filled. The time evolution of the system is driven by the time dependent
Schrodinger equation dW/dt = —iH(t)W(t), with the initial condition ¥(—o00) = Wy(—00).
The ground state of the H(¢) Hamiltonian operator at time ¢ is Wy(¢): This ground state
usually differs from the W(t) state which latter one is the result of a non-equilibrium time
evolution. We will investigate how far the two states W(¢) and Wy(t) are from each other,
and what is the connection between the difference, and the ”speed” of the variation of the
magnetic field 7. To investigate such questions one has to quantify the difference of the
two states. To do this, we will define the total excitation probability P, with the use of
the fermionic representation.

The Heisenberg equation of motion of the ¢, g(t) are linear (see in Appendix A.4 and [61]),
because the Hamiltonian in equation(6.3) is quadratic. The evolution of vectors ¢, ()

satisfy the differential equation:

ddgn
7; ¢(I7

1~ ~ 1-~
dt = §¢q,n71 + hn¢q,n + §¢q,n+1 ) (76)

with the initial condition: @q,(—00) = ¢gn(—00), where the latter are given in equation
(2.39).

The vector ¢,,(t) at t time is generally different from the vector @, (t) which corres-
ponds to the ground state of the H(t) instantaneous Hamilton operator. .

In the initial state at ¢ = —oo half of the fermionic states are occupied, these are
denoted by Q~. The other half of fermionic states, denoted by Q*, are empty. If the time
evolution would be perfectly adiabatic, all empty states would remain empty. We define

the excitation probability as:

P, :% Y pew s (7.7)

qeEQT ¢'€Q~

where p,  is called partial excitation probability and defined as:

2

(7.8)

Peq =

Z ng,n (t) ¢q’,n (t)

The excitation probability measures how many empty states become excited due to the

finite speed of the variation of the magnetic field. P, is normalized: 0 < P, < 1. If the
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dynamics would be perfectly adiabatic, the P, excitation probability would remain zero.
For a process with finite speed 7, one waits that the slover process (larger 7) implies the

smaller excitation probability F;.

locatized extended localized

Figure 7.2. Magnetic field h(t), and the instantaneous correlation length £(t) as a function
of the time during the quench. In the numerical calculations two type of quench protocols
were used: each of the start at t = —oo, the endpoints are ¢t = 0 and t = +oc.

We investigated two kinds of final states: i) the quench ends at ¢ = 0, in the middle
of the extended phase and i) t = oo, when the quench cross the full extended phase,
and goes to the localized phase on the other site. (With positive h.) In the first case the
localization-delocalization transition is crossed once (at h = —1), in the second case, the

localization-delocalization transition is crossed twice: first at h = —1, and at h = +1.

7.3 Numerical results and scaling theory

I investigated the adiabatic dynamics by numerical calculations. The time evolution was
calculated using a Runge-Kutta method with adaptive step size in time, to keep the relative
error less than 107%. I used h = £10 to approximate h — 400, and I tested that the
numerical results are stable, and do not change if I used h = £20.

Numerical results of the excitation probability as a function of the time-scale 7 can be

seen in figure 7.3. The excitation probability shows a power-law dependence in both cases:
Py(T) ~ Ay(T)T77, (7.9)

but the prefactors, A;(7) have different functional forms.

When the quench ends at ¢ = 0, and the localization-delocalization transition is crossed
only once, the prefactor shows log-periodic oscillations: Ag(7) ~ sin?(log(r/7)). This
type of log-periodic oscillations are common in quasi-periodic systems [177]. Due to the

oscillations, the exponent can be determined with some uncertainty:

k= 0.45(5) . (7.10)
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Figure 7.3. Excitation probability as a function of the time-scale, 7, after an adiabatic
process from h = —oo to h = 0 (upper panel) and to h = co (lower panel) calculated in
finite systems of sizes L = 2F,, with n = 13,14, ..., 18.

If the localization-delocalization transition is crossed twice (at h = —1 and h = 1)
the prefactor has fast oscillations in 7: A, (7) ~ sin®(7/7s + cst.) with 7o, &~ 0.15, and
a slower log-periodic oscillation is also present. The fast oscillations are analogous to the
Stiickelberg oscillations [178,179]. It is hard to obtain the exponent of the second protocol,
due to the fast oscillations, however the numerical data is compatible with the estimate
for k in equation (7.10).

Now we will build a scaling picture to interpret the measured x = 0.45 value.

First the traditional Kibble-Zurek scaling ( described in section 7.1) is used for the
Aubry-André model. In the Aubry-André model d = 1 and v = z = 1 so the prediction
of the Kibble-Zurek scaling theory is ks = 0.5, which is close to the numerical estimate,
but sightly different. The rigorous derivations of the Kibble-Zurek scaling assume trans-
lational invariance, so the Kibble-Zurek prediction is not guaranteed to be precise for an
inhomogeneous system. Here a scaling is developed specially for the Aubry-André model.
The concept of the Kibble-Zurek time scale txy = |t — tei| (7.5) is used, however, the
txz time scale is connected with a more special way to the excitation probability than in
the usual Kibble-Zurek scaling. The elementary transition probabilities p, o, calculated at
t = 0 (for the first protocol) will be investigated. The p,,-s are arranged in decreasing

order, then the first (biggest) N is summed up:

N/

> g (7.11)

qeQTq¢'cQ~

P(N,L,7) =

| o

This quantity is called partial excitation probability. (The prime on the sum denotes
that the summation involves not all terms, just the IV largest.)

I calculated the fraction of the partial excitation probability, and the full excitation
probability P(N, L,7)/Py(7), for several system sizes and decay parameters (7-s). For
large systems the P(N, L, 7) is a function of N/L?

P(N,L,7) = w(N/L*)Py(7) , (7.12)

for large enough 7.
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As it is shown on the right part of Fig.7.4 in the log-log plot w(N/L?) there is a linear
section over many decades, and for large arguments it saturates. Thus P(N, L,7)/Py(7)

can be approximated as

P(N,L,7) w
P(N,L,7) ) Py ~ (N/New)® N < Neg (7.13)
Po(7) 1, N > Neg

From the data in the right panel of Fig.7.4 we estimate w = 0.90(2). By definition of N.y:
Py(1) ~ (Negp/L*)* . (7.14)

We have to connect N.;;/L? with the time scale. To do this, we investigate the spectra of
the Aubry-André model near to the Fermi - energy. In figure 7.5 the number of eigenstates
between the Fermi level Er and E > Efp are shown in a finite chain, as function of
the F — Er difference. The number of states between Er and E > Ep are denoted by
n(E — Er). It can be seen that the eigenstates form 'branches’. These branches show a
fractal-like structure. In figure 7.5 there is a finite number of branches, since it represents
the spectra of a finite system. In an infinite system there would be an infinite number of
branches. In an infinite system there are infinite number of branches. Investigating the

position of the branches we found that
n(e) ~ EXe (715)

where X, ~ 0.5 £ 0.02. Note, that this numerical result is in agreement with the more
exact results of Wilkinson [102] about the box counting dimension. If two states (m and
n) are close enough to the Fermi level, say closer than an energy scale €, than the partial
excitation probability p,, , gives an important part of a full excitation probability. There is
n(e) states in the € neighborhood of the Fermi level Er, so the effective number of partial

excitations scales as:

Nejp/L* ~n(e)? = X (7.16)
Using equation (7.14) one gets:
Po(T) ~ (Negp/L?)Y = €% (7.17)
Using € ~ 1/txz and equation (7.5) the expression of the Kibble-Zurek time:

_ 2wrzXe

Po(T) ~ 77 vt (7.18)

Substituting the values of the various exponents (z =1, v = 1, w = 0.9, X, = 0.5 ) one
gets:
Py(r) ~ 0.45 , (7.19)

in good agreement with the numerical result.
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Figure 7.5. Number of eigenstates between the Fermi energy (Er) and EF > Ep, as
a function of the F — Ep difference. There are logarithmic scales of both axis. The
eigenstates are result of numerical calculation in a chain of length L = 2 x 6765.

7.4 Discussion

In this chapter we studied a nearly adiabatic process in the Harper model. The amplitude
of the magnetic field h(t) was varied linearly in time with a rate 1/7 and studied the
density of defects in the ground state created during this process. If the localization-
delocalization transition point is passed once the density of defects follows a power-law
dependence, ~ 77", while if two symmetrically placed transition points are passed then
the density of defects has a multiplicative oscillating correction, similar to the Stiickelberg
phase of periodically driven two-level systems. Using scaling arguments we have related x
to another critical exponents as given in equation(7.18). In this expression also the scaling
dimension w of the excitation probability enters. For homogeneous systems it is generally
expected that w = 1. In our case, when the spectrum of the Hamiltonian is not continuous
at the transition point, as well as the spectrum of the critical Hamiltonian is singular
continuous we have w < 1. It is expected that w # 1 is a general rule for quasi-periodic
and aperiodic Hamiltonians.

Finally, we discuss the question of the non-equilibrium dynamics of the Hamiltonian in
equation (2.17) for different values of the quasi-periodicity parameter 8 in equation (6.2).
If B is a rational number of the form § = 1/(2¢) with ¢ being an integer, then in the
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adiabatic process the decay exponent is given by [74] K = ¢/(¢+1). The same result holds
for 5 = p/(2q), when p is an odd integer and p and ¢ are relative primes, at least for not
too large values of q. Thus these results cannot be analytically continued to the case, when
£ is an irrational number. If  is an irrational number and different from the inverse of the
golden mean ratio studied in this paper, than the critical exponents of the non-equilibrium
dynamics are expected to be [ dependent. Some hint in favor of this assumption can
be found in the diffusion properties of the quasi-particles, see in section 6.4. Indeed the
diffusion exponent, D, is measured to be 8 dependent [102] and the same is expected to

hold for the non-equilibrium exponents ¢ and .

This chapter is based on the following article:
G. Roodsz., U. Divakaran, H. Rieger, F. Igléi Non-equilibrium quantum relazation across a
localization-delocalization transition Phys. Rev. B 90, 184202 (2014)
The numerical simulations presented in this chapter was done by me. Dr. Uma Divakaran
did stability investigations about the numerical method. The modified scaling theory

represented in the above chapter is also my work.



Chapter 8

Quench dynamics of the disordered

Ising model

8.1 Introduction

In this chapter we investigate the dynamics of the magnetization of the disordered trans-
verse field quantum Ising chain after a global quench. Concerning the functional form of
the relaxation process after a quench in random quantum systems, there have been de-
tailed studies about the time-dependence of the entanglement entropy [78-81,180]. If the
system consists of non-interacting fermions - such as the random XX-spin chain or the
critical random transverse-field Ising chain - the dynamical entanglement entropy grows

ultra slowly in time as
S(t) ~alnlnt, (8.1)

and saturates in a finite system at a value
S() ~blnt, (8.2)

where ¢ denotes the size of a block in a bipartite system and can be chosen to be pro-
portional to the size of the system L [79,180]. These scaling forms can be explained by
a strong disorder renormalization-group (SDRG) approach [103]. Recently, the SDRG
method, which was designed as a ground state approach, has been generalized to take
into account excited states [181-183]; this generalized RG method is often abbreviated
as RSRG-X [181]. By this generalized SDRG method the ratio of the prefactors in (8.1)
and (8.2) is predicted as b/a = e, where 1, = 1/2 is a critical exponent in the non-

equilibrium process and describes the relation between time-scale and length-scale as
Int ~ L¥ (8.3)

For interacting fermion models due to many-body localization the time-dependence of the
dynamical entropy is S(¢) ~ In“ ¢ with w > 1, while the saturation value follows the volume
law, S(¢) ~ ¢ [81].

We consider relaxation processes from an initial ferromagnetic state and from a fully

68



8.2. THE MODEL 69

paramagnetic state by a sudden change of the strength of the transverse field. To cir-
cumvent numerical instability as observed in previous calculations for large systems using
eigenvalue solver routines [79,180], we use multiple precision arithmetic to study the time-

evolution through direct matrix multiplications.

8.2 The model

The model was introduced in Section 2.4, and the properties of the model also summarized
there. The model we consider is the quantum Ising chain of length L defined by the

Hamiltonian:
1 L-1 1 L
H = 3 ; Jioi 0711 — 2 ;hi% 3 (84)

in terms of the Pauli matrices o;* at site i. In this Chapter I will take free boundary
conditions. The homogeneous model with the uniform coupling J; = 1 and the uniform
transverse field, h; = h, is in the disordered (ordered) phase for h>1 (ﬁ < 1), and the
quantum critical point is located at i = 1. [111] The critical point of the model is described
by a conformal field theory with a central charge ¢ = 1/2. In the random model with
quenched disorder, the J; and the h; are position dependent, and are independent random
numbers taken from uniform distributions in the intervals [0, 1] and [0, h], respectively.
The random model is in the disordered (ordered) phase for h > 1 (h < 1) and the random
quantum critical point is at h = 1.

The free fermion representation of the Hamiltonian is:

1 1
H=-— Z hz‘(C;‘rCi — 5) ~3 Z Ji(clT — ci)(cj+1 +¢iv1) (8.5)

which is a special case of equation (2.2). The usual description of the dynamics is to
transform (8.5) to diagonal form, as it can be read in Appendix A, and as it was done in
the previous chapters. This method was applied to the disordered Ising chain, and it was
found that the eigenvalue solver routine fails to converge for some samples. The root of
the problem is that nearly degenerate eigenstates occur in some samples. The difference
between the energy levels of the states is comparable with the used numerical precision.
This causes that the eigenvalue solver routine returns false eigenstates. These events cause a
significant numerical error. To avoid instabilities, we follow a sightly difference procedure,
where only matrix products are used, and the rounding errors are controlled by using

multiple precision arithmetic.

8.2.1 Numerical calculation of time evolution

The Hamiltonian can be written in terms of Majorana operators:

2L 2L

H = i SN [ Tun(i) ™ G, (8.6)

n=1m=1
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where

(1) () + 1)

L

= =1y U(l)(nl —m) (8.7)

k=1

ag—1 =

ol
IIMh
I

are the Majorana operators. Some basic properties of these operators are included in

Appendix A.5. The T matrix is given as:

[0 1,
he 0 J,
Ji 0 hy
T = (8.8)
hy O
hp
hy 0

Using the canonical anti-commutators, one can derive the Heisenberg equation of mo-

tion of the Majoranna operators:

diy(t) & )
= ;Mmmam(t) . (8.9)

here M is a 2L x 2L real matrix. In the upper triangle the elements of M and T" are equal,

in the lower triangle the elements of T" and M are opposite of each other.

0 hq
—hy 0 J1
—Ji 0 h
M = , (8.10)
—h2 0 .
hr
—hr, 0

One can expand the time dependent Majorana operators in the bases of the initial

Majorana operators as follows:

m(t) =Y Ponn () (0) . (8.11)
P (0) = Omn (8.12)

One obtains the following equations for the time evolution of the P,,,(t) coefficients:

AP, o(t) & 2L
n,k o e B
i mZ:l T (—1)" " Pru(t) = mZ_l M P i(2) (8.13)



8.2. THE MODEL 71

which can be written with short-hand matrix notation:

aP(t) _
—— = MP(t), (8.14)

with the initial condition P, ,,(0) = d,,.,. The solution is P(t) = exp(Mt). It is possible
to evaluate the exponential using the eigenvalue decomposition of M, however there are
realizations where the eigenvalue solver routines fail to converge. To avoid the convergence
problems we evaluate the exponential for a unit time step ¢, = 1 using the Taylor series

exp(Mtge,) = S0 Mt

n—0 nT Ustep- In the numerical calculations, we used multiple precision

arithmetic to evaluate the Taylor-expansion, and summed the first 100 term in the expan-
sion. The first 100 term is enough to make the truncation error smaller than the used

numerical precision. The absolute value of the eigenvalues of M are smaller than 2 [120],

n

so the nth term is the Taylor expansion is smaller than 2"{g,

/n! in operator norm. The

time evolution is then calculated with matrix products,
P(2™1ep) = P(2" Matep) P(2" M atep) - (8.15)

I used two kinda of initial states, one ferromagnetic (hg — 07) state and one paramag-
netic (hg — 400) state.
In the ferromagnetic state U (k); = 6; (t11)mod(z) and @O (k); = —&;;. One gets for the
initial correlation matrix G\ = — S WO (R), @O (k) = St 1ymod(L)-
In the paramagnetic state U (k); = 6, and ®(k); = —d; ;, and one gets for the initial

. . 0
correlation matrix ng)n = dmon-
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8.3 From fully ordered initial state to the ferromag-

netic phase

The fully ordered state is defined by h — 0. We investigated various after quench magnetic
field h = 0.5...0.9, and different lengths of the chain L = 16...128. The numerical results
are shown in figure 8.1. Let us first investigate the (a) panel of Figure 8.1. The bulk

h=0.5 h=0.6 — L=16
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025 7] L=32
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Figure 8.1. Quenches from the fully ordered initial state hy = 0, to the ferromagnetic phase
and the critical point. Each sub-figure corresponds to a different magnetic field. (See the
labels above the sub-figures.) The different colors denote the different chain lengths. The
quench shown in the right bottom sub-figure ends in the critical point (h = 1), the others
ends in the ferromagnetic phase (h < 1). The magnetization was calculated in the middle
of the spin chain at site [ = L/2.

magnetization decreases, first reach the first plateau, and after a system-size dependent
time, ?,2 a fast decrease happens, and the magnetization reaches a second plateau. The
tp2 time goes to infinity in the thermodynamic limit: Therefore in the thermodynamic
limit the second plateau is absent. The end time of the first plateau scales in a finite
system as log(logt,s) ~ log L, and the average magnetization in the second plateau scales
as log[mye(L)/my2(00)] ~ &/L, where & is the correlation length of the second plateau.
The other quenches ending in the ferromagnetic phase ( (b)-(e) panels in Figure 8.1) show
similar behavior. The end time of the first plateau ¢,2 become smaller and smaller as the

after quench magnetic field approaches the critical value 1, and if the quench ends in the
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critical point (Figure 8.1 (f) panel), there is no first plateau.

The double plateau behavior can be described in the framework of the semiclassical
theory. Quasi-particles are created at the time of the quench, and the magnetization on
a given site decrease, if a quasi-particle crosses the given site. In the ferromagnetic phase
of the disordered Ising chain, there is a finite correlation length £, and the quasi-particles
travels only ¢ distance after the quench. When the quasi-particles traveled ¢ distance from
the site of their creation, the decrease of the magnetization stops, and the first plateau is
created. If the after quench magnetic field h is closer to the critical point, the localization

length & becomes larger, and the average magnetization in the first plateau becomes smaller.

The second plateau and the second fast decrease of the magnetization are the results
of another, strictly finite-size effect. There is a special excitation in the ferromagnetic
phase, with exponentially small energy: €y(L) ~ exp(—L/£). The time scale where the
first decrease occur is t,2 ~ 1/, in correspondence with the numerical simulations. This
special excitation is also localized, and the average values of the second plateau goes to a
finite value in the thermodynamic (L — oo) limit. There is no such low energy excitation

in the critical point: There the lowest excitation is eg(L) ~ exp(—ALY?).

8.4 Quench to the critical point

8.4.1 Ferromagnetic initial state

In Figure 8.2 the decay of the magnetization is shown after a quench from the ferromagnetic
initial state (hg — 07) to the critical point (b = 1). There is an asymptotic region where

log(m(t)) is proportional with log(logt), log(m(t)) ~ alog(logt), where a ~ 0.14.

m(t) ~ (log(t))~* (8.16)

The asymptotic region ends after a finite size dependent time, ¢,(L). For the quasi-particles
emitted from the neighborhood of the boundaries, ,(L) amount of time is needed to reach
the investigated bulk spin at | = L/2. Before ¢,(L) the boundaries does not effect the
magnetization at site [ = L/2, after ¢,(L) one observes finite-size effects in the dynamics
of the bulk magnetization. After this asymptotic region there is a short period of fast
decrease, and at the end there is the plateau region. For critical quenches there is only one
plateau region. The average magnetization of the plateau region (m,(L)) decreases with
the increasing system size (see Figure 8.3). The m,(L) average magnetization is a power
law of the system size (L)

my(L) ~ L7 (8.17)

where b ~ 0.068(5). Here the estimated error is the error of the numerical fit. The two

formulas (8.16) and (8.17) have to give the same result for ¢ = ¢,(L), so one gets:

logta(L) ~ LY* whereb/a ~ 0.489 + 0.02 . (8.18)
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Comparing this result with the definition of the ¥ exponent:
U=b/a. (8.19)

This agrees with the result of RSRG-X. The scaling described above is illustrated in the
right panel of Figure 8.2, where In(Lbm(t)) is plotted against In(In¢/LY).
The distributions of the variables in a disordered system are usually non-trivial, and often
contains important informations about the system.

We investigate the distribution of the log-magnetization in the plateau regime. The
probability distribution can be seen in Figure 8.3. The distribution is broad, and becomes
broader with larger system sizes. One gets a data collapse with the scaling variable y =

logm, L™, thus
P (logm,) = L™“p(logm,L™%), «a=0b=0.0685 . (8.20)

as can be seen in Figure 8.3. The typical value of the magnetization in the plateau region
is exp(—AL®), which is much smaller than the average value, m,(L) ~ L™° (see Equation
(8.17)). The contribution of the typical samples is very small, negligible in the thermody-
namic limit. The important contribution to the average of the magnetization comes from
the atypical samples, i.e. from the rare realizations. In those rare realizations the long
time limit of the magnetization is large m,(L) = O(1). The average of the magnetization

is given by the y — 0~ behavior. It is assumed that for small values of y, p follows a power

law:
py) ~ (=y)*. (8.21)
The average of m,, is given by:
(Mplaw = La/dmpﬁ(log myL™%) (8.22)
~ L™ / dmy[log m, L~ ~ [~o0H0) (8.23)

with o = b and x = 0 (see figure 8.3) one gets [my]., ~ L7°, in agreement with the results

of the numerical calculations summarized in Equation (8.17).

8.4.2 Paramagnetic initial state

The fully paramagnetic initial state means, that the initial magnetic field is very large
ho — 00, or equivalently all of the couplings vanish. In this state, all of the spins point to
the z direction, the magnetization is zero in the x direction, the initial correlation matrix
is diagonal: Gﬁ,?,)n = Omn- 1 investigate quenches from the above described paramagnetic
state to the critical point h = 1. The time dependence of the average magnetization
are shown in Figure 8.4. The initial value is zero of the magnetization, which cannot be
represented on the logarithmic scale of equation (8.4). The magnetization decreases for

all global quenches in homogeneous or quasi-periodic chains. Surprisingly in the quench
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Figure 8.2. Left: Time evolution of the magnetization after a quench from hy = 0.0 to the
critical point h = 1. The broken line denote a fit to the asymptotic region. Right Scaling
plot of the relaxation of the magnetization after a quench from hy = 0 to the critical point
in the disordered Ising chain the fitting parameters are b = 0.0685, ¥ = 0.5.
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Figure 8.3. Left: Histogram of the plateau values after a quench from hy = 0.0 to the
critical point. Right: Scaling plot of the histogram of the plateau values after a quench
from hg = 0 to hy = 1. Bottom: Average of the magnetization after a quench from hy = 0
to h =1 in the plateau region.
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Figure 8.4. Panel (a): Time evolution of the order parameter after a quench from the
paramagnetic state (hg = 00), to the critical point A = 1 for different system sizes. In inset
the average asymptotic (plateau) values can be seen. Panel (b): Scaled plot of the time
evolution of the order parameter after a quench from the paramagnetic state (hg = 00), to
the critical point h = 1 for different system sizes. The values of the scaling exponents are
=146 ¥ =0.5

investigated in this chapter the magnetization starts to increase and for long times reaches
an asymptotic plateau value. The average plateau values decay with the system size L,

and follow a power law:
[mplaw(L) ~ L7, 0/ =14, (8.24)

This behavior is shown in the inset of Figure 8.4. The dynamical magnetization shows
good scaling collapse, when mpr/ is plotted against logt/LY, as it is shown in Figure 8.4 .
The large time limiting value of the dynamical magnetization, m,(L) was also studied, and
it is shown in Figure 8.5. It can be seen, that the logarithm of the magnetization is broadly
distributed. A good scaling collapse can reached with the scaling variable y = log mpL*O‘/,
with o/ = 0.5. The scaling is shown in Figure 8.5. It follows, that the typical values of
the magnetization scales with L as m;yp ~ exp(—CL?*), and it is much smaller than the

average. The average value is determined by rare events with contributions of O(1).
Pr(logm,) = L™p(logm,L™) . (8.25)

The average of m,(L) is determined by the behavior of the p(y) function on small negative
arguments. (The function p(y) is introduced in equation 8.25.) we assume that for small
y:

ply) ~ (=y)* . (8.26)
From figure 8.5 one can see x' = 2 and with similar reasoning as in equation (8.23) one

gets
[Mplaw(L) ~ L0 (8.27)
in agreement with the numerical results.

With the investigation of the surface magnetization measured on the boundary site

(I = 1) of an open chain enables a better understanding of the scaling behavior of the
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Figure 8.5. (a): Histogram of the plateau values after a quench from hy = oo to the critical
point. (b): Histogram of the plateau values after a quench from hy = oo to the critical
point. The P(log(mL'/?)) - log(m)L'/? scaling gives a good data collapse.

long-time limiting value of the dynamical order parameter. With the results of Ref. [176])
(see equation (16)) the long-time limiting value of the surface magnetization, m;, can be

calculated exactly:

my = 01(1) 3 01 ()7 () (8.28)
Here:
0G) = eI
sz LopN2 —1/2
®(1) = 1+Z‘ (i)] . (8.29)

In the large-hg limit for <1>§°) (j) one gets c1>§0) (j) = 6, ;. Here [, is the position of the

largest transverse field in the sample [184]. Thus

ms = [@1(1)]? lﬁl (%) , (8.30)

j=1 7

where ®;(1) = mg, is the equilibrium value of the surface magnetization of the chain [117,
185], evaluated in the final state, i.e. with h = h,.

The typical value of mg, at the critical point scales as exp(—CLY?) [117,186]. The
same scaling combination holds for m,. As a consequence the right scaling combination
for mj is y = ln(m;)L_l/ 2. Tt is the same form that has been obtained for the bulk spins
above. From the scaling behavior of the average value ms it can be seen, that the rare

events are dominant.
The scaling of the surface magnetization can be calculated using an analogy with ran-

dom walks. There is a direct connection between the random transverse-field Ising chain

and a one-dimensional random walk ( [117]): to a given sample (given magnetic fields h;
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and couplings J; for i = 1,2,...L) a one-dimensional random walk is associated. The
associated random walk starts at the origin and takes consecutive steps, the length of the
i-th step being In(h;/J;).

The associated random walk stays at positive positions for all steps (In other words it
is a surviving walk.) for rare realizations of m? . Concerning my?, here for a rare realization
both mg, and the product Hé.”;zl <Z—j> should be of order of O(1). In the random walk
language it means that the walk is surviving and returns after /,, steps.

The probability of this particular event is: P(ly,) ~ Im”*(L — l,,)"Y/2. The average
value scales as: >, P(l,)/L ~ L™/, which means that m3(L) ~ L™%/2. The scaling

behavior, extracted from the numerical data is similar to the last form.

8.5 Discussion

In this section we investigated numerically the dynamics of the local magnetization after a
quench in the transverse quantum Ising chain. In order to get precise numerical results we
avoided to use eigenvalue solver routines, since routine stability problems were reported in
the literature [122] [187]. I calculated the time evolution of Majorana operators using only
matrix products and multiple precision arithmetic.

If the quench starts from the ferromagnetic state and ends in the ferromagnetic phase the
magnetization first reaches a plateau value, and after a delay time a second relaxation
occurs, and the magnetization reaches a second plateau value. The second relaxation is
generated by quasi-localized modes which are present in the ferromagnetic phase of a finite
system. In an infinite system only the first plateau exists. The average magnetization is h
dependent and finite in both plateaus.

If the system is quenched from the ferromagnetic phase to the critical point the magnet-

% In a finite system the

ization goes to zero in an infinite system, as my(t) ~ (In(t))
magnetization reaches a finite L dependent limiting value. The distribution of the long-
time limiting value of the magnetization was investigated. The typical value goes to zero
starched exponentially with the system size (exp(—CL?®)), but the average is dominated
by rare events, and decays with a power law of the system size.

If the quench start from the paramagnetic state and ends in the critical point a rapid
increase of the average magnetization was found, which is a unique property of the random
chain: After any quench in the homogeneous or quasi-periodic Ising chain the magnetiza-

tion decays.

This chapter is based on the following article:
G. Ro6sz., Y.-C. Lin, F. Igléi Critical quench dynamics of random quantum spin chains:
Ultra-slow relaxation from initial order and delayed ordering from initial disorder New J.
Phys. 19, 023055 (2017)
I did the numerical simulations presented in the above chapter, and the scaling analysis
about the bulk magnetization is also my own work. The analysis of the surface magnetiz-

ation was did by Prof. Dr. Ferenc Igloi.



Chapter 9
Conclusion

In this dissertation I investigated the dynamics of inhomogeneous one dimensional systems
with free-fermion techniques. Different types of inhomogeneities were investigated (local
defect, two types of quasi periodic modulation, and a disordered system). The main results

are the following:

1. For the generalized local defect I checked using large scale numerical simulations the
conjuncture about the dynamics of the local magnetization at the defect site. Here
the term generalized means, that a coupling and the two neighboring magnetic fields
differs from the critical value. The dynamics is function of the quench parameter s;

which is a combination of the coupling, and the magnetic fields: x; = hl;'];@i' Here

k1 describes the pre-quench system, and ks describes the after quench system. The

time evolution of the magnetization in a finite system of length L is:
" 2(z12—x2)
ma(t, L)~ L™ [L sin(wz)} , 0<t< L.

where the exponents are x; = \/75 arctan(é) and 19 = /7175 (i =1,2)
2. For the Fibonacci Ising chain I investigated the after dynamics of the local magnetiz-
ation numerically using free fermion methods. I found that the magnetization follows

a stretched exponential decrease:
my(t) ~ A(t)exp (—=Ct") .

I also found a dynamical phase transition in the behavior of the magnetization: There
is a critical magnetic field h* if the after quench magnetic field is bigger than h*, the
A(t) prefactor of the magnetization oscillates, if the after quench magnetic field is
below h* the prefactor A(t) remains positive. In a homogeneous system h* = 1, in
the Finonacci Ising chain A* < 1, and h* is power law of the inhomogeneity strength.
For the entanglement entropy and for the wave-packet power-law increase were found.
The exponents of the magnetization, entropy, and wave packet are close to each other
in the non-oscillatory phase. This phenomenon was understood using a quasi-classical

reasoning.
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3. I'investigated the quench dynamics of the Harper model, which shows a localization-

delocalization phase transition. I calculated the after-quench dynamics of the en-
tanglement entropy and the local magnetization. If the quench ends in the localized
phase, the dynamics is similar to the dynamics of an homogeneous system: The en-
tanglement entropy grows linearly in time, the magnetization decrease exponentially,
the wave packet shows a ballistic spread. If the quench ends in the localized phase,
the entropy and the magnetization both remains finite in the long-time limit, and
the width of the wave packet remains small, comparable with the static localization
length.

If the quench ends at the critical point, the magnetization decreases with a stretched
exponential function my,(t) ~ A(t)exp (—Ct"), and the entropy grows with a power
function S ~ t7 of the time. The spreading of the wave packet follows a power law
d(t) ~ t°477 [102]. The exponents y and o are close to the exponent of the wave-

packet spread. This fact has been understood based on a quasi-classical reasoning.

. Iinvestigated a Kibble-Zurek process in the Harper model. The defect density scales

with a power of the speed of the process P ~ 1/7%. The prediction of the standard
Kibble-Zurek scaling for the exponent is £ = 1/2. My numerical data suggest smaller
exponent, K ~ 0.45. I developed a modified version of the Kibble-Zurek scaling for
the Harper model. This modified scaling is in good agreement with the numerical
data.

. I'investigated the after quench dynamics of the magnetization in the disordered trans-

verse Ising model. Tinvestigated three types of quenches: from a totally ferromagnetic
(ho = 0) state to the ferromagnetic phase (0 < h < 1), from the totally ferromagnetic
phase (hg = 0) to the critical point (h = 1), and from the totally paramagnetic state
(hg — 00) to the critical point (h = 1).

If the quench starts from the totally ferromagnetic state, and ends at the critical
point, the magnetization remains constant in the long time limit.

If the quench starts from the infinitely paramagnetic phase and ends at the critical
point, the magnetization of the finite system increases, which is a unique fact of this
disordered system. If L — oo, the asymptotic magnetization goes to zero in the
aforementioned quench.

If the quench starts from the totally ferromagnetic phase (hy = 0) and ends at the

critical point, the magnetization shows an extremely slow decrease of the form:

m(t) ~ (log(t))™*

where a =~ 0.14.



10. fejezet

(")sszefoglalé

10.1. Bevezetés

A zart kvantumrendszerek kiilso paraméterek megvaltoztatdsat koveté dinamikaja aktivan
kutatott teriilet, mind kisérleti, mind elméleti tekintetben. A paraméter megvaltoztatasanak
sebessége szerint két szélsoséges esetrol beszélhetiink. A kiilsé paraméter hirtelen megvaltoztatasat
"kvencs”-nek nevezziik. A valtoztatas utani dinamikat kvencs utdni dinamikdnak Kisérletileg
a kvencs utani dinamika a Feshbach rezonancia segitségével valosithaté meg [1-11].

A kvencsekkel kapcsolatban az egyik kérdéskor az, hogy a fizikai mennyiségek hogyan
valtoznak roviddel a paraméter megvaltoztatdsa utan. A masik kérdéskor azt vizsgdlja,
hogy a kvencs utan nagyon hosszu id6 elteltével milyen allandésult allapot alakul ki, mi a
kapcsolata a kialakult allandésult allapotnak a rendszerben létez6 megmaradd mennyiségekkel.
[12-57]. A mésik hatdreset a paraméter nagyon lassi véltoztatdsa, a kozel adiabati-
kus dinamika. A kiils6 paramétert a legtobbszor id6ben linearisan véltoztatjdk ~ t/7
modon, és a valtoztatas soran atvissziik a rendszert egy fazisatalakulasi ponton. A folya-
mat elején a rendszer a pillanatnyi Hamilton-operator alapdllapotaban van. Ha a paraméter
véltoztatasanak sebessége (1/7) sokkal kisebb mint a rendszerben taldlhaté legkisebb ener-
gia kiilonbséghez tartozo idéskéla, a rendszert jellemzo allapotvektor mindvégig kozel ma-
rad a pillanatnyi alapallapothoz. Azonban a legkisebb energia kiilonbség (legkisebb gap)
nullahoz tart, ahogy a rendszer kozelit a fazisatalakuldsi ponthoz, igy a kiilsé paraméter
valtozasa nem lesz a folyamat egész ideje alatt ”elég lassu”.

A kérdés, hogy milyen messze lesz a lassu dinamikaval kapott allapot az alapéllapottol a
fazisatalakuldsi pont keresztezése utén, intenziv vizsgélatok targyat képezte [50,56,58-74].
Kibble és Zurek [58] [59] megadott egy Osszefliggést, amely a két édllapot ”tavolsagat”
a P(1) ~ (density of deffects) ~ gid ~ 77711 médon jellemzi, ahol d a rendszer dina-
mikaja, v a korrelaciés hossz kritikus exponense, z a dinamikai exponens. A formula
eredeti indoklasa heurisztikus, azéta perturbativ és numerikus modszerekkel vizsgaltak az
érvényességét killonbozo rendszerekben.

Az itt kiemelt kétféle folyamat mellett az irodalomban més nemegyensilyi dinamikaval
kapcsolatos kérdéseket is vizsgaltak, ilyen példaul egy izolalt rendszer idofejlodése idoben
periodikusan [75] [76], kvazi-periodikusan vagy véletlenszertien [77] valtozé kiils6 poten-

cialban.
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A kvencs dinamikaval kapcsolatban kiterjedt irodalom 1étezik, amelyben azonban leginkabb
a homogén (transzlacié invaridns) rendszerek dinamikdjat vizsgéltak [12,16-33,50,51,55]. A
homogén rendszerekkel kapcsolatban az egyik legszebb eredmény a kvencs utani dinamika
kvazi-klasszikus leirasa. A kvencs soran a rendszer minden pontjaban kvazirészecske parok
keletkeznek ellentétes impulzussal. Ezek a részecskék a késébbiek soran allandé sebességgel
haladnak, a rendszert hatérol feliiletekrdl visszaverédnek [38,51,56]. A kvaziklasszikus
leiras segitségével a homogén rendszerekre aszimptotikusan egzakt eredmények kaphatoak.
Az inhomogén rendszerek kvencs utani dinamikajaval kapcsolatban csak néhany specialis
esetet vizsgaltak az irodalomban, példaul az 6sszefonddasi entropia viselkedését rendezetlen
spinldncokban [78-80], vagy a soktest-lokalizacié modelljeiben [81] [82]. Az inhomogenités
egy specidlis tipusa a kvazi-periodikus rend, ami a homogén és a rendezetlen rendszerek
"kozott” helyezkedik el: bonyolultabb az elobbinél, hisz nem transzlacié invarians, de egy-
szerlibb az utébbinal, mert rendezett, determinisztikus [83-85].

A kvaziperiodikus rendszerek szokatlan transzporttulajdonsagokkal birnak, benniik a hullamcsomag
kiterjedése nem ”ballisztikus” mint a homogén rendszerekben, hanem anomaélis diffiziot
kovet [86,87].

A disszertacié az alabbi négy cikken alapul:

1. F. Igloi, G. Roész, Y.-C. Lin Nonequilibrium quench dynamics in quantum quasicrys-
tals New J. Phys. 15, 023036 (2013)

2. F. Igléi, G. Rodsz, L. Turban Fvolution of the magnetization after a local quench in
the critical transverse-field Ising chain J. Stat. Mech. (2014) P03023

3. G. Roész., U. Divakaran, H. Rieger, F. Igléi Non-equilibrium quantum relaxation
across a localization-delocalization transition Phys. Rev. B 90, 184202 (2014)

4. G. Roész., Y.-C. Lin, F. Igléi Critical quench dynamics of random quantum spin
chains: Ultra-slow relaxation from initial order and delayed ordering from initial
disorder 2017 New J. Phys. https://doi.org/10.1088/1367-2630/aa60e6

A kovetkez6 alfejezetekben a disszertacié sajat eredményeket ismertetd részeinek magyar

nyelvii kivonata olvashaté.

10.2. Altaldnositott lokalis kvencs

Ebben a fejezetben az angol nyelvii szoveg 4 fejezetét foglalom Gssze, amely a [188] cikken
alapul. Az irodalomban a legtobbet vizsgalt kérdéskoér az un. globalis kvencs: Ekkor a
rendszer egy paramétere globalisan, az egész rendszerre kiterjedé homogén médon valtozik
meg: Ilyen példaul egy kiilsé magneses tér bekapcsolasa, amelynek értéke az egész rendszer
tertiletén homogén. Egy masik érdekes kérdéskor a lokalis kvencsek tertilete, amikor a Ha-
milton operator egy racshely kornyezetében véltozik meg pillanatszeriien. Kisérletekben a

lokélis kvencset valdsit meg példdul a rontgensugarak fémbeli elnyel6dése [141].
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Az elméleti vizsgalatok tobbsége kritikus egydimenzids rendszerekkel foglalkozik, amelyek-
re vonatkozdéan a konform térelmélet segitségével egzakt eredményeket lehet megfogal-
mazni. A konform térelmélet a modell folytonos hataresetét irja le, ahol a rendszer egy
kétdimenzids (x,t) téridében él. Ebben a fejezetben egy kritikus transzverzélis terii kvan-
tum Ising lancot vizsgalunk, amelyben egy altaldnositott hibahely paramétereit pillanat-
szeriien megvaltoztatjuk. Az altalanositott jelzé arra vonatkozik, hogy egy csatoléds és a

két szomszédos mégneses tér értéke is kiillonbozik a kritikus lancra jellemz6 tombi értéktol.

Az éaltalunk vizsgalt rendszer Hamilton-operatora:

L
Hi=— Zgn0n+1+ —1)07 507 )51+ Y 0nA (hi = 1)o7 5 + (hia—1)07 )54 |, (10.1)

n=1

ahol 0%, oV

n? n?

o’ a pauli matrixok. A hibahely a lanc kozepén talalhato, és a kvencs elétt
(t < 0) Jy csatolds, attdl balra hq; méagneses tér, a J; csatolastél jobbra his méagneses
tér jellemzi. A kvencs utdani paraméterek Jo, hoy, hos. A kvencs utan a hibahelyen
mért lokalis magnesezettség idébeli fejlodését vizsgaljuk. A lokdlis méagnesezettséget a
o” operator alapallapot és elsé gerjesztett allapot kozotti méatrixelemeként szamithatjuk
[167] m, (t)(Po|or(t)|Py) egy tetszOleges racsponton. A mdagnesezettség a hibahelyen:
mg(t) = mp—r2(t). A rendszer megfeleltetheté egy kétdimenziés klasszikus spin mo-
dell extrém-anizotrop esete transzfermatrixanak. A megfeleltetés segitségével levezethetd
a lokdlis magnesezettség imaginarius idébeli dinamikdja a termodinamikai hataresetben

(L — oo hataresetben). Az eredmények a kovetkezéképen foglalhatok Gssze: A dinamika a
Ji
hi1 hia
idébeli valtozasa hatvanyfiiggvényt kovet a

ki = (i = 1,2) effektiv kolcsénhatasok fiiggvénye, a magnesezettség imaginarius

mg(7T) ~ 77272 0< T <K L (10.2)

alakban, ahol az exponensek értékei: z; = ‘/?iarctan(%) és 1o = /T1x2. A valds ideji
dinamikara ismertek az irodalombdl eredmények ha hi; = his = hoy = hoy = 1, és a
J1 = oo (a kezdeti dllapotban a hibahely spinjei rogzitettek) vagy J; = 1 és Jo = 0 (egy

homogén lénc szétvagasa).

A rogzitett spinli esetre [142] konform térelmélet segitségével meghatarozték hogy a

magnesezettség relaxacidja:
miP () ~ 7% 0 <t < L. (10.3)

ami numerikus szimulaciokkal is tesztelve lett a transzverzalis terti kvantum Ising lancban

[94]. Egy nyilt lancban [94] eredményei a kovetkezé formulaval dsszegezhetéek:

t —2Zm
mEIJr)(t, L)~ [L sin (Wz>:| , 0<t<L. (10.4)

Abban az esetben, amikor a két félrendszer a kvencs utan nincs 6sszekapcsolva [94] nume-
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rikus eredményeit az alabbi formulaval lehet Gsszefoglalni:
£\ 14
m{P(t, L) ~ L7/ [L sin <7rz>] . 0<t<L. (10.5)
ami rovid idékre a kovetkezd alakot veszi fel:
mi? (1) ~ mo(L)tY4, 0<t< L, (10.6)

ahol mg(L) ~ L~*m az egyensulyi értéke a hibahelyi mégnesezettségnek a kiinduldsi
allapotban. Az exponens a (10.6) egyenletben megegyezik 1/4 = 2(x,,5/2 — x,) -vel,
ahol xo = x,, and x15 = x,,5/2. A rogzitett spini kezdéallapotra, (10.4) egyenlet, ugyanez
teljesiil 715 = O-el. Ha t2-et helyettesitiink 7 helyére az imaginérius idére vonatkozé egyen-
letekbe akkor a (10.2) egyenletb&l megkaphatjuk a valds id6re vonatkozé eredményeket, a
(10.4) és (10.6) egyenleteket. Ezért megfogalmazhatjuk a hibahelyi mégnesezettség kvencs

utani viselkedésére (az L > 1 hatdresetben) az aldbbi sejtést:
mg(t) ~ mo(L)t?@27%2) 0 <t < L, (10.7)

ahol mo(L) ~ L™"'. Egy véges rendszerben sejtésiink szerint a magnesezettség a kovetkezd

(periodikus) médon véltozik a kvencs utén:

" 2(z12—2)
mg(t, L)~ L™ [L sin (Wz)] , 0<t<L. (10.8)

A fenti két egyenlet a fejezet f6 eredménye. A sejtésként megfogalmazott formulakat nu-

merikus szimulaciéval ellendriztem.

10.3. A Finonacci Ising kvazikristaly nem egyenstlyi
dinamikaja

Ebben a fejezetben a kvantum Ising lanc egy kvaziperiodikus valtozatanak dinamikajét

vizsgaljuk. A modellt definidl6 Hamilton-operator a kévetkezo:

'Hz—% ZJichrﬁrl—i—hZJf : (10.9)

( of, of a Pauli métrixok az i. helyen) A J; csatoldsok helyfiiggbek, és az aldbbi médon

vannak paraméterezve:

Jy = Jrlt (10.10)

itt r > 0 az inhomogenités erdsségét jellemzi, r = 1 megfelel a homogén rendszernek, minél
kisebb 7 anndl erésebb az inhomogenitas. Az f; szamok 0 vagy 1 értéket vehetnek fel, és

kvaziperiodikusan valtakoznak az un. Fibonacci sorozatnak megfeleloen.
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A J kolesonhatas erésség a (10.10) egyenletben J = r~* ahol

_ T Zf:lfi_ 1
p—Lh_{rolo T = 1- — (10.11)

az 1 szamok ardnya egy nagyon hosszi (végtelen sorozatban).

A Fibonacci sorozatot a kovetkezd algebrai kifejezés definidlja:

fi=1+ H - [” 1} , (10.12)

w w

ahol [z] az 2 szdm egészrésze, és w = (V5 4+ 1)/2. A fenti definiciéval a modell kritikus
pontja h = 1-ben van, h < 1 a ferromagneses fazis, h > 1 a paramagneses fazis. A Fi-
bonacci sorozat a Harris-Luck kritérium szerint [204] irrelevéans perturbacié: A kritikus
exponensek folytonosan valtoznak a rendezetlenség erGsségének fiiggvényben.

A kvencset a magneses tér hirtelen valtoztatasaval valdsitottam meg. A kvencs elott a
magneses tér hy a kvencs utan a magneses tér értéke h. Vizsgaltam a lokdlis magnesezettség
viselkedését a hatarfeliiletektol tavol, a tombi részben, az Osszefonodasi entrépia idébeli
valtozasat, és az un. hullaimcsomag kiszélesedését. Az Osszefonddasi entropia definicidja a
kovetkez6. A rendszer a |U) tiszta allapotban van, amit a p = |¥) (V| diadikus stirtiségmatrixszal
is jellemezhetiink. A rendszert két részre osztjuk (A és B). Definidljuk a redukalt stirtiség
matrixokat ps = Trgp és pp = Trap. Az Osszefonddasi entropia a redukalt stirtiségmatrixok
von Neumann entropidja: S = —Trgpglnpg = —Trapplnps Az Osszefonddési entropia
a két rész kozotti osszefonddast jellemzi. Numerikus szimulaciok segitségével a kovetkezo
eredményekre jutottam: A magnesezettség kvencs utani dinamikaja nyuijtott exponencialis

viselkedést mutat:
mp(t) ~ A(t)exp (—Ct") . (10.13)

az A(t) prefaktor egységnyi nagysdgrendi. Az A(t) prefaktor viselkedésében két tar-
toményt kiilonithetiink el A < h*(r), akkor A(t) > 0 ha h < h*(r) akkor A(t) oszcillal.
A h*(r) dinamikai fazisatalakuldsi pont az r paraméternek hatvanyfiiggvénye: h*(r) ~ r¥
ahol w ~ 0.24 adédik. A h*(r) ~ r¥ Osszefliggés azzal a feltevéssel all 6sszhangban,hogy
a magnesezettség akkor marad pozitiv, ha a vizsgalt rdacshely kornyezete lokalisan fer-
romagneses, és akkor csokken oszcillalva, ha a kornyezet lokalisan paramégneses. Az Gssze-

fonodasi entropia a kvencs utdn az id6 hatvanyfiiggvényeként no:
S(t) ~t7, (10.14)

a o exponens kozel megegyezik a magnesezettségnél bevezetett p exponenssel abban a
tartomanyban, ahol a magnesezettség oszcillacié nélkil tart 0-hoz. Ezt a numerikus meg-

figyelést kvalitativen a kvazi-klasszikus elmélettel értelmeztem.
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10.4. A Harper-modell nem egyensulyi dinamikaja

A Harper-modellt definidlé Hamilton-operator:

L L
1 X T z
"= > (osor +obol ) =Y haor . (10.15)

n=1 n=1

ahol o%* a Pauli-matrixok az n. racshelyen és h,, egy kvaziperiodikus potencial:
hn, = hcos(2mfn) , (10.16)

ahol B = (v/5—1)/2 az aranymetszés inverze. A Harper-modell lokalizacids fazisatalakulast
mutat [102], |h| < 1-re a modell sajéat allapotai kiterjedtek, a spektrum abszolit folytonos,
|h| > 1-re a sajdt allapotok lokalizéltak, a modell pontspektrummal bir. A kritikus pont-
ban (|h| = 1) a modell spektruma fraktal-szeri, szingularis-folytonos [113]. A kvenccsel
kapcsolatos numerikus eredményeket aszerint irom le, hogy a kvencs utani A méagneses tér
melyik fazisban van.

Ha a kvencs a kiterjedt fazisban végzddott, a Harper-modell dinamikaja a homogén rend-
szerekére emlékeztet: A lokdlis magnesezettség exponencialisan csokken, az 6sszefonodasi
entropia az idovel linedrisan no, a hullimcsomag ballisztikusan szélesedik. Ha a kvencs a
lokalizalt fazisban végzodik, a lokalis magnesezettség és az entrépia is véges értékli marad.
Ha a kvencs a kritikus pontban végzddik, a lokdlis magnesezettség nyuijtott exponencidlis
viselkedést mutat my,(t) ~ A(t)exp (—Ct#) ahol p ~ 0.43(5), az entrépia S(t) ~ to visel-
kedést mutat, ahol o ~ 0.47(5). Mind a ¢ mind a v exponens kozel esik a [102] cikkeben a
hullamcsomag kiszélesedésére meghatarozott 0.477 értékhez. Az exponensek kozeli értéke
arra enged kovetkeztetni, hogy a kvazi-klasszikus kép kvazi-periodikus rendszerek esetében
is helyes, csupan a kvazi-részecske parok homogén rendszerbeli ballisztikus mozgasat kell

a megfelel6 anomalis diffizidval helyettesiteni.

10.5. Kozel adiabatikus dinamika a Harper modellben

Ebben a fejezetben a Harper-modell kozel adiabatikus dinamikajaval kapcsolatos eredményeket
osszegzem. Az adiabatikus dinamikaval kapcsolatban kétféle ”protokollt” hasznaltam: Az
els6 soran a h méagneses tér értéke —oo-bél indul, és h = t/7 mdédon névekszik oo értékig. A
masodik protokoll sordn a magneses tér szintén —oo-bdl indul, és h = t/7 mddon novekszik,

de csak h = 0-ig. Az els6 protokoll soran a fazisatalakuldsi pontot kétszer keresztezziik, a
masodik protokoll soran egyszer.

A fazisatalakulasi pontokon valé athaladas soran a rendszerben gerjesztések keletkeznek.
Annak valészintiségére, hogy a rendszer gerjesztett allapotban lesz, a hagyoméanyos Kibble-
Zurek skalazas P ~ 1/7%2-et jésol [58]. A numerikus adataim P ~ 1/7%%-el kompatibili-
sek. A Kibble-Zurek skélazas egy mddositott formajat alkottam meg, ami jol illeszkedik a

numerikus eredményeimhez.
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10.6. A rendezetlen kvantumos Ising modell nem egyensiilyi
dinamikaja

Ebben a fejezetben a magnesezettség kvencs utani dinamikéjat vizsgaljuk a rendezetlen
Ising lancban. Az Osszefonddasi entropia kvencs utani dinamikajaval kapcsolatban részletes
vizsgalatokat olvashatunk az irodalomban [78-81,180].

Ha a rendszer nemkélecsonhaté fermionokbdl all - mint a rendezetlen XX vagy a ren-
dezetlen kritikus Ising lanc - a dinamikus 0sszefonddasi entropia az idé méasodik logarit-

musaval ardanyosan, rendkiviil lassan novekszik:
S(t) ~alnlnt, (10.17)
és hosszu ido eltelte utan szaturalddik egy aszimptotikus értékhez:
S(l) ~blnt, (10.18)

ahol ¢/ a blokkméret a kétfelé vagott rendszerben, amit a teljes L hosszal aranyosnak
vélasztottak a vizsgdlatokban [79,180]. Ezek az 6sszefiiggések értelmezhetdek az erdés rende-
zetlenség renormaldsi csoport (strong disorder renormalization-group, SDRG) segitségével
[103]. Az erds rendezetlenség renormalasi csoport (SDRG), ami eredetileg az alapallapot tu-
lajdonsdgainak lefrdsdra lett megalkotva, a kozelmiltban megjelent munkdkban [181-183]
altalanositva lett a gerjesztett allapotokra is, erre az altalanositott verziéra gyakran hivat-
koznak RSRG-X -ként [181].

Az RSRG-X mdédszer joslata a (10.17) és (10.18) egyenletekben szerepld prefaktorok
aranyarol b/a = 1y, ahol ¥, = 1/2. A nem-egyensiilyi folyamatban a hossz és id6skéla
Osszefliggése:

Int ~ LV . (10.19)

Az altalam vizsgalt modlet definidl6 Hamilton-operator:

L-1 L
H==> Jolol,, — Y hio} (10.20)
i=1 i=1

ahol J; a [0, 1] intervallumbdl és h; a [0, h] intervallumbdl kertil kivélasztésra egyenletes
eloszlas szerint.

A vizsgalatok soran kétféle kezddallapotot hasznaltam. Az egyik a teljesen ferromagneses
allapot, ami a h — 0 hataresetnek felel meg, a masik a teljesen paramagneses allapot, ami
az Osszes csatolds kikapcsolasanak felel meg J; = 0. Ha a kvencs a teljesen ferromagneses
allapotbdl indult a ferromdgneses fazis ”belsejébe” (0 < h < 1) vezetett, a magnesezettség
véges maradt a hosszu id6k hataresetében.

Ha a kvencs elott a rendszer a teljesen paramégneses allapotban volt és a kritikus pontba
vittiik a kvenccsel, akkor a méagnesezettség egy gyors novekedés utan ért el egy allandosult
értéket. Az allandésult érték az L — oo limeszben zérohoz tart.

Ha a kvencs a teljesen ferromagneses allapotbdl indult, és a kvencs utani Hamilton operator
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kritikus volt, a méagnesezettség egy nagyon lassu relaxaciét mutatott:
m(t) ~ (log(t))™ (10.21)

ahol a ~ 0.14. A csokkené tartomany utdan a magnesezettség egy konstans értéket vett fel,

aminek a véges méret fiiggése:
my(L) ~ L7, (10.22)

ahol b ~ 0.068(5). A két exponens ardnya b/a = 0.48(5) ~ 1/2 j6 6sszhangban az RSRG-X

eredményekkel.

10.7. Konkluzio

A disszertaciomban egydimenziés inhomogén kvantum rendszerek nem-egyensilyi dina-
mikajat vizsgaltam szabad fermionos modszerek segitségével. Kiilonbo6zo6 tipusi inhomoge-
nitdsokat vizsgaltam (lokalis hibahely, kétféle kvaziperiodikus rendszer, rendezetlen rend-

szer.) Az elért eredmények a kovetkezoek:

1. Altaldnositott lokalis kvencs. Az &ltalanositots kifejezés arra vonatkozik, hogy nem
csak egy csatolds, hanem a csatolassal szomszédos méagnese terek is megvaltoznak
a kvencs idépontjaban. Preciz numerikus szimulaciok segitségével ellendriztem a
lokélis mégnesezettség kvencs utani dinamikajara vonatkozé sejtést. A dinamika a
k; kvencs paraméter fliggvénye, ami a hibahelyet jellemzo6 csatolds és magneses terek
kombinacidja: k; = ﬁ A k1 paraméter a kvencs elOtti, a ko paraméter a kvencs
utani rendszerre vonatkozik. A magnesezettség idofejlodése egy véges, L spinbol allé

rendszerben:

2(z12—2)
t
mq(t, L)~ L™ [L sin (WE)] , 0<t< L.

_ V2 Ly 4 _
ahol az exponensek x; arctan(n—i) és 119 = /T123.

™

2. Fibonacci Ising kvazi kristalyban a magnesezettség, az Osszefonddési entrépia és a
propagator kvencs utani dinamikajat vizsgaltam. A lokalis magnesezettség a kvencs

utan nyujtott exponencialis fiiggvény szerint csokken:
my(t) ~ A(t)exp (—Ct") .

Itt A(t) egy O(1) nagysdgrendl prefaktor. Az A(t) prefaktoral kapcsolatban egy
dinamikai fazisatalakulast talaltam. Van egy kritikus méagneses tér érték h*, ha a
kvencs utdni mégneses tér kisebb mint h* az A(t) prefaktor pozitiv minden ¢-re, ha
nagyobb akkor oszcillalva pozitiv és negativ értékeket is felvesz. A homogén rend-
szerben ez a fézishatér egybeesik a (statikus) kritikus ponttal. Az inhomogén rend-
szerben h* a ferromagneses fazisban van, és folytonos fiiggvénye az inhomogenités
er6sségének. Az Osszefonddasi entropia a kvencs utan kezdetben hatvanyfliggvény

moédon novekszik S ~ 7, majd (véges rendszerben) bedll egy aszimptotikus értékre,
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ami a rendszerméret fiiggvénye. A propagéatorbdl készitett ”hullimcsomag” kezdet-
ben szintén hatvanyfiiggvény médon szélesedik,d(t) ~ tP. A harom exponens (u,
o, D) numerikusan megéllapitott értéke (a szamitasok pontossagat figyelembe véve)
megegyezik abban a tartoméanyban, ahol a magnesezettség eldjel nélkiil csokken. Ezt

az egyezést kvazi-klasszikus leiras segitségével értelmeztem.

3. Vizsgaltam a Harper-modell kvencs utani dinamikajat. Ebben a modellben loka-
lizacié-delokalizacié atalakulas figyelheté meg. Numerikus szamolassal kovettem az
Osszefonddasi entrépia és a lokdlis méagnesezettség dinamikajat. Ha a kvencs utani
Hmailton-operator a delokalizalt fazisban van, a dinamika hasonlé egy homogén rend-
szer dinamikajahoz: A mégnesezettség exponencialisan csokken, az Osszefonddési
entrépia linearisan né az idovel. Ha a kvencs a lokalizalt fazisban végzodik, a
magnesezettség és az entrdpia is véges marad.

Ha kvencs a kritikus pontban végzodik, a mégnesezettség nytujtott exponencidlis
fliggvény szerint csokken: my,(t) ~ A(t)exp (—CtH), és az entrépia hatvanyfiiggvényként
n6 S ~ t7. A hullamcsomag szélessége szintén hatvanyfliiggvény szerint novekszik
d(t) ~ t9477 sszhangban az irodalomban fellelhetd eredményekkel [102]. A u és o
exponensek értéke kozel esik a hullamcsomag exponenséhez, amit a kvazi-klasszikus

kép segitségével értelmeztem

4. Vizsgaltam egy kozel adiabatikus folyamatot a Harper-modellben. A folyamat soran
a rendszert lassan vissziik at a lokalizaciés-delokalizacios kritikus ponton, a magneses
tér idofiiggése h(t) = t/7 ahol 7 > 1 a folyamat sebessége. Azt vizsgaltam, a rendszer
milyen kozel lesz a pillanatnyi Hamilton-operdtor alapallapotdhoz a kritikus ponton
valé athaladas utan- A Kibble-Zurek skélazas joslata az, hogy pillanatnyi Hamilton-
operator alapédllapotatdl vett tavolsag P ~ 1/7% mddon fligg a folyamat sebességétél,
ahol k = 1/2. A numerikus adataim x ~ 0.45-el kompatibilisek. Megadtam a Kibble-
Zurek skalazasnak a Harper-modellre vonatkozd, specidlisan modositott valtozatat,

ami jol illeszkedik a numerikus adatokhoz is.

5. Vizsgaltam a rendezetlen egydimenziés kvantum Ising lanc globalis kvencs utani dina-
mikdjat. A transzverzalis tér a kvencs elotti hy értékrol hirtelen h-ra valtozik. Kétféle
kezdoallapotot vizsgaltam, a h = 0 ferromégneses kezddallapotban mindegyik spin
az X irdnyba mutat (ami a kélesonhatds irdnya), a paramégneses kezdéallapotban
mindegyik spin a Z irdnyba (a transzverzalis tér irdnydba) mutat. A két kezdéallapot
segitségével haromféle kvencset vizsgaltam: A h = 0 ferromdagneses allapotbdl a fer-
romagneses fazis 0 < h < 1 belsejébe, a ferromagneses kezdoallapotbdl a kritikus
pontba, illetve a paramagneses kezdoallapotbdl a kritikus pontba vittem a rendszert
a kvencs soran.

Ha a ferromagneses kezdéallapotbdl a ferromagneses fazis belsejébe vezetett a kvencs,
a magnesezettség konstans maradt az L — oo, t — oo hataresetben is.

Ha a paramégneses allapotbdl a kritikus pontba vezetett a kvencs, akkor egy véges
rendszerben a magnesezettség atlagértéke novekedett, majd egy aszimptotikus (¢ —

o0) értékre allt be. A homogén és kvazi-periodikus rendszerekben minden kvencs
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utan csokkent a magnesezettség értéke, a novekedés ennek a specidlis kvencsnek a
sajatossdga. Az aszimptotikus (t — o) mégnesezettség érték fiigg a rendszermérettdl,
és nulldhoz tart az L — oo hataresetben.

Ha a kvencs a ferromagneses allapotbdl indul, és a kritikus pontban végzodik, a

magnesezettség atlaga rendkiviil lassan csokken:

m(t) ~ (log(t))~*

ahol a =~ 0.14.
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Appendix A

Time Evolution, Eigenstates

In this chapter we summarize the basic facts about calculating the eigenstates of the
inhomogeneous XY model, and the dynamics. The inhomogeneous XY model is defined in
Equation (2.1).

A.1 Transformation to quadratic form

Jordan-Wigner transformation [105] [104]:

1
oif = é(alx + io}) (A.1)
o + - y_1 +
o =0 +o;, o0 :;(UZ o) o =200, —1 (A.2)
a = exp(ng;-raj’)af (A.3)
o = exp(zﬁrza;-raj’)a;r (A.4)
(A.5)

The Hamiltonian is quadratic with the new ¢; Fermion operators, expect the last term

in the case of periodic boundary conditions.

i
1 —
H = —Zhl(cgcl 1/2)— Z Cl+1+Cz+1)——ZJz A 4¢) (i1 — cLl)

1+ 1-—
+ Jpw |:T’Y(CE —cr)(c 4 e1) + 5 i

(6 + eo)(el - clﬁ e Tiade (A6)

If one uses periodic boundary conditions, the Hamiltonian is not quadratic in the ¢, clT
. . . i Te. .

operators. However the Hamiltonian commutes with the P = e¢™" Ziereie parity operator.

The P operator has two eigenvalues: Ap = +1. When periodic boundary conditions

are used the Hamiltonian can solved separately in the odd (Ap = —1), and the even
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(Ap = +1) sub spaces. After restricting to these (invariant) subspaces, the Hamiltonian

becomes quadratic in the ¢, clT operators. In the the invariant subspaces:

L
1 _
Zhl qa—1/2)— Z —a) Cz+1+0z+1)——ZJz cl+a)(ci—cl,y)

j=1

(€ = enel + ) = 51+l -] . (a)

1+’y
2

+wJpAp [

A.2 Solution of a general quadratic operator

Consider a quadratic Hamiltonian [105] :
H = ZAW clej+ = ZB” CTCT—l-hC). (A.8)
i,j=1 z] 1

In the case of the XY chain Ai,i = —hl‘, Ai-l-l,i = Ai,i—l—l = —%J“ BH—Li = _Bi,i+1 = %’}/Jl

With the Bogoliubov transformation:

N

me= 3 (500 + Bal0)er + 5(@0) — W) ) | (A9)

7

the Hamiltonian becomes diagonal:
N
H=> As(nln—1/2). (A.10)
k=1

The 7, and 77;2 operators fulfill the canonical anti-commutation relations:

[nkan;]_i_ - 5k,q
s Mgl = [n,ﬁ,ngLZO (A.11)

The excitation energies and the Wy (i) ®x(i) coefficients are solutions of the following

two equations:

(A= B)®, = AUy (A.12)
(A+B)V, = APy (A.13)

By multiplying (A.12) with A+ B, and (A.13) with A— B, one gets an eigenvalue problem:

(A+ B)(A—B)®, = Aid, (A.14)
(A—=B)(A+B)¥, = A2, . (A.15)

Usually the above two equations are used to calculate Wg(i), ®x(i) and Ax. The ground
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state is the vacuum of the new fermion operators (n and n'):
n|GS) =0. (A.16)

To calculate the expectation value of any operators in the ground state one usually express
the operator using the n and 7, operators, and use the canonical anti-commutators and
equation (A.16).

A.3 Solution of the homogeneous Ising chain

In this section the calculation of the elementary excitations and eigenenergies of the Ising
chain are included. It is also included how the ground states of homogeneous Ising models
with different transverse fields can be expressed with each other. This later relationship is
useful in the investigation of the quenches in the homogeneous system. The Hamiltonian

after the Jordan-Wigner transformation is:

L

L

1

H = _hz Cjci 3 Z(CI - ci)(czll + Cit1) (A.17)
=1

=1

where h; = h and J; = 1. It is worth to introduce the Fourier transformation of the ¢;, c;f

fermion operators:
L
cqg = ﬁ;l exp(iqj)c; (A.18)
P L ZN il A
Cg = ﬁjzl eXp(ZQJ)Cja (A.19)

where ¢ = 2rm/L, m = 0...L — 1. The ¢, ¢} operators are fermion operators ({cq, cx} =
{cg,cz} =0, {¢g,cl} = 0,1). With these operators the Hamiltonian takes the following

form:
1

H=— Z(h + cosq)che, — 5 Z(e*ichciq —e"leyey) (A.20)

q q

One introduces the 7, and ng fermion operators with the Bogoliubov transformation:

Ng = UgCq+ ivch_q (A.21)
T]T_q = U,cy + uch_q . (A.22)
Where
B en(p) +h — cosp
un(p) = \/ 2en(p)
en(p) — (h — cosp)
= A2
Uh(p) \/ 25h(p) ) ( 3)
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and the e, (p) excitation energy is:

en(p) = \/(h — cosp)? +sin’p . (A.24)

The 7, and 17; operators are fermion operators with the usual anti-commutator rules.

{ng,m} = {0}, n} =0, {ng,nl} = 6,%) The diagonal form of the Hamiltonian is:

H =Y en(q)nin, . (A.25)

Ground states with different transverse fields
Let |Wy) is the ground state of (A.17) with A = hgy and |0) is the ground state with h = h;.
The n operators correspond to the hg magnetic field. The ground state corresponding to

h, transverse field van be expressed as:

o) =TT |Up + Vil | 10) (A.26)
where
Up = uno(p)un(p) + vne(p)vn(p) (A.27)
Vo = uno(p)vn(p) — vne (p)un(p) - (A.28)
t

A.4 Time evolution of the ¢, ¢, operators

In the following non-equilibrium calculations, the a parameter will be time-dependent in

the Hamiltonian:

L-1

L—
1—~
Hodd = Oé Z hl Cl Cl— 1/2 Z Cl cl+1+cl+1)+T Z Jl(C;—FCZ)(CH_l—CL_l)
j=1 j=1

(A.29)

We will use the Heisenberg picture to calculate the time evolution. Creation-annihilation

operators in the Heisenberg picture:

() = Texp [ /t: iH(t’)dt’} ¢Texp l /t: —iH(t’)dt’} (A.30)
c'T(t) = Texp { /t: iH(t )dt} ¢'Texp { /t:—m(t’)dt'] (A.31)

Here Texp denotes the time ordered exponential function. The Hamiltonian is quadratic

in the creation-annihilation operators, as a consequence the time evolution only mixes this
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2L operator, higher order operator products does not occur:

gr(t)ex + hy (t)cL

K
=
—~
~
~—
Il
(]~

i
I

gi(t)e), + hi(t)er (A.32)

o
=
=
—~
~
S—
I
Mh

£
Il
—

At the beginning of the time evolution, the system is in the ground state of the initial
Hamiltonian. We will use two different types of a(t) functions. For quenches «(t) is step
function of the time:

a(t) =

if
{ h() it t<0 (A33>

h if t>0

For quenches one solves the after quench Hamiltonian, and expresses the ¢(t), cg(t) oper-

ators using the well-known time evolution of the 7, 77,TC operators.

H(t>0) = el (A34)
k
1) = —iept Tt _ et T A35)
m(t) = e " Fne my(t) = ey, (A.

att) = {5000+ ome S - mleth (a0
k

A0 = S {500 + @@l + G0 - mome] 1)

When investigating a Kibble-Zurek process, we will consider a smooth, continuous «(t)
function. In this case, using the Heisenberg equation of motion and the canonical anti
commutators one derives a set of differential equations for the g,,; and h,, ; coefficients in
(A.32).

gm,l (t) - _Za(t)hmgm,l<t> - Z.ngm—i-l,l(t) - ingm—s—l,l(t) - ’me—lhm—l,l (t) + ’YJmhm—s—l,l(t)
gm,l (t) - _Za(t)hmhm,l(t) - iJmhm+1,l(t) - iJmhm—l—l,l(t) - ’me—lgm—l,l(t) + ’Yngm-l-l,l(t)

We will use the above equations to calculate the time evolution in the Harper model. In
the Harper model v = 0, the dynamics preserve the particle number, and the creation
operators don’t mix with the annihilation operators.
In this limit the hy(f) coefficients are zero, and the time evolution of the system is driven
by the following equation:

Ay, 1

~ _ 1-
? q = §¢q,n—1 + O‘(t)hnﬁbq,n + §¢q,n+1 ) (A.38)

where the notation qzzk,n(t) = gi.(t) was introduced, because this notation has been used

in our article, and in the main text.
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A.5 Majorana fermions

When investigating quench dynamics, it is convenient to introduce the so-called Majoranna

fermions:
7 = +d
a21—1 = T¢q
ay = i(c—¢) .
a ile; —cf

They are simply related to the 7, and 77}; operators:

L
o = Y P()(nf+m)
k=1
L
o = =) U()(nf — ) -
k=1

Inserting 7} (t) = e*n! and n;(t) = e " into (A.41) one obtains

i (t) = i Pyn(t)ity
n=1
with
Pyipno1 =y cos(egt)@y(1)®y(k),
q
P21—1,2k = — ZSIH(th)(I)q(l)\Ijq(k’) y
q
Pyog—1 = Zsin(eqt)<1>q(k)\11q(l) ;
q

Poop = Z COS(th)‘I’q(l)‘Ijq(k) .
q
The two-operator expectation values are given as:

<dm(t)an(t)> = Z Pm,lﬂ (t)PnJCQ (t) <dk1 dk’2> :

k1,k2

(A1)

(A.42)

(A.43)

(A.44)



Appendix B

Quantities of interest

B.1 Magnetization

B.1.1 Definition

Another quantity we consider is the local magnetization, m;(t), at a position [, of an open

chain. Following Yang [167] this is defined for large L as the off-diagonal matrix-element:
mi () = (W o] ) (B.1)

where ‘m§0)> is the first excited state of the initial Hamiltonian.

B.1.2 Calculation method

To calculate the local magnetization in (B.1), we need to first calculate the time dependence
of the spin operator ¢f’(t) at site [ in the Heisenberg picture. The spin operators are then

expressed in terms of the Majoranna operators as:

201
of = '], (B.2)
j=1
and the local magnetization in (B.1) is then given as the expectation value of a product of

fermion operators with respect to the ground state:

201

mi(t) = ()7 g T as(6m|97) (B:3)

where we have used: |\If§0)> = 7]1|\Iféo)>. The expression in (B.3) - according to Wick’s
theorem - can be expressed as a sum of products of two-operator expectation values. This
can be written in a compact form of a Pfaffian, which in turn can be evaluated as the

square root of the determinant of an antisymmetric matrix:

99
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mi(t) = (~)"!

==+ [det Cij]l/Q s (B4)

where Cj; is the antisymmetric matrix C;; = —C};, with the elements of the Pfaffian

(B.4) above the diagonal. (Here and in the following we use the short-hand notation:
0 0

o) =] ),

Below we describe how the time evolution of the spin operator o follows from the time
dependence of the Majorana fermion operators. The equilibrium correlations in the initial

state with a transverse field hq are:

(Gm—1G2n-1) = (GomG2n) = Omn,
(Qom—102n) = —(Gombon-1) = zGEff,’n ) (B.5)

where the static correlation matrix G&S?n is given as:
GO, =- Z U (m)d (n) (B.6)
q

where \Iféo)(m) and O (n) are the components of the eigenvectors in (A.9), calculated for

the initial Hamiltonian. Then (A.44) can be written in the form:
(A (t)an(t)) = Omm + 1L ma(t) | (B.7)
were

(0) (0)
Loc1pm—1 = E [Gk%klP21—1,2k:1—1P2m—1,2k2_GkthPQl—l,leP2m—1,2k2—1

k1,k2
_ (0) (0)
F2l71,2m = Gk k P2171,2k171P2m,2k2 —Gk k P2l71,2klp2m,2k271
2,R1 1,R2
k1,k2
T = Y |GV, Pyoy, P ~ G, Paor,1 P
202m—1 — ko k1 L 20,2k £2m—1,2k1 1 ki ko d 20,2k —142m—1,2k:
k1,k2
T = G p Pomoky — G, Pyop, P (B.8)
212m = ko ko L 20,2k1 —1472m 2ko ki kot 20,2k1 L2m 2k —1 | - .
k1,k2

In (B.4) there are also the contractions:

0)+ 0
Wy = (W5 [ (£): [ W)
= Y P @ i [ T”) (B.9)
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where

<‘Il(()0)|d2l71771|\11(()0)> = (I)go)(l)
(O |agm| W)y = 0(). (B.10)

B.2 Propagator

Let us denote the all spin down state as |0).

0 =1helle o) (B.11)
Where | |) is an eigenvector of 0*: 0% |) = —| |). This is the vacuum of the ¢, ¢
operators:
¢)0) =0 for all 1. (B.12)
The definition propagator is:
G(k,1,t) = (Olex(t)c] (0)[0) - (B.13)

|G(k,1,t)|* is the probability of creating a quasi-particle at site [ at time 0, and detecting
it at site k at time t. We will use this quantity to interpret the quench dynamics of
the magnetization and the entanglement entropy. If the dynamics conserve the particle
number, G(k,[,t) equals the wave packet, starting from site 1 at t = 0. To see the previous
statement we first observe that any particle number conserving Hamiltonian destroys the

vacuum, and consequently the dynamics conserves the vacuum state:
exp(—itH)|0) = [1 +iHt + (iHt)*/2 4 ...]|0) = |0) (B.14)

Adding a constant factor to the Hamiltonian causes a time dependent phase factor to the

vacuum, which is unimportant.

G(k,1,t) = (0]cx(t)c] (0)]0) = (0|exp(i Ht) ey (0)exp(—iHt)cl (0)]0) =
= (Olex(0)exp(=iH1)c{(0)[0) (B.15)

Here ¢/ (0)|0) is a localized state at site [, exp(—iHt)c! (0)]0) is the wave packet, in time ¢
which started from site [ at ¢ = 0. The (0|cx(0) vector is the (bra) basis vector, localized
at site k. In consequence G(k,l,t) is the wave packet starting form site [ at t = 0, in time
t, in the space representation.

We will refer to the G(k,[,t) propagator simply as "wave packet”, even if the considered

Hamiltonian is not particle number conserving.
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B.3 Entanglement entropy

Quantum entanglement is one of the most interesting aspects of quantum mechanics, it was
first written down by Schrédinger [190]. Entanglement was an actively studied field already
in the early times of the quantum theory both in theory [191] [192] and in experiments
citehidden-test-1, [194], [195], [197], [198], [199]. Today investigations about entanglement
are motivated partially by applications such DMRG [206] [207] and quantum-information
theory [201] [202] [203] [205], and partially by the need of better understood of basics
concepts [208] [209]

In Section B.3.1 I introduce the Schmidt decomposition. In Section B.3.2 I present a
detailed definition of entanglement entropy using the Schmidt decomposition. In Section
B.3.3 some properties of the entanglement entropy are listed. In Section ?7? the calculation

method presented.

B.3.1 Schmidt decomposition

With the singular value decomposition the [B]; ; = b; ; matrix can be written as the product

of two unitary matrices (U and V') and a positive semi-definite matrix (2):
B=UxV" (B.16)

Where the ¥ matrix is semidiagonal, it has non-zero elements only in its main diagonal,
but X can be a non-square matrix.

With components:
bi,j = Zui,kakvjvk (Bl?)
k

A general vector v =}, . b;;[i)a @ [j)p of the tensor product space can be written in the

following form with the singular value decomposition of the b; ; matrix:
U= Z Z Ui kORVj k|1 4 ® |]) B (B.18)
ik

Defining the vectors:

up = Z Wik |1) A
ve = Y vili)s (B.19)
J

one gets:

V= E OruE & Uk

k
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which is the Schmidt decomposition of the v vector. Note, that the u; vectors and the vy

vectors are orthogonal sets:

(uklug) = 0rq

<Uk|’l)q> = (5qu (BQO)

B.3.2 Definition of entanglement entropy

The investigated system is in a pure state, denoted by |¥). One can equivalently use the
density matrix p = |¥)(¥| to describe the system. We divide the system to two parts
denoted by A and B.

The reduced density matrices for A and B:

pa = Trpp
pp = Trap (B.21)

The entanglement (von Naumann) entropy is defined as:

SA = TI‘ApA logpA (B22)
Sp = Trppplogpp
Sy = Sg

The last equation is non-trivial. To see it we recall the Schmidt decomposition of quantum
states. We will see that not only the two definitions of the entanglement entropy (S4 and
Sp) equal, but the two reduced density matrix (p4 and pp) has the same structure. (They
are defined on different Hilbert spaces (H4 and Hpg), usually with different dimensions.
The non-zero eigenvalues of pa, and pp are the same.) A general vector in the Hy ® Hp

Hilbert space is:

0= D bliba® s (B.23)
With the Schmidt decomposition it can written in the next form:

v = Z OLUE @ VU (B24)
k

pA = TYB|’U Zzak’Uk nB]uk ZJ UQ‘TLB ’Uq|—
= ng0q5k,q|vk (vg] =
k.q
= > lowllon) (vl (B.25)

k
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With similar calculation one gets:
pp =Y lowl*ux) (uyl (B.26)
k

If we restrict ps and pp to their non-zero subspaces, we get the same operator, in con-

sequently S4 = Sp.

B.3.3 Properties of entanglement entropy

In this short section I summarize the basic properties of entanglement entropy, and its con-
nection with other entanglement measures, and the correlation functions. First I recapit-
ulate the basic results about the connection with the operational entanglement measures.
Than I recapitulate that the entanglement entropy can be considered as a bound for any
normalized correlation function in a bipartite system.

The basic idea about comparing operationally entanglement in bipartite systems is that
LOCC operations cannot create quantum correlations [189]. If it is possible (with prob-
ability one) to convert a p; state to an other one (ps) using only LOCC operations, p; is
more entangled then p;. There is a maximally entangled state, in a finite d dimensional

system it is:
o 10,00 H L)+ |d—-1,d—1) B
_ ) 27

Maximally entangled here means, that |¢/]) can be converted to any other state using

LOCC operations. Let’s denote the density matrix corresponding to |[¢)) with ®(K)
where K is the dimension of the Hilbert space.

One can investigate how difficult is it to convert the maximally entangled state ®(K) to the
investigated state p using LOCC operations. It turned out that no meaningful definition
is possible if one requires exact conversion of ®(K') to p. One has to consider copies of the
maximally entangled state and also the investigated state, and requires only asymptotically

exact transformation. This measure is called entanglement cost and defined as [189] [210]:

Ec(p) = lim sup {T : % € c;} (B.28)

e=0p oo LT

where

C. = { ™ . there exists an LOCC A such that ||p®" — A([®(dim(p))]*™)|| < e} . (B.29)

n

Another operational measure can be the distillable entanglement which characterize how
many copies of the maximally entangled state can be extracted from many copies of the

investigated state p. Formally the distillable entanglement is defined as:

Ea(p) = lim sup {T : % c Dg} (B.30)

e—0 500 n
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where

D. = {T : there exists an LOCC A such that |[A(p®") — [@(dim(p))]*™|| < e} (B.31)

n

It can be shown that if p is a reduced density matrix of a bipartite pure state, then
Eq4(p) = E.(p) = S(p). So either the distillable entanglement or the entanglement cost can
be considered as an operational definition of the entanglement entropy.

Let us consider the mutual information I(A : B) of a bipartite system:
I(A: B) = S(pa) +S(ps) — S(p) - (B.32)

Here p is the density matrix of the system, ps and pp are the reduced density matrices.
Let O4 (O4) be a hermitian operator acting on subsystem A (B). The correlation function
is usually defined as: C'(A, B) = (O40p) — (O4)(Op). It can be proven [109] that the

normalized correlation function can be overestimated by the mutual information:

I(A: B) > C(4,B)

1
> = . (B.33)
2] Oa 1% OB 1%

If p is a pure state, as it is everywhere in this dissertation, then S(p) =0 an I[(A: B) =
254 = 25 = 2Sentanglement. Hence in a closed system any correlations can be overestimated

by the entanglement entropy:

1 C(AB)

) 1 .
entanglement = 4170 211 05 |2

(B.34)

For example: The entanglement entropy remains small, O(1) after a quench which ends in
the localised phase of the Harper model (See Chapte 6.2.) than all normalized correlation
functions has to be O(1).

In the axiomatic definition of the measures of the bipartite entanglement one of the
axioms states, that any measure should give the entanglement entropy on pure states [189]
[212] [213].

B.3.4 Calculation of entanglement entropy in spin chains

In this work we consider a simple geometry, where the subsystem A is the continuous block
of the first [ spin, and the subsystem B is the continuous block of the other L — [ spins.
We follow [122] and [211] in the main ideas.

Since the simple time evolution eq. (A.37) Wick’s theorem holds for the corrections in any
time. For example the expectation value of the four operator product {(c! (t)c! (t)c(t)ci(t))

can be evaluated as:

(el (), (Ber()a(t)) = (ch(t)a(®) {ch(Bet)
= {ch(B)er () (ch (B)a(?))
+ {ea(emO) e (Bl (1)), (B.35)
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and in a similar way, the expectation value of any string of creation/annihilation operators
equals the sum of the non-zero parings. Since Wick theorem holds for the correlations,
the reduced density matrix p4 is the exponential of an appropriate Hermitian operator H,
and H is quadratic in the annihilation and creation operators. (In other words, p4 is a

fermionic Gaussian state.)

exp(H)
= B.
A7 Trexp(H) (B-36)
l l
~ 1 ~
H = Z AijCZCj + 5 Z BZJ<C;r ;f - hC) . (B37)
i,j=1 i,j=1

Now we recall how to compute the von Neumann entropy of a fermionic Gaussian state.

We diagonalize this Hamiltonian H by means of a Bogoliubov transformation
L1 1
6= 3 (51060 +0ues+ 50660~ () ) (B.38)

Then, the Hamiltonian reads

l
H=> e, (B.39)
k=1

where 5,1 and & are creation and annihilation operators of some fermionic modes. The

density matrix ps can simply be expressed as

I t i
_ ek&iEk ~ ek&rlk
pPA = H Pk = m where Pk = 11 e . <B40)
k=1 k=1
1 e 0 w0
o = —— = 2 B.41
P 1+e‘€k<0 1) <0 1Tk) (B-41)
where v, = — tanh(eg/2). Thus, the entanglement entropy of the density matrix py is

merely the sum of binary entropies

S = 8 =) H (1 Z”’“) - (B.42)

where H(p) = —plogp — (1 — p)log(1 — p) is the binary Shannon entropy.

In order to determine the parameters of the reduced density matrix (the spectra v and

the vectors @ (i), W, (i)) ), let us consider the dynamical correlation matrix,
Crnn(t) = (V| (t)an ()| P) . (B.43)

Notice that matrix C' can be computed using the initial correlations and the P, ;(t) coef-

ficients as:

Conn(t) = Y P (1) Py (8) iy (£ = ), (¢ = 0)) (B.44)
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Let us define "= C(1 : 2,1 : 2) as the 2] x 2] upper-left sub-matrix of the correlation

matrix C. If we transform the @ Majorana operators accordingly to (B.38):
l ~
b2n71 = Z ¢m(n)d2mfl = 511 + fn (B45)
m=1

l
B2n = Z Q/;m(n)a%n = _Z(g;[b —&n) - (B.46)

The B,,, = (bmi)n) correlation matrix is:

1 —iyl

U/l 1
B= i, 1 (B.47)

1 —iVl

iVl 1

The B matrix is connected to the C' matrix by an unitary basis transformation, so they
have the same spectra. As a consequence, the spectra of the C'— 1 matrix is built up from
the vy, and the —vy numbers (k =1...1).

Numerical recipe to calculate the entanglement entropy: To calculate the entanglement
entropy one has to calculate the C' correlation matrix, then solve the eigenvalue problem
of C' — 1. (Here 1 stands for the 2[x2[ unit matrix. ) The eigenvalues of C' — 1 are +u.

One gets the entanglement from equation (B.42) entropy as

l
1—|—I/l 1—|—Vl 1—Vl 1—Vl
= E 1 1 . B4

r=1
Renyi entropies

The Renyi entropies are generalizations of the entanglement entropy, and defined as:

1
S — . log Trp™ . (B.49)

—

One gets the entanglement entropy in the a — 1 limit. The Renyi entropies can be

calculated with the methods described above only equation (B.42) has to be replaced with:

o[ (5] o

Jj=1
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