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1. In troduction

The dissertation deals with the problem of the densest packing of equal circles in a 
square. This optimization problem, which arises from discrete geometry, has become 
a well-studied problem in the past decades [2, 3, 4, 5, 6, 7, 12]. Approximately 50 
scientific publications have investigated it, from which will we give a short overview 
in the dissertation.

The dissertation studies the circle packing problem from three aspects:

a) How the numerical parameters of the optimal circle packings can be determined, 
such as bounds for the radius, and the density. We studied it in a theoretical way 
and also used computer-aided methods to find ways of improving them.

b) The kind of structuralproperties that is in the optimal and the best known cir
cle packings have and how we might improve the theoretical lower bounds using them.

c) How we should calculate the minimal polynomials of the circle packings in a theo
retical way and by a CAS (Computer Algebra System) and how they should be used 
for the classification of the circle packings.

The majority of the results in the dissertation are published in the articles [1, 8, 9, 
10, 11] of the present bibliography.

2. T he problem  and its equivalent m odels

Definition 1 P(rn,S ) £ PTn is a circle packing with radius rn in [0, S']2, where 
p rn = { ( ( %uy i ) , - - - , (x n,yn))  e  [0 ,,S ]2"  I (xt -  X j f  +  (yi -  y^)2 >  d r 2 ; ^ , ^  e  
[rn,S  — rn] (1 < i < j  < n)}. P(rn,S) £ P7n is an optimal circle packing, if 
f n =  max rn.

P roblem  Determine the optimal circle packings for n > 2.

D efinition 2 A(mn, £) £ Amn is a point arrangement with minimal distance mn 
in [0, £]2, where Amn =  {((rn, yi) , . . . ,  (xn, yn)) £ [0, £]2" | (xf -  x j)2 +  -  y j f  >
m2; (1 < / < j  < n)}. A(mn, £) £ Amn is an optimal point arrangement, if mn = 
max mn.Amn̂ $

Problem  Determine the optimal point arrangements for n > 2.

Definition 3 P f(R, sn) £ P^n is an associated circle packing with radius R  in [0, s„], 
where Ps'n =  {((a:!, y i) , . . . ,  (xn, yn)) £ [0, sn}2n \ (xt -  x j)2 +  (yt -  yj)2 > 4 R 2; xh yt £ 
[.R ,sn — J2] (1 < i < j  < n)}. P f(R,sn) £ Ptn optimal associated circle packing, if 
sn =  min sn.
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P roblem  *Pg: Determine the optimal associated circle packings for n >  2.

D efinition 4 A'(M, an) E A'an is an associated point arrangement with the minimal 
distance M in  [0, an], where A'an = {((ar, y{),. . ., (xn, yn)) E [0, cr„]2 | (xi -Xj )2+(yi~ 
Uj)2 > M 2 (1 < i < j  < n)}. A '(M ,an) E A^ optimal associated point arrangement, 
if an = min an.

P roblem  ^ 4: Determine the optimal associated point arrangements for n > 2.

T heorem 1 [9] Problem *P", ^3 and *P" are equivalent in the sense that if lP"
can be solved for a fixed n and i, then the other *P" can be solved for all 1 < i < 4.

In the dissertation the following corollary of T heorem 1 is frequently used.

Corollary 1 [9] The relations between the parameters rhn, rn, sn and an take the 
following form:

P(rn,S) A ( m n , E ) P ' ( R , s n ) A ' ( M ,  a n )

P(rn,S)
A ( m n , E )  

P ' ( R , s n ) 

A ' ( M ,  a n )

1
ryy) --  2 S rn
" ln  ~~ S - 2 r n 

„ _ R S
n  r « , _  M ( S - 2 r n )

° n  ~ ____ 2Ln_____

ry* _ tiffin
n 2 (mn + E )

1
„ __ 2ii(?7ln +  S)

n m n
a n =  M U

______ z____ mn_____

T  _ HS
• n  qon

jyj _ 2jRS
n  ~~ sn - 2 R  

1
M{sn - 2 R )  

° n  ~~ 2 R

1  n  w s
' n 2 {M+an) 

_  M S/ 1 t/ifi ---
„ 2 R{M-\-an ) 
bn  ~~ M  
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Since viewed the problem as an optimization problem, I decided to classify the 
mathematical models into problem classes suitable for mathematical programming.

This problem can be considered as

a) a continuous nonlinear constrained global optimization problem,
b) a max-min problem,
c) a DC programming problem, or as an
d) all-quadratic optimization problem [10].

3. Lower and upper bounds for th e  optim um  val
ues

T heorem 2 For every n > 2

K. J. Nurmela and his coauthors [6] once published the following inequality

t r  +
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which gives a lower bound for the number of an A'(l, a) associated point arrangement. 
Multiplying the previous inequality by ^  implies that

2 2 +
1

a < n.

In the proof of T heorem 2 I proved an inequality which eliminated the linear term 
with the negative coefficient from this inequality, to give a better lower bound 
for fhn.

T heorem 3 For every n >  2

rn < min
1 +  \A  +  x)

'2^3  n + 2) (2 — \/3) 2n + 2J l + ^ ( n - 1)

Based on T heorem 2 and the upper bound of T heorem 3, I found an absolute 
error bound for the asymptotic approximation of rhn in the P roposition 1

P roposition 1 An absolute error bound for the asymptotic approximation of mn
IS

n —1

4. C om puter-aided  m eth od s for im proving lower 
bounds

In [1] we improved the theoretical lower bounds using a stochastic global optimization 
algorithm and we obtained better results for some previously known circle packings. 
The TAMSASS-PECS algorithm is based on the TA (Threshold Accepting) method 
and a modified SASS (Single Agent Stochastic Search) local search technique that is 
especially suited for the circle packing problem.

The TAMSASS-PECS method

1 Selects an initial solution s
2 Selects an initial value for Th
3 Selects an initial standard deviation a
4 while a  > a¡inai do
5 while All centers are not visited do
6 s = M S A S S ( s , a, Th, NextCenter(s))
7 Decrease Th
8 Decrease standard deviation a
9 return the best found solution
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The TAMSASS-PECS algorithm starts with a pseudorandom feasible solution, 
which is generated in the following way: Let us divide the square for \y/n\ x \y/n\ 
non-overlapping tiles. The first point is located randomly at the center of the first or 
second tile. The following points are located at the center of a tile that is separated 
from the previous one by one free tile in a row order. The remaining points are ran
domly allocated to the free tiles (putting one point in each tile). The initial value 
for the Th threshold was 0.02 and the standard deviation a was equal to the common 
diameter of the tiles.

The TAMSASS-PECS algorithm tries to improve an initial point arrangement in 
an iterative way. At every iteration step it starts the .MSASS subroutine, for each 
point with the same a deviation and Th threshold. After finishing the MS ASS sub
routine for each point, the a deviation and the Th threshold were decreased by 1%. 
The TAMSASS-PECS algorithm works until the a deviation becomes smaller than a 
given afinai value.

The MSASS subroutine

1
2
3

4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20

proc M S A S S ( s , <r0, Th, i)
var sent := 0; font := 0; Font := 3; ct := 0.5; a := <To; 

while font < 4  ■ Fent and  sent = 0 do
_( ct ■ a i f  fen t > Font

\  a otherwise
Generate a random f  with N (0, a) distribution;
s’(i) :=  s(j) +  £
If f ( s ) - f ( s l) < f ( s ) T h 

th en
s(i) := s'(i); 
sent := sent +  1; 

else
s'(i) ■■=
if f (s) -  f(s') < f (s)Th 

then
s(i) := s'(i); 
sent := sent + 1; 

else

od
end

fen t := fen t +  1;

The input parameters of the MSASS procedure are: an initial feasible solution 
denoted by s (which is a vector that describes the points of the arrangement), an 
initial (Jo deviation value, an initial Th threshold level and an index i of a point 
in the arrangement, whose location will be changed the method. Note that in line 
7 and in line 13 above there is not just the f ( s ) < f(s') condition, but also the 
/ ( s) < /(s ')  +  f (s)Th condition. In the MSASS subroutine the loop will be executed

4



until there is an improved position for the ith point or the number of the unsucessful 
trials is greater than 11.

Computational results

The numerical results are reliable because the PROFIL/BIAS C ++ program li
brary routine uses interval arithmetic based procedures, and hence the determined 
numerical values will be proven lower bounds of the optimum value.

In [lh we published circle packings up to n =  100 using the TAMSASS-PECS 
algorithm. In our results of using 5 cases our results were an improvement on the 
best previously known packings (for n =  32, 37,47, 62 and 72).

5. R ep eated  patterns in circle packings
When comparing the structures of the optimal and the best known packings, we no
ticed some common patterns. Sometimes there exists a connection between the given 
structure and the number of circles. Based on this, we can classify some packings 
into pattern classes [8,11].

Finite pattern classes

We used the PAT(f(k)) notation for the pattern classes and its patterns, where 
/ :  N—»N is a function and f (k)  is the number of circles (n = f(k)).

In the dissertation, the following pattern classes are elaborated on [8,11]:

a) a PAT(&2 — l) (l = 0,1,2) pattern classes,
b) a PAT(k(k +  1)) pattern class,
c) a PAT(&2 + [k/2j) pattern class.

Approximating the structure of the number of k2 — l (l = 3,4, 5) circle packings, 
I introduced and studied the

d) STR (k2 — l) (l = 3,4,5) structure classes [8] as well.

The most intense study has been on grid packings, since this pattern class prob
ably contains some optimal circle packing sequences that are infinite.

A conjectured inifinite pattern class

K. J. Nurmela and his coauthors [6] published the following conjecture in 1999: 
Let us consider the simple continued fraction representation of and let us consider 
that subsequence of the approximation sequences that consists of every second fraction 
of the previous sequence. Now let us associate the |  elements of this subseries with
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a point arrangement in the following way: Let us divide the two perpendicular sides 
of the square for p and q into equal parts and let us draw lines parallel to the sides 
of the dividing points. Then we will have p x q rectangles. Place one point in the 
left corner of the square (in the point (0,0)) and place a new point in every second 
rectangular gridpoint. It is not too hard to see that in this way we can find room for

"(P+ !)(g+ !) '
2

points. The conjecture is that every point arrangement which arises from the previ
ous subseqence will be optimal. For obvious reasons I will call these packings grid 
packings.

G rid  packings

Suppose that p and q are positive integers, where |  G . Let [[p, q}} rep

resent a grid packing, and let |  is in the y/sj interval. Now let GP be a set of 
[\p,q\] pairs (GP= ’Grid Packing’).

P roposition 9 [9] In GP the following operations are well definied

[[Pi>9i]] +  [[P2,&]] := [[Pi+P2 ,qi + f tp  

A[[p,g]] :=  P ih  M]],
where A positive integer number, and if P2 < Pi and q2 < qi then

[[Pi>9i]] -  [\P2 ,Q2]] := [[pi ~P2 ,Qi -  92]], 
and if |  and |  is an integer, then

== [[f ,|] ]-

C onjectured optim al grid packing series

The above grid packing sequence may have a recursion relation as well:

P roposition 10 [8] Let us consider the subseries of the approximating series of 
the periodical simple continued fraction representation of which consists of every 
second fraction of the sequence. These grid packings can be generated by using the 
following recursion relations:

.Si =111.1 JJ- .SA = p . 5JJ.
Sn = ASn- i  -  Sn-2 {n > 3).

The density of the packings of the elements of this series is very high and asymp
totically tends to (which is the density of the densest packing of equal circles in
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the plane). Based on the proved optimal packings and the best known packings I 
obtained four other circle packing sequences, which I hypothesize will contain only 
optimal elements.

P ropostion 12 Let us consider the {Ai}, {Bi}, {Cf}, {A} grid packing sequences, 
where (i E Z+) : Ai := 25,-. Bi := Si + Si+i, C{ := B i/2, Di := Ci +  [3, 5] In this case 
lim dxi =  -t=, where X  E {S ,A ,B ,C ,D }  and dxi denotes the density of the circlei-AOQ y/12
packings.

An im proved lower bound using p a tte rn  classes

[vM—1 ’

The pattern classes are useful for improving the theoretical lower bounds.

T heorem 4 [11] The mn value is not less than

max (Li(n), L2{n), L3a{n), L3b{n), L4{n), L5(n), Le(n), L7(n), L8(n), L9(n)),

where
L\{n) =
L2{n) =

L 3 a  ( n )

L3b(n)

L4(n) =
L5(n) =
La{n) =
L7(n) =
L$(n) =

[ v'V/.i 1 I 3.i V 2+v_____1_____
[ \J u.:2| 2 •  ̂vf3f

1
f \/n + 2 l —5+2 y 2 
_______1_______
[Vn+Sl—3+-V/3’____ 1____
T \/n+ i] — 3+ \/3  ^1

-4+3x73/2 ’
n = +  1)> otherwise 0

m a * / n =  [ (pi+1)2te+1) 
g? < 3pf, ¿ e N, otherwise 0,

,pf < 3g2 and

L9(W) =  \ / d b
2

I used the grid packing sequence in P ropositon 12 to prove the following theo
rem.

T heorem 5 [9] For every n >  2

(3 )tt < d„(r„, [0, l]2) <
7r

where dn(rn, [0, l]2) denotes the density of a circle packing, whose bounds are sharp.

6. M inim al polynom ials o f circle packings
I have extended the concept of the minimal polynomial of a point arrangement (the 
minimal degree polynomial with the smallest positive root of mn) to the other equiv
alent forms of the problem. Based on the general minimal polynomials of the optimal

7



substructures, I found minimal polynomials of packings using the resultant of the 
general minimal polynomials of these substructures.

D efinition 15 [9] We call a circle packing/point arrangement an optimal substruc
ture in the X  C [0,1] compact set, if the dn>(rn>, [0, l]2) density is maximal in X , 
where n' denotes the number of circles in X .

D efinition 16 [9] A p„(x) polynomial is a generalized minimal polynomial, if x E 
{r ,m, s , a}  and /  G {S', £ ,/?, M}  respectively, and xn is the smallest positive root 
of the polynomial p„(x) and the degree of the polynom is minimal. For the sake of 
simplicity we use the notation Pn(x) =  p ^ x )  notation.

P roposition 13 [9] The relation between the general minimal polynomials are de
scribed by the following:

Pn(r pff s 2r(m := 2r) p^(m R:=T.+mn S m\ 2 /
Pn'~S(S := r M := En a := m)

p M : - S  2 r (<j 2 r) r)5 := E + m /'r __ m \irn v • 2 '

Pol«) M:=rn --R- 2s, a 2 r) p̂ (̂ : pS:=M+*(r :=  | )

psn- R(r := s\ ,E :=M
'n m  := <j)

Pn'^R 2S(m  := 2s) pft=M+m(s ;= | )

T heorem 6 [9] Lei «5 consider a point arrangement in the unit square. Let us further 
suppose that the point arrangement consists of N  > 2 optimal substructures, on the 
sides of T,!, E2, . . . ,  >1 ,v squares. I f f  is such a polynomial with the respective indices 

=  /(E j), then the p^(m) minimal polynomial can be calculated by the ith and jth  
minimal polynomials of the optimal substructures using:

Pn(m ) = Res(Pni(m ),PinTi)(m ) ^ j )  = 
det (Syl (pg (m), p ^

I have published minimal polynomials for up to 100 circles, and using them, have 
also calculated the exact values of mn and rn in many cases. I studied separately the 
case n = 11, when the roots of the polynomial of degree 8 can be determined in an 
algebraic way. I also obtained the appropriate quadratic field where the roots can be 
found.

Classification based on m inim al polynom ials

The minimal polynomials of point arrangements are suitable for classifiying these 
packings. Based on the fact that a minimal polynomial is linear, quadratic or quartic
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I found different kinds of packing classes and subclasses, where the connection be
tween previous pattern classes can be seen in the following figure.

CIRCLE PACKINGS

Quadratic class Linear class

Quartic class
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