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Chapter 1

Preliminaries

1.1 Introduction

The subject of this dissertation is a generalization of Bernstein’s inequality
[11].

The complex Bernstein’s inequality is (see [19, Corollary 1.3 p. 98] or [16,
Corollary 5.1.6 p. 233] or [41, Theorem 1.2.3 p. 531])

19,(20)| < nllpnllp (1.1)

where p,, is an arbitrary complex polynomial of degree n, ||p,||p denotes its
supremum norm over the unit disk D = {z € C: |z| < 1} and |zo| = 1.

With standard substitutions one obtains the following inequality on I =
[_L 1]

1
e
where p,, is an algebraic polynomial of degree n, ||p,||; is the supremum norm
of p, over I = [—1,1] and t € I (see [19, Corollary 1.2 p. 98] or [16, Theorem
5.1.7 p. 233] or [41, Theorem 1.2.5 p. 532] or [45, formula (158) p. 128]).

This inequality has recently been extended to the following inequality
by Baran [5] and Totik [56]. Let K C R be a compact set and vg be
its equilibrium measure (see [51] or [52] or the following section). In the
interior of K, Int(K'), the measure vk is absolutely continuous with respect
to Lebesgue measure and write wg (t)dt = dvk(t). Then

P ()] <n [Pl 11 (1.2)

[P (t)] < nrwic(t)l1pal | (1.3)

where p,, is an algebraic polynomial with degree n and ||p,||x is the supre-
mum norm of p, over K and ¢ € Int(K).



There is a vast literature for various generalizations of Bernstein’s and
Markov’s inequality. It is more or less hopeless to find all the papers and
articles which is related to these inequalities. Some surveys have appeared
recently, see e.g. [54] which details the different approaches to these inequali-
ties and also their history. Our aim here is to find the analogue of Bernstein’s
inequality for sets bounded by Jordan curves. This dissertation is based on
the papers [42], [44] and [43]. The main result of this work is Theorem 9. To
prove it we shall have to use several tools and results from potential theory,
and to generalize Hilbert’s lemniscate theorem.

The basic idea is to exhaust compact sets with lemniscates. See Hilbert’s
lemniscate theorem, Theorem 6. This exhaustion is useful in potential theo-
retic calculations, see Lemma 4 and also useful in supremum norm estimates.
Recently, such ”exhaustion” has appeared in different forms and different sit-
uations. The "inscribed ellipse method” is one of such examples. See for ex-
ample Sarantopoulos’ article [53] or the more recent Milev-Révész paper [40].
Another example is the "Padova” points by Len Bos and Shayne Waldron
which is unpublished yet. And, from our point of view, the most important
example is Totik’s paper [56].

1.2 Notions and tools from potential theory

We extensively use potential theory. For a detailed introduction and also as
a reference book, we refer to Ransford’s [51] or Saff-Totik’s [52] book.

Let us briefly recall some important notions and theorems. On the com-
plex plane, the logarithmic kernel —log |z — y| plays an important role
which also has an interesting physical interpretation: if we have one elec-
tron at x and we want to move another electron from y; to y,, then we do
log |z — y1| — log |z — y2| work.

Let p be a positive Borel measure on C with compact support and with
total mass 1. We call the following convolution the potential of

1
|z — y|

U9 (o) 1= [ 1og = duly)

where this function may attain +oo as well. Actually for such u’s, the set
where the potential attains plus infinity is not large. U*(x) is a superhar-
monic function and is harmonic outside supp . We define the logarithmic
energy of the measure p with the double integral

1) = [ [1og 2 dn(y)anto)

|z — |



Again, this quantity may be +oo. For a compact set K let

M(K) := {p : u Borel measure, u > 0,
supp p is compact, ||u|| = 1,supppu C K},

which is the set of probabilty measures supported on K. We define the energy
of the compact set K as

I(K) :=inf{I(p) : p € M(K)}.

With it, we set
cap(K) :=exp ( — I(K))

which is called the logarithmic capacity of K. If I(K) = oo, then K is of /has
zero capacity and is "small” in potential theory. For example, a compact set
consisting of only countably many points is of zero capacity. We say that a
propetry holds quasi-everywhere (q.e.) if it holds everywhere except for a
zero capacity set.

The following theorem (see [51, Theorem 3.3.2 p. 58 and Theorem 3.7.6
p. 75] or [52, Theorem 1.1.3 (b) p. 27 ]) is based on a simple compactness
argument. For every compact set K with positive capacity there exists a
unique measure vx with minimal energy:

Ivie) = I(K) = nf{I(n) : p € M(K)}

and supp vxg C 0.K where 0.K is the exterior boundary of K, that is, the
boundary of the unbounded component of C\ K. Furthermore, Frostman’s
theorem describes the potential of v:

a) U (x) < I(K) for every z € C
b) U"%(x) = I(K) for quasi every = € K.

We call this unique measure vy the equilibrium measure of K. We also
use the notion of Green’s function. Let K be a compact set with positive
capacity. Then Green’s function of the complement of K with pole at infinity
is defined as

g (2) = g(K, 2) = I(K) — U (2).

Green’s function has the properties
hd gK(Z) >0,

® gx(z) is harmonic outside K,



® gx(z) is subharmonic on C,

® gx(2) haslogarithmic growth near infinity, more precisely, lim|.| . (gx (2)—
log |z[) = I(K)

e gx(2) is zero on K quasi everywhere and everywhere on Int(K).

Equivalently, these properties can be used as the defining properties of Green’s
function.
Examples.

1. K=D ={z¢€ C: |zl <1}. Then Green’s function is gp(z) = log|z|
and cap(D) = 1.

2. K = [—1,1]. Then Green’s function is gj_11)(2) = log |2+ V2% — 1| and
cap([—1,1]) = 1/4.

3. K ={z¢€ C:|r(z)| = 1} where r is a complex polynomial of degree m,
that is, K is a so called lemniscate. Then Green’s function is gk (z) =
Llog |r(2)| and cap(K) = a~'/™ where a is the leading coefficient of r.

4. K ={z € C:|r(z)| < 1}, where, again, r is a complex polynomial of
degree m with leading coefficient a, then the same holds as in 3.

5. If K is a compact set such that C., \ K is connected, and f is a
conformal map from C., \ K onto C,, \ K; for some compact K; and

f(00) = o0, then gk (z) = gk, (f(z))

The relation between Green’s function and equilibrium measure has a
"converse”: If K is a compact set such that 0K is a union of finitely many
C*9 smooth curves (§ > 0), then the equilibrium measure is absolutely
continuous with respect to arc length measure, furthermore,

dvg(z) 1 0
ds  2m0n,

9x(2)

where ds denotes the arc-length measure on 0K and 0/0n, denotes dif-
ferentation at z in the direction of the outer normal n, (see [52], p. 92.
Theorem I1.1.5 and p. 211. Theorem 1V.2.2) .

In some cases, the equilibrium measure is known explicitly, for example,
if K = D is the unit disk, then dvg = 1/2nds, where ds denotes the arc
length measure on the unit circle. If K = [—1,+1], then dvg = ﬁdt,
where dt is the Lebesgue measure. vj_; ;) is called the arcsine distribution.



Chapter 2

Asymptotic Bernstein type
inequality on lemniscates

2.1 Notations, some remarks

Denote the unit disk by D, D ={z € C: |z| < 1}.

Definition 1. The set L C C s a lemniscate if for some complex polynomial
r, L = r7Y[@D], that is, 2 € L < |r(z)| = 1. The set r~}[D] = {z € C:
|r(2)| < 1} is called the interior of the lemniscate L.

Note that the interior of a lemniscate is not the topological interior of the
lemniscate (which is actually {z € C : |r(2)| < 1}).

A lemniscate is a system of finitely many closed Jordan curves. They
are not necessarily simple curves, so we distinguish their points. If z € L =
r~0D)] is a point from the lemniscate L with r/(z) # 0, then we say z is a
simple point (of the lemniscate L). In other words, z is not a critical point of
r. It is also equivalent to the fact that L is a simple curve near zy (does not
cross itself). Moreover, if 7/(z) # 0, then L = r~![@D] is a smooth (actually,
analytic) curve near z.

In this chapter we assume that K is the interior of a lemniscate.

If 0K is differentiable at zy € 0K, then the normal vector (with norm
1) at 2o pointing outward is denoted by n,,. We will usually consider n,, as
a vector and as a complex number simoultaneously. So K near z, can be
parametrized in the form zy + in,,t + o(]t|) for small real values of t.

To generalize the classical Bernstein’s inequality (1.1), let us rephrase
it in a different way first. We can write Bernstein’s inequality for the disk
{z € C:|z| <p} (p>0) with the simple substitution w = pz, hence

1
|Pr(w)| < n;IIPnII

8



where P, is arbitrary complex polynomial of degree n, || P,|| is the supremum
norm of P, over the disk {z € C: |z| < p} and |w| = p.

The Green’s function of the complement of the disk {z € C : |z| < p}
is g(z) = log|z/p| which follows immediately from the defining properties.
Its derivative at zg (|zo| = p) with respect to the normal vector n,, pointing
outward is

0 ) 1
= 1 = —
(%ZOQ(Zo) an.. og |z0/p| rE

which implicitly appears on the right hand side of (1.1).
So the classical Bernstein’s inequality (1.1) for any disk {z € C: |z| < p}
can be written in the following form

, 0
P, (20) < [P anzog(Zo) (120l = p)-

Now we state

Theorem 2. Let K C C be the interior of a lemniscate of some polynomial
r, that is, K = r~'[D] and let zy € OK be fived. Assume that zy is a simple
point of OK. Denote the Green’s function of the unbounded component of
Cw \ K by gi(2). Then, for every polynomial P, with deg P, = n we have

Pl < (1+o(0) - ne g gl IR (2)

where the term o(1) is to be understood as n — oo and depends only on K
and zog and is independent of P,.

The result is sharp in the following two senses.

Theorem 3. i) For a giwen fized n, the factor 14 o(1) can be arbitrarily
large, if we choose the set K and the polynomual P, appropriately.

i1) For every interior of a lemniscate K there ezists a sequence of nonzero
polynomials { P} with degrees tending to infinity such that

, 0
|Pl(z0)] = nHPnHKaTQK(ZO)

20
where deg P, = n, zog € 0K and zy is a simple point of OK .

In other words, the 140(1) factor cannot be left out if we choose the com-
pact set and the polynomial suitably, and the constant (the factor 52— g ()
20

on the right hand side) cannot be replaced by anything smaller. The proof
of this latter Theorem will be given at the end of this chapter.

9



Brief outline of the proof (of Theorem 2) is as follows. First we prove the
statement when P, is a polynomial of r, that is, there exists a polynomial
p such that P, = p(r). In this case the Bernstein type inequality (2.1)
simply follows from the fact that gx(z) = %gr log |r(2)|. Then we prove the
inequality for polynomials that are not (necessarily) polynomials of r. This
will be achieved by summing up the P, on different branches of r~1[0D] so
that the sum will be a polynomial of r.

For sake of convenience, the notations may change, but this will be ex-

plicitly mentioned.

2.2 The proof of Theorem 2 when P, is a
polynomial of r

In this section we prove the Bernstein type inequality (2.1) provided there
exists a polynomial p such that P, = p(r). For simpler notation, we write
P for P,, P = P,. The degree of P, = P is denoted by n and let N, =
degr, N, = degp (N, = deg P/ degr = n/N,).

The following lemma will help us.

Lemma 4. Let K := r'[D] = {z € C: |r(z)| < 1}. Denote the Green’s
function of the unbounded component of the complement of K by gx. If
2o € OK and 1'(z9) # 0, then

0 1.,
= — : 2.2
3nzogK(ZO) ARS (2.2)
Proof. First, Green’s function of Cy \ K is gx(w) = 5 log|r(w)| which

immediately follows from the defining properties of Green’s function. Second,
the following computation holds. If x € C, |x| =1 and f holomorphic, then
for the directional derivative % log|f(2)| of log | f(2)| we have

0 o loglf(z 4t x)| —loglf(2)]
oy elf)l = Tim | ‘ -
tj%rgl>0 Re (log f(z+1t- Xt)) — Re (log f(z)) _ (2.3)
. logf(z+t-x)—logf(z) f'(z)
Ret—}(l)r%o t-x x = Re (f(z) 'X) ’

Applying this with f = r, we obtain

0 1 1, arg 1’ (zo)
5a N o8l Go)l = I (o)l - Re (Wn> .

10



Since 7/(z9) # 0, r behaves in a small neighbourhood of zy like a R* — R?
linear mapping which preserves angles. Denote the unit length tangent vector
to OK at zy by v,,; the actual direction of v,, is not important. Since n,,
is perpendicular to v,,, that is, to 0K at zy, 7'(29)n,, is perpendicular to
'(20) V4, that is, to 0D at r(zp). Furthermore, if ¢ > 0 is small enough,
then zo + tn,, ¢ K, that is, |r(z + tn,)| > 1. So, from the r(zy + tn,,) =
r(20)+7"(20)-tn,,+o(|t]) representation it follows that r’(zg)-n,, is an outward
normal vector to 0D at r(zp). Therefore, the direction of /(zp)n,, coincides
with the direction of 7(z), and this means that (argr’(zp))n., = r(zo).
Substituting this into the previous formula, we obtain that Re(...) = 1, that
is

o 1 1.,
5o 7, 108170l = 5l Gl

O

Using P = p(r) with w = r(z) and wy = r(29) (20 € OK) we can write

|[P'(20)] = [P (r(20)) - 7'(20)] = [P/ (wo)| - [r'(20)] -

But p(w) already acts on the unit circle so Bernstein’s inequality (1.1) can
be applied. Clearly ||p(r(.))|lx = ||p(.)||p holds, furthemore degp = n/N,,
so (2.2) yields

0

|[P'(z0)] < (degp) - |lpllp - r'(20)| = n-[| Pllx - 5

QK(ZO) )

which is the inequality (2.1) without the (1 + o(1)) here.

2.3 The proof of Theorem 2 for arbitrary poly-
nomials

We will use the already introduced notations: deg P = n, degr = N, r(z) =
w, K =r~YD].

Let 2 := z and 2z, ..., 2™~1 denote those points (counting multi-
plicity) for which r(2(@) = r(2) = ... = r(2(™~1). From the assumption
in the theorem, we have zg # zéj) j=1,2,...,N,.

Now we construct the weight that we will use when summing up P on
different branches of r![0D] = 9K.

11



Lemma 5. For arbitrary ¢ > 0 and any fized zo € OK where zy is simple

point (r'(z) # 0) there exists a polynomial Q(.) = Q(z0;.) = Qle, 20;.)
satisfying the following properties

Q(z0) =1, (2.4)
Qe =Q ) =... =" =Q ") =0 and  (25)
Ny—1
Z |Q(Z(j))| <1l+4e forallzedK. (2.6)
7=0

Proof. The proof consists of two steps. In the first step we construct a prelim-

inary polynomial, and in the second step we use this preliminary polynomial

to construct Q. Since zy is fixed, we assume in this proof that r(zy) = 1.
First step.

Consider the following polynomial

1+r(z)>m 7

@i (m, 20;2) = qu(2) := ( 2

where m is a positive integer parameter which we will choose later. Since
r(z0) = 1, 1(20) = 1. Moreover, |¢1(z)| < 1 for all z € K except for finitely
many points (namely, 2, 2V, .., 28871y,

Second step.

Let ¢2(z0;2) = q2(z) be the polynomial with the lowest possible degree
such that

@2(20520) = 1, o' (205 20) = —1,

020, 2) = @' (20;2)) = . = (20,28 ) = @ (02 Y) =0
The zy is not a critical point of r, but the other z(()j)s (7 # 0) may be, so
degqs < 2-N,.

Let Q = Q(z0;.) be the following polynomial

Q(z) = Q(m, 205 2) == qu(m, 203 2) - ¢2(203 2) ,

where m will be chosen later. Property (2.5) for ) immediately follows since
q2(20; z(()j)) = q2’(zo;z(()j)) = 0 at every zéj), z(()j) # z9. Property (2.4) is also
true because of ¢1(z0) = ¢2(20) = 1.

Now we verify (2.6) for all z € OK. The family {|g2(20;2)| : 20 € 0K}
is uniformly bounded if z € K and let M < oo be an upper bound where
M is independent of € and m. Moreover, the derivatives (with respect to

2) {|g2'(20; 2)|} are bounded too and let M; denote its upper bound. So

12



the functions go(20;2) 2o € OK are uniformly equicontinuous on K. That
is, there exists § = d(e) which is independent of zy, and we can reindex the
solutions 2@, 2z . (V) of the equation r(t) = r(2) so that if z € 9K and
w = r(z) then we have the following assertion:

if lw—1| <0, then ’qQ(zg;zéj)) —qg(zo;z(j))‘ < Ni for all j.

T

Using this and the definition of ¢y, we get the following estimate

Np—1 Nr—1

> 1Q(z0: 2| = |qu(m, 205 2) - qa(20; 2)| + D Q20529 <
j=0 J=1

£ €
§1(1+E)+(NT—1)E_1+5.

So if z is such that |w — 1| < 0 (where w = r(2)), then > |Q| <1+ . Note
that we used here that zq # z(()j), j=12,...,N,.

On the other hand, let z € 0K be such that |w — 1| > 4. Then let us
choose m so that

£
3N, M

|q1(m, 20 2)| < for all z with |r(z) — 1| >4, z € K . (2.7)

The m depends on ¢ but is independent of z5. Then, in this case

Np—1 Np—1

., 0) c  3M =
Do Qs < Y 3 = <1te
7=0 7=0
So (2.6) holds.
O
For an arbitrary polynomial P = P,, define
Ny—1
P*(z) := Z P(29) - Q(z; 2 . (2.8)
=0
This P* is symmetric in 2, 20 2= 50 it is a polynomial in their ele-
mentary symmetric polynomials. Consider the equation r(t)—r(z) = 0 where
z is a parameter and t is the variable. The solutions are z(®, z(1) . z(Nr-=1)

hence an elementary symmetric polynomial is constant (4 ratios of coeffi-
cients of r) if its degree is smaller than N, and is a linear polynomial of r(z)
if its degree is N,..

13



This shows that P* is a polynomial of r(z), P* = p(r) where p is a suitable
polynomial.
Differentiate P* at zg :

(P*)(20) = P'(20) Q205 20) + P(20) Q' (20 20) +

Ny—1 Nr—1
+ Z (J) Z((]])) + Z P(zé]))Q’(zo;zé])) '
=1

For all j with 2 # z we have Q(z0;2) = Q'(20;2’) = 0. Since
Q(20; 20) = 1 it follows that

(P*)/<ZO> = P'(20) + P(20)Q'(20; 20) -
We estimate the second term as follows
| P(20)@Q' (205 20)| < [|P|x - (mlr'(z0)| + M)

where M; = M;(K) and also m = m(e, K, zp) is independent of deg P = n
so this estimate can be written

| P(20) Q' (20; 20)| = o(1)n (20) I1P||x

0
on,,
where o(1) tends to zero as n tends to infinity and is independent of P (but
depends on m, 2g, K).

On the other hand, the supremum norm of P* on K can be estimated as
follows (using r(K) = D)

Nr—1

1P (2 ||K—HZ (29 Zo;z(j))H <

D

Np—1
< ||P||Ksu[g > 1Qz0; 2| < ||P|lk(1+¢) .
zE .
7=0

The P* is a polynomial of r, so we can use the Bernstein type inequality
of the previous section. We get

0

< deg P[Pl
20

9r(20) -

‘(P*)/(ZO)

We know that (P*)/(zo) = P'(2) + 0(1)n%gK(20>‘|PHK, and ||P*||x <
(1+¢)-||P||x and deg P* = deg P + deg Q and deg Q = m - degr + deg gy <

14



mN,+2N,. The ¢ > 0 is fixed, so is m = m(g). So deg@ < m(e)-N,+2-N,,
which is a fixed value too. So we have

mN, 2N,
_|_

‘P'(zo)lgn-(l%— " -

o) - (1+) 1Pl 5gi(z0) =

= (1 o1) - [Pl o)

It is easy to verify that the o(1) error term depends on zy, because the degree
of Q(zo; z) depends on z.

2.4 Sharpness of the results

Proof of Theorem 3 i). Let r(z) = 2! — 1 and P(z) = 2z and K = r~1[0D].
Then, the equilibrium measure of K is absolutely continuous with respect
to arc length (denote its density by w) and the length of lemniscate K is at
least 2{. (Furthermore, z € K = |z| <2, so ||P||x < 2 for every [.) That is,
if | — oo, then there will exist a z € K such that 0/0n,,gx(2) = mw(z) <
1/(2l) and

1
1.2. —
21

which is larger than the right hand side (of (2.1) for P on K) and is much
smaller than 1 = |P'(2)|. O

Proof of Theorem 3 ). If K is a lemniscate, that is, K = r~![0D] for some
complex polynomial r, then let P(z) := (r(z))" where m is an arbitrary
positive integer. Then, deg P = mdegr and if z € K, then P'(z) =
m(r(z))mf1 -7'(2). So the left hand side (of (2.1) for P at z) is

m—1 /
while the right hand side (of (2.1) for P at z) is (see Lemma (4))

1
oDl degr

mdeng(r(.))er ‘7"(2)‘ :m|r’(z)}

which is the same. O
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Chapter 3

Sharpening of Hilbert’s
lemniscate theorem

3.1 Preliminaries to Theorem 9

As in the preceeding chapter, a lemniscate o is a level curve of a polynomial,
ie. 0 = {z: |Tn(2)] = ¢} for some polynomial T and some constant
¢ (which may always be assumed to be 1). Hilbert’s lemniscate theorem
claims the following (see [51, Theorem 5.5.8, p. 158] or [52, p. 79]).

Theorem 6. If K is a compact set on the plane and U is a neighborhood of
K then there is a lemniscate o that separates K and C\ U, i.e. it lies within
U but encloses K. In other words, K C Intc and Into C U.

An equivalent formulation is the following. Let ~;,I';, j = 1,...,m be
Jordan curves (i.e. homeomorphic images of the unit circle), ; lying interior
to I'; and the I';’s lying exterior to each other, and set v* = U;v;, I'™ = U;T';.
Then there is a lemniscate o contained in the interior of ['* that contains ~*
in its interior, i.e. o separates v* and I'* in the sense that it separates each
7; from the corresponding T';.

In this and the following few sections we shall extend this lemniscate
theorem to the case when v* can touch I'* at finitely many points. It will
follow that at the touching points the normal derivative of Green’s function
for the (unbounded component of the) complement of o can be as close to the
normal derivative of Green’s function for the complement of I'* as we wish.
This fact will be applied to derive the analogue of Bernstein’s inequality for
polynomials on I'* with asymptotically sharp constants.

Let v* and I'* be twice continuously differentiable in a neighborhood of
P and touching each other at P. We say that they X-touch each other if
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Figure 3.1: Various possibilities for the separating circles

their (signed) curvature at P is different (signed curvature is seen from the
outside of ['*). Equivalently we can say that in a neighborhood of P the two
curves are separated by two circles one of them lying in the interior of the
other one. See Figure 3.1 for the various possibilities for these circles.

One of our main theorems is

Theorem 7. Let v* = UjL,vy; and I = UL T be as above, and let v* K-
touch T in finitely many points Py, ..., Py in a neighborhood of which both
curves are twice continuously differentiable. Then there is a lemniscate o
that separates v* and I'* and X-touches both v* and I'* at each P;.

Furthermore, o lies strictly in between ~v* and T except for the points
Py, ..., Py, and has precisely one connected component in between each vy,
and I';, 7 =1,...,m, and these m components are Jordan curves.

It should be noted that since in Theorem 7 the lemniscate o is strictly
in between v* and I'* except for the points P, ..., P, and in these points it
has curvature bigger then the corresponding curvature of I'*; this ¢ can play
the role of the inner curve v*, and this way we can get an exhaustion of the
domain enclosed by I'* by interiors of lemniscates og, 01, . .. touching in more
and more points, as is depicted in Figure 3.2.

Let K be the closed domain enclosed by I'* and K, the closed domain
enclosed by v*. Denote by ¢(K, z) Green’s function of C,, \ K with pole at
infinity. Finally, let L be the closed domain enclosed by o. We shall need

17



Figure 3.2: Exhaustion by interiors of lemniscates touching in more and more
points

Theorem 8. Let ', v* and Py, ..., P, € I'* be as in Theorem 7. Then for
every € > 0 there is a lemniscate o as in Theorem 7 such that for each P;
we have

ag<L7PJ) < 89<K7P])
on On
where 0(+)/0n denotes (outward) normal derivative.

In a similar manner, for everye > 0 there is a lemniscate o as in Theorem
7 such that for each P; we have

ag(KO,Pj> < 8g<L, PJ)
on - on

+ ¢, (3.1)

+e. (3.2)

Note that

ag(K>Pj) < ag(L> Pj) < ag(K(th)
on T oOn T on
because Ko C L C K.

As an application of these results we prove the following Bernstein’stype
inequality with asymptotically best constant for derivatives of polynomials.
By approximating a compact set K from the inside by touching lemniscates
we deduce from Theorem 2 a general Bernstein type inequality. We want to
do that for more general sets than those bounded by finitely many Jordan
curves, so we make the following definition. We say that the compact set K
is Jordan fat, if the boundary of every connected component of its interior
Int(K) is a Jordan curve and K is the closure of its interior: K = Int(K).
In particular, every component of its interior is a simply connected domain,
but K may have infinitely many connected components or it may have cut
points on the boundary.

Now we can state
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Theorem 9. Let K be a Jordan fat compact set on the plane with connected
complement. Let zy be a point on the boundary of K and let us suppose that
this boundary is a twice continuously differentiable Jordan arc in a neighbor-
hood of zy. Then

8Q<K, ZO)

[En(z0)] < (1 +o(1)) =5

1Pl (3.3)
where the o(1) tends to O uniformly in the polynomials P, of degree at most
n as n — oo.

Recall that a Jordan arc is a homeomorphic image of the interval (0, 1).
Theorem 9 is sharp regarding the constant dg(K, zo)/0n:

Theorem 10. Let K and zy be as in Theorem 9. Then for every n there is
a polynomial P, of degree at most n such that

ag(K7 ZO)

[Fa(z0)] > (1 —o(1)) =5

1Pl - (3.4)

Actually, this theorem is true for any compact K for which zy belongs to
the boundary of the interior of K, and in a neighborhood of 2, the boundary
0K is a twice differentiable Jordan arc. This follows from the proof below by
first approximating K from the outside by a compact set which is bounded by
finitely many Jordan curves and which coincides with K in a neighborhood
of zp.

The proofs of the theorems use some basic tools from potential theory,
for which see for example [51], [59] or [52]. Placing lemniscates in between
touching curves will be done by the Brouwer fixed point theorem and by a
local version of Blaschke’s rolling theorem ([12, Ch. 4., Section 24., subsection
I1.]) claiming that out of two touching curves the one with a larger curvature
stays inside the other one.

We also remark that having just a single touch point is conceptually
simpler (and a simpler translation-rotation technique would work) than hav-
ing finitely many points. In order to facilitate the general discussion, when
dealing with a single touching point in Section 3.2 we shall follow the more
involved approach that will lead to the general case of finitely many touching
points.

The outline of the paper is as follows. In the next section we shall prove
the analogue of Theorem 7 for £ = 1 (i.e. when there is only one touch
point), but for Green lines (i.e. level lines of some Green’s functions) instead
of lemniscates. Then in Section 3.3 we extend this to any k& points still for
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Green lines. Section 3.4 contains the completion of the proof by showing
that the Green lines in Section 3.3 can be replaced by lemniscates. Section
3.5 contains the proof of Theorem 8, while in Section 3.6 we present some
lemmas that are frequently used in the proofs. Finally, in Section 3.7 we give
short proofs for Theorems 9 and 10.

3.2 Green lines touching in one point

In this section we prove Theorem 7 for a single touching point (k = 1) and
for Green lines (level lines of Green’s functions) instead of lemniscates. Thus,
let v;,I';, 5 = 1,...,m be Jordan curves, v, lying interior to I'; and the I';’s
lying exterior to each other, v* = Uj;y;, I = U;I';, and denote by K the
closed domain enclosed by I'* and by K the closed domain enclosed by ~*.
Some of the topological properties are easier to see for smooth curves, and by
suitable approximation we may assume that the curves «; and I'; are twice
continuously differentiable (apply e.g. conformal mapping of the interior
of the curves in question on the unit disk and make use of [50, Theorem
3.6]), though we shall not explicitly use this assumption (except the twice
differentiability around touching points).

For simpler notation I' will mean any one (but fixed) of the curves I';,
and then v is the corresponding inner curve -;.

The proof is fairly technical, therefore first we present an outline:

e First we remove a small part of the closed inner domain K around the
point P, the rest will be denoted by K.

e The removed part will be replaced by a rotated and shifted copy T%°(S)
of a lens shaped region S for which the bounding circular arcs have
curvature lying in between the curvatures of I' and v at the point P.

e The Green line will be for some small 7 the 7-level curve of Green’s
function g(K; UT?%%(S), ) of Cy \ (K; UT??(S)) with pole at infinity.

e To analyze these 7-level lines close to the boundary of T%9(S) we use the
reflection principle to continue the Green’s functions g(K, UT?°(S), 2)
over the circular arc 97%°(S), and complete these continued harmonic
functions to analytic functions. This way the 7-level line of g(K; U
T99(8), z) coincides with the image of a line segment under the inverse
of these analytic functions, and simple analytic properties can be used
for the analysis (Lemma 11).
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e We shall use the Brouwer fixed point theorem to prove that for appro-
priate (and small) rotation (by angle #) and shift (by 4), the 7-level
line will pass through the point P and will have the same tangent line
there as I' (and 7).

e For small 7 this 7-level line will lie very close to K; U T?%°(S), hence
it will separate each 7; from T';, and along the boundary of T%°(S) it
will have curvature very close to that of 97%(S), which is the same as
the curvature of 95.

e As a consequence, in the neighborhood of P we are working in, the
curvature of the 7-level line will lie in between the curvatures of 7 and
I and at the same time it touches both of these curves at P. Hence, by
a variant of Blaschke’s rolling theorem (given in Lemma 13) the level
line will lie in between these two curves in a smaller neighborhood.

e Elsewhere the 7-level line follows closely the boundary of K; UT%9(S),
hence it lies outside v* but inside I'*.

To carry out this project we have found it convenient to separate v and
I' in a neighborhood of P by two circles Cg, and Cg, specified in the second
paragraph below. In what follows we may encounter compact sets L (like
K, US or K; UT%(S) below) which may have unconnected component,
in which case Green’s function g(£,-) will mean Green’s function of the
unbounded component of C,, \ £ with pole at infinity.

If o is a curve which is twice continuously differentiable in a neighborhood
of P € o, then let (o, P) denote the curvature of o at P and ¢(o, P) the
tangent direction angle (i.e. the angle with the positive half of the real axis
of the tangent line to o at P), which we consider modulo 7.

In this section we shall assume that v* and I'* K-touch each other at a sin-
gle point P, and they are twice continuously differentiable in a neighborhood
of P. Thus, ~* lies strictly within ['* except for the point P, where we have
k(v*, P) > k(I'*, P) (note that K-touching means that x(v*, P) # x(I'*, P),
and k(I'*, P) > k(v*, P) is impossible because 7* lies inside I'*, see e.g.
Lemma 13).

Let A.(P) ={C]||z — P| < r} denote the open disk of radius r about P,
and for simpler notation in this section we shall write A, for A,.(P).

Let P € T' (recall that I" is one of the I';’s), and with x(I', P) < 1/Ry <
1/Ry < K(7, P) consider the circles Cg, and Cg, of radii Ry and Ry, respec-
tively, that touch I at P in appropriate sense, see Figure 3.3 (if the curvature
k(I', P) is negative, then we set |k(vy, P)| < 1/Ry < 1/R; < |&(T', P)|, see
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Figure 3.3: The choice of Cr, and Cg,

Figure 3.4). Then in a neighborhood of P these circles lie inside I" and out-
side 7y (see e.g. Lemma 13), and in this section our aim is to show that there
is a Green line (the level curve of a Green’s function) that separates ; and
I';, 5 =1,...,m, and in a neighborhood of P it also lies in between Cp, and
Cr,. We shall only deal with the nonnegative curvature case, the argument
is similar when the curvature at P is negative.

In what follows Cp always means a circle touching I at P in the appro-
priate sense and Dy denotes the closed disk that it encloses.

Choose a number Ry < R < R;. Then (see Figure 3.3) there is a small
r < Ry/8 such that x(T", z) < 1/Ry and k(v,2) > 1/R for z € Ay, Dr,NAY,
lies inside I" and Dp, contains the part of K, that lies in Ay.. We may also
suppose 7 < 1 so small that Ag, intersects only the curve I" (which contains
P) out of the curves I'y, ..., T',,. Let A and B be the two points on Cg lying
of distance 4r from P, and let S be a closed lens shaped domain bounded by
the (shorter) arc AB of the circle Cg and by its reflection onto the segment
AB, see Figure 3.5. When the curvature of I" at P is negative then we have
to make a slight change in the definition of S: then let S be bounded by
AB and by a curve lying inside I" and going close to AB, see Figure 3.6. We
cut off a small part of Ky, namely if @) is the open half-plane with boundary
line passing through the points A and B and containing P, then we cut off
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Figure 3.4: The choice of Cg, and Cg, for negative curvature

Ay N KogNQ, and set
Ki =Ko\ (AM N Ko N Q), (3.5)

for the remainder, see Figure 3.5, where the darkest shaded region is the
cut off part Ay, N KogN Q. Then Ky € K17 US, K; US has one connected
component inside I" and K; U S lies inside I'* except for its point at P. It is
possible however, that K;US (or the sets K; UT?°(S) considered below) has
unconnected complement. Let 7% be the transformation that consists of a
counterclockwise rotation about P by angle 6 followed by a translation in the
direction of PO by §, where O is the center of Cg (this is the inner normal
direction). With S we also consider the domain 7%°(S). We restrict 6, § with
some small but fixed numbers 0 < 6*,0* < r/8 so that for —6* < 6 < * and
0 < 4 < 6* the circle T%9(Cx) hits 0A, /2 in between the circles Cg, and Cp,,
and T%°(S) \ A, /2 lies inside T'. If 6%, 6* are sufficiently small, then we have
Ko\ Ayjp C Ky UT?(S).

Note also that the system of curves
$ = (eRl N —Ar/g) UM\ A) U (0N EK)\ D) (3.6)

(see Figure 3.7) lies within I'* and outside v* (except for the point P). We
shall put a Green line outside v* that lies within ¥ and also in between Cg,
and Cg, in A, /5.

The Green’s functions g(K,UT?%%(S), 2), |0] < 6*,0 < 6§ < §* of Coo\ (KU
T%9(8S)) (or of their unbounded component if these sets are not connected)
are uniformly bounded on compact subsets of the plane. g(K; U T%(S), z)

vanishes on Te’a(Zé), hence by the reflection principle we can reflect it on
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Figure 3.5: The darkest shaded region is cut off from K, and the NE-SW
striped lens shaped region is added

Figure 3.6: Selection of S for negative curvature
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Figure 3.7: The curve X

the circular arc T9’5(I§), and let this extended function be denoted by
g% (K, UT?(8S),2). Thus, these ¢%(K; UT?(S),2) are uniformly bounded
harmonic functions on Ag,, and let hy s be their analytic completion in Ag,
such that the imaginary part vanishes at P: Im hgs(P) = 0. Then hy, and
their first and second derivatives are uniformly bounded in A,,.

Next we claim that

ag(Kl U T@,é(S)’ Z)
on

> ¢ (3.7)

with some ¢y > 0 independent of 0, 9, where the partial derivative is taken in
the direction of the normal to T%9(AB), and the inequality is claimed for z €
T?5(AB)NA,,. To this end let g, (K, UT?9(S), z) denote Green’s function of
Coo \ (K1 UT?°(8S)) with pole at w. Then the normal derivative in question is
0900 (K1UT?2(S), 2)/On. Let wy be the point on A, that is the farthest away
from the arc AB, see (see Figure 3.8). The function 9(g,,(K,UT?(S),2))/0n
is non-negative and harmonic in w, hence Harnack’s inequality gives with a

c; > 0 independent of [f] < 6%, 0 <6 < 6" and z € T (AB) N A,

0o (K1 U TM(S), 2) - 89T0,5(w0)(Kl U T”(S), z)
on = on '

(3.8)
But it is easy to see that the right hand side is uniformly bounded from below

on T“(ZE) N A,. In fact, just attach a domain H to AB N Ay, with C?
boundary in such a way that it contains wq and lies in C\ K (see Figure 3.8).
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Figure 3.8: The choice of wy and H

Then gro.s (g (K1 UT?(S), 2) at z = T%9(() is bigger than Green’s function
g of H with pole at wy at (, hence the right hand side of (3.8) is at least as
large as the appropriate normal derivative for g at ¢ = (T%%)71(z). But K
can be conformally mapped into the unit disk so that wg is mapped into the
origin, and this conformal map is C* up to the boundary of . Since Green’s
functions are conformal invariant, the lower boundedness of the right hand
side of (3.8) is a consequence of the same result on the disk (in which case
Green’s function is just log 1/|z]).

A consequence of (3.7) is that |hy ;(2)| > ¢ for T?9(AB)NAs, (recall that
hg s was the analytic completion of gZ(K,UT?%(S),)), hence, by the uniform
boundedness of the second derivatives of hys in Ao, it follows that there is
a neighborhood U of ABN A, such that in T%%(U) we have |hg 5(2)] = co/2,
and this is even true in a neighborhood of the closure of U. Let

o(1,0,8) = {z]g(K, UT?(S),2) =7}

be the 7-level line of Green’s function g(K; UT?%(S),-). From the properties
of hys and from Lemma 11 below it follows that there are constants Cjy and
70 > 0 such that for 0 < 7 < 79 and z € o(7,0,5) N T%°(U)

1. we have for the distance from z to the boundary arc T%° (1/4\3)

1 _
ol < dist(z, T"°(AB)) < Cyr, (3.9)
0
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2. we have for the curvatures

1
[5(y(7.6,9).2) = 5l < Cor (3.10)

(recall that the curvature of T’ 9’5(;1\3) is 1/R), and

3. if 2* is the intersection point of TM(AVB) with the segment 27%9(0)
connecting z with the center T%°(0) of the circle T%(Cg), then we
have for the tangent direction angles

lp(0(7,0,6),2) — p(T**(AB), z%)| < Cyr. (3.11)

The first and third estimate we shall only need around P, but the second
one along o(7,0,8) N T%(U).

Let 045 be the level line of g(K; UT?%(S)),-) passing through the point
P, and let ¢g = (I, P) be the tangent direction angle to the bounding curve
[ at P. The distance from P to K; UT?%%(S) is the same as to T?°(S), and
this is > dcosf > §/2 (recall that T?° consists of a rotation by angle § and
by a shift &, and this latter one moves T%°(S) away from P by §). Therefore,
(3.9) implies for § € [—6*,0*] and 6 = 2C,7 that the point P lies outside the
7 level line (i.e. o(7,0,6) lies inside 0p 2c,r):

g(K, UT"7(8), P) > . (3.12)

Next, if 0 < 7 < 7p is sufficiently small, then for 0 < ¢ < 2Cy7 (3.11) gives

*

©(0g+5, P) — o > 5 (3.13)

and

*

(o_g-5,P) — o < BCR (3.14)

Now fix 0 < 7 < 79 so small that all these are satisfied, as well as the
inequalities

Cor < (1/Ry — 1/R)/2, Cor < (1/R—1/Ry)/2
and

< mf{g(KluTM(S),z) 0 <O<O,0<5< O, 2 € Z\Am}, (3.15)

where 3 is the curve defined in (3.6). Since all points of X\ A, lie outside
every K3 UT?9(S), —0* < 0 < 6*, 0 < § < §* (by the choice of §*,6*), the
latter infimum is positive, hence such a choice of 7 is possible.
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On the set [—6%,6*] x [0,2Cy7] consider the functions
f(6,0) = g(K, UT(S), P) — T, (3.16)

and
P(0,6) = (06,5, P) — 0. (3.17)

These are continuous functions of (6,¢), and their behavior on the boundary
is as follows:
f(6,2CyT) >0 by (3.12), (3.18)

f(6,0) <0 because  g(K; UT?°(S), P) =0, (3.19)
O(0°,5)>0 by (3.13)

and
d(—07,0) <0 by (3.14).

Therefore Lemma 12 can be applied to the function F(6,6) = (®(6,9), f(6,0))
on the box [—6*,0%] x [0,2Cy7] to conclude that there is a § € [—6*, 6*] and
a0 <¢§ < 2Cyr such that f(6,0) = ®(6,0) = 0. In other words, for this 6
and § the 7-level line (7,0, §) of the Green’s function of K; UT%?(S) passes
through the point P and at P it has the same tangent line as I'.

This is true for all sufficiently small 7 > 0. We claim that for small 7 this
level line d(7,0,0) separates each 7; from I';, it consists of m components
and it lies in between Cg, and Cg, in A, ;. For the latter one consider
that by (3.10) and the choice of 7 we have 1/Ry < k(o(7,0,6),2) < 1/Ry
for all z € o(r,0,6) NT%(U), hence for all 2 € A, No(7,60,6), and so we
may apply Lemma 13 to conclude that in A, , the level line o(7,6,0) lies
in between Cg, and Cg,, for it has the same starting point P and the same
tangent line at P as these latter circles. The curve (3.6) encloses the Green
line o(7,0,d) because of what we have just proved and because of (3.15).
Finally, o(, 0, §) lies outside K; UT?%°(S), and since this set has exactly one
component in each I';, we get that for small 7 > 0 the level curve (7,6, ) has
exactly m components and it separates each 7; from I';. That this level curve
o(T,8,0) consists of precisely m Jordan curves follows from the fact that each
bounded component of the complement of (7, 6,d) must contain a point of
K, UT?(S), so there are precisely m such bounded components, one-one
containing 7;, j = 1,...,m (in other words, o(7, 6, J) cannot intersect itself).

3.3 Green lines touching in finitely many points

In this section we extend the construction in Section 3.2 to k touching points.
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Let v;,I';, 7 = 1,...,m be the given Jordan curves, 7; lying interior to I';
and the I';’s lying exterior to each other, and v* touching I'* in the finitely
many points P, ..., Py, where we assume the curves to be twice continuously
differentiable. For each j let there be given two touching circles Cg,, and
ep%l with

li(’)/*, P]) > ]-/Rj,O > 1/Rj71 > H(F*,B)

(with appropriate modification for negative curvatures). We want to prove
that there is a Green line separating v* and I'* which also goes in between
Cr,, and Cg;, in a neighborhood of each P;. We follow the proof from Section
3.2, just do what was done there simultaneously around each P;. We follow
the notations there, but let us agree that the relevant objects from Section
3.2 for a point P; (instead of the point P of Section 3.2) will be denoted
by affixing the subscript j. In particular, we fix radii R;p < R; < R;; and
consider touching circles Cg; etc. The radius r can be chosen to be common
for all P;, and then let A, and B; be the two points on Cg, lying of distance
4r from P], and let S be the closed lens shaped domam bounded by the
arc Afj\éj and by its reflection onto A;B; (with obvious modifications for the
negative curvature case), see Figure 3.9. We cut off a small part from K as
n (3.5) (with modifications for the negative curvature case) and set

Ky = Ky \ (O(AM(pj) N KN Q).

=1

For each 7 = 1,...,k we consider the transformation Tjej % that consists of
a rotation about P; by angle ; followed by a translation in the direction of
P;O; by 05, where O; is the center of Cg, (inward normal direction at P;).

With each S; we also consider the domains Tjgj % (S;), where —6* < 6; < 0*

and 0 < 9; < 0 with some small positive numbers 6*,6*. Thus, in this case

we rotate and translate each S; independently of each other, and we have 2k

parameters 6y, ..., 0, 1,...,0,. Weset (0,8) = (01,...,0k,01,...,0k).
Now copy the proof from Section 3.2 word for word with the set

Ky U (U TP ().

If 6*,6* are sufficiently small then no change is needed in the proof, and for
small 7 > 0 the analogues of (3.13)—(3.19) hold for each point P; instead of
P for the functions

fi(0,6) =g <K1 U (U777 (S))), Pj) -,

and
©;(0,8) = (0,9 5. F) = @io;
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Figure 3.9: The choice of the S;’s

where 0, g 5 is the level curve of g(K1 U (U, T%95(S;)), ) passing through
the point P;, and ¢; o = ¢(I'*, P;) is the tangent direction angle to I'* at P;.
All these for 7 > 0 sufficiently small. Now an application of Lemma 12 to
the function

F(8,6) = (91(8,0), -+, ®4(6, ), /1(0,8),- -, [u(8,5), )

on the box [—0*,0*]% x [0,2C,7]* gives 0y, ...,0, € [—0*,0%] and §y,...,0; €
[0,2C7] such that the 7-level line o = o(7, 8, §) of Green’s function g(K; U
(UE_, T%,(S;)), ) of Coo\ (K1 U (UF_,T%9,(S;))) passes through each P; and
has the same tangent line there as I'*. Furthermore, in A, 5(F;) its curvature
is close to the curvature of Cg,, and the same proof that was used at the end
of Section 3.2 shows that o lies in between v* and I'*, and also lies in between
Cr,, and Cg,, in each A, 5(P;). Since Ky U (UF_,T%%;(S;)) has exactly one
connected component inside every I';, it also follows that the Green line o
consists of m connected components.

3.4 Completion of the proof of Theorem 7

In this section we shall replace the Green line o = (7,0, d) from Section 3.3
by lemniscates.
The outline is the following.

e ¢ is the 7-level line of some Green’s function, and first using the integral
representation for Green’s functions in terms of equilibrium measures
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and discretizing these equilibrium measures, we get polynomials Ty for
which the e-level curve lies very close to o (and this approximation is
getting better and better as N — o0).

e Next, for each j =1,..., k we select (for some large M) N/M zeros of
Ty lying close to P;, and apply to all these N/M zeros a small rotation
and dilation with center at P; in such a way that these rotations and
dilations are done independently of each other for different j’s. Thus,
in this step we introduce k rotation and k dilation parameters 64, ..., 0y
and (1+p1), ..., (1 + px).

e Using the Brouwer fixed point theorem we show that these rotation
and dilation parameters can be selected in such a way that for the
so modified polynomials 7% the e”-level curve ¢* passes through each
point P; and has the same tangent line there as I'*.

e By controlling the curvature of ¢* around each P; and using that else-
where o*
we can conclude that ¢* has similar properties as o, in particular it
separates each v; from the corresponding I';.

is very close to ¢ and o lies strictly in between v* and I'*,

We use the notations from Sections 3.2, 3.3, but denote the disks A, (P))
there by A, (P;). Recall that the Green line ¢ in question was the Green
line associated with a set

k
Ky =K [ T%%(S)),
j=1

where each S; has a circular arc on its boundary in the neighborhood A, (7)),
more precisely A,,(P;) NdS; is a circular arc of some fixed radius R;, going
closer to P; than ro/4. Recall also that this arc was lying on some circle
Cr, touching I'* at P; and o lies in between two touching circles Cg;, and
Cg,, in the neighborhood A, (P;) of P;, and lies strictly in between v* and
['* outside these neighborhoods, see Figure 3.10. We shall also need that in
A, (P;) the curvature of o satisfies an inequality

1/Rj1+e <r(o,2) <1/Rjp—¢ (3.20)

with some € > 0 (this is how the construction went in Sections 3.2 and 3.3).
In Section 3.2 we also verified that the normal derivative to level lines of
g(Ky, z) is strictly positive in the given neighborhood Ay, (P;) of each P;.
Now choose a small 0 < r < ro/2 so that Ay, (P;) N Ky = 0 for all j, i.e.
the disks Ay, (P;) lie outside Ky (see Figure 3.10).
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Figure 3.10: The form of K5 and the position of o

Let p be the equilibrium measure of Ky, and cap(K3) the logarithmic
capacity of K» (see e.g [51, p. 107] or [52, (1.4.8)]). Then

o(K, 2) = / log |2 — tldju(t) — log cap(2),

and locally this is the same as the real part of

h(z) = / log(z — £)du(t) — log cap(5),

(with an appropriate local branch of log). What we have just mentioned on
the normal derivative implies that h'(z) # 0 in any of the neighborhoods
Ay, (P;). Note also that the Green line o is just the level line {Re h(z) = 7}.

For each N choose N points {:EgN)}éV:l on the boundary of K5 so that
their asymptotic distribution is p (i.e. if we put mass 1/N to each 2™ then
the so obtained measures tend to p in the weak* topology on measures as

N — 0), and set
N

Tu(z) = [ (= — 2t™).

s=1

Then (note that all zeros of Ty lie in K5) we have

%logTN(z) — /log(z —t)du(t), (3.21)
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and

ylogTw(@)] = [loglz ~ tldu (322)
locally uniformly in C\ K3 as N — oo. Thus,

%log Tn(z) — h(z) + log cap(K>») (3.23)
uniformly on each Ay (P;), j = 1,...,k (with some local branches of the

logarithm). Then for sufficiently large N the absolute value of the derivative
of + log Tiy(z) stays above a fixed positive number on each A, (P;) (because
the same is true of their limit in Ay, (P;)), and all derivatives + log Tiy(z)
tend to the appropriate derivative of h uniformly on each A,(P;). Hence it
follows from Lemma 11 that for the level line oy ; of

1 1
~ 108 Tn(z)| = Re N log T (2)

that passes through the point P; we have for all j =1,...,k
SO(UNJ?PJ') _>90(0'ij) :gp(r*,Pj), N — oo,

where, as always, ¢(o, P;) is the tangent direction angle of o at P; taken
modulo 7. Thus, there is sequence {dy} tending to 0 such that

(o, Py) — olo, Py)| < dy (3.24)

and
(cap(Ky)e™)YNe N < [Ty (P))| < (cap(Ks)e™)VeNix. (3.25)

Choose and fix a large number M, and consider only N’s that are divisible
by M. For each j let X; be the set of the M closest zero of Ty to P;. As we
remarked at the beginning of this section the normal derivative dg(Ks, z)/0n
is strictly positive for z € A, (P;) N OK,, and this latter set is a circular arc
of A,,(P;). But this normal derivative is just the density of the equilibrium
measure with respect to arc length ds, more precisely

du(z) _ 1 99K, 2)

ds 2 on

(see [52, Theorem I.1.5] and formula [52, (1.4.8)]), hence there is a fixed
constant C' such that pu(Ac/n(P;)) > 1/M, and so for large N there are
at least N/M zeros in each Ay (F;). This implies X; C A/ (P;) for
each j = 1,...,k. In particular, if M is sufficiently large, then the sets X,
j=1,2,..., k are disjoint.
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Consider the transformations T;j P i =1,...,k, where
TPV =Pyt (14 p))(z - P)

is a rotation about P; with angle §; followed by a dilation with factor (1+p,),
and let T (z) be the polynomial obtained by replacing each zero x of Ty in X

by a corresponding zero ‘J'?j’pjx in ‘J'?j’ijj (and do this for all j =1,... k).

Let
X = (x\ (X)) (Uﬂ?j’éij) = Myl

be the zero set of Th. We restrict 6;, p; to lie in the interval [—dy, dy].

We think of the transformation x — ‘T;J P as moving the zero x. Note
first of all that no zero in X is moved by more than 2Cdy/M, and all the
N/M points in X; get farther away from P; by a factor (1 + p;) (or closer
by this factor if p; < 0). Hence, if d is the minimum distance between the
points P;, then for any jo = 1,...,k if p;, = —dx then

—dnN/AM

T: 20Cdy /M ¥~ DN/M
175 (Pl Cdy/ ) .

N/M
[T (B, = ) (” a2

provided M is so large that 2C'(k — 1)/M(d/2) < 1/8. In a similar manner,
if Pjo = dN then

175 (Pl

dnN/AM
[Tn(Pi)l ~

>e

(k—1)N/M
> (1 +dy )N/M (1 — W)

d/2

Combining these with (3.25) we can see that for the functions

1
— log | TN (P;)| — logcap(Ky) — 7 (3.26)

fj(plw"?pnaela“'aen): N

we have

sign fio(p1s -, P, 01, ..., 0,) = £1 (3.27)

if pj, = £dn and N is sufficiently large.

Next we consider the change of the tangent direction angle to the lemnis-
cates when we go from T to Ty . By Lemma 11 the tangent direction angle
©(on,;, P;) on the left hand side of (3.24) equals (mod )

N
P g
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Subtract this from the corresponding expression for 7', the result is
Lk
Qi(p1y--es pmy 01y b)) = ¥ Z Z <arg(7}9“plx — P;) — arg(x — PJ)> ,
=1 z€X;

and this quantity is the difference between the tangent direction angles at
P; to the level lines of |T%| resp. |Ty| going through the point P;. Here for
x € X; the change of the argument is

arg(]fj’pj:c — P;) —arg(x — Pj) =0,

while for all other [ # j and z € X this change is at most

arg(3%a — ) - argle - Py < o

because the distance between z and ‘If“p 'z is at most 2Cdx/M, and the
distance from P; to x is at least d/2 (d was the minimum distance between

the points P;). Therefore, if for a particular j = j, we have 6;, = —dy, then

1 N N 4Cdy dy

(o1, ... . <= (—dy— —1)= L

q)jo(ph >pm791a aem)_ N( dNM+(k 1)M Md ) < IM
(3.28)

if M is large, and similarly for 6;, = dy we have
N N 4Cdy dy

D e e > — —(k—-1)— : 2

]O(p17 7pm7017 79m)— <dNM (k )M Md ) > 2M (3 9)

This and (3.24) give that for 6;, = £dy the sign of

~

Qi(p1,.eey Py 01, 0m) = @long, Pj)—p(0, P)+Pi(p1, - oy pms by, )

(3.30)
for j = jg is £1 for all large N. Therefore we can applying Lemma 12 to the
function

F(plv"'7pm791a"'a0m) = F(p90)
= <f1(p7 0)7 7fk<p90)7$1(p7 0)7 7$k(p7 0))

with the f;’s from (3.26), to conclude that for all large N there are values

pl,...,pm,el,...,ﬁm - [—dN,dN]
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such that the lemniscate

on = {2[ITx(2)] = (cap(K2)e")™ }

passes through each P; and has the same tangent line at P; as the lemniscate
o,ie asT.

From what we have said it also follows that the distribution of the sets
X% is again the equilibrium distribution p, and for any compact set in C\ K3
there are no points from X}, in that compact set for large N. Therefore, all
the asymptotic formulae that we have verified for Ty hold also for 7. In
particular, the analogue of (3.23) is true:

1

N log TN (2) — h(z) + log cap(Ks) (3.31)

uniformly on each Ay, (P;). Now this, Lemma 11 and (3.20) imply that for
large N the curvature of o lies strictly in between 1/R; and 1/R;; in each
Ny, (Pj), g =1,..., k. Therefore, we can apply Lemma 13 to conclude that
in A,.(P;) the lemniscate o} goes in between Cg, and I'.

Finally, the function
1 T (2)]

JE— O S
N 8 cap(K,)N

converges to the Green’s function g( Ky, z) of C,, \ K3 uniformly on compact
subsets of C\ Ky. Therefore, if 77 < 7 < 79, then for large N the lemniscate
oy lies in between the Green’s lines

{9(Ky, 2) = 1} and {9(K3, 2) = 1}

For 71 and 7 sufficiently close to 7, away from the P;’s, more precisely
outside U;A,(P;) these level lines lie in between 7* and I'* (because o =
{g(K3,z) = 7} lies strictly in between these curves there), and this shows
that the lemniscate o} lies in between 7* and I'*, and, as we have just seen,
in A,.(F;) it also lies in between Cg, and I for each j.

The same argument easily implies that the lemniscate o} has the same
number of components as o, i.e. it has precisely one component in between
each 7; and I';, and this completes the proof.

3.5 Normal derivative of Green’s function

We shall only prove the inequality in (3.1), the proof of (3.2) is completely
analogous.
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Figure 3.11: The choice of Cg, and Cg,

Let 0 = o(T, 0, d) be the lemniscate constructed in the preceding section,
and let L be the closed region inside it. Recall also that K is the closed
domain enclosed by the I'*) i.e. the union of the domains enclosed by the
I'y’s,7=1,...,m.

We pick any touching point P = P, ..., P, and work with this single P
as in Section 3.2, and use the notations from there. We show that if 1/Rg
is sufficiently close to (I, P) and ~; are sufficiently close I'; for all j =
0,1,...,m, then the normal derivative dg(L, P)/0n is close to dg(K, P)/0n.
Note that since L lies inside K, we necessarily have g(L,z) > g(K, z), and
hence

dg(L, P) S J9(K, P)
on —  On

We shall only consider the case when the curvature of I'* at P (seen from
the outside of I'*) is nonnegative — the case of negative curvature can be
similarly handled. As in Section 3.2, I' is the I'; that contains the point P.

We shall use the notation from the previous section, but will only use the
fact that L contains K, (and Ky C K, i.e. the choice of the ;s is at our
disposal at this moment), and ¢ runs in between Cp, and I' in a neighborhood
of P.
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For simpler notation we may assume P = 0, that the tangent line to I' at
0 is the imaginary axis and Cg, lies to the left of this axis, see Figure 3.11.

First we consider the case when the curvature x(I",0) of I' at 0 is positive.
Let € > 0 and choose Ry < 1/k(I',0) < 1/Ry so that 1/Ry — 1/Ry < e. We
may assume r < Ry/8 so small that in Ay, = Ay (P) = Ay-(0) the lemniscate
o runs in between Cp, and I', and I' runs strictly in between Cp, and Cg,
except for the point 0, where all these curves touch each other. Let E\ﬁ be the
arc Cp,NAy4. Then this is part of L, hence g(L, z) < g(EF z). Since EF has
diameter bigger than r and smaller than 8r, if we consider EF / dlam(EF ),
then this is an arc of diameter 1 and of curvature > 1, hence its Green’s
function is C''-smooth inside EF, ie. there is an absolute constant Cy > 1
such that for any z we have g(EF, z) < Cydist(z, EF N Ay,)/r. It is easy to
verify that if z € Cg, N Ay, then

dist(z, EF N Ay,) < 58 — ZL < g2, (3.32)
Therefore, for z € Cr, N Ay,
g(L,2) < Coo 2] (3.33)
T

Next observe that as v* approaches I'*, the domain L approaches K from
the inside, therefore cap(L) tends to cap(K) where cap denotes logarithmic
capacity. Now the function ¢g(L, z) — g(K, z) is nonnegative and harmonic in
C\ K, and takes the value log(cap(K)/ cap(L)) at infinity, therefore it tends
to 0 at infinity if v* approaches I'*. ; From Harnack’s inequality we can infer
that in this case g(L, z) — g(K, z) tends to 0 uniformly on compact subsets
of Cy \ K. Therefore, if we start from inner curves «* that lie sufficiently
close to I'*, we can achieve that

g(L,z) —g(K,z) <er (3.34)

for all z € 0Ay, \ Dg,, where Dg, is the disk enclosed by Cpg,.
Consider the domain

G = Ay \ Dp,. (3.35)

(3.33) can be applied on its boundary that lies on Cg,, while (3.34) can be
applied on the part of its boundary that lies on 0A,,. In particular,

g(L,z) — g(K, z) < 4Cqer (3.36)

on the whole boundary, and hence also on the whole G. We show that these
are sufficient to conclude that the normal derivative d(g(L, z) — g(K, z)/0n
is small at 0.
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The circle Cg, is the one with radius R, and with center at —R,, hence
the Joukovskii transformation

1 <i(z + Ry) Ry >

=2\ h TGt Ry

maps the arc Cr, N Ay, into a segment around the origin, and simple cal-
culation shows that the image of G contains the upper half of the disk
A,/g,. By the mapping w = (Ry/r map this half disk onto the upper
half of the unit disk. We have defined mappings z — ( — w, and set
h(w) = ¢g(L,z) — g(K,z). For all w in the upper half of the unit disk
|w|/(|z]/r) lies in between two universal constants, therefore it follows from
(3.33)—(3.36) that there is a universal constant C such that h(w) < Cier|wl|?
for all w € [—1,1], and h(w) < Cyre for jw| = 1, Im w > 0. Let hy(w) be the
function that is harmonic and bounded on the upper half plane and takes
the boundary value Cier|w|? for w € [—1,1] and 0 on R\ [-1,1], and let
ha(w) be the harmonic function in the upper half of the unit disk that takes
boundary value Cyre for |[w| = 1, Imw > 0 and 0 for w € [—1,1]. Then
h(w) < hi(w) + he(w), and we can separately estimate hy(w) and hy(w) for
w lying close to 0.

By the Poisson formula ([51, Theorem 4.3.13]) for the upper half plane
we have for w = x + iy lying close to 0

e Y 2
hl(’l[}) = ; ) mc’lgru du

The integrand over the interval |u — x| < 2|w| is at most y/((u — x)? + y?)
times Cyer(3|w|)?, therefore

/ < 9Cer|w/?.
fu—a] <2l

On the rest of [—1, 1] we have |u — x| > |u|/2, hence the integrand is at most

4Cery, therefore
/ < 4Cher|w|.
lu—z|>2|w|

These give hi(w) < 13Cier|w].

To estimate hy apply the Joukovskii transform W = (w + 1/w)/2, which
maps the upper half of the unit disk onto the upper half plane C,, the
image of the upper semi-circle being [—1,1]. Now h3(W) = ho(w)/(Cire)
is nothing else than the harmonic measure w(W,[—1, 1], C,) of the segment
[—1,1] € OC., which is 1/7-times the angle that the interval [—1, 1] is seen
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I:

Figure 3.12: The choice of Cg, and Cp, in the zero curvature case

from W (see e.g. [51, Theorem 4.3.13] or [1, Example 3-1, p. 38]). For
|lw| < 1/4 we have 1/4|w| < |[W]| < 1/|w]|, hence the angle in question is at
most 2arctan(1/|W|) < 8|w|. Thus, he(w) < 8Cire|w|.

All in all we have obtained h(w) < 21Cyre|w|, if |w| < 1/4, which gives
for g(L,z) — g(K,z) = h(w) the estimate g(L, z) — g(K, z) < Cselz| with
some universal constant Cy for all z lying close to 0. This implies

Ig(L,z) —g(K,2)) |
on z=0

S 0267
and this is what we wanted to prove.

Finally let us consider the case when the curvature of o at the origin is
0. Then let Cg, be the reflection of Cg, onto the origin, where Ry > 2/¢, see
Figure 3.12. In this case Ay N Dpg, lies in the exterior of K, and (3.32) is
still true in the form
T 212 |2 2
dist(z, EF N Ay,) < 20 4 P < o152,
ist(z, 2)_R0+R2_|z|

The rest of the argument is unchanged, if we set G = Ay, N Dp, and work
with this G instead of the one defined above in (3.35).

3.6 Lemmas

Lemma 11. Let h be an analytic function in a neighborhood of a point zy, and
suppose that h'(z) # 0 in that neighborhood. Then the tangent direction angle
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of the level curve 0 = {Re h(z) = Re h(z20)} at 2y is equal to § — arg h'(z)
(mod 7) and the curvature of o at zq is given by

| Re (1" (20) /1 (20)*) 11 (20)]-

Furthermore, if ¢ < |h'(2)| < C for |z — 2| < p, then for 0 < |7| < pc the
distance from zg to the level line o(1) = {Re h(z) = Re h(zo) + 7} satisfies

the inequality

lul < dist{zg,0(7)} < lul (3.37)

C -~ 0, -~ e . .
Proof. . Without loss of generality we may assume zy = 0, h(z) = 0. Let
f(2) = (ih)~'(z) be the inverse of ih(z) in a small neighborhood of 0. Then
the level curve {Re h(z) = 0} is the set of points that are mapped by ih
into the real line, hence it is the same as the image of the real line under
f. Let [—a,a] be a small interval such that f exists on it. The direction of
the tangent line for the curve f(¢), t € [—a, a] (which is part of o) is f/(t) =
1/ih'(f(t)), hence the tangent direction angle of o at 0 is arg1/ih/(0) =
5 —argh/(0) (mod 7).

As for the curvature, consider first the case when f’(0) = 1. The arc
length element for the curve f(t), t € [—a,a] is ds = |f'(t)|dt, the unit
tangent vector is f'(t)/|f'(t)|, and the curvature is the absolute value of the
derivative of the latter with respect to ds, i.e. it is

d(f'®)/If ) dt| | O Ol=roag
()2 @]

dt ds
At t = 0 we have f'(0) = 1, hence f has expansion about the origin f(t) =
t 4+ ct? 4+ - - - with some c. Then

(3.38)

=142t +---|=+/1+20c+e)t+---=1+(c+O)t+---
for small real ¢, which gives

dlf'(t)]

dt ‘t:O -
Putting this into (3.38) and making use of f/(0) = 1 we obtain that the
curvature to the curve f(t) at t =0 is | Im f”(0)|.

If f/(0) # 1, then apply what we have got to the function F(z) =
f(2)/£'(0). Then the curvature for the curve f(¢) is 1/]f’(0)| times the cur-
vature for the curve F'(t), hence it is equal to | Im (f”(0)/f'(0))|/]f'(0)|. Fi-
nally, we can rewrite this back in terms of h using f'(¢t) = 1/ih/(f(t)), f"(t) =

c+¢=2Rec=Re f(0).
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R"(f(t))/(h'(f(t))? and we get the curvature in question is | Re (h”(0)/h’(0)?)||A’(0)].

Finally, let us consider the distance of o(7) from z;. We may assume
7 > 0. Let z; be the closest point of o(7) to zo. If this point is outside
the disk |z — z9| < p, then the distance in question is > p > 7/¢ > 7/C.
Otherwise

21
7 = Re h(z1) — Re h(z) = Re / B (u)du < Clz; — 2,
20
and this proves the left inequality in (3.37). On the other hand, let us consider
the vector field h/(z)/|h/(z)| where Z means here the complex conjugate of z.
Let x(s) be the tangent curve to the vector field starting from z, with arc

length parameter s. Then dx(s)/ds = h'(x(s))/|F (x(s))| is the unit tangent
vector to y, and so for integration along the curve y we have

x(7/c) T/c
h(x(r/c) — h(z) = / W(2)dz = / W (c(s) (5)ds

- '
B / [0 (x(s)|ds > (r/c)e =, (3.39)

so one of the points on the curve x(s), 0 < s < 7/c must lie on the 7-level
line o(7), and the distance of this point to zg is not bigger than the length
of this curve, i.e. 7/¢ (which is smaller than p, so x(s) for 0 < s < 7/c stays
within the disk |z — zy| < p and the lower estimate |h’| > ¢ in (3.39) holds

by the assumption in the lemma). O
Lemma 12. Let B = Hle[a;,a;“] be a bor in R* and let F : B — RF
be a continuous mapping in such a way that for any fixed jo = 1,...,k if
x = (x1,..., ) is a point with x;, = a;,, then signF(x) = *1 (i.e. the

function takes positive respectively negative values on opposite sides of the
box). Then there is an x € B such that F(x) = 0, i.e. the origin is in the
1mage set.

Proof. . Without loss of generality we may assume aji = +1. Let us suppose
to the contrary that the origin is not in the image set, and let H(x) be
the point where the half line emanating from the origin and going through
—F(x) intersects the boundary of the cube B = [~1,1]*. Then x — H(x) is
a continuous map of B into its boundary which does not have a fixed point
(a fixed point could only be on the boundary of B, but a boundary point
on face x; = £1 is mapped into a boundary point in the opposite half space
signz; = F1). This however, contradicts the Brouwer fixed point theorem,
and this contradiction proves the claim. O
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The next lemma is a local version of Blaschke’s rolling theorem ([12, Ch.
4., Section 24., subsection II.]): suppose that two smooth convex curves G
and ¢ lie in the same side of a common tangent line and G has larger curvature
at any point P than g at p, where the points P € G and p € g are such that
the tangent line of G at P is parallel with the tangent line of g at p. Then
G lies inside g.

Lemma 13. Suppose that G, g are the curves (t, F(t)), and (¢, f(t)), t €
[0, a] respectively, where F, f are real valued twice continuously differentiable
convez functions in [0, a] such that the real line is their common tangent line
at 0. If the curvature of G at any point (t, F'(t)) is at least as large as the
curvature of g at the point (t, f(t)), then F(t) > f(t), i.e. G lies above g.

In particular, let Ry < Ry and let Cr, and Cg, be two circles of radii Ry
and Ry, respectively, with Cr, lying inside Cr,, so that they touch each other
at a point P and have common tangent line | there. Suppose that r < Ry
and a smooth curve 7 lies on the same side of | as Cr, and Cg,, and at all
points of A, N~y it is has curvature lying in between 1/Ry and 1/Ry. Then
in Ao the curve v lies in between the two circles Cr, and Cg,.

Proof. . It is sufficient to prove the first statement.
The normalized tangent vector to (t, f(¢)) is

(o o)
T+ 7P L+ FEP) 7

and the arc length element is ds = (1 + f'(¢)?)!/2dt. Now a similar computa-
tion that was done in Lemma 11 gives that the curvature is

ro (o y
I+ 7~ 0+ Ferye)

Therefore, the assumption is that

(%),2 (m?%)l’

)
and upon using f/(0) = F’(0) = 0, integration from 0 to ¢ gives

O ()
T+ FEP)? = T+ Fap™

Since the function z/(1 4 2%)'/? is increasing, this implies F'(t) > f'(t), and
another integration yields F'(t) > f(t) on [0, al. O
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3.7 Proof of Theorems 9 and 10

First we verify a lemma.

Lemma 14. Let D be a simply connected region with C*** boundary for
some a > 0, let J be a closed arc on the boundary of D and let zg € J be an
inner point of this arc. Suppose that {u,}5° is a uniformly bounded sequence
of continuous functions on D such that they are harmonic in D, vanish on J
and uniformly tend to 0 on every compact subset of the complementary open
arc 0D \ J. Then

Oun(20)

on

where 0/0n denotes normal derivative in the direction of the inner normal
to D.

— 0, as n — 0o,

Proof. . Let |u,| < M, and fix a conformal map of D onto the upper half
plane C, that maps z, into the origin. This map can be extended to a C!
function to the boundary ([50, Theorems 3.5-3.6]), and the normal direction
is preserved under this map. Hence, it is sufficient to show the result in the
case D = C; and zy = 0 (see also the estimate (3.40) below).

Let J be the interval [—x1, 5] with 21, x5 > 0. The assumption is that for
every ¢ > 0 the sequence {u,} tends uniformly to 0 on R\ (—z1 — &, 29+ ¢),
thus there is an N, such that |u,| < e there for n > N.. If w(z, F,C,)
denotes the harmonic measure of the set £ C R at z relative to C,, then
forn > N,

[un(2)] < Mw(z, [—21 — &, —21],C4) 4+ Muw(z, [x2, 22 +¢],Cy)
+ ew(z,R\ (—x1 —e,29+¢),C,).
Seeing that the harmonic measure w(z, F, C;) is 1/m-times the angle that

the set E is seen from z (see [51, Theorem 4.3.13] or [1, Example 3-1, p. 38]),
for |z| < 1/2 the first term is easily seen to be at most

’Z| — aurctanliz|
x1/2 1’1/2—|-8

arctan < Chelz|
with some constant C; depending only on z;, and a similar estimate is true
for the second term with the same constant . Finally, the third term is at
most

€ (arctan ﬂ + arctan 12

1'1/2 1'2/2

These together give for n > N, and |z| < min(z1/2, x2/2)
|Un(2)’ S (ClM+ ClM + 02)€|Z‘, (340)

) S CzElZ’.
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from which the claim immediately follows, as € > 0 is arbitrary here. O

Proof. Theorem 9. Let Ui,...,Uj,... be the connected components of the
interior Int(K') of K (their number may be finite). Every U, is a simply con-
nected Jordan domain (i.e. its boundary is a Jordan curve — a homeomorphic
image of a circle), hence U; is homeomorphic to the closed unit disk (see e.g.
[50, Theorem 2.6]). It easily follows from the Jordan curve theorem that for
k # j the boundaries OU; and OU, may have at most one common point.
Let My be so large that zy belongs to Ky, = Uy U ... U Uy for M > M,. We
claim that for any € > 0

ag(KMv ZO) < ag(Ka ZO)
on on

for all sufficiently large M. Indeed, select a simply connected domain D
with C? boundary in the complement of K in such a way that zy is on its
boundary, and for some small disk A with center at z; the set K N 0A
coincides with A N K}y, (recall that this is a C? Jordan arc for small A).
Now cap(Ky) — cap(K) as M — oo (in case there are infinitely many
Un'’s), and hence g(Kyy, z) — g(K, z) locally uniformly in the complement
of K (just apply Harnack’s inequality in C, \ K to the nonnegative harmonic
functions g(K s, z) — g(K, z) that take the value log(cap(K')/ cap(Kyy)) at
infinity, cf. the proof of Theorem 8)). Hence, if D is a domain in C\ K with
C? boundary so that D N Ky = ANJK, then g(Ky,2) — g(K,2) — 0 as
M — oo locally uniformly inside the complementary arc 9D \ (AN JK) to
ANOK on the boundary of D. Now (3.41) follows for large M from Lemma
14 applied to the functions g(Ky, z) — g(K, z).

Any two of the Uy,..., Uy can touch each other only in a single point
(necessarily different from z;), so we have altogether only finitely many
touching points for these domains. If we remove from Uy,..., Uy some
tiny parts around these touching points then we get domains U7, ..., Uy,
bounded by disjoint Jordan curves. The parts removed can be so small that
for Ky, = U U...UUjy, we have

99(K3y, 20) < 9g9(K, 20) s
on On
— just repeat the proof of (3.41).
Now approximate K7}, from the inside as in Theorem 8 by a lemniscate
o touching 0K}, from the inside at 2y in such a way that for the region L
enclosed by o we have the analogue of (3.1) (recall that L is the closed region
enclosed by o0):

8g(L,zO) S ag(K]T/bZO) +e S ag(szO)
on on on

+e (3.41)

(3.42)

+ 3e. (3.43)
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Finally, apply Theorem 2 to conclude

ag<L7 ZO)
on

ag<K7 ZO)

P (20)] < (14 0(1)) 7n

Pl < n(1 4 o(1))( +32) |1 Pallx,
where we used that, because of L C K, we have ||P,||. < ||P.||x. Since here

e > 0 is arbitrary small, this is the same as (3.3). O

Proof. Theorem 10. Let A be a small neighborhood of 2y, and approximate
K from the outside by compact sets K;, [ = 1,2,... such that each Kj is
bounded by finitely many Jordan curves, K; N A = K N A, the Hausdorff
distance between K and K tends to 0, and so cap(K;) — cap(K) as | — oo.
These imply (see the preceding proof) g(K;, z) — g(K, z) as | — oo locally
uniformly in the complement of K, and then Lemma 14 gives by an argument
similar to what we did in the preceding proof that for large [

09(K, zp) < ag(Kl720>+€
on on

Select such a large (.

K is such that Theorem 8 can be applied to it, so let us approximate K;
from the outside by a lemniscate touching 0K, at zy as in Theorem 8 so that
(3.2) holds in the form

09(Ky, z0) < 09(L, o)

on On Te

(i.e. now I'* plays the role of v* in Theorem 8, and the outer curve is at
our disposal). Let o = {z | |[Tn(2)|] = 1}. Green’s function for C, \ L
with pole at infinity is g(L,z) = +log|Tn(z)], and its normal derivative on
the level curve o is the gradient of z — < log|Tw(2)|, i.e. at 29 € o it is
|Ty(20)|/N. Now let n be large and k = [n/N] the integral part of n/N. For
P,(2) = TX(z), which is a polynomial of degree at most Nk < n, we have

/ _ ! _ ag(vaO) 8g(K, Zo)
|P(z0)| = K|[Ty(20)] _kNT Zk;N(T_QE)
89([(7 ZO)

> n(l—o0(1)) (T - 25) [Pl

because || P,||x < ||P.||r = 1, and this is (3.4). O
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Chapter 4

Higher order sharpness of the
generalized Hilbert’s lemniscate
theorem

4.1 Curves touching each other

As above, if v is a system of closed curves, we denote the complement of the
unbounded component of C \ 7 by Int~y. That is, Int~y is the set what ~
encloses. E.g. if 7 is the unit circle, then Int ~ is the closed unit disk.

Suppose that we have two C! smooth curves, 7, v, which pass through
the same point, zp = 71(0) = 72(0) and have the same tangent line at z.
We can assume that zyp = 0 and their common tangent line is the real axis.
So we can parametrize them near the origin as follows: ~;(t) = t + ig;(t),
J = 1,2 where the smoothness of 7;’s imply that g;’s are C'' smooth.

So we have defined some functions using the original curves. Using these
functions:

Definition 15. Suppose we have two C* smooth curves, Vi, v, and the func-
tions g1, ga as above. We say that v, and v, touch each other at v1(0) = ~2(0)
in order s (s > 1), if |g1(t) — g2(t)| ~ |t|*. That is, for some constants
Ci > ¢1 > 0, we have

altl” < () — ()] < Culel (4.1)

Remarks.
The order s can be a real number. This translation (zp = 0) and rotation
(their tangent line is the real axis) is needed so that we could easily compare
the two curves pointwise.

Investigate this definition in the following geometric case.
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Theorem 16. Suppose that we have two C? curves 1,7, and the correspond-
ing functions g1, ga as above.

Then v, and vy touch each other in order 2 if and only if the their tangent
line at t = 0 coincide but their curvature att = 0 are different.

Proof. We use the following well-known relation. The curvature of the curve
t—t+if(t) at to is
/" (to)

(1+ (1))

The 7; j = 1,2 are C? smooth curves so if we reparametrize them with
the functions g; j = 1,2 such that they describe the same curve, that is,
{7(s) : |s| < sp for some sg > 0} = {t +ig;(t) : [t| < to for some t; > 0}
j = 1,2, then the functions gy, g» will be C? smooth too.

If they touch each other in order 2, then ‘gl(t) — gg(t)} ~ |t|%. This,
with their C* smoothness, give that ¢;(0) = ¢5(0) and g7 (0) # ¢5(0). Using
the curvature formula (4.2), we immediately obtain that their curvature is
different and we also know that their tangent line coincide (it will be the real
axis).

On the other hand, suppose that their tangent line coincide and their
curvature are different. We can assume that their common tangent line is
the real axis and they pass through the origin. As above, we have that g1, go
are C? smooth. Since their tangent line coincide at the origin, this implies
that ¢1(0) = ¢5(0). Using that their curvature are different at the origin, we
obtain with the curvature formula (4.2) that ¢7(0) # ¢5(0). These two facts
immediately imply that g1 (¢) — g2(t)| ~ [t|?, that is, they touch each other
in order 2.

(4.2)

O

This criteria describes the touching of order 2 with a geometric property.

4.2 Examples

Now we show two examples where (a badly required) higher order of touching
excludes the existence of in-between lemniscate (see Theorem 7).
Example 1.
Let s be a noninteger, real number (s € R\ Z), s > 2. We use the upper
integral part of a real number, [z] := min{k € Z : v < k}. Consider the
functions fi(t) := |t|%, fo(t) := 1/2f1(t). These functions can be differenti-
t

ated [s—1] times and actually fl([sfﬂ)( y=s(s—1)...(s—[s—1])-[t]>" T~
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where s — [s —1] < 1. So f1, fo € CI*7!1 but f]qs_ﬂ)(t), J = 1,2 can not be
differentiated at ¢t = 0.

Consider their graphs. Let v* : ¢t — t +if1(t) and T : ¢t — t + ifo(t).
Let v be the following closed Jordan curve {7y*(t) : —1/2 <t < 1/2} U {t +
i/2° : —1/2 <t < 1/2} such that v(0) = 0. Define I' in a similar way:
I={T"t): -1 <t<1}U{t+i/2: -1 <t <1} such that I'(0) = 0.

By definition, |fi(t) — fo(t)| ~ [¢|*, so v and T touch cach other at 0 in
order s.

On the other hand, any lemniscate L = r~![C] away from its critical
points (where 7/ = 0) is locally an analytic curve because of the inverse
function theorem (for holomorphic functions). At the critical points, the
lemniscates branch off, so r can have no critical points at z = 0 because of
higher order of touching (of v and I").

Indirectly, assume that there is a lemniscate L = r~1[C] in between ~ and
I'. We can assume that r(0) = 1. Parametrize its subarc near z = 0 by A that
is, [r(A(t))| = 1 for small values of t and A(0) = 0. Since the lemniscate L is
analytic near z = 0, we can assume that A’ # 0 and Re A\(¢) = ¢t. The tangent
lines of 7 and I' at z = 0 coincide with the real axis, so the same holds for A
(i.e. N(0) € R\ {0}). Now introduce the real function g as follows

A(t) =t +1ig(t) (for small ¢) |

where actually g(¢) = Im A(¢), so g(0) =0, g is a real valued function and g
is C*° smooth.
So we have 3 functions

fo(t) < g(t) < fi(t) (for small t). (4.3)

g 571D (0) is necessarily 0. So g(t) = O(|t|/*=1F), but fi(t), fo(t) ~ |t]*.
Since [s — 1] +1 > s (s ¢ Z), for some small ¢ > 0, we have g(t) < fa(t)
which contradicts (4.3).

Example 2.
This is very similar to the previous example, but a small change is needed
because e.g. t +— [t|* is analytic if k is an even integer.

Let k be an integer, k > 3. Let f3(t) := signt - t*,

U if £ >0,
fu(t) = q M2 if ¢ < 0 and k is odd,
—2[t|¥ if t <0 and k is even.
This definition immediately implies fy < f5 and | f3(t) — fa(t)| ~ [t[*. It is
easy to see that f3, f4 are C¥~! smooth functions but neither fg(k_l) (t), nor
ik_l) (t) is differentiable at ¢ = 0.
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Now consider their graphs. Let v* : ¢ +— t +if5(t) and I'* : ¢ — ¢t 4+ f4(t).
Let v be the following closed Jordan curve {y*(¢t) : —1/2 <t < 1/2} U{t+
i/2F © —1/2 <t < 1/2} such that v(0) = 0. Let I' be the union of the
following curves: {I'*(t) : —1 < ¢t < 1}, {t +ifa(1) : =1 < t < 1} and
{=1+it: fa(—1) <t < f4(1)}. We can also assume that I'(0) = 0.

By definition, v and I" touch each other at ¢ = 0 in order k.

Indirectly, assume that there is a lemniscate in between v and I'. Exactly
as above, we introduce the notations A and g. Again, we have 3 functions

£1(6) < g(t) < fo(t)  (for small 1), (4.4
We argue as follows. It is easy to verify that f;(0) = ... = f](k_l) =0,
j=1,2,5 ¢0)=...=g*1(0) =0.

If k is even, we have 3 subcases depending on the sign of ¢g*)(0). If
g®(0) > 0, then for small ¢ < 0, we have g(¢) > 0, which is a contradiction
with (4.3) because for small ¢t < 0 we already have f3(t), f4(t) < 0.

If ¢*)(0) < 0, then we have contradiction the same way for small ¢ > 0.

If g®(0) = 0, then for small ¢, we know that f3(t), fa(t) ~ |t|*, but
g(t) = o(|t|*), so for some small ¢, g(t) < f4(t) which contradicts (4.4).

If £ is odd, then the same idea can be applied except that the first two
subcases change place.

Again, these contradictions show that there is no such in-between lem-
niscate.

Remarks.
The second example can be extended to k = 2, but in that case, v and I are
not C? smooth, so they do not give counterexamples to Theorem 7.

In the proof of Theorem 7 we actually used the fact that there is an order
s (actually s = 2) such that the derivates of the curves up to order s — 1
coincide and they have derivatives of order s which are different. This is the
same as that we can insert two different analytic curves ¢ and ® in between
them such a way that v C Int ¢, ¢ C Int ®, & C Int I". These ¢ and ® in [44]
were (subarcs of ) properly chosen circles.

On the other hand, one of the common features of these two examples is
the fact that all the derivatives (at ¢ = 0) they have coincide.

We conjecture the following.
Suppose we have two curves I', v as above: v, I closed Jordan curves, their in-
teriors are fat, v C Int I, they have finite number of common points z1, ..., 2y
and they are C™ smooth near z; (j = 1,..., N). Furthermore assume that
their derivatives coincide at z; up to order n; —1 but their derivatives at z; of
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order n; differ. Then we conjecture that we can put a lemniscate in between
~v and T

Note that the assumption on their derivatives implies that locally one can
construct a lemniscate.
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Summary

The well-known Bernstein’s inequality states that
‘sz(zo)| <nl||P.||p . (1.1)

where P, is an arbitrary complex polynomial with degree n, ||P,||p denotes
its supremum norm over the unit disk D = {z € C: |z] < 1} and |z| = 1.
The subject of this dissertation is to extend this inequality.

If K C C is compact, then Green’s function of the complement of K with
pole at infinity is denoted by gx(2) = g(K, z). We say that the compact set
K is Jordan fat, if the boundary of every connected component of its interior
Int(K) is a Jordan curve and K is the closure of its interior: K = Int(K).

One of the main results is

Theorem (9). Let K be a Jordan fat compact set on the plane with con-
nected complement. Let zy be a point on the boundary of K and let us sup-

pose that this boundary is a twice continuously differentiable Jordan arc in a
netghborhood of zy. Then

09(K, zp)

Pieo)l < nl1+o(1) o2

1P| e, (3.3)
where the o(1) tends to 0 uniformly in the polynomials P,, of degree at mostn

asn — oo and M denotes the normal derivative of the Green’s function
of Coo \ K in the (outward) normal direction n (at z).

The proof of Theorem 9 is based on the the following two notions and
two theorems:

Definition (1). The set L C C is a lemniscate if for some complex polyno-
mial v, L = r~Y[0D], that is, 2 € L < |r(z)| = 1. The setr~'[D] ={2€ C:
|r(2)| <1} is called the interior of the lemniscate L.

Let v* and I'* be some finite systems of Jordan curves v* lying inside
[*. We assume that v* and I'* are twice continuously differentiable in a
neighborhood of P and touching each other at P. We say that they X-touch
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each other if their (signed) curvature at P is different (signed curvature is
seen from the outside of I'*). Equivalently we can say that in a neighborhood
of P the two curves are separated by two circles one of them lying in the
interior of the other one.

Theorem (7). Let v* = UjL,v; and I = UL T; be as above, and let v*
K-touch T'* in finitely many points Py, ..., P, in a neighborhood of which
both curves are twice continuously differentiable. Then there is a lemniscate
o that separates v* and I'* and K-touches both v* and I'* at each P;.

Furthermore, o lies strictly in between ~v* and I except for the points
Py,..., Py, and has precisely one connected component in between each -y,
and I';, j=1,...,m, and these m components are Jordan curves.

This is a sharpening of a celebrated theorem of David Hilbert claiming
the same but for untouching curves.

Theorem (8). Let I'*, v* and Py, ..., Py € I'* be as in Theorem 7. Then
for every e > 0 there is a lemniscate o as in Theorem 7 such that for each
P; we have

8g(L,Pj) < 89<K7 Pj) +e,
on on
where J(+) /On denotes (outward) normal derivative and K is the compact set
enclosed by T'*.
In a similar manner, for everye > 0 there is a lemniscate o as in Theorem

7 such that for each P; we have

99(K P) _09(L.F)
on on

where Ky is the compact set enclosed by v*.

(3.1)

(3.2)

Theorem 9 follows from Theorem 7 and its special case when K is enclosed
by a lemniscate (it is formulated as Theorem 2, as a very important special
case of Theorem 9). Theorem 9 is sharp regarding the constant dg (K, zo)/on:

Theorem (10). Let K and zo be as in Theorem 9. Then for every n there
s a polynomial P, of degree at most n such that

89([(7 ZO)
on

It is sharp also in the sense that in general the inequality

ag(Kv ZO)
On

i.e. (3.3) without the term 1+ o(1) is not true.

| Po(20)] > n(1 —o(1)) 1Pl - (3.4)

P (20)| <

1Pl
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(")sszefoglal(')

A jol ismert Bernstein egyel6tlenség azt allitja, hogy
‘sz(zo)| <nl||P.||p . (1.1)

ahol P, egy tetsz6leges n-ed foku komplex polinom, || P,||p jeldli a szuprémum
normajat a D = {z € C : |z] < 1} egységkorlapon és |zp| = 1. Ennek az
egyelGtlenségnek kiterjesztése ezen disszertacio targya.

Ha K C C kompakt, akkor gx(z) = ¢(K,z)-val jeloljiikk a komple-
menterének Green fliggvényét végtelenbeli pélussal. Azt mondjuk, hogy a
K kompakt halmaz Jordan kovér, ha a hatara minden osszefiiggé kompo-
nensének egy Jordan gorbe, és K a belsejének a lezartja: K = Int(K).

Az egyik {6 eredmény a kovetkezo

Tétel (9). Legyen K egy Jordan kovér kompakt halmaz a sikon dsszefiiggd
komplementerrel. Legyen zo eqy pont K hatardan és tegyuk fel, hogy K hatdra
kétszer folytonosan differencidlhato Jordan v a zo eqy kornyezetében. Ekkor

ag(K7 ZU)

|[Pa(z0)] < n(l+o(1)) =5

1P|, (3.3)

ahol o(1) tart 0-hoz egyenletesen a legfeljebb n-ed foki polinomokon amint
n — 00 €s W jeloli az n kilsé normdlis menti derivdltjit a Co \ K

Green fligguényének a z pontban.
A 9. Tétel bizonyitasa a kovetkez6 két fogalmon és két tételen alapul:

Definicié (1). Az L C C halmaz egy lemniszkéta, ha valamely r komplex
polinomra L = r=Y[0D], vagyis z € L < |r(z)| =1. Azr7'[D] = {2 € C:
|r(2)] <1} halmazt hivjuk az L lemniszkédta belsejének.

Legyen v* és I'* két, véges sok zart Jordan gorbébdl allé rendszer. Fel-
tessziik, hogy ~v* és I'* kétszer folytonosan differencialhato egy P pont vala-
mely kornyezetében és érintik egymast P-ben. Azt mondjuk, hogy K-érintik
egymast, ha az (el6jeles) gorbiiletitk P-ben kiilonbozik (az eléjeles gorbiiletet
[ kiilsejébdl tekintve). Ezzel egyenértékii, ha P egy kornyezetében a két
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gorbét szét lehet valasztani két korvonallal dgy, hogy az egyik korvonal a
masik korvonal belsejében fekszik.

Tétel (7). Legyen v* = UJL)v;, '™ = UL Ty mint fentebd, v* és ' K-
érintse eqymdst véges sok Py, ..., Py pontokban, amelyek kornyezeteiben két-
szer folytonosan differencidlhatoak. FEkkor létezik eqy o lemniszkdta, amely
elvdlasztja v*-t és I'*-t, valamint X-érinti v*-t és I'*-t mindegyik P;-nél.

Tovibbd, o szigorian v* és I'* kézt helyezkedik el, kivéve a Py, ..., Py
pontokat, pontosan egy komponense van minden egyes v; és I'; koxt, j =
1,...,m, és ez az m komponens mindeqgyike Jordan gorbe.

Ez élesitése David Hilbert egy hires tételének, amely hasonlot allit, de
nem-érinté gorbékre.

Tétel (8). Legyen ~*, T* és Py,..., Py € ' mint a 7. Tételben. FEkkor
minden € > 0-ra létezik eqy lemniszkdta, olyan mint a 7. Tételben, gy, hogy
mindegyik Pj-nél fenndll, hogy

89<L7PJ) < 89([(7 P])
on - On

+¢, (3.1)

ahol O(+)/0n jelli a (kilsé) normdlis szerinti derivdltat és K az a kompakt
halmaz, amit T'* kézrefoq.

Hasonlo modon, minden ¢ > 0-ra létezik eqy lemniszkdta, olyan mint a
7. Tételben, tigy, hogy mindegyik Pj-nél fenndll, hogy

ag(KO)Pj> < ag<LaPJ> +e,
on on

ahol Ky az a kompakt halmaz, amit v* kozrefog.

(3.2)

A 9. Tétel kovetkezik a 7. Tételbdl és annak specidlis esetébdl, amikor
K-t egy lemniszkata fogja kozre (ez a 2. Tétel, mint a 9. Tétel nagyon fontos
specidlis esete). A 9. Tétel éles a dg(K, z9)/0n konstansot tekintve:

Tétel (10). Legyen K és zy olyan, mint 9. Tételben. Ekkor minden n-re
létezik eqy legfeljebb n-ed fokiu P, polinom gy, hogy

ag(K7 ZO)
on

Abban az értelemben is éles, hogy a kovetkezo egyenlGtlenség

ag(Kv ZO)
on

vagyis (3.3) az 1 + o(1) szorz6 nélkiil nem igaz.

[P (z0)] > n(1 —o(1)) [ (3.4)

|1P(z0)l <

1Pl ¢,
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