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Behavior of Green’s functions around boundary points is a 
fundamental question of harmonic analysis, which has appli­
cations in different areas such as smoothness properties of so­
lutions to Dirichlet problems or bounds for polynomials and 
polynomial inequalities. The continuity of Green’s functions at 
boundary points has been extensively studied for a long time. 
The aim of this research is to give conditions for the stronger 
Holder continuity in terms of the geometry of the set. We con­
sider both the planar and the higher dimensional case. The 
dissertation consists of 3 parts based on 3 papers: [9], [10] and 
[11]-

1 Optimal Smoothness for E c [0,1]
Suppose that E  C C is a compact set with positive logarithmic 
capacity cap(E) > 0. Let il :=  C \E, where C := {oo}UC is the 
extended complex plane. Denote by gn(z) =  gn(z, oo), z t i l ,  
the Green function of il with pole at oo. We are interested in 
the behavior of gn at a regular boundary point.

Suppose that 0 is a regular point of E, i.e., gn(z) is continu­
ous at 0 and gn(0) =  0. First consider the case E  C [0,1], The 
monotonicity of the Green function yields

gn(z) >g-c\[0A](z), z e C \ [ 0 ,  l],

that is, if E  has the ’’highest density” at 0, then gn has the 
’’highest smoothness” at the origin. In particular

g n (-r) > gc\[0A]( - r )  > Vr, 0 < r < 1.
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In this regard, we would like to explore properties of E  whose 
Green function has the “highest smoothness” at 0, that is, E  
conforming to the following condition

gn(z) < C\z\1/2, z e  C,

which is known to be the same as

g n (-r) < C r l/2, 0 < r < 1 (1)

(c.f. [1, Theorem 3.6]). V. Andrievskii [2] proved that if E  satis­
fies (1) then its density in a small neighborhood of 0, measured 
in terms of logarithmic capacity, is arbitrary close to the density 
of [0,1] in that neighborhood, i.e. (1) implies

, cap(£n 0,r 1
iim ------------------- =  - .r—>0 r 4

For 0 < e < 1/2 we set (see [8])

E e(t) =  (E  fl [0, t]) U [0, et] U [(1 — e)t,t\.

Our first result is

( 2 )

(3)

Theorem  1 For any e > 0

( I _ 5PKWI) l Jt „ Co9£!izl)
\4 t )  t (4)

where Co is independent ofr.

L. Carleson and V. Totik [8] have characterized the optimal 
smoothness in terms of a Wiener type condition. They proved
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Theorem  2 (Carleson, Totik) Let e < 1/3. E  satisfies (1) 
if and only if

This theorem plays the same role for Lip 1/2 smoothness as 
Wiener’s theorem for continuity. The proof of Theorem 2 in [8], 
due to L. Carleson, was based on Poisson’s formula. There is 
an alternative approach: using the technique of balayage; and 
with it we prove the following variant of Theorem 2.

Theorem  3 Let e < 1/2. E  satisfies (1) if and only if

Andrievskii’s theorem is a consequence of Theorem 3.
The method used in the proofs of Theorems 1 and 3 can be 

applied to the case E  C [—1,1] as well (c.f. [8, Theorem 1.11]). 
In this case

therefore in this case the optimal smoothness for Green func­
tions is Holder 1 and we are interested in the sets E  satisfying

k

gn(ir) > ° < r < !>
r

gn(z) < C\z\, 0 < \z\ < 1.

This is equivalent to

go, (ir) < C r , 0 < r < 1 ( 6 )
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because gn(x +  iy) is monotone in y. The highest smoothness of 
the Green function at the origin (Lipschitz condition) is again 
equivalent to the highest density at 0. Namely, let E  C [—1,1] 
and set E e(t) as in (3) and

Ee{-t) =  {E  n [-t, 0]) U [-t, (1 -  e ) (—t)] U [~£t, 0],

Theorem  4 If E  C [—1,1] and e > 0 then

f 1 _  cap(Ee(t))
Jr U  t

The same is true for E e(—t).

KI t < C o g- ^ l
t r (7)

Theorem  5 Let e < 1/2. E  satisfies

ga{z) < C\z\, 0 < \z\ < 1,

if and only if (5) holds for Ee(t) and Ee(—t).

This is a variant of [8, Theorem 1.11].

Corollary 1 If E  satisfies (8) then

, c&p(E fl [—r, r]) 1
iim --------------------- =  - .

( 8 )

(9)

Corollary 2 (c.f. [8, Corollary 1.12]) is Holder 1 continuous 
at 0 if and only if both gc\{En[o l]) S'cV.Ery-i o]) are Holder 
1/2 continuous there.
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2 Markov Inequality and Green Func­
tions

This part of the dissertation is joint work with Vilmos Totik.
Let n„ denote the set of algebraic polynomials of degree < n. 

Markov’s inequality is a basic result comparing the supremum 
norm of a polynomial Pn G IIn to the supremum norm of its 
derivative:

ll^ ll[-i,i] < n2\\Pn\\[-i,i].

If C’i(O) is the unit circle, then the corresponding inequality

ll^llcqo) < n\\Pn\\Cl(o)

is due to Bernstein. Let us also remark that this is in some sense 
the optimal case, for if E  is any compact set on the complex 
plane then there are polynomials Pn G IIn, n =  1 ,2, . . .  for 
which

\\P:Me  > cn\\Pn\\E

with some constant c > 0.
Let B c C b e  compact with positive logarithmic capacity. 

We say that E  satisfies the Markov inequality with a polynomial 
factor if there exist C, k > 0 such that

\\Pn\\E<Cnk\\Pn \\E (10)

holds for every n and Pn G Iln.
Inequality (10) is strongly related to the smoothness prop­

erties of the Green function belonging to E. Let il be the outer
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domain of E, i.e. the unbounded component of C \ E, and let 
gn(z) denote Green’s function of il with pole at infinity, gn is 
said to be Holder continuous if there exist C*i, a > 0 such that

for all z G C. It is known that in certain cases the Markov 
inequality is equivalent to the Holder continuity of the Green 
function. Totik (see [12]) proved that this is true for Cantor- 
type sets, i.e. (10) is equivalent to (11) if E  is Cantor-type. It is 
an open problem if (10) and (11) are equivalent for any compact 
set E. In this work our aim is to show that in the optimal cases 
k =  1 and a =  1 they are, indeed, equivalent.

Theorem  6 Let E  be a compact subset of the plane such that 
the unbounded component Q of C \ E  is regular. Then the fol­
lowing are pairwise equivalent.

i) Optimal Markov inequality holds on E , i.e. there exists a 
C  > 0 such that

for every polynomial Pn G Hn, n =  1,2, . . . .

ii) Green’s function go, is Lipschitz continuous, i.e. there exists 
a C i > 0 such that

( 1 1 )

\\P'n\\E<Cn\\Pn\\E ( 1 2 )

gn(z) < Cudist^, E) (13)

for every z G C.
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iii) The equilibrium measure ¡j>e  of E  satisfies a Lipschitz type
condition, i.e. there exists a C2 > 0 such that

Te (D s(z)J < C 25 (14)

for every z G E  and S > 0.

If in addition, Q is simply connected, then i)—iii) are also equiv­
alent to

iv) The conformal mapping $  from Q onto the exterior of the
unit disk is Lipschitz continuous, i.e.

|$ (z i)  -  $ ( z 2)I < C2\zi -  z21, z i , z 2 G Cl.

We mention that each of i), ii) and iv) implies regularity, 
so in their equivalence the regularity assumption is not needed.

There is also a local version of our theorem. We say that E  
has the optimal local Markov property at the point zq G dCl if 
there is a constant C  such that

\Pik)(z0)\ < C kn k\\Pn\\E, Pn G n„, n =  1, 2, .. .

for all k =  1, 2, . . . .

Theorem  7 Let E  be a compact subset of the plane, Q the un­
bounded component of C \ E, and suppose that z0 G dQ is a 
regular boundary point of Q (i.e. gn(zo) =  0). Then the follow­
ing are equivalent.

i) E  has the optimal Markov property at zq.
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ii) Green’s function go, is Lipschitz continuous at zq, i.e.

gn(z) < C i\ z -  z01

with some constant C\.

iii) The equilibrium measure °f E  satisfies a Lipschitz type 
condition at zq, i.e. there exists a C2 > 0 such that

for every S > 0.

If in addition, Cl is simply connected, then i)—iii) are also equiv­
alent to

iv) The conformal mapping $  from Cl onto the exterior of the 
unit disk is Lipschitz continuous at z0.

It is worth noticing that much more is true than the equiv­
alence of ii) and iii), namely we can give a very precise two 
sided estimate for Green’s function in terms of the equilibrium 
measure.

Theorem  8 Let E  be a compact subset of the plane, Cl the un­
bounded component of C \ E, and suppose that z0 G dCl is a 
regular boundary point of Cl {i.e. ga{z<f) =  0). Then for every 
0 < r < 1 we have

Le  (^Ds{z0)j < C2 S

l z — zo\=r f pE (Dt(zo)) dt
t

(15)
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3 A Wiener-type Condition in Hd
Let E  C  R d be a compact set of positive Newtonian capacity, il 
the unbounded component of R d \ E  and gn(x, a) the Green’s 
function of il with pole at « 6  il. We are interested in the 
behavior of gn at a boundary point of il, which we assume to 
be 0, i.e. let 0 G dil.

Let Br =  {x  | \x\ < r }  be the ball of radius r about the 
origin, and we shall denote its closure by B r and its boundary 
(the sphere of center 0 and radius r) by Sr . With

the regularity of the boundary point 0 was characterized by 
Wiener (see e.g. [3, Theorem 5.2]): Green’s function ga(x,a) 
(a G il) is continuous at 0 G dil (i.e. 0 is a regular boundary 
point of E) if and only if

where cap(En) denotes the (d-dimensional) Newtonian capac­
ity of E n. Our aim is to characterize in a similar manner the 
stronger Holder continuity:

E n =  E  n ( B 2-„+ i \ S 2- „ )  =  { i g £  2 -n < \x\ < 2~"+1 j

OO
(16)

n= 1

gn(x, a) < C\x\ti

with some positive numbers C , k .
Following the definitions in [8], for e > 0 set

ATE (e) =  {n  G N | cap(£;n) > e2 -n(-d- 2'>},

(17)

(18)
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and we say that a subsequence J\f =  {«4 < n-2 < . . . }  of the 
natural numbers is of positive lower density if

liminf
N —>-oo

l-A/'n { 0,
N + l > 0 ,

which is clearly the same condition as n =  O(k). 
Let xq & S\, 0 < t  < 1, £ > 0 and set

C(xo, t , £) {x  G Be {x ,  X 0) > 1 — r } . (19)

This is a cone with vertex at 0 and xo as the direction of its 
axis. We say that E  satisfies the cone condition if

C ( x 0, r , f ) c i l ( 2 0 )

with some xo G Si, r  and £ > 0, which means that fi contains 
a cone with vertex at 0.

Theorem  9 a) If N e {&) of positive lower density for some 
£ > 0 then Green’s function go, is Holder continuous at 0.

b) If Green’s function go, is Holder continuous at 0 and E  sat­
isfies the cone condition then Me { )̂ of positive lower 
density for some £ > 0.

The sufficiency of the density condition for Holder continu­
ity of the solution to Dirichlet’s problems and various elliptic 
equations was proved by Maz’ja  in [4]- [7]. Maz’ja  used the 
condition

N

^  2n(d- 2)cap(.E id D2- n) > S N ,  N  =  1,2,...  (21)
n= 1
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for some S > 0, which is equivalent to the positive density of 
J\Te (£). It was also shown in [7] that in general this condition is 
not necessary. The problem to find conditions under which (21) 
is necessary was raised in [6]. Thus, the above theorem solves a 
long standing open problem under the simple cone condition.

The importance of the Holder property is explained by the 
following result. Let G be a domain in R d with compact bound­
ary such that 0 is on the boundary of G. We may assume that 
G % B\, and set E  =  Tfi\G. Then Q := TLd\E =  GU ( R d\Bi)  
is a domain larger than G and 0 is on the boundary of il. If / is 
a bounded Borel function on the boundary of G, then let u f de­
note the Perron-Wiener-Brelot solution of the Dirichlet problem 
in G with boundary function /. We think Uf to be extended to 
dG as Uf =  f  there.

Lem m a 1 Suppose that 0 is a regular boundary point of G. 
Then the following are equivalent.

1) 9g (p  a) is Holder continuous at 0 for a G G.

2) h e {Bt) < C rd~2+K for some C , k > 0 and all r < 1, where
Pe  denotes the equilibrium measure of E .

If, in addition, G satisfies the cone condition at 0, then 1) -
2) are also equivalent to

3) If f  is Holder continuous at 0, then so is Uf.

Note also that it is indifferent if ’’for a G G” in 1) is under­
stood as ” for some a G G” or as ” for all a G G”.
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