Smoothness of Green’s
Functions and Density of Sets

Thesis

Ferenc Todkos

2005



Behavior of Green’s functions around boundary points is a
fundamental question of harmonic analysis, which has appli-
cations in different areas such as smoothness properties of so-
lutions to Dirichlet problems or bounds for polynomials and
polynomial inequalities. The continuity of Green’s functions at
boundary points has been extensively studied for a long time.
The aim of this research is to give conditions for the stronger
Holder continuity in terms of the geometry of the set. We con-
sider both the planar and the higher dimensional case. The
dissertation consists of 3 parts based on 3 papers: [9], [10] and
[11].

1 Optimal Smoothness for F C [0,1]

Suppose that ' C C is a compact set with positive logarithmic
capacity cap(FE) > 0. Let Q := C\ E, where C := {co}UC is the
extended complex plane. Denote by ga(2) = ga(z,00), 2z € Q,
the Green function of Q0 with pole at oo. We are interested in
the behavior of gq at a regular boundary point.

Suppose that 0 is a regular point of I, i.e., gq(z) is continu-
ous at 0 and go(0) = 0. First consider the case F C [0,1]. The
monotonicity of the Green function yields

gQ(Z) 2 96\[0,1](2)7 z € C\ [07 1]7

that is, if F/ has the "highest density” at 0, then gq has the
"highest smoothness” at the origin. In particular

ga(-r) 2 96\[071](_7") >r, 0<r<l



In this regard, we would like to explore properties of I/ whose
Green function has the “highest smoothness” at 0, that is, I
conforming to the following condition

ga(z) < Cl2|Y?,  zeC,
which is known to be the same as
gal—r) <Cr/?, 0<r<1 (1)

(c.f. [1, Theorem 3.6]). V. Andrievskii [2] proved that if E satis-
fies (1) then its density in a small neighborhood of 0, measured
in terms of logarithmic capacity, is arbitrary close to the density
of [0,1] in that neighborhood, i.e. (1) implies

i @PEN[0, 7)) 1 2)

r—0 T 4
For 0 < e < 1/2 we set (see [8])
E.(t)=(EnN]0,t])U0,et] U (1 —e)t,¢]. (3)
Our first result is

Theorem 1 For anye >0
1
1 E (i 1 —
. \4 ¢ ¢ NG
where Cy is independent of r.

L. Carleson and V. Totik [8] have characterized the optimal
smoothness in terms of a Wiener type condition. They proved



Theorem 2 (Carleson, Totik) Let ¢ < 1/3. E satisfies (1)

if and only if

1 cap(E:(27"))

> (1 = e
k

This theorem plays the same role for Lip 1/2 smoothness as

Wiener’s theorem for continuity. The proof of Theorem 2 in [§],

due to L. Carleson, was based on Poisson’s formula. There is

an alternative approach: using the technique of balayage; and
with it we prove the following variant of Theorem 2.

Theorem 3 Let ¢ < 1/2. F satisfies (1) if and only if
1
/ (l - —Cap(EE(t))> L (5)
o \4 t t

Andrievskii’s theorem is a consequence of Theorem 3.

The method used in the proofs of Theorems 1 and 3 can be
applied to the case I C [—1,1] as well (c.f. [8, Theorem 1.11]).
In this case

, ) r
galir) > 96\[71,1](“") > 5 0<r<l,

therefore in this case the optimal smoothness for Green func-
tions is Holder 1 and we are interested in the sets F satisfying

ga(z) < Clz|, 0< |z < 1.
This is equivalent to

galir) < Cr, 0<r<l (6)



because gq(z+4y) is monotone in y. The highest smoothness of
the Green function at the origin (Lipschitz condition) is again
equivalent to the highest density at 0. Namely, let £/ C [—1,1]
and set F.(t) as in (3) and

Bo(—t) = (BN [~,0]) U [, (1 — £)(—t)] U [—et, 0].

Theorem 4 If EC [-1,1] and € > 0 then

/Tl G _ cap(&(t))) %dt - CO@ )

The same is true for E.(—t).
Theorem 5 Let e < 1/2. E satisfies
galz) < Clzl, 0< 2] <1, (8)
if and only if (5) holds for E.(t) and E.(—t).
This is a variant of [8, Theorem 1.11].
Corollary 1 If E satisfies (8) then

ap(Enlri) 1
r—0 T 2

(9)

Corollary 2 (c.f. [8, Corollary 1.12]) gq is Holder 1 continuous
at 0 if and only if both ge\(En0,1) and ge\(Br[—1,0) 4T¢ Holder
1/2 continuous there.



2 Markov Inequality and Green Func-
tions

This part of the dissertation is joint work with Vilmos Totik.
Let I1,, denote the set of algebraic polynomials of degree < n.
Markov’s inequality is a basic result comparing the supremum
norm of a polynomial P, € II,, to the supremum norm of its
derivative:
1P l=1,1 < 22 Pall =1,

If C1(0) is the unit circle, then the corresponding inequality

1P ley ) < nllPalley o)

is due to Bernstein. Let us also remark that this is in some sense
the optimal case, for if I/ is any compact set on the complex
plane then there are polynomials P, € II,,, n = 1,2,... for
which

1Pl = enl|Palls

with some constant ¢ > 0.

Let E C C be compact with positive logarithmic capacity.
We say that I satisfies the Markov inequality with a polynomial
factor if there exist C, k& > 0 such that

1Pl < Cnfl| Pl (10)

holds for every n and P, € I1,,.
Inequality (10) is strongly related to the smoothness prop-
erties of the Green function belonging to E. Let € be the outer



domain of E, i.e. the unbounded component of C\ E, and let
ga(z) denote Green’s function of  with pole at infinity. gq is
said to be Holder continuous if there exist Cy, a > 0 such that

galz) < Cy (dist(ng))a. (11)

for all z € C. It is known that in certain cases the Markov
inequality is equivalent to the Holder continuity of the Green
function. Totik (see [12]) proved that this is true for Cantor-
type sets, i.e. (10) is equivalent to (11) if £ is Cantor-type. It is
an open problem if (10) and (11) are equivalent for any compact
set F/. In this work our aim is to show that in the optimal cases
k=1 and o = 1 they are, indeed, equivalent.

Theorem 6 Let E be a compact subset of the plane such that
the unbounded component Q of C\ F is reqular. Then the fol-
lowing are pairwise equivalent.

i) Optimal Markov inequality holds on E, i.e. there exists a
C > 0 such that

1PallE < Onl|PyllE (12)
for every polynomial P, € 11, n=1,2,....

il) Green’s function gq is Lipschitz continuous, i.e. there exists
a C1 > 0 such that

galz) < Cydist(z, E) (13)

for every z € C.



iii) The equilibrium measure pug of E satisfies a Lipschitz type
condition, i.e. there exists a Cy > 0 such that

i (Ds(2)) < Cad (14)
for every z € £ and § > 0.

1If, in addition, ) is simply connected, then 1)—ii) are also equiv-
alent to

iv) The conformal mapping ® from Q onto the exterior of the
unit disk is Lipschitz continuous, i.e.

|(I>(21)—(I>(22)| §03|21—22|7 21,292 € Q.

We mention that each of i), ii) and iv) implies regularity,
so in their equivalence the regularity assumption is not needed.

There is also a local version of our theorem. We say that F
has the optimal local Markov property at the point 2o € 92 if
there is a constant C such that

[P (20)] < CFn®|| Pyl 5, P,ell,, n=12...
forall k=1,2,...

Theorem 7 Let I/ be a compact subset of the plane, ) the un-
bounded component of C\ E, and suppose that zo € 9Q is a
reqular boundary point of Q (i.e. ga(zg) =0). Then the follow-
ing are equivalent.

i) E has the optimal Markov property at zg.



il) Green’s function gq is Lipschitz continuous at zg, i.e.
ga(z) < Cilz — 2o
with some constant Cy.

iii) The equilibrium measure pg of E satisfies a Lipschilz type
condition at zo, i.e. there exists a Cy > 0 such that

HE (Da(zo)) < Cqd
for every 6 > 0.

1If, in addition, ) is simply connected, then 1)—ii) are also equiv-
alent to

iv) The conformal mapping ® from Q onto the exterior of the
unit disk is Lipschitz continuous at zp.

It is worth noticing that much more is true than the equiv-
alence of ii) and iii), namely we can give a very precise two
sided estimate for Green’s function in terms of the equilibrium
measure.

Theorem 8 Let I be a compact subset of the plane, ) the un-
bounded component of C\ E, and suppose that zo € 9Q is a
reqular boundary point of Q (i.e. ga(zo0) = 0). Then for every
0 <7 <1 we have

/T ME(Dt(zo))dt < sup go(z) < 3/4T NE(Dt(ZO))dt.
0

0 |z—z0|=r t

(15)



3 A Wiener-type Condition in R?

Let E C R be a compact set of positive Newtonian capacity, Q
the unbounded component of R? \ F and gq(x, a) the Green’s
function of  with pole at a € 2. We are interested in the
behavior of gq at a boundary point of €, which we assume to
be 0, i.e. let 0 € 99).

Let B, = {x | |x| < r} be the ball of radius r about the
origin, and we shall denote its closure by B, and its boundary
(the sphere of center 0 and radius r) by S,. With

E" = EN By \ By-n) = {x e E|2*" <l < 2*"“}

the regularity of the boundary point 0 was characterized by
Wiener (see e.g. [3, Theorem 5.2]): Green’s function gg(z,a)
(a € Q) is continuous at 0 € 9O (i.e. 0 is a regular boundary
point of E) if and only if

anp(E")T‘(d*Z) = 00, (16)

n=1

where cap(F"™) denotes the (d-dimensional) Newtonian capac-
ity of ™. Our aim is to characterize in a similar manner the
stronger Holder continuity:

galz,a) < Clx|” (17)

with some positive numbers C, k.
Following the definitions in [8], for £ > 0 set

Ni(e) = {n e N| cap(E") > e27d=2)} (18)



and we say that a subsequence N = {n; < ny < ...} of the
natural numbers is of positive lower density if

n{0,1,....N
liminf W {01, N}

0
N—oo N+1 >

?

which is clearly the same condition as n;, = O(k).
Let 29 € 51,0 <7 <1, £> 0 and set

{x, z0)
(k1

This is a cone with vertex at 0 and zg as the direction of its
axis. We say that F satisfies the cone condition if

C(zo,7,£) CQ (20)

C(zo,7,0) = {z € By >1-7}. (19)

with some zg € 51, 7 and £ > 0, which means that { contains
a cone with vertex at 0.

Theorem 9 a) If Ng(c) is of positive lower density for some
£ > 0 then Green’s function gq is Holder continuous at 0.

b) If Green’s function go is Holder continuous at 0 and F sat-
isfies the cone condition then Ng(e) is of positive lower
density for some e > 0.

The sufficiency of the density condition for Holder continu-
ity of the solution to Dirichlet’s problems and various elliptic
equations was proved by Maz’ja in [4]- [7]. Maz’ja used the
condition

N
Z2n(d*2)cap(Eﬁﬁgfn) >d0N, N=1,2,.. (21

n=1

10



for some § > 0, which is equivalent to the positive density of
NEg(g). Tt was also shown in [7] that in general this condition is
not necessary. The problem to find conditions under which (21)
is necessary was raised in [6]. Thus, the above theorem solves a
long standing open problem under the simple cone condition.

The importance of the Holder property is explained by the
following result. Let G be a domain in R? with compact bound-
ary such that 0 is on the boundary of G. We may assume that
G ¢ By, and set E = B{\G. Then Q := R\ F = GU(R?\ B;)
is a domain larger than GG and 0 is on the boundary of Q. If f is
a bounded Borel function on the boundary of &, then let u; de-
note the Perron-Wiener-Brelot solution of the Dirichlet problem
in G with boundary function f. We think u; to be extended to
JG as uy = f there.

Lemma 1 Suppose that 0 is a reqular boundary point of G.
Then the following are equivalent.

1) gal-,a) is Hilder continuous at 0 for a € G.

2) up(B,) < Cri=2T% for some C, k >0 and all r < 1, where
pe denotes the equilibrium measure of E.

1If, in addition, G satisfies the cone condition at 0, then 1) -
2) are also equivalent to

3) If f is Holder continuous at 0, then so is uy.

Note also that it is indifferent if ”for a € G” in 1) is under-
stood as "for some a € G” or as "for all a € G”.

11



References

1]

2]

L. V. Ahlfors, Conformal Invariants, New York: McGraw-
Hill, 1973.

V. V. Andrievskii, The highest smoothness of the Green
function implies the highest densily of the set, Ark. Mat.,
42 no. 2, 217-238, 2004.

N. S. Landkof, Foundations of Modern Potential Theory,
Grundlehren der mathematischen Wissenschaften, 180,
Springer Verlag, Berlin, 1972.

V. G. Maz’ja, Regularity at the boundary of solutions of
elliptic equations, and comformal mappings, Dokl. Akad.
Nauk. SSSR, 152, 1297-1300, (Russian) 1963.

V. G. Maz’ja, On the modulus of continuity of the solutions
of the Dirichlet problem near irregular boundary, in: Prob-
lems in mathematical analysis; Boundary problems and in-
tegral equations, Izdat. Leningrad Univ., Leningrad, 45-48,
(Russian) 1966.

V. G. Maz’ja, On the reqularity of boundary points for el-
liptic equations, in: Investigations on linear operators and
function theory ; 99 unsolved problems in linear and com-
plex analysis, Zap. Nauchn, Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI), 81, 197-199, (Russian) 1978.

V. G. Maz’ja, On the modulus of continuity of a har-
monic function at a boundary point, Zap. Nauchn. Sem.

12



Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 135, 87-95,
(Russian) 1984.

[8] L. Carleson, V. Totik, Hélder continuity of Green’s func-
tions, Acta Sci. Math., Szeged, 70, 557-608, 2004.

9] F. Todkos, V. Totik, Markov inequality and Green func-
tions, Rendiconti del Circolo Matematico di Palermo, to
appear

[10] F. Todkos, Smoothness of Green’s functions and density of
sets, Acta Sci. Math., Szeged, to appear

[11] F. Todkos, A Wiener-type condition for Hélder continuily,
Acta Math. Hungarica, to appear

[12] V. Totik, Markoff constants for Cantor sets, Acta Sci. Math.
(Szeged), 60, 715-734, 1995.

13



